xref: /linux/drivers/net/dsa/mt7530.c (revision fdd51b3e73e906aac056f2c337710185607d43d1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 mt7530_mutex_lock(struct mt7530_priv *priv)
146 {
147 	if (priv->bus)
148 		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149 }
150 
151 static void
152 mt7530_mutex_unlock(struct mt7530_priv *priv)
153 {
154 	if (priv->bus)
155 		mutex_unlock(&priv->bus->mdio_lock);
156 }
157 
158 static void
159 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160 {
161 	mt7530_mutex_lock(priv);
162 
163 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164 
165 	mt7530_mutex_unlock(priv);
166 }
167 
168 static void
169 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170 {
171 	u32 val;
172 
173 	mt7530_mutex_lock(priv);
174 
175 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176 	val &= ~mask;
177 	val |= set;
178 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179 
180 	mt7530_mutex_unlock(priv);
181 }
182 
183 static void
184 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 	core_rmw(priv, reg, 0, val);
187 }
188 
189 static void
190 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191 {
192 	core_rmw(priv, reg, val, 0);
193 }
194 
195 static int
196 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197 {
198 	int ret;
199 
200 	ret = regmap_write(priv->regmap, reg, val);
201 
202 	if (ret < 0)
203 		dev_err(priv->dev,
204 			"failed to write mt7530 register\n");
205 
206 	return ret;
207 }
208 
209 static u32
210 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211 {
212 	int ret;
213 	u32 val;
214 
215 	ret = regmap_read(priv->regmap, reg, &val);
216 	if (ret) {
217 		WARN_ON_ONCE(1);
218 		dev_err(priv->dev,
219 			"failed to read mt7530 register\n");
220 		return 0;
221 	}
222 
223 	return val;
224 }
225 
226 static void
227 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 	mt7530_mutex_lock(priv);
230 
231 	mt7530_mii_write(priv, reg, val);
232 
233 	mt7530_mutex_unlock(priv);
234 }
235 
236 static u32
237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 	return mt7530_mii_read(p->priv, p->reg);
240 }
241 
242 static u32
243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 	u32 val;
246 
247 	mt7530_mutex_lock(p->priv);
248 
249 	val = mt7530_mii_read(p->priv, p->reg);
250 
251 	mt7530_mutex_unlock(p->priv);
252 
253 	return val;
254 }
255 
256 static u32
257 mt7530_read(struct mt7530_priv *priv, u32 reg)
258 {
259 	struct mt7530_dummy_poll p;
260 
261 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262 	return _mt7530_read(&p);
263 }
264 
265 static void
266 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 	   u32 mask, u32 set)
268 {
269 	mt7530_mutex_lock(priv);
270 
271 	regmap_update_bits(priv->regmap, reg, mask, set);
272 
273 	mt7530_mutex_unlock(priv);
274 }
275 
276 static void
277 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 	mt7530_rmw(priv, reg, val, val);
280 }
281 
282 static void
283 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284 {
285 	mt7530_rmw(priv, reg, val, 0);
286 }
287 
288 static int
289 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290 {
291 	u32 val;
292 	int ret;
293 	struct mt7530_dummy_poll p;
294 
295 	/* Set the command operating upon the MAC address entries */
296 	val = ATC_BUSY | ATC_MAT(0) | cmd;
297 	mt7530_write(priv, MT7530_ATC, val);
298 
299 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300 	ret = readx_poll_timeout(_mt7530_read, &p, val,
301 				 !(val & ATC_BUSY), 20, 20000);
302 	if (ret < 0) {
303 		dev_err(priv->dev, "reset timeout\n");
304 		return ret;
305 	}
306 
307 	/* Additional sanity for read command if the specified
308 	 * entry is invalid
309 	 */
310 	val = mt7530_read(priv, MT7530_ATC);
311 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 		return -EINVAL;
313 
314 	if (rsp)
315 		*rsp = val;
316 
317 	return 0;
318 }
319 
320 static void
321 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322 {
323 	u32 reg[3];
324 	int i;
325 
326 	/* Read from ARL table into an array */
327 	for (i = 0; i < 3; i++) {
328 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329 
330 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 			__func__, __LINE__, i, reg[i]);
332 	}
333 
334 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344 }
345 
346 static void
347 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 		 u8 port_mask, const u8 *mac,
349 		 u8 aging, u8 type)
350 {
351 	u32 reg[3] = { 0 };
352 	int i;
353 
354 	reg[1] |= vid & CVID_MASK;
355 	reg[1] |= ATA2_IVL;
356 	reg[1] |= ATA2_FID(FID_BRIDGED);
357 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 	/* STATIC_ENT indicate that entry is static wouldn't
360 	 * be aged out and STATIC_EMP specified as erasing an
361 	 * entry
362 	 */
363 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 	reg[1] |= mac[5] << MAC_BYTE_5;
365 	reg[1] |= mac[4] << MAC_BYTE_4;
366 	reg[0] |= mac[3] << MAC_BYTE_3;
367 	reg[0] |= mac[2] << MAC_BYTE_2;
368 	reg[0] |= mac[1] << MAC_BYTE_1;
369 	reg[0] |= mac[0] << MAC_BYTE_0;
370 
371 	/* Write array into the ARL table */
372 	for (i = 0; i < 3; i++)
373 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374 }
375 
376 /* Set up switch core clock for MT7530 */
377 static void mt7530_pll_setup(struct mt7530_priv *priv)
378 {
379 	/* Disable core clock */
380 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381 
382 	/* Disable PLL */
383 	core_write(priv, CORE_GSWPLL_GRP1, 0);
384 
385 	/* Set core clock into 500Mhz */
386 	core_write(priv, CORE_GSWPLL_GRP2,
387 		   RG_GSWPLL_POSDIV_500M(1) |
388 		   RG_GSWPLL_FBKDIV_500M(25));
389 
390 	/* Enable PLL */
391 	core_write(priv, CORE_GSWPLL_GRP1,
392 		   RG_GSWPLL_EN_PRE |
393 		   RG_GSWPLL_POSDIV_200M(2) |
394 		   RG_GSWPLL_FBKDIV_200M(32));
395 
396 	udelay(20);
397 
398 	/* Enable core clock */
399 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400 }
401 
402 /* If port 6 is available as a CPU port, always prefer that as the default,
403  * otherwise don't care.
404  */
405 static struct dsa_port *
406 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407 {
408 	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409 
410 	if (dsa_port_is_cpu(cpu_dp))
411 		return cpu_dp;
412 
413 	return NULL;
414 }
415 
416 /* Setup port 6 interface mode and TRGMII TX circuit */
417 static void
418 mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface)
419 {
420 	struct mt7530_priv *priv = ds->priv;
421 	u32 ncpo1, ssc_delta, xtal;
422 
423 	/* Disable the MT7530 TRGMII clocks */
424 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
425 
426 	if (interface == PHY_INTERFACE_MODE_RGMII) {
427 		mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
428 			   P6_INTF_MODE(0));
429 		return;
430 	}
431 
432 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1));
433 
434 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
435 
436 	if (xtal == HWTRAP_XTAL_25MHZ)
437 		ssc_delta = 0x57;
438 	else
439 		ssc_delta = 0x87;
440 
441 	if (priv->id == ID_MT7621) {
442 		/* PLL frequency: 125MHz: 1.0GBit */
443 		if (xtal == HWTRAP_XTAL_40MHZ)
444 			ncpo1 = 0x0640;
445 		if (xtal == HWTRAP_XTAL_25MHZ)
446 			ncpo1 = 0x0a00;
447 	} else { /* PLL frequency: 250MHz: 2.0Gbit */
448 		if (xtal == HWTRAP_XTAL_40MHZ)
449 			ncpo1 = 0x0c80;
450 		if (xtal == HWTRAP_XTAL_25MHZ)
451 			ncpo1 = 0x1400;
452 	}
453 
454 	/* Setup the MT7530 TRGMII Tx Clock */
455 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
456 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
457 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
458 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
459 	core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
460 		   RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
461 	core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL |
462 		   RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1));
463 	core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG |
464 		   RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
465 
466 	/* Enable the MT7530 TRGMII clocks */
467 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
468 }
469 
470 static void
471 mt7531_pll_setup(struct mt7530_priv *priv)
472 {
473 	u32 top_sig;
474 	u32 hwstrap;
475 	u32 xtal;
476 	u32 val;
477 
478 	val = mt7530_read(priv, MT7531_CREV);
479 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
480 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
481 	if ((val & CHIP_REV_M) > 0)
482 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
483 						    HWTRAP_XTAL_FSEL_25MHZ;
484 	else
485 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
486 
487 	/* Step 1 : Disable MT7531 COREPLL */
488 	val = mt7530_read(priv, MT7531_PLLGP_EN);
489 	val &= ~EN_COREPLL;
490 	mt7530_write(priv, MT7531_PLLGP_EN, val);
491 
492 	/* Step 2: switch to XTAL output */
493 	val = mt7530_read(priv, MT7531_PLLGP_EN);
494 	val |= SW_CLKSW;
495 	mt7530_write(priv, MT7531_PLLGP_EN, val);
496 
497 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
498 	val &= ~RG_COREPLL_EN;
499 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
500 
501 	/* Step 3: disable PLLGP and enable program PLLGP */
502 	val = mt7530_read(priv, MT7531_PLLGP_EN);
503 	val |= SW_PLLGP;
504 	mt7530_write(priv, MT7531_PLLGP_EN, val);
505 
506 	/* Step 4: program COREPLL output frequency to 500MHz */
507 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
508 	val &= ~RG_COREPLL_POSDIV_M;
509 	val |= 2 << RG_COREPLL_POSDIV_S;
510 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
511 	usleep_range(25, 35);
512 
513 	switch (xtal) {
514 	case HWTRAP_XTAL_FSEL_25MHZ:
515 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
516 		val &= ~RG_COREPLL_SDM_PCW_M;
517 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
518 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
519 		break;
520 	case HWTRAP_XTAL_FSEL_40MHZ:
521 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
522 		val &= ~RG_COREPLL_SDM_PCW_M;
523 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
524 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
525 		break;
526 	}
527 
528 	/* Set feedback divide ratio update signal to high */
529 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
530 	val |= RG_COREPLL_SDM_PCW_CHG;
531 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
532 	/* Wait for at least 16 XTAL clocks */
533 	usleep_range(10, 20);
534 
535 	/* Step 5: set feedback divide ratio update signal to low */
536 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
537 	val &= ~RG_COREPLL_SDM_PCW_CHG;
538 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
539 
540 	/* Enable 325M clock for SGMII */
541 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
542 
543 	/* Enable 250SSC clock for RGMII */
544 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
545 
546 	/* Step 6: Enable MT7531 PLL */
547 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
548 	val |= RG_COREPLL_EN;
549 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
550 
551 	val = mt7530_read(priv, MT7531_PLLGP_EN);
552 	val |= EN_COREPLL;
553 	mt7530_write(priv, MT7531_PLLGP_EN, val);
554 	usleep_range(25, 35);
555 }
556 
557 static void
558 mt7530_mib_reset(struct dsa_switch *ds)
559 {
560 	struct mt7530_priv *priv = ds->priv;
561 
562 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
563 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
564 }
565 
566 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
567 {
568 	return mdiobus_read_nested(priv->bus, port, regnum);
569 }
570 
571 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
572 				u16 val)
573 {
574 	return mdiobus_write_nested(priv->bus, port, regnum, val);
575 }
576 
577 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
