1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Mediatek MT7530 DSA Switch driver 4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com> 5 */ 6 #include <linux/etherdevice.h> 7 #include <linux/if_bridge.h> 8 #include <linux/iopoll.h> 9 #include <linux/mdio.h> 10 #include <linux/mfd/syscon.h> 11 #include <linux/module.h> 12 #include <linux/netdevice.h> 13 #include <linux/of_mdio.h> 14 #include <linux/of_net.h> 15 #include <linux/of_platform.h> 16 #include <linux/phylink.h> 17 #include <linux/regmap.h> 18 #include <linux/regulator/consumer.h> 19 #include <linux/reset.h> 20 #include <linux/gpio/consumer.h> 21 #include <net/dsa.h> 22 23 #include "mt7530.h" 24 25 /* String, offset, and register size in bytes if different from 4 bytes */ 26 static const struct mt7530_mib_desc mt7530_mib[] = { 27 MIB_DESC(1, 0x00, "TxDrop"), 28 MIB_DESC(1, 0x04, "TxCrcErr"), 29 MIB_DESC(1, 0x08, "TxUnicast"), 30 MIB_DESC(1, 0x0c, "TxMulticast"), 31 MIB_DESC(1, 0x10, "TxBroadcast"), 32 MIB_DESC(1, 0x14, "TxCollision"), 33 MIB_DESC(1, 0x18, "TxSingleCollision"), 34 MIB_DESC(1, 0x1c, "TxMultipleCollision"), 35 MIB_DESC(1, 0x20, "TxDeferred"), 36 MIB_DESC(1, 0x24, "TxLateCollision"), 37 MIB_DESC(1, 0x28, "TxExcessiveCollistion"), 38 MIB_DESC(1, 0x2c, "TxPause"), 39 MIB_DESC(1, 0x30, "TxPktSz64"), 40 MIB_DESC(1, 0x34, "TxPktSz65To127"), 41 MIB_DESC(1, 0x38, "TxPktSz128To255"), 42 MIB_DESC(1, 0x3c, "TxPktSz256To511"), 43 MIB_DESC(1, 0x40, "TxPktSz512To1023"), 44 MIB_DESC(1, 0x44, "Tx1024ToMax"), 45 MIB_DESC(2, 0x48, "TxBytes"), 46 MIB_DESC(1, 0x60, "RxDrop"), 47 MIB_DESC(1, 0x64, "RxFiltering"), 48 MIB_DESC(1, 0x6c, "RxMulticast"), 49 MIB_DESC(1, 0x70, "RxBroadcast"), 50 MIB_DESC(1, 0x74, "RxAlignErr"), 51 MIB_DESC(1, 0x78, "RxCrcErr"), 52 MIB_DESC(1, 0x7c, "RxUnderSizeErr"), 53 MIB_DESC(1, 0x80, "RxFragErr"), 54 MIB_DESC(1, 0x84, "RxOverSzErr"), 55 MIB_DESC(1, 0x88, "RxJabberErr"), 56 MIB_DESC(1, 0x8c, "RxPause"), 57 MIB_DESC(1, 0x90, "RxPktSz64"), 58 MIB_DESC(1, 0x94, "RxPktSz65To127"), 59 MIB_DESC(1, 0x98, "RxPktSz128To255"), 60 MIB_DESC(1, 0x9c, "RxPktSz256To511"), 61 MIB_DESC(1, 0xa0, "RxPktSz512To1023"), 62 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"), 63 MIB_DESC(2, 0xa8, "RxBytes"), 64 MIB_DESC(1, 0xb0, "RxCtrlDrop"), 65 MIB_DESC(1, 0xb4, "RxIngressDrop"), 66 MIB_DESC(1, 0xb8, "RxArlDrop"), 67 }; 68 69 static int 70 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad) 71 { 72 struct mii_bus *bus = priv->bus; 73 int value, ret; 74 75 /* Write the desired MMD Devad */ 76 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 77 if (ret < 0) 78 goto err; 79 80 /* Write the desired MMD register address */ 81 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 82 if (ret < 0) 83 goto err; 84 85 /* Select the Function : DATA with no post increment */ 86 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 87 if (ret < 0) 88 goto err; 89 90 /* Read the content of the MMD's selected register */ 91 value = bus->read(bus, 0, MII_MMD_DATA); 92 93 return value; 94 err: 95 dev_err(&bus->dev, "failed to read mmd register\n"); 96 97 return ret; 98 } 99 100 static int 101 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad, 102 int devad, u32 data) 103 { 104 struct mii_bus *bus = priv->bus; 105 int ret; 106 107 /* Write the desired MMD Devad */ 108 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 109 if (ret < 0) 110 goto err; 111 112 /* Write the desired MMD register address */ 113 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 114 if (ret < 0) 115 goto err; 116 117 /* Select the Function : DATA with no post increment */ 118 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 119 if (ret < 0) 120 goto err; 121 122 /* Write the data into MMD's selected register */ 123 ret = bus->write(bus, 0, MII_MMD_DATA, data); 124 err: 125 if (ret < 0) 126 dev_err(&bus->dev, 127 "failed to write mmd register\n"); 128 return ret; 129 } 130 131 static void 132 core_write(struct mt7530_priv *priv, u32 reg, u32 val) 133 { 134 struct mii_bus *bus = priv->bus; 135 136 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 137 138 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 139 140 mutex_unlock(&bus->mdio_lock); 141 } 142 143 static void 144 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) 145 { 146 struct mii_bus *bus = priv->bus; 147 u32 val; 148 149 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 150 151 val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2); 152 val &= ~mask; 153 val |= set; 154 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 155 156 mutex_unlock(&bus->mdio_lock); 157 } 158 159 static void 160 core_set(struct mt7530_priv *priv, u32 reg, u32 val) 161 { 162 core_rmw(priv, reg, 0, val); 163 } 164 165 static void 166 core_clear(struct mt7530_priv *priv, u32 reg, u32 val) 167 { 168 core_rmw(priv, reg, val, 0); 169 } 170 171 static int 172 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val) 173 { 174 struct mii_bus *bus = priv->bus; 175 u16 page, r, lo, hi; 176 int ret; 177 178 page = (reg >> 6) & 0x3ff; 179 r = (reg >> 2) & 0xf; 180 lo = val & 0xffff; 181 hi = val >> 16; 182 183 /* MT7530 uses 31 as the pseudo port */ 184 ret = bus->write(bus, 0x1f, 0x1f, page); 185 if (ret < 0) 186 goto err; 187 188 ret = bus->write(bus, 0x1f, r, lo); 189 if (ret < 0) 190 goto err; 191 192 ret = bus->write(bus, 0x1f, 0x10, hi); 193 err: 194 if (ret < 0) 195 dev_err(&bus->dev, 196 "failed to write mt7530 register\n"); 197 return ret; 198 } 199 200 static u32 201 mt7530_mii_read(struct mt7530_priv *priv, u32 reg) 202 { 203 struct mii_bus *bus = priv->bus; 204 u16 page, r, lo, hi; 205 int ret; 206 207 page = (reg >> 6) & 0x3ff; 208 r = (reg >> 2) & 0xf; 209 210 /* MT7530 uses 31 as the pseudo port */ 211 ret = bus->write(bus, 0x1f, 0x1f, page); 212 if (ret < 0) { 213 dev_err(&bus->dev, 214 "failed to read mt7530 register\n"); 215 return ret; 216 } 217 218 lo = bus->read(bus, 0x1f, r); 219 hi = bus->read(bus, 0x1f, 0x10); 220 221 return (hi << 16) | (lo & 0xffff); 222 } 223 224 static void 225 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val) 226 { 227 struct mii_bus *bus = priv->bus; 228 229 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 230 231 mt7530_mii_write(priv, reg, val); 232 233 mutex_unlock(&bus->mdio_lock); 234 } 235 236 static u32 237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p) 238 { 239 return mt7530_mii_read(p->priv, p->reg); 240 } 241 242 static u32 243 _mt7530_read(struct mt7530_dummy_poll *p) 244 { 245 struct mii_bus *bus = p->priv->bus; 246 u32 val; 247 248 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 249 250 val = mt7530_mii_read(p->priv, p->reg); 251 252 mutex_unlock(&bus->mdio_lock); 253 254 return val; 255 } 256 257 static u32 258 mt7530_read(struct mt7530_priv *priv, u32 reg) 259 { 260 struct mt7530_dummy_poll p; 261 262 INIT_MT7530_DUMMY_POLL(&p, priv, reg); 263 return _mt7530_read(&p); 264 } 265 266 static void 267 mt7530_rmw(struct mt7530_priv *priv, u32 reg, 268 u32 mask, u32 set) 269 { 270 struct mii_bus *bus = priv->bus; 271 u32 val; 272 273 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 274 275 val = mt7530_mii_read(priv, reg); 276 val &= ~mask; 277 val |= set; 278 mt7530_mii_write(priv, reg, val); 279 280 mutex_unlock(&bus->mdio_lock); 281 } 282 283 static void 284 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val) 285 { 286 mt7530_rmw(priv, reg, 0, val); 287 } 288 289 static void 290 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val) 291 { 292 mt7530_rmw(priv, reg, val, 0); 293 } 294 295 static int 296 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp) 297 { 298 u32 val; 299 int ret; 300 struct mt7530_dummy_poll p; 301 302 /* Set the command operating upon the MAC address entries */ 303 val = ATC_BUSY | ATC_MAT(0) | cmd; 304 mt7530_write(priv, MT7530_ATC, val); 305 306 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC); 307 ret = readx_poll_timeout(_mt7530_read, &p, val, 308 !(val & ATC_BUSY), 20, 20000); 309 if (ret < 0) { 310 dev_err(priv->dev, "reset timeout\n"); 311 return ret; 312 } 313 314 /* Additional sanity for read command if the specified 315 * entry is invalid 316 */ 317 val = mt7530_read(priv, MT7530_ATC); 318 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID)) 319 return -EINVAL; 320 321 if (rsp) 322 *rsp = val; 323 324 return 0; 325 } 326 327 static void 328 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb) 329 { 330 u32 reg[3]; 331 int i; 332 333 /* Read from ARL table into an array */ 334 for (i = 0; i < 3; i++) { 335 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4)); 336 337 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n", 338 __func__, __LINE__, i, reg[i]); 339 } 340 341 fdb->vid = (reg[1] >> CVID) & CVID_MASK; 342 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK; 343 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK; 344 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK; 345 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK; 346 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK; 347 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK; 348 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK; 349 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK; 350 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT; 351 } 352 353 static void 354 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid, 355 u8 port_mask, const u8 *mac, 356 u8 aging, u8 type) 357 { 358 u32 reg[3] = { 0 }; 359 int i; 360 361 reg[1] |= vid & CVID_MASK; 362 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER; 363 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP; 364 /* STATIC_ENT indicate that entry is static wouldn't 365 * be aged out and STATIC_EMP specified as erasing an 366 * entry 367 */ 368 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS; 369 reg[1] |= mac[5] << MAC_BYTE_5; 370 reg[1] |= mac[4] << MAC_BYTE_4; 371 reg[0] |= mac[3] << MAC_BYTE_3; 372 reg[0] |= mac[2] << MAC_BYTE_2; 373 reg[0] |= mac[1] << MAC_BYTE_1; 374 reg[0] |= mac[0] << MAC_BYTE_0; 375 376 /* Write array into the ARL table */ 377 for (i = 0; i < 3; i++) 378 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]); 379 } 380 381 /* Setup TX circuit including relevant PAD and driving */ 382 static int 383 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface) 384 { 385 struct mt7530_priv *priv = ds->priv; 386 u32 ncpo1, ssc_delta, trgint, i, xtal; 387 388 xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK; 389 390 if (xtal == HWTRAP_XTAL_20MHZ) { 391 dev_err(priv->dev, 392 "%s: MT7530 with a 20MHz XTAL is not supported!