xref: /linux/drivers/net/dsa/mv88e6xxx/chip.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Marvell 88e6xxx Ethernet switch single-chip support
3  *
4  * Copyright (c) 2008 Marvell Semiconductor
5  *
6  * Copyright (c) 2015 CMC Electronics, Inc.
7  *	Added support for VLAN Table Unit operations
8  *
9  * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 #include <linux/delay.h>
18 #include <linux/etherdevice.h>
19 #include <linux/ethtool.h>
20 #include <linux/if_bridge.h>
21 #include <linux/jiffies.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/of_mdio.h>
27 #include <linux/netdevice.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/phy.h>
30 #include <net/dsa.h>
31 #include <net/switchdev.h>
32 #include "mv88e6xxx.h"
33 
34 static void assert_reg_lock(struct mv88e6xxx_chip *chip)
35 {
36 	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
37 		dev_err(chip->dev, "Switch registers lock not held!\n");
38 		dump_stack();
39 	}
40 }
41 
42 /* The switch ADDR[4:1] configuration pins define the chip SMI device address
43  * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
44  *
45  * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
46  * is the only device connected to the SMI master. In this mode it responds to
47  * all 32 possible SMI addresses, and thus maps directly the internal devices.
48  *
49  * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
50  * multiple devices to share the SMI interface. In this mode it responds to only
51  * 2 registers, used to indirectly access the internal SMI devices.
52  */
53 
54 static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
55 			      int addr, int reg, u16 *val)
56 {
57 	if (!chip->smi_ops)
58 		return -EOPNOTSUPP;
59 
60 	return chip->smi_ops->read(chip, addr, reg, val);
61 }
62 
63 static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
64 			       int addr, int reg, u16 val)
65 {
66 	if (!chip->smi_ops)
67 		return -EOPNOTSUPP;
68 
69 	return chip->smi_ops->write(chip, addr, reg, val);
70 }
71 
72 static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
73 					  int addr, int reg, u16 *val)
74 {
75 	int ret;
76 
77 	ret = mdiobus_read_nested(chip->bus, addr, reg);
78 	if (ret < 0)
79 		return ret;
80 
81 	*val = ret & 0xffff;
82 
83 	return 0;
84 }
85 
86 static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
87 					   int addr, int reg, u16 val)
88 {
89 	int ret;
90 
91 	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
92 	if (ret < 0)
93 		return ret;
94 
95 	return 0;
96 }
97 
98 static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
99 	.read = mv88e6xxx_smi_single_chip_read,
100 	.write = mv88e6xxx_smi_single_chip_write,
101 };
102 
103 static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
104 {
105 	int ret;
106 	int i;
107 
108 	for (i = 0; i < 16; i++) {
109 		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
110 		if (ret < 0)
111 			return ret;
112 
113 		if ((ret & SMI_CMD_BUSY) == 0)
114 			return 0;
115 	}
116 
117 	return -ETIMEDOUT;
118 }
119 
120 static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
121 					 int addr, int reg, u16 *val)
122 {
123 	int ret;
124 
125 	/* Wait for the bus to become free. */
126 	ret = mv88e6xxx_smi_multi_chip_wait(chip);
127 	if (ret < 0)
128 		return ret;
129 
130 	/* Transmit the read command. */
131 	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
132 				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
133 	if (ret < 0)
134 		return ret;
135 
136 	/* Wait for the read command to complete. */
137 	ret = mv88e6xxx_smi_multi_chip_wait(chip);
138 	if (ret < 0)
139 		return ret;
140 
141 	/* Read the data. */
142 	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
143 	if (ret < 0)
144 		return ret;
145 
146 	*val = ret & 0xffff;
147 
148 	return 0;
149 }
150 
151 static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
152 					  int addr, int reg, u16 val)
153 {
154 	int ret;
155 
156 	/* Wait for the bus to become free. */
157 	ret = mv88e6xxx_smi_multi_chip_wait(chip);
158 	if (ret < 0)
159 		return ret;
160 
161 	/* Transmit the data to write. */
162 	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
163 	if (ret < 0)
164 		return ret;
165 
166 	/* Transmit the write command. */
167 	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
168 				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
169 	if (ret < 0)
170 		return ret;
171 
172 	/* Wait for the write command to complete. */
173 	ret = mv88e6xxx_smi_multi_chip_wait(chip);
174 	if (ret < 0)
175 		return ret;
176 
177 	return 0;
178 }
179 
180 static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
181 	.read = mv88e6xxx_smi_multi_chip_read,
182 	.write = mv88e6xxx_smi_multi_chip_write,
183 };
184 
185 static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
186 			  int addr, int reg, u16 *val)
187 {
188 	int err;
189 
190 	assert_reg_lock(chip);
191 
192 	err = mv88e6xxx_smi_read(chip, addr, reg, val);
193 	if (err)
194 		return err;
195 
196 	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
197 		addr, reg, *val);
198 
199 	return 0;
200 }
201 
202 static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
203 			   int addr, int reg, u16 val)
204 {
205 	int err;
206 
207 	assert_reg_lock(chip);
208 
209 	err = mv88e6xxx_smi_write(chip, addr, reg, val);
210 	if (err)
211 		return err;
212 
213 	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
214 		addr, reg, val);
215 
216 	return 0;
217 }
218 
219 /* Indirect write to single pointer-data register with an Update bit */
220 static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
221 			    u16 update)
222 {
223 	u16 val;
224 	int i, err;
225 
226 	/* Wait until the previous operation is completed */
227 	for (i = 0; i < 16; ++i) {
228 		err = mv88e6xxx_read(chip, addr, reg, &val);
229 		if (err)
230 			return err;
231 
232 		if (!(val & BIT(15)))
233 			break;
234 	}
235 
236 	if (i == 16)
237 		return -ETIMEDOUT;
238 
239 	/* Set the Update bit to trigger a write operation */
240 	val = BIT(15) | update;
241 
242 	return mv88e6xxx_write(chip, addr, reg, val);
243 }
244 
245 static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
246 {
247 	u16 val;
248 	int err;
249 
250 	err = mv88e6xxx_read(chip, addr, reg, &val);
251 	if (err)
252 		return err;
253 
254 	return val;
255 }
256 
257 static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
258 				int reg, u16 val)
259 {
260 	return mv88e6xxx_write(chip, addr, reg, val);
261 }
262 
263 static int mv88e6xxx_mdio_read_direct(struct mv88e6xxx_chip *chip,
264 				      int addr, int regnum)
265 {
266 	if (addr >= 0)
267 		return _mv88e6xxx_reg_read(chip, addr, regnum);
268 	return 0xffff;
269 }
270 
271 static int mv88e6xxx_mdio_write_direct(struct mv88e6xxx_chip *chip,
272 				       int addr, int regnum, u16 val)
273 {
274 	if (addr >= 0)
275 		return _mv88e6xxx_reg_write(chip, addr, regnum, val);
276 	return 0;
277 }
278 
279 static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
280 {
281 	int ret;
282 	unsigned long timeout;
283 
284 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
285 	if (ret < 0)
286 		return ret;
287 
288 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
289 				   ret & ~GLOBAL_CONTROL_PPU_ENABLE);
290 	if (ret)
291 		return ret;
292 
293 	timeout = jiffies + 1 * HZ;
294 	while (time_before(jiffies, timeout)) {
295 		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
296 		if (ret < 0)
297 			return ret;
298 
299 		usleep_range(1000, 2000);
300 		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
301 		    GLOBAL_STATUS_PPU_POLLING)
302 			return 0;
303 	}
304 
305 	return -ETIMEDOUT;
306 }
307 
308 static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
309 {
310 	int ret, err;
311 	unsigned long timeout;
312 
313 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
314 	if (ret < 0)
315 		return ret;
316 
317 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
318 				   ret | GLOBAL_CONTROL_PPU_ENABLE);
319 	if (err)
320 		return err;
321 
322 	timeout = jiffies + 1 * HZ;
323 	while (time_before(jiffies, timeout)) {
324 		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
325 		if (ret < 0)
326 			return ret;
327 
328 		usleep_range(1000, 2000);
329 		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
330 		    GLOBAL_STATUS_PPU_POLLING)
331 			return 0;
332 	}
333 
334 	return -ETIMEDOUT;
335 }
336 
337 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
338 {
339 	struct mv88e6xxx_chip *chip;
340 
341 	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
342 
343 	mutex_lock(&chip->reg_lock);
344 
345 	if (mutex_trylock(&chip->ppu_mutex)) {
346 		if (mv88e6xxx_ppu_enable(chip) == 0)
347 			chip->ppu_disabled = 0;
348 		mutex_unlock(&chip->ppu_mutex);
349 	}
350 
351 	mutex_unlock(&chip->reg_lock);
352 }
353 
354 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
355 {
356 	struct mv88e6xxx_chip *chip = (void *)_ps;
357 
358 	schedule_work(&chip->ppu_work);
359 }
360 
361 static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
362 {
363 	int ret;
364 
365 	mutex_lock(&chip->ppu_mutex);
366 
367 	/* If the PHY polling unit is enabled, disable it so that
368 	 * we can access the PHY registers.  If it was already
369 	 * disabled, cancel the timer that is going to re-enable
370 	 * it.
371 	 */
372 	if (!chip->ppu_disabled) {
373 		ret = mv88e6xxx_ppu_disable(chip);
374 		if (ret < 0) {
375 			mutex_unlock(&chip->ppu_mutex);
376 			return ret;
377 		}
378 		chip->ppu_disabled = 1;
379 	} else {
380 		del_timer(&chip->ppu_timer);
381 		ret = 0;
382 	}
383 
384 	return ret;
385 }
386 
387 static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
388 {
389 	/* Schedule a timer to re-enable the PHY polling unit. */
390 	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
391 	mutex_unlock(&chip->ppu_mutex);
392 }
393 
394 static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
395 {
396 	mutex_init(&chip->ppu_mutex);
397 	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
398 	init_timer(&chip->ppu_timer);
399 	chip->ppu_timer.data = (unsigned long)chip;
400 	chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
401 }
402 
403 static int mv88e6xxx_mdio_read_ppu(struct mv88e6xxx_chip *chip, int addr,
404 				   int regnum)
405 {
406 	int ret;
407 
408 	ret = mv88e6xxx_ppu_access_get(chip);
409 	if (ret >= 0) {
410 		ret = _mv88e6xxx_reg_read(chip, addr, regnum);
411 		mv88e6xxx_ppu_access_put(chip);
412 	}
413 
414 	return ret;
415 }
416 
417 static int mv88e6xxx_mdio_write_ppu(struct mv88e6xxx_chip *chip, int addr,
418 				    int regnum, u16 val)
419 {
420 	int ret;
421 
422 	ret = mv88e6xxx_ppu_access_get(chip);
423 	if (ret >= 0) {
424 		ret = _mv88e6xxx_reg_write(chip, addr, regnum, val);
425 		mv88e6xxx_ppu_access_put(chip);
426 	}
427 
428 	return ret;
429 }
430 
431 static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
432 {
433 	return chip->info->family == MV88E6XXX_FAMILY_6065;
434 }
435 
436 static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
437 {
438 	return chip->info->family == MV88E6XXX_FAMILY_6095;
439 }
440 
441 static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
442 {
443 	return chip->info->family == MV88E6XXX_FAMILY_6097;
444 }
445 
446 static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
447 {
448 	return chip->info->family == MV88E6XXX_FAMILY_6165;
449 }
450 
451 static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
452 {
453 	return chip->info->family == MV88E6XXX_FAMILY_6185;
454 }
455 
456 static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
457 {
458 	return chip->info->family == MV88E6XXX_FAMILY_6320;
459 }
460 
461 static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
462 {
463 	return chip->info->family == MV88E6XXX_FAMILY_6351;
464 }
465 
466 static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
467 {
468 	return chip->info->family == MV88E6XXX_FAMILY_6352;
469 }
470 
471 static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
472 {
473 	return chip->info->num_databases;
474 }
475 
476 static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
477 {
478 	/* Does the device have dedicated FID registers for ATU and VTU ops? */
479 	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
480 	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
481 		return true;
482 
483 	return false;
484 }
485 
486 /* We expect the switch to perform auto negotiation if there is a real
487  * phy. However, in the case of a fixed link phy, we force the port
488  * settings from the fixed link settings.
