xref: /linux/drivers/net/dsa/mt7530.c (revision ed30aef3c864f99111e16d4ea5cf29488d99a278)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_mdio.h>
14 #include <linux/of_net.h>
15 #include <linux/of_platform.h>
16 #include <linux/phylink.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/reset.h>
20 #include <linux/gpio/consumer.h>
21 #include <net/dsa.h>
22 
23 #include "mt7530.h"
24 
25 /* String, offset, and register size in bytes if different from 4 bytes */
26 static const struct mt7530_mib_desc mt7530_mib[] = {
27 	MIB_DESC(1, 0x00, "TxDrop"),
28 	MIB_DESC(1, 0x04, "TxCrcErr"),
29 	MIB_DESC(1, 0x08, "TxUnicast"),
30 	MIB_DESC(1, 0x0c, "TxMulticast"),
31 	MIB_DESC(1, 0x10, "TxBroadcast"),
32 	MIB_DESC(1, 0x14, "TxCollision"),
33 	MIB_DESC(1, 0x18, "TxSingleCollision"),
34 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
35 	MIB_DESC(1, 0x20, "TxDeferred"),
36 	MIB_DESC(1, 0x24, "TxLateCollision"),
37 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
38 	MIB_DESC(1, 0x2c, "TxPause"),
39 	MIB_DESC(1, 0x30, "TxPktSz64"),
40 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
41 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
42 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
43 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
44 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
45 	MIB_DESC(2, 0x48, "TxBytes"),
46 	MIB_DESC(1, 0x60, "RxDrop"),
47 	MIB_DESC(1, 0x64, "RxFiltering"),
48 	MIB_DESC(1, 0x6c, "RxMulticast"),
49 	MIB_DESC(1, 0x70, "RxBroadcast"),
50 	MIB_DESC(1, 0x74, "RxAlignErr"),
51 	MIB_DESC(1, 0x78, "RxCrcErr"),
52 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
53 	MIB_DESC(1, 0x80, "RxFragErr"),
54 	MIB_DESC(1, 0x84, "RxOverSzErr"),
55 	MIB_DESC(1, 0x88, "RxJabberErr"),
56 	MIB_DESC(1, 0x8c, "RxPause"),
57 	MIB_DESC(1, 0x90, "RxPktSz64"),
58 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
59 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
60 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
61 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
62 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
63 	MIB_DESC(2, 0xa8, "RxBytes"),
64 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
65 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
66 	MIB_DESC(1, 0xb8, "RxArlDrop"),
67 };
68 
69 static int
70 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
71 {
72 	struct mii_bus *bus = priv->bus;
73 	int value, ret;
74 
75 	/* Write the desired MMD Devad */
76 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
77 	if (ret < 0)
78 		goto err;
79 
80 	/* Write the desired MMD register address */
81 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
82 	if (ret < 0)
83 		goto err;
84 
85 	/* Select the Function : DATA with no post increment */
86 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
87 	if (ret < 0)
88 		goto err;
89 
90 	/* Read the content of the MMD's selected register */
91 	value = bus->read(bus, 0, MII_MMD_DATA);
92 
93 	return value;
94 err:
95 	dev_err(&bus->dev,  "failed to read mmd register\n");
96 
97 	return ret;
98 }
99 
100 static int
101 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
102 			int devad, u32 data)
103 {
104 	struct mii_bus *bus = priv->bus;
105 	int ret;
106 
107 	/* Write the desired MMD Devad */
108 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
109 	if (ret < 0)
110 		goto err;
111 
112 	/* Write the desired MMD register address */
113 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
114 	if (ret < 0)
115 		goto err;
116 
117 	/* Select the Function : DATA with no post increment */
118 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
119 	if (ret < 0)
120 		goto err;
121 
122 	/* Write the data into MMD's selected register */
123 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
124 err:
125 	if (ret < 0)
126 		dev_err(&bus->dev,
127 			"failed to write mmd register\n");
128 	return ret;
129 }
130 
131 static void
132 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
133 {
134 	struct mii_bus *bus = priv->bus;
135 
136 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
137 
138 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
139 
140 	mutex_unlock(&bus->mdio_lock);
141 }
142 
143 static void
144 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
145 {
146 	struct mii_bus *bus = priv->bus;
147 	u32 val;
148 
149 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
150 
151 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
152 	val &= ~mask;
153 	val |= set;
154 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
155 
156 	mutex_unlock(&bus->mdio_lock);
157 }
158 
159 static void
160 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
161 {
162 	core_rmw(priv, reg, 0, val);
163 }
164 
165 static void
166 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
167 {
168 	core_rmw(priv, reg, val, 0);
169 }
170 
171 static int
172 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
173 {
174 	struct mii_bus *bus = priv->bus;
175 	u16 page, r, lo, hi;
176 	int ret;
177 
178 	page = (reg >> 6) & 0x3ff;
179 	r  = (reg >> 2) & 0xf;
180 	lo = val & 0xffff;
181 	hi = val >> 16;
182 
183 	/* MT7530 uses 31 as the pseudo port */
184 	ret = bus->write(bus, 0x1f, 0x1f, page);
185 	if (ret < 0)
186 		goto err;
187 
188 	ret = bus->write(bus, 0x1f, r,  lo);
189 	if (ret < 0)
190 		goto err;
191 
192 	ret = bus->write(bus, 0x1f, 0x10, hi);
193 err:
194 	if (ret < 0)
195 		dev_err(&bus->dev,
196 			"failed to write mt7530 register\n");
197 	return ret;
198 }
199 
200 static u32
201 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
202 {
203 	struct mii_bus *bus = priv->bus;
204 	u16 page, r, lo, hi;
205 	int ret;
206 
207 	page = (reg >> 6) & 0x3ff;
208 	r = (reg >> 2) & 0xf;
209 
210 	/* MT7530 uses 31 as the pseudo port */
211 	ret = bus->write(bus, 0x1f, 0x1f, page);
212 	if (ret < 0) {
213 		dev_err(&bus->dev,
214 			"failed to read mt7530 register\n");
215 		return ret;
216 	}
217 
218 	lo = bus->read(bus, 0x1f, r);
219 	hi = bus->read(bus, 0x1f, 0x10);
220 
221 	return (hi << 16) | (lo & 0xffff);
222 }
223 
224 static void
225 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