\n", 393 __func__); 394 return -EINVAL; 395 } 396 397 switch (interface) { 398 case PHY_INTERFACE_MODE_RGMII: 399 trgint = 0; 400 /* PLL frequency: 125MHz */ 401 ncpo1 = 0x0c80; 402 break; 403 case PHY_INTERFACE_MODE_TRGMII: 404 trgint = 1; 405 if (priv->id == ID_MT7621) { 406 /* PLL frequency: 150MHz: 1.2GBit */ 407 if (xtal == HWTRAP_XTAL_40MHZ) 408 ncpo1 = 0x0780; 409 if (xtal == HWTRAP_XTAL_25MHZ) 410 ncpo1 = 0x0a00; 411 } else { /* PLL frequency: 250MHz: 2.0Gbit */ 412 if (xtal == HWTRAP_XTAL_40MHZ) 413 ncpo1 = 0x0c80; 414 if (xtal == HWTRAP_XTAL_25MHZ) 415 ncpo1 = 0x1400; 416 } 417 break; 418 default: 419 dev_err(priv->dev, "xMII interface %d not supported\n", 420 interface); 421 return -EINVAL; 422 } 423 424 if (xtal == HWTRAP_XTAL_25MHZ) 425 ssc_delta = 0x57; 426 else 427 ssc_delta = 0x87; 428 429 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, 430 P6_INTF_MODE(trgint)); 431 432 /* Lower Tx Driving for TRGMII path */ 433 for (i = 0 ; i < NUM_TRGMII_CTRL ; i++) 434 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i), 435 TD_DM_DRVP(8) | TD_DM_DRVN(8)); 436 437 /* Setup core clock for MT7530 */ 438 if (!trgint) { 439 /* Disable MT7530 core clock */ 440 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 441 442 /* Disable PLL, since phy_device has not yet been created 443 * provided for phy_[read,write]_mmd_indirect is called, we 444 * provide our own core_write_mmd_indirect to complete this 445 * function. 446 */ 447 core_write_mmd_indirect(priv, 448 CORE_GSWPLL_GRP1, 449 MDIO_MMD_VEND2, 450 0); 451 452 /* Set core clock into 500Mhz */ 453 core_write(priv, CORE_GSWPLL_GRP2, 454 RG_GSWPLL_POSDIV_500M(1) | 455 RG_GSWPLL_FBKDIV_500M(25)); 456 457 /* Enable PLL */ 458 core_write(priv, CORE_GSWPLL_GRP1, 459 RG_GSWPLL_EN_PRE | 460 RG_GSWPLL_POSDIV_200M(2) | 461 RG_GSWPLL_FBKDIV_200M(32)); 462 463 /* Enable MT7530 core clock */ 464 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 465 } 466 467 /* Setup the MT7530 TRGMII Tx Clock */ 468 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 469 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1)); 470 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0)); 471 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta)); 472 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta)); 473 core_write(priv, CORE_PLL_GROUP4, 474 RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN | 475 RG_SYSPLL_BIAS_LPF_EN); 476 core_write(priv, CORE_PLL_GROUP2, 477 RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN | 478 RG_SYSPLL_POSDIV(1)); 479 core_write(priv, CORE_PLL_GROUP7, 480 RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) | 481 RG_LCDDS_PWDB | RG_LCDDS_ISO_EN); 482 core_set(priv, CORE_TRGMII_GSW_CLK_CG, 483 REG_GSWCK_EN | REG_TRGMIICK_EN); 484 485 if (!trgint) 486 for (i = 0 ; i < NUM_TRGMII_CTRL; i++) 487 mt7530_rmw(priv, MT7530_TRGMII_RD(i), 488 RD_TAP_MASK, RD_TAP(16)); 489 return 0; 490 } 491 492 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv) 493 { 494 u32 val; 495 496 val = mt7530_read(priv, MT7531_TOP_SIG_SR); 497 498 return (val & PAD_DUAL_SGMII_EN) != 0; 499 } 500 501 static int 502 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface) 503 { 504 struct mt7530_priv *priv = ds->priv; 505 u32 top_sig; 506 u32 hwstrap; 507 u32 xtal; 508 u32 val; 509 510 if (mt7531_dual_sgmii_supported(priv)) 511 return 0; 512 513 val = mt7530_read(priv, MT7531_CREV); 514 top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR); 515 hwstrap = mt7530_read(priv, MT7531_HWTRAP); 516 if ((val & CHIP_REV_M) > 0) 517 xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ : 518 HWTRAP_XTAL_FSEL_25MHZ; 519 else 520 xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK; 521 522 /* Step 1 : Disable MT7531 COREPLL */ 523 val = mt7530_read(priv, MT7531_PLLGP_EN); 524 val &= ~EN_COREPLL; 525 mt7530_write(priv, MT7531_PLLGP_EN, val); 526 527 /* Step 2: switch to XTAL output */ 528 val = mt7530_read(priv, MT7531_PLLGP_EN); 529 val |= SW_CLKSW; 530 mt7530_write(priv, MT7531_PLLGP_EN, val); 531 532 val = mt7530_read(priv, MT7531_PLLGP_CR0); 533 val &= ~RG_COREPLL_EN; 534 mt7530_write(priv, MT7531_PLLGP_CR0, val); 535 536 /* Step 3: disable PLLGP and enable program PLLGP */ 537 val = mt7530_read(priv, MT7531_PLLGP_EN); 538 val |= SW_PLLGP; 539 mt7530_write(priv, MT7531_PLLGP_EN, val); 540 541 /* Step 4: program COREPLL output frequency to 500MHz */ 542 val = mt7530_read(priv, MT7531_PLLGP_CR0); 543 val &= ~RG_COREPLL_POSDIV_M; 544 val |= 2 << RG_COREPLL_POSDIV_S; 545 mt7530_write(priv, MT7531_PLLGP_CR0, val); 546 usleep_range(25, 35); 547 548 switch (xtal) { 549 case HWTRAP_XTAL_FSEL_25MHZ: 550 val = mt7530_read(priv, MT7531_PLLGP_CR0); 551 val &= ~RG_COREPLL_SDM_PCW_M; 552 val |= 0x140000 << RG_COREPLL_SDM_PCW_S; 553 mt7530_write(priv, MT7531_PLLGP_CR0, val); 554 break; 555 case HWTRAP_XTAL_FSEL_40MHZ: 556 val = mt7530_read(priv, MT7531_PLLGP_CR0); 557 val &= ~RG_COREPLL_SDM_PCW_M; 558 val |= 0x190000 << RG_COREPLL_SDM_PCW_S; 559 mt7530_write(priv, MT7531_PLLGP_CR0, val); 560 break; 561 } 562 563 /* Set feedback divide ratio update signal to high */ 564 val = mt7530_read(priv, MT7531_PLLGP_CR0); 565 val |= RG_COREPLL_SDM_PCW_CHG; 566 mt7530_write(priv, MT7531_PLLGP_CR0, val); 567 /* Wait for at least 16 XTAL clocks */ 568 usleep_range(10, 20); 569 570 /* Step 5: set feedback divide ratio update signal to low */ 571 val = mt7530_read(priv, MT7531_PLLGP_CR0); 572 val &= ~RG_COREPLL_SDM_PCW_CHG; 573 mt7530_write(priv, MT7531_PLLGP_CR0, val); 574 575 /* Enable 325M clock for SGMII */ 576 mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000); 577 578 /* Enable 250SSC clock for RGMII */ 579 mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000); 580 581 /* Step 6: Enable MT7531 PLL */ 582 val = mt7530_read(priv, MT7531_PLLGP_CR0); 583 val |= RG_COREPLL_EN; 584 mt7530_write(priv, MT7531_PLLGP_CR0, val); 585 586 val = mt7530_read(priv, MT7531_PLLGP_EN); 587 val |= EN_COREPLL; 588 mt7530_write(priv, MT7531_PLLGP_EN, val); 589 usleep_range(25, 35); 590 591 return 0; 592 } 593 594 static void 595 mt7530_mib_reset(struct dsa_switch *ds) 596 { 597 struct mt7530_priv *priv = ds->priv; 598 599 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH); 600 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE); 601 } 602 603 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum) 604 { 605 struct mt7530_priv *priv = ds->priv; 606 607 return mdiobus_read_nested(priv->bus, port, regnum); 608 } 609 610 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum, 611 u16 val) 612 { 613 struct mt7530_priv *priv = ds->priv; 614 615 return mdiobus_write_nested(priv->bus, port, regnum, val); 616 } 617 618 static int 619 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad, 620 int regnum) 621 { 622 struct mii_bus *bus = priv->bus; 623 struct mt7530_dummy_poll p; 624 u32 reg, val; 625 int ret; 626 627 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 628 629 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 630 631 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 632 !(val & MT7531_PHY_ACS_ST), 20, 100000); 633 if (ret < 0) { 634 dev_err(priv->dev, "poll timeout\n"); 635 goto out; 636 } 637 638 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | 639 MT7531_MDIO_DEV_ADDR(devad) | regnum; 640 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 641 642 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 643 !(val & MT7531_PHY_ACS_ST), 20, 100000); 644 if (ret < 0) { 645 dev_err(priv->dev, "poll timeout\n"); 646 goto out; 647 } 648 649 reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) | 650 MT7531_MDIO_DEV_ADDR(devad); 651 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 652 653 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 654 !(val & MT7531_PHY_ACS_ST), 20, 100000); 655 if (ret < 0) { 656 dev_err(priv->dev, "poll timeout\n"); 657 goto out; 658 } 659 660 ret = val & MT7531_MDIO_RW_DATA_MASK; 661 out: 662 mutex_unlock(&bus->mdio_lock); 663 664 return ret; 665 } 666 667 static int 668 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad, 669 int regnum, u32 data) 670 { 671 struct mii_bus *bus = priv->bus; 672 struct mt7530_dummy_poll p; 673 u32 val, reg; 674 int ret; 675 676 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 677 678 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 679 680 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 681 !(val & MT7531_PHY_ACS_ST), 20, 100000); 682 if (ret < 0) { 683 dev_err(priv->dev, "poll timeout\n"); 684 goto out; 685 } 686 687 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | 688 MT7531_MDIO_DEV_ADDR(devad) | regnum; 689 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 690 691 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 692 !(val & MT7531_PHY_ACS_ST), 20, 100000); 693 if (ret < 0) { 694 dev_err(priv->dev, "poll timeout\n"); 695 goto out; 696 } 697 698 reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) | 699 MT7531_MDIO_DEV_ADDR(devad) | data; 700 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 701 702 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 703 !