578 			       int devad, int regnum)
579 {
580 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
581 }
582 
583 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
584 				int regnum, u16 val)
585 {
586 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
587 }
588 
589 static int
590 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
591 			int regnum)
592 {
593 	struct mt7530_dummy_poll p;
594 	u32 reg, val;
595 	int ret;
596 
597 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
598 
599 	mt7530_mutex_lock(priv);
600 
601 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
602 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
603 	if (ret < 0) {
604 		dev_err(priv->dev, "poll timeout\n");
605 		goto out;
606 	}
607 
608 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
609 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
610 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
611 
612 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
613 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
614 	if (ret < 0) {
615 		dev_err(priv->dev, "poll timeout\n");
616 		goto out;
617 	}
618 
619 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
620 	      MT7531_MDIO_DEV_ADDR(devad);
621 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
622 
623 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
624 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
625 	if (ret < 0) {
626 		dev_err(priv->dev, "poll timeout\n");
627 		goto out;
628 	}
629 
630 	ret = val & MT7531_MDIO_RW_DATA_MASK;
631 out:
632 	mt7530_mutex_unlock(priv);
633 
634 	return ret;
635 }
636 
637 static int
638 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
639 			 int regnum, u16 data)
640 {
641 	struct mt7530_dummy_poll p;
642 	u32 val, reg;
643 	int ret;
644 
645 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
646 
647 	mt7530_mutex_lock(priv);
648 
649 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
650 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
651 	if (ret < 0) {
652 		dev_err(priv->dev, "poll timeout\n");
653 		goto out;
654 	}
655 
656 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
657 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
658 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
659 
660 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
661 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
662 	if (ret < 0) {
663 		dev_err(priv->dev, "poll timeout\n");
664 		goto out;
665 	}
666 
667 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
668 	      MT7531_MDIO_DEV_ADDR(devad) | data;
669 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
670 
671 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
672 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
673 	if (ret < 0) {
674 		dev_err(priv->dev, "poll timeout\n");
675 		goto out;
676 	}
677 
678 out:
679 	mt7530_mutex_unlock(priv);
680 
681 	return ret;
682 }
683 
684 static int
685 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
686 {
687 	struct mt7530_dummy_poll p;
688 	int ret;
689 	u32 val;
690 
691 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
692 
693 	mt7530_mutex_lock(priv);
694 
695 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
696 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
697 	if (ret < 0) {
698 		dev_err(priv->dev, "poll timeout\n");
699 		goto out;
700 	}
701 
702 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
703 	      MT7531_MDIO_REG_ADDR(regnum);
704 
705 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
706 
707 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
708 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
709 	if (ret < 0) {
710 		dev_err(priv->dev, "poll timeout\n");
711 		goto out;
712 	}
713 
714 	ret = val & MT7531_MDIO_RW_DATA_MASK;
715 out:
716 	mt7530_mutex_unlock(priv);
717 
718 	return ret;
719 }
720 
721 static int
722 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
723 			 u16 data)
724 {
725 	struct mt7530_dummy_poll p;
726 	int ret;
727 	u32 reg;
728 
729 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
730 
731 	mt7530_mutex_lock(priv);
732 
733 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
734 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
735 	if (ret < 0) {
736 		dev_err(priv->dev, "poll timeout\n");
737 		goto out;
738 	}
739 
740 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
741 	      MT7531_MDIO_REG_ADDR(regnum) | data;
742 
743 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
744 
745 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
746 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
747 	if (ret < 0) {
748 		dev_err(priv->dev, "poll timeout\n");
749 		goto out;
750 	}
751 
752 out:
753 	mt7530_mutex_unlock(priv);
754 
755 	return ret;
756 }
757 
758 static int
759 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
760 {
761 	struct mt7530_priv *priv = bus->priv;
762 
763 	return priv->info->phy_read_c22(priv, port, regnum);
764 }
765 
766 static int
767 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
768 {
769 	struct mt7530_priv *priv = bus->priv;
770 
771 	return priv->info->phy_read_c45(priv, port, devad, regnum);
772 }
773 
774 static int
775 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
776 {
777 	struct mt7530_priv *priv = bus->priv;
778 
779 	return priv->info->phy_write_c22(priv, port, regnum, val);
780 }
781 
782 static int
783 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
784 		     u16 val)
785 {
786 	struct mt7530_priv *priv = bus->priv;
787 
788 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
789 }
790 
791 static void
792 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
793 		   uint8_t *data)
794 {
795 	int i;
796 
797 	if (stringset != ETH_SS_STATS)
798 		return;
799 
800 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
801 		ethtool_puts(&data, mt7530_mib[i].name);
802 }
803 
804 static void
805 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
806 			 uint64_t *data)
807 {
808 	struct mt7530_priv *priv = ds->priv;
809 	const struct mt7530_mib_desc *mib;
810 	u32 reg, i;
811 	u64 hi;
812 
813 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
814 		mib = &mt7530_mib[i];
815 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
816 
817 		data[i] = mt7530_read(priv, reg);
818 		if (mib->size == 2) {
819 			hi = mt7530_read(priv, reg + 4);
820 			data[i] |= hi << 32;
821 		}
822 	}
823 }
824 
825 static int
826 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
827 {
828 	if (sset != ETH_SS_STATS)
829 		return 0;
830 
831 	return ARRAY_SIZE(mt7530_mib);
832 }
833 
834 static int
835 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
836 {
837 	struct mt7530_priv *priv = ds->priv;
838 	unsigned int secs = msecs / 1000;
839 	unsigned int tmp_age_count;
840 	unsigned int error = -1;
841 	unsigned int age_count;
842 	unsigned int age_unit;
843 
844 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
845 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
846 		return -ERANGE;
847 
848 	/* iterate through all possible age_count to find the closest pair */
849 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
850 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
851 
852 		if (tmp_age_unit <= AGE_UNIT_MAX) {
853 			unsigned int tmp_error = secs -
854 				(tmp_age_count + 1) * (tmp_age_unit + 1);
855 
856 			/* found a closer pair */
857 			if (error > tmp_error) {
858 				error = tmp_error;
859 				age_count = tmp_age_count;
860 				age_unit = tmp_age_unit;
861 			}
862 
863 			/* found the exact match, so break the loop */
864 			if (!error)
865 				break;
866 		}
867 	}
868 
869 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
870 
871 	return 0;
872 }
873 
874 static const char *p5_intf_modes(unsigned int p5_interface)
875 {
876 	switch (p5_interface) {
877 	case P5_DISABLED:
878 		return "DISABLED";
879 	case P5_INTF_SEL_PHY_P0:
880 		return "PHY P0";
881 	case P5_INTF_SEL_PHY_P4:
882 		return "PHY P4";
883 	case P5_INTF_SEL_GMAC5:
884 		return "GMAC5";
885 	default:
886 		return "unknown";
887 	}
888 }
889 
890 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
891 {
892 	struct mt7530_priv *priv = ds->priv;
893 	u8 tx_delay = 0;
894 	int val;
895 
896 	mutex_lock(&priv->reg_mutex);
897 
898 	val = mt7530_read(priv, MT7530_MHWTRAP);
899 
900 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
901 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
902 
903 	switch (priv->p5_intf_sel) {
904 	case P5_INTF_SEL_PHY_P0:
905 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
906 		val |= MHWTRAP_PHY0_SEL;
907 		fallthrough;
908 	case P5_INTF_SEL_PHY_P4:
909 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
910 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
911 
912 		/* Setup the MAC by default for the cpu port */
913 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
914 		break;
915 	case P5_INTF_SEL_GMAC5:
916 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
917 		val &= ~MHWTRAP_P5_DIS;
918 		break;
919 	default:
920 		break;
921 	}
922 
923 	/* Setup RGMII settings */
924 	if (phy_interface_mode_is_rgmii(interface)) {
925 		val |= MHWTRAP_P5_RGMII_MODE;
926 
927 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
928 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
929 
930 		/* Don't set delay in DSA mode */
931 		if (!dsa_is_dsa_port(priv->ds, 5) &&
932 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
933 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
934 			tx_delay = 4; /* n * 0.5 ns */
935 
936 		/* P5 RGMII TX Clock Control: delay x */
937 		mt7530_write(priv, MT7530_P5RGMIITXCR,
938 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
939 
940 		/* reduce P5 RGMII Tx driving, 8mA */
941 		mt7530_write(priv, MT7530_IO_DRV_CR,
942 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
943 	}
944 
945 	mt7530_write(priv, MT7530_MHWTRAP, val);
946 
947 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
948 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
949 
950 	mutex_unlock(&priv->reg_mutex);
951 }
952 
953 /* On page 205, section "8.6.3 Frame filtering" of the active standard, IEEE Std
954  * 802.1Q™-2022, it is stated that frames with 01:80:C2:00:00:00-0F as MAC DA
955  * must only be propagated to C-VLAN and MAC Bridge components. That means
956  * VLAN-aware and VLAN-unaware bridges. On the switch designs with CPU ports,
957  * these frames are supposed to be processed by the CPU (software). So we make
958  * the switch only forward them to the CPU port. And if received from a CPU
959  * port, forward to a single port. The software is responsible of making the
960  * switch conform to the latter by setting a single port as destination port on
961  * the special tag.
962  *
963  * This switch intellectual property cannot conform to this part of the standard
964  * fully. Whilst the REV_UN frame tag covers the remaining :04-0D and :0F MAC
965  * DAs, it also includes :22-FF which the scope of propagation is not supposed
966  * to be restricted for these MAC DAs.
967  */
968 static void
969 mt753x_trap_frames(struct mt7530_priv *priv)
970 {
971 	/* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
972 	 * VLAN-untagged.
973 	 */
974 	mt7530_rmw(priv, MT753X_BPC, MT753X_PAE_EG_TAG_MASK |
975 		   MT753X_PAE_PORT_FW_MASK | MT753X_BPDU_EG_TAG_MASK |
976 		   MT753X_BPDU_PORT_FW_MASK,
977 		   MT753X_PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
978 		   MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY) |
979 		   MT753X_BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
980 		   MT753X_BPDU_CPU_ONLY);
981 
982 	/* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
983 	 * them VLAN-untagged.