489  */
490 static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
491 				  struct phy_device *phydev)
492 {
493 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
494 	u32 reg;
495 	int ret;
496 
497 	if (!phy_is_pseudo_fixed_link(phydev))
498 		return;
499 
500 	mutex_lock(&chip->reg_lock);
501 
502 	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
503 	if (ret < 0)
504 		goto out;
505 
506 	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
507 		      PORT_PCS_CTRL_FORCE_LINK |
508 		      PORT_PCS_CTRL_DUPLEX_FULL |
509 		      PORT_PCS_CTRL_FORCE_DUPLEX |
510 		      PORT_PCS_CTRL_UNFORCED);
511 
512 	reg |= PORT_PCS_CTRL_FORCE_LINK;
513 	if (phydev->link)
514 		reg |= PORT_PCS_CTRL_LINK_UP;
515 
516 	if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
517 		goto out;
518 
519 	switch (phydev->speed) {
520 	case SPEED_1000:
521 		reg |= PORT_PCS_CTRL_1000;
522 		break;
523 	case SPEED_100:
524 		reg |= PORT_PCS_CTRL_100;
525 		break;
526 	case SPEED_10:
527 		reg |= PORT_PCS_CTRL_10;
528 		break;
529 	default:
530 		pr_info("Unknown speed");
531 		goto out;
532 	}
533 
534 	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
535 	if (phydev->duplex == DUPLEX_FULL)
536 		reg |= PORT_PCS_CTRL_DUPLEX_FULL;
537 
538 	if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
539 	    (port >= chip->info->num_ports - 2)) {
540 		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
541 			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
542 		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
543 			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
544 		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
545 			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
546 				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
547 	}
548 	_mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
549 
550 out:
551 	mutex_unlock(&chip->reg_lock);
552 }
553 
554 static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
555 {
556 	int ret;
557 	int i;
558 
559 	for (i = 0; i < 10; i++) {
560 		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
561 		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
562 			return 0;
563 	}
564 
565 	return -ETIMEDOUT;
566 }
567 
568 static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
569 {
570 	int ret;
571 
572 	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
573 		port = (port + 1) << 5;
574 
575 	/* Snapshot the hardware statistics counters for this port. */
576 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
577 				   GLOBAL_STATS_OP_CAPTURE_PORT |
578 				   GLOBAL_STATS_OP_HIST_RX_TX | port);
579 	if (ret < 0)
580 		return ret;
581 
582 	/* Wait for the snapshotting to complete. */
583 	ret = _mv88e6xxx_stats_wait(chip);
584 	if (ret < 0)
585 		return ret;
586 
587 	return 0;
588 }
589 
590 static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
591 				  int stat, u32 *val)
592 {
593 	u32 _val;
594 	int ret;
595 
596 	*val = 0;
597 
598 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
599 				   GLOBAL_STATS_OP_READ_CAPTURED |
600 				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
601 	if (ret < 0)
602 		return;
603 
604 	ret = _mv88e6xxx_stats_wait(chip);
605 	if (ret < 0)
606 		return;
607 
608 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
609 	if (ret < 0)
610 		return;
611 
612 	_val = ret << 16;
613 
614 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
615 	if (ret < 0)
616 		return;
617 
618 	*val = _val | ret;
619 }
620 
621 static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
622 	{ "in_good_octets",	8, 0x00, BANK0, },
623 	{ "in_bad_octets",	4, 0x02, BANK0, },
624 	{ "in_unicast",		4, 0x04, BANK0, },
625 	{ "in_broadcasts",	4, 0x06, BANK0, },
626 	{ "in_multicasts",	4, 0x07, BANK0, },
627 	{ "in_pause",		4, 0x16, BANK0, },
628 	{ "in_undersize",	4, 0x18, BANK0, },
629 	{ "in_fragments",	4, 0x19, BANK0, },
630 	{ "in_oversize",	4, 0x1a, BANK0, },
631 	{ "in_jabber",		4, 0x1b, BANK0, },
632 	{ "in_rx_error",	4, 0x1c, BANK0, },
633 	{ "in_fcs_error",	4, 0x1d, BANK0, },
634 	{ "out_octets",		8, 0x0e, BANK0, },
635 	{ "out_unicast",	4, 0x10, BANK0, },
636 	{ "out_broadcasts",	4, 0x13, BANK0, },
637 	{ "out_multicasts",	4, 0x12, BANK0, },
638 	{ "out_pause",		4, 0x15, BANK0, },
639 	{ "excessive",		4, 0x11, BANK0, },
640 	{ "collisions",		4, 0x1e, BANK0, },
641 	{ "deferred",		4, 0x05, BANK0, },
642 	{ "single",		4, 0x14, BANK0, },
643 	{ "multiple",		4, 0x17, BANK0, },
644 	{ "out_fcs_error",	4, 0x03, BANK0, },
645 	{ "late",		4, 0x1f, BANK0, },
646 	{ "hist_64bytes",	4, 0x08, BANK0, },
647 	{ "hist_65_127bytes",	4, 0x09, BANK0, },
648 	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
649 	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
650 	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
651 	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
652 	{ "sw_in_discards",	4, 0x10, PORT, },
653 	{ "sw_in_filtered",	2, 0x12, PORT, },
654 	{ "sw_out_filtered",	2, 0x13, PORT, },
655 	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
656 	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
657 	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
658 	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
659 	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
660 	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
661 	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
662 	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
663 	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
664 	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
665 	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
666 	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
667 	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
668 	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
669 	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
670 	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
671 	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
672 	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
673 	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
674 	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
675 	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
676 	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
677 	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
678 	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
679 	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
680 	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
681 };
682 
683 static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
684 			       struct mv88e6xxx_hw_stat *stat)
685 {
686 	switch (stat->type) {
687 	case BANK0:
688 		return true;
689 	case BANK1:
690 		return mv88e6xxx_6320_family(chip);
691 	case PORT:
692 		return mv88e6xxx_6095_family(chip) ||
693 			mv88e6xxx_6185_family(chip) ||
694 			mv88e6xxx_6097_family(chip) ||
695 			mv88e6xxx_6165_family(chip) ||
696 			mv88e6xxx_6351_family(chip) ||
697 			mv88e6xxx_6352_family(chip);
698 	}
699 	return false;
700 }
701 
702 static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
703 					    struct mv88e6xxx_hw_stat *s,
704 					    int port)
705 {
706 	u32 low;
707 	u32 high = 0;
708 	int ret;
709 	u64 value;
710 
711 	switch (s->type) {
712 	case PORT:
713 		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
714 		if (ret < 0)
715 			return UINT64_MAX;
716 
717 		low = ret;
718 		if (s->sizeof_stat == 4) {
719 			ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
720 						  s->reg + 1);
721 			if (ret < 0)
722 				return UINT64_MAX;
723 			high = ret;
724 		}
725 		break;
726 	case BANK0:
727 	case BANK1:
728 		_mv88e6xxx_stats_read(chip, s->reg, &low);
729 		if (s->sizeof_stat == 8)
730 			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
731 	}
732 	value = (((u64)high) << 16) | low;
733 	return value;
734 }
735 
736 static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
737 				  uint8_t *data)
738 {
739 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
740 	struct mv88e6xxx_hw_stat *stat;
741 	int i, j;
742 
743 	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
744 		stat = &mv88e6xxx_hw_stats[i];
745 		if (mv88e6xxx_has_stat(chip, stat)) {
746 			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
747 			       ETH_GSTRING_LEN);
748 			j++;
749 		}
750 	}
751 }
752 
753 static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
754 {
755 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
756 	struct mv88e6xxx_hw_stat *stat;
757 	int i, j;
758 
759 	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
760 		stat = &mv88e6xxx_hw_stats[i];
761 		if (mv88e6xxx_has_stat(chip, stat))
762 			j++;
763 	}
764 	return j;
765 }
766 
767 static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
768 					uint64_t *data)
769 {
770 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
771 	struct mv88e6xxx_hw_stat *stat;
772 	int ret;
773 	int i, j;
774 
775 	mutex_lock(&chip->reg_lock);
776 
777 	ret = _mv88e6xxx_stats_snapshot(chip, port);
778 	if (ret < 0) {
779 		mutex_unlock(&chip->reg_lock);
780 		return;
781 	}
782 	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
783 		stat = &mv88e6xxx_hw_stats[i];
784 		if (mv88e6xxx_has_stat(chip, stat)) {
785 			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
786 			j++;
787 		}
788 	}
789 
790 	mutex_unlock(&chip->reg_lock);
791 }
792 
793 static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
794 {
795 	return 32 * sizeof(u16);
796 }
797 
798 static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
799 			       struct ethtool_regs *regs, void *_p)
800 {
801 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
802 	u16 *p = _p;
803 	int i;
804 
805 	regs->version = 0;
806 
807 	memset(p, 0xff, 32 * sizeof(u16));
808 
809 	mutex_lock(&chip->reg_lock);
810 
811 	for (i = 0; i < 32; i++) {
812 		int ret;
813 
814 		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
815 		if (ret >= 0)
816 			p[i] = ret;
817 	}
818 
819 	mutex_unlock(&chip->reg_lock);
820 }
821 
822 static int _mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int reg, int offset,
823 			   u16 mask)
824 {
825 	unsigned long timeout = jiffies + HZ / 10;
826 
827 	while (time_before(jiffies, timeout)) {
828 		int ret;
829 
830 		ret = _mv88e6xxx_reg_read(chip, reg, offset);
831 		if (ret < 0)
832 			return ret;
833 		if (!(ret & mask))
834 			return 0;
835 
836 		usleep_range(1000, 2000);
837 	}
838 	return -ETIMEDOUT;
839 }
840 
841 static int mv88e6xxx_mdio_wait(struct mv88e6xxx_chip *chip)
842 {
843 	return _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
844 			       GLOBAL2_SMI_OP_BUSY);
845 }
846 
847 static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
848 {
849 	return _mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
850 			       GLOBAL_ATU_OP_BUSY);
851 }
852 
853 static int mv88e6xxx_mdio_read_indirect(struct mv88e6xxx_chip *chip,
854 					int addr, int regnum)
855 {
856 	int ret;
857 
858 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
859 				   GLOBAL2_SMI_OP_22_READ | (addr << 5) |
860 				   regnum);
861 	if (ret < 0)
862 		return ret;
863 
864 	ret = mv88e6xxx_mdio_wait(chip);
865 	if (ret < 0)
866 		return ret;
867 
868 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL2, GLOBAL2_SMI_DATA);
869 
870 	return ret;
871 }
872 
873 static int mv88e6xxx_mdio_write_indirect(struct mv88e6xxx_chip *chip,
874 					 int addr, int regnum, u16 val)
875 {
876 	int ret;
877 
878 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
879 	if (ret < 0)
880 		return ret;
881 
882 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
883 				   GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
884 				   regnum);
885 
886 	return mv88e6xxx_mdio_wait(chip);
887 }
888 
889 static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
890 			     struct ethtool_eee *e)
891 {
892 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
893 	int reg;
894 
895 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
896 		return -EOPNOTSUPP;
897 
898 	mutex_lock(&chip->reg_lock);
899 
900 	reg = mv88e6xxx_mdio_read_indirect(chip, port, 16);
901 	if (reg < 0)
902 		goto out;
903 
904 	e->eee_enabled = !!(reg & 0x0200);
905 	e->tx_lpi_enabled = !!(reg & 0x0100);
906 
907 	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
908 	if (reg < 0)
909 		goto out;
910 
911 	e->eee_active = !!(reg & PORT_STATUS_EEE);
912 	reg = 0;
913 
914 out:
915 	mutex_unlock(&chip->reg_lock);
916 	return reg;
917 }
918 
919 static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
920 			     struct phy_device *phydev, struct ethtool_eee *e)
921 {
922 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
923 	int reg;
924 	int ret;
925 
926 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
927 		return -EOPNOTSUPP;
928 
929 	mutex_lock(&chip->reg_lock);
930 
931 	ret = mv88e6xxx_mdio_read_indirect(chip, port, 16);
932 	if (ret < 0)
933 		goto out;
934 
935 	reg = ret & ~0x0300;
936 	if (e->eee_enabled)
937 		reg |= 0x0200;
938 	if (e->tx_lpi_enabled)
939 		reg |= 0x0100;
940 
941 	ret = mv88e6xxx_mdio_write_indirect(chip, port, 16, reg);
942 out:
943 	mutex_unlock(&chip->reg_lock);
944 
945 	return ret;
946 }
947 
948 static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
949 {
950 	int ret;
951 
952 	if (mv88e6xxx_has_fid_reg(chip)) {
953 		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
954 					   fid);
955 		if (ret < 0)
956 			return ret;
957 	} else if (mv88e6xxx_num_databases(chip) == 256) {
958 		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
959 		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
960 		if (ret < 0)
961 			return ret;
962 
963 		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
964 					   (ret & 0xfff) |
965 					   ((fid << 8) & 0xf000));
966 		if (ret < 0)
967 			return ret;
968 
969 		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
970 		cmd |= fid & 0xf;
971 	}
972 
973 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
974 	if (ret < 0)
975 		return ret;
976 
977 	return _mv88e6xxx_atu_wait(chip);
978 }
979 
980 static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
981 				     struct mv88e6xxx_atu_entry *entry)
982 {
983 	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
984 
985 	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
986 		unsigned int mask, shift;
987 
988 		if (entry->trunk) {
989 			data |= GLOBAL_ATU_DATA_TRUNK;
990 			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
991 			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
992 		} else {
993 			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
994 			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
995 		}
996 
997 		data |= (entry->portv_trunkid << shift) & mask;
998 	}
999 
1000 	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
1001 }
1002 
1003 static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1004 				     struct mv88e6xxx_atu_entry *entry,
1005 				     bool static_too)
1006 {
1007 	int op;
1008 	int err;
1009 
1010 	err = _mv88e6xxx_atu_wait(chip);
1011 	if (err)
1012 		return err;
1013 
1014 	err = _mv88e6xxx_atu_data_write(chip, entry);
1015 	if (err)
1016 		return err;
1017 
1018 	if (entry->fid) {
1019 		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
1020 			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
1021 	} else {
1022 		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
1023 			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
1024 	}
1025 
1026 	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1027 }
1028 
1029 static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1030 				u16 fid, bool static_too)
1031 {
1032 	struct mv88e6xxx_atu_entry entry = {
1033 		.fid = fid,
1034 		.state = 0, /* EntryState bits must be 0 */
1035 	};
1036 
1037 	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1038 }
1039 
1040 static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1041 			       int from_port, int to_port, bool static_too)
1042 {
1043 	struct mv88e6xxx_atu_entry entry = {
1044 		.trunk = false,
1045 		.fid = fid,
1046 	};
1047 
1048 	/* EntryState bits must be 0xF */
1049 	entry.state = GLOBAL_ATU_DATA_STATE_MASK;
1050 
1051 	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
1052 	entry.portv_trunkid = (to_port & 0x0f) << 4;
1053 	entry.portv_trunkid |= from_port & 0x0f;
1054 
1055 	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1056 }
1057 
1058 static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1059 				 int port, bool static_too)
1060 {
1061 	/* Destination port 0xF means remove the entries */
1062 	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1063 }
1064 
1065 static const char * const mv88e6xxx_port_state_names[] = {
1066 	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
1067 	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
1068 	[PORT_CONTROL_STATE_LEARNING] = "Learning",
1069 	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
1070 };
1071 
1072 static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1073 				 u8 state)
1074 {
1075 	struct dsa_switch *ds = chip->ds;
1076 	int reg, ret = 0;
1077 	u8 oldstate;
1078 
1079 	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
1080 	if (reg < 0)
1081 		return reg;
1082 
1083 	oldstate = reg & PORT_CONTROL_STATE_MASK;
1084 
1085 	if (oldstate != state) {
1086 		/* Flush forwarding database if we're moving a port
1087 		 * from Learning or Forwarding state to Disabled or
1088 		 * Blocking or Listening state.