(val & MT7531_PHY_ACS_ST), 20, 100000); 704 if (ret < 0) { 705 dev_err(priv->dev, "poll timeout\n"); 706 goto out; 707 } 708 709 out: 710 mutex_unlock(&bus->mdio_lock); 711 712 return ret; 713 } 714 715 static int 716 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum) 717 { 718 struct mii_bus *bus = priv->bus; 719 struct mt7530_dummy_poll p; 720 int ret; 721 u32 val; 722 723 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 724 725 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 726 727 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 728 !(val & MT7531_PHY_ACS_ST), 20, 100000); 729 if (ret < 0) { 730 dev_err(priv->dev, "poll timeout\n"); 731 goto out; 732 } 733 734 val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) | 735 MT7531_MDIO_REG_ADDR(regnum); 736 737 mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST); 738 739 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 740 !(val & MT7531_PHY_ACS_ST), 20, 100000); 741 if (ret < 0) { 742 dev_err(priv->dev, "poll timeout\n"); 743 goto out; 744 } 745 746 ret = val & MT7531_MDIO_RW_DATA_MASK; 747 out: 748 mutex_unlock(&bus->mdio_lock); 749 750 return ret; 751 } 752 753 static int 754 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum, 755 u16 data) 756 { 757 struct mii_bus *bus = priv->bus; 758 struct mt7530_dummy_poll p; 759 int ret; 760 u32 reg; 761 762 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 763 764 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 765 766 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, 767 !(reg & MT7531_PHY_ACS_ST), 20, 100000); 768 if (ret < 0) { 769 dev_err(priv->dev, "poll timeout\n"); 770 goto out; 771 } 772 773 reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) | 774 MT7531_MDIO_REG_ADDR(regnum) | data; 775 776 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 777 778 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, 779 !(reg & MT7531_PHY_ACS_ST), 20, 100000); 780 if (ret < 0) { 781 dev_err(priv->dev, "poll timeout\n"); 782 goto out; 783 } 784 785 out: 786 mutex_unlock(&bus->mdio_lock); 787 788 return ret; 789 } 790 791 static int 792 mt7531_ind_phy_read(struct dsa_switch *ds, int port, int regnum) 793 { 794 struct mt7530_priv *priv = ds->priv; 795 int devad; 796 int ret; 797 798 if (regnum & MII_ADDR_C45) { 799 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f; 800 ret = mt7531_ind_c45_phy_read(priv, port, devad, 801 regnum & MII_REGADDR_C45_MASK); 802 } else { 803 ret = mt7531_ind_c22_phy_read(priv, port, regnum); 804 } 805 806 return ret; 807 } 808 809 static int 810 mt7531_ind_phy_write(struct dsa_switch *ds, int port, int regnum, 811 u16 data) 812 { 813 struct mt7530_priv *priv = ds->priv; 814 int devad; 815 int ret; 816 817 if (regnum & MII_ADDR_C45) { 818 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f; 819 ret = mt7531_ind_c45_phy_write(priv, port, devad, 820 regnum & MII_REGADDR_C45_MASK, 821 data); 822 } else { 823 ret = mt7531_ind_c22_phy_write(priv, port, regnum, data); 824 } 825 826 return ret; 827 } 828 829 static void 830 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset, 831 uint8_t *data) 832 { 833 int i; 834 835 if (stringset != ETH_SS_STATS) 836 return; 837 838 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) 839 strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name, 840 ETH_GSTRING_LEN); 841 } 842 843 static void 844 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port, 845 uint64_t *data) 846 { 847 struct mt7530_priv *priv = ds->priv; 848 const struct mt7530_mib_desc *mib; 849 u32 reg, i; 850 u64 hi; 851 852 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) { 853 mib = &mt7530_mib[i]; 854 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset; 855 856 data[i] = mt7530_read(priv, reg); 857 if (mib->size == 2) { 858 hi = mt7530_read(priv, reg + 4); 859 data[i] |= hi << 32; 860 } 861 } 862 } 863 864 static int 865 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset) 866 { 867 if (sset != ETH_SS_STATS) 868 return 0; 869 870 return ARRAY_SIZE(mt7530_mib); 871 } 872 873 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface) 874 { 875 struct mt7530_priv *priv = ds->priv; 876 u8 tx_delay = 0; 877 int val; 878 879 mutex_lock(&priv->reg_mutex); 880 881 val = mt7530_read(priv, MT7530_MHWTRAP); 882 883 val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS; 884 val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL; 885 886 switch (priv->p5_intf_sel) { 887 case P5_INTF_SEL_PHY_P0: 888 /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */ 889 val |= MHWTRAP_PHY0_SEL; 890 fallthrough; 891 case P5_INTF_SEL_PHY_P4: 892 /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */ 893 val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS; 894 895 /* Setup the MAC by default for the cpu port */ 896 mt7530_write(priv, MT7530_PMCR_P(5), 0x56300); 897 break; 898 case P5_INTF_SEL_GMAC5: 899 /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */ 900 val &= ~MHWTRAP_P5_DIS; 901 break; 902 case P5_DISABLED: 903 interface = PHY_INTERFACE_MODE_NA; 904 break; 905 default: 906 dev_err(ds->dev, "Unsupported p5_intf_sel %d\n", 907 priv->p5_intf_sel); 908 goto unlock_exit; 909 } 910 911 /* Setup RGMII settings */ 912 if (phy_interface_mode_is_rgmii(interface)) { 913 val |= MHWTRAP_P5_RGMII_MODE; 914 915 /* P5 RGMII RX Clock Control: delay setting for 1000M */ 916 mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN); 917 918 /* Don't set delay in DSA mode */ 919 if (!dsa_is_dsa_port(priv->ds, 5) && 920 (interface == PHY_INTERFACE_MODE_RGMII_TXID || 921 interface == PHY_INTERFACE_MODE_RGMII_ID)) 922 tx_delay = 4; /* n * 0.5 ns */ 923 924 /* P5 RGMII TX Clock Control: delay x */ 925 mt7530_write(priv, MT7530_P5RGMIITXCR, 926 CSR_RGMII_TXC_CFG(0x10 + tx_delay)); 927 928 /* reduce P5 RGMII Tx driving, 8mA */ 929 mt7530_write(priv, MT7530_IO_DRV_CR, 930 P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1)); 931 } 932 933 mt7530_write(priv, MT7530_MHWTRAP, val); 934 935 dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n", 936 val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface)); 937 938 priv->p5_interface = interface; 939 940 unlock_exit: 941 mutex_unlock(&priv->reg_mutex); 942 } 943 944 static int 945 mt753x_cpu_port_enable(struct dsa_switch *ds, int port) 946 { 947 struct mt7530_priv *priv = ds->priv; 948 int ret; 949 950 /* Setup max capability of CPU port at first */ 951 if (priv->info->cpu_port_config) { 952 ret = priv->info->cpu_port_config(ds, port); 953 if (ret) 954 return ret; 955 } 956 957 /* Enable Mediatek header mode on the cpu port */ 958 mt7530_write(priv, MT7530_PVC_P(port), 959 PORT_SPEC_TAG); 960 961 /* Unknown multicast frame forwarding to the cpu port */ 962 mt7530_rmw(priv, MT7530_MFC, UNM_FFP_MASK, UNM_FFP(BIT(port))); 963 964 /* Set CPU port number */ 965 if (priv->id == ID_MT7621) 966 mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port)); 967 968 /* CPU port gets connected to all user ports of 969 * the switch. 970 */ 971 mt7530_write(priv, MT7530_PCR_P(port), 972 PCR_MATRIX(dsa_user_ports(priv->ds))); 973 974 return 0; 975 } 976 977 static int 978 mt7530_port_enable(struct dsa_switch *ds, int port, 979 struct phy_device *phy) 980 { 981 struct mt7530_priv *priv = ds->priv; 982 983 if (!dsa_is_user_port(ds, port)) 984 return 0; 985 986 mutex_lock(&priv->reg_mutex); 987 988 /* Allow the user port gets connected to the cpu port and also 989 * restore the port matrix if the port is the member of a certain 990 * bridge. 991 */ 992 priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT)); 993 priv->ports[port].enable = true; 994 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 995 priv->ports[port].pm); 996 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 997 998 mutex_unlock(&priv->reg_mutex); 999 1000 return 0; 1001 } 1002 1003 static void 1004 mt7530_port_disable(struct dsa_switch *ds, int port) 1005 { 1006 struct mt7530_priv *priv = ds->priv; 1007 1008 if (!dsa_is_user_port(ds, port)) 1009 return; 1010 1011 mutex_lock(&priv->reg_mutex); 1012 1013 /* Clear up all port matrix which could be restored in the next 1014 * enablement for the port. 1015 */ 1016 priv->ports[port].enable = false; 1017 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1018 PCR_MATRIX_CLR); 1019 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 1020 1021 mutex_unlock(&priv->reg_mutex); 1022 } 1023 1024 static int 1025 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu) 1026 { 1027 struct mt7530_priv *priv = ds->priv; 1028 struct mii_bus *bus = priv->bus; 1029 int length; 1030 u32 val; 1031 1032 /* When a new MTU is set, DSA always set the CPU port's MTU to the 1033 * largest MTU of the slave ports. Because the switch only has a global 1034 * RX length register, only allowing CPU port here is enough. 1035 */ 1036 if (!dsa_is_cpu_port(ds, port)) 1037 return 0; 1038 1039 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 1040 1041 val = mt7530_mii_read(priv, MT7530_GMACCR); 1042 val &= ~MAX_RX_PKT_LEN_MASK; 1043 1044 /* RX length also includes Ethernet header, MTK tag, and FCS length */ 1045 length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN; 1046 if (length <= 1522) { 1047 val |= MAX_RX_PKT_LEN_1522; 1048 } else if (length <= 1536) { 1049 val |= MAX_RX_PKT_LEN_1536; 1050 } else if (length <= 1552) { 1051 val |= MAX_RX_PKT_LEN_1552; 1052 } else { 1053 val &= ~MAX_RX_JUMBO_MASK; 1054 val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024)); 1055 val |= MAX_RX_PKT_LEN_JUMBO; 1056 } 1057 1058 mt7530_mii_write(priv, MT7530_GMACCR, val); 1059 1060 mutex_unlock(&bus->mdio_lock); 1061 1062 return 0; 1063 } 1064 1065 static int 1066 mt7530_port_max_mtu(struct dsa_switch *ds, int port) 1067 { 1068 return MT7530_MAX_MTU; 1069 } 1070 1071 static void 1072 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state) 1073 { 1074 struct mt7530_priv *priv = ds->priv; 1075 u32 stp_state; 1076 1077 switch (state) { 1078 case BR_STATE_DISABLED: 1079 stp_state = MT7530_STP_DISABLED; 1080 break; 1081 case BR_STATE_BLOCKING: 1082 stp_state = MT7530_STP_BLOCKING; 1083 break; 1084 case BR_STATE_LISTENING: 1085 stp_state = MT7530_STP_LISTENING; 1086 break; 1087 case BR_STATE_LEARNING: 1088 stp_state = MT7530_STP_LEARNING; 1089 break; 1090 case BR_STATE_FORWARDING: 1091 default: 1092 stp_state = MT7530_STP_FORWARDING; 1093 break; 1094 } 1095 1096 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state); 1097 } 1098 1099 static int 1100 mt7530_port_bridge_join(struct dsa_switch *ds, int port, 1101 struct net_device *bridge) 1102 { 1103 struct mt7530_priv *priv = ds->priv; 1104 u32 port_bitmap = BIT(MT7530_CPU_PORT); 1105 int i; 1106 1107 mutex_lock(&priv->reg_mutex); 1108 1109 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1110 /* Add this port to the port matrix of the other ports in the 1111 * same bridge. If the port is disabled, port matrix is kept 1112 * and not being setup until the port becomes enabled. 