984 	 */
985 	mt7530_rmw(priv, MT753X_RGAC1, MT753X_R02_EG_TAG_MASK |
986 		   MT753X_R02_PORT_FW_MASK | MT753X_R01_EG_TAG_MASK |
987 		   MT753X_R01_PORT_FW_MASK,
988 		   MT753X_R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
989 		   MT753X_R02_PORT_FW(MT753X_BPDU_CPU_ONLY) |
990 		   MT753X_R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
991 		   MT753X_BPDU_CPU_ONLY);
992 
993 	/* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
994 	 * them VLAN-untagged.
995 	 */
996 	mt7530_rmw(priv, MT753X_RGAC2, MT753X_R0E_EG_TAG_MASK |
997 		   MT753X_R0E_PORT_FW_MASK | MT753X_R03_EG_TAG_MASK |
998 		   MT753X_R03_PORT_FW_MASK,
999 		   MT753X_R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1000 		   MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1001 		   MT753X_R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1002 		   MT753X_BPDU_CPU_ONLY);
1003 }
1004 
1005 static void
1006 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1007 {
1008 	struct mt7530_priv *priv = ds->priv;
1009 
1010 	/* Enable Mediatek header mode on the cpu port */
1011 	mt7530_write(priv, MT7530_PVC_P(port),
1012 		     PORT_SPEC_TAG);
1013 
1014 	/* Enable flooding on the CPU port */
1015 	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1016 		   UNU_FFP(BIT(port)));
1017 
1018 	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1019 	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1020 	 * is affine to the inbound user port.
1021 	 */
1022 	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1023 		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1024 
1025 	/* CPU port gets connected to all user ports of
1026 	 * the switch.
1027 	 */
1028 	mt7530_write(priv, MT7530_PCR_P(port),
1029 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1030 
1031 	/* Set to fallback mode for independent VLAN learning */
1032 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1033 		   MT7530_PORT_FALLBACK_MODE);
1034 }
1035 
1036 static int
1037 mt7530_port_enable(struct dsa_switch *ds, int port,
1038 		   struct phy_device *phy)
1039 {
1040 	struct dsa_port *dp = dsa_to_port(ds, port);
1041 	struct mt7530_priv *priv = ds->priv;
1042 
1043 	mutex_lock(&priv->reg_mutex);
1044 
1045 	/* Allow the user port gets connected to the cpu port and also
1046 	 * restore the port matrix if the port is the member of a certain
1047 	 * bridge.
1048 	 */
1049 	if (dsa_port_is_user(dp)) {
1050 		struct dsa_port *cpu_dp = dp->cpu_dp;
1051 
1052 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1053 	}
1054 	priv->ports[port].enable = true;
1055 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1056 		   priv->ports[port].pm);
1057 
1058 	mutex_unlock(&priv->reg_mutex);
1059 
1060 	return 0;
1061 }
1062 
1063 static void
1064 mt7530_port_disable(struct dsa_switch *ds, int port)
1065 {
1066 	struct mt7530_priv *priv = ds->priv;
1067 
1068 	mutex_lock(&priv->reg_mutex);
1069 
1070 	/* Clear up all port matrix which could be restored in the next
1071 	 * enablement for the port.
1072 	 */
1073 	priv->ports[port].enable = false;
1074 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1075 		   PCR_MATRIX_CLR);
1076 
1077 	mutex_unlock(&priv->reg_mutex);
1078 }
1079 
1080 static int
1081 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1082 {
1083 	struct mt7530_priv *priv = ds->priv;
1084 	int length;
1085 	u32 val;
1086 
1087 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1088 	 * largest MTU of the user ports. Because the switch only has a global
1089 	 * RX length register, only allowing CPU port here is enough.
1090 	 */
1091 	if (!dsa_is_cpu_port(ds, port))
1092 		return 0;
1093 
1094 	mt7530_mutex_lock(priv);
1095 
1096 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1097 	val &= ~MAX_RX_PKT_LEN_MASK;
1098 
1099 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1100 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1101 	if (length <= 1522) {
1102 		val |= MAX_RX_PKT_LEN_1522;
1103 	} else if (length <= 1536) {
1104 		val |= MAX_RX_PKT_LEN_1536;
1105 	} else if (length <= 1552) {
1106 		val |= MAX_RX_PKT_LEN_1552;
1107 	} else {
1108 		val &= ~MAX_RX_JUMBO_MASK;
1109 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1110 		val |= MAX_RX_PKT_LEN_JUMBO;
1111 	}
1112 
1113 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1114 
1115 	mt7530_mutex_unlock(priv);
1116 
1117 	return 0;
1118 }
1119 
1120 static int
1121 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1122 {
1123 	return MT7530_MAX_MTU;
1124 }
1125 
1126 static void
1127 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1128 {
1129 	struct mt7530_priv *priv = ds->priv;
1130 	u32 stp_state;
1131 
1132 	switch (state) {
1133 	case BR_STATE_DISABLED:
1134 		stp_state = MT7530_STP_DISABLED;
1135 		break;
1136 	case BR_STATE_BLOCKING:
1137 		stp_state = MT7530_STP_BLOCKING;
1138 		break;
1139 	case BR_STATE_LISTENING:
1140 		stp_state = MT7530_STP_LISTENING;
1141 		break;
1142 	case BR_STATE_LEARNING:
1143 		stp_state = MT7530_STP_LEARNING;
1144 		break;
1145 	case BR_STATE_FORWARDING:
1146 	default:
1147 		stp_state = MT7530_STP_FORWARDING;
1148 		break;
1149 	}
1150 
1151 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1152 		   FID_PST(FID_BRIDGED, stp_state));
1153 }
1154 
1155 static int
1156 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1157 			     struct switchdev_brport_flags flags,
1158 			     struct netlink_ext_ack *extack)
1159 {
1160 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1161 			   BR_BCAST_FLOOD))
1162 		return -EINVAL;
1163 
1164 	return 0;
1165 }
1166 
1167 static int
1168 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1169 			 struct switchdev_brport_flags flags,
1170 			 struct netlink_ext_ack *extack)
1171 {
1172 	struct mt7530_priv *priv = ds->priv;
1173 
1174 	if (flags.mask & BR_LEARNING)
1175 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1176 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1177 
1178 	if (flags.mask & BR_FLOOD)
1179 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1180 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1181 
1182 	if (flags.mask & BR_MCAST_FLOOD)
1183 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1184 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1185 
1186 	if (flags.mask & BR_BCAST_FLOOD)
1187 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1188 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1189 
1190 	return 0;
1191 }
1192 
1193 static int
1194 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1195 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1196 			struct netlink_ext_ack *extack)
1197 {
1198 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1199 	struct dsa_port *cpu_dp = dp->cpu_dp;
1200 	u32 port_bitmap = BIT(cpu_dp->index);
1201 	struct mt7530_priv *priv = ds->priv;
1202 
1203 	mutex_lock(&priv->reg_mutex);
1204 
1205 	dsa_switch_for_each_user_port(other_dp, ds) {
1206 		int other_port = other_dp->index;
1207 
1208 		if (dp == other_dp)
1209 			continue;
1210 
1211 		/* Add this port to the port matrix of the other ports in the
1212 		 * same bridge. If the port is disabled, port matrix is kept
1213 		 * and not being setup until the port becomes enabled.
1214 		 */
1215 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1216 			continue;
1217 
1218 		if (priv->ports[other_port].enable)
1219 			mt7530_set(priv, MT7530_PCR_P(other_port),
1220 				   PCR_MATRIX(BIT(port)));
1221 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1222 
1223 		port_bitmap |= BIT(other_port);
1224 	}
1225 
1226 	/* Add the all other ports to this port matrix. */
1227 	if (priv->ports[port].enable)
1228 		mt7530_rmw(priv, MT7530_PCR_P(port),
1229 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1230 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1231 
1232 	/* Set to fallback mode for independent VLAN learning */
1233 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1234 		   MT7530_PORT_FALLBACK_MODE);
1235 
1236 	mutex_unlock(&priv->reg_mutex);
1237 
1238 	return 0;
1239 }
1240 
1241 static void
1242 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1243 {
1244 	struct mt7530_priv *priv = ds->priv;
1245 	bool all_user_ports_removed = true;
1246 	int i;
1247 
1248 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1249 	 * bridge. Don't set standalone ports to fallback mode.
1250 	 */
1251 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1252 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1253 			   MT7530_PORT_FALLBACK_MODE);
1254 
1255 	mt7530_rmw(priv, MT7530_PVC_P(port),
1256 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1257 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1258 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1259 		   MT7530_VLAN_ACC_ALL);
1260 
1261 	/* Set PVID to 0 */
1262 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1263 		   G0_PORT_VID_DEF);
1264 
1265 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1266 		if (dsa_is_user_port(ds, i) &&
1267 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1268 			all_user_ports_removed = false;
1269 			break;
1270 		}
1271 	}
1272 
1273 	/* CPU port also does the same thing until all user ports belonging to
1274 	 * the CPU port get out of VLAN filtering mode.
1275 	 */
1276 	if (all_user_ports_removed) {
1277 		struct dsa_port *dp = dsa_to_port(ds, port);
1278 		struct dsa_port *cpu_dp = dp->cpu_dp;
1279 
1280 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1281 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1282 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1283 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1284 	}
1285 }
1286 
1287 static void
1288 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1289 {
1290 	struct mt7530_priv *priv = ds->priv;
1291 
1292 	/* Trapped into security mode allows packet forwarding through VLAN
1293 	 * table lookup.
1294 	 */
1295 	if (dsa_is_user_port(ds, port)) {
1296 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1297 			   MT7530_PORT_SECURITY_MODE);
1298 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1299 			   G0_PORT_VID(priv->ports[port].pvid));
1300 
1301 		/* Only accept tagged frames if PVID is not set */
1302 		if (!priv->ports[port].pvid)
1303 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1304 				   MT7530_VLAN_ACC_TAGGED);
1305 
1306 		/* Set the port as a user port which is to be able to recognize
1307 		 * VID from incoming packets before fetching entry within the
1308 		 * VLAN table.
1309 		 */
1310 		mt7530_rmw(priv, MT7530_PVC_P(port),
1311 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1312 			   VLAN_ATTR(MT7530_VLAN_USER) |
1313 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1314 	} else {
1315 		/* Also set CPU ports to the "user" VLAN port attribute, to
1316 		 * allow VLAN classification, but keep the EG_TAG attribute as
1317 		 * "consistent" (i.o.w. don't change its value) for packets
1318 		 * received by the switch from the CPU, so that tagged packets
1319 		 * are forwarded to user ports as tagged, and untagged as
1320 		 * untagged.