1089 		 */
1090 		if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1091 		     oldstate == PORT_CONTROL_STATE_FORWARDING) &&
1092 		    (state == PORT_CONTROL_STATE_DISABLED ||
1093 		     state == PORT_CONTROL_STATE_BLOCKING)) {
1094 			ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
1095 			if (ret)
1096 				return ret;
1097 		}
1098 
1099 		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1100 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
1101 					   reg);
1102 		if (ret)
1103 			return ret;
1104 
1105 		netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
1106 			   mv88e6xxx_port_state_names[state],
1107 			   mv88e6xxx_port_state_names[oldstate]);
1108 	}
1109 
1110 	return ret;
1111 }
1112 
1113 static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1114 {
1115 	struct net_device *bridge = chip->ports[port].bridge_dev;
1116 	const u16 mask = (1 << chip->info->num_ports) - 1;
1117 	struct dsa_switch *ds = chip->ds;
1118 	u16 output_ports = 0;
1119 	int reg;
1120 	int i;
1121 
1122 	/* allow CPU port or DSA link(s) to send frames to every port */
1123 	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1124 		output_ports = mask;
1125 	} else {
1126 		for (i = 0; i < chip->info->num_ports; ++i) {
1127 			/* allow sending frames to every group member */
1128 			if (bridge && chip->ports[i].bridge_dev == bridge)
1129 				output_ports |= BIT(i);
1130 
1131 			/* allow sending frames to CPU port and DSA link(s) */
1132 			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1133 				output_ports |= BIT(i);
1134 		}
1135 	}
1136 
1137 	/* prevent frames from going back out of the port they came in on */
1138 	output_ports &= ~BIT(port);
1139 
1140 	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1141 	if (reg < 0)
1142 		return reg;
1143 
1144 	reg &= ~mask;
1145 	reg |= output_ports & mask;
1146 
1147 	return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
1148 }
1149 
1150 static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
1151 					 u8 state)
1152 {
1153 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1154 	int stp_state;
1155 	int err;
1156 
1157 	switch (state) {
1158 	case BR_STATE_DISABLED:
1159 		stp_state = PORT_CONTROL_STATE_DISABLED;
1160 		break;
1161 	case BR_STATE_BLOCKING:
1162 	case BR_STATE_LISTENING:
1163 		stp_state = PORT_CONTROL_STATE_BLOCKING;
1164 		break;
1165 	case BR_STATE_LEARNING:
1166 		stp_state = PORT_CONTROL_STATE_LEARNING;
1167 		break;
1168 	case BR_STATE_FORWARDING:
1169 	default:
1170 		stp_state = PORT_CONTROL_STATE_FORWARDING;
1171 		break;
1172 	}
1173 
1174 	mutex_lock(&chip->reg_lock);
1175 	err = _mv88e6xxx_port_state(chip, port, stp_state);
1176 	mutex_unlock(&chip->reg_lock);
1177 
1178 	if (err)
1179 		netdev_err(ds->ports[port].netdev,
1180 			   "failed to update state to %s\n",
1181 			   mv88e6xxx_port_state_names[stp_state]);
1182 }
1183 
1184 static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1185 				u16 *new, u16 *old)
1186 {
1187 	struct dsa_switch *ds = chip->ds;
1188 	u16 pvid;
1189 	int ret;
1190 
1191 	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
1192 	if (ret < 0)
1193 		return ret;
1194 
1195 	pvid = ret & PORT_DEFAULT_VLAN_MASK;
1196 
1197 	if (new) {
1198 		ret &= ~PORT_DEFAULT_VLAN_MASK;
1199 		ret |= *new & PORT_DEFAULT_VLAN_MASK;
1200 
1201 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
1202 					   PORT_DEFAULT_VLAN, ret);
1203 		if (ret < 0)
1204 			return ret;
1205 
1206 		netdev_dbg(ds->ports[port].netdev,
1207 			   "DefaultVID %d (was %d)\n", *new, pvid);
1208 	}
1209 
1210 	if (old)
1211 		*old = pvid;
1212 
1213 	return 0;
1214 }
1215 
1216 static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1217 				    int port, u16 *pvid)
1218 {
1219 	return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1220 }
1221 
1222 static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1223 				    int port, u16 pvid)
1224 {
1225 	return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1226 }
1227 
1228 static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1229 {
1230 	return _mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
1231 			       GLOBAL_VTU_OP_BUSY);
1232 }
1233 
1234 static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1235 {
1236 	int ret;
1237 
1238 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
1239 	if (ret < 0)
1240 		return ret;
1241 
1242 	return _mv88e6xxx_vtu_wait(chip);
1243 }
1244 
1245 static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1246 {
1247 	int ret;
1248 
1249 	ret = _mv88e6xxx_vtu_wait(chip);
1250 	if (ret < 0)
1251 		return ret;
1252 
1253 	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1254 }
1255 
1256 static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1257 					struct mv88e6xxx_vtu_stu_entry *entry,
1258 					unsigned int nibble_offset)
1259 {
1260 	u16 regs[3];
1261 	int i;
1262 	int ret;
1263 
1264 	for (i = 0; i < 3; ++i) {
1265 		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1266 					  GLOBAL_VTU_DATA_0_3 + i);
1267 		if (ret < 0)
1268 			return ret;
1269 
1270 		regs[i] = ret;
1271 	}
1272 
1273 	for (i = 0; i < chip->info->num_ports; ++i) {
1274 		unsigned int shift = (i % 4) * 4 + nibble_offset;
1275 		u16 reg = regs[i / 4];
1276 
1277 		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1284 				   struct mv88e6xxx_vtu_stu_entry *entry)
1285 {
1286 	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1287 }
1288 
1289 static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1290 				   struct mv88e6xxx_vtu_stu_entry *entry)
1291 {
1292 	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1293 }
1294 
1295 static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1296 					 struct mv88e6xxx_vtu_stu_entry *entry,
1297 					 unsigned int nibble_offset)
1298 {
1299 	u16 regs[3] = { 0 };
1300 	int i;
1301 	int ret;
1302 
1303 	for (i = 0; i < chip->info->num_ports; ++i) {
1304 		unsigned int shift = (i % 4) * 4 + nibble_offset;
1305 		u8 data = entry->data[i];
1306 
1307 		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
1308 	}
1309 
1310 	for (i = 0; i < 3; ++i) {
1311 		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
1312 					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
1313 		if (ret < 0)
1314 			return ret;
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1321 				    struct mv88e6xxx_vtu_stu_entry *entry)
1322 {
1323 	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1324 }
1325 
1326 static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1327 				    struct mv88e6xxx_vtu_stu_entry *entry)
1328 {
1329 	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1330 }
1331 
1332 static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1333 {
1334 	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
1335 				    vid & GLOBAL_VTU_VID_MASK);
1336 }
1337 
1338 static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1339 				  struct mv88e6xxx_vtu_stu_entry *entry)
1340 {
1341 	struct mv88e6xxx_vtu_stu_entry next = { 0 };
1342 	int ret;
1343 
1344 	ret = _mv88e6xxx_vtu_wait(chip);
1345 	if (ret < 0)
1346 		return ret;
1347 
1348 	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
1349 	if (ret < 0)
1350 		return ret;
1351 
1352 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1353 	if (ret < 0)
1354 		return ret;
1355 
1356 	next.vid = ret & GLOBAL_VTU_VID_MASK;
1357 	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1358 
1359 	if (next.valid) {
1360 		ret = mv88e6xxx_vtu_data_read(chip, &next);
1361 		if (ret < 0)
1362 			return ret;
1363 
1364 		if (mv88e6xxx_has_fid_reg(chip)) {
1365 			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1366 						  GLOBAL_VTU_FID);
1367 			if (ret < 0)
1368 				return ret;
1369 
1370 			next.fid = ret & GLOBAL_VTU_FID_MASK;
1371 		} else if (mv88e6xxx_num_databases(chip) == 256) {
1372 			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
1373 			 * VTU DBNum[3:0] are located in VTU Operation 3:0
1374 			 */
1375 			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1376 						  GLOBAL_VTU_OP);
1377 			if (ret < 0)
1378 				return ret;
1379 
1380 			next.fid = (ret & 0xf00) >> 4;
1381 			next.fid |= ret & 0xf;
1382 		}
1383 
1384 		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1385 			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1386 						  GLOBAL_VTU_SID);
1387 			if (ret < 0)
1388 				return ret;
1389 
1390 			next.sid = ret & GLOBAL_VTU_SID_MASK;
1391 		}
1392 	}
1393 
1394 	*entry = next;
1395 	return 0;
1396 }
1397 
1398 static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
1399 				    struct switchdev_obj_port_vlan *vlan,
1400 				    int (*cb)(struct switchdev_obj *obj))
1401 {
1402 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1403 	struct mv88e6xxx_vtu_stu_entry next;
1404 	u16 pvid;
1405 	int err;
1406 
1407 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1408 		return -EOPNOTSUPP;
1409 
1410 	mutex_lock(&chip->reg_lock);
1411 
1412 	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1413 	if (err)
1414 		goto unlock;
1415 
1416 	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1417 	if (err)
1418 		goto unlock;
1419 
1420 	do {
1421 		err = _mv88e6xxx_vtu_getnext(chip, &next);
1422 		if (err)
1423 			break;
1424 
1425 		if (!next.valid)
1426 			break;
1427 
1428 		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1429 			continue;
1430 
1431 		/* reinit and dump this VLAN obj */
1432 		vlan->vid_begin = next.vid;
1433 		vlan->vid_end = next.vid;
1434 		vlan->flags = 0;
1435 
1436 		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
1437 			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
1438 
1439 		if (next.vid == pvid)
1440 			vlan->flags |= BRIDGE_VLAN_INFO_PVID;
1441 
1442 		err = cb(&vlan->obj);
1443 		if (err)
1444 			break;
1445 	} while (next.vid < GLOBAL_VTU_VID_MASK);
1446 
1447 unlock:
1448 	mutex_unlock(&chip->reg_lock);
1449 
1450 	return err;
1451 }
1452 
1453 static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1454 				    struct mv88e6xxx_vtu_stu_entry *entry)
1455 {
1456 	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1457 	u16 reg = 0;
1458 	int ret;
1459 
1460 	ret = _mv88e6xxx_vtu_wait(chip);
1461 	if (ret < 0)
1462 		return ret;
1463 
1464 	if (!entry->valid)
1465 		goto loadpurge;
1466 
1467 	/* Write port member tags */
1468 	ret = mv88e6xxx_vtu_data_write(chip, entry);
1469 	if (ret < 0)
1470 		return ret;
1471 
1472 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1473 		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1474 		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1475 					   reg);
1476 		if (ret < 0)
1477 			return ret;
1478 	}
1479 
1480 	if (mv88e6xxx_has_fid_reg(chip)) {
1481 		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1482 		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
1483 					   reg);
1484 		if (ret < 0)
1485 			return ret;
1486 	} else if (mv88e6xxx_num_databases(chip) == 256) {
1487 		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
1488 		 * VTU DBNum[3:0] are located in VTU Operation 3:0
1489 		 */
1490 		op |= (entry->fid & 0xf0) << 8;
1491 		op |= entry->fid & 0xf;
1492 	}
1493 
1494 	reg = GLOBAL_VTU_VID_VALID;
1495 loadpurge:
1496 	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1497 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1498 	if (ret < 0)
1499 		return ret;
1500 
1501 	return _mv88e6xxx_vtu_cmd(chip, op);
1502 }
1503 
1504 static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1505 				  struct mv88e6xxx_vtu_stu_entry *entry)
1506 {
1507 	struct mv88e6xxx_vtu_stu_entry next = { 0 };
1508 	int ret;
1509 
1510 	ret = _mv88e6xxx_vtu_wait(chip);
1511 	if (ret < 0)
1512 		return ret;
1513 
1514 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1515 				   sid & GLOBAL_VTU_SID_MASK);
1516 	if (ret < 0)
1517 		return ret;
1518 
1519 	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
1520 	if (ret < 0)
1521 		return ret;
1522 
1523 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
1524 	if (ret < 0)
1525 		return ret;
1526 
1527 	next.sid = ret & GLOBAL_VTU_SID_MASK;
1528 
1529 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1530 	if (ret < 0)
1531 		return ret;
1532 
1533 	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1534 
1535 	if (next.valid) {
1536 		ret = mv88e6xxx_stu_data_read(chip, &next);
1537 		if (ret < 0)
1538 			return ret;
1539 	}
1540 
1541 	*entry = next;
1542 	return 0;
1543 }
1544 
1545 static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1546 				    struct mv88e6xxx_vtu_stu_entry *entry)
1547 {
1548 	u16 reg = 0;
1549 	int ret;
1550 
1551 	ret = _mv88e6xxx_vtu_wait(chip);
1552 	if (ret < 0)
1553 		return ret;
1554 
1555 	if (!entry->valid)
1556 		goto loadpurge;
1557 
1558 	/* Write port states */
1559 	ret = mv88e6xxx_stu_data_write(chip, entry);
1560 	if (ret < 0)
1561 		return ret;
1562 
1563 	reg = GLOBAL_VTU_VID_VALID;
1564 loadpurge:
1565 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1566 	if (ret < 0)
1567 		return ret;
1568 
1569 	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1570 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1571 	if (ret < 0)
1572 		return ret;
1573 
1574 	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1575 }
1576 
1577 static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1578 			       u16 *new, u16 *old)
1579 {
1580 	struct dsa_switch *ds = chip->ds;
1581 	u16 upper_mask;
1582 	u16 fid;
1583 	int ret;
1584 
1585 	if (mv88e6xxx_num_databases(chip) == 4096)
1586 		upper_mask = 0xff;
1587 	else if (mv88e6xxx_num_databases(chip) == 256)
1588 		upper_mask = 0xf;
1589 	else
1590 		return -EOPNOTSUPP;
1591 
1592 	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1593 	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1594 	if (ret < 0)
1595 		return ret;
1596 
1597 	fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;
1598 
1599 	if (new) {
1600 		ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
1601 		ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;
1602 
1603 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
1604 					   ret);
1605 		if (ret < 0)
1606 			return ret;
1607 	}
1608 
1609 	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1610 	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
1611 	if (ret < 0)
1612 		return ret;
1613 
1614 	fid |= (ret & upper_mask) << 4;
1615 
1616 	if (new) {
1617 		ret &= ~upper_mask;
1618 		ret |= (*new >> 4) & upper_mask;
1619 
1620 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
1621 					   ret);
1622 		if (ret < 0)
1623 			return ret;
1624 
1625 		netdev_dbg(ds->ports[port].netdev,
1626 			   "FID %d (was %d)\n", *new, fid);
1627 	}
1628 
1629 	if (old)
1630 		*old = fid;
1631 
1632 	return 0;
1633 }
1634 
1635 static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1636 				   int port, u16 *fid)
1637 {
1638 	return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1639 }
1640 
1641 static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1642 				   int port, u16 fid)
1643 {
1644 	return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1645 }
1646 
1647 static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1648 {
1649 	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
1650 	struct mv88e6xxx_vtu_stu_entry vlan;
1651 	int i, err;
1652 
1653 	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);
1654 
1655 	/* Set every FID bit used by the (un)bridged ports */
1656 	for (i = 0; i < chip->info->num_ports; ++i) {
1657 		err = _mv88e6xxx_port_fid_get(chip, i, fid);
1658 		if (err)
1659 			return err;
1660 
1661 		set_bit(*fid, fid_bitmap);
1662 	}
1663 
1664 	/* Set every FID bit used by the VLAN entries */
1665 	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1666 	if (err)
1667 		return err;
1668 
1669 	do {
1670 		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1671 		if (err)
1672 			return err;
1673 
1674 		if (!vlan.valid)
1675 			break;
1676 
1677 		set_bit(vlan.fid, fid_bitmap);
1678 	} while (vlan.vid < GLOBAL_VTU_VID_MASK);
1679 
1680 	/* The reset value 0x000 is used to indicate that multiple address
1681 	 * databases are not needed. Return the next positive available.