226 {
227 	struct mii_bus *bus = priv->bus;
228 
229 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
230 
231 	mt7530_mii_write(priv, reg, val);
232 
233 	mutex_unlock(&bus->mdio_lock);
234 }
235 
236 static u32
237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 	return mt7530_mii_read(p->priv, p->reg);
240 }
241 
242 static u32
243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 	struct mii_bus		*bus = p->priv->bus;
246 	u32 val;
247 
248 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
249 
250 	val = mt7530_mii_read(p->priv, p->reg);
251 
252 	mutex_unlock(&bus->mdio_lock);
253 
254 	return val;
255 }
256 
257 static u32
258 mt7530_read(struct mt7530_priv *priv, u32 reg)
259 {
260 	struct mt7530_dummy_poll p;
261 
262 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
263 	return _mt7530_read(&p);
264 }
265 
266 static void
267 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
268 	   u32 mask, u32 set)
269 {
270 	struct mii_bus *bus = priv->bus;
271 	u32 val;
272 
273 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
274 
275 	val = mt7530_mii_read(priv, reg);
276 	val &= ~mask;
277 	val |= set;
278 	mt7530_mii_write(priv, reg, val);
279 
280 	mutex_unlock(&bus->mdio_lock);
281 }
282 
283 static void
284 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
285 {
286 	mt7530_rmw(priv, reg, 0, val);
287 }
288 
289 static void
290 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
291 {
292 	mt7530_rmw(priv, reg, val, 0);
293 }
294 
295 static int
296 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
297 {
298 	u32 val;
299 	int ret;
300 	struct mt7530_dummy_poll p;
301 
302 	/* Set the command operating upon the MAC address entries */
303 	val = ATC_BUSY | ATC_MAT(0) | cmd;
304 	mt7530_write(priv, MT7530_ATC, val);
305 
306 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
307 	ret = readx_poll_timeout(_mt7530_read, &p, val,
308 				 !(val & ATC_BUSY), 20, 20000);
309 	if (ret < 0) {
310 		dev_err(priv->dev, "reset timeout\n");
311 		return ret;
312 	}
313 
314 	/* Additional sanity for read command if the specified
315 	 * entry is invalid
316 	 */
317 	val = mt7530_read(priv, MT7530_ATC);
318 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
319 		return -EINVAL;
320 
321 	if (rsp)
322 		*rsp = val;
323 
324 	return 0;
325 }
326 
327 static void
328 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
329 {
330 	u32 reg[3];
331 	int i;
332 
333 	/* Read from ARL table into an array */
334 	for (i = 0; i < 3; i++) {
335 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
336 
337 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
338 			__func__, __LINE__, i, reg[i]);
339 	}
340 
341 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
342 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
343 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
344 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
345 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
346 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
347 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
348 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
349 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
350 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
351 }
352 
353 static void
354 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
355 		 u8 port_mask, const u8 *mac,
356 		 u8 aging, u8 type)
357 {
358 	u32 reg[3] = { 0 };
359 	int i;
360 
361 	reg[1] |= vid & CVID_MASK;
362 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
363 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
364 	/* STATIC_ENT indicate that entry is static wouldn't
365 	 * be aged out and STATIC_EMP specified as erasing an
366 	 * entry
367 	 */
368 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
369 	reg[1] |= mac[5] << MAC_BYTE_5;
370 	reg[1] |= mac[4] << MAC_BYTE_4;
371 	reg[0] |= mac[3] << MAC_BYTE_3;
372 	reg[0] |= mac[2] << MAC_BYTE_2;
373 	reg[0] |= mac[1] << MAC_BYTE_1;
374 	reg[0] |= mac[0] << MAC_BYTE_0;
375 
376 	/* Write array into the ARL table */
377 	for (i = 0; i < 3; i++)
378 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
379 }
380 
381 /* Setup TX circuit including relevant PAD and driving */
382 static int
383 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
384 {
385 	struct mt7530_priv *priv = ds->priv;
386 	u32 ncpo1, ssc_delta, trgint, i, xtal;
387 
388 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
389 
390 	if (xtal == HWTRAP_XTAL_20MHZ) {
391 		dev_err(priv->dev,
392 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
393 			__func__);
394 		return -EINVAL;
395 	}
396 
397 	switch (interface) {
398 	case PHY_INTERFACE_MODE_RGMII:
399 		trgint = 0;
400 		/* PLL frequency: 125MHz */
401 		ncpo1 = 0x0c80;
402 		break;
403 	case PHY_INTERFACE_MODE_TRGMII:
404 		trgint = 1;
405 		if (priv->id == ID_MT7621) {
406 			/* PLL frequency: 150MHz: 1.2GBit */
407 			if (xtal == HWTRAP_XTAL_40MHZ)
408 				ncpo1 = 0x0780;
409 			if (xtal == HWTRAP_XTAL_25MHZ)
410 				ncpo1 = 0x0a00;
411 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
412 			if (xtal == HWTRAP_XTAL_40MHZ)
413 				ncpo1 = 0x0c80;
414 			if (xtal == HWTRAP_XTAL_25MHZ)
415 				ncpo1 = 0x1400;
416 		}
417 		break;
418 	default:
419 		dev_err(priv->dev, "xMII interface %d not supported\n",
420 			interface);
421 		return -EINVAL;
422 	}
423 
424 	if (xtal == HWTRAP_XTAL_25MHZ)
425 		ssc_delta = 0x57;
426 	else
427 		ssc_delta = 0x87;
428 
429 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
430 		   P6_INTF_MODE(trgint));
431 
432 	/* Lower Tx Driving for TRGMII path */
433 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
434 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
435 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
436 
437 	/* Setup core clock for MT7530 */
438 	if (!trgint) {
439 		/* Disable MT7530 core clock */
440 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
441 
442 		/* Disable PLL, since phy_device has not yet been created
443 		 * provided for phy_[read,write]_mmd_indirect is called, we
444 		 * provide our own core_write_mmd_indirect to complete this
445 		 * function.