1321 		 */
1322 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1323 			   VLAN_ATTR(MT7530_VLAN_USER));
1324 	}
1325 }
1326 
1327 static void
1328 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1329 			 struct dsa_bridge bridge)
1330 {
1331 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1332 	struct dsa_port *cpu_dp = dp->cpu_dp;
1333 	struct mt7530_priv *priv = ds->priv;
1334 
1335 	mutex_lock(&priv->reg_mutex);
1336 
1337 	dsa_switch_for_each_user_port(other_dp, ds) {
1338 		int other_port = other_dp->index;
1339 
1340 		if (dp == other_dp)
1341 			continue;
1342 
1343 		/* Remove this port from the port matrix of the other ports
1344 		 * in the same bridge. If the port is disabled, port matrix
1345 		 * is kept and not being setup until the port becomes enabled.
1346 		 */
1347 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1348 			continue;
1349 
1350 		if (priv->ports[other_port].enable)
1351 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1352 				     PCR_MATRIX(BIT(port)));
1353 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1354 	}
1355 
1356 	/* Set the cpu port to be the only one in the port matrix of
1357 	 * this port.
1358 	 */
1359 	if (priv->ports[port].enable)
1360 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1361 			   PCR_MATRIX(BIT(cpu_dp->index)));
1362 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1363 
1364 	/* When a port is removed from the bridge, the port would be set up
1365 	 * back to the default as is at initial boot which is a VLAN-unaware
1366 	 * port.
1367 	 */
1368 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1369 		   MT7530_PORT_MATRIX_MODE);
1370 
1371 	mutex_unlock(&priv->reg_mutex);
1372 }
1373 
1374 static int
1375 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1376 		    const unsigned char *addr, u16 vid,
1377 		    struct dsa_db db)
1378 {
1379 	struct mt7530_priv *priv = ds->priv;
1380 	int ret;
1381 	u8 port_mask = BIT(port);
1382 
1383 	mutex_lock(&priv->reg_mutex);
1384 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1385 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1386 	mutex_unlock(&priv->reg_mutex);
1387 
1388 	return ret;
1389 }
1390 
1391 static int
1392 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1393 		    const unsigned char *addr, u16 vid,
1394 		    struct dsa_db db)
1395 {
1396 	struct mt7530_priv *priv = ds->priv;
1397 	int ret;
1398 	u8 port_mask = BIT(port);
1399 
1400 	mutex_lock(&priv->reg_mutex);
1401 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1402 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1403 	mutex_unlock(&priv->reg_mutex);
1404 
1405 	return ret;
1406 }
1407 
1408 static int
1409 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1410 		     dsa_fdb_dump_cb_t *cb, void *data)
1411 {
1412 	struct mt7530_priv *priv = ds->priv;
1413 	struct mt7530_fdb _fdb = { 0 };
1414 	int cnt = MT7530_NUM_FDB_RECORDS;
1415 	int ret = 0;
1416 	u32 rsp = 0;
1417 
1418 	mutex_lock(&priv->reg_mutex);
1419 
1420 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1421 	if (ret < 0)
1422 		goto err;
1423 
1424 	do {
1425 		if (rsp & ATC_SRCH_HIT) {
1426 			mt7530_fdb_read(priv, &_fdb);
1427 			if (_fdb.port_mask & BIT(port)) {
1428 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1429 					 data);
1430 				if (ret < 0)
1431 					break;
1432 			}
1433 		}
1434 	} while (--cnt &&
1435 		 !(rsp & ATC_SRCH_END) &&
1436 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1437 err:
1438 	mutex_unlock(&priv->reg_mutex);
1439 
1440 	return 0;
1441 }
1442 
1443 static int
1444 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1445 		    const struct switchdev_obj_port_mdb *mdb,
1446 		    struct dsa_db db)
1447 {
1448 	struct mt7530_priv *priv = ds->priv;
1449 	const u8 *addr = mdb->addr;
1450 	u16 vid = mdb->vid;
1451 	u8 port_mask = 0;
1452 	int ret;
1453 
1454 	mutex_lock(&priv->reg_mutex);
1455 
1456 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1457 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1458 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1459 			    & PORT_MAP_MASK;
1460 
1461 	port_mask |= BIT(port);
1462 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1463 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1464 
1465 	mutex_unlock(&priv->reg_mutex);
1466 
1467 	return ret;
1468 }
1469 
1470 static int
1471 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1472 		    const struct switchdev_obj_port_mdb *mdb,
1473 		    struct dsa_db db)
1474 {
1475 	struct mt7530_priv *priv = ds->priv;
1476 	const u8 *addr = mdb->addr;
1477 	u16 vid = mdb->vid;
1478 	u8 port_mask = 0;
1479 	int ret;
1480 
1481 	mutex_lock(&priv->reg_mutex);
1482 
1483 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1484 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1485 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1486 			    & PORT_MAP_MASK;
1487 
1488 	port_mask &= ~BIT(port);
1489 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1490 			 port_mask ? STATIC_ENT : STATIC_EMP);
1491 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1492 
1493 	mutex_unlock(&priv->reg_mutex);
1494 
1495 	return ret;
1496 }
1497 
1498 static int
1499 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1500 {
1501 	struct mt7530_dummy_poll p;
1502 	u32 val;
1503 	int ret;
1504 
1505 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1506 	mt7530_write(priv, MT7530_VTCR, val);
1507 
1508 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1509 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1510 				 !(val & VTCR_BUSY), 20, 20000);
1511 	if (ret < 0) {
1512 		dev_err(priv->dev, "poll timeout\n");
1513 		return ret;
1514 	}
1515 
1516 	val = mt7530_read(priv, MT7530_VTCR);
1517 	if (val & VTCR_INVALID) {
1518 		dev_err(priv->dev, "read VTCR invalid\n");
1519 		return -EINVAL;
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 static int
1526 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1527 			   struct netlink_ext_ack *extack)
1528 {
1529 	struct dsa_port *dp = dsa_to_port(ds, port);
1530 	struct dsa_port *cpu_dp = dp->cpu_dp;
1531 
1532 	if (vlan_filtering) {
1533 		/* The port is being kept as VLAN-unaware port when bridge is
1534 		 * set up with vlan_filtering not being set, Otherwise, the
1535 		 * port and the corresponding CPU port is required the setup
1536 		 * for becoming a VLAN-aware port.
1537 		 */
1538 		mt7530_port_set_vlan_aware(ds, port);
1539 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1540 	} else {
1541 		mt7530_port_set_vlan_unaware(ds, port);
1542 	}
1543 
1544 	return 0;
1545 }
1546 
1547 static void
1548 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1549 		   struct mt7530_hw_vlan_entry *entry)
1550 {
1551 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1552 	u8 new_members;
1553 	u32 val;
1554 
1555 	new_members = entry->old_members | BIT(entry->port);
1556 
1557 	/* Validate the entry with independent learning, create egress tag per
1558 	 * VLAN and joining the port as one of the port members.
1559 	 */
1560 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1561 	      VLAN_VALID;
1562 	mt7530_write(priv, MT7530_VAWD1, val);
1563 
1564 	/* Decide whether adding tag or not for those outgoing packets from the
1565 	 * port inside the VLAN.
1566 	 * CPU port is always taken as a tagged port for serving more than one
1567 	 * VLANs across and also being applied with egress type stack mode for
1568 	 * that VLAN tags would be appended after hardware special tag used as
1569 	 * DSA tag.
1570 	 */
1571 	if (dsa_port_is_cpu(dp))
1572 		val = MT7530_VLAN_EGRESS_STACK;
1573 	else if (entry->untagged)
1574 		val = MT7530_VLAN_EGRESS_UNTAG;
1575 	else
1576 		val = MT7530_VLAN_EGRESS_TAG;
1577 	mt7530_rmw(priv, MT7530_VAWD2,
1578 		   ETAG_CTRL_P_MASK(entry->port),
1579 		   ETAG_CTRL_P(entry->port, val));
1580 }
1581 
1582 static void
1583 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1584 		   struct mt7530_hw_vlan_entry *entry)
1585 {
1586 	u8 new_members;
1587 	u32 val;
1588 
1589 	new_members = entry->old_members & ~BIT(entry->port);
1590 
1591 	val = mt7530_read(priv, MT7530_VAWD1);
1592 	if (!(val & VLAN_VALID)) {
1593 		dev_err(priv->dev,
1594 			"Cannot be deleted due to invalid entry\n");
1595 		return;
1596 	}
1597 
1598 	if (new_members) {
1599 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1600 		      VLAN_VALID;
1601 		mt7530_write(priv, MT7530_VAWD1, val);
1602 	} else {
1603 		mt7530_write(priv, MT7530_VAWD1, 0);
1604 		mt7530_write(priv, MT7530_VAWD2, 0);
1605 	}
1606 }
1607 
1608 static void
1609 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1610 		      struct mt7530_hw_vlan_entry *entry,
1611 		      mt7530_vlan_op vlan_op)
1612 {
1613 	u32 val;
1614 
1615 	/* Fetch entry */
1616 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1617 
1618 	val = mt7530_read(priv, MT7530_VAWD1);
1619 
1620 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1621 
1622 	/* Manipulate entry */
1623 	vlan_op(priv, entry);
1624 
1625 	/* Flush result to hardware */
1626 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1627 }
1628 
1629 static int
1630 mt7530_setup_vlan0(struct mt7530_priv *priv)
1631 {
1632 	u32 val;
1633 
1634 	/* Validate the entry with independent learning, keep the original
1635 	 * ingress tag attribute.
1636 	 */
1637 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1638 	      VLAN_VALID;
1639 	mt7530_write(priv, MT7530_VAWD1, val);
1640 
1641 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1642 }
1643 
1644 static int
1645 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1646 		     const struct switchdev_obj_port_vlan *vlan,
1647 		     struct netlink_ext_ack *extack)
1648 {
1649 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1650 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1651 	struct mt7530_hw_vlan_entry new_entry;
1652 	struct mt7530_priv *priv = ds->priv;
1653 
1654 	mutex_lock(&priv->reg_mutex);
1655 
1656 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1657 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1658 
1659 	if (pvid) {
1660 		priv->ports[port].pvid = vlan->vid;
1661 
1662 		/* Accept all frames if PVID is set */
1663 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1664 			   MT7530_VLAN_ACC_ALL);
1665 
1666 		/* Only configure PVID if VLAN filtering is enabled */
1667 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1668 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1669 				   G0_PORT_VID_MASK,
1670 				   G0_PORT_VID(vlan->vid));
1671 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1672 		/* This VLAN is overwritten without PVID, so unset it */
1673 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1674 
1675 		/* Only accept tagged frames if the port is VLAN-aware */
1676 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1677 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1678 				   MT7530_VLAN_ACC_TAGGED);
1679 
1680 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1681 			   G0_PORT_VID_DEF);
1682 	}
1683 
1684 	mutex_unlock(&priv->reg_mutex);
1685 
1686 	return 0;
1687 }
1688 
1689 static int
1690 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1691 		     const struct switchdev_obj_port_vlan *vlan)
1692 {
1693 	struct mt7530_hw_vlan_entry target_entry;
1694 	struct mt7530_priv *priv = ds->priv;
1695 
1696 	mutex_lock(&priv->reg_mutex);
1697 
1698 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1699 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1700 			      mt7530_hw_vlan_del);
1701 
1702 	/* PVID is being restored to the default whenever the PVID port
1703 	 * is being removed from the VLAN.
