xref: /linux/drivers/net/dsa/mt7530.c (revision f6e0a4984c2e7244689ea87b62b433bed9d07e94)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 mt7530_mutex_lock(struct mt7530_priv *priv)
146 {
147 	if (priv->bus)
148 		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149 }
150 
151 static void
152 mt7530_mutex_unlock(struct mt7530_priv *priv)
153 {
154 	if (priv->bus)
155 		mutex_unlock(&priv->bus->mdio_lock);
156 }
157 
158 static void
159 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160 {
161 	mt7530_mutex_lock(priv);
162 
163 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164 
165 	mt7530_mutex_unlock(priv);
166 }
167 
168 static void
169 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170 {
171 	u32 val;
172 
173 	mt7530_mutex_lock(priv);
174 
175 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176 	val &= ~mask;
177 	val |= set;
178 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179 
180 	mt7530_mutex_unlock(priv);
181 }
182 
183 static void
184 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 	core_rmw(priv, reg, 0, val);
187 }
188 
189 static void
190 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191 {
192 	core_rmw(priv, reg, val, 0);
193 }
194 
195 static int
196 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197 {
198 	int ret;
199 
200 	ret = regmap_write(priv->regmap, reg, val);
201 
202 	if (ret < 0)
203 		dev_err(priv->dev,
204 			"failed to write mt7530 register\n");
205 
206 	return ret;
207 }
208 
209 static u32
210 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211 {
212 	int ret;
213 	u32 val;
214 
215 	ret = regmap_read(priv->regmap, reg, &val);
216 	if (ret) {
217 		WARN_ON_ONCE(1);
218 		dev_err(priv->dev,
219 			"failed to read mt7530 register\n");
220 		return 0;
221 	}
222 
223 	return val;
224 }
225 
226 static void
227 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 	mt7530_mutex_lock(priv);
230 
231 	mt7530_mii_write(priv, reg, val);
232 
233 	mt7530_mutex_unlock(priv);
234 }
235 
236 static u32
237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 	return mt7530_mii_read(p->priv, p->reg);
240 }
241 
242 static u32
243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 	u32 val;
246 
247 	mt7530_mutex_lock(p->priv);
248 
249 	val = mt7530_mii_read(p->priv, p->reg);
250 
251 	mt7530_mutex_unlock(p->priv);
252 
253 	return val;
254 }
255 
256 static u32
257 mt7530_read(struct mt7530_priv *priv, u32 reg)
258 {
259 	struct mt7530_dummy_poll p;
260 
261 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262 	return _mt7530_read(&p);
263 }
264 
265 static void
266 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 	   u32 mask, u32 set)
268 {
269 	mt7530_mutex_lock(priv);
270 
271 	regmap_update_bits(priv->regmap, reg, mask, set);
272 
273 	mt7530_mutex_unlock(priv);
274 }
275 
276 static void
277 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 	mt7530_rmw(priv, reg, val, val);
280 }
281 
282 static void
283 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284 {
285 	mt7530_rmw(priv, reg, val, 0);
286 }
287 
288 static int
289 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290 {
291 	u32 val;
292 	int ret;
293 	struct mt7530_dummy_poll p;
294 
295 	/* Set the command operating upon the MAC address entries */
296 	val = ATC_BUSY | ATC_MAT(0) | cmd;
297 	mt7530_write(priv, MT7530_ATC, val);
298 
299 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300 	ret = readx_poll_timeout(_mt7530_read, &p, val,
301 				 !(val & ATC_BUSY), 20, 20000);
302 	if (ret < 0) {
303 		dev_err(priv->dev, "reset timeout\n");
304 		return ret;
305 	}
306 
307 	/* Additional sanity for read command if the specified
308 	 * entry is invalid
309 	 */
310 	val = mt7530_read(priv, MT7530_ATC);
311 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 		return -EINVAL;
313 
314 	if (rsp)
315 		*rsp = val;
316 
317 	return 0;
318 }
319 
320 static void
321 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322 {
323 	u32 reg[3];
324 	int i;
325 
326 	/* Read from ARL table into an array */
327 	for (i = 0; i < 3; i++) {
328 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329 
330 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 			__func__, __LINE__, i, reg[i]);
332 	}
333 
334 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344 }
345 
346 static void
347 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 		 u8 port_mask, const u8 *mac,
349 		 u8 aging, u8 type)
350 {
351 	u32 reg[3] = { 0 };
352 	int i;
353 
354 	reg[1] |= vid & CVID_MASK;
355 	reg[1] |= ATA2_IVL;
356 	reg[1] |= ATA2_FID(FID_BRIDGED);
357 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 	/* STATIC_ENT indicate that entry is static wouldn't
360 	 * be aged out and STATIC_EMP specified as erasing an
361 	 * entry
362 	 */
363 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 	reg[1] |= mac[5] << MAC_BYTE_5;
365 	reg[1] |= mac[4] << MAC_BYTE_4;
366 	reg[0] |= mac[3] << MAC_BYTE_3;
367 	reg[0] |= mac[2] << MAC_BYTE_2;
368 	reg[0] |= mac[1] << MAC_BYTE_1;
369 	reg[0] |= mac[0] << MAC_BYTE_0;
370 
371 	/* Write array into the ARL table */
372 	for (i = 0; i < 3; i++)
373 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374 }
375 
376 /* Set up switch core clock for MT7530 */
377 static void mt7530_pll_setup(struct mt7530_priv *priv)
378 {
379 	/* Disable core clock */
380 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381 
382 	/* Disable PLL */
383 	core_write(priv, CORE_GSWPLL_GRP1, 0);
384 
385 	/* Set core clock into 500Mhz */
386 	core_write(priv, CORE_GSWPLL_GRP2,
387 		   RG_GSWPLL_POSDIV_500M(1) |
388 		   RG_GSWPLL_FBKDIV_500M(25));
389 
390 	/* Enable PLL */
391 	core_write(priv, CORE_GSWPLL_GRP1,
392 		   RG_GSWPLL_EN_PRE |
393 		   RG_GSWPLL_POSDIV_200M(2) |
394 		   RG_GSWPLL_FBKDIV_200M(32));
395 
396 	udelay(20);
397 
398 	/* Enable core clock */
399 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400 }
401 
402 /* If port 6 is available as a CPU port, always prefer that as the default,
403  * otherwise don't care.
404  */
405 static struct dsa_port *
406 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407 {
408 	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409 
410 	if (dsa_port_is_cpu(cpu_dp))
411 		return cpu_dp;
412 
413 	return NULL;
414 }
415 
416 /* Setup port 6 interface mode and TRGMII TX circuit */
417 static void
418 mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface)
419 {
420 	struct mt7530_priv *priv = ds->priv;
421 	u32 ncpo1, ssc_delta, xtal;
422 
423 	/* Disable the MT7530 TRGMII clocks */
424 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
425 
426 	if (interface == PHY_INTERFACE_MODE_RGMII) {
427 		mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
428 			   P6_INTF_MODE(0));
429 		return;
430 	}
431 
432 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1));
433 
434 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
435 
436 	if (xtal == HWTRAP_XTAL_25MHZ)
437 		ssc_delta = 0x57;
438 	else
439 		ssc_delta = 0x87;
440 
441 	if (priv->id == ID_MT7621) {
442 		/* PLL frequency: 125MHz: 1.0GBit */
443 		if (xtal == HWTRAP_XTAL_40MHZ)
444 			ncpo1 = 0x0640;
445 		if (xtal == HWTRAP_XTAL_25MHZ)
446 			ncpo1 = 0x0a00;
447 	} else { /* PLL frequency: 250MHz: 2.0Gbit */
448 		if (xtal == HWTRAP_XTAL_40MHZ)
449 			ncpo1 = 0x0c80;
450 		if (xtal == HWTRAP_XTAL_25MHZ)
451 			ncpo1 = 0x1400;
452 	}
453 
454 	/* Setup the MT7530 TRGMII Tx Clock */
455 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
456 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
457 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
458 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
459 	core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
460 		   RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
461 	core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL |
462 		   RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1));
463 	core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG |
464 		   RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
465 
466 	/* Enable the MT7530 TRGMII clocks */
467 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
468 }
469 
470 static void
471 mt7531_pll_setup(struct mt7530_priv *priv)
472 {
473 	u32 top_sig;
474 	u32 hwstrap;
475 	u32 xtal;
476 	u32 val;
477 
478 	val = mt7530_read(priv, MT7531_CREV);
479 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
480 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
481 	if ((val & CHIP_REV_M) > 0)
482 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
483 						    HWTRAP_XTAL_FSEL_25MHZ;
484 	else
485 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
486 
487 	/* Step 1 : Disable MT7531 COREPLL */
488 	val = mt7530_read(priv, MT7531_PLLGP_EN);
489 	val &= ~EN_COREPLL;
490 	mt7530_write(priv, MT7531_PLLGP_EN, val);
491 
492 	/* Step 2: switch to XTAL output */
493 	val = mt7530_read(priv, MT7531_PLLGP_EN);
494 	val |= SW_CLKSW;
495 	mt7530_write(priv, MT7531_PLLGP_EN, val);
496 
497 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
498 	val &= ~RG_COREPLL_EN;
499 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
500 
501 	/* Step 3: disable PLLGP and enable program PLLGP */
502 	val = mt7530_read(priv, MT7531_PLLGP_EN);
503 	val |= SW_PLLGP;
504 	mt7530_write(priv, MT7531_PLLGP_EN, val);
505 
506 	/* Step 4: program COREPLL output frequency to 500MHz */
507 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
508 	val &= ~RG_COREPLL_POSDIV_M;
509 	val |= 2 << RG_COREPLL_POSDIV_S;
510 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
511 	usleep_range(25, 35);
512 
513 	switch (xtal) {
514 	case HWTRAP_XTAL_FSEL_25MHZ:
515 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
516 		val &= ~RG_COREPLL_SDM_PCW_M;
517 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
518 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
519 		break;
520 	case HWTRAP_XTAL_FSEL_40MHZ:
521 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
522 		val &= ~RG_COREPLL_SDM_PCW_M;
523 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
524 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
525 		break;
526 	}
527 
528 	/* Set feedback divide ratio update signal to high */
529 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
530 	val |= RG_COREPLL_SDM_PCW_CHG;
531 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
532 	/* Wait for at least 16 XTAL clocks */
533 	usleep_range(10, 20);
534 
535 	/* Step 5: set feedback divide ratio update signal to low */
536 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
537 	val &= ~RG_COREPLL_SDM_PCW_CHG;
538 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
539 
540 	/* Enable 325M clock for SGMII */
541 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
542 
543 	/* Enable 250SSC clock for RGMII */
544 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
545 
546 	/* Step 6: Enable MT7531 PLL */
547 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
548 	val |= RG_COREPLL_EN;
549 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
550 
551 	val = mt7530_read(priv, MT7531_PLLGP_EN);
552 	val |= EN_COREPLL;
553 	mt7530_write(priv, MT7531_PLLGP_EN, val);
554 	usleep_range(25, 35);
555 }
556 
557 static void
558 mt7530_mib_reset(struct dsa_switch *ds)
559 {
560 	struct mt7530_priv *priv = ds->priv;
561 
562 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
563 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
564 }
565 
566 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
567 {
568 	return mdiobus_read_nested(priv->bus, port, regnum);
569 }
570 
571 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