446 		 */
447 		core_write_mmd_indirect(priv,
448 					CORE_GSWPLL_GRP1,
449 					MDIO_MMD_VEND2,
450 					0);
451 
452 		/* Set core clock into 500Mhz */
453 		core_write(priv, CORE_GSWPLL_GRP2,
454 			   RG_GSWPLL_POSDIV_500M(1) |
455 			   RG_GSWPLL_FBKDIV_500M(25));
456 
457 		/* Enable PLL */
458 		core_write(priv, CORE_GSWPLL_GRP1,
459 			   RG_GSWPLL_EN_PRE |
460 			   RG_GSWPLL_POSDIV_200M(2) |
461 			   RG_GSWPLL_FBKDIV_200M(32));
462 
463 		/* Enable MT7530 core clock */
464 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
465 	}
466 
467 	/* Setup the MT7530 TRGMII Tx Clock */
468 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
469 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
470 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
471 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
472 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
473 	core_write(priv, CORE_PLL_GROUP4,
474 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
475 		   RG_SYSPLL_BIAS_LPF_EN);
476 	core_write(priv, CORE_PLL_GROUP2,
477 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
478 		   RG_SYSPLL_POSDIV(1));
479 	core_write(priv, CORE_PLL_GROUP7,
480 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
481 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
482 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
483 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
484 
485 	if (!trgint)
486 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
487 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
488 				   RD_TAP_MASK, RD_TAP(16));
489 	return 0;
490 }
491 
492 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
493 {
494 	u32 val;
495 
496 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
497 
498 	return (val & PAD_DUAL_SGMII_EN) != 0;
499 }
500 
501 static int
502 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
503 {
504 	struct mt7530_priv *priv = ds->priv;
505 	u32 top_sig;
506 	u32 hwstrap;
507 	u32 xtal;
508 	u32 val;
509 
510 	if (mt7531_dual_sgmii_supported(priv))
511 		return 0;
512 
513 	val = mt7530_read(priv, MT7531_CREV);
514 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
515 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
516 	if ((val & CHIP_REV_M) > 0)
517 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
518 						    HWTRAP_XTAL_FSEL_25MHZ;
519 	else
520 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
521 
522 	/* Step 1 : Disable MT7531 COREPLL */
523 	val = mt7530_read(priv, MT7531_PLLGP_EN);
524 	val &= ~EN_COREPLL;
525 	mt7530_write(priv, MT7531_PLLGP_EN, val);
526 
527 	/* Step 2: switch to XTAL output */
528 	val = mt7530_read(priv, MT7531_PLLGP_EN);
529 	val |= SW_CLKSW;
530 	mt7530_write(priv, MT7531_PLLGP_EN, val);
531 
532 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
533 	val &= ~RG_COREPLL_EN;
534 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
535 
536 	/* Step 3: disable PLLGP and enable program PLLGP */
537 	val = mt7530_read(priv, MT7531_PLLGP_EN);
538 	val |= SW_PLLGP;
539 	mt7530_write(priv, MT7531_PLLGP_EN, val);
540 
541 	/* Step 4: program COREPLL output frequency to 500MHz */
542 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
543 	val &= ~RG_COREPLL_POSDIV_M;
544 	val |= 2 << RG_COREPLL_POSDIV_S;
545 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
546 	usleep_range(25, 35);
547 
548 	switch (xtal) {
549 	case HWTRAP_XTAL_FSEL_25MHZ:
550 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
551 		val &= ~RG_COREPLL_SDM_PCW_M;
552 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
553 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
554 		break;
555 	case HWTRAP_XTAL_FSEL_40MHZ:
556 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
557 		val &= ~RG_COREPLL_SDM_PCW_M;
558 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
559 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
560 		break;
561 	}
562 
563 	/* Set feedback divide ratio update signal to high */
564 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
565 	val |= RG_COREPLL_SDM_PCW_CHG;
566 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
567 	/* Wait for at least 16 XTAL clocks */
568 	usleep_range(10, 20);
569 
570 	/* Step 5: set feedback divide ratio update signal to low */
571 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
572 	val &= ~RG_COREPLL_SDM_PCW_CHG;
573 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
574 
575 	/* Enable 325M clock for SGMII */
576 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
577 
578 	/* Enable 250SSC clock for RGMII */
579 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
580 
581 	/* Step 6: Enable MT7531 PLL */
582 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
583 	val |= RG_COREPLL_EN;
584 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
585 
586 	val = mt7530_read(priv, MT7531_PLLGP_EN);
587 	val |= EN_COREPLL;
588 	mt7530_write(priv, MT7531_PLLGP_EN, val);
589 	usleep_range(25, 35);
590 
591 	return 0;
592 }
593 
594 static void
595 mt7530_mib_reset(struct dsa_switch *ds)
596 {
597 	struct mt7530_priv *priv = ds->priv;
598 
599 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
600 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
601 }
602 
603 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
604 {
605 	struct mt7530_priv *priv = ds->priv;
606 
607 	return mdiobus_read_nested(priv->bus, port, regnum);
608 }
609 
610 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
611 			    u16 val)
612 {
613 	struct mt7530_priv *priv = ds->priv;
614 
615 	return mdiobus_write_nested(priv->bus, port, regnum, val);
616 }
617 
618 static int
619 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
620 			int regnum)
621 {
622 	struct mii_bus *bus = priv->bus;
623 	struct mt7530_dummy_poll p;