1704 	 */
1705 	if (priv->ports[port].pvid == vlan->vid) {
1706 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1707 
1708 		/* Only accept tagged frames if the port is VLAN-aware */
1709 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1710 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1711 				   MT7530_VLAN_ACC_TAGGED);
1712 
1713 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1714 			   G0_PORT_VID_DEF);
1715 	}
1716 
1717 
1718 	mutex_unlock(&priv->reg_mutex);
1719 
1720 	return 0;
1721 }
1722 
1723 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1724 {
1725 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1726 				   MIRROR_PORT(val);
1727 }
1728 
1729 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1730 {
1731 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1732 				   MIRROR_PORT(val);
1733 }
1734 
1735 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1736 				  struct dsa_mall_mirror_tc_entry *mirror,
1737 				  bool ingress, struct netlink_ext_ack *extack)
1738 {
1739 	struct mt7530_priv *priv = ds->priv;
1740 	int monitor_port;
1741 	u32 val;
1742 
1743 	/* Check for existent entry */
1744 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1745 		return -EEXIST;
1746 
1747 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1748 
1749 	/* MT7530 only supports one monitor port */
1750 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1751 	if (val & MT753X_MIRROR_EN(priv->id) &&
1752 	    monitor_port != mirror->to_local_port)
1753 		return -EEXIST;
1754 
1755 	val |= MT753X_MIRROR_EN(priv->id);
1756 	val &= ~MT753X_MIRROR_MASK(priv->id);
1757 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1758 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1759 
1760 	val = mt7530_read(priv, MT7530_PCR_P(port));
1761 	if (ingress) {
1762 		val |= PORT_RX_MIR;
1763 		priv->mirror_rx |= BIT(port);
1764 	} else {
1765 		val |= PORT_TX_MIR;
1766 		priv->mirror_tx |= BIT(port);
1767 	}
1768 	mt7530_write(priv, MT7530_PCR_P(port), val);
1769 
1770 	return 0;
1771 }
1772 
1773 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1774 				   struct dsa_mall_mirror_tc_entry *mirror)
1775 {
1776 	struct mt7530_priv *priv = ds->priv;
1777 	u32 val;
1778 
1779 	val = mt7530_read(priv, MT7530_PCR_P(port));
1780 	if (mirror->ingress) {
1781 		val &= ~PORT_RX_MIR;
1782 		priv->mirror_rx &= ~BIT(port);
1783 	} else {
1784 		val &= ~PORT_TX_MIR;
1785 		priv->mirror_tx &= ~BIT(port);
1786 	}
1787 	mt7530_write(priv, MT7530_PCR_P(port), val);
1788 
1789 	if (!priv->mirror_rx && !priv->mirror_tx) {
1790 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1791 		val &= ~MT753X_MIRROR_EN(priv->id);
1792 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1793 	}
1794 }
1795 
1796 static enum dsa_tag_protocol
1797 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1798 		     enum dsa_tag_protocol mp)
1799 {
1800 	return DSA_TAG_PROTO_MTK;
1801 }
1802 
1803 #ifdef CONFIG_GPIOLIB
1804 static inline u32
1805 mt7530_gpio_to_bit(unsigned int offset)
1806 {
1807 	/* Map GPIO offset to register bit
1808 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1809 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1810 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1811 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1812 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1813 	 */
1814 	return BIT(offset + offset / 3);
1815 }
1816 
1817 static int
1818 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1819 {
1820 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1821 	u32 bit = mt7530_gpio_to_bit(offset);
1822 
1823 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1824 }
1825 
1826 static void
1827 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1828 {
1829 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1830 	u32 bit = mt7530_gpio_to_bit(offset);
1831 
1832 	if (value)
1833 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1834 	else
1835 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1836 }
1837 
1838 static int
1839 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1840 {
1841 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1842 	u32 bit = mt7530_gpio_to_bit(offset);
1843 
1844 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1845 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1846 }
1847 
1848 static int
1849 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1850 {
1851 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1852 	u32 bit = mt7530_gpio_to_bit(offset);
1853 
1854 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1855 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1856 
1857 	return 0;
1858 }
1859 
1860 static int
1861 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1862 {
1863 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1864 	u32 bit = mt7530_gpio_to_bit(offset);
1865 
1866 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1867 
1868 	if (value)
1869 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1870 	else
1871 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1872 
1873 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1874 
1875 	return 0;
1876 }
1877 
1878 static int
1879 mt7530_setup_gpio(struct mt7530_priv *priv)
1880 {
1881 	struct device *dev = priv->dev;
1882 	struct gpio_chip *gc;
1883 
1884 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1885 	if (!gc)
1886 		return -ENOMEM;
1887 
1888 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1889 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1890 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1891 
1892 	gc->label = "mt7530";
1893 	gc->parent = dev;
1894 	gc->owner = THIS_MODULE;
1895 	gc->get_direction = mt7530_gpio_get_direction;
1896 	gc->direction_input = mt7530_gpio_direction_input;
1897 	gc->direction_output = mt7530_gpio_direction_output;
1898 	gc->get = mt7530_gpio_get;
1899 	gc->set = mt7530_gpio_set;
1900 	gc->base = -1;
1901 	gc->ngpio = 15;
1902 	gc->can_sleep = true;
1903 
1904 	return devm_gpiochip_add_data(dev, gc, priv);
1905 }
1906 #endif /* CONFIG_GPIOLIB */
1907 
1908 static irqreturn_t
1909 mt7530_irq_thread_fn(int irq, void *dev_id)
1910 {
1911 	struct mt7530_priv *priv = dev_id;
1912 	bool handled = false;
1913 	u32 val;
1914 	int p;
1915 
1916 	mt7530_mutex_lock(priv);
1917 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1918 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1919 	mt7530_mutex_unlock(priv);
1920 
1921 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1922 		if (BIT(p) & val) {
1923 			unsigned int irq;
1924 
1925 			irq = irq_find_mapping(priv->irq_domain, p);
1926 			handle_nested_irq(irq);
1927 			handled = true;
1928 		}
1929 	}
1930 
1931 	return IRQ_RETVAL(handled);
1932 }
1933 
1934 static void
1935 mt7530_irq_mask(struct irq_data *d)
1936 {
1937 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1938 
1939 	priv->irq_enable &= ~BIT(d->hwirq);
1940 }
1941 
1942 static void
1943 mt7530_irq_unmask(struct irq_data *d)
1944 {
1945 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1946 
1947 	priv->irq_enable |= BIT(d->hwirq);
1948 }
1949 
1950 static void
1951 mt7530_irq_bus_lock(struct irq_data *d)
1952 {
1953 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1954 
1955 	mt7530_mutex_lock(priv);
1956 }
1957 
1958 static void
1959 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1960 {
1961 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1962 
1963 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1964 	mt7530_mutex_unlock(priv);
1965 }
1966 
1967 static struct irq_chip mt7530_irq_chip = {
1968 	.name = KBUILD_MODNAME,
1969 	.irq_mask = mt7530_irq_mask,
1970 	.irq_unmask = mt7530_irq_unmask,
1971 	.irq_bus_lock = mt7530_irq_bus_lock,
1972 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1973 };
1974 
1975 static int
1976 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1977 	       irq_hw_number_t hwirq)
1978 {
1979 	irq_set_chip_data(irq, domain->host_data);
1980 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1981 	irq_set_nested_thread(irq, true);
1982 	irq_set_noprobe(irq);
1983 
1984 	return 0;
1985 }
1986 
1987 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1988 	.map = mt7530_irq_map,
1989 	.xlate = irq_domain_xlate_onecell,
1990 };
1991 
1992 static void
1993 mt7988_irq_mask(struct irq_data *d)
1994 {
1995 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1996 
1997 	priv->irq_enable &= ~BIT(d->hwirq);
1998 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1999 }
2000 
2001 static void
2002 mt7988_irq_unmask(struct irq_data *d)
2003 {
2004 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2005 
2006 	priv->irq_enable |= BIT(d->hwirq);
2007 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2008 }
2009 
2010 static struct irq_chip mt7988_irq_chip = {
2011 	.name = KBUILD_MODNAME,
2012 	.irq_mask = mt7988_irq_mask,
2013 	.irq_unmask = mt7988_irq_unmask,
2014 };
2015 
2016 static int
2017 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2018 	       irq_hw_number_t hwirq)
2019 {
2020 	irq_set_chip_data(irq, domain->host_data);
2021 	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2022 	irq_set_nested_thread(irq, true);
2023 	irq_set_noprobe(irq);
2024 
2025 	return 0;
2026 }
2027 
2028 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2029 	.map = mt7988_irq_map,
2030 	.xlate = irq_domain_xlate_onecell,
2031 };
2032 
2033 static void
2034 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2035 {
2036 	struct dsa_switch *ds = priv->ds;
2037 	int p;
2038 
2039 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2040 		if (BIT(p) & ds->phys_mii_mask) {
2041 			unsigned int irq;
2042 
2043 			irq = irq_create_mapping(priv->irq_domain, p);
2044 			ds->user_mii_bus->irq[p] = irq;
2045 		}
2046 	}
2047 }
2048 
2049 static int
2050 mt7530_setup_irq(struct mt7530_priv *priv)
2051 {
2052 	struct device *dev = priv->dev;
2053 	struct device_node *np = dev->of_node;
2054 	int ret;
2055 
2056 	if (!of_property_read_bool(np, "interrupt-controller")) {
2057 		dev_info(dev, "no interrupt support\n");
2058 		return 0;
2059 	}
2060 
2061 	priv->irq = of_irq_get(np, 0);
2062 	if (priv->irq <= 0) {