1682 	 */
1683 	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1684 	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1685 		return -ENOSPC;
1686 
1687 	/* Clear the database */
1688 	return _mv88e6xxx_atu_flush(chip, *fid, true);
1689 }
1690 
1691 static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1692 			      struct mv88e6xxx_vtu_stu_entry *entry)
1693 {
1694 	struct dsa_switch *ds = chip->ds;
1695 	struct mv88e6xxx_vtu_stu_entry vlan = {
1696 		.valid = true,
1697 		.vid = vid,
1698 	};
1699 	int i, err;
1700 
1701 	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1702 	if (err)
1703 		return err;
1704 
1705 	/* exclude all ports except the CPU and DSA ports */
1706 	for (i = 0; i < chip->info->num_ports; ++i)
1707 		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
1708 			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
1709 			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1710 
1711 	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
1712 	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1713 		struct mv88e6xxx_vtu_stu_entry vstp;
1714 
1715 		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
1716 		 * implemented, only one STU entry is needed to cover all VTU
1717 		 * entries. Thus, validate the SID 0.
1718 		 */
1719 		vlan.sid = 0;
1720 		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1721 		if (err)
1722 			return err;
1723 
1724 		if (vstp.sid != vlan.sid || !vstp.valid) {
1725 			memset(&vstp, 0, sizeof(vstp));
1726 			vstp.valid = true;
1727 			vstp.sid = vlan.sid;
1728 
1729 			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1730 			if (err)
1731 				return err;
1732 		}
1733 	}
1734 
1735 	*entry = vlan;
1736 	return 0;
1737 }
1738 
1739 static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1740 			      struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
1741 {
1742 	int err;
1743 
1744 	if (!vid)
1745 		return -EINVAL;
1746 
1747 	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1748 	if (err)
1749 		return err;
1750 
1751 	err = _mv88e6xxx_vtu_getnext(chip, entry);
1752 	if (err)
1753 		return err;
1754 
1755 	if (entry->vid != vid || !entry->valid) {
1756 		if (!creat)
1757 			return -EOPNOTSUPP;
1758 		/* -ENOENT would've been more appropriate, but switchdev expects
1759 		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
1760 		 */
1761 
1762 		err = _mv88e6xxx_vtu_new(chip, vid, entry);
1763 	}
1764 
1765 	return err;
1766 }
1767 
1768 static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
1769 					u16 vid_begin, u16 vid_end)
1770 {
1771 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1772 	struct mv88e6xxx_vtu_stu_entry vlan;
1773 	int i, err;
1774 
1775 	if (!vid_begin)
1776 		return -EOPNOTSUPP;
1777 
1778 	mutex_lock(&chip->reg_lock);
1779 
1780 	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1781 	if (err)
1782 		goto unlock;
1783 
1784 	do {
1785 		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1786 		if (err)
1787 			goto unlock;
1788 
1789 		if (!vlan.valid)
1790 			break;
1791 
1792 		if (vlan.vid > vid_end)
1793 			break;
1794 
1795 		for (i = 0; i < chip->info->num_ports; ++i) {
1796 			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
1797 				continue;
1798 
1799 			if (vlan.data[i] ==
1800 			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1801 				continue;
1802 
1803 			if (chip->ports[i].bridge_dev ==
1804 			    chip->ports[port].bridge_dev)
1805 				break; /* same bridge, check next VLAN */
1806 
1807 			netdev_warn(ds->ports[port].netdev,
1808 				    "hardware VLAN %d already used by %s\n",
1809 				    vlan.vid,
1810 				    netdev_name(chip->ports[i].bridge_dev));
1811 			err = -EOPNOTSUPP;
1812 			goto unlock;
1813 		}
1814 	} while (vlan.vid < vid_end);
1815 
1816 unlock:
1817 	mutex_unlock(&chip->reg_lock);
1818 
1819 	return err;
1820 }
1821 
1822 static const char * const mv88e6xxx_port_8021q_mode_names[] = {
1823 	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
1824 	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
1825 	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
1826 	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
1827 };
1828 
1829 static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
1830 					 bool vlan_filtering)
1831 {
1832 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1833 	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
1834 		PORT_CONTROL_2_8021Q_DISABLED;
1835 	int ret;
1836 
1837 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1838 		return -EOPNOTSUPP;
1839 
1840 	mutex_lock(&chip->reg_lock);
1841 
1842 	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
1843 	if (ret < 0)
1844 		goto unlock;
1845 
1846 	old = ret & PORT_CONTROL_2_8021Q_MASK;
1847 
1848 	if (new != old) {
1849 		ret &= ~PORT_CONTROL_2_8021Q_MASK;
1850 		ret |= new & PORT_CONTROL_2_8021Q_MASK;
1851 
1852 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
1853 					   ret);
1854 		if (ret < 0)
1855 			goto unlock;
1856 
1857 		netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1858 			   mv88e6xxx_port_8021q_mode_names[new],
1859 			   mv88e6xxx_port_8021q_mode_names[old]);
1860 	}
1861 
1862 	ret = 0;
1863 unlock:
1864 	mutex_unlock(&chip->reg_lock);
1865 
1866 	return ret;
1867 }
1868 
1869 static int
1870 mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
1871 			    const struct switchdev_obj_port_vlan *vlan,
1872 			    struct switchdev_trans *trans)
1873 {
1874 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1875 	int err;
1876 
1877 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1878 		return -EOPNOTSUPP;
1879 
1880 	/* If the requested port doesn't belong to the same bridge as the VLAN
1881 	 * members, do not support it (yet) and fallback to software VLAN.
1882 	 */
1883 	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
1884 					   vlan->vid_end);
1885 	if (err)
1886 		return err;
1887 
1888 	/* We don't need any dynamic resource from the kernel (yet),
1889 	 * so skip the prepare phase.
1890 	 */
1891 	return 0;
1892 }
1893 
1894 static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1895 				    u16 vid, bool untagged)
1896 {
1897 	struct mv88e6xxx_vtu_stu_entry vlan;
1898 	int err;
1899 
1900 	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1901 	if (err)
1902 		return err;
1903 
1904 	vlan.data[port] = untagged ?
1905 		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
1906 		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
1907 
1908 	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1909 }
1910 
1911 static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
1912 				    const struct switchdev_obj_port_vlan *vlan,
1913 				    struct switchdev_trans *trans)
1914 {
1915 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1916 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1917 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1918 	u16 vid;
1919 
1920 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1921 		return;
1922 
1923 	mutex_lock(&chip->reg_lock);
1924 
1925 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1926 		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1927 			netdev_err(ds->ports[port].netdev,
1928 				   "failed to add VLAN %d%c\n",
1929 				   vid, untagged ? 'u' : 't');
1930 
1931 	if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
1932 		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1933 			   vlan->vid_end);
1934 
1935 	mutex_unlock(&chip->reg_lock);
1936 }
1937 
1938 static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1939 				    int port, u16 vid)
1940 {
1941 	struct dsa_switch *ds = chip->ds;
1942 	struct mv88e6xxx_vtu_stu_entry vlan;
1943 	int i, err;
1944 
1945 	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1946 	if (err)
1947 		return err;
1948 
1949 	/* Tell switchdev if this VLAN is handled in software */
1950 	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1951 		return -EOPNOTSUPP;
1952 
1953 	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1954 
1955 	/* keep the VLAN unless all ports are excluded */
1956 	vlan.valid = false;
1957 	for (i = 0; i < chip->info->num_ports; ++i) {
1958 		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1959 			continue;
1960 
1961 		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1962 			vlan.valid = true;
1963 			break;
1964 		}
1965 	}
1966 
1967 	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1968 	if (err)
1969 		return err;
1970 
1971 	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
1972 }
1973 
1974 static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
1975 				   const struct switchdev_obj_port_vlan *vlan)
1976 {
1977 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1978 	u16 pvid, vid;
1979 	int err = 0;
1980 
1981 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1982 		return -EOPNOTSUPP;
1983 
1984 	mutex_lock(&chip->reg_lock);
1985 
1986 	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1987 	if (err)
1988 		goto unlock;
1989 
1990 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1991 		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
1992 		if (err)
1993 			goto unlock;
1994 
1995 		if (vid == pvid) {
1996 			err = _mv88e6xxx_port_pvid_set(chip, port, 0);
1997 			if (err)
1998 				goto unlock;
1999 		}
2000 	}
2001 
2002 unlock:
2003 	mutex_unlock(&chip->reg_lock);
2004 
2005 	return err;
2006 }
2007 
2008 static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2009 				    const unsigned char *addr)
2010 {
2011 	int i, ret;
2012 
2013 	for (i = 0; i < 3; i++) {
2014 		ret = _mv88e6xxx_reg_write(
2015 			chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
2016 			(addr[i * 2] << 8) | addr[i * 2 + 1]);
2017 		if (ret < 0)
2018 			return ret;
2019 	}
2020 
2021 	return 0;
2022 }
2023 
2024 static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2025 				   unsigned char *addr)
2026 {
2027 	int i, ret;
2028 
2029 	for (i = 0; i < 3; i++) {
2030 		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
2031 					  GLOBAL_ATU_MAC_01 + i);
2032 		if (ret < 0)
2033 			return ret;
2034 		addr[i * 2] = ret >> 8;
2035 		addr[i * 2 + 1] = ret & 0xff;
2036 	}
2037 
2038 	return 0;
2039 }
2040 
2041 static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2042 			       struct mv88e6xxx_atu_entry *entry)
2043 {
2044 	int ret;
2045 
2046 	ret = _mv88e6xxx_atu_wait(chip);
2047 	if (ret < 0)
2048 		return ret;
2049 
2050 	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2051 	if (ret < 0)
2052 		return ret;
2053 
2054 	ret = _mv88e6xxx_atu_data_write(chip, entry);
2055 	if (ret < 0)
2056 		return ret;
2057 
2058 	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2059 }
2060 
2061 static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port,
2062 				    const unsigned char *addr, u16 vid,
2063 				    u8 state)
2064 {
2065 	struct mv88e6xxx_atu_entry entry = { 0 };
2066 	struct mv88e6xxx_vtu_stu_entry vlan;
2067 	int err;
2068 
2069 	/* Null VLAN ID corresponds to the port private database */
2070 	if (vid == 0)
2071 		err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2072 	else
2073 		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2074 	if (err)
2075 		return err;
2076 
2077 	entry.fid = vlan.fid;
2078 	entry.state = state;
2079 	ether_addr_copy(entry.mac, addr);
2080 	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
2081 		entry.trunk = false;
2082 		entry.portv_trunkid = BIT(port);
2083 	}
2084 
2085 	return _mv88e6xxx_atu_load(chip, &entry);
2086 }
2087 
2088 static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
2089 				      const struct switchdev_obj_port_fdb *fdb,
2090 				      struct switchdev_trans *trans)
2091 {
2092 	/* We don't need any dynamic resource from the kernel (yet),
2093 	 * so skip the prepare phase.
2094 	 */
2095 	return 0;
2096 }
2097 
2098 static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
2099 				   const struct switchdev_obj_port_fdb *fdb,
2100 				   struct switchdev_trans *trans)
2101 {
2102 	int state = is_multicast_ether_addr(fdb->addr) ?