572 				u16 val)
573 {
574 	return mdiobus_write_nested(priv->bus, port, regnum, val);
575 }
576 
577 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
578 			       int devad, int regnum)
579 {
580 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
581 }
582 
583 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
584 				int regnum, u16 val)
585 {
586 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
587 }
588 
589 static int
590 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
591 			int regnum)
592 {
593 	struct mt7530_dummy_poll p;
594 	u32 reg, val;
595 	int ret;
596 
597 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
598 
599 	mt7530_mutex_lock(priv);
600 
601 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
602 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
603 	if (ret < 0) {
604 		dev_err(priv->dev, "poll timeout\n");
605 		goto out;
606 	}
607 
608 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
609 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
610 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
611 
612 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
613 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
614 	if (ret < 0) {
615 		dev_err(priv->dev, "poll timeout\n");
616 		goto out;
617 	}
618 
619 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
620 	      MT7531_MDIO_DEV_ADDR(devad);
621 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
622 
623 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
624 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
625 	if (ret < 0) {
626 		dev_err(priv->dev, "poll timeout\n");
627 		goto out;
628 	}
629 
630 	ret = val & MT7531_MDIO_RW_DATA_MASK;
631 out:
632 	mt7530_mutex_unlock(priv);
633 
634 	return ret;
635 }
636 
637 static int
638 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
639 			 int regnum, u16 data)
640 {
641 	struct mt7530_dummy_poll p;
642 	u32 val, reg;
643 	int ret;
644 
645 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
646 
647 	mt7530_mutex_lock(priv);
648 
649 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
650 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
651 	if (ret < 0) {
652 		dev_err(priv->dev, "poll timeout\n");
653 		goto out;
654 	}
655 
656 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
657 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
658 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
659 
660 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
661 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
662 	if (ret < 0) {
663 		dev_err(priv->dev, "poll timeout\n");
664 		goto out;
665 	}
666 
667 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
668 	      MT7531_MDIO_DEV_ADDR(devad) | data;
669 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
670 
671 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
672 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
673 	if (ret < 0) {
674 		dev_err(priv->dev, "poll timeout\n");
675 		goto out;
676 	}
677 
678 out:
679 	mt7530_mutex_unlock(priv);
680 
681 	return ret;
682 }
683 
684 static int
685 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
686 {
687 	struct mt7530_dummy_poll p;
688 	int ret;
689 	u32 val;
690 
691 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
692 
693 	mt7530_mutex_lock(priv);
694 
695 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
696 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
697 	if (ret < 0) {
698 		dev_err(priv->dev, "poll timeout\n");
699 		goto out;
700 	}
701 
702 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
703 	      MT7531_MDIO_REG_ADDR(regnum);
704 
705 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
706 
707 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
708 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
709 	if (ret < 0) {
710 		dev_err(priv->dev, "poll timeout\n");
711 		goto out;
712 	}
713 
714 	ret = val & MT7531_MDIO_RW_DATA_MASK;
715 out:
716 	mt7530_mutex_unlock(priv);
717 
718 	return ret;
719 }
720 
721 static int
722 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
723 			 u16 data)
724 {
725 	struct mt7530_dummy_poll p;
726 	int ret;
727 	u32 reg;
728 
729 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
730 
731 	mt7530_mutex_lock(priv);
732 
733 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
734 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
735 	if (ret < 0) {
736 		dev_err(priv->dev, "poll timeout\n");
737 		goto out;
738 	}
739 
740 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
741 	      MT7531_MDIO_REG_ADDR(regnum) | data;
742 
743 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
744 
745 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
746 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
747 	if (ret < 0) {
748 		dev_err(priv->dev, "poll timeout\n");
749 		goto out;
750 	}
751 
752 out:
753 	mt7530_mutex_unlock(priv);
754 
755 	return ret;
756 }
757 
758 static int
759 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
760 {
761 	struct mt7530_priv *priv = bus->priv;
762 
763 	return priv->info->phy_read_c22(priv, port, regnum);
764 }
765 
766 static int
767 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
768 {
769 	struct mt7530_priv *priv = bus->priv;
770 
771 	return priv->info->phy_read_c45(priv, port, devad, regnum);
772 }
773 
774 static int
775 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
776 {
777 	struct mt7530_priv *priv = bus->priv;
778 
779 	return priv->info->phy_write_c22(priv, port, regnum, val);
780 }
781 
782 static int
783 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
784 		     u16 val)
785 {
786 	struct mt7530_priv *priv = bus->priv;
787 
788 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
789 }
790 
791 static void
792 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
793 		   uint8_t *data)
794 {
795 	int i;
796 
797 	if (stringset != ETH_SS_STATS)
798 		return;
799 
800 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
801 		ethtool_puts(&data, mt7530_mib[i].name);
802 }
803 
804 static void
805 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
806 			 uint64_t *data)
807 {
808 	struct mt7530_priv *priv = ds->priv;
809 	const struct mt7530_mib_desc *mib;
810 	u32 reg, i;
811 	u64 hi;
812 
813 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
814 		mib = &mt7530_mib[i];
815 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
816 
817 		data[i] = mt7530_read(priv, reg);
818 		if (mib->size == 2) {
819 			hi = mt7530_read(priv, reg + 4);
820 			data[i] |= hi << 32;
821 		}
822 	}
823 }
824 
825 static int
826 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
827 {
828 	if (sset != ETH_SS_STATS)
829 		return 0;
830 
831 	return ARRAY_SIZE(mt7530_mib);
832 }
833 
834 static int
835 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
836 {
837 	struct mt7530_priv *priv = ds->priv;
838 	unsigned int secs = msecs / 1000;
839 	unsigned int tmp_age_count;
840 	unsigned int error = -1;
841 	unsigned int age_count;
842 	unsigned int age_unit;
843 
844 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
845 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
846 		return -ERANGE;
847 
848 	/* iterate through all possible age_count to find the closest pair */
849 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
850 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
851 
852 		if (tmp_age_unit <= AGE_UNIT_MAX) {
853 			unsigned int tmp_error = secs -
854 				(tmp_age_count + 1) * (tmp_age_unit + 1);
855 
856 			/* found a closer pair */
857 			if (error > tmp_error) {
858 				error = tmp_error;
859 				age_count = tmp_age_count;
860 				age_unit = tmp_age_unit;
861 			}
862 
863 			/* found the exact match, so break the loop */
864 			if (!error)
865 				break;
866 		}
867 	}
868 
869 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
870 
871 	return 0;
872 }
873 
874 static const char *p5_intf_modes(unsigned int p5_interface)
875 {
876 	switch (p5_interface) {
877 	case P5_DISABLED:
878 		return "DISABLED";
879 	case P5_INTF_SEL_PHY_P0:
880 		return "PHY P0";
881 	case P5_INTF_SEL_PHY_P4:
882 		return "PHY P4";
883 	case P5_INTF_SEL_GMAC5:
884 		return "GMAC5";
885 	default:
886 		return "unknown";
887 	}
888 }
889 
890 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
891 {
892 	struct mt7530_priv *priv = ds->priv;
893 	u8 tx_delay = 0;
894 	int val;
895 
896 	mutex_lock(&priv->reg_mutex);
897 
898 	val = mt7530_read(priv, MT7530_MHWTRAP);
899 
900 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
901 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
902 
903 	switch (priv->p5_intf_sel) {
904 	case P5_INTF_SEL_PHY_P0:
905 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
906 		val |= MHWTRAP_PHY0_SEL;
907 		fallthrough;
908 	case P5_INTF_SEL_PHY_P4:
909 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
910 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
911 
912 		/* Setup the MAC by default for the cpu port */
913 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
914 		break;
915 	case P5_INTF_SEL_GMAC5:
916 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
917 		val &= ~MHWTRAP_P5_DIS;
918 		break;
919 	default:
920 		break;
921 	}
922 
923 	/* Setup RGMII settings */
924 	if (phy_interface_mode_is_rgmii(interface)) {
925 		val |= MHWTRAP_P5_RGMII_MODE;
926 
927 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
928 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
929 
930 		/* Don't set delay in DSA mode */
931 		if (!dsa_is_dsa_port(priv->ds, 5) &&
932 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
933 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
934 			tx_delay = 4; /* n * 0.5 ns */
935 
936 		/* P5 RGMII TX Clock Control: delay x */
937 		mt7530_write(priv, MT7530_P5RGMIITXCR,
938 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
939 
940 		/* reduce P5 RGMII Tx driving, 8mA */
941 		mt7530_write(priv, MT7530_IO_DRV_CR,
942 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
943 	}
944 
945 	mt7530_write(priv, MT7530_MHWTRAP, val);
946 
947 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
948 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
949 
950 	mutex_unlock(&priv->reg_mutex);
951 }
952 
953 static void
954 mt753x_trap_frames(struct mt7530_priv *priv)
955 {
956 	/* Trap BPDUs to the CPU port(s) */
957 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
958 		   MT753X_BPDU_CPU_ONLY);
959 
960 	/* Trap 802.1X PAE frames to the CPU port(s) */
961 	mt7530_rmw(priv, MT753X_BPC, MT753X_PAE_PORT_FW_MASK,
962 		   MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY));
963 
964 	/* Trap LLDP frames with :0E MAC DA to the CPU port(s) */
965 	mt7530_rmw(priv, MT753X_RGAC2, MT753X_R0E_PORT_FW_MASK,
966 		   MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY));
967 }
968 
969 static void
970 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
971 {
972 	struct mt7530_priv *priv = ds->priv;
973 
974 	/* Enable Mediatek header mode on the cpu port */
975 	mt7530_write(priv, MT7530_PVC_P(port),
976 		     PORT_SPEC_TAG);
977 
978 	/* Enable flooding on the CPU port */
979 	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
980 		   UNU_FFP(BIT(port)));
981 
982 	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
983 	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
984 	 * is affine to the inbound user port.
985 	 */
986 	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
987 		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
988 
989 	/* CPU port gets connected to all user ports of
990 	 * the switch.