2063 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2064 		return priv->irq ? : -EINVAL;
2065 	}
2066 
2067 	if (priv->id == ID_MT7988)
2068 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2069 							 &mt7988_irq_domain_ops,
2070 							 priv);
2071 	else
2072 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2073 							 &mt7530_irq_domain_ops,
2074 							 priv);
2075 
2076 	if (!priv->irq_domain) {
2077 		dev_err(dev, "failed to create IRQ domain\n");
2078 		return -ENOMEM;
2079 	}
2080 
2081 	/* This register must be set for MT7530 to properly fire interrupts */
2082 	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
2083 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2084 
2085 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2086 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2087 	if (ret) {
2088 		irq_domain_remove(priv->irq_domain);
2089 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2090 		return ret;
2091 	}
2092 
2093 	return 0;
2094 }
2095 
2096 static void
2097 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2098 {
2099 	int p;
2100 
2101 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2102 		if (BIT(p) & priv->ds->phys_mii_mask) {
2103 			unsigned int irq;
2104 
2105 			irq = irq_find_mapping(priv->irq_domain, p);
2106 			irq_dispose_mapping(irq);
2107 		}
2108 	}
2109 }
2110 
2111 static void
2112 mt7530_free_irq_common(struct mt7530_priv *priv)
2113 {
2114 	free_irq(priv->irq, priv);
2115 	irq_domain_remove(priv->irq_domain);
2116 }
2117 
2118 static void
2119 mt7530_free_irq(struct mt7530_priv *priv)
2120 {
2121 	struct device_node *mnp, *np = priv->dev->of_node;
2122 
2123 	mnp = of_get_child_by_name(np, "mdio");
2124 	if (!mnp)
2125 		mt7530_free_mdio_irq(priv);
2126 	of_node_put(mnp);
2127 
2128 	mt7530_free_irq_common(priv);
2129 }
2130 
2131 static int
2132 mt7530_setup_mdio(struct mt7530_priv *priv)
2133 {
2134 	struct device_node *mnp, *np = priv->dev->of_node;
2135 	struct dsa_switch *ds = priv->ds;
2136 	struct device *dev = priv->dev;
2137 	struct mii_bus *bus;
2138 	static int idx;
2139 	int ret = 0;
2140 
2141 	mnp = of_get_child_by_name(np, "mdio");
2142 
2143 	if (mnp && !of_device_is_available(mnp))
2144 		goto out;
2145 
2146 	bus = devm_mdiobus_alloc(dev);
2147 	if (!bus) {
2148 		ret = -ENOMEM;
2149 		goto out;
2150 	}
2151 
2152 	if (!mnp)
2153 		ds->user_mii_bus = bus;
2154 
2155 	bus->priv = priv;
2156 	bus->name = KBUILD_MODNAME "-mii";
2157 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2158 	bus->read = mt753x_phy_read_c22;
2159 	bus->write = mt753x_phy_write_c22;
2160 	bus->read_c45 = mt753x_phy_read_c45;
2161 	bus->write_c45 = mt753x_phy_write_c45;
2162 	bus->parent = dev;
2163 	bus->phy_mask = ~ds->phys_mii_mask;
2164 
2165 	if (priv->irq && !mnp)
2166 		mt7530_setup_mdio_irq(priv);
2167 
2168 	ret = devm_of_mdiobus_register(dev, bus, mnp);
2169 	if (ret) {
2170 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2171 		if (priv->irq && !mnp)
2172 			mt7530_free_mdio_irq(priv);
2173 	}
2174 
2175 out:
2176 	of_node_put(mnp);
2177 	return ret;
2178 }
2179 
2180 static int
2181 mt7530_setup(struct dsa_switch *ds)
2182 {
2183 	struct mt7530_priv *priv = ds->priv;
2184 	struct device_node *dn = NULL;
2185 	struct device_node *phy_node;
2186 	struct device_node *mac_np;
2187 	struct mt7530_dummy_poll p;
2188 	phy_interface_t interface;
2189 	struct dsa_port *cpu_dp;
2190 	u32 id, val;
2191 	int ret, i;
2192 
2193 	/* The parent node of conduit netdev which holds the common system
2194 	 * controller also is the container for two GMACs nodes representing
2195 	 * as two netdev instances.
2196 	 */
2197 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2198 		dn = cpu_dp->conduit->dev.of_node->parent;
2199 		/* It doesn't matter which CPU port is found first,
2200 		 * their conduits should share the same parent OF node
2201 		 */
2202 		break;
2203 	}
2204 
2205 	if (!dn) {
2206 		dev_err(ds->dev, "parent OF node of DSA conduit not found");
2207 		return -EINVAL;
2208 	}
2209 
2210 	ds->assisted_learning_on_cpu_port = true;
2211 	ds->mtu_enforcement_ingress = true;
2212 
2213 	if (priv->id == ID_MT7530) {
2214 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2215 		ret = regulator_enable(priv->core_pwr);
2216 		if (ret < 0) {
2217 			dev_err(priv->dev,
2218 				"Failed to enable core power: %d\n", ret);
2219 			return ret;
2220 		}
2221 
2222 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2223 		ret = regulator_enable(priv->io_pwr);
2224 		if (ret < 0) {
2225 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2226 				ret);
2227 			return ret;
2228 		}
2229 	}
2230 
2231 	/* Reset whole chip through gpio pin or memory-mapped registers for
2232 	 * different type of hardware
2233 	 */
2234 	if (priv->mcm) {
2235 		reset_control_assert(priv->rstc);
2236 		usleep_range(5000, 5100);
2237 		reset_control_deassert(priv->rstc);
2238 	} else {
2239 		gpiod_set_value_cansleep(priv->reset, 0);
2240 		usleep_range(5000, 5100);
2241 		gpiod_set_value_cansleep(priv->reset, 1);
2242 	}
2243 
2244 	/* Waiting for MT7530 got to stable */
2245 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2246 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2247 				 20, 1000000);
2248 	if (ret < 0) {
2249 		dev_err(priv->dev, "reset timeout\n");
2250 		return ret;
2251 	}
2252 
2253 	id = mt7530_read(priv, MT7530_CREV);
2254 	id >>= CHIP_NAME_SHIFT;
2255 	if (id != MT7530_ID) {
2256 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2257 		return -ENODEV;
2258 	}
2259 
2260 	if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_20MHZ) {
2261 		dev_err(priv->dev,
2262 			"MT7530 with a 20MHz XTAL is not supported!\n");
2263 		return -EINVAL;
2264 	}
2265 
2266 	/* Reset the switch through internal reset */
2267 	mt7530_write(priv, MT7530_SYS_CTRL,
2268 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2269 		     SYS_CTRL_REG_RST);
2270 
2271 	/* Lower Tx driving for TRGMII path */
2272 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2273 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2274 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2275 
2276 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2277 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2278 			   RD_TAP_MASK, RD_TAP(16));
2279 
2280 	/* Enable port 6 */
2281 	val = mt7530_read(priv, MT7530_MHWTRAP);
2282 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2283 	val |= MHWTRAP_MANUAL;
2284 	mt7530_write(priv, MT7530_MHWTRAP, val);
2285 
2286 	if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_40MHZ)
2287 		mt7530_pll_setup(priv);
2288 
2289 	mt753x_trap_frames(priv);
2290 
2291 	/* Enable and reset MIB counters */
2292 	mt7530_mib_reset(ds);
2293 
2294 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2295 		/* Clear link settings and enable force mode to force link down
2296 		 * on all ports until they're enabled later.
2297 		 */
2298 		mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2299 			   PMCR_FORCE_MODE, PMCR_FORCE_MODE);
2300 
2301 		/* Disable forwarding by default on all ports */
2302 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2303 			   PCR_MATRIX_CLR);
2304 
2305 		/* Disable learning by default on all ports */
2306 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2307 
2308 		if (dsa_is_cpu_port(ds, i)) {
2309 			mt753x_cpu_port_enable(ds, i);
2310 		} else {
2311 			mt7530_port_disable(ds, i);
2312 
2313 			/* Set default PVID to 0 on all user ports */
2314 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2315 				   G0_PORT_VID_DEF);
2316 		}
2317 		/* Enable consistent egress tag */
2318 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2319 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2320 	}
2321 
2322 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2323 	ret = mt7530_setup_vlan0(priv);
2324 	if (ret)
2325 		return ret;
2326 
2327 	/* Setup port 5 */
2328 	if (!dsa_is_unused_port(ds, 5)) {
2329 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2330 	} else {
2331 		/* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
2332 		 * Set priv->p5_intf_sel to the appropriate value if PHY muxing
2333 		 * is detected.
2334 		 */
2335 		for_each_child_of_node(dn, mac_np) {
2336 			if (!of_device_is_compatible(mac_np,
2337 						     "mediatek,eth-mac"))
2338 				continue;
2339 
2340 			ret = of_property_read_u32(mac_np, "reg", &id);
2341 			if (ret < 0 || id != 1)
2342 				continue;
2343 
2344 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2345 			if (!phy_node)
2346 				continue;
2347 
2348 			if (phy_node->parent == priv->dev->of_node->parent) {
2349 				ret = of_get_phy_mode(mac_np, &interface);
2350 				if (ret && ret != -ENODEV) {
2351 					of_node_put(mac_np);
2352 					of_node_put(phy_node);
2353 					return ret;
2354 				}
2355 				id = of_mdio_parse_addr(ds->dev, phy_node);
2356 				if (id == 0)
2357 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2358 				if (id == 4)
2359 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2360 			}
2361 			of_node_put(mac_np);
2362 			of_node_put(phy_node);
2363 			break;
2364 		}
2365 
2366 		if (priv->p5_intf_sel == P5_INTF_SEL_PHY_P0 ||
2367 		    priv->p5_intf_sel == P5_INTF_SEL_PHY_P4)
2368 			mt7530_setup_port5(ds, interface);
2369 	}
2370 
2371 #ifdef CONFIG_GPIOLIB
2372 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2373 		ret = mt7530_setup_gpio(priv);
2374 		if (ret)
2375 			return ret;
2376 	}
2377 #endif /* CONFIG_GPIOLIB */
2378 
2379 	/* Flush the FDB table */
2380 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2381 	if (ret < 0)
2382 		return ret;
2383 
2384 	return 0;
2385 }
2386 
2387 static int
2388 mt7531_setup_common(struct dsa_switch *ds)
2389 {
2390 	struct mt7530_priv *priv = ds->priv;
2391 	int ret, i;
2392 
2393 	mt753x_trap_frames(priv);
2394 
2395 	/* Enable and reset MIB counters */
2396 	mt7530_mib_reset(ds);
2397 
2398 	/* Disable flooding on all ports */
2399 	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2400 		     UNU_FFP_MASK);
2401 
2402 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2403 		/* Clear link settings and enable force mode to force link down
2404 		 * on all ports until they're enabled later.