624 	u32 reg, val;
625 	int ret;
626 
627 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
628 
629 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
630 
631 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
632 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
633 	if (ret < 0) {
634 		dev_err(priv->dev, "poll timeout\n");
635 		goto out;
636 	}
637 
638 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
639 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
640 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
641 
642 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
643 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
644 	if (ret < 0) {
645 		dev_err(priv->dev, "poll timeout\n");
646 		goto out;
647 	}
648 
649 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
650 	      MT7531_MDIO_DEV_ADDR(devad);
651 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
652 
653 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
654 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
655 	if (ret < 0) {
656 		dev_err(priv->dev, "poll timeout\n");
657 		goto out;
658 	}
659 
660 	ret = val & MT7531_MDIO_RW_DATA_MASK;
661 out:
662 	mutex_unlock(&bus->mdio_lock);
663 
664 	return ret;
665 }
666 
667 static int
668 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
669 			 int regnum, u32 data)
670 {
671 	struct mii_bus *bus = priv->bus;
672 	struct mt7530_dummy_poll p;
673 	u32 val, reg;
674 	int ret;
675 
676 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
677 
678 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
679 
680 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
681 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
682 	if (ret < 0) {
683 		dev_err(priv->dev, "poll timeout\n");
684 		goto out;
685 	}
686 
687 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
688 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
689 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
690 
691 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
692 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
693 	if (ret < 0) {
694 		dev_err(priv->dev, "poll timeout\n");
695 		goto out;
696 	}
697 
698 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
699 	      MT7531_MDIO_DEV_ADDR(devad) | data;
700 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
701 
702 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
703 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
704 	if (ret < 0) {
705 		dev_err(priv->dev, "poll timeout\n");
706 		goto out;
707 	}
708 
709 out:
710 	mutex_unlock(&bus->mdio_lock);
711 
712 	return ret;
713 }
714 
715 static int
716 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
717 {
718 	struct mii_bus *bus = priv->bus;
719 	struct mt7530_dummy_poll p;
720 	int ret;
721 	u32 val;
722 
723 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
724 
725 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
726 
727 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
728 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
729 	if (ret < 0) {
730 		dev_err(priv->dev, "poll timeout\n");
731 		goto out;
732 	}
733 
734 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
735 	      MT7531_MDIO_REG_ADDR(regnum);
736 
737 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
738 
739 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
740 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
741 	if (ret < 0) {
742 		dev_err(priv->dev, "poll timeout\n");
743 		goto out;
744 	}
745 
746 	ret = val & MT7531_MDIO_RW_DATA_MASK;
747 out:
748 	mutex_unlock(&bus->mdio_lock);
749 
750 	return ret;
751 }
752 
753 static int
754 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
755 			 u16 data)
756 {
757 	struct mii_bus *bus = priv->bus;
758 	struct mt7530_dummy_poll p;
759 	int ret;
760 	u32 reg;
761 
762 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
763 
764 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
765 
766 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
767 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
768 	if (ret < 0) {
769 		dev_err(priv->dev, "poll timeout\n");
770 		goto out;
771 	}
772 
773 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
774 	      MT7531_MDIO_REG_ADDR(regnum) | data;
775 
776 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
777 
778 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
779 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
780 	if (ret < 0) {
781 		dev_err(priv->dev, "poll timeout\n");
782 		goto out;
783 	}
784 
785 out:
786 	mutex_unlock(&bus->mdio_lock);
787 
788 	return ret;
789 }
790 
791 static int
792 mt7531_ind_phy_read(struct dsa_switch *ds, int port, int regnum)
793 {
794 	struct mt7530_priv *priv = ds->priv;
795 	int devad;
796 	int ret;
797 
798 	if (regnum & MII_ADDR_C45) {
799 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
800 		ret = mt7531_ind_c45_phy_read(priv, port, devad,
801 					      regnum & MII_REGADDR_C45_MASK);
802 	} else {
803 		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
804 	}
805 
806 	return ret;
807 }
808 
809 static int
810 mt7531_ind_phy_write(struct dsa_switch *ds, int port, int regnum,
811 		     u16 data)
812 {
813 	struct mt7530_priv *priv = ds->priv;
814 	int devad;
815 	int ret;
816 
817 	if (regnum & MII_ADDR_C45) {
818 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
819 		ret = mt7531_ind_c45_phy_write(priv, port, devad,
820 					       regnum & MII_REGADDR_C45_MASK,
821 					       data);
822 	} else {
823 		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
824 	}
825 
826 	return ret;
827 }
828 
829 static void
830 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
831 		   uint8_t *data)
832 {
833 	int i;
834 
835 	if (stringset != ETH_SS_STATS)