1113 */ 1114 if (dsa_is_user_port(ds, i) && i != port) { 1115 if (dsa_to_port(ds, i)->bridge_dev != bridge) 1116 continue; 1117 if (priv->ports[i].enable) 1118 mt7530_set(priv, MT7530_PCR_P(i), 1119 PCR_MATRIX(BIT(port))); 1120 priv->ports[i].pm |= PCR_MATRIX(BIT(port)); 1121 1122 port_bitmap |= BIT(i); 1123 } 1124 } 1125 1126 /* Add the all other ports to this port matrix. */ 1127 if (priv->ports[port].enable) 1128 mt7530_rmw(priv, MT7530_PCR_P(port), 1129 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap)); 1130 priv->ports[port].pm |= PCR_MATRIX(port_bitmap); 1131 1132 mutex_unlock(&priv->reg_mutex); 1133 1134 return 0; 1135 } 1136 1137 static void 1138 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port) 1139 { 1140 struct mt7530_priv *priv = ds->priv; 1141 bool all_user_ports_removed = true; 1142 int i; 1143 1144 /* When a port is removed from the bridge, the port would be set up 1145 * back to the default as is at initial boot which is a VLAN-unaware 1146 * port. 1147 */ 1148 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1149 MT7530_PORT_MATRIX_MODE); 1150 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, 1151 VLAN_ATTR(MT7530_VLAN_TRANSPARENT) | 1152 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1153 1154 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1155 if (dsa_is_user_port(ds, i) && 1156 dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { 1157 all_user_ports_removed = false; 1158 break; 1159 } 1160 } 1161 1162 /* CPU port also does the same thing until all user ports belonging to 1163 * the CPU port get out of VLAN filtering mode. 1164 */ 1165 if (all_user_ports_removed) { 1166 mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT), 1167 PCR_MATRIX(dsa_user_ports(priv->ds))); 1168 mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG 1169 | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1170 } 1171 } 1172 1173 static void 1174 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port) 1175 { 1176 struct mt7530_priv *priv = ds->priv; 1177 1178 /* The real fabric path would be decided on the membership in the 1179 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS 1180 * means potential VLAN can be consisting of certain subset of all 1181 * ports. 1182 */ 1183 mt7530_rmw(priv, MT7530_PCR_P(port), 1184 PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS)); 1185 1186 /* Trapped into security mode allows packet forwarding through VLAN 1187 * table lookup. CPU port is set to fallback mode to let untagged 1188 * frames pass through. 1189 */ 1190 if (dsa_is_cpu_port(ds, port)) 1191 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1192 MT7530_PORT_FALLBACK_MODE); 1193 else 1194 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1195 MT7530_PORT_SECURITY_MODE); 1196 1197 /* Set the port as a user port which is to be able to recognize VID 1198 * from incoming packets before fetching entry within the VLAN table. 1199 */ 1200 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, 1201 VLAN_ATTR(MT7530_VLAN_USER) | 1202 PVC_EG_TAG(MT7530_VLAN_EG_DISABLED)); 1203 } 1204 1205 static void 1206 mt7530_port_bridge_leave(struct dsa_switch *ds, int port, 1207 struct net_device *bridge) 1208 { 1209 struct mt7530_priv *priv = ds->priv; 1210 int i; 1211 1212 mutex_lock(&priv->reg_mutex); 1213 1214 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1215 /* Remove this port from the port matrix of the other ports 1216 * in the same bridge. If the port is disabled, port matrix 1217 * is kept and not being setup until the port becomes enabled. 1218 * And the other port's port matrix cannot be broken when the 1219 * other port is still a VLAN-aware port. 1220 */ 1221 if (dsa_is_user_port(ds, i) && i != port && 1222 !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { 1223 if (dsa_to_port(ds, i)->bridge_dev != bridge) 1224 continue; 1225 if (priv->ports[i].enable) 1226 mt7530_clear(priv, MT7530_PCR_P(i), 1227 PCR_MATRIX(BIT(port))); 1228 priv->ports[i].pm &= ~PCR_MATRIX(BIT(port)); 1229 } 1230 } 1231 1232 /* Set the cpu port to be the only one in the port matrix of 1233 * this port. 1234 */ 1235 if (priv->ports[port].enable) 1236 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1237 PCR_MATRIX(BIT(MT7530_CPU_PORT))); 1238 priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT)); 1239 1240 mutex_unlock(&priv->reg_mutex); 1241 } 1242 1243 static int 1244 mt7530_port_fdb_add(struct dsa_switch *ds, int port, 1245 const unsigned char *addr, u16 vid) 1246 { 1247 struct mt7530_priv *priv = ds->priv; 1248 int ret; 1249 u8 port_mask = BIT(port); 1250 1251 mutex_lock(&priv->reg_mutex); 1252 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); 1253 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1254 mutex_unlock(&priv->reg_mutex); 1255 1256 return ret; 1257 } 1258 1259 static int 1260 mt7530_port_fdb_del(struct dsa_switch *ds, int port, 1261 const unsigned char *addr, u16 vid) 1262 { 1263 struct mt7530_priv *priv = ds->priv; 1264 int ret; 1265 u8 port_mask = BIT(port); 1266 1267 mutex_lock(&priv->reg_mutex); 1268 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP); 1269 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1270 mutex_unlock(&priv->reg_mutex); 1271 1272 return ret; 1273 } 1274 1275 static int 1276 mt7530_port_fdb_dump(struct dsa_switch *ds, int port, 1277 dsa_fdb_dump_cb_t *cb, void *data) 1278 { 1279 struct mt7530_priv *priv = ds->priv; 1280 struct mt7530_fdb _fdb = { 0 }; 1281 int cnt = MT7530_NUM_FDB_RECORDS; 1282 int ret = 0; 1283 u32 rsp = 0; 1284 1285 mutex_lock(&priv->reg_mutex); 1286 1287 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp); 1288 if (ret < 0) 1289 goto err; 1290 1291 do { 1292 if (rsp & ATC_SRCH_HIT) { 1293 mt7530_fdb_read(priv, &_fdb); 1294 if (_fdb.port_mask & BIT(port)) { 1295 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp, 1296 data); 1297 if (ret < 0) 1298 break; 1299 } 1300 } 1301 } while (--cnt && 1302 !(rsp & ATC_SRCH_END) && 1303 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp)); 1304 err: 1305 mutex_unlock(&priv->reg_mutex); 1306 1307 return 0; 1308 } 1309 1310 static int 1311 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid) 1312 { 1313 struct mt7530_dummy_poll p; 1314 u32 val; 1315 int ret; 1316 1317 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid; 1318 mt7530_write(priv, MT7530_VTCR, val); 1319 1320 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR); 1321 ret = readx_poll_timeout(_mt7530_read, &p, val, 1322 !(val & VTCR_BUSY), 20, 20000); 1323 if (ret < 0) { 1324 dev_err(priv->dev, "poll timeout\n"); 1325 return ret; 1326 } 1327 1328 val = mt7530_read(priv, MT7530_VTCR); 1329 if (val & VTCR_INVALID) { 1330 dev_err(priv->dev, "read VTCR invalid\n"); 1331 return -EINVAL; 1332 } 1333 1334 return 0; 1335 } 1336 1337 static int 1338 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, 1339 bool vlan_filtering, 1340 struct switchdev_trans *trans) 1341 { 1342 if (switchdev_trans_ph_prepare(trans)) 1343 return 0; 1344 1345 if (vlan_filtering) { 1346 /* The port is being kept as VLAN-unaware port when bridge is 1347 * set up with vlan_filtering not being set, Otherwise, the 1348 * port and the corresponding CPU port is required the setup 1349 * for becoming a VLAN-aware port. 1350 */ 1351 mt7530_port_set_vlan_aware(ds, port); 1352 mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT); 1353 } else { 1354 mt7530_port_set_vlan_unaware(ds, port); 1355 } 1356 1357 return 0; 1358 } 1359 1360 static int 1361 mt7530_port_vlan_prepare(struct dsa_switch *ds, int port, 1362 const struct switchdev_obj_port_vlan *vlan) 1363 { 1364 /* nothing needed */ 1365 1366 return 0; 1367 } 1368 1369 static void 1370 mt7530_hw_vlan_add(struct mt7530_priv *priv, 1371 struct mt7530_hw_vlan_entry *entry) 1372 { 1373 u8 new_members; 1374 u32 val; 1375 1376 new_members = entry->old_members | BIT(entry->port) | 1377 BIT(MT7530_CPU_PORT); 1378 1379 /* Validate the entry with independent learning, create egress tag per 1380 * VLAN and joining the port as one of the port members. 1381 */ 1382 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID; 1383 mt7530_write(priv, MT7530_VAWD1, val); 1384 1385 /* Decide whether adding tag or not for those outgoing packets from the 1386 * port inside the VLAN. 1387 */ 1388 val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG : 1389 MT7530_VLAN_EGRESS_TAG; 1390 mt7530_rmw(priv, MT7530_VAWD2, 1391 ETAG_CTRL_P_MASK(entry->port), 1392 ETAG_CTRL_P(entry->port, val)); 1393 1394 /* CPU port is always taken as a tagged port for serving more than one 1395 * VLANs across and also being applied with egress type stack mode for 1396 * that VLAN tags would be appended after hardware special tag used as 1397 * DSA tag. 1398 */ 1399 mt7530_rmw(priv, MT7530_VAWD2, 1400 ETAG_CTRL_P_MASK(MT7530_CPU_PORT), 1401 ETAG_CTRL_P(MT7530_CPU_PORT, 1402 MT7530_VLAN_EGRESS_STACK)); 1403 } 1404 1405 static void 1406 mt7530_hw_vlan_del(struct mt7530_priv *priv, 1407 struct mt7530_hw_vlan_entry *entry) 1408 { 1409 u8 new_members; 1410 u32 val; 1411 1412 new_members = entry->old_members & ~BIT(entry->port); 1413 1414 val = mt7530_read(priv, MT7530_VAWD1); 1415 if (!