991 	 */
992 	mt7530_write(priv, MT7530_PCR_P(port),
993 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
994 
995 	/* Set to fallback mode for independent VLAN learning */
996 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
997 		   MT7530_PORT_FALLBACK_MODE);
998 }
999 
1000 static int
1001 mt7530_port_enable(struct dsa_switch *ds, int port,
1002 		   struct phy_device *phy)
1003 {
1004 	struct dsa_port *dp = dsa_to_port(ds, port);
1005 	struct mt7530_priv *priv = ds->priv;
1006 
1007 	mutex_lock(&priv->reg_mutex);
1008 
1009 	/* Allow the user port gets connected to the cpu port and also
1010 	 * restore the port matrix if the port is the member of a certain
1011 	 * bridge.
1012 	 */
1013 	if (dsa_port_is_user(dp)) {
1014 		struct dsa_port *cpu_dp = dp->cpu_dp;
1015 
1016 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1017 	}
1018 	priv->ports[port].enable = true;
1019 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1020 		   priv->ports[port].pm);
1021 
1022 	mutex_unlock(&priv->reg_mutex);
1023 
1024 	return 0;
1025 }
1026 
1027 static void
1028 mt7530_port_disable(struct dsa_switch *ds, int port)
1029 {
1030 	struct mt7530_priv *priv = ds->priv;
1031 
1032 	mutex_lock(&priv->reg_mutex);
1033 
1034 	/* Clear up all port matrix which could be restored in the next
1035 	 * enablement for the port.
1036 	 */
1037 	priv->ports[port].enable = false;
1038 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1039 		   PCR_MATRIX_CLR);
1040 
1041 	mutex_unlock(&priv->reg_mutex);
1042 }
1043 
1044 static int
1045 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1046 {
1047 	struct mt7530_priv *priv = ds->priv;
1048 	int length;
1049 	u32 val;
1050 
1051 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1052 	 * largest MTU of the user ports. Because the switch only has a global
1053 	 * RX length register, only allowing CPU port here is enough.
1054 	 */
1055 	if (!dsa_is_cpu_port(ds, port))
1056 		return 0;
1057 
1058 	mt7530_mutex_lock(priv);
1059 
1060 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1061 	val &= ~MAX_RX_PKT_LEN_MASK;
1062 
1063 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1064 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1065 	if (length <= 1522) {
1066 		val |= MAX_RX_PKT_LEN_1522;
1067 	} else if (length <= 1536) {
1068 		val |= MAX_RX_PKT_LEN_1536;
1069 	} else if (length <= 1552) {
1070 		val |= MAX_RX_PKT_LEN_1552;
1071 	} else {
1072 		val &= ~MAX_RX_JUMBO_MASK;
1073 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1074 		val |= MAX_RX_PKT_LEN_JUMBO;
1075 	}
1076 
1077 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1078 
1079 	mt7530_mutex_unlock(priv);
1080 
1081 	return 0;
1082 }
1083 
1084 static int
1085 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1086 {
1087 	return MT7530_MAX_MTU;
1088 }
1089 
1090 static void
1091 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1092 {
1093 	struct mt7530_priv *priv = ds->priv;
1094 	u32 stp_state;
1095 
1096 	switch (state) {
1097 	case BR_STATE_DISABLED:
1098 		stp_state = MT7530_STP_DISABLED;
1099 		break;
1100 	case BR_STATE_BLOCKING:
1101 		stp_state = MT7530_STP_BLOCKING;
1102 		break;
1103 	case BR_STATE_LISTENING:
1104 		stp_state = MT7530_STP_LISTENING;
1105 		break;
1106 	case BR_STATE_LEARNING:
1107 		stp_state = MT7530_STP_LEARNING;
1108 		break;
1109 	case BR_STATE_FORWARDING:
1110 	default:
1111 		stp_state = MT7530_STP_FORWARDING;
1112 		break;
1113 	}
1114 
1115 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1116 		   FID_PST(FID_BRIDGED, stp_state));
1117 }
1118 
1119 static int
1120 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1121 			     struct switchdev_brport_flags flags,
1122 			     struct netlink_ext_ack *extack)
1123 {
1124 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1125 			   BR_BCAST_FLOOD))
1126 		return -EINVAL;
1127 
1128 	return 0;
1129 }
1130 
1131 static int
1132 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1133 			 struct switchdev_brport_flags flags,
1134 			 struct netlink_ext_ack *extack)
1135 {
1136 	struct mt7530_priv *priv = ds->priv;
1137 
1138 	if (flags.mask & BR_LEARNING)
1139 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1140 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1141 
1142 	if (flags.mask & BR_FLOOD)
1143 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1144 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1145 
1146 	if (flags.mask & BR_MCAST_FLOOD)
1147 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1148 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1149 
1150 	if (flags.mask & BR_BCAST_FLOOD)
1151 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1152 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1153 
1154 	return 0;
1155 }
1156 
1157 static int
1158 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1159 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1160 			struct netlink_ext_ack *extack)
1161 {
1162 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1163 	struct dsa_port *cpu_dp = dp->cpu_dp;
1164 	u32 port_bitmap = BIT(cpu_dp->index);
1165 	struct mt7530_priv *priv = ds->priv;
1166 
1167 	mutex_lock(&priv->reg_mutex);
1168 
1169 	dsa_switch_for_each_user_port(other_dp, ds) {
1170 		int other_port = other_dp->index;
1171 
1172 		if (dp == other_dp)
1173 			continue;
1174 
1175 		/* Add this port to the port matrix of the other ports in the
1176 		 * same bridge. If the port is disabled, port matrix is kept
1177 		 * and not being setup until the port becomes enabled.
1178 		 */
1179 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1180 			continue;
1181 
1182 		if (priv->ports[other_port].enable)
1183 			mt7530_set(priv, MT7530_PCR_P(other_port),
1184 				   PCR_MATRIX(BIT(port)));
1185 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1186 
1187 		port_bitmap |= BIT(other_port);
1188 	}
1189 
1190 	/* Add the all other ports to this port matrix. */
1191 	if (priv->ports[port].enable)
1192 		mt7530_rmw(priv, MT7530_PCR_P(port),
1193 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1194 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1195 
1196 	/* Set to fallback mode for independent VLAN learning */
1197 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1198 		   MT7530_PORT_FALLBACK_MODE);
1199 
1200 	mutex_unlock(&priv->reg_mutex);
1201 
1202 	return 0;
1203 }
1204 
1205 static void
1206 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1207 {
1208 	struct mt7530_priv *priv = ds->priv;
1209 	bool all_user_ports_removed = true;
1210 	int i;
1211 
1212 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1213 	 * bridge. Don't set standalone ports to fallback mode.
1214 	 */
1215 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1216 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1217 			   MT7530_PORT_FALLBACK_MODE);
1218 
1219 	mt7530_rmw(priv, MT7530_PVC_P(port),
1220 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1221 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1222 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1223 		   MT7530_VLAN_ACC_ALL);
1224 
1225 	/* Set PVID to 0 */
1226 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1227 		   G0_PORT_VID_DEF);
1228 
1229 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1230 		if (dsa_is_user_port(ds, i) &&
1231 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1232 			all_user_ports_removed = false;
1233 			break;
1234 		}
1235 	}
1236 
1237 	/* CPU port also does the same thing until all user ports belonging to
1238 	 * the CPU port get out of VLAN filtering mode.
1239 	 */
1240 	if (all_user_ports_removed) {
1241 		struct dsa_port *dp = dsa_to_port(ds, port);
1242 		struct dsa_port *cpu_dp = dp->cpu_dp;
1243 
1244 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1245 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1246 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1247 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1248 	}
1249 }
1250 
1251 static void
1252 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1253 {
1254 	struct mt7530_priv *priv = ds->priv;
1255 
1256 	/* Trapped into security mode allows packet forwarding through VLAN
1257 	 * table lookup.
1258 	 */
1259 	if (dsa_is_user_port(ds, port)) {
1260 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1261 			   MT7530_PORT_SECURITY_MODE);
1262 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1263 			   G0_PORT_VID(priv->ports[port].pvid));
1264 
1265 		/* Only accept tagged frames if PVID is not set */
1266 		if (!priv->ports[port].pvid)
1267 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1268 				   MT7530_VLAN_ACC_TAGGED);
1269 
1270 		/* Set the port as a user port which is to be able to recognize
1271 		 * VID from incoming packets before fetching entry within the
1272 		 * VLAN table.
1273 		 */
1274 		mt7530_rmw(priv, MT7530_PVC_P(port),
1275 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1276 			   VLAN_ATTR(MT7530_VLAN_USER) |
1277 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1278 	} else {
1279 		/* Also set CPU ports to the "user" VLAN port attribute, to
1280 		 * allow VLAN classification, but keep the EG_TAG attribute as
1281 		 * "consistent" (i.o.w. don't change its value) for packets
1282 		 * received by the switch from the CPU, so that tagged packets
1283 		 * are forwarded to user ports as tagged, and untagged as
1284 		 * untagged.
1285 		 */
1286 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1287 			   VLAN_ATTR(MT7530_VLAN_USER));
1288 	}
1289 }
1290 
1291 static void
1292 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1293 			 struct dsa_bridge bridge)
1294 {
1295 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1296 	struct dsa_port *cpu_dp = dp->cpu_dp;
1297 	struct mt7530_priv *priv = ds->priv;
1298 
1299 	mutex_lock(&priv->reg_mutex);
1300 
1301 	dsa_switch_for_each_user_port(other_dp, ds) {
1302 		int other_port = other_dp->index;
1303 
1304 		if (dp == other_dp)
1305 			continue;
1306 
1307 		/* Remove this port from the port matrix of the other ports
1308 		 * in the same bridge. If the port is disabled, port matrix
1309 		 * is kept and not being setup until the port becomes enabled.
1310 		 */
1311 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1312 			continue;
1313 
1314 		if (priv->ports[other_port].enable)
1315 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1316 				     PCR_MATRIX(BIT(port)));
1317 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1318 	}
1319 
1320 	/* Set the cpu port to be the only one in the port matrix of
1321 	 * this port.
1322 	 */
1323 	if (priv->ports[port].enable)
1324 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1325 			   PCR_MATRIX(BIT(cpu_dp->index)));
1326 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1327 
1328 	/* When a port is removed from the bridge, the port would be set up
1329 	 * back to the default as is at initial boot which is a VLAN-unaware
1330 	 * port.