836 		return;
837 
838 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
839 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
840 			ETH_GSTRING_LEN);
841 }
842 
843 static void
844 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
845 			 uint64_t *data)
846 {
847 	struct mt7530_priv *priv = ds->priv;
848 	const struct mt7530_mib_desc *mib;
849 	u32 reg, i;
850 	u64 hi;
851 
852 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
853 		mib = &mt7530_mib[i];
854 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
855 
856 		data[i] = mt7530_read(priv, reg);
857 		if (mib->size == 2) {
858 			hi = mt7530_read(priv, reg + 4);
859 			data[i] |= hi << 32;
860 		}
861 	}
862 }
863 
864 static int
865 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
866 {
867 	if (sset != ETH_SS_STATS)
868 		return 0;
869 
870 	return ARRAY_SIZE(mt7530_mib);
871 }
872 
873 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
874 {
875 	struct mt7530_priv *priv = ds->priv;
876 	u8 tx_delay = 0;
877 	int val;
878 
879 	mutex_lock(&priv->reg_mutex);
880 
881 	val = mt7530_read(priv, MT7530_MHWTRAP);
882 
883 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
884 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
885 
886 	switch (priv->p5_intf_sel) {
887 	case P5_INTF_SEL_PHY_P0:
888 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
889 		val |= MHWTRAP_PHY0_SEL;
890 		fallthrough;
891 	case P5_INTF_SEL_PHY_P4:
892 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
893 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
894 
895 		/* Setup the MAC by default for the cpu port */
896 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
897 		break;
898 	case P5_INTF_SEL_GMAC5:
899 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
900 		val &= ~MHWTRAP_P5_DIS;
901 		break;
902 	case P5_DISABLED:
903 		interface = PHY_INTERFACE_MODE_NA;
904 		break;
905 	default:
906 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
907 			priv->p5_intf_sel);
908 		goto unlock_exit;
909 	}
910 
911 	/* Setup RGMII settings */
912 	if (phy_interface_mode_is_rgmii(interface)) {
913 		val |= MHWTRAP_P5_RGMII_MODE;
914 
915 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
916 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
917 
918 		/* Don't set delay in DSA mode */
919 		if (!dsa_is_dsa_port(priv->ds, 5) &&
920 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
921 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
922 			tx_delay = 4; /* n * 0.5 ns */
923 
924 		/* P5 RGMII TX Clock Control: delay x */
925 		mt7530_write(priv, MT7530_P5RGMIITXCR,
926 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
927 
928 		/* reduce P5 RGMII Tx driving, 8mA */
929 		mt7530_write(priv, MT7530_IO_DRV_CR,
930 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
931 	}
932 
933 	mt7530_write(priv, MT7530_MHWTRAP, val);
934 
935 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
936 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
937 
938 	priv->p5_interface = interface;
939 
940 unlock_exit:
941 	mutex_unlock(&priv->reg_mutex);
942 }
943 
944 static int
945 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
946 {
947 	struct mt7530_priv *priv = ds->priv;
948 	int ret;
949 
950 	/* Setup max capability of CPU port at first */
951 	if (priv->info->cpu_port_config) {
952 		ret = priv->info->cpu_port_config(ds, port);
953 		if (ret)
954 			return ret;
955 	}
956 
957 	/* Enable Mediatek header mode on the cpu port */
958 	mt7530_write(priv, MT7530_PVC_P(port),
959 		     PORT_SPEC_TAG);
960 
961 	/* Unknown multicast frame forwarding to the cpu port */
962 	mt7530_rmw(priv, MT7530_MFC, UNM_FFP_MASK, UNM_FFP(BIT(port)));
963 
964 	/* Set CPU port number */
965 	if (priv->id == ID_MT7621)
966 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
967 
968 	/* CPU port gets connected to all user ports of
969 	 * the switch.
970 	 */
971 	mt7530_write(priv, MT7530_PCR_P(port),
972 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
973 
974 	return 0;
975 }
976 
977 static int
978 mt7530_port_enable(struct dsa_switch *ds, int port,
979 		   struct phy_device *phy)
980 {
981 	struct mt7530_priv *priv = ds->priv;
982 
983 	if (!dsa_is_user_port(ds, port))
984 		return 0;
985 
986 	mutex_lock(&priv->reg_mutex);
987 
988 	/* Allow the user port gets connected to the cpu port and also
989 	 * restore the port matrix if the port is the member of a certain
990 	 * bridge.
991 	 */
992 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
993 	priv->ports[port].enable = true;
994 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
995 		   priv->ports[port].pm);
996 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
997 
998 	mutex_unlock(&priv->reg_mutex);
999 
1000 	return 0;
1001 }
1002 
1003 static void
1004 mt7530_port_disable(struct dsa_switch *ds, int port)
1005 {
1006 	struct mt7530_priv *priv = ds->priv;
1007 
1008 	if (!dsa_is_user_port(ds, port))
1009 		return;
1010 
1011 	mutex_lock(&priv->reg_mutex);
1012 
1013 	/* Clear up all port matrix which could be restored in the next
1014 	 * enablement for the port.
1015 	 */
1016 	priv->ports[port].enable = false;
1017 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1018 		   PCR_MATRIX_CLR);
1019 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1020 
1021 	mutex_unlock(&priv->reg_mutex);
1022 }
1023 
1024 static int
1025 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1026 {
1027 	struct mt7530_priv *priv = ds->priv;
1028 	struct mii_bus *bus = priv->bus;
1029 	int length;
1030 	u32 val;
1031 
1032 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1033 	 * largest MTU of the slave ports. Because the switch only has a global
1034 	 * RX length register, only allowing CPU port here is enough.