(val & VLAN_VALID)) { 1416 dev_err(priv->dev, 1417 "Cannot be deleted due to invalid entry\n"); 1418 return; 1419 } 1420 1421 /* If certain member apart from CPU port is still alive in the VLAN, 1422 * the entry would be kept valid. Otherwise, the entry is got to be 1423 * disabled. 1424 */ 1425 if (new_members && new_members != BIT(MT7530_CPU_PORT)) { 1426 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | 1427 VLAN_VALID; 1428 mt7530_write(priv, MT7530_VAWD1, val); 1429 } else { 1430 mt7530_write(priv, MT7530_VAWD1, 0); 1431 mt7530_write(priv, MT7530_VAWD2, 0); 1432 } 1433 } 1434 1435 static void 1436 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid, 1437 struct mt7530_hw_vlan_entry *entry, 1438 mt7530_vlan_op vlan_op) 1439 { 1440 u32 val; 1441 1442 /* Fetch entry */ 1443 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid); 1444 1445 val = mt7530_read(priv, MT7530_VAWD1); 1446 1447 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK; 1448 1449 /* Manipulate entry */ 1450 vlan_op(priv, entry); 1451 1452 /* Flush result to hardware */ 1453 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid); 1454 } 1455 1456 static void 1457 mt7530_port_vlan_add(struct dsa_switch *ds, int port, 1458 const struct switchdev_obj_port_vlan *vlan) 1459 { 1460 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 1461 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; 1462 struct mt7530_hw_vlan_entry new_entry; 1463 struct mt7530_priv *priv = ds->priv; 1464 u16 vid; 1465 1466 mutex_lock(&priv->reg_mutex); 1467 1468 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { 1469 mt7530_hw_vlan_entry_init(&new_entry, port, untagged); 1470 mt7530_hw_vlan_update(priv, vid, &new_entry, 1471 mt7530_hw_vlan_add); 1472 } 1473 1474 if (pvid) { 1475 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1476 G0_PORT_VID(vlan->vid_end)); 1477 priv->ports[port].pvid = vlan->vid_end; 1478 } 1479 1480 mutex_unlock(&priv->reg_mutex); 1481 } 1482 1483 static int 1484 mt7530_port_vlan_del(struct dsa_switch *ds, int port, 1485 const struct switchdev_obj_port_vlan *vlan) 1486 { 1487 struct mt7530_hw_vlan_entry target_entry; 1488 struct mt7530_priv *priv = ds->priv; 1489 u16 vid, pvid; 1490 1491 mutex_lock(&priv->reg_mutex); 1492 1493 pvid = priv->ports[port].pvid; 1494 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { 1495 mt7530_hw_vlan_entry_init(&target_entry, port, 0); 1496 mt7530_hw_vlan_update(priv, vid, &target_entry, 1497 mt7530_hw_vlan_del); 1498 1499 /* PVID is being restored to the default whenever the PVID port 1500 * is being removed from the VLAN. 1501 */ 1502 if (pvid == vid) 1503 pvid = G0_PORT_VID_DEF; 1504 } 1505 1506 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid); 1507 priv->ports[port].pvid = pvid; 1508 1509 mutex_unlock(&priv->reg_mutex); 1510 1511 return 0; 1512 } 1513 1514 static int mt753x_mirror_port_get(unsigned int id, u32 val) 1515 { 1516 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) : 1517 MIRROR_PORT(val); 1518 } 1519 1520 static int mt753x_mirror_port_set(unsigned int id, u32 val) 1521 { 1522 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) : 1523 MIRROR_PORT(val); 1524 } 1525 1526 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port, 1527 struct dsa_mall_mirror_tc_entry *mirror, 1528 bool ingress) 1529 { 1530 struct mt7530_priv *priv = ds->priv; 1531 int monitor_port; 1532 u32 val; 1533 1534 /* Check for existent entry */ 1535 if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port)) 1536 return -EEXIST; 1537 1538 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); 1539 1540 /* MT7530 only supports one monitor port */ 1541 monitor_port = mt753x_mirror_port_get(priv->id, val); 1542 if (val & MT753X_MIRROR_EN(priv->id) && 1543 monitor_port != mirror->to_local_port) 1544 return -EEXIST; 1545 1546 val |= MT753X_MIRROR_EN(priv->id); 1547 val &= ~MT753X_MIRROR_MASK(priv->id); 1548 val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port); 1549 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); 1550 1551 val = mt7530_read(priv, MT7530_PCR_P(port)); 1552 if (ingress) { 1553 val |= PORT_RX_MIR; 1554 priv->mirror_rx |= BIT(port); 1555 } else { 1556 val |= PORT_TX_MIR; 1557 priv->mirror_tx |= BIT(port); 1558 } 1559 mt7530_write(priv, MT7530_PCR_P(port), val); 1560 1561 return 0; 1562 } 1563 1564 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port, 1565 struct dsa_mall_mirror_tc_entry *mirror) 1566 { 1567 struct mt7530_priv *priv = ds->priv; 1568 u32 val; 1569 1570 val = mt7530_read(priv, MT7530_PCR_P(port)); 1571 if (mirror->ingress) { 1572 val &= ~PORT_RX_MIR; 1573 priv->mirror_rx &= ~BIT(port); 1574 } else { 1575 val &= ~PORT_TX_MIR; 1576 priv->mirror_tx &= ~BIT(port); 1577 } 1578 mt7530_write(priv, MT7530_PCR_P(port), val); 1579 1580 if (!priv->mirror_rx && !priv->mirror_tx) { 1581 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); 1582 val &= ~MT753X_MIRROR_EN(priv->id); 1583 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); 1584 } 1585 } 1586 1587 static enum dsa_tag_protocol 1588 mtk_get_tag_protocol(struct dsa_switch *ds, int port, 1589 enum dsa_tag_protocol mp) 1590 { 1591 struct mt7530_priv *priv = ds->priv; 1592 1593 if (port != MT7530_CPU_PORT) { 1594 dev_warn(priv->dev, 1595 "port not matched with tagging CPU port\n"); 1596 return DSA_TAG_PROTO_NONE; 1597 } else { 1598 return DSA_TAG_PROTO_MTK; 1599 } 1600 } 1601 1602 static int 1603 mt7530_setup(struct dsa_switch *ds) 1604 { 1605 struct mt7530_priv *priv = ds->priv; 1606 struct device_node *phy_node; 1607 struct device_node *mac_np; 1608 struct mt7530_dummy_poll p; 1609 phy_interface_t interface; 1610 struct device_node *dn; 1611 u32 id, val; 1612 int ret, i; 1613 1614 /* The parent node of master netdev which holds the common system 1615 * controller also is the container for two GMACs nodes representing 1616 * as two netdev instances. 1617 */ 1618 dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent; 1619 ds->configure_vlan_while_not_filtering = true; 1620 1621 if (priv->id == ID_MT7530) { 1622 regulator_set_voltage(priv->core_pwr, 1000000, 1000000); 1623 ret = regulator_enable(priv->core_pwr); 1624 if (ret < 0) { 1625 dev_err(priv->dev, 1626 "Failed to enable core power: %d\n", ret); 1627 return ret; 1628 } 1629 1630 regulator_set_voltage(priv->io_pwr, 3300000, 3300000); 1631 ret = regulator_enable(priv->io_pwr); 1632 if (ret < 0) { 1633 dev_err(priv->dev, "Failed to enable io pwr: %d\n", 1634 ret); 1635 return ret; 1636 } 1637 } 1638 1639 /* Reset whole chip through gpio pin or memory-mapped registers for 1640 * different type of hardware 1641 */ 1642 if (priv->mcm) { 1643 reset_control_assert(priv->rstc); 1644 usleep_range(1000, 1100); 1645 reset_control_deassert(priv->rstc); 1646 } else { 1647 gpiod_set_value_cansleep(priv->reset, 0); 1648 usleep_range(1000, 1100); 1649 gpiod_set_value_cansleep(priv->reset, 1); 1650 } 1651 1652 /* Waiting for MT7530 got to stable */ 1653 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); 1654 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 1655 20, 1000000); 1656 if (ret < 0) { 1657 dev_err(priv->dev, "reset timeout\n"); 1658 return ret; 1659 } 1660 1661 id = mt7530_read(priv, MT7530_CREV); 1662 id >>= CHIP_NAME_SHIFT; 1663 if (id != MT7530_ID) { 1664 dev_err(priv->dev, "chip %x can't be supported\n", id); 1665 return -ENODEV; 1666 } 1667 1668 /* Reset the switch through internal reset */ 1669 mt7530_write(priv, MT7530_SYS_CTRL, 1670 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | 1671 SYS_CTRL_REG_RST); 1672 1673 /* Enable Port 6 only; P5 as GMAC5 which currently is not supported */ 1674 val = mt7530_read(priv, MT7530_MHWTRAP); 1675 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS; 1676 val |= MHWTRAP_MANUAL; 1677 mt7530_write(priv, MT7530_MHWTRAP, val); 1678 1679 priv->p6_interface = PHY_INTERFACE_MODE_NA; 1680 1681 /* Enable and reset MIB counters */ 1682 mt7530_mib_reset(ds); 1683 1684 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1685 /* Disable forwarding by default on all ports */ 1686 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, 1687 PCR_MATRIX_CLR); 1688 1689 if (dsa_is_cpu_port(ds, i)) { 1690 ret = mt753x_cpu_port_enable(ds, i); 1691 if (ret) 1692 return ret; 1693 } else 1694 mt7530_port_disable(ds, i); 1695 1696 /* Enable consistent egress tag */ 1697 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, 1698 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1699 } 1700 1701 /* Setup port 5 */ 1702 priv->p5_intf_sel = P5_DISABLED; 1703 interface = PHY_INTERFACE_MODE_NA; 1704 1705 if (!dsa_is_unused_port(ds, 5)) { 1706 priv->p5_intf_sel = P5_INTF_SEL_GMAC5; 1707 ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface); 1708 if (ret && ret != -ENODEV) 1709 return ret; 1710 } else { 1711 /* Scan the ethernet nodes. look for GMAC1, lookup used phy */ 1712 for_each_child_of_node(dn, mac_np) { 1713 if (!of_device_is_compatible(mac_np, 1714 "mediatek,eth-mac")) 1715 continue; 1716 1717 ret = of_property_read_u32(mac_np, "reg", &id); 1718 if (ret < 0 || id != 1) 1719 continue; 1720 1721 phy_node = of_parse_phandle(mac_np, "phy-handle", 0); 1722 if (!phy_node) 1723 continue; 1724 1725 if (phy_node->parent == priv->dev->of_node->parent) { 1726 ret = of_get_phy_mode(mac_np, &interface); 1727 if (ret && ret != -ENODEV) { 1728 of_node_put(mac_np); 1729 return ret; 1730 } 1731 id = of_mdio_parse_addr(ds->dev, phy_node); 1732 if (id == 0) 1733 priv->p5_intf_sel = P5_INTF_SEL_PHY_P0; 1734 if (id == 4) 1735 priv->p5_intf_sel = P5_INTF_SEL_PHY_P4; 1736 } 1737 of_node_put(mac_np); 1738 of_node_put(phy_node); 1739 break; 1740 } 1741 } 1742 1743 mt7530_setup_port5(ds, interface); 1744 1745 /* Flush the FDB table */ 1746 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); 1747 if (ret < 0) 1748 return ret; 1749 1750 return 0; 1751 } 