2103 		GLOBAL_ATU_DATA_STATE_MC_STATIC :
2104 		GLOBAL_ATU_DATA_STATE_UC_STATIC;
2105 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2106 
2107 	mutex_lock(&chip->reg_lock);
2108 	if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state))
2109 		netdev_err(ds->ports[port].netdev,
2110 			   "failed to load MAC address\n");
2111 	mutex_unlock(&chip->reg_lock);
2112 }
2113 
2114 static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
2115 				  const struct switchdev_obj_port_fdb *fdb)
2116 {
2117 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2118 	int ret;
2119 
2120 	mutex_lock(&chip->reg_lock);
2121 	ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid,
2122 				       GLOBAL_ATU_DATA_STATE_UNUSED);
2123 	mutex_unlock(&chip->reg_lock);
2124 
2125 	return ret;
2126 }
2127 
2128 static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2129 				  struct mv88e6xxx_atu_entry *entry)
2130 {
2131 	struct mv88e6xxx_atu_entry next = { 0 };
2132 	int ret;
2133 
2134 	next.fid = fid;
2135 
2136 	ret = _mv88e6xxx_atu_wait(chip);
2137 	if (ret < 0)
2138 		return ret;
2139 
2140 	ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2141 	if (ret < 0)
2142 		return ret;
2143 
2144 	ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
2145 	if (ret < 0)
2146 		return ret;
2147 
2148 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
2149 	if (ret < 0)
2150 		return ret;
2151 
2152 	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
2153 	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
2154 		unsigned int mask, shift;
2155 
2156 		if (ret & GLOBAL_ATU_DATA_TRUNK) {
2157 			next.trunk = true;
2158 			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
2159 			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
2160 		} else {
2161 			next.trunk = false;
2162 			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
2163 			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
2164 		}
2165 
2166 		next.portv_trunkid = (ret & mask) >> shift;
2167 	}
2168 
2169 	*entry = next;
2170 	return 0;
2171 }
2172 
2173 static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip,
2174 					u16 fid, u16 vid, int port,
2175 					struct switchdev_obj_port_fdb *fdb,
2176 					int (*cb)(struct switchdev_obj *obj))
2177 {
2178 	struct mv88e6xxx_atu_entry addr = {
2179 		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
2180 	};
2181 	int err;
2182 
2183 	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2184 	if (err)
2185 		return err;
2186 
2187 	do {
2188 		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2189 		if (err)
2190 			break;
2191 
2192 		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
2193 			break;
2194 
2195 		if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
2196 			bool is_static = addr.state ==
2197 				(is_multicast_ether_addr(addr.mac) ?
2198 				 GLOBAL_ATU_DATA_STATE_MC_STATIC :
2199 				 GLOBAL_ATU_DATA_STATE_UC_STATIC);
2200 
2201 			fdb->vid = vid;
2202 			ether_addr_copy(fdb->addr, addr.mac);
2203 			fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;
2204 
2205 			err = cb(&fdb->obj);
2206 			if (err)
2207 				break;
2208 		}
2209 	} while (!is_broadcast_ether_addr(addr.mac));
2210 
2211 	return err;
2212 }
2213 
2214 static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
2215 				   struct switchdev_obj_port_fdb *fdb,
2216 				   int (*cb)(struct switchdev_obj *obj))
2217 {
2218 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2219 	struct mv88e6xxx_vtu_stu_entry vlan = {
2220 		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
2221 	};
2222 	u16 fid;
2223 	int err;
2224 
2225 	mutex_lock(&chip->reg_lock);
2226 
2227 	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2228 	err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2229 	if (err)
2230 		goto unlock;
2231 
2232 	err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb);
2233 	if (err)
2234 		goto unlock;
2235 
2236 	/* Dump VLANs' Filtering Information Databases */
2237 	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2238 	if (err)
2239 		goto unlock;
2240 
2241 	do {
2242 		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2243 		if (err)
2244 			break;
2245 
2246 		if (!vlan.valid)
2247 			break;
2248 
2249 		err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid,
2250 						   port, fdb, cb);
2251 		if (err)
2252 			break;
2253 	} while (vlan.vid < GLOBAL_VTU_VID_MASK);
2254 
2255 unlock:
2256 	mutex_unlock(&chip->reg_lock);
2257 
2258 	return err;
2259 }
2260 
2261 static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
2262 				      struct net_device *bridge)
2263 {
2264 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2265 	int i, err = 0;
2266 
2267 	mutex_lock(&chip->reg_lock);
2268 
2269 	/* Assign the bridge and remap each port's VLANTable */
2270 	chip->ports[port].bridge_dev = bridge;
2271 
2272 	for (i = 0; i < chip->info->num_ports; ++i) {
2273 		if (chip->ports[i].bridge_dev == bridge) {
2274 			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2275 			if (err)
2276 				break;
2277 		}
2278 	}
2279 
2280 	mutex_unlock(&chip->reg_lock);
2281 
2282 	return err;
2283 }
2284 
2285 static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2286 {
2287 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2288 	struct net_device *bridge = chip->ports[port].bridge_dev;
2289 	int i;
2290 
2291 	mutex_lock(&chip->reg_lock);
2292 
2293 	/* Unassign the bridge and remap each port's VLANTable */
2294 	chip->ports[port].bridge_dev = NULL;
2295 
2296 	for (i = 0; i < chip->info->num_ports; ++i)
2297 		if (i == port || chip->ports[i].bridge_dev == bridge)
2298 			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2299 				netdev_warn(ds->ports[i].netdev,
2300 					    "failed to remap\n");
2301 
2302 	mutex_unlock(&chip->reg_lock);
2303 }
2304 
2305 static int _mv88e6xxx_mdio_page_write(struct mv88e6xxx_chip *chip,
2306 				      int port, int page, int reg, int val)
2307 {
2308 	int ret;
2309 
2310 	ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
2311 	if (ret < 0)
2312 		goto restore_page_0;
2313 
2314 	ret = mv88e6xxx_mdio_write_indirect(chip, port, reg, val);
2315 restore_page_0:
2316 	mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
2317 
2318 	return ret;
2319 }
2320 
2321 static int _mv88e6xxx_mdio_page_read(struct mv88e6xxx_chip *chip,
2322 				     int port, int page, int reg)
2323 {
2324 	int ret;
2325 
2326 	ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
2327 	if (ret < 0)
2328 		goto restore_page_0;
2329 
2330 	ret = mv88e6xxx_mdio_read_indirect(chip, port, reg);
2331 restore_page_0:
2332 	mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
2333 
2334 	return ret;
2335 }
2336 
2337 static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2338 {
2339 	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2340 	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2341 	struct gpio_desc *gpiod = chip->reset;
2342 	unsigned long timeout;
2343 	int ret;
2344 	int i;
2345 
2346 	/* Set all ports to the disabled state. */
2347 	for (i = 0; i < chip->info->num_ports; i++) {
2348 		ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
2349 		if (ret < 0)
2350 			return ret;
2351 
2352 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
2353 					   ret & 0xfffc);
2354 		if (ret)
2355 			return ret;
2356 	}
2357 
2358 	/* Wait for transmit queues to drain. */
2359 	usleep_range(2000, 4000);
2360 
2361 	/* If there is a gpio connected to the reset pin, toggle it */
2362 	if (gpiod) {
2363 		gpiod_set_value_cansleep(gpiod, 1);
2364 		usleep_range(10000, 20000);
2365 		gpiod_set_value_cansleep(gpiod, 0);
2366 		usleep_range(10000, 20000);
2367 	}
2368 
2369 	/* Reset the switch. Keep the PPU active if requested. The PPU
2370 	 * needs to be active to support indirect phy register access
2371 	 * through global registers 0x18 and 0x19.
2372 	 */
2373 	if (ppu_active)
2374 		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
2375 	else
2376 		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
2377 	if (ret)
2378 		return ret;
2379 
2380 	/* Wait up to one second for reset to complete. */
2381 	timeout = jiffies + 1 * HZ;
2382 	while (time_before(jiffies, timeout)) {
2383 		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
2384 		if (ret < 0)
2385 			return ret;
2386 
2387 		if ((ret & is_reset) == is_reset)
2388 			break;
2389 		usleep_range(1000, 2000);
2390 	}
2391 	if (time_after(jiffies, timeout))
2392 		ret = -ETIMEDOUT;
2393 	else
2394 		ret = 0;
2395 
2396 	return ret;
2397 }
2398 
2399 static int mv88e6xxx_power_on_serdes(struct mv88e6xxx_chip *chip)
2400 {
2401 	int ret;
2402 
2403 	ret = _mv88e6xxx_mdio_page_read(chip, REG_FIBER_SERDES,
2404 					PAGE_FIBER_SERDES, MII_BMCR);
2405 	if (ret < 0)
2406 		return ret;
2407 
2408 	if (ret & BMCR_PDOWN) {
2409 		ret &= ~BMCR_PDOWN;
2410 		ret = _mv88e6xxx_mdio_page_write(chip, REG_FIBER_SERDES,
2411 						 PAGE_FIBER_SERDES, MII_BMCR,
2412 						 ret);
2413 	}
2414 
2415 	return ret;
2416 }
2417 
2418 static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port,
2419 			       int reg, u16 *val)
2420 {
2421 	int addr = chip->info->port_base_addr + port;
2422 
2423 	if (port >= chip->info->num_ports)
2424 		return -EINVAL;
2425 
2426 	return mv88e6xxx_read(chip, addr, reg, val);
2427 }
2428 
2429 static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2430 {
2431 	struct dsa_switch *ds = chip->ds;
2432 	int ret;
2433 	u16 reg;
2434 
2435 	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2436 	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2437 	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
2438 	    mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2439 		/* MAC Forcing register: don't force link, speed,
2440 		 * duplex or flow control state to any particular
2441 		 * values on physical ports, but force the CPU port
2442 		 * and all DSA ports to their maximum bandwidth and
2443 		 * full duplex.
2444 		 */
2445 		reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
2446 		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2447 			reg &= ~PORT_PCS_CTRL_UNFORCED;
2448 			reg |= PORT_PCS_CTRL_FORCE_LINK |
2449 				PORT_PCS_CTRL_LINK_UP |
2450 				PORT_PCS_CTRL_DUPLEX_FULL |
2451 				PORT_PCS_CTRL_FORCE_DUPLEX;
2452 			if (mv88e6xxx_6065_family(chip))
2453 				reg |= PORT_PCS_CTRL_100;
2454 			else
2455 				reg |= PORT_PCS_CTRL_1000;
2456 		} else {
2457 			reg |= PORT_PCS_CTRL_UNFORCED;
2458 		}
2459 
2460 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2461 					   PORT_PCS_CTRL, reg);
2462 		if (ret)
2463 			return ret;
2464 	}
2465 
2466 	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
2467 	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
2468 	 * tunneling, determine priority by looking at 802.1p and IP
2469 	 * priority fields (IP prio has precedence), and set STP state
2470 	 * to Forwarding.
2471 	 *
2472 	 * If this is the CPU link, use DSA or EDSA tagging depending
2473 	 * on which tagging mode was configured.
2474 	 *
2475 	 * If this is a link to another switch, use DSA tagging mode.
2476 	 *
2477 	 * If this is the upstream port for this switch, enable
2478 	 * forwarding of unknown unicasts and multicasts.
2479 	 */
2480 	reg = 0;
2481 	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2482 	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2483 	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
2484 	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2485 		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
2486 		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
2487 		PORT_CONTROL_STATE_FORWARDING;
2488 	if (dsa_is_cpu_port(ds, port)) {
2489 		if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip))
2490 			reg |= PORT_CONTROL_DSA_TAG;
2491 		if (mv88e6xxx_6352_family(chip) ||
2492 		    mv88e6xxx_6351_family(chip) ||
2493 		    mv88e6xxx_6165_family(chip) ||
2494 		    mv88e6xxx_6097_family(chip) ||
2495 		    mv88e6xxx_6320_family(chip)) {
2496 			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2497 				PORT_CONTROL_FORWARD_UNKNOWN |
2498 				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2499 		}
2500 
2501 		if (mv88e6xxx_6352_family(chip) ||
2502 		    mv88e6xxx_6351_family(chip) ||
2503 		    mv88e6xxx_6165_family(chip) ||
2504 		    mv88e6xxx_6097_family(chip) ||
2505 		    mv88e6xxx_6095_family(chip) ||
2506 		    mv88e6xxx_6065_family(chip) ||
2507 		    mv88e6xxx_6185_family(chip) ||
2508 		    mv88e6xxx_6320_family(chip)) {
2509 			reg |= PORT_CONTROL_EGRESS_ADD_TAG;
2510 		}
2511 	}
2512 	if (dsa_is_dsa_port(ds, port)) {
2513 		if (mv88e6xxx_6095_family(chip) ||
2514 		    mv88e6xxx_6185_family(chip))
2515 			reg |= PORT_CONTROL_DSA_TAG;
2516 		if (mv88e6xxx_6352_family(chip) ||
2517 		    mv88e6xxx_6351_family(chip) ||
2518 		    mv88e6xxx_6165_family(chip) ||
2519 		    mv88e6xxx_6097_family(chip) ||
2520 		    mv88e6xxx_6320_family(chip)) {
2521 			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2522 		}
2523 
2524 		if (port == dsa_upstream_port(ds))
2525 			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
2526 				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2527 	}
2528 	if (reg) {
2529 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2530 					   PORT_CONTROL, reg);
2531 		if (ret)
2532 			return ret;
2533 	}
2534 
2535 	/* If this port is connected to a SerDes, make sure the SerDes is not
2536 	 * powered down.
2537 	 */
2538 	if (mv88e6xxx_6352_family(chip)) {
2539 		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
2540 		if (ret < 0)
2541 			return ret;
2542 		ret &= PORT_STATUS_CMODE_MASK;
2543 		if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
2544 		    (ret == PORT_STATUS_CMODE_1000BASE_X) ||
2545 		    (ret == PORT_STATUS_CMODE_SGMII)) {
2546 			ret = mv88e6xxx_power_on_serdes(chip);
2547 			if (ret < 0)
2548 				return ret;
2549 		}
2550 	}
2551 
2552 	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2553 	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2554 	 * untagged frames on this port, do a destination address lookup on all
2555 	 * received packets as usual, disable ARP mirroring and don't send a
2556 	 * copy of all transmitted/received frames on this port to the CPU.
2557 	 */
2558 	reg = 0;
2559 	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2560 	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2561 	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
2562 	    mv88e6xxx_6185_family(chip))
2563 		reg = PORT_CONTROL_2_MAP_DA;
2564 
2565 	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2566 	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2567 		reg |= PORT_CONTROL_2_JUMBO_10240;
2568 
2569 	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2570 		/* Set the upstream port this port should use */
2571 		reg |= dsa_upstream_port(ds);
2572 		/* enable forwarding of unknown multicast addresses to
2573 		 * the upstream port
2574 		 */
2575 		if (port == dsa_upstream_port(ds))
2576 			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
2577 	}
2578 
2579 	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2580 
2581 	if (reg) {
2582 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2583 					   PORT_CONTROL_2, reg);
2584 		if (ret)
2585 			return ret;
2586 	}
2587 
2588 	/* Port Association Vector: when learning source addresses
2589 	 * of packets, add the address to the address database using
2590 	 * a port bitmap that has only the bit for this port set and
2591 	 * the other bits clear.