1035 	 */
1036 	if (!dsa_is_cpu_port(ds, port))
1037 		return 0;
1038 
1039 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1040 
1041 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1042 	val &= ~MAX_RX_PKT_LEN_MASK;
1043 
1044 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1045 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1046 	if (length <= 1522) {
1047 		val |= MAX_RX_PKT_LEN_1522;
1048 	} else if (length <= 1536) {
1049 		val |= MAX_RX_PKT_LEN_1536;
1050 	} else if (length <= 1552) {
1051 		val |= MAX_RX_PKT_LEN_1552;
1052 	} else {
1053 		val &= ~MAX_RX_JUMBO_MASK;
1054 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1055 		val |= MAX_RX_PKT_LEN_JUMBO;
1056 	}
1057 
1058 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1059 
1060 	mutex_unlock(&bus->mdio_lock);
1061 
1062 	return 0;
1063 }
1064 
1065 static int
1066 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1067 {
1068 	return MT7530_MAX_MTU;
1069 }
1070 
1071 static void
1072 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1073 {
1074 	struct mt7530_priv *priv = ds->priv;
1075 	u32 stp_state;
1076 
1077 	switch (state) {
1078 	case BR_STATE_DISABLED:
1079 		stp_state = MT7530_STP_DISABLED;
1080 		break;
1081 	case BR_STATE_BLOCKING:
1082 		stp_state = MT7530_STP_BLOCKING;
1083 		break;
1084 	case BR_STATE_LISTENING:
1085 		stp_state = MT7530_STP_LISTENING;
1086 		break;
1087 	case BR_STATE_LEARNING:
1088 		stp_state = MT7530_STP_LEARNING;
1089 		break;
1090 	case BR_STATE_FORWARDING:
1091 	default:
1092 		stp_state = MT7530_STP_FORWARDING;
1093 		break;
1094 	}
1095 
1096 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
1097 }
1098 
1099 static int
1100 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1101 			struct net_device *bridge)
1102 {
1103 	struct mt7530_priv *priv = ds->priv;
1104 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
1105 	int i;
1106 
1107 	mutex_lock(&priv->reg_mutex);
1108 
1109 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1110 		/* Add this port to the port matrix of the other ports in the
1111 		 * same bridge. If the port is disabled, port matrix is kept
1112 		 * and not being setup until the port becomes enabled.
1113 		 */
1114 		if (dsa_is_user_port(ds, i) && i != port) {
1115 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1116 				continue;
1117 			if (priv->ports[i].enable)
1118 				mt7530_set(priv, MT7530_PCR_P(i),
1119 					   PCR_MATRIX(BIT(port)));
1120 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
1121 
1122 			port_bitmap |= BIT(i);
1123 		}
1124 	}
1125 
1126 	/* Add the all other ports to this port matrix. */
1127 	if (priv->ports[port].enable)
1128 		mt7530_rmw(priv, MT7530_PCR_P(port),
1129 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1130 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1131 
1132 	mutex_unlock(&priv->reg_mutex);
1133 
1134 	return 0;
1135 }
1136 
1137 static void
1138 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1139 {
1140 	struct mt7530_priv *priv = ds->priv;
1141 	bool all_user_ports_removed = true;
1142 	int i;
1143 
1144 	/* When a port is removed from the bridge, the port would be set up
1145 	 * back to the default as is at initial boot which is a VLAN-unaware
1146 	 * port.
1147 	 */
1148 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1149 		   MT7530_PORT_MATRIX_MODE);
1150 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1151 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1152 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1153 
1154 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1155 		if (dsa_is_user_port(ds, i) &&
1156 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1157 			all_user_ports_removed = false;
1158 			break;
1159 		}
1160 	}
1161 
1162 	/* CPU port also does the same thing until all user ports belonging to
1163 	 * the CPU port get out of VLAN filtering mode.
1164 	 */
1165 	if (all_user_ports_removed) {
1166 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
1167 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1168 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
1169 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1170 	}
1171 }
1172 
1173 static void
1174 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1175 {
1176 	struct mt7530_priv *priv = ds->priv;
1177 
1178 	/* The real fabric path would be decided on the membership in the
1179 	 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
1180 	 * means potential VLAN can be consisting of certain subset of all
1181 	 * ports.
1182 	 */
1183 	mt7530_rmw(priv, MT7530_PCR_P(port),
1184 		   PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
1185 
1186 	/* Trapped into security mode allows packet forwarding through VLAN
1187 	 * table lookup. CPU port is set to fallback mode to let untagged
1188 	 * frames pass through.
1189 	 */
1190 	if (dsa_is_cpu_port(ds, port))
1191 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1192 			   MT7530_PORT_FALLBACK_MODE);
1193 	else
1194 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1195 			   MT7530_PORT_SECURITY_MODE);
1196 
1197 	/* Set the port as a user port which is to be able to recognize VID
1198 	 * from incoming packets before fetching entry within the VLAN table.
1199 	 */
1200 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1201 		   VLAN_ATTR(MT7530_VLAN_USER) |
1202 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1203 }
1204 
1205 static void
1206 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1207 			 struct net_device *bridge)
1208 {
1209 	struct mt7530_priv *priv = ds->priv;
1210 	int i;
1211 
1212 	mutex_lock(&priv->reg_mutex);
1213 
1214 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1215 		/* Remove this port from the port matrix of the other ports
1216 		 * in the same bridge. If the port is disabled, port matrix
1217 		 * is kept and not being setup until the port becomes enabled.
1218 		 * And the other port's port matrix cannot be broken when the
1219 		 * other port is still a VLAN-aware port.
1220 		 */
1221 		if (dsa_is_user_port(ds, i) && i != port &&
1222 		   !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1223 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1224 				continue;
1225 			if (priv->ports[i].enable)
1226 				mt7530_clear(priv, MT7530_PCR_P(i),
1227 					     PCR_MATRIX(BIT(port)));
1228 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
1229 		}
1230 	}
1231 
1232 	/* Set the cpu port to be the only one in the port matrix of
1233 	 * this port.