1752 1753 static int 1754 mt7531_setup(struct dsa_switch *ds) 1755 { 1756 struct mt7530_priv *priv = ds->priv; 1757 struct mt7530_dummy_poll p; 1758 u32 val, id; 1759 int ret, i; 1760 1761 /* Reset whole chip through gpio pin or memory-mapped registers for 1762 * different type of hardware 1763 */ 1764 if (priv->mcm) { 1765 reset_control_assert(priv->rstc); 1766 usleep_range(1000, 1100); 1767 reset_control_deassert(priv->rstc); 1768 } else { 1769 gpiod_set_value_cansleep(priv->reset, 0); 1770 usleep_range(1000, 1100); 1771 gpiod_set_value_cansleep(priv->reset, 1); 1772 } 1773 1774 /* Waiting for MT7530 got to stable */ 1775 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); 1776 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 1777 20, 1000000); 1778 if (ret < 0) { 1779 dev_err(priv->dev, "reset timeout\n"); 1780 return ret; 1781 } 1782 1783 id = mt7530_read(priv, MT7531_CREV); 1784 id >>= CHIP_NAME_SHIFT; 1785 1786 if (id != MT7531_ID) { 1787 dev_err(priv->dev, "chip %x can't be supported\n", id); 1788 return -ENODEV; 1789 } 1790 1791 /* Reset the switch through internal reset */ 1792 mt7530_write(priv, MT7530_SYS_CTRL, 1793 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | 1794 SYS_CTRL_REG_RST); 1795 1796 if (mt7531_dual_sgmii_supported(priv)) { 1797 priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII; 1798 1799 /* Let ds->slave_mii_bus be able to access external phy. */ 1800 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK, 1801 MT7531_EXT_P_MDC_11); 1802 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK, 1803 MT7531_EXT_P_MDIO_12); 1804 } else { 1805 priv->p5_intf_sel = P5_INTF_SEL_GMAC5; 1806 } 1807 dev_dbg(ds->dev, "P5 support %s interface\n", 1808 p5_intf_modes(priv->p5_intf_sel)); 1809 1810 mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK, 1811 MT7531_GPIO0_INTERRUPT); 1812 1813 /* Let phylink decide the interface later. */ 1814 priv->p5_interface = PHY_INTERFACE_MODE_NA; 1815 priv->p6_interface = PHY_INTERFACE_MODE_NA; 1816 1817 /* Enable PHY core PLL, since phy_device has not yet been created 1818 * provided for phy_[read,write]_mmd_indirect is called, we provide 1819 * our own mt7531_ind_mmd_phy_[read,write] to complete this 1820 * function. 1821 */ 1822 val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR, 1823 MDIO_MMD_VEND2, CORE_PLL_GROUP4); 1824 val |= MT7531_PHY_PLL_BYPASS_MODE; 1825 val &= ~MT7531_PHY_PLL_OFF; 1826 mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2, 1827 CORE_PLL_GROUP4, val); 1828 1829 /* BPDU to CPU port */ 1830 mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK, 1831 BIT(MT7530_CPU_PORT)); 1832 mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK, 1833 MT753X_BPDU_CPU_ONLY); 1834 1835 /* Enable and reset MIB counters */ 1836 mt7530_mib_reset(ds); 1837 1838 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1839 /* Disable forwarding by default on all ports */ 1840 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, 1841 PCR_MATRIX_CLR); 1842 1843 mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR); 1844 1845 if (dsa_is_cpu_port(ds, i)) { 1846 ret = mt753x_cpu_port_enable(ds, i); 1847 if (ret) 1848 return ret; 1849 } else 1850 mt7530_port_disable(ds, i); 1851 1852 /* Enable consistent egress tag */ 1853 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, 1854 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1855 } 1856 1857 ds->configure_vlan_while_not_filtering = true; 1858 1859 /* Flush the FDB table */ 1860 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); 1861 if (ret < 0) 1862 return ret; 1863 1864 return 0; 1865 } 1866 1867 static bool 1868 mt7530_phy_mode_supported(struct dsa_switch *ds, int port, 1869 const struct phylink_link_state *state) 1870 { 1871 struct mt7530_priv *priv = ds->priv; 1872 1873 switch (port) { 1874 case 0 ... 4: /* Internal phy */ 1875 if (state->interface != PHY_INTERFACE_MODE_GMII) 1876 return false; 1877 break; 1878 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ 1879 if (!phy_interface_mode_is_rgmii(state->interface) && 1880 state->interface != PHY_INTERFACE_MODE_MII && 1881 state->interface != PHY_INTERFACE_MODE_GMII) 1882 return false; 1883 break; 1884 case 6: /* 1st cpu port */ 1885 if (state->interface != PHY_INTERFACE_MODE_RGMII && 1886 state->interface != PHY_INTERFACE_MODE_TRGMII) 1887 return false; 1888 break; 1889 default: 1890 dev_err(priv->dev, "%s: unsupported port: %i\n", __func__, 1891 port); 1892 return false; 1893 } 1894 1895 return true; 1896 } 1897 1898 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port) 1899 { 1900 return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII); 1901 } 1902 1903 static bool 1904 mt7531_phy_mode_supported(struct dsa_switch *ds, int port, 1905 const struct phylink_link_state *state) 1906 { 1907 struct mt7530_priv *priv = ds->priv; 1908 1909 switch (port) { 1910 case 0 ... 4: /* Internal phy */ 1911 if (state->interface != PHY_INTERFACE_MODE_GMII) 1912 return false; 1913 break; 1914 case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */ 1915 if (mt7531_is_rgmii_port(priv, port)) 1916 return phy_interface_mode_is_rgmii(state->interface); 1917 fallthrough; 1918 case 6: /* 1st cpu port supports sgmii/8023z only */ 1919 if (state->interface != PHY_INTERFACE_MODE_SGMII && 1920 !phy_interface_mode_is_8023z(state->interface)) 1921 return false; 1922 break; 1923 default: 1924 dev_err(priv->dev, "%s: unsupported port: %i\n", __func__, 1925 port); 1926 return false; 1927 } 1928 1929 return true; 1930 } 1931 1932 static bool 1933 mt753x_phy_mode_supported(struct dsa_switch *ds, int port, 1934 const struct phylink_link_state *state) 1935 { 1936 struct mt7530_priv *priv = ds->priv; 1937 1938 return priv->info->phy_mode_supported(ds, port, state); 1939 } 1940 1941 static int 1942 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state) 1943 { 1944 struct mt7530_priv *priv = ds->priv; 1945 1946 return priv->info->pad_setup(ds, state->interface); 1947 } 1948 1949 static int 1950 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 1951 phy_interface_t interface) 1952 { 1953 struct mt7530_priv *priv = ds->priv; 1954 1955 /* Only need to setup port5. */ 1956 if (port != 5) 1957 return 0; 1958 1959 mt7530_setup_port5(priv->ds, interface); 1960 1961 return 0; 1962 } 1963 1964 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port, 1965 phy_interface_t interface, 1966 struct phy_device *phydev) 1967 { 1968 u32 val; 1969 1970 if (!mt7531_is_rgmii_port(priv, port)) { 1971 dev_err(priv->dev, "RGMII mode is not available for port %d\n", 1972 port); 1973 return -EINVAL; 1974 } 1975 1976 val = mt7530_read(priv, MT7531_CLKGEN_CTRL); 1977 val |= GP_CLK_EN; 1978 val &= ~GP_MODE_MASK; 1979 val |= GP_MODE(MT7531_GP_MODE_RGMII); 1980 val &= ~CLK_SKEW_IN_MASK; 1981 val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG); 1982 val &= ~CLK_SKEW_OUT_MASK; 1983 val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG); 1984 val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY; 1985 1986 /* Do not adjust rgmii delay when vendor phy driver presents. */ 1987 if (!phydev || phy_driver_is_genphy(phydev)) { 1988 val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY); 1989 switch (interface) { 1990 case PHY_INTERFACE_MODE_RGMII: 1991 val |= TXCLK_NO_REVERSE; 1992 val |= RXCLK_NO_DELAY; 1993 break; 1994 case PHY_INTERFACE_MODE_RGMII_RXID: 1995 val |= TXCLK_NO_REVERSE; 1996 break; 1997 case PHY_INTERFACE_MODE_RGMII_TXID: 1998 val |= RXCLK_NO_DELAY; 1999 break; 2000 case PHY_INTERFACE_MODE_RGMII_ID: 2001 break; 2002 default: 2003 return -EINVAL; 2004 } 2005 } 2006 mt7530_write(priv, MT7531_CLKGEN_CTRL, val); 2007 2008 return 0; 2009 } 2010 2011 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port, 2012 unsigned long *supported) 2013 { 2014 /* Port5 supports ethier RGMII or SGMII. 2015 * Port6 supports SGMII only. 2016 */ 2017 switch (port) { 2018 case 5: 2019 if (mt7531_is_rgmii_port(priv, port)) 2020 break; 2021 fallthrough; 2022 case 6: 2023 phylink_set(supported, 1000baseX_Full); 2024 phylink_set(supported, 2500baseX_Full); 2025 phylink_set(supported, 2500baseT_Full); 2026 } 2027 } 2028 2029 static void 2030 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port, 2031 unsigned int mode, phy_interface_t interface, 2032 int speed, int duplex) 2033 { 2034 struct mt7530_priv *priv = ds->priv; 2035 unsigned int val; 2036 2037 /* For adjusting speed and duplex of SGMII force mode. */ 2038 if (interface != PHY_INTERFACE_MODE_SGMII || 2039 phylink_autoneg_inband(mode)) 2040 return; 2041 2042 /* SGMII force mode setting */ 2043 val = mt7530_read(priv, MT7531_SGMII_MODE(port)); 2044 val &= ~MT7531_SGMII_IF_MODE_MASK; 2045 2046 switch (speed) { 2047 case SPEED_10: 2048 val |= MT7531_SGMII_FORCE_SPEED_10; 2049 break; 2050 case SPEED_100: 2051 val |= MT7531_SGMII_FORCE_SPEED_100; 2052 break; 2053 case SPEED_1000: 2054 val |= MT7531_SGMII_FORCE_SPEED_1000; 2055 break; 2056 } 2057 2058 /* MT7531 SGMII 1G force mode can only work in full duplex mode, 2059 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not. 2060 */ 2061 if ((speed == SPEED_10 || speed == SPEED_100) && 2062 duplex != DUPLEX_FULL) 2063 val |= MT7531_SGMII_FORCE_HALF_DUPLEX; 2064 2065 mt7530_write(priv, MT7531_SGMII_MODE(port), val); 2066 } 2067 2068 static bool mt753x_is_mac_port(u32 port) 2069 { 2070 return (port == 5 || port == 6); 2071 } 2072 2073 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port, 2074 phy_interface_t interface) 2075 { 2076 u32 val; 2077 2078 if (!mt753x_is_mac_port(port)) 2079 return -EINVAL; 2080 2081 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 2082 MT7531_SGMII_PHYA_PWD); 2083 2084 val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port)); 2085 val &= ~MT7531_RG_TPHY_SPEED_MASK; 2086 /* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B 2087 * encoding. 2088 */ 2089 val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ? 