1331 	 */
1332 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1333 		   MT7530_PORT_MATRIX_MODE);
1334 
1335 	mutex_unlock(&priv->reg_mutex);
1336 }
1337 
1338 static int
1339 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1340 		    const unsigned char *addr, u16 vid,
1341 		    struct dsa_db db)
1342 {
1343 	struct mt7530_priv *priv = ds->priv;
1344 	int ret;
1345 	u8 port_mask = BIT(port);
1346 
1347 	mutex_lock(&priv->reg_mutex);
1348 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1349 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1350 	mutex_unlock(&priv->reg_mutex);
1351 
1352 	return ret;
1353 }
1354 
1355 static int
1356 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1357 		    const unsigned char *addr, u16 vid,
1358 		    struct dsa_db db)
1359 {
1360 	struct mt7530_priv *priv = ds->priv;
1361 	int ret;
1362 	u8 port_mask = BIT(port);
1363 
1364 	mutex_lock(&priv->reg_mutex);
1365 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1366 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1367 	mutex_unlock(&priv->reg_mutex);
1368 
1369 	return ret;
1370 }
1371 
1372 static int
1373 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1374 		     dsa_fdb_dump_cb_t *cb, void *data)
1375 {
1376 	struct mt7530_priv *priv = ds->priv;
1377 	struct mt7530_fdb _fdb = { 0 };
1378 	int cnt = MT7530_NUM_FDB_RECORDS;
1379 	int ret = 0;
1380 	u32 rsp = 0;
1381 
1382 	mutex_lock(&priv->reg_mutex);
1383 
1384 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1385 	if (ret < 0)
1386 		goto err;
1387 
1388 	do {
1389 		if (rsp & ATC_SRCH_HIT) {
1390 			mt7530_fdb_read(priv, &_fdb);
1391 			if (_fdb.port_mask & BIT(port)) {
1392 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1393 					 data);
1394 				if (ret < 0)
1395 					break;
1396 			}
1397 		}
1398 	} while (--cnt &&
1399 		 !(rsp & ATC_SRCH_END) &&
1400 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1401 err:
1402 	mutex_unlock(&priv->reg_mutex);
1403 
1404 	return 0;
1405 }
1406 
1407 static int
1408 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1409 		    const struct switchdev_obj_port_mdb *mdb,
1410 		    struct dsa_db db)
1411 {
1412 	struct mt7530_priv *priv = ds->priv;
1413 	const u8 *addr = mdb->addr;
1414 	u16 vid = mdb->vid;
1415 	u8 port_mask = 0;
1416 	int ret;
1417 
1418 	mutex_lock(&priv->reg_mutex);
1419 
1420 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1421 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1422 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1423 			    & PORT_MAP_MASK;
1424 
1425 	port_mask |= BIT(port);
1426 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1427 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1428 
1429 	mutex_unlock(&priv->reg_mutex);
1430 
1431 	return ret;
1432 }
1433 
1434 static int
1435 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1436 		    const struct switchdev_obj_port_mdb *mdb,
1437 		    struct dsa_db db)
1438 {
1439 	struct mt7530_priv *priv = ds->priv;
1440 	const u8 *addr = mdb->addr;
1441 	u16 vid = mdb->vid;
1442 	u8 port_mask = 0;
1443 	int ret;
1444 
1445 	mutex_lock(&priv->reg_mutex);
1446 
1447 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1448 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1449 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1450 			    & PORT_MAP_MASK;
1451 
1452 	port_mask &= ~BIT(port);
1453 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1454 			 port_mask ? STATIC_ENT : STATIC_EMP);
1455 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1456 
1457 	mutex_unlock(&priv->reg_mutex);
1458 
1459 	return ret;
1460 }
1461 
1462 static int
1463 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1464 {
1465 	struct mt7530_dummy_poll p;
1466 	u32 val;
1467 	int ret;
1468 
1469 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1470 	mt7530_write(priv, MT7530_VTCR, val);
1471 
1472 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1473 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1474 				 !(val & VTCR_BUSY), 20, 20000);
1475 	if (ret < 0) {
1476 		dev_err(priv->dev, "poll timeout\n");
1477 		return ret;
1478 	}
1479 
1480 	val = mt7530_read(priv, MT7530_VTCR);
1481 	if (val & VTCR_INVALID) {
1482 		dev_err(priv->dev, "read VTCR invalid\n");
1483 		return -EINVAL;
1484 	}
1485 
1486 	return 0;
1487 }
1488 
1489 static int
1490 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1491 			   struct netlink_ext_ack *extack)
1492 {
1493 	struct dsa_port *dp = dsa_to_port(ds, port);
1494 	struct dsa_port *cpu_dp = dp->cpu_dp;
1495 
1496 	if (vlan_filtering) {
1497 		/* The port is being kept as VLAN-unaware port when bridge is
1498 		 * set up with vlan_filtering not being set, Otherwise, the
1499 		 * port and the corresponding CPU port is required the setup
1500 		 * for becoming a VLAN-aware port.
1501 		 */
1502 		mt7530_port_set_vlan_aware(ds, port);
1503 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1504 	} else {
1505 		mt7530_port_set_vlan_unaware(ds, port);
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 static void
1512 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1513 		   struct mt7530_hw_vlan_entry *entry)
1514 {
1515 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1516 	u8 new_members;
1517 	u32 val;
1518 
1519 	new_members = entry->old_members | BIT(entry->port);
1520 
1521 	/* Validate the entry with independent learning, create egress tag per
1522 	 * VLAN and joining the port as one of the port members.
1523 	 */
1524 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1525 	      VLAN_VALID;
1526 	mt7530_write(priv, MT7530_VAWD1, val);
1527 
1528 	/* Decide whether adding tag or not for those outgoing packets from the
1529 	 * port inside the VLAN.
1530 	 * CPU port is always taken as a tagged port for serving more than one
1531 	 * VLANs across and also being applied with egress type stack mode for
1532 	 * that VLAN tags would be appended after hardware special tag used as
1533 	 * DSA tag.
1534 	 */
1535 	if (dsa_port_is_cpu(dp))
1536 		val = MT7530_VLAN_EGRESS_STACK;
1537 	else if (entry->untagged)
1538 		val = MT7530_VLAN_EGRESS_UNTAG;
1539 	else
1540 		val = MT7530_VLAN_EGRESS_TAG;
1541 	mt7530_rmw(priv, MT7530_VAWD2,
1542 		   ETAG_CTRL_P_MASK(entry->port),
1543 		   ETAG_CTRL_P(entry->port, val));
1544 }
1545 
1546 static void
1547 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1548 		   struct mt7530_hw_vlan_entry *entry)
1549 {
1550 	u8 new_members;
1551 	u32 val;
1552 
1553 	new_members = entry->old_members & ~BIT(entry->port);
1554 
1555 	val = mt7530_read(priv, MT7530_VAWD1);
1556 	if (!(val & VLAN_VALID)) {
1557 		dev_err(priv->dev,
1558 			"Cannot be deleted due to invalid entry\n");
1559 		return;
1560 	}
1561 
1562 	if (new_members) {
1563 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1564 		      VLAN_VALID;
1565 		mt7530_write(priv, MT7530_VAWD1, val);
1566 	} else {
1567 		mt7530_write(priv, MT7530_VAWD1, 0);
1568 		mt7530_write(priv, MT7530_VAWD2, 0);
1569 	}
1570 }
1571 
1572 static void
1573 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1574 		      struct mt7530_hw_vlan_entry *entry,
1575 		      mt7530_vlan_op vlan_op)
1576 {
1577 	u32 val;
1578 
1579 	/* Fetch entry */
1580 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1581 
1582 	val = mt7530_read(priv, MT7530_VAWD1);
1583 
1584 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1585 
1586 	/* Manipulate entry */
1587 	vlan_op(priv, entry);
1588 
1589 	/* Flush result to hardware */
1590 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1591 }
1592 
1593 static int
1594 mt7530_setup_vlan0(struct mt7530_priv *priv)
1595 {
1596 	u32 val;
1597 
1598 	/* Validate the entry with independent learning, keep the original
1599 	 * ingress tag attribute.
1600 	 */
1601 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1602 	      VLAN_VALID;
1603 	mt7530_write(priv, MT7530_VAWD1, val);
1604 
1605 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1606 }
1607 
1608 static int
1609 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1610 		     const struct switchdev_obj_port_vlan *vlan,
1611 		     struct netlink_ext_ack *extack)
1612 {
1613 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1614 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1615 	struct mt7530_hw_vlan_entry new_entry;
1616 	struct mt7530_priv *priv = ds->priv;
1617 
1618 	mutex_lock(&priv->reg_mutex);
1619 
1620 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1621 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1622 
1623 	if (pvid) {
1624 		priv->ports[port].pvid = vlan->vid;
1625 
1626 		/* Accept all frames if PVID is set */
1627 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1628 			   MT7530_VLAN_ACC_ALL);
1629 
1630 		/* Only configure PVID if VLAN filtering is enabled */
1631 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1632 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1633 				   G0_PORT_VID_MASK,
1634 				   G0_PORT_VID(vlan->vid));
1635 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1636 		/* This VLAN is overwritten without PVID, so unset it */
1637 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1638 
1639 		/* Only accept tagged frames if the port is VLAN-aware */
1640 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1641 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1642 				   MT7530_VLAN_ACC_TAGGED);
1643 
1644 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1645 			   G0_PORT_VID_DEF);
1646 	}
1647 
1648 	mutex_unlock(&priv->reg_mutex);
1649 
1650 	return 0;
1651 }
1652 
1653 static int
1654 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1655 		     const struct switchdev_obj_port_vlan *vlan)
1656 {
1657 	struct mt7530_hw_vlan_entry target_entry;
1658 	struct mt7530_priv *priv = ds->priv;
1659 
1660 	mutex_lock(&priv->reg_mutex);
1661 
1662 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1663 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1664 			      mt7530_hw_vlan_del);
1665 
1666 	/* PVID is being restored to the default whenever the PVID port
1667 	 * is being removed from the VLAN.