2405 		 */
2406 		mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2407 			   MT7531_FORCE_MODE, MT7531_FORCE_MODE);
2408 
2409 		/* Disable forwarding by default on all ports */
2410 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2411 			   PCR_MATRIX_CLR);
2412 
2413 		/* Disable learning by default on all ports */
2414 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2415 
2416 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2417 
2418 		if (dsa_is_cpu_port(ds, i)) {
2419 			mt753x_cpu_port_enable(ds, i);
2420 		} else {
2421 			mt7530_port_disable(ds, i);
2422 
2423 			/* Set default PVID to 0 on all user ports */
2424 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2425 				   G0_PORT_VID_DEF);
2426 		}
2427 
2428 		/* Enable consistent egress tag */
2429 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2430 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2431 	}
2432 
2433 	/* Flush the FDB table */
2434 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2435 	if (ret < 0)
2436 		return ret;
2437 
2438 	return 0;
2439 }
2440 
2441 static int
2442 mt7531_setup(struct dsa_switch *ds)
2443 {
2444 	struct mt7530_priv *priv = ds->priv;
2445 	struct mt7530_dummy_poll p;
2446 	u32 val, id;
2447 	int ret, i;
2448 
2449 	/* Reset whole chip through gpio pin or memory-mapped registers for
2450 	 * different type of hardware
2451 	 */
2452 	if (priv->mcm) {
2453 		reset_control_assert(priv->rstc);
2454 		usleep_range(5000, 5100);
2455 		reset_control_deassert(priv->rstc);
2456 	} else {
2457 		gpiod_set_value_cansleep(priv->reset, 0);
2458 		usleep_range(5000, 5100);
2459 		gpiod_set_value_cansleep(priv->reset, 1);
2460 	}
2461 
2462 	/* Waiting for MT7530 got to stable */
2463 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2464 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2465 				 20, 1000000);
2466 	if (ret < 0) {
2467 		dev_err(priv->dev, "reset timeout\n");
2468 		return ret;
2469 	}
2470 
2471 	id = mt7530_read(priv, MT7531_CREV);
2472 	id >>= CHIP_NAME_SHIFT;
2473 
2474 	if (id != MT7531_ID) {
2475 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2476 		return -ENODEV;
2477 	}
2478 
2479 	/* MT7531AE has got two SGMII units. One for port 5, one for port 6.
2480 	 * MT7531BE has got only one SGMII unit which is for port 6.
2481 	 */
2482 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
2483 	priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
2484 
2485 	/* Force link down on all ports before internal reset */
2486 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2487 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2488 
2489 	/* Reset the switch through internal reset */
2490 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST);
2491 
2492 	if (!priv->p5_sgmii) {
2493 		mt7531_pll_setup(priv);
2494 	} else {
2495 		/* Let ds->user_mii_bus be able to access external phy. */
2496 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2497 			   MT7531_EXT_P_MDC_11);
2498 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2499 			   MT7531_EXT_P_MDIO_12);
2500 	}
2501 
2502 	if (!dsa_is_unused_port(ds, 5))
2503 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2504 
2505 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2506 		   MT7531_GPIO0_INTERRUPT);
2507 
2508 	/* Enable PHY core PLL, since phy_device has not yet been created
2509 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2510 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2511 	 * function.
2512 	 */
2513 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2514 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2515 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2516 	val &= ~MT7531_PHY_PLL_OFF;
2517 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2518 				 CORE_PLL_GROUP4, val);
2519 
2520 	mt7531_setup_common(ds);
2521 
2522 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2523 	ret = mt7530_setup_vlan0(priv);
2524 	if (ret)
2525 		return ret;
2526 
2527 	ds->assisted_learning_on_cpu_port = true;
2528 	ds->mtu_enforcement_ingress = true;
2529 
2530 	return 0;
2531 }
2532 
2533 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2534 				     struct phylink_config *config)
2535 {
2536 	switch (port) {
2537 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2538 	case 0 ... 4:
2539 		__set_bit(PHY_INTERFACE_MODE_GMII,
2540 			  config->supported_interfaces);
2541 		break;
2542 
2543 	/* Port 5 supports rgmii with delays, mii, and gmii. */
2544 	case 5:
2545 		phy_interface_set_rgmii(config->supported_interfaces);
2546 		__set_bit(PHY_INTERFACE_MODE_MII,
2547 			  config->supported_interfaces);
2548 		__set_bit(PHY_INTERFACE_MODE_GMII,
2549 			  config->supported_interfaces);
2550 		break;
2551 
2552 	/* Port 6 supports rgmii and trgmii. */
2553 	case 6:
2554 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2555 			  config->supported_interfaces);
2556 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2557 			  config->supported_interfaces);
2558 		break;
2559 	}
2560 }
2561 
2562 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2563 				     struct phylink_config *config)
2564 {
2565 	struct mt7530_priv *priv = ds->priv;
2566 
2567 	switch (port) {
2568 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2569 	case 0 ... 4:
2570 		__set_bit(PHY_INTERFACE_MODE_GMII,
2571 			  config->supported_interfaces);
2572 		break;
2573 
2574 	/* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
2575 	 * MT7531AE.
2576 	 */
2577 	case 5:
2578 		if (!priv->p5_sgmii) {
2579 			phy_interface_set_rgmii(config->supported_interfaces);
2580 			break;
2581 		}
2582 		fallthrough;
2583 
2584 	/* Port 6 supports sgmii/802.3z. */
2585 	case 6:
2586 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2587 			  config->supported_interfaces);
2588 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2589 			  config->supported_interfaces);
2590 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2591 			  config->supported_interfaces);
2592 
2593 		config->mac_capabilities |= MAC_2500FD;
2594 		break;
2595 	}
2596 }
2597 
2598 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2599 				     struct phylink_config *config)
2600 {
2601 	switch (port) {
2602 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2603 	case 0 ... 3:
2604 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2605 			  config->supported_interfaces);
2606 		break;
2607 
2608 	/* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2609 	case 6:
2610 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2611 			  config->supported_interfaces);
2612 		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2613 					   MAC_10000FD;
2614 	}
2615 }
2616 
2617 static void
2618 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2619 		  phy_interface_t interface)
2620 {
2621 	struct mt7530_priv *priv = ds->priv;
2622 
2623 	if (port == 5)
2624 		mt7530_setup_port5(priv->ds, interface);
2625 	else if (port == 6)
2626 		mt7530_setup_port6(priv->ds, interface);
2627 }
2628 
2629 static void mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2630 			       phy_interface_t interface,
2631 			       struct phy_device *phydev)
2632 {
2633 	u32 val;
2634 
2635 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2636 	val |= GP_CLK_EN;
2637 	val &= ~GP_MODE_MASK;
2638 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2639 	val &= ~CLK_SKEW_IN_MASK;
2640 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2641 	val &= ~CLK_SKEW_OUT_MASK;
2642 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2643 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2644 
2645 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2646 	if (!phydev || phy_driver_is_genphy(phydev)) {
2647 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2648 		switch (interface) {
2649 		case PHY_INTERFACE_MODE_RGMII:
2650 			val |= TXCLK_NO_REVERSE;
2651 			val |= RXCLK_NO_DELAY;
2652 			break;
2653 		case PHY_INTERFACE_MODE_RGMII_RXID:
2654 			val |= TXCLK_NO_REVERSE;
2655 			break;
2656 		case PHY_INTERFACE_MODE_RGMII_TXID:
2657 			val |= RXCLK_NO_DELAY;
2658 			break;
2659 		case PHY_INTERFACE_MODE_RGMII_ID:
2660 			break;
2661 		default:
2662 			break;
2663 		}
2664 	}
2665 
2666 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2667 }
2668 
2669 static void
2670 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2671 		  phy_interface_t interface)
2672 {
2673 	struct mt7530_priv *priv = ds->priv;
2674 	struct phy_device *phydev;
2675 	struct dsa_port *dp;
2676 
2677 	if (phy_interface_mode_is_rgmii(interface)) {
2678 		dp = dsa_to_port(ds, port);
2679 		phydev = dp->user->phydev;
2680 		mt7531_rgmii_setup(priv, port, interface, phydev);
2681 	}
2682 }
2683 
2684 static struct phylink_pcs *
2685 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2686 			      phy_interface_t interface)
2687 {
2688 	struct mt7530_priv *priv = ds->priv;
2689 
2690 	switch (interface) {
2691 	case PHY_INTERFACE_MODE_TRGMII:
2692 		return &priv->pcs[port].pcs;
2693 	case PHY_INTERFACE_MODE_SGMII:
2694 	case PHY_INTERFACE_MODE_1000BASEX:
2695 	case PHY_INTERFACE_MODE_2500BASEX:
2696 		return priv->ports[port].sgmii_pcs;
2697 	default:
2698 		return NULL;
2699 	}
2700 }
2701 
2702 static void
2703 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2704 			  const struct phylink_link_state *state)
2705 {
2706 	struct mt7530_priv *priv = ds->priv;
2707 
2708 	if ((port == 5 || port == 6) && priv->info->mac_port_config)
2709 		priv->info->mac_port_config(ds, port, mode, state->interface);
2710 
2711 	/* Are we connected to external phy */
2712 	if (port == 5 && dsa_is_user_port(ds, 5))
2713 		mt7530_set(priv, MT7530_PMCR_P(port), PMCR_EXT_PHY);
2714 }
2715 
2716 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2717 					 unsigned int mode,
2718 					 phy_interface_t interface)
2719 {
2720 	struct mt7530_priv *priv = ds->priv;
2721 
2722 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2723 }
2724 
2725 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2726 				       unsigned int mode,
2727 				       phy_interface_t interface,
2728 				       struct phy_device *phydev,
2729 				       int speed, int duplex,
2730 				       bool tx_pause, bool rx_pause)
2731 {
2732 	struct mt7530_priv *priv = ds->priv;
2733 	u32 mcr;
2734 
2735 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2736 
2737 	switch (speed) {
2738 	case SPEED_1000:
2739 	case SPEED_2500:
2740 	case SPEED_10000:
2741 		mcr |= PMCR_FORCE_SPEED_1000;
2742 		break;
2743 	case SPEED_100:
2744 		mcr |= PMCR_FORCE_SPEED_100;
2745 		break;
2746 	}
2747 	if (duplex == DUPLEX_FULL) {
2748 		mcr |= PMCR_FORCE_FDX;
2749 		if (tx_pause)
2750 			mcr |= PMCR_TX_FC_EN;
2751 		if (rx_pause)
2752 			mcr |= PMCR_RX_FC_EN;
2753 	}
2754 