2090 MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G; 2091 mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val); 2092 2093 mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE); 2094 2095 /* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex 2096 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not. 2097 */ 2098 mt7530_rmw(priv, MT7531_SGMII_MODE(port), 2099 MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS, 2100 MT7531_SGMII_FORCE_SPEED_1000); 2101 2102 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0); 2103 2104 return 0; 2105 } 2106 2107 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port, 2108 phy_interface_t interface) 2109 { 2110 if (!mt753x_is_mac_port(port)) 2111 return -EINVAL; 2112 2113 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 2114 MT7531_SGMII_PHYA_PWD); 2115 2116 mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port), 2117 MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G); 2118 2119 mt7530_set(priv, MT7531_SGMII_MODE(port), 2120 MT7531_SGMII_REMOTE_FAULT_DIS | 2121 MT7531_SGMII_SPEED_DUPLEX_AN); 2122 2123 mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port), 2124 MT7531_SGMII_TX_CONFIG_MASK, 1); 2125 2126 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE); 2127 2128 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART); 2129 2130 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0); 2131 2132 return 0; 2133 } 2134 2135 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port) 2136 { 2137 struct mt7530_priv *priv = ds->priv; 2138 u32 val; 2139 2140 /* Only restart AN when AN is enabled */ 2141 val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); 2142 if (val & MT7531_SGMII_AN_ENABLE) { 2143 val |= MT7531_SGMII_AN_RESTART; 2144 mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val); 2145 } 2146 } 2147 2148 static int 2149 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2150 phy_interface_t interface) 2151 { 2152 struct mt7530_priv *priv = ds->priv; 2153 struct phy_device *phydev; 2154 struct dsa_port *dp; 2155 2156 if (!mt753x_is_mac_port(port)) { 2157 dev_err(priv->dev, "port %d is not a MAC port\n", port); 2158 return -EINVAL; 2159 } 2160 2161 switch (interface) { 2162 case PHY_INTERFACE_MODE_RGMII: 2163 case PHY_INTERFACE_MODE_RGMII_ID: 2164 case PHY_INTERFACE_MODE_RGMII_RXID: 2165 case PHY_INTERFACE_MODE_RGMII_TXID: 2166 dp = dsa_to_port(ds, port); 2167 phydev = dp->slave->phydev; 2168 return mt7531_rgmii_setup(priv, port, interface, phydev); 2169 case PHY_INTERFACE_MODE_SGMII: 2170 return mt7531_sgmii_setup_mode_an(priv, port, interface); 2171 case PHY_INTERFACE_MODE_NA: 2172 case PHY_INTERFACE_MODE_1000BASEX: 2173 case PHY_INTERFACE_MODE_2500BASEX: 2174 if (phylink_autoneg_inband(mode)) 2175 return -EINVAL; 2176 2177 return mt7531_sgmii_setup_mode_force(priv, port, interface); 2178 default: 2179 return -EINVAL; 2180 } 2181 2182 return -EINVAL; 2183 } 2184 2185 static int 2186 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2187 const struct phylink_link_state *state) 2188 { 2189 struct mt7530_priv *priv = ds->priv; 2190 2191 return priv->info->mac_port_config(ds, port, mode, state->interface); 2192 } 2193 2194 static void 2195 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2196 const struct phylink_link_state *state) 2197 { 2198 struct mt7530_priv *priv = ds->priv; 2199 u32 mcr_cur, mcr_new; 2200 2201 if (!mt753x_phy_mode_supported(ds, port, state)) 2202 goto unsupported; 2203 2204 switch (port) { 2205 case 0 ... 4: /* Internal phy */ 2206 if (state->interface != PHY_INTERFACE_MODE_GMII) 2207 goto unsupported; 2208 break; 2209 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ 2210 if (priv->p5_interface == state->interface) 2211 break; 2212 2213 if (mt753x_mac_config(ds, port, mode, state) < 0) 2214 goto unsupported; 2215 2216 if (priv->p5_intf_sel != P5_DISABLED) 2217 priv->p5_interface = state->interface; 2218 break; 2219 case 6: /* 1st cpu port */ 2220 if (priv->p6_interface == state->interface) 2221 break; 2222 2223 mt753x_pad_setup(ds, state); 2224 2225 if (mt753x_mac_config(ds, port, mode, state) < 0) 2226 goto unsupported; 2227 2228 priv->p6_interface = state->interface; 2229 break; 2230 default: 2231 unsupported: 2232 dev_err(ds->dev, "%s: unsupported %s port: %i\n", 2233 __func__, phy_modes(state->interface), port); 2234 return; 2235 } 2236 2237 if (phylink_autoneg_inband(mode) && 2238 state->interface != PHY_INTERFACE_MODE_SGMII) { 2239 dev_err(ds->dev, "%s: in-band negotiation unsupported\n", 2240 __func__); 2241 return; 2242 } 2243 2244 mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port)); 2245 mcr_new = mcr_cur; 2246 mcr_new &= ~PMCR_LINK_SETTINGS_MASK; 2247 mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN | 2248 PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id); 2249 2250 /* Are we connected to external phy */ 2251 if (port == 5 && dsa_is_user_port(ds, 5)) 2252 mcr_new |= PMCR_EXT_PHY; 2253 2254 if (mcr_new != mcr_cur) 2255 mt7530_write(priv, MT7530_PMCR_P(port), mcr_new); 2256 } 2257 2258 static void 2259 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port) 2260 { 2261 struct mt7530_priv *priv = ds->priv; 2262 2263 if (!priv->info->mac_pcs_an_restart) 2264 return; 2265 2266 priv->info->mac_pcs_an_restart(ds, port); 2267 } 2268 2269 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port, 2270 unsigned int mode, 2271 phy_interface_t interface) 2272 { 2273 struct mt7530_priv *priv = ds->priv; 2274 2275 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 2276 } 2277 2278 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port, 2279 unsigned int mode, phy_interface_t interface, 2280 int speed, int duplex) 2281 { 2282 struct mt7530_priv *priv = ds->priv; 2283 2284 if (!priv->info->mac_pcs_link_up) 2285 return; 2286 2287 priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex); 2288 } 2289 2290 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port, 2291 unsigned int mode, 2292 phy_interface_t interface, 2293 struct phy_device *phydev, 2294 int speed, int duplex, 2295 bool tx_pause, bool rx_pause) 2296 { 2297 struct mt7530_priv *priv = ds->priv; 2298 u32 mcr; 2299 2300 mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex); 2301 2302 mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK; 2303 2304 /* MT753x MAC works in 1G full duplex mode for all up-clocked 2305 * variants. 2306 */ 2307 if (interface == PHY_INTERFACE_MODE_TRGMII || 2308 (phy_interface_mode_is_8023z(interface))) { 2309 speed = SPEED_1000; 2310 duplex = DUPLEX_FULL; 2311 } 2312 2313 switch (speed) { 2314 case SPEED_1000: 2315 mcr |= PMCR_FORCE_SPEED_1000; 2316 break; 2317 case SPEED_100: 2318 mcr |= PMCR_FORCE_SPEED_100; 2319 break; 2320 } 2321 if (duplex == DUPLEX_FULL) { 2322 mcr |= PMCR_FORCE_FDX; 2323 if (tx_pause) 2324 mcr |= PMCR_TX_FC_EN; 2325 if (rx_pause) 2326 mcr |= PMCR_RX_FC_EN; 2327 } 2328 2329 mt7530_set(priv, MT7530_PMCR_P(port), mcr); 2330 } 2331 2332 static int 2333 mt7531_cpu_port_config(struct dsa_switch *ds, int port) 2334 { 2335 struct mt7530_priv *priv = ds->priv; 2336 phy_interface_t interface; 2337 int speed; 2338 int ret; 2339 2340 switch (port) { 2341 case 5: 2342 if (mt7531_is_rgmii_port(priv, port)) 2343 interface = PHY_INTERFACE_MODE_RGMII; 2344 else 2345 interface = PHY_INTERFACE_MODE_2500BASEX; 2346 2347 priv->p5_interface = interface; 2348 break; 2349 case 6: 2350 interface = PHY_INTERFACE_MODE_2500BASEX; 2351 2352 mt7531_pad_setup(ds, interface); 2353 2354 priv->p6_interface = interface; 2355 break; 2356 default: 2357 return -EINVAL; 2358 } 2359 2360 if (interface == PHY_INTERFACE_MODE_2500BASEX) 2361 speed = SPEED_2500; 2362 else 2363 speed = SPEED_1000; 2364 2365 ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface); 2366 if (ret) 2367 return ret; 2368 mt7530_write(priv, MT7530_PMCR_P(port), 2369 PMCR_CPU_PORT_SETTING(priv->id)); 2370 mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL, 2371 speed, DUPLEX_FULL, true, true); 2372 2373 return 0; 2374 } 2375 2376 static void 2377 mt7530_mac_port_validate(struct dsa_switch *ds, int port, 2378 unsigned long *supported) 2379 { 2380 if (port == 5) 2381 phylink_set(supported, 1000baseX_Full); 2382 } 2383 2384 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port, 2385 unsigned long *supported) 2386 { 2387 struct mt7530_priv *priv = ds->priv; 2388 2389 mt7531_sgmii_validate(priv, port, supported); 2390 } 2391 2392 static void 2393 mt753x_phylink_validate(struct dsa_switch *ds, int port, 2394 unsigned long *supported, 2395 struct phylink_link_state *state) 2396 { 2397 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 2398 struct mt7530_priv *priv = ds->priv; 2399 2400 if (state->interface != PHY_INTERFACE_MODE_NA && 2401 !mt753x_phy_mode_supported(ds, port, state)) { 2402 linkmode_zero(supported); 2403 return; 2404 } 2405 2406 phylink_set_port_modes(mask); 2407 2408 if (state->interface != PHY_INTERFACE_MODE_TRGMII || 2409 !phy_interface_mode_is_8023z(state->interface)) { 2410 phylink_set(mask, 10baseT_Half); 2411 phylink_set(mask, 10baseT_Full); 2412 phylink_set(mask, 100baseT_Half); 2413 phylink_set(mask, 100baseT_Full); 2414 phylink_set(mask, Autoneg); 2415 } 2416 2417 /* This switch only supports 1G full-duplex. */ 2418 if (state->interface != PHY_INTERFACE_MODE_MII) 2419 phylink_set(mask, 1000baseT_Full); 2420 2421 priv->info->mac_port_validate(ds, port, mask); 2422 2423 phylink_set(mask, Pause); 2424 phylink_set(mask, Asym_Pause); 2425 2426 linkmode_and(supported, supported, mask); 2427 linkmode_and(state->advertising, state->advertising, mask); 2428 2429 /* We can only operate at 2500BaseX or 1000BaseX. If requested 2430 * to advertise both, only report advertising at 2500BaseX. 