2592 	 */
2593 	reg = 1 << port;
2594 	/* Disable learning for CPU port */
2595 	if (dsa_is_cpu_port(ds, port))
2596 		reg = 0;
2597 
2598 	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
2599 				   reg);
2600 	if (ret)
2601 		return ret;
2602 
2603 	/* Egress rate control 2: disable egress rate control. */
2604 	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
2605 				   0x0000);
2606 	if (ret)
2607 		return ret;
2608 
2609 	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2610 	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2611 	    mv88e6xxx_6320_family(chip)) {
2612 		/* Do not limit the period of time that this port can
2613 		 * be paused for by the remote end or the period of
2614 		 * time that this port can pause the remote end.
2615 		 */
2616 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2617 					   PORT_PAUSE_CTRL, 0x0000);
2618 		if (ret)
2619 			return ret;
2620 
2621 		/* Port ATU control: disable limiting the number of
2622 		 * address database entries that this port is allowed
2623 		 * to use.
2624 		 */
2625 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2626 					   PORT_ATU_CONTROL, 0x0000);
2627 		/* Priority Override: disable DA, SA and VTU priority
2628 		 * override.
2629 		 */
2630 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2631 					   PORT_PRI_OVERRIDE, 0x0000);
2632 		if (ret)
2633 			return ret;
2634 
2635 		/* Port Ethertype: use the Ethertype DSA Ethertype
2636 		 * value.
2637 		 */
2638 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2639 					   PORT_ETH_TYPE, ETH_P_EDSA);
2640 		if (ret)
2641 			return ret;
2642 		/* Tag Remap: use an identity 802.1p prio -> switch
2643 		 * prio mapping.
2644 		 */
2645 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2646 					   PORT_TAG_REGMAP_0123, 0x3210);
2647 		if (ret)
2648 			return ret;
2649 
2650 		/* Tag Remap 2: use an identity 802.1p prio -> switch
2651 		 * prio mapping.
2652 		 */
2653 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2654 					   PORT_TAG_REGMAP_4567, 0x7654);
2655 		if (ret)
2656 			return ret;
2657 	}
2658 
2659 	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2660 	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2661 	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
2662 	    mv88e6xxx_6320_family(chip)) {
2663 		/* Rate Control: disable ingress rate limiting. */
2664 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2665 					   PORT_RATE_CONTROL, 0x0001);
2666 		if (ret)
2667 			return ret;
2668 	}
2669 
2670 	/* Port Control 1: disable trunking, disable sending
2671 	 * learning messages to this port.
2672 	 */
2673 	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
2674 				   0x0000);
2675 	if (ret)
2676 		return ret;
2677 
2678 	/* Port based VLAN map: give each port the same default address
2679 	 * database, and allow bidirectional communication between the
2680 	 * CPU and DSA port(s), and the other ports.
2681 	 */
2682 	ret = _mv88e6xxx_port_fid_set(chip, port, 0);
2683 	if (ret)
2684 		return ret;
2685 
2686 	ret = _mv88e6xxx_port_based_vlan_map(chip, port);
2687 	if (ret)
2688 		return ret;
2689 
2690 	/* Default VLAN ID and priority: don't set a default VLAN
2691 	 * ID, and set the default packet priority to zero.
2692 	 */
2693 	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
2694 				   0x0000);
2695 	if (ret)
2696 		return ret;
2697 
2698 	return 0;
2699 }
2700 
2701 static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2702 {
2703 	int err;
2704 
2705 	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
2706 			      (addr[0] << 8) | addr[1]);
2707 	if (err)
2708 		return err;
2709 
2710 	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
2711 			      (addr[2] << 8) | addr[3]);
2712 	if (err)
2713 		return err;
2714 
2715 	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
2716 			       (addr[4] << 8) | addr[5]);
2717 }
2718 
2719 static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
2720 				     unsigned int msecs)
2721 {
2722 	const unsigned int coeff = chip->info->age_time_coeff;
2723 	const unsigned int min = 0x01 * coeff;
2724 	const unsigned int max = 0xff * coeff;
2725 	u8 age_time;
2726 	u16 val;
2727 	int err;
2728 
2729 	if (msecs < min || msecs > max)
2730 		return -ERANGE;
2731 
2732 	/* Round to nearest multiple of coeff */
2733 	age_time = (msecs + coeff / 2) / coeff;
2734 
2735 	err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
2736 	if (err)
2737 		return err;
2738 
2739 	/* AgeTime is 11:4 bits */
2740 	val &= ~0xff0;
2741 	val |= age_time << 4;
2742 
2743 	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
2744 }
2745 
2746 static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
2747 				     unsigned int ageing_time)
2748 {
2749 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2750 	int err;
2751 
2752 	mutex_lock(&chip->reg_lock);
2753 	err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
2754 	mutex_unlock(&chip->reg_lock);
2755 
2756 	return err;
2757 }
2758 
2759 static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2760 {
2761 	struct dsa_switch *ds = chip->ds;
2762 	u32 upstream_port = dsa_upstream_port(ds);
2763 	u16 reg;
2764 	int err;
2765 
2766 	/* Enable the PHY Polling Unit if present, don't discard any packets,
2767 	 * and mask all interrupt sources.
2768 	 */
2769 	reg = 0;
2770 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
2771 	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2772 		reg |= GLOBAL_CONTROL_PPU_ENABLE;
2773 
2774 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
2775 	if (err)
2776 		return err;
2777 
2778 	/* Configure the upstream port, and configure it as the port to which
2779 	 * ingress and egress and ARP monitor frames are to be sent.
2780 	 */
2781 	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
2782 		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
2783 		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2784 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
2785 				   reg);
2786 	if (err)
2787 		return err;
2788 
2789 	/* Disable remote management, and set the switch's DSA device number. */
2790 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
2791 				   GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
2792 				   (ds->index & 0x1f));
2793 	if (err)
2794 		return err;
2795 
2796 	/* Clear all the VTU and STU entries */
2797 	err = _mv88e6xxx_vtu_stu_flush(chip);
2798 	if (err < 0)
2799 		return err;
2800 
2801 	/* Set the default address aging time to 5 minutes, and
2802 	 * enable address learn messages to be sent to all message
2803 	 * ports.
2804 	 */
2805 	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
2806 			      GLOBAL_ATU_CONTROL_LEARN2ALL);
2807 	if (err)
2808 		return err;
2809 
2810 	err = mv88e6xxx_g1_set_age_time(chip, 300000);
2811 	if (err)
2812 		return err;
2813 
2814 	/* Clear all ATU entries */
2815 	err = _mv88e6xxx_atu_flush(chip, 0, true);
2816 	if (err)
2817 		return err;
2818 
2819 	/* Configure the IP ToS mapping registers. */
2820 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2821 	if (err)
2822 		return err;
2823 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2824 	if (err)
2825 		return err;
2826 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2827 	if (err)
2828 		return err;
2829 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2830 	if (err)
2831 		return err;
2832 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2833 	if (err)
2834 		return err;
2835 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2836 	if (err)
2837 		return err;
2838 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2839 	if (err)
2840 		return err;
2841 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2842 	if (err)
2843 		return err;
2844 
2845 	/* Configure the IEEE 802.1p priority mapping register. */
2846 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2847 	if (err)
2848 		return err;
2849 
2850 	/* Clear the statistics counters for all ports */
2851 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
2852 				   GLOBAL_STATS_OP_FLUSH_ALL);
2853 	if (err)
2854 		return err;
2855 
2856 	/* Wait for the flush to complete. */
2857 	err = _mv88e6xxx_stats_wait(chip);
2858 	if (err)
2859 		return err;
2860 
2861 	return 0;
2862 }
2863 
2864 static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
2865 					     int target, int port)
2866 {
2867 	u16 val = (target << 8) | (port & 0xf);
2868 
2869 	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
2870 }
2871 
2872 static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
2873 {
2874 	int target, port;
2875 	int err;
2876 
2877 	/* Initialize the routing port to the 32 possible target devices */
2878 	for (target = 0; target < 32; ++target) {
2879 		port = 0xf;
2880 
2881 		if (target < DSA_MAX_SWITCHES) {
2882 			port = chip->ds->rtable[target];
2883 			if (port == DSA_RTABLE_NONE)
2884 				port = 0xf;
2885 		}
2886 
2887 		err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
2888 		if (err)
2889 			break;
2890 	}
2891 
2892 	return err;
2893 }
2894 
2895 static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
2896 					 bool hask, u16 mask)
2897 {
2898 	const u16 port_mask = BIT(chip->info->num_ports) - 1;
2899 	u16 val = (num << 12) | (mask & port_mask);
2900 
2901 	if (hask)
2902 		val |= GLOBAL2_TRUNK_MASK_HASK;
2903 
2904 	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
2905 }
2906 
2907 static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
2908 					    u16 map)
2909 {
2910 	const u16 port_mask = BIT(chip->info->num_ports) - 1;
2911 	u16 val = (id << 11) | (map & port_mask);
2912 
2913 	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
2914 }
2915 
2916 static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
2917 {
2918 	const u16 port_mask = BIT(chip->info->num_ports) - 1;
2919 	int i, err;
2920 
2921 	/* Clear all eight possible Trunk Mask vectors */
2922 	for (i = 0; i < 8; ++i) {
2923 		err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
2924 		if (err)
2925 			return err;
2926 	}
2927 
2928 	/* Clear all sixteen possible Trunk ID routing vectors */
2929 	for (i = 0; i < 16; ++i) {
2930 		err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
2931 		if (err)
2932 			return err;
2933 	}
2934 
2935 	return 0;
2936 }
2937 
2938 static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
2939 {
2940 	int port, err;
2941 
2942 	/* Init all Ingress Rate Limit resources of all ports */
2943 	for (port = 0; port < chip->info->num_ports; ++port) {
2944 		/* XXX newer chips (like 88E6390) have different 2-bit ops */
2945 		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
2946 				      GLOBAL2_IRL_CMD_OP_INIT_ALL |
2947 				      (port << 8));
2948 		if (err)
2949 			break;
2950 
2951 		/* Wait for the operation to complete */
2952 		err = _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
2953 				      GLOBAL2_IRL_CMD_BUSY);
2954 		if (err)
2955 			break;
2956 	}
2957 
2958 	return err;
2959 }
2960 
2961 /* Indirect write to the Switch MAC/WoL/WoF register */
2962 static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
2963 					 unsigned int pointer, u8 data)
2964 {
2965 	u16 val = (pointer << 8) | data;
2966 
2967 	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
2968 }
2969 
2970 static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2971 {
2972 	int i, err;
2973 
2974 	for (i = 0; i < 6; i++) {
2975 		err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
2976 		if (err)
2977 			break;
2978 	}
2979 
2980 	return err;
2981 }
2982 
2983 static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
2984 				  u8 data)
2985 {
2986 	u16 val = (pointer << 8) | (data & 0x7);
2987 
2988 	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
2989 }
2990 
2991 static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
2992 {
2993 	int i, err;
2994 
2995 	/* Clear all sixteen possible Priority Override entries */
2996 	for (i = 0; i < 16; i++) {
2997 		err = mv88e6xxx_g2_pot_write(chip, i, 0);
2998 		if (err)
2999 			break;
3000 	}
3001 
3002 	return err;
3003 }
3004 
3005 static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
3006 {
3007 	return _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD,
3008 			       GLOBAL2_EEPROM_CMD_BUSY |
3009 			       GLOBAL2_EEPROM_CMD_RUNNING);
3010 }
3011 
3012 static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
3013 {
3014 	int err;
3015 
3016 	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd);
3017 	if (err)
3018 		return err;
3019 
3020 	return mv88e6xxx_g2_eeprom_wait(chip);
3021 }
3022 
3023 static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
3024 				      u8 addr, u16 *data)
3025 {
3026 	u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
3027 	int err;
3028 
3029 	err = mv88e6xxx_g2_eeprom_wait(chip);
3030 	if (err)
3031 		return err;
3032 
3033 	err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
3034 	if (err)
3035 		return err;
3036 
3037 	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
3038 }
3039 
3040 static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
3041 				       u8 addr, u16 data)
3042 {
3043 	u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
3044 	int err;
3045 
3046 	err = mv88e6xxx_g2_eeprom_wait(chip);
3047 	if (err)
3048 		return err;
3049 
3050 	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
3051 	if (err)
3052 		return err;
3053 
3054 	return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
3055 }
3056 
3057 static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
3058 {
3059 	u16 reg;
3060 	int err;
3061 
3062 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
3063 		/* Consider the frames with reserved multicast destination
3064 		 * addresses matching 01:80:c2:00:00:2x as MGMT.
3065 		 */
3066 		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
3067 				      0xffff);
3068 		if (err)
3069 			return err;
3070 	}
3071 
3072 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
3073 		/* Consider the frames with reserved multicast destination
3074 		 * addresses matching 01:80:c2:00:00:0x as MGMT.
3075 		 */
3076 		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
3077 				      0xffff);
3078 		if (err)
3079 			return err;
3080 	}
3081 
3082 	/* Ignore removed tag data on doubly tagged packets, disable
3083 	 * flow control messages, force flow control priority to the
3084 	 * highest, and send all special multicast frames to the CPU
3085 	 * port at the highest priority.
3086 	 */
3087 	reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
3088 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
3089 	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
3090 		reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
3091 	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
3092 	if (err)
3093 		return err;
3094 
3095 	/* Program the DSA routing table. */
3096 	err = mv88e6xxx_g2_set_device_mapping(chip);
3097 	if (err)
3098 		return err;
3099 
3100 	/* Clear all trunk masks and mapping. */
3101 	err = mv88e6xxx_g2_clear_trunk(chip);
3102 	if (err)
3103 		return err;
3104 
3105 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
3106 		/* Disable ingress rate limiting by resetting all per port
3107 		 * ingress rate limit resources to their initial state.