2755 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2756 		switch (speed) {
2757 		case SPEED_1000:
2758 		case SPEED_2500:
2759 			mcr |= PMCR_FORCE_EEE1G;
2760 			break;
2761 		case SPEED_100:
2762 			mcr |= PMCR_FORCE_EEE100;
2763 			break;
2764 		}
2765 	}
2766 
2767 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2768 }
2769 
2770 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2771 				    struct phylink_config *config)
2772 {
2773 	struct mt7530_priv *priv = ds->priv;
2774 
2775 	/* This switch only supports full-duplex at 1Gbps */
2776 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2777 				   MAC_10 | MAC_100 | MAC_1000FD;
2778 
2779 	priv->info->mac_port_get_caps(ds, port, config);
2780 }
2781 
2782 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2783 			       unsigned long *supported,
2784 			       const struct phylink_link_state *state)
2785 {
2786 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2787 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2788 	    phy_interface_mode_is_8023z(state->interface))
2789 		phylink_clear(supported, Autoneg);
2790 
2791 	return 0;
2792 }
2793 
2794 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2795 				 struct phylink_link_state *state)
2796 {
2797 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2798 	int port = pcs_to_mt753x_pcs(pcs)->port;
2799 	u32 pmsr;
2800 
2801 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2802 
2803 	state->link = (pmsr & PMSR_LINK);
2804 	state->an_complete = state->link;
2805 	state->duplex = !!(pmsr & PMSR_DPX);
2806 
2807 	switch (pmsr & PMSR_SPEED_MASK) {
2808 	case PMSR_SPEED_10:
2809 		state->speed = SPEED_10;
2810 		break;
2811 	case PMSR_SPEED_100:
2812 		state->speed = SPEED_100;
2813 		break;
2814 	case PMSR_SPEED_1000:
2815 		state->speed = SPEED_1000;
2816 		break;
2817 	default:
2818 		state->speed = SPEED_UNKNOWN;
2819 		break;
2820 	}
2821 
2822 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2823 	if (pmsr & PMSR_RX_FC)
2824 		state->pause |= MLO_PAUSE_RX;
2825 	if (pmsr & PMSR_TX_FC)
2826 		state->pause |= MLO_PAUSE_TX;
2827 }
2828 
2829 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
2830 			     phy_interface_t interface,
2831 			     const unsigned long *advertising,
2832 			     bool permit_pause_to_mac)
2833 {
2834 	return 0;
2835 }
2836 
2837 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
2838 {
2839 }
2840 
2841 static const struct phylink_pcs_ops mt7530_pcs_ops = {
2842 	.pcs_validate = mt753x_pcs_validate,
2843 	.pcs_get_state = mt7530_pcs_get_state,
2844 	.pcs_config = mt753x_pcs_config,
2845 	.pcs_an_restart = mt7530_pcs_an_restart,
2846 };
2847 
2848 static int
2849 mt753x_setup(struct dsa_switch *ds)
2850 {
2851 	struct mt7530_priv *priv = ds->priv;
2852 	int ret = priv->info->sw_setup(ds);
2853 	int i;
2854 
2855 	if (ret)
2856 		return ret;
2857 
2858 	ret = mt7530_setup_irq(priv);
2859 	if (ret)
2860 		return ret;
2861 
2862 	ret = mt7530_setup_mdio(priv);
2863 	if (ret && priv->irq)
2864 		mt7530_free_irq_common(priv);
2865 
2866 	/* Initialise the PCS devices */
2867 	for (i = 0; i < priv->ds->num_ports; i++) {
2868 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
2869 		priv->pcs[i].pcs.neg_mode = true;
2870 		priv->pcs[i].priv = priv;
2871 		priv->pcs[i].port = i;
2872 	}
2873 
2874 	if (priv->create_sgmii) {
2875 		ret = priv->create_sgmii(priv);
2876 		if (ret && priv->irq)
2877 			mt7530_free_irq(priv);
2878 	}
2879 
2880 	return ret;
2881 }
2882 
2883 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
2884 			      struct ethtool_keee *e)
2885 {
2886 	struct mt7530_priv *priv = ds->priv;
2887 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
2888 
2889 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
2890 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
2891 
2892 	return 0;
2893 }
2894 
2895 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
2896 			      struct ethtool_keee *e)
2897 {
2898 	struct mt7530_priv *priv = ds->priv;
2899 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
2900 
2901 	if (e->tx_lpi_timer > 0xFFF)
2902 		return -EINVAL;
2903 
2904 	set = SET_LPI_THRESH(e->tx_lpi_timer);
2905 	if (!e->tx_lpi_enabled)
2906 		/* Force LPI Mode without a delay */
2907 		set |= LPI_MODE_EN;
2908 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
2909 
2910 	return 0;
2911 }
2912 
2913 static void
2914 mt753x_conduit_state_change(struct dsa_switch *ds,
2915 			    const struct net_device *conduit,
2916 			    bool operational)
2917 {
2918 	struct dsa_port *cpu_dp = conduit->dsa_ptr;
2919 	struct mt7530_priv *priv = ds->priv;
2920 	int val = 0;
2921 	u8 mask;
2922 
2923 	/* Set the CPU port to trap frames to for MT7530. Trapped frames will be
2924 	 * forwarded to the numerically smallest CPU port whose conduit
2925 	 * interface is up.
2926 	 */
2927 	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
2928 		return;
2929 
2930 	mask = BIT(cpu_dp->index);
2931 
2932 	if (operational)
2933 		priv->active_cpu_ports |= mask;
2934 	else
2935 		priv->active_cpu_ports &= ~mask;
2936 
2937 	if (priv->active_cpu_ports)
2938 		val = CPU_EN | CPU_PORT(__ffs(priv->active_cpu_ports));
2939 
2940 	mt7530_rmw(priv, MT7530_MFC, CPU_EN | CPU_PORT_MASK, val);
2941 }
2942 
2943 static int mt7988_setup(struct dsa_switch *ds)
2944 {
2945 	struct mt7530_priv *priv = ds->priv;
2946 
2947 	/* Reset the switch */
2948 	reset_control_assert(priv->rstc);
2949 	usleep_range(20, 50);
2950 	reset_control_deassert(priv->rstc);
2951 	usleep_range(20, 50);
2952 
2953 	/* Reset the switch PHYs */
2954 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
2955 
2956 	return mt7531_setup_common(ds);
2957 }
2958 
2959 const struct dsa_switch_ops mt7530_switch_ops = {
2960 	.get_tag_protocol	= mtk_get_tag_protocol,
2961 	.setup			= mt753x_setup,
2962 	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
2963 	.get_strings		= mt7530_get_strings,
2964 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
2965 	.get_sset_count		= mt7530_get_sset_count,
2966 	.set_ageing_time	= mt7530_set_ageing_time,
2967 	.port_enable		= mt7530_port_enable,
2968 	.port_disable		= mt7530_port_disable,
2969 	.port_change_mtu	= mt7530_port_change_mtu,
2970 	.port_max_mtu		= mt7530_port_max_mtu,
2971 	.port_stp_state_set	= mt7530_stp_state_set,
2972 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
2973 	.port_bridge_flags	= mt7530_port_bridge_flags,
2974 	.port_bridge_join	= mt7530_port_bridge_join,
2975 	.port_bridge_leave	= mt7530_port_bridge_leave,
2976 	.port_fdb_add		= mt7530_port_fdb_add,
2977 	.port_fdb_del		= mt7530_port_fdb_del,
2978 	.port_fdb_dump		= mt7530_port_fdb_dump,
2979 	.port_mdb_add		= mt7530_port_mdb_add,
2980 	.port_mdb_del		= mt7530_port_mdb_del,
2981 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
2982 	.port_vlan_add		= mt7530_port_vlan_add,
2983 	.port_vlan_del		= mt7530_port_vlan_del,
2984 	.port_mirror_add	= mt753x_port_mirror_add,
2985 	.port_mirror_del	= mt753x_port_mirror_del,
2986 	.phylink_get_caps	= mt753x_phylink_get_caps,
2987 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
2988 	.phylink_mac_config	= mt753x_phylink_mac_config,
2989 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
2990 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
2991 	.get_mac_eee		= mt753x_get_mac_eee,
2992 	.set_mac_eee		= mt753x_set_mac_eee,
2993 	.conduit_state_change	= mt753x_conduit_state_change,
2994 };
2995 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
2996 
2997 const struct mt753x_info mt753x_table[] = {
2998 	[ID_MT7621] = {
2999 		.id = ID_MT7621,
3000 		.pcs_ops = &mt7530_pcs_ops,
3001 		.sw_setup = mt7530_setup,
3002 		.phy_read_c22 = mt7530_phy_read_c22,
3003 		.phy_write_c22 = mt7530_phy_write_c22,
3004 		.phy_read_c45 = mt7530_phy_read_c45,
3005 		.phy_write_c45 = mt7530_phy_write_c45,
3006 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3007 		.mac_port_config = mt7530_mac_config,
3008 	},
3009 	[ID_MT7530] = {
3010 		.id = ID_MT7530,
3011 		.pcs_ops = &mt7530_pcs_ops,
3012 		.sw_setup = mt7530_setup,
3013 		.phy_read_c22 = mt7530_phy_read_c22,
3014 		.phy_write_c22 = mt7530_phy_write_c22,
3015 		.phy_read_c45 = mt7530_phy_read_c45,
3016 		.phy_write_c45 = mt7530_phy_write_c45,
3017 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3018 		.mac_port_config = mt7530_mac_config,
3019 	},
3020 	[ID_MT7531] = {
3021 		.id = ID_MT7531,
3022 		.pcs_ops = &mt7530_pcs_ops,
3023 		.sw_setup = mt7531_setup,
3024 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3025 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3026 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3027 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3028 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3029 		.mac_port_config = mt7531_mac_config,
3030 	},
3031 	[ID_MT7988] = {
3032 		.id = ID_MT7988,
3033 		.pcs_ops = &mt7530_pcs_ops,
3034 		.sw_setup = mt7988_setup,
3035 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3036 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3037 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3038 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3039 		.mac_port_get_caps = mt7988_mac_port_get_caps,
3040 	},
3041 };
3042 EXPORT_SYMBOL_GPL(mt753x_table);
3043 
3044 int
3045 mt7530_probe_common(struct mt7530_priv *priv)
3046 {
3047 	struct device *dev = priv->dev;
3048 
3049 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3050 	if (!priv->ds)
3051 		return -ENOMEM;
3052 
3053 	priv->ds->dev = dev;
3054 	priv->ds->num_ports = MT7530_NUM_PORTS;
3055 
3056 	/* Get the hardware identifier from the devicetree node.
3057 	 * We will need it for some of the clock and regulator setup.
3058 	 */
3059 	priv->info = of_device_get_match_data(dev);
3060 	if (!priv->info)
3061 		return -EINVAL;
3062 
3063 	/* Sanity check if these required device operations are filled
3064 	 * properly.
3065 	 */
3066 	if (!priv->info->sw_setup || !priv->info->phy_read_c22 ||
3067 	    !priv->info->phy_write_c22 || !priv->info->mac_port_get_caps)
3068 		return -EINVAL;
3069 
3070 	priv->id = priv->info->id;
3071 	priv->dev = dev;
3072 	priv->ds->priv = priv;
3073 	priv->ds->ops = &mt7530_switch_ops;
3074 	mutex_init(&priv->reg_mutex);
3075 	dev_set_drvdata(dev, priv);
3076 
3077 	return 0;
3078 }
3079 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3080 
3081 void
3082 mt7530_remove_common(struct mt7530_priv *priv)
3083 {
3084 	if (priv->irq)
3085 		mt7530_free_irq(priv);
3086 
3087 	dsa_unregister_switch(priv->ds);
3088 
3089 	mutex_destroy(&priv->reg_mutex);
3090 }
3091 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3092 
3093 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3094 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3095 MODULE_LICENSE("GPL");
3096