1668 	 */
1669 	if (priv->ports[port].pvid == vlan->vid) {
1670 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1671 
1672 		/* Only accept tagged frames if the port is VLAN-aware */
1673 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1674 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1675 				   MT7530_VLAN_ACC_TAGGED);
1676 
1677 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1678 			   G0_PORT_VID_DEF);
1679 	}
1680 
1681 
1682 	mutex_unlock(&priv->reg_mutex);
1683 
1684 	return 0;
1685 }
1686 
1687 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1688 {
1689 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1690 				   MIRROR_PORT(val);
1691 }
1692 
1693 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1694 {
1695 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1696 				   MIRROR_PORT(val);
1697 }
1698 
1699 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1700 				  struct dsa_mall_mirror_tc_entry *mirror,
1701 				  bool ingress, struct netlink_ext_ack *extack)
1702 {
1703 	struct mt7530_priv *priv = ds->priv;
1704 	int monitor_port;
1705 	u32 val;
1706 
1707 	/* Check for existent entry */
1708 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1709 		return -EEXIST;
1710 
1711 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1712 
1713 	/* MT7530 only supports one monitor port */
1714 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1715 	if (val & MT753X_MIRROR_EN(priv->id) &&
1716 	    monitor_port != mirror->to_local_port)
1717 		return -EEXIST;
1718 
1719 	val |= MT753X_MIRROR_EN(priv->id);
1720 	val &= ~MT753X_MIRROR_MASK(priv->id);
1721 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1722 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1723 
1724 	val = mt7530_read(priv, MT7530_PCR_P(port));
1725 	if (ingress) {
1726 		val |= PORT_RX_MIR;
1727 		priv->mirror_rx |= BIT(port);
1728 	} else {
1729 		val |= PORT_TX_MIR;
1730 		priv->mirror_tx |= BIT(port);
1731 	}
1732 	mt7530_write(priv, MT7530_PCR_P(port), val);
1733 
1734 	return 0;
1735 }
1736 
1737 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1738 				   struct dsa_mall_mirror_tc_entry *mirror)
1739 {
1740 	struct mt7530_priv *priv = ds->priv;
1741 	u32 val;
1742 
1743 	val = mt7530_read(priv, MT7530_PCR_P(port));
1744 	if (mirror->ingress) {
1745 		val &= ~PORT_RX_MIR;
1746 		priv->mirror_rx &= ~BIT(port);
1747 	} else {
1748 		val &= ~PORT_TX_MIR;
1749 		priv->mirror_tx &= ~BIT(port);
1750 	}
1751 	mt7530_write(priv, MT7530_PCR_P(port), val);
1752 
1753 	if (!priv->mirror_rx && !priv->mirror_tx) {
1754 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1755 		val &= ~MT753X_MIRROR_EN(priv->id);
1756 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1757 	}
1758 }
1759 
1760 static enum dsa_tag_protocol
1761 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1762 		     enum dsa_tag_protocol mp)
1763 {
1764 	return DSA_TAG_PROTO_MTK;
1765 }
1766 
1767 #ifdef CONFIG_GPIOLIB
1768 static inline u32
1769 mt7530_gpio_to_bit(unsigned int offset)
1770 {
1771 	/* Map GPIO offset to register bit
1772 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1773 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1774 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1775 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1776 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1777 	 */
1778 	return BIT(offset + offset / 3);
1779 }
1780 
1781 static int
1782 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1783 {
1784 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1785 	u32 bit = mt7530_gpio_to_bit(offset);
1786 
1787 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1788 }
1789 
1790 static void
1791 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1792 {
1793 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1794 	u32 bit = mt7530_gpio_to_bit(offset);
1795 
1796 	if (value)
1797 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1798 	else
1799 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1800 }
1801 
1802 static int
1803 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1804 {
1805 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1806 	u32 bit = mt7530_gpio_to_bit(offset);
1807 
1808 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1809 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1810 }
1811 
1812 static int
1813 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1814 {
1815 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1816 	u32 bit = mt7530_gpio_to_bit(offset);
1817 
1818 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1819 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1820 
1821 	return 0;
1822 }
1823 
1824 static int
1825 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1826 {
1827 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1828 	u32 bit = mt7530_gpio_to_bit(offset);
1829 
1830 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1831 
1832 	if (value)
1833 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1834 	else
1835 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1836 
1837 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1838 
1839 	return 0;
1840 }
1841 
1842 static int
1843 mt7530_setup_gpio(struct mt7530_priv *priv)
1844 {
1845 	struct device *dev = priv->dev;
1846 	struct gpio_chip *gc;
1847 
1848 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1849 	if (!gc)
1850 		return -ENOMEM;
1851 
1852 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1853 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1854 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1855 
1856 	gc->label = "mt7530";
1857 	gc->parent = dev;
1858 	gc->owner = THIS_MODULE;
1859 	gc->get_direction = mt7530_gpio_get_direction;
1860 	gc->direction_input = mt7530_gpio_direction_input;
1861 	gc->direction_output = mt7530_gpio_direction_output;
1862 	gc->get = mt7530_gpio_get;
1863 	gc->set = mt7530_gpio_set;
1864 	gc->base = -1;
1865 	gc->ngpio = 15;
1866 	gc->can_sleep = true;
1867 
1868 	return devm_gpiochip_add_data(dev, gc, priv);
1869 }
1870 #endif /* CONFIG_GPIOLIB */
1871 
1872 static irqreturn_t
1873 mt7530_irq_thread_fn(int irq, void *dev_id)
1874 {
1875 	struct mt7530_priv *priv = dev_id;
1876 	bool handled = false;
1877 	u32 val;
1878 	int p;
1879 
1880 	mt7530_mutex_lock(priv);
1881 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1882 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1883 	mt7530_mutex_unlock(priv);
1884 
1885 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1886 		if (BIT(p) & val) {
1887 			unsigned int irq;
1888 
1889 			irq = irq_find_mapping(priv->irq_domain, p);
1890 			handle_nested_irq(irq);
1891 			handled = true;
1892 		}
1893 	}
1894 
1895 	return IRQ_RETVAL(handled);
1896 }
1897 
1898 static void
1899 mt7530_irq_mask(struct irq_data *d)
1900 {
1901 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1902 
1903 	priv->irq_enable &= ~BIT(d->hwirq);
1904 }
1905 
1906 static void
1907 mt7530_irq_unmask(struct irq_data *d)
1908 {
1909 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1910 
1911 	priv->irq_enable |= BIT(d->hwirq);
1912 }
1913 
1914 static void
1915 mt7530_irq_bus_lock(struct irq_data *d)
1916 {
1917 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1918 
1919 	mt7530_mutex_lock(priv);
1920 }
1921 
1922 static void
1923 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1924 {
1925 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1926 
1927 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1928 	mt7530_mutex_unlock(priv);
1929 }
1930 
1931 static struct irq_chip mt7530_irq_chip = {
1932 	.name = KBUILD_MODNAME,
1933 	.irq_mask = mt7530_irq_mask,
1934 	.irq_unmask = mt7530_irq_unmask,
1935 	.irq_bus_lock = mt7530_irq_bus_lock,
1936 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1937 };
1938 
1939 static int
1940 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1941 	       irq_hw_number_t hwirq)
1942 {
1943 	irq_set_chip_data(irq, domain->host_data);
1944 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1945 	irq_set_nested_thread(irq, true);
1946 	irq_set_noprobe(irq);
1947 
1948 	return 0;
1949 }
1950 
1951 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1952 	.map = mt7530_irq_map,
1953 	.xlate = irq_domain_xlate_onecell,
1954 };
1955 
1956 static void
1957 mt7988_irq_mask(struct irq_data *d)
1958 {
1959 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1960 
1961 	priv->irq_enable &= ~BIT(d->hwirq);
1962 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1963 }
1964 
1965 static void
1966 mt7988_irq_unmask(struct irq_data *d)
1967 {
1968 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1969 
1970 	priv->irq_enable |= BIT(d->hwirq);
1971 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1972 }
1973 
1974 static struct irq_chip mt7988_irq_chip = {
1975 	.name = KBUILD_MODNAME,
1976 	.irq_mask = mt7988_irq_mask,
1977 	.irq_unmask = mt7988_irq_unmask,
1978 };
1979 
1980 static int
1981 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
1982 	       irq_hw_number_t hwirq)
1983 {
1984 	irq_set_chip_data(irq, domain->host_data);
1985 	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
1986 	irq_set_nested_thread(irq, true);
1987 	irq_set_noprobe(irq);
1988 
1989 	return 0;
1990 }
1991 
1992 static const struct irq_domain_ops mt7988_irq_domain_ops = {
1993 	.map = mt7988_irq_map,
1994 	.xlate = irq_domain_xlate_onecell,
1995 };
1996 
1997 static void
1998 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1999 {
2000 	struct dsa_switch *ds = priv->ds;
2001 	int p;
2002 
2003 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2004 		if (BIT(p) & ds->phys_mii_mask) {
2005 			unsigned int irq;
2006 
2007 			irq = irq_create_mapping(priv->irq_domain, p);
2008 			ds->user_mii_bus->irq[p] = irq;
2009 		}
2010 	}
2011 }
2012 
2013 static int
2014 mt7530_setup_irq(struct mt7530_priv *priv)
2015 {
2016 	struct device *dev = priv->dev;
2017 	struct device_node *np = dev->of_node;
2018 	int ret;
2019 
2020 	if (!of_property_read_bool(np, "interrupt-controller")) {
2021 		dev_info(dev, "no interrupt support\n");
2022 		return 0;
2023 	}
2024 
2025 	priv->irq = of_irq_get(np, 0);
2026 	if (priv->irq <= 0) {
2027 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2028 		return priv->irq ? : -EINVAL;
2029 	}
2030 
2031 	if (priv->id == ID_MT7988)
2032 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2033 							 &mt7988_irq_domain_ops,
2034 							 priv);
2035 	else
2036 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2037 							 &mt7530_irq_domain_ops,
2038 							 priv);
2039 
2040 	if (!priv->irq_domain) {
2041 		dev_err(dev, "failed to create IRQ domain\n");
2042 		return -ENOMEM;
2043 	}
2044 
2045 	/* This register must be set for MT7530 to properly fire interrupts */
2046 	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
2047 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2048 
2049 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2050 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2051 	if (ret) {
2052 		irq_domain_remove(priv->irq_domain);
2053 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2054 		return ret;
2055 	}
2056 
2057 	return 0;
2058 }
2059 
2060 static void
2061 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2062 {
2063 	int p;
2064 
2065 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2066 		if (BIT(p) & priv->ds->phys_mii_mask) {
2067 			unsigned int irq;
2068 
2069 			irq = irq_find_mapping(priv->irq_domain, p);
2070 			irq_dispose_mapping(irq);
2071 		}
2072 	}
2073 }
2074 
2075 static void
2076 mt7530_free_irq_common(struct mt7530_priv *priv)
2077 {
2078 	free_irq(priv->irq, priv);
2079 	irq_domain_remove(priv->irq_domain);
2080 }
2081 
2082 static void
2083 mt7530_free_irq(struct mt7530_priv *priv)
2084 {
2085 	struct device_node *mnp, *np = priv->dev->of_node;
2086 
2087 	mnp = of_get_child_by_name(np, "mdio");
2088 	if (!mnp)
2089 		mt7530_free_mdio_irq(priv);
2090 	of_node_put(mnp);
2091 
2092 	mt7530_free_irq_common(priv);
2093 }
2094 
2095 static int
2096 mt7530_setup_mdio(struct mt7530_priv *priv)
2097 {
2098 	struct device_node *mnp, *np = priv->dev->of_node;
2099 	struct dsa_switch *ds = priv->ds;
2100 	struct device *dev = priv->dev;
2101 	struct mii_bus *bus;
2102 	static int idx;
2103 	int ret = 0;
2104 
2105 	mnp = of_get_child_by_name(np, "mdio");
2106 
2107 	if (mnp && !of_device_is_available(mnp))
2108 		goto out;
2109 
2110 	bus = devm_mdiobus_alloc(dev);
2111 	if (!bus) {
2112 		ret = -ENOMEM;
2113 		goto out;
2114 	}
2115 
2116 	if (!mnp)
2117 		ds->user_mii_bus = bus;
2118 
2119 	bus->priv = priv;
2120 	bus->name = KBUILD_MODNAME "-mii";
2121 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2122 	bus->read = mt753x_phy_read_c22;
2123 	bus->write = mt753x_phy_write_c22;
2124 	bus->read_c45 = mt753x_phy_read_c45;
2125 	bus->write_c45 = mt753x_phy_write_c45;
2126 	bus->parent = dev;
2127 	bus->phy_mask = ~ds->phys_mii_mask;
2128 
2129 	if (priv->irq && !mnp)
2130 		mt7530_setup_mdio_irq(priv);
2131 
2132 	ret = devm_of_mdiobus_register(dev, bus, mnp);
2133 	if (ret) {
2134 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2135 		if (priv->irq && !mnp)
2136 			mt7530_free_mdio_irq(priv);
2137 	}
2138 
2139 out:
2140 	of_node_put(mnp);
2141 	return ret;
2142 }
2143 
2144 static int
2145 mt7530_setup(struct dsa_switch *ds)
2146 {
2147 	struct mt7530_priv *priv = ds->priv;
2148 	struct device_node *dn = NULL;
2149 	struct device_node *phy_node;
2150 	struct device_node *mac_np;
2151 	struct mt7530_dummy_poll p;
2152 	phy_interface_t interface;
2153 	struct dsa_port *cpu_dp;
2154 	u32 id, val;
2155 	int ret, i;
2156 
2157 	/* The parent node of conduit netdev which holds the common system
2158 	 * controller also is the container for two GMACs nodes representing
2159 	 * as two netdev instances.