2431 */ 2432 phylink_helper_basex_speed(state); 2433 } 2434 2435 static int 2436 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port, 2437 struct phylink_link_state *state) 2438 { 2439 struct mt7530_priv *priv = ds->priv; 2440 u32 pmsr; 2441 2442 if (port < 0 || port >= MT7530_NUM_PORTS) 2443 return -EINVAL; 2444 2445 pmsr = mt7530_read(priv, MT7530_PMSR_P(port)); 2446 2447 state->link = (pmsr & PMSR_LINK); 2448 state->an_complete = state->link; 2449 state->duplex = !!(pmsr & PMSR_DPX); 2450 2451 switch (pmsr & PMSR_SPEED_MASK) { 2452 case PMSR_SPEED_10: 2453 state->speed = SPEED_10; 2454 break; 2455 case PMSR_SPEED_100: 2456 state->speed = SPEED_100; 2457 break; 2458 case PMSR_SPEED_1000: 2459 state->speed = SPEED_1000; 2460 break; 2461 default: 2462 state->speed = SPEED_UNKNOWN; 2463 break; 2464 } 2465 2466 state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX); 2467 if (pmsr & PMSR_RX_FC) 2468 state->pause |= MLO_PAUSE_RX; 2469 if (pmsr & PMSR_TX_FC) 2470 state->pause |= MLO_PAUSE_TX; 2471 2472 return 1; 2473 } 2474 2475 static int 2476 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port, 2477 struct phylink_link_state *state) 2478 { 2479 u32 status, val; 2480 u16 config_reg; 2481 2482 status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); 2483 state->link = !!(status & MT7531_SGMII_LINK_STATUS); 2484 if (state->interface == PHY_INTERFACE_MODE_SGMII && 2485 (status & MT7531_SGMII_AN_ENABLE)) { 2486 val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port)); 2487 config_reg = val >> 16; 2488 2489 switch (config_reg & LPA_SGMII_SPD_MASK) { 2490 case LPA_SGMII_1000: 2491 state->speed = SPEED_1000; 2492 break; 2493 case LPA_SGMII_100: 2494 state->speed = SPEED_100; 2495 break; 2496 case LPA_SGMII_10: 2497 state->speed = SPEED_10; 2498 break; 2499 default: 2500 dev_err(priv->dev, "invalid sgmii PHY speed\n"); 2501 state->link = false; 2502 return -EINVAL; 2503 } 2504 2505 if (config_reg & LPA_SGMII_FULL_DUPLEX) 2506 state->duplex = DUPLEX_FULL; 2507 else 2508 state->duplex = DUPLEX_HALF; 2509 } 2510 2511 return 0; 2512 } 2513 2514 static int 2515 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port, 2516 struct phylink_link_state *state) 2517 { 2518 struct mt7530_priv *priv = ds->priv; 2519 2520 if (state->interface == PHY_INTERFACE_MODE_SGMII) 2521 return mt7531_sgmii_pcs_get_state_an(priv, port, state); 2522 2523 return -EOPNOTSUPP; 2524 } 2525 2526 static int 2527 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port, 2528 struct phylink_link_state *state) 2529 { 2530 struct mt7530_priv *priv = ds->priv; 2531 2532 return priv->info->mac_port_get_state(ds, port, state); 2533 } 2534 2535 static int 2536 mt753x_setup(struct dsa_switch *ds) 2537 { 2538 struct mt7530_priv *priv = ds->priv; 2539 2540 return priv->info->sw_setup(ds); 2541 } 2542 2543 static int 2544 mt753x_phy_read(struct dsa_switch *ds, int port, int regnum) 2545 { 2546 struct mt7530_priv *priv = ds->priv; 2547 2548 return priv->info->phy_read(ds, port, regnum); 2549 } 2550 2551 static int 2552 mt753x_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val) 2553 { 2554 struct mt7530_priv *priv = ds->priv; 2555 2556 return priv->info->phy_write(ds, port, regnum, val); 2557 } 2558 2559 static const struct dsa_switch_ops mt7530_switch_ops = { 2560 .get_tag_protocol = mtk_get_tag_protocol, 2561 .setup = mt753x_setup, 2562 .get_strings = mt7530_get_strings, 2563 .phy_read = mt753x_phy_read, 2564 .phy_write = mt753x_phy_write, 2565 .get_ethtool_stats = mt7530_get_ethtool_stats, 2566 .get_sset_count = mt7530_get_sset_count, 2567 .port_enable = mt7530_port_enable, 2568 .port_disable = mt7530_port_disable, 2569 .port_change_mtu = mt7530_port_change_mtu, 2570 .port_max_mtu = mt7530_port_max_mtu, 2571 .port_stp_state_set = mt7530_stp_state_set, 2572 .port_bridge_join = mt7530_port_bridge_join, 2573 .port_bridge_leave = mt7530_port_bridge_leave, 2574 .port_fdb_add = mt7530_port_fdb_add, 2575 .port_fdb_del = mt7530_port_fdb_del, 2576 .port_fdb_dump = mt7530_port_fdb_dump, 2577 .port_vlan_filtering = mt7530_port_vlan_filtering, 2578 .port_vlan_prepare = mt7530_port_vlan_prepare, 2579 .port_vlan_add = mt7530_port_vlan_add, 2580 .port_vlan_del = mt7530_port_vlan_del, 2581 .port_mirror_add = mt753x_port_mirror_add, 2582 .port_mirror_del = mt753x_port_mirror_del, 2583 .phylink_validate = mt753x_phylink_validate, 2584 .phylink_mac_link_state = mt753x_phylink_mac_link_state, 2585 .phylink_mac_config = mt753x_phylink_mac_config, 2586 .phylink_mac_an_restart = mt753x_phylink_mac_an_restart, 2587 .phylink_mac_link_down = mt753x_phylink_mac_link_down, 2588 .phylink_mac_link_up = mt753x_phylink_mac_link_up, 2589 }; 2590 2591 static const struct mt753x_info mt753x_table[] = { 2592 [ID_MT7621] = { 2593 .id = ID_MT7621, 2594 .sw_setup = mt7530_setup, 2595 .phy_read = mt7530_phy_read, 2596 .phy_write = mt7530_phy_write, 2597 .pad_setup = mt7530_pad_clk_setup, 2598 .phy_mode_supported = mt7530_phy_mode_supported, 2599 .mac_port_validate = mt7530_mac_port_validate, 2600 .mac_port_get_state = mt7530_phylink_mac_link_state, 2601 .mac_port_config = mt7530_mac_config, 2602 }, 2603 [ID_MT7530] = { 2604 .id = ID_MT7530, 2605 .sw_setup = mt7530_setup, 2606 .phy_read = mt7530_phy_read, 2607 .phy_write = mt7530_phy_write, 2608 .pad_setup = mt7530_pad_clk_setup, 2609 .phy_mode_supported = mt7530_phy_mode_supported, 2610 .mac_port_validate = mt7530_mac_port_validate, 2611 .mac_port_get_state = mt7530_phylink_mac_link_state, 2612 .mac_port_config = mt7530_mac_config, 2613 }, 2614 [ID_MT7531] = { 2615 .id = ID_MT7531, 2616 .sw_setup = mt7531_setup, 2617 .phy_read = mt7531_ind_phy_read, 2618 .phy_write = mt7531_ind_phy_write, 2619 .pad_setup = mt7531_pad_setup, 2620 .cpu_port_config = mt7531_cpu_port_config, 2621 .phy_mode_supported = mt7531_phy_mode_supported, 2622 .mac_port_validate = mt7531_mac_port_validate, 2623 .mac_port_get_state = mt7531_phylink_mac_link_state, 2624 .mac_port_config = mt7531_mac_config, 2625 .mac_pcs_an_restart = mt7531_sgmii_restart_an, 2626 .mac_pcs_link_up = mt7531_sgmii_link_up_force, 2627 }, 2628 }; 2629 2630 static const struct of_device_id mt7530_of_match[] = { 2631 { .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], }, 2632 { .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], }, 2633 { .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], }, 2634 { /* sentinel */ }, 2635 }; 2636 MODULE_DEVICE_TABLE(of, mt7530_of_match); 2637 2638 static int 2639 mt7530_probe(struct mdio_device *mdiodev) 2640 { 2641 struct mt7530_priv *priv; 2642 struct device_node *dn; 2643 2644 dn = mdiodev->dev.of_node; 2645 2646 priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL); 2647 if (!priv) 2648 return -ENOMEM; 2649 2650 priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL); 2651 if (!priv->ds) 2652 return -ENOMEM; 2653 2654 priv->ds->dev = &mdiodev->dev; 2655 priv->ds->num_ports = DSA_MAX_PORTS; 2656 2657 /* Use medatek,mcm property to distinguish hardware type that would 2658 * casues a little bit differences on power-on sequence. 2659 */ 2660 priv->mcm = of_property_read_bool(dn, "mediatek,mcm"); 2661 if (priv->mcm) { 2662 dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n"); 2663 2664 priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm"); 2665 if (IS_ERR(priv->rstc)) { 2666 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 2667 return PTR_ERR(priv->rstc); 2668 } 2669 } 2670 2671 /* Get the hardware identifier from the devicetree node. 2672 * We will need it for some of the clock and regulator setup. 2673 */ 2674 priv->info = of_device_get_match_data(&mdiodev->dev); 2675 if (!priv->info) 2676 return -EINVAL; 2677 2678 /* Sanity check if these required device operations are filled 2679 * properly. 2680 */ 2681 if (!priv->info->sw_setup || !priv->info->pad_setup || 2682 !priv->info->phy_read || !priv->info->phy_write || 2683 !priv->info->phy_mode_supported || 2684 !priv->info->mac_port_validate || 2685 !priv->info->mac_port_get_state || !priv->info->mac_port_config) 2686 return -EINVAL; 2687 2688 priv->id = priv->info->id; 2689 2690 if (priv->id == ID_MT7530) { 2691 priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core"); 2692 if (IS_ERR(priv->core_pwr)) 2693 return PTR_ERR(priv->core_pwr); 2694 2695 priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io"); 2696 if (IS_ERR(priv->io_pwr)) 2697 return PTR_ERR(priv->io_pwr); 2698 } 2699 2700 /* Not MCM that indicates switch works as the remote standalone 2701 * integrated circuit so the GPIO pin would be used to complete 2702 * the reset, otherwise memory-mapped register accessing used 2703 * through syscon provides in the case of MCM. 2704 */ 2705 if (!priv->mcm) { 2706 priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset", 2707 GPIOD_OUT_LOW); 2708 if (IS_ERR(priv->reset)) { 2709 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 2710 return PTR_ERR(priv->reset); 2711 } 2712 } 2713 2714 priv->bus = mdiodev->bus; 2715 priv->dev = &mdiodev->dev; 2716 priv->ds->priv = priv; 2717 priv->ds->ops = &mt7530_switch_ops; 2718 mutex_init(&priv->reg_mutex); 2719 dev_set_drvdata(&mdiodev->dev, priv); 2720 2721 return dsa_register_switch(priv->ds); 2722 } 2723 2724 static void 2725 mt7530_remove(struct mdio_device *mdiodev) 2726 { 2727 struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev); 2728 int ret = 0; 2729 2730 ret = regulator_disable(priv->core_pwr); 2731 if (ret < 0) 2732 dev_err(priv->dev, 2733 "Failed to disable core power: %d\n", ret); 2734 2735 ret = regulator_disable(priv->io_pwr); 2736 if (ret < 0) 2737 dev_err(priv->dev, "Failed to disable io pwr: %d\n", 2738 ret); 2739 2740 dsa_unregister_switch(priv->ds); 2741 mutex_destroy(&priv->reg_mutex); 2742 } 2743 2744 static struct mdio_driver mt7530_mdio_driver = { 2745 .probe = mt7530_probe, 2746 .remove = mt7530_remove, 2747 .mdiodrv.driver = { 2748 .name = "mt7530", 2749 .of_match_table = mt7530_of_match, 2750 }, 2751 }; 2752 2753 mdio_module_driver(mt7530_mdio_driver); 2754 2755 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>"); 2756 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch"); 2757 MODULE_LICENSE("GPL"); 2758