1234 	 */
1235 	if (priv->ports[port].enable)
1236 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1237 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
1238 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
1239 
1240 	mutex_unlock(&priv->reg_mutex);
1241 }
1242 
1243 static int
1244 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1245 		    const unsigned char *addr, u16 vid)
1246 {
1247 	struct mt7530_priv *priv = ds->priv;
1248 	int ret;
1249 	u8 port_mask = BIT(port);
1250 
1251 	mutex_lock(&priv->reg_mutex);
1252 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1253 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1254 	mutex_unlock(&priv->reg_mutex);
1255 
1256 	return ret;
1257 }
1258 
1259 static int
1260 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1261 		    const unsigned char *addr, u16 vid)
1262 {
1263 	struct mt7530_priv *priv = ds->priv;
1264 	int ret;
1265 	u8 port_mask = BIT(port);
1266 
1267 	mutex_lock(&priv->reg_mutex);
1268 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1269 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1270 	mutex_unlock(&priv->reg_mutex);
1271 
1272 	return ret;
1273 }
1274 
1275 static int
1276 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1277 		     dsa_fdb_dump_cb_t *cb, void *data)
1278 {
1279 	struct mt7530_priv *priv = ds->priv;
1280 	struct mt7530_fdb _fdb = { 0 };
1281 	int cnt = MT7530_NUM_FDB_RECORDS;
1282 	int ret = 0;
1283 	u32 rsp = 0;
1284 
1285 	mutex_lock(&priv->reg_mutex);
1286 
1287 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1288 	if (ret < 0)
1289 		goto err;
1290 
1291 	do {
1292 		if (rsp & ATC_SRCH_HIT) {
1293 			mt7530_fdb_read(priv, &_fdb);
1294 			if (_fdb.port_mask & BIT(port)) {
1295 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1296 					 data);
1297 				if (ret < 0)
1298 					break;
1299 			}
1300 		}
1301 	} while (--cnt &&
1302 		 !(rsp & ATC_SRCH_END) &&
1303 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1304 err:
1305 	mutex_unlock(&priv->reg_mutex);
1306 
1307 	return 0;
1308 }
1309 
1310 static int
1311 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1312 {
1313 	struct mt7530_dummy_poll p;
1314 	u32 val;
1315 	int ret;
1316 
1317 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1318 	mt7530_write(priv, MT7530_VTCR, val);
1319 
1320 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1321 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1322 				 !(val & VTCR_BUSY), 20, 20000);
1323 	if (ret < 0) {
1324 		dev_err(priv->dev, "poll timeout\n");
1325 		return ret;
1326 	}
1327 
1328 	val = mt7530_read(priv, MT7530_VTCR);
1329 	if (val & VTCR_INVALID) {
1330 		dev_err(priv->dev, "read VTCR invalid\n");
1331 		return -EINVAL;
1332 	}
1333 
1334 	return 0;
1335 }
1336 
1337 static int
1338 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port,
1339 			   bool vlan_filtering,
1340 			   struct switchdev_trans *trans)
1341 {
1342 	if (switchdev_trans_ph_prepare(trans))
1343 		return 0;
1344 
1345 	if (vlan_filtering) {
1346 		/* The port is being kept as VLAN-unaware port when bridge is
1347 		 * set up with vlan_filtering not being set, Otherwise, the
1348 		 * port and the corresponding CPU port is required the setup
1349 		 * for becoming a VLAN-aware port.
1350 		 */
1351 		mt7530_port_set_vlan_aware(ds, port);
1352 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1353 	} else {
1354 		mt7530_port_set_vlan_unaware(ds, port);
1355 	}
1356 
1357 	return 0;
1358 }
1359 
1360 static int
1361 mt7530_port_vlan_prepare(struct dsa_switch *ds, int port,
1362 			 const struct switchdev_obj_port_vlan *vlan)
1363 {
1364 	/* nothing needed */
1365 
1366 	return 0;
1367 }
1368 
1369 static void
1370 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1371 		   struct mt7530_hw_vlan_entry *entry)
1372 {
1373 	u8 new_members;
1374 	u32 val;
1375 
1376 	new_members = entry->old_members | BIT(entry->port) |
1377 		      BIT(MT7530_CPU_PORT);
1378 
1379 	/* Validate the entry with independent learning, create egress tag per
1380 	 * VLAN and joining the port as one of the port members.
1381 	 */
1382 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1383 	mt7530_write(priv, MT7530_VAWD1, val);
1384 
1385 	/* Decide whether adding tag or not for those outgoing packets from the
1386 	 * port inside the VLAN.
1387 	 */
1388 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1389 				MT7530_VLAN_EGRESS_TAG;
1390 	mt7530_rmw(priv, MT7530_VAWD2,
1391 		   ETAG_CTRL_P_MASK(entry->port),
1392 		   ETAG_CTRL_P(entry->port, val));
1393 
1394 	/* CPU port is always taken as a tagged port for serving more than one
1395 	 * VLANs across and also being applied with egress type stack mode for
1396 	 * that VLAN tags would be appended after hardware special tag used as
1397 	 * DSA tag.
1398 	 */
1399 	mt7530_rmw(priv, MT7530_VAWD2,
1400 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1401 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1402 			       MT7530_VLAN_EGRESS_STACK));
1403 }
1404 
1405 static void
1406 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1407 		   struct mt7530_hw_vlan_entry *entry)
1408 {
1409 	u8 new_members;
1410 	u32 val;
1411 
1412 	new_members = entry->old_members & ~BIT(entry->port);
1413 
1414 	val = mt7530_read(priv, MT7530_VAWD1);
1415 	if (!(val & VLAN_VALID)) {
1416 		dev_err(priv->dev,
1417 			"Cannot be deleted due to invalid entry\n");
1418 		return;
1419 	}
1420 
1421 	/* If certain member apart from CPU port is still alive in the VLAN,
1422 	 * the entry would be kept valid. Otherwise, the entry is got to be
1423 	 * disabled.