2160 	 */
2161 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2162 		dn = cpu_dp->conduit->dev.of_node->parent;
2163 		/* It doesn't matter which CPU port is found first,
2164 		 * their conduits should share the same parent OF node
2165 		 */
2166 		break;
2167 	}
2168 
2169 	if (!dn) {
2170 		dev_err(ds->dev, "parent OF node of DSA conduit not found");
2171 		return -EINVAL;
2172 	}
2173 
2174 	ds->assisted_learning_on_cpu_port = true;
2175 	ds->mtu_enforcement_ingress = true;
2176 
2177 	if (priv->id == ID_MT7530) {
2178 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2179 		ret = regulator_enable(priv->core_pwr);
2180 		if (ret < 0) {
2181 			dev_err(priv->dev,
2182 				"Failed to enable core power: %d\n", ret);
2183 			return ret;
2184 		}
2185 
2186 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2187 		ret = regulator_enable(priv->io_pwr);
2188 		if (ret < 0) {
2189 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2190 				ret);
2191 			return ret;
2192 		}
2193 	}
2194 
2195 	/* Reset whole chip through gpio pin or memory-mapped registers for
2196 	 * different type of hardware
2197 	 */
2198 	if (priv->mcm) {
2199 		reset_control_assert(priv->rstc);
2200 		usleep_range(5000, 5100);
2201 		reset_control_deassert(priv->rstc);
2202 	} else {
2203 		gpiod_set_value_cansleep(priv->reset, 0);
2204 		usleep_range(5000, 5100);
2205 		gpiod_set_value_cansleep(priv->reset, 1);
2206 	}
2207 
2208 	/* Waiting for MT7530 got to stable */
2209 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2210 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2211 				 20, 1000000);
2212 	if (ret < 0) {
2213 		dev_err(priv->dev, "reset timeout\n");
2214 		return ret;
2215 	}
2216 
2217 	id = mt7530_read(priv, MT7530_CREV);
2218 	id >>= CHIP_NAME_SHIFT;
2219 	if (id != MT7530_ID) {
2220 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2221 		return -ENODEV;
2222 	}
2223 
2224 	if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_20MHZ) {
2225 		dev_err(priv->dev,
2226 			"MT7530 with a 20MHz XTAL is not supported!\n");
2227 		return -EINVAL;
2228 	}
2229 
2230 	/* Reset the switch through internal reset */
2231 	mt7530_write(priv, MT7530_SYS_CTRL,
2232 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2233 		     SYS_CTRL_REG_RST);
2234 
2235 	mt7530_pll_setup(priv);
2236 
2237 	/* Lower Tx driving for TRGMII path */
2238 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2239 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2240 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2241 
2242 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2243 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2244 			   RD_TAP_MASK, RD_TAP(16));
2245 
2246 	/* Enable port 6 */
2247 	val = mt7530_read(priv, MT7530_MHWTRAP);
2248 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2249 	val |= MHWTRAP_MANUAL;
2250 	mt7530_write(priv, MT7530_MHWTRAP, val);
2251 
2252 	mt753x_trap_frames(priv);
2253 
2254 	/* Enable and reset MIB counters */
2255 	mt7530_mib_reset(ds);
2256 
2257 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2258 		/* Clear link settings and enable force mode to force link down
2259 		 * on all ports until they're enabled later.
2260 		 */
2261 		mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2262 			   PMCR_FORCE_MODE, PMCR_FORCE_MODE);
2263 
2264 		/* Disable forwarding by default on all ports */
2265 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2266 			   PCR_MATRIX_CLR);
2267 
2268 		/* Disable learning by default on all ports */
2269 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2270 
2271 		if (dsa_is_cpu_port(ds, i)) {
2272 			mt753x_cpu_port_enable(ds, i);
2273 		} else {
2274 			mt7530_port_disable(ds, i);
2275 
2276 			/* Set default PVID to 0 on all user ports */
2277 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2278 				   G0_PORT_VID_DEF);
2279 		}
2280 		/* Enable consistent egress tag */
2281 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2282 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2283 	}
2284 
2285 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2286 	ret = mt7530_setup_vlan0(priv);
2287 	if (ret)
2288 		return ret;
2289 
2290 	/* Setup port 5 */
2291 	if (!dsa_is_unused_port(ds, 5)) {
2292 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2293 	} else {
2294 		/* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
2295 		 * Set priv->p5_intf_sel to the appropriate value if PHY muxing
2296 		 * is detected.
2297 		 */
2298 		for_each_child_of_node(dn, mac_np) {
2299 			if (!of_device_is_compatible(mac_np,
2300 						     "mediatek,eth-mac"))
2301 				continue;
2302 
2303 			ret = of_property_read_u32(mac_np, "reg", &id);
2304 			if (ret < 0 || id != 1)
2305 				continue;
2306 
2307 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2308 			if (!phy_node)
2309 				continue;
2310 
2311 			if (phy_node->parent == priv->dev->of_node->parent) {
2312 				ret = of_get_phy_mode(mac_np, &interface);
2313 				if (ret && ret != -ENODEV) {
2314 					of_node_put(mac_np);
2315 					of_node_put(phy_node);
2316 					return ret;
2317 				}
2318 				id = of_mdio_parse_addr(ds->dev, phy_node);
2319 				if (id == 0)
2320 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2321 				if (id == 4)
2322 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2323 			}
2324 			of_node_put(mac_np);
2325 			of_node_put(phy_node);
2326 			break;
2327 		}
2328 
2329 		if (priv->p5_intf_sel == P5_INTF_SEL_PHY_P0 ||
2330 		    priv->p5_intf_sel == P5_INTF_SEL_PHY_P4)
2331 			mt7530_setup_port5(ds, interface);
2332 	}
2333 
2334 #ifdef CONFIG_GPIOLIB
2335 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2336 		ret = mt7530_setup_gpio(priv);
2337 		if (ret)
2338 			return ret;
2339 	}
2340 #endif /* CONFIG_GPIOLIB */
2341 
2342 	/* Flush the FDB table */
2343 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2344 	if (ret < 0)
2345 		return ret;
2346 
2347 	return 0;
2348 }
2349 
2350 static int
2351 mt7531_setup_common(struct dsa_switch *ds)
2352 {
2353 	struct mt7530_priv *priv = ds->priv;
2354 	int ret, i;
2355 
2356 	mt753x_trap_frames(priv);
2357 
2358 	/* Enable and reset MIB counters */
2359 	mt7530_mib_reset(ds);
2360 
2361 	/* Disable flooding on all ports */
2362 	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2363 		     UNU_FFP_MASK);
2364 
2365 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2366 		/* Clear link settings and enable force mode to force link down
2367 		 * on all ports until they're enabled later.
2368 		 */
2369 		mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2370 			   MT7531_FORCE_MODE, MT7531_FORCE_MODE);
2371 
2372 		/* Disable forwarding by default on all ports */
2373 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2374 			   PCR_MATRIX_CLR);
2375 
2376 		/* Disable learning by default on all ports */
2377 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2378 
2379 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2380 
2381 		if (dsa_is_cpu_port(ds, i)) {
2382 			mt753x_cpu_port_enable(ds, i);
2383 		} else {
2384 			mt7530_port_disable(ds, i);
2385 
2386 			/* Set default PVID to 0 on all user ports */
2387 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2388 				   G0_PORT_VID_DEF);
2389 		}
2390 
2391 		/* Enable consistent egress tag */
2392 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2393 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2394 	}
2395 
2396 	/* Flush the FDB table */
2397 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2398 	if (ret < 0)
2399 		return ret;
2400 
2401 	return 0;
2402 }
2403 
2404 static int
2405 mt7531_setup(struct dsa_switch *ds)
2406 {
2407 	struct mt7530_priv *priv = ds->priv;
2408 	struct mt7530_dummy_poll p;
2409 	u32 val, id;
2410 	int ret, i;
2411 
2412 	/* Reset whole chip through gpio pin or memory-mapped registers for
2413 	 * different type of hardware
2414 	 */
2415 	if (priv->mcm) {
2416 		reset_control_assert(priv->rstc);
2417 		usleep_range(5000, 5100);
2418 		reset_control_deassert(priv->rstc);
2419 	} else {
2420 		gpiod_set_value_cansleep(priv->reset, 0);
2421 		usleep_range(5000, 5100);
2422 		gpiod_set_value_cansleep(priv->reset, 1);
2423 	}
2424 
2425 	/* Waiting for MT7530 got to stable */
2426 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2427 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2428 				 20, 1000000);
2429 	if (ret < 0) {
2430 		dev_err(priv->dev, "reset timeout\n");
2431 		return ret;
2432 	}
2433 
2434 	id = mt7530_read(priv, MT7531_CREV);
2435 	id >>= CHIP_NAME_SHIFT;
2436 
2437 	if (id != MT7531_ID) {
2438 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2439 		return -ENODEV;
2440 	}
2441 
2442 	/* MT7531AE has got two SGMII units. One for port 5, one for port 6.