3108 		 */
3109 		err = mv88e6xxx_g2_clear_irl(chip);
3110 			if (err)
3111 				return err;
3112 	}
3113 
3114 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
3115 		/* Initialize Cross-chip Port VLAN Table to reset defaults */
3116 		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
3117 				      GLOBAL2_PVT_ADDR_OP_INIT_ONES);
3118 		if (err)
3119 			return err;
3120 	}
3121 
3122 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
3123 		/* Clear the priority override table. */
3124 		err = mv88e6xxx_g2_clear_pot(chip);
3125 		if (err)
3126 			return err;
3127 	}
3128 
3129 	return 0;
3130 }
3131 
3132 static int mv88e6xxx_setup(struct dsa_switch *ds)
3133 {
3134 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3135 	int err;
3136 	int i;
3137 
3138 	chip->ds = ds;
3139 	ds->slave_mii_bus = chip->mdio_bus;
3140 
3141 	mutex_lock(&chip->reg_lock);
3142 
3143 	err = mv88e6xxx_switch_reset(chip);
3144 	if (err)
3145 		goto unlock;
3146 
3147 	/* Setup Switch Port Registers */
3148 	for (i = 0; i < chip->info->num_ports; i++) {
3149 		err = mv88e6xxx_setup_port(chip, i);
3150 		if (err)
3151 			goto unlock;
3152 	}
3153 
3154 	/* Setup Switch Global 1 Registers */
3155 	err = mv88e6xxx_g1_setup(chip);
3156 	if (err)
3157 		goto unlock;
3158 
3159 	/* Setup Switch Global 2 Registers */
3160 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
3161 		err = mv88e6xxx_g2_setup(chip);
3162 		if (err)
3163 			goto unlock;
3164 	}
3165 
3166 unlock:
3167 	mutex_unlock(&chip->reg_lock);
3168 
3169 	return err;
3170 }
3171 
3172 static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
3173 {
3174 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3175 	int err;
3176 
3177 	mutex_lock(&chip->reg_lock);
3178 
3179 	/* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
3180 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
3181 		err = mv88e6xxx_g2_set_switch_mac(chip, addr);
3182 	else
3183 		err = mv88e6xxx_g1_set_switch_mac(chip, addr);
3184 
3185 	mutex_unlock(&chip->reg_lock);
3186 
3187 	return err;
3188 }
3189 
3190 static int mv88e6xxx_mdio_page_read(struct dsa_switch *ds, int port, int page,
3191 				    int reg)
3192 {
3193 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3194 	int ret;
3195 
3196 	mutex_lock(&chip->reg_lock);
3197 	ret = _mv88e6xxx_mdio_page_read(chip, port, page, reg);
3198 	mutex_unlock(&chip->reg_lock);
3199 
3200 	return ret;
3201 }
3202 
3203 static int mv88e6xxx_mdio_page_write(struct dsa_switch *ds, int port, int page,
3204 				     int reg, int val)
3205 {
3206 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3207 	int ret;
3208 
3209 	mutex_lock(&chip->reg_lock);
3210 	ret = _mv88e6xxx_mdio_page_write(chip, port, page, reg, val);
3211 	mutex_unlock(&chip->reg_lock);
3212 
3213 	return ret;
3214 }
3215 
3216 static int mv88e6xxx_port_to_mdio_addr(struct mv88e6xxx_chip *chip, int port)
3217 {
3218 	if (port >= 0 && port < chip->info->num_ports)
3219 		return port;
3220 	return -EINVAL;
3221 }
3222 
3223 static int mv88e6xxx_mdio_read(struct mii_bus *bus, int port, int regnum)
3224 {
3225 	struct mv88e6xxx_chip *chip = bus->priv;
3226 	int addr = mv88e6xxx_port_to_mdio_addr(chip, port);
3227 	int ret;
3228 
3229 	if (addr < 0)
3230 		return 0xffff;
3231 
3232 	mutex_lock(&chip->reg_lock);
3233 
3234 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3235 		ret = mv88e6xxx_mdio_read_ppu(chip, addr, regnum);
3236 	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_SMI_PHY))
3237 		ret = mv88e6xxx_mdio_read_indirect(chip, addr, regnum);
3238 	else
3239 		ret = mv88e6xxx_mdio_read_direct(chip, addr, regnum);
3240 
3241 	mutex_unlock(&chip->reg_lock);
3242 	return ret;
3243 }
3244 
3245 static int mv88e6xxx_mdio_write(struct mii_bus *bus, int port, int regnum,
3246 				u16 val)
3247 {
3248 	struct mv88e6xxx_chip *chip = bus->priv;
3249 	int addr = mv88e6xxx_port_to_mdio_addr(chip, port);
3250 	int ret;
3251 
3252 	if (addr < 0)
3253 		return 0xffff;
3254 
3255 	mutex_lock(&chip->reg_lock);
3256 
3257 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3258 		ret = mv88e6xxx_mdio_write_ppu(chip, addr, regnum, val);
3259 	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_SMI_PHY))
3260 		ret = mv88e6xxx_mdio_write_indirect(chip, addr, regnum, val);
3261 	else
3262 		ret = mv88e6xxx_mdio_write_direct(chip, addr, regnum, val);
3263 
3264 	mutex_unlock(&chip->reg_lock);
3265 	return ret;
3266 }
3267 
3268 static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3269 				   struct device_node *np)
3270 {
3271 	static int index;
3272 	struct mii_bus *bus;
3273 	int err;
3274 
3275 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3276 		mv88e6xxx_ppu_state_init(chip);
3277 
3278 	if (np)
3279 		chip->mdio_np = of_get_child_by_name(np, "mdio");
3280 
3281 	bus = devm_mdiobus_alloc(chip->dev);
3282 	if (!bus)
3283 		return -ENOMEM;
3284 
3285 	bus->priv = (void *)chip;
3286 	if (np) {
3287 		bus->name = np->full_name;
3288 		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
3289 	} else {
3290 		bus->name = "mv88e6xxx SMI";
3291 		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
3292 	}
3293 
3294 	bus->read = mv88e6xxx_mdio_read;
3295 	bus->write = mv88e6xxx_mdio_write;
3296 	bus->parent = chip->dev;
3297 
3298 	if (chip->mdio_np)
3299 		err = of_mdiobus_register(bus, chip->mdio_np);
3300 	else
3301 		err = mdiobus_register(bus);
3302 	if (err) {
3303 		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3304 		goto out;
3305 	}
3306 	chip->mdio_bus = bus;
3307 
3308 	return 0;
3309 
3310 out:
3311 	if (chip->mdio_np)
3312 		of_node_put(chip->mdio_np);
3313 
3314 	return err;
3315 }
3316 
3317 static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3318 
3319 {
3320 	struct mii_bus *bus = chip->mdio_bus;
3321 
3322 	mdiobus_unregister(bus);
3323 
3324 	if (chip->mdio_np)
3325 		of_node_put(chip->mdio_np);
3326 }
3327 
3328 #ifdef CONFIG_NET_DSA_HWMON
3329 
3330 static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
3331 {
3332 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3333 	int ret;
3334 	int val;
3335 
3336 	*temp = 0;
3337 
3338 	mutex_lock(&chip->reg_lock);
3339 
3340 	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x6);
3341 	if (ret < 0)
3342 		goto error;
3343 
3344 	/* Enable temperature sensor */
3345 	ret = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
3346 	if (ret < 0)
3347 		goto error;
3348 
3349 	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret | (1 << 5));
3350 	if (ret < 0)
3351 		goto error;
3352 
3353 	/* Wait for temperature to stabilize */
3354 	usleep_range(10000, 12000);
3355 
3356 	val = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
3357 	if (val < 0) {
3358 		ret = val;
3359 		goto error;
3360 	}
3361 
3362 	/* Disable temperature sensor */
3363 	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret & ~(1 << 5));
3364 	if (ret < 0)
3365 		goto error;
3366 
3367 	*temp = ((val & 0x1f) - 5) * 5;
3368 
3369 error:
3370 	mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x0);
3371 	mutex_unlock(&chip->reg_lock);
3372 	return ret;
3373 }
3374 
3375 static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
3376 {
3377 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3378 	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3379 	int ret;
3380 
3381 	*temp = 0;
3382 
3383 	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 27);
3384 	if (ret < 0)
3385 		return ret;
3386 
3387 	*temp = (ret & 0xff) - 25;
3388 
3389 	return 0;
3390 }
3391 
3392 static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3393 {
3394 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3395 
3396 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3397 		return -EOPNOTSUPP;
3398 
3399 	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3400 		return mv88e63xx_get_temp(ds, temp);
3401 
3402 	return mv88e61xx_get_temp(ds, temp);
3403 }
3404 
3405 static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3406 {
3407 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3408 	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3409 	int ret;
3410 
3411 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3412 		return -EOPNOTSUPP;
3413 
3414 	*temp = 0;
3415 
3416 	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3417 	if (ret < 0)
3418 		return ret;
3419 
3420 	*temp = (((ret >> 8) & 0x1f) * 5) - 25;
3421 
3422 	return 0;
3423 }
3424 
3425 static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3426 {
3427 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3428 	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3429 	int ret;
3430 
3431 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3432 		return -EOPNOTSUPP;
3433 
3434 	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3435 	if (ret < 0)
3436 		return ret;
3437 	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3438 	return mv88e6xxx_mdio_page_write(ds, phy, 6, 26,
3439 					 (ret & 0xe0ff) | (temp << 8));
3440 }
3441 
3442 static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3443 {
3444 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3445 	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3446 	int ret;
3447 
3448 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3449 		return -EOPNOTSUPP;
3450 
3451 	*alarm = false;
3452 
3453 	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3454 	if (ret < 0)
3455 		return ret;
3456 
3457 	*alarm = !!(ret & 0x40);
3458 
3459 	return 0;
3460 }
3461 #endif /* CONFIG_NET_DSA_HWMON */
3462 
3463 static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
3464 {
3465 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3466 
3467 	return chip->eeprom_len;
3468 }
3469 
3470 static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip,
3471 				  struct ethtool_eeprom *eeprom, u8 *data)
3472 {
3473 	unsigned int offset = eeprom->offset;
3474 	unsigned int len = eeprom->len;
3475 	u16 val;
3476 	int err;
3477 
3478 	eeprom->len = 0;
3479 
3480 	if (offset & 1) {
3481 		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3482 		if (err)
3483 			return err;
3484 
3485 		*data++ = (val >> 8) & 0xff;
3486 
3487 		offset++;
3488 		len--;
3489 		eeprom->len++;
3490 	}
3491 
3492 	while (len >= 2) {
3493 		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3494 		if (err)
3495 			return err;
3496 
3497 		*data++ = val & 0xff;
3498 		*data++ = (val >> 8) & 0xff;
3499 
3500 		offset += 2;
3501 		len -= 2;
3502 		eeprom->len += 2;
3503 	}
3504 
3505 	if (len) {
3506 		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3507 		if (err)
3508 			return err;
3509 
3510 		*data++ = val & 0xff;
3511 
3512 		offset++;
3513 		len--;
3514 		eeprom->len++;
3515 	}
3516 
3517 	return 0;
3518 }
3519 
3520 static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
3521 				struct ethtool_eeprom *eeprom, u8 *data)
3522 {
3523 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3524 	int err;
3525 
3526 	mutex_lock(&chip->reg_lock);
3527 
3528 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3529 		err = mv88e6xxx_get_eeprom16(chip, eeprom, data);
3530 	else
3531 		err = -EOPNOTSUPP;
3532 
3533 	mutex_unlock(&chip->reg_lock);
3534 
3535 	if (err)
3536 		return err;
3537 
3538 	eeprom->magic = 0xc3ec4951;
3539 
3540 	return 0;
3541 }
3542 
3543 static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip,
3544 				  struct ethtool_eeprom *eeprom, u8 *data)
3545 {
3546 	unsigned int offset = eeprom->offset;
3547 	unsigned int len = eeprom->len;
3548 	u16 val;
3549 	int err;
3550 
3551 	/* Ensure the RO WriteEn bit is set */
3552 	err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val);
3553 	if (err)
3554 		return err;
3555 
3556 	if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
3557 		return -EROFS;
3558 
3559 	eeprom->len = 0;
3560 
3561 	if (offset & 1) {
3562 		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3563 		if (err)
3564 			return err;
3565 
3566 		val = (*data++ << 8) | (val & 0xff);
3567 
3568 		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3569 		if (err)
3570 			return err;
3571 
3572 		offset++;
3573 		len--;
3574 		eeprom->len++;
3575 	}
3576 
3577 	while (len >= 2) {
3578 		val = *data++;
3579 		val |= *data++ << 8;
3580 
3581 		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3582 		if (err)
3583 			return err;
3584 
3585 		offset += 2;
3586 		len -= 2;
3587 		eeprom->len += 2;
3588 	}
3589 
3590 	if (len) {
3591 		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3592 		if (err)
3593 			return err;
3594 
3595 		val = (val & 0xff00) | *data++;
3596 
3597 		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3598 		if (err)
3599 			return err;
3600 
3601 		offset++;
3602 		len--;
3603 		eeprom->len++;
3604 	}
3605 
3606 	return 0;
3607 }
3608 
3609 static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
3610 				struct ethtool_eeprom *eeprom, u8 *data)
3611 {
3612 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3613 	int err;
3614 
3615 	if (eeprom->magic != 0xc3ec4951)
3616 		return -EINVAL;
3617 
3618 	mutex_lock(&chip->reg_lock);
3619 
3620 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3621 		err = mv88e6xxx_set_eeprom16(chip, eeprom, data);
3622 	else
3623 		err = -EOPNOTSUPP;
3624 
3625 	mutex_unlock(&chip->reg_lock);
3626 
3627 	return err;
3628 }
3629 
3630 static const struct mv88e6xxx_info mv88e6xxx_table[] = {
3631 	[MV88E6085] = {
3632 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
3633 		.family = MV88E6XXX_FAMILY_6097,
3634 		.name = "Marvell 88E6085",