2443 	 * MT7531BE has got only one SGMII unit which is for port 6.
2444 	 */
2445 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
2446 	priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
2447 
2448 	/* Force link down on all ports before internal reset */
2449 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2450 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2451 
2452 	/* Reset the switch through internal reset */
2453 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST);
2454 
2455 	if (!priv->p5_sgmii) {
2456 		mt7531_pll_setup(priv);
2457 	} else {
2458 		/* Let ds->user_mii_bus be able to access external phy. */
2459 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2460 			   MT7531_EXT_P_MDC_11);
2461 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2462 			   MT7531_EXT_P_MDIO_12);
2463 	}
2464 
2465 	if (!dsa_is_unused_port(ds, 5))
2466 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2467 
2468 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2469 		   MT7531_GPIO0_INTERRUPT);
2470 
2471 	/* Enable PHY core PLL, since phy_device has not yet been created
2472 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2473 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2474 	 * function.
2475 	 */
2476 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2477 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2478 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2479 	val &= ~MT7531_PHY_PLL_OFF;
2480 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2481 				 CORE_PLL_GROUP4, val);
2482 
2483 	mt7531_setup_common(ds);
2484 
2485 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2486 	ret = mt7530_setup_vlan0(priv);
2487 	if (ret)
2488 		return ret;
2489 
2490 	ds->assisted_learning_on_cpu_port = true;
2491 	ds->mtu_enforcement_ingress = true;
2492 
2493 	return 0;
2494 }
2495 
2496 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2497 				     struct phylink_config *config)
2498 {
2499 	switch (port) {
2500 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2501 	case 0 ... 4:
2502 		__set_bit(PHY_INTERFACE_MODE_GMII,
2503 			  config->supported_interfaces);
2504 		break;
2505 
2506 	/* Port 5 supports rgmii with delays, mii, and gmii. */
2507 	case 5:
2508 		phy_interface_set_rgmii(config->supported_interfaces);
2509 		__set_bit(PHY_INTERFACE_MODE_MII,
2510 			  config->supported_interfaces);
2511 		__set_bit(PHY_INTERFACE_MODE_GMII,
2512 			  config->supported_interfaces);
2513 		break;
2514 
2515 	/* Port 6 supports rgmii and trgmii. */
2516 	case 6:
2517 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2518 			  config->supported_interfaces);
2519 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2520 			  config->supported_interfaces);
2521 		break;
2522 	}
2523 }
2524 
2525 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2526 				     struct phylink_config *config)
2527 {
2528 	struct mt7530_priv *priv = ds->priv;
2529 
2530 	switch (port) {
2531 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2532 	case 0 ... 4:
2533 		__set_bit(PHY_INTERFACE_MODE_GMII,
2534 			  config->supported_interfaces);
2535 		break;
2536 
2537 	/* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
2538 	 * MT7531AE.
2539 	 */
2540 	case 5:
2541 		if (!priv->p5_sgmii) {
2542 			phy_interface_set_rgmii(config->supported_interfaces);
2543 			break;
2544 		}
2545 		fallthrough;
2546 
2547 	/* Port 6 supports sgmii/802.3z. */
2548 	case 6:
2549 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2550 			  config->supported_interfaces);
2551 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2552 			  config->supported_interfaces);
2553 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2554 			  config->supported_interfaces);
2555 
2556 		config->mac_capabilities |= MAC_2500FD;
2557 		break;
2558 	}
2559 }
2560 
2561 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2562 				     struct phylink_config *config)
2563 {
2564 	switch (port) {
2565 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2566 	case 0 ... 3:
2567 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2568 			  config->supported_interfaces);
2569 		break;
2570 
2571 	/* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2572 	case 6:
2573 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2574 			  config->supported_interfaces);
2575 		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2576 					   MAC_10000FD;
2577 	}
2578 }
2579 
2580 static void
2581 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2582 		  phy_interface_t interface)
2583 {
2584 	struct mt7530_priv *priv = ds->priv;
2585 
2586 	if (port == 5)
2587 		mt7530_setup_port5(priv->ds, interface);
2588 	else if (port == 6)
2589 		mt7530_setup_port6(priv->ds, interface);
2590 }
2591 
2592 static void mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2593 			       phy_interface_t interface,
2594 			       struct phy_device *phydev)
2595 {
2596 	u32 val;
2597 
2598 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2599 	val |= GP_CLK_EN;
2600 	val &= ~GP_MODE_MASK;
2601 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2602 	val &= ~CLK_SKEW_IN_MASK;
2603 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2604 	val &= ~CLK_SKEW_OUT_MASK;
2605 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2606 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2607 
2608 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2609 	if (!phydev || phy_driver_is_genphy(phydev)) {
2610 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2611 		switch (interface) {
2612 		case PHY_INTERFACE_MODE_RGMII:
2613 			val |= TXCLK_NO_REVERSE;
2614 			val |= RXCLK_NO_DELAY;
2615 			break;
2616 		case PHY_INTERFACE_MODE_RGMII_RXID:
2617 			val |= TXCLK_NO_REVERSE;
2618 			break;
2619 		case PHY_INTERFACE_MODE_RGMII_TXID:
2620 			val |= RXCLK_NO_DELAY;
2621 			break;
2622 		case PHY_INTERFACE_MODE_RGMII_ID:
2623 			break;
2624 		default:
2625 			break;
2626 		}
2627 	}
2628 
2629 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2630 }
2631 
2632 static void
2633 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2634 		  phy_interface_t interface)
2635 {
2636 	struct mt7530_priv *priv = ds->priv;
2637 	struct phy_device *phydev;
2638 	struct dsa_port *dp;
2639 
2640 	if (phy_interface_mode_is_rgmii(interface)) {
2641 		dp = dsa_to_port(ds, port);
2642 		phydev = dp->user->phydev;
2643 		mt7531_rgmii_setup(priv, port, interface, phydev);
2644 	}
2645 }
2646 
2647 static struct phylink_pcs *
2648 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2649 			      phy_interface_t interface)
2650 {
2651 	struct mt7530_priv *priv = ds->priv;
2652 
2653 	switch (interface) {
2654 	case PHY_INTERFACE_MODE_TRGMII:
2655 		return &priv->pcs[port].pcs;
2656 	case PHY_INTERFACE_MODE_SGMII:
2657 	case PHY_INTERFACE_MODE_1000BASEX:
2658 	case PHY_INTERFACE_MODE_2500BASEX:
2659 		return priv->ports[port].sgmii_pcs;
2660 	default:
2661 		return NULL;
2662 	}
2663 }
2664 
2665 static void
2666 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2667 			  const struct phylink_link_state *state)
2668 {
2669 	struct mt7530_priv *priv = ds->priv;
2670 
2671 	if ((port == 5 || port == 6) && priv->info->mac_port_config)
2672 		priv->info->mac_port_config(ds, port, mode, state->interface);
2673 
2674 	/* Are we connected to external phy */
2675 	if (port == 5 && dsa_is_user_port(ds, 5))
2676 		mt7530_set(priv, MT7530_PMCR_P(port), PMCR_EXT_PHY);
2677 }
2678 
2679 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2680 					 unsigned int mode,
2681 					 phy_interface_t interface)
2682 {
2683 	struct mt7530_priv *priv = ds->priv;
2684 
2685 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2686 }
2687 
2688 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2689 				       unsigned int mode,
2690 				       phy_interface_t interface,
2691 				       struct phy_device *phydev,
2692 				       int speed, int duplex,
2693 				       bool tx_pause, bool rx_pause)
2694 {
2695 	struct mt7530_priv *priv = ds->priv;
2696 	u32 mcr;
2697 
2698 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2699 
2700 	switch (speed) {
2701 	case SPEED_1000:
2702 	case SPEED_2500:
2703 	case SPEED_10000:
2704 		mcr |= PMCR_FORCE_SPEED_1000;
2705 		break;
2706 	case SPEED_100:
2707 		mcr |= PMCR_FORCE_SPEED_100;
2708 		break;
2709 	}
2710 	if (duplex == DUPLEX_FULL) {
2711 		mcr |= PMCR_FORCE_FDX;
2712 		if (tx_pause)
2713 			mcr |= PMCR_TX_FC_EN;
2714 		if (rx_pause)
2715 			mcr |= PMCR_RX_FC_EN;
2716 	}
2717 
2718 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2719 		switch (speed) {
2720 		case SPEED_1000:
2721 		case SPEED_2500:
2722 			mcr |= PMCR_FORCE_EEE1G;
2723 			break;
2724 		case SPEED_100:
2725 			mcr |= PMCR_FORCE_EEE100;
2726 			break;
2727 		}
2728 	}
2729 
2730 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2731 }
2732 
2733 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2734 				    struct phylink_config *config)
2735 {
2736 	struct mt7530_priv *priv = ds->priv;
2737 
2738 	/* This switch only supports full-duplex at 1Gbps */
2739 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2740 				   MAC_10 | MAC_100 | MAC_1000FD;
2741 
2742 	priv->info->mac_port_get_caps(ds, port, config);
2743 }
2744 
2745 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2746 			       unsigned long *supported,
2747 			       const struct phylink_link_state *state)
2748 {
2749 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2750 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2751 	    phy_interface_mode_is_8023z(state->interface))
2752 		phylink_clear(supported, Autoneg);
2753 
2754 	return 0;
2755 }
2756 
2757 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2758 				 struct phylink_link_state *state)
2759 {
2760 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2761 	int port = pcs_to_mt753x_pcs(pcs)->port;
2762 	u32 pmsr;
2763 
2764 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2765 
2766 	state->link = (pmsr & PMSR_LINK);
2767 	state->an_complete = state->link;
2768 	state->duplex = !!(pmsr & PMSR_DPX);
2769 
2770 	switch (pmsr & PMSR_SPEED_MASK) {
2771 	case PMSR_SPEED_10:
2772 		state->speed = SPEED_10;
2773 		break;
2774 	case PMSR_SPEED_100:
2775 		state->speed = SPEED_100;
2776 		break;
2777 	case PMSR_SPEED_1000:
2778 		state->speed = SPEED_1000;
2779 		break;
2780 	default:
2781 		state->speed = SPEED_UNKNOWN;
2782 		break;
2783 	}
2784 
2785 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2786 	if (pmsr & PMSR_RX_FC)
2787 		state->pause |= MLO_PAUSE_RX;
2788 	if (pmsr & PMSR_TX_FC)
2789 		state->pause |= MLO_PAUSE_TX;
2790 }
2791 
2792 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
2793 			     phy_interface_t interface,
2794 			     const unsigned long *advertising,
2795 			     bool permit_pause_to_mac)
2796 {
2797 	return 0;
2798 }
2799 
2800 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
2801 {
2802 }
2803 
2804 static const struct phylink_pcs_ops mt7530_pcs_ops = {
2805 	.pcs_validate = mt753x_pcs_validate,
2806 	.pcs_get_state = mt7530_pcs_get_state,
2807 	.pcs_config = mt753x_pcs_config,
2808 	.pcs_an_restart = mt7530_pcs_an_restart,
2809 };
2810 
2811 static int
2812 mt753x_setup(struct dsa_switch *ds)
2813 {
2814 	struct mt7530_priv *priv = ds->priv;
2815 	int ret = priv->info->sw_setup(ds);
2816 	int i;
2817 
2818 	if (ret)
2819 		return ret;
2820 
2821 	ret = mt7530_setup_irq(priv);
2822 	if (ret)
2823 		return ret;
2824 
2825 	ret = mt7530_setup_mdio(priv);
2826 	if (ret && priv->irq)
2827 		mt7530_free_irq_common(priv);
2828 
2829 	/* Initialise the PCS devices */
2830 	for (i = 0; i < priv->ds->num_ports; i++) {
2831 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
2832 		priv->pcs[i].pcs.neg_mode = true;
2833 		priv->pcs[i].priv = priv;
2834 		priv->pcs[i].port = i;
2835 	}
2836 
2837 	if (priv->create_sgmii) {
2838 		ret = priv->create_sgmii(priv);
2839 		if (ret && priv->irq)
2840 			mt7530_free_irq(priv);
2841 	}
2842 
2843 	return ret;
2844 }
2845 
2846 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
2847 			      struct ethtool_keee *e)
2848 {
2849 	struct mt7530_priv *priv = ds->priv;
2850 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
2851 
2852 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
2853 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
2854 
2855 	return 0;
2856 }
2857 
2858 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
2859 			      struct ethtool_keee *e)
2860 {
2861 	struct mt7530_priv *priv = ds->priv;
2862 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
2863 
2864 	if (e->tx_lpi_timer > 0xFFF)
2865 		return -EINVAL;
2866 
2867 	set = SET_LPI_THRESH(e->tx_lpi_timer);
2868 	if (!e->tx_lpi_enabled)
2869 		/* Force LPI Mode without a delay */
2870 		set |= LPI_MODE_EN;
2871 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
2872 
2873 	return 0;
2874 }
2875 
2876 static void
2877 mt753x_conduit_state_change(struct dsa_switch *ds,
2878 			    const struct net_device *conduit,
2879 			    bool operational)
2880 {
2881 	struct dsa_port *cpu_dp = conduit->dsa_ptr;
2882 	struct mt7530_priv *priv = ds->priv;
2883 	int val = 0;
2884 	u8 mask;
2885 
2886 	/* Set the CPU port to trap frames to for MT7530. Trapped frames will be
2887 	 * forwarded to the numerically smallest CPU port whose conduit
2888 	 * interface is up.
2889 	 */
2890 	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
2891 		return;
2892 
2893 	mask = BIT(cpu_dp->index);
2894 
2895 	if (operational)
2896 		priv->active_cpu_ports |= mask;
2897 	else
2898 		priv->active_cpu_ports &= ~mask;
2899 
2900 	if (priv->active_cpu_ports)
2901 		val = CPU_EN | CPU_PORT(__ffs(priv->active_cpu_ports));
2902 
2903 	mt7530_rmw(priv, MT7530_MFC, CPU_EN | CPU_PORT_MASK, val);
2904 }
2905 
2906 static int mt7988_setup(struct dsa_switch *ds)
2907 {
2908 	struct mt7530_priv *priv = ds->priv;
2909 
2910 	/* Reset the switch */
2911 	reset_control_assert(priv->rstc);
2912 	usleep_range(20, 50);
2913 	reset_control_deassert(priv->rstc);
2914 	usleep_range(20, 50);
2915 
2916 	/* Reset the switch PHYs */
2917 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
2918 
2919 	return mt7531_setup_common(ds);
2920 }
2921 
2922 const struct dsa_switch_ops mt7530_switch_ops = {
2923 	.get_tag_protocol	= mtk_get_tag_protocol,
2924 	.setup			= mt753x_setup,
2925 	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
2926 	.get_strings		= mt7530_get_strings,
2927 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
2928 	.get_sset_count		= mt7530_get_sset_count,
2929 	.set_ageing_time	= mt7530_set_ageing_time,
2930 	.port_enable		= mt7530_port_enable,
2931 	.port_disable		= mt7530_port_disable,
2932 	.port_change_mtu	= mt7530_port_change_mtu,
2933 	.port_max_mtu		= mt7530_port_max_mtu,
2934 	.port_stp_state_set	= mt7530_stp_state_set,
2935 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
2936 	.port_bridge_flags	= mt7530_port_bridge_flags,
2937 	.port_bridge_join	= mt7530_port_bridge_join,
2938 	.port_bridge_leave	= mt7530_port_bridge_leave,
2939 	.port_fdb_add		= mt7530_port_fdb_add,
2940 	.port_fdb_del		= mt7530_port_fdb_del,
2941 	.port_fdb_dump		= mt7530_port_fdb_dump,
2942 	.port_mdb_add		= mt7530_port_mdb_add,
2943 	.port_mdb_del		= mt7530_port_mdb_del,
2944 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
2945 	.port_vlan_add		= mt7530_port_vlan_add,
2946 	.port_vlan_del		= mt7530_port_vlan_del,
2947 	.port_mirror_add	= mt753x_port_mirror_add,
2948 	.port_mirror_del	= mt753x_port_mirror_del,
2949 	.phylink_get_caps	= mt753x_phylink_get_caps,
2950 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
2951 	.phylink_mac_config	= mt753x_phylink_mac_config,
2952 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
2953 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
2954 	.get_mac_eee		= mt753x_get_mac_eee,
2955 	.set_mac_eee		= mt753x_set_mac_eee,
2956 	.conduit_state_change	= mt753x_conduit_state_change,
2957 };
2958 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
2959 
2960 const struct mt753x_info mt753x_table[] = {
2961 	[ID_MT7621] = {
2962 		.id = ID_MT7621,
2963 		.pcs_ops = &mt7530_pcs_ops,
2964 		.sw_setup = mt7530_setup,
2965 		.phy_read_c22 = mt7530_phy_read_c22,
2966 		.phy_write_c22 = mt7530_phy_write_c22,
2967 		.phy_read_c45 = mt7530_phy_read_c45,
2968 		.phy_write_c45 = mt7530_phy_write_c45,
2969 		.mac_port_get_caps = mt7530_mac_port_get_caps,
2970 		.mac_port_config = mt7530_mac_config,
2971 	},
2972 	[ID_MT7530] = {
2973 		.id = ID_MT7530,
2974 		.pcs_ops = &mt7530_pcs_ops,
2975 		.sw_setup = mt7530_setup,
2976 		.phy_read_c22 = mt7530_phy_read_c22,
2977 		.phy_write_c22 = mt7530_phy_write_c22,
2978 		.phy_read_c45 = mt7530_phy_read_c45,
2979 		.phy_write_c45 = mt7530_phy_write_c45,
2980 		.mac_port_get_caps = mt7530_mac_port_get_caps,
2981 		.mac_port_config = mt7530_mac_config,
2982 	},
2983 	[ID_MT7531] = {
2984 		.id = ID_MT7531,
2985 		.pcs_ops = &mt7530_pcs_ops,
2986 		.sw_setup = mt7531_setup,
2987 		.phy_read_c22 = mt7531_ind_c22_phy_read,
2988 		.phy_write_c22 = mt7531_ind_c22_phy_write,
2989 		.phy_read_c45 = mt7531_ind_c45_phy_read,
2990 		.phy_write_c45 = mt7531_ind_c45_phy_write,
2991 		.mac_port_get_caps = mt7531_mac_port_get_caps,
2992 		.mac_port_config = mt7531_mac_config,
2993 	},
2994 	[ID_MT7988] = {
2995 		.id = ID_MT7988,
2996 		.pcs_ops = &mt7530_pcs_ops,
2997 		.sw_setup = mt7988_setup,
2998 		.phy_read_c22 = mt7531_ind_c22_phy_read,
2999 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3000 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3001 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3002 		.mac_port_get_caps = mt7988_mac_port_get_caps,
3003 	},
3004 };
3005 EXPORT_SYMBOL_GPL(mt753x_table);
3006 
3007 int
3008 mt7530_probe_common(struct mt7530_priv *priv)
3009 {
3010 	struct device *dev = priv->dev;
3011 
3012 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3013 	if (!priv->ds)
3014 		return -ENOMEM;
3015 
3016 	priv->ds->dev = dev;
3017 	priv->ds->num_ports = MT7530_NUM_PORTS;
3018 
3019 	/* Get the hardware identifier from the devicetree node.
3020 	 * We will need it for some of the clock and regulator setup.
3021 	 */
3022 	priv->info = of_device_get_match_data(dev);
3023 	if (!priv->info)
3024 		return -EINVAL;
3025 
3026 	/* Sanity check if these required device operations are filled
3027 	 * properly.
3028 	 */
3029 	if (!priv->info->sw_setup || !priv->info->phy_read_c22 ||
3030 	    !priv->info->phy_write_c22 || !priv->info->mac_port_get_caps)
3031 		return -EINVAL;
3032 
3033 	priv->id = priv->info->id;
3034 	priv->dev = dev;
3035 	priv->ds->priv = priv;
3036 	priv->ds->ops = &mt7530_switch_ops;
3037 	mutex_init(&priv->reg_mutex);
3038 	dev_set_drvdata(dev, priv);
3039 
3040 	return 0;
3041 }
3042 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3043 
3044 void
3045 mt7530_remove_common(struct mt7530_priv *priv)
3046 {
3047 	if (priv->irq)
3048 		mt7530_free_irq(priv);
3049 
3050 	dsa_unregister_switch(priv->ds);
3051 
3052 	mutex_destroy(&priv->reg_mutex);
3053 }
3054 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3055 
3056 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3057 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3058 MODULE_LICENSE("GPL");
3059