3635 		.num_databases = 4096,
3636 		.num_ports = 10,
3637 		.port_base_addr = 0x10,
3638 		.age_time_coeff = 15000,
3639 		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
3640 	},
3641 
3642 	[MV88E6095] = {
3643 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
3644 		.family = MV88E6XXX_FAMILY_6095,
3645 		.name = "Marvell 88E6095/88E6095F",
3646 		.num_databases = 256,
3647 		.num_ports = 11,
3648 		.port_base_addr = 0x10,
3649 		.age_time_coeff = 15000,
3650 		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
3651 	},
3652 
3653 	[MV88E6123] = {
3654 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
3655 		.family = MV88E6XXX_FAMILY_6165,
3656 		.name = "Marvell 88E6123",
3657 		.num_databases = 4096,
3658 		.num_ports = 3,
3659 		.port_base_addr = 0x10,
3660 		.age_time_coeff = 15000,
3661 		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3662 	},
3663 
3664 	[MV88E6131] = {
3665 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
3666 		.family = MV88E6XXX_FAMILY_6185,
3667 		.name = "Marvell 88E6131",
3668 		.num_databases = 256,
3669 		.num_ports = 8,
3670 		.port_base_addr = 0x10,
3671 		.age_time_coeff = 15000,
3672 		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3673 	},
3674 
3675 	[MV88E6161] = {
3676 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
3677 		.family = MV88E6XXX_FAMILY_6165,
3678 		.name = "Marvell 88E6161",
3679 		.num_databases = 4096,
3680 		.num_ports = 6,
3681 		.port_base_addr = 0x10,
3682 		.age_time_coeff = 15000,
3683 		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3684 	},
3685 
3686 	[MV88E6165] = {
3687 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
3688 		.family = MV88E6XXX_FAMILY_6165,
3689 		.name = "Marvell 88E6165",
3690 		.num_databases = 4096,
3691 		.num_ports = 6,
3692 		.port_base_addr = 0x10,
3693 		.age_time_coeff = 15000,
3694 		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3695 	},
3696 
3697 	[MV88E6171] = {
3698 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
3699 		.family = MV88E6XXX_FAMILY_6351,
3700 		.name = "Marvell 88E6171",
3701 		.num_databases = 4096,
3702 		.num_ports = 7,
3703 		.port_base_addr = 0x10,
3704 		.age_time_coeff = 15000,
3705 		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3706 	},
3707 
3708 	[MV88E6172] = {
3709 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
3710 		.family = MV88E6XXX_FAMILY_6352,
3711 		.name = "Marvell 88E6172",
3712 		.num_databases = 4096,
3713 		.num_ports = 7,
3714 		.port_base_addr = 0x10,
3715 		.age_time_coeff = 15000,
3716 		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3717 	},
3718 
3719 	[MV88E6175] = {
3720 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
3721 		.family = MV88E6XXX_FAMILY_6351,
3722 		.name = "Marvell 88E6175",
3723 		.num_databases = 4096,
3724 		.num_ports = 7,
3725 		.port_base_addr = 0x10,
3726 		.age_time_coeff = 15000,
3727 		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3728 	},
3729 
3730 	[MV88E6176] = {
3731 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
3732 		.family = MV88E6XXX_FAMILY_6352,
3733 		.name = "Marvell 88E6176",
3734 		.num_databases = 4096,
3735 		.num_ports = 7,
3736 		.port_base_addr = 0x10,
3737 		.age_time_coeff = 15000,
3738 		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3739 	},
3740 
3741 	[MV88E6185] = {
3742 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
3743 		.family = MV88E6XXX_FAMILY_6185,
3744 		.name = "Marvell 88E6185",
3745 		.num_databases = 256,
3746 		.num_ports = 10,
3747 		.port_base_addr = 0x10,
3748 		.age_time_coeff = 15000,
3749 		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3750 	},
3751 
3752 	[MV88E6240] = {
3753 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
3754 		.family = MV88E6XXX_FAMILY_6352,
3755 		.name = "Marvell 88E6240",
3756 		.num_databases = 4096,
3757 		.num_ports = 7,
3758 		.port_base_addr = 0x10,
3759 		.age_time_coeff = 15000,
3760 		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3761 	},
3762 
3763 	[MV88E6320] = {
3764 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
3765 		.family = MV88E6XXX_FAMILY_6320,
3766 		.name = "Marvell 88E6320",
3767 		.num_databases = 4096,
3768 		.num_ports = 7,
3769 		.port_base_addr = 0x10,
3770 		.age_time_coeff = 15000,
3771 		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3772 	},
3773 
3774 	[MV88E6321] = {
3775 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
3776 		.family = MV88E6XXX_FAMILY_6320,
3777 		.name = "Marvell 88E6321",
3778 		.num_databases = 4096,
3779 		.num_ports = 7,
3780 		.port_base_addr = 0x10,
3781 		.age_time_coeff = 15000,
3782 		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3783 	},
3784 
3785 	[MV88E6350] = {
3786 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
3787 		.family = MV88E6XXX_FAMILY_6351,
3788 		.name = "Marvell 88E6350",
3789 		.num_databases = 4096,
3790 		.num_ports = 7,
3791 		.port_base_addr = 0x10,
3792 		.age_time_coeff = 15000,
3793 		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3794 	},
3795 
3796 	[MV88E6351] = {
3797 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
3798 		.family = MV88E6XXX_FAMILY_6351,
3799 		.name = "Marvell 88E6351",
3800 		.num_databases = 4096,
3801 		.num_ports = 7,
3802 		.port_base_addr = 0x10,
3803 		.age_time_coeff = 15000,
3804 		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3805 	},
3806 
3807 	[MV88E6352] = {
3808 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
3809 		.family = MV88E6XXX_FAMILY_6352,
3810 		.name = "Marvell 88E6352",
3811 		.num_databases = 4096,
3812 		.num_ports = 7,
3813 		.port_base_addr = 0x10,
3814 		.age_time_coeff = 15000,
3815 		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3816 	},
3817 };
3818 
3819 static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3820 {
3821 	int i;
3822 
3823 	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
3824 		if (mv88e6xxx_table[i].prod_num == prod_num)
3825 			return &mv88e6xxx_table[i];
3826 
3827 	return NULL;
3828 }
3829 
3830 static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3831 {
3832 	const struct mv88e6xxx_info *info;
3833 	unsigned int prod_num, rev;
3834 	u16 id;
3835 	int err;
3836 
3837 	mutex_lock(&chip->reg_lock);
3838 	err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
3839 	mutex_unlock(&chip->reg_lock);
3840 	if (err)
3841 		return err;
3842 
3843 	prod_num = (id & 0xfff0) >> 4;
3844 	rev = id & 0x000f;
3845 
3846 	info = mv88e6xxx_lookup_info(prod_num);
3847 	if (!info)
3848 		return -ENODEV;
3849 
3850 	/* Update the compatible info with the probed one */
3851 	chip->info = info;
3852 
3853 	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
3854 		 chip->info->prod_num, chip->info->name, rev);
3855 
3856 	return 0;
3857 }
3858 
3859 static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3860 {
3861 	struct mv88e6xxx_chip *chip;
3862 
3863 	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
3864 	if (!chip)
3865 		return NULL;
3866 
3867 	chip->dev = dev;
3868 
3869 	mutex_init(&chip->reg_lock);
3870 
3871 	return chip;
3872 }
3873 
3874 static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3875 			      struct mii_bus *bus, int sw_addr)
3876 {
3877 	/* ADDR[0] pin is unavailable externally and considered zero */
3878 	if (sw_addr & 0x1)
3879 		return -EINVAL;
3880 
3881 	if (sw_addr == 0)
3882 		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3883 	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_MULTI_CHIP))
3884 		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3885 	else
3886 		return -EINVAL;
3887 
3888 	chip->bus = bus;
3889 	chip->sw_addr = sw_addr;
3890 
3891 	return 0;
3892 }
3893 
3894 static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
3895 				       struct device *host_dev, int sw_addr,
3896 				       void **priv)
3897 {
3898 	struct mv88e6xxx_chip *chip;
3899 	struct mii_bus *bus;
3900 	int err;
3901 
3902 	bus = dsa_host_dev_to_mii_bus(host_dev);
3903 	if (!bus)
3904 		return NULL;
3905 
3906 	chip = mv88e6xxx_alloc_chip(dsa_dev);
3907 	if (!chip)
3908 		return NULL;
3909 
3910 	/* Legacy SMI probing will only support chips similar to 88E6085 */
3911 	chip->info = &mv88e6xxx_table[MV88E6085];
3912 
3913 	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3914 	if (err)
3915 		goto free;
3916 
3917 	err = mv88e6xxx_detect(chip);
3918 	if (err)
3919 		goto free;
3920 
3921 	err = mv88e6xxx_mdio_register(chip, NULL);
3922 	if (err)
3923 		goto free;
3924 
3925 	*priv = chip;
3926 
3927 	return chip->info->name;
3928 free:
3929 	devm_kfree(dsa_dev, chip);
3930 
3931 	return NULL;
3932 }
3933 
3934 static struct dsa_switch_driver mv88e6xxx_switch_driver = {
3935 	.tag_protocol		= DSA_TAG_PROTO_EDSA,
3936 	.probe			= mv88e6xxx_drv_probe,
3937 	.setup			= mv88e6xxx_setup,
3938 	.set_addr		= mv88e6xxx_set_addr,
3939 	.adjust_link		= mv88e6xxx_adjust_link,
3940 	.get_strings		= mv88e6xxx_get_strings,
3941 	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
3942 	.get_sset_count		= mv88e6xxx_get_sset_count,
3943 	.set_eee		= mv88e6xxx_set_eee,
3944 	.get_eee		= mv88e6xxx_get_eee,
3945 #ifdef CONFIG_NET_DSA_HWMON
3946 	.get_temp		= mv88e6xxx_get_temp,
3947 	.get_temp_limit		= mv88e6xxx_get_temp_limit,
3948 	.set_temp_limit		= mv88e6xxx_set_temp_limit,
3949 	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
3950 #endif
3951 	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
3952 	.get_eeprom		= mv88e6xxx_get_eeprom,
3953 	.set_eeprom		= mv88e6xxx_set_eeprom,
3954 	.get_regs_len		= mv88e6xxx_get_regs_len,
3955 	.get_regs		= mv88e6xxx_get_regs,
3956 	.set_ageing_time	= mv88e6xxx_set_ageing_time,
3957 	.port_bridge_join	= mv88e6xxx_port_bridge_join,
3958 	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
3959 	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
3960 	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
3961 	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
3962 	.port_vlan_add		= mv88e6xxx_port_vlan_add,
3963 	.port_vlan_del		= mv88e6xxx_port_vlan_del,
3964 	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
3965 	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
3966 	.port_fdb_add           = mv88e6xxx_port_fdb_add,
3967 	.port_fdb_del           = mv88e6xxx_port_fdb_del,
3968 	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
3969 };
3970 
3971 static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
3972 				     struct device_node *np)
3973 {
3974 	struct device *dev = chip->dev;
3975 	struct dsa_switch *ds;
3976 
3977 	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
3978 	if (!ds)
3979 		return -ENOMEM;
3980 
3981 	ds->dev = dev;
3982 	ds->priv = chip;
3983 	ds->drv = &mv88e6xxx_switch_driver;
3984 
3985 	dev_set_drvdata(dev, ds);
3986 
3987 	return dsa_register_switch(ds, np);
3988 }
3989 
3990 static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
3991 {
3992 	dsa_unregister_switch(chip->ds);
3993 }
3994 
3995 static int mv88e6xxx_probe(struct mdio_device *mdiodev)
3996 {
3997 	struct device *dev = &mdiodev->dev;
3998 	struct device_node *np = dev->of_node;
3999 	const struct mv88e6xxx_info *compat_info;
4000 	struct mv88e6xxx_chip *chip;
4001 	u32 eeprom_len;
4002 	int err;
4003 
4004 	compat_info = of_device_get_match_data(dev);
4005 	if (!compat_info)
4006 		return -EINVAL;
4007 
4008 	chip = mv88e6xxx_alloc_chip(dev);
4009 	if (!chip)
4010 		return -ENOMEM;
4011 
4012 	chip->info = compat_info;
4013 
4014 	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4015 	if (err)
4016 		return err;
4017 
4018 	err = mv88e6xxx_detect(chip);
4019 	if (err)
4020 		return err;
4021 
4022 	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
4023 	if (IS_ERR(chip->reset))
4024 		return PTR_ERR(chip->reset);
4025 
4026 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
4027 	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4028 		chip->eeprom_len = eeprom_len;
4029 
4030 	err = mv88e6xxx_mdio_register(chip, np);
4031 	if (err)
4032 		return err;
4033 
4034 	err = mv88e6xxx_register_switch(chip, np);
4035 	if (err) {
4036 		mv88e6xxx_mdio_unregister(chip);
4037 		return err;
4038 	}
4039 
4040 	return 0;
4041 }
4042 
4043 static void mv88e6xxx_remove(struct mdio_device *mdiodev)
4044 {
4045 	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
4046 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
4047 
4048 	mv88e6xxx_unregister_switch(chip);
4049 	mv88e6xxx_mdio_unregister(chip);
4050 }
4051 
4052 static const struct of_device_id mv88e6xxx_of_match[] = {
4053 	{
4054 		.compatible = "marvell,mv88e6085",
4055 		.data = &mv88e6xxx_table[MV88E6085],
4056 	},
4057 	{ /* sentinel */ },
4058 };
4059 
4060 MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);
4061 
4062 static struct mdio_driver mv88e6xxx_driver = {
4063 	.probe	= mv88e6xxx_probe,
4064 	.remove = mv88e6xxx_remove,
4065 	.mdiodrv.driver = {
4066 		.name = "mv88e6085",
4067 		.of_match_table = mv88e6xxx_of_match,
4068 	},
4069 };
4070 
4071 static int __init mv88e6xxx_init(void)
4072 {
4073 	register_switch_driver(&mv88e6xxx_switch_driver);
4074 	return mdio_driver_register(&mv88e6xxx_driver);
4075 }
4076 module_init(mv88e6xxx_init);
4077 
4078 static void __exit mv88e6xxx_cleanup(void)
4079 {
4080 	mdio_driver_unregister(&mv88e6xxx_driver);
4081 	unregister_switch_driver(&mv88e6xxx_switch_driver);
4082 }
4083 module_exit(mv88e6xxx_cleanup);
4084 
4085 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
4086 MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
4087 MODULE_LICENSE("GPL");
4088