1424 	 */
1425 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1426 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1427 		      VLAN_VALID;
1428 		mt7530_write(priv, MT7530_VAWD1, val);
1429 	} else {
1430 		mt7530_write(priv, MT7530_VAWD1, 0);
1431 		mt7530_write(priv, MT7530_VAWD2, 0);
1432 	}
1433 }
1434 
1435 static void
1436 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1437 		      struct mt7530_hw_vlan_entry *entry,
1438 		      mt7530_vlan_op vlan_op)
1439 {
1440 	u32 val;
1441 
1442 	/* Fetch entry */
1443 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1444 
1445 	val = mt7530_read(priv, MT7530_VAWD1);
1446 
1447 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1448 
1449 	/* Manipulate entry */
1450 	vlan_op(priv, entry);
1451 
1452 	/* Flush result to hardware */
1453 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1454 }
1455 
1456 static void
1457 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1458 		     const struct switchdev_obj_port_vlan *vlan)
1459 {
1460 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1461 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1462 	struct mt7530_hw_vlan_entry new_entry;
1463 	struct mt7530_priv *priv = ds->priv;
1464 	u16 vid;
1465 
1466 	mutex_lock(&priv->reg_mutex);
1467 
1468 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1469 		mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1470 		mt7530_hw_vlan_update(priv, vid, &new_entry,
1471 				      mt7530_hw_vlan_add);
1472 	}
1473 
1474 	if (pvid) {
1475 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1476 			   G0_PORT_VID(vlan->vid_end));
1477 		priv->ports[port].pvid = vlan->vid_end;
1478 	}
1479 
1480 	mutex_unlock(&priv->reg_mutex);
1481 }
1482 
1483 static int
1484 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1485 		     const struct switchdev_obj_port_vlan *vlan)
1486 {
1487 	struct mt7530_hw_vlan_entry target_entry;
1488 	struct mt7530_priv *priv = ds->priv;
1489 	u16 vid, pvid;
1490 
1491 	mutex_lock(&priv->reg_mutex);
1492 
1493 	pvid = priv->ports[port].pvid;
1494 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1495 		mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1496 		mt7530_hw_vlan_update(priv, vid, &target_entry,
1497 				      mt7530_hw_vlan_del);
1498 
1499 		/* PVID is being restored to the default whenever the PVID port
1500 		 * is being removed from the VLAN.
1501 		 */
1502 		if (pvid == vid)
1503 			pvid = G0_PORT_VID_DEF;
1504 	}
1505 
1506 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1507 	priv->ports[port].pvid = pvid;
1508 
1509 	mutex_unlock(&priv->reg_mutex);
1510 
1511 	return 0;
1512 }
1513 
1514 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1515 {
1516 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1517 				   MIRROR_PORT(val);
1518 }
1519 
1520 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1521 {
1522 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1523 				   MIRROR_PORT(val);
1524 }
1525 
1526 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1527 				  struct dsa_mall_mirror_tc_entry *mirror,
1528 				  bool ingress)
1529 {
1530 	struct mt7530_priv *priv = ds->priv;
1531 	int monitor_port;
1532 	u32 val;
1533 
1534 	/* Check for existent entry */
1535 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1536 		return -EEXIST;
1537 
1538 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1539 
1540 	/* MT7530 only supports one monitor port */
1541 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1542 	if (val & MT753X_MIRROR_EN(priv->id) &&
1543 	    monitor_port != mirror->to_local_port)
1544 		return -EEXIST;
1545 
1546 	val |= MT753X_MIRROR_EN(priv->id);
1547 	val &= ~MT753X_MIRROR_MASK(priv->id);
1548 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1549 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1550 
1551 	val = mt7530_read(priv, MT7530_PCR_P(port));
1552 	if (ingress) {
1553 		val |= PORT_RX_MIR;
1554 		priv->mirror_rx |= BIT(port);
1555 	} else {
1556 		val |= PORT_TX_MIR;
1557 		priv->mirror_tx |= BIT(port);
1558 	}
1559 	mt7530_write(priv, MT7530_PCR_P(port), val);
1560 
1561 	return 0;
1562 }
1563 
1564 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1565 				   struct dsa_mall_mirror_tc_entry *mirror)
1566 {
1567 	struct mt7530_priv *priv = ds->priv;
1568 	u32 val;
1569 
1570 	val = mt7530_read(priv, MT7530_PCR_P(port));
1571 	if (mirror->ingress) {
1572 		val &= ~PORT_RX_MIR;
1573 		priv->mirror_rx &= ~BIT(port);
1574 	} else {
1575 		val &= ~PORT_TX_MIR;
1576 		priv->mirror_tx &= ~BIT(port);
1577 	}
1578 	mt7530_write(priv, MT7530_PCR_P(port), val);
1579 
1580 	if (!priv->mirror_rx && !priv->mirror_tx) {
1581 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1582 		val &= ~MT753X_MIRROR_EN(priv->id);
1583 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1584 	}
1585 }
1586 
1587 static enum dsa_tag_protocol
1588 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1589 		     enum dsa_tag_protocol mp)
1590 {
1591 	struct mt7530_priv *priv = ds->priv;
1592 
1593 	if (port != MT7530_CPU_PORT) {
1594 		dev_warn(priv->dev,
1595 			 "port not matched with tagging CPU port\n");
1596 		return DSA_TAG_PROTO_NONE;
1597 	} else {
1598 		return DSA_TAG_PROTO_MTK;
1599 	}
1600 }
1601 
1602 static int
1603 mt7530_setup(struct dsa_switch *ds)
1604 {
1605 	struct mt7530_priv *priv = ds->priv;
1606 	struct device_node *phy_node;
1607 	struct device_node *mac_np;
1608 	struct mt7530_dummy_poll p;
1609 	phy_interface_t interface;
1610 	struct device_node *dn;
1611 	u32 id, val;
1612 	int ret, i;
1613 
1614 	/* The parent node of master netdev which holds the common system
1615 	 * controller also is the container for two GMACs nodes representing
1616 	 * as two netdev instances.
1617 	 */
1618 	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
1619 	ds->configure_vlan_while_not_filtering = true;
1620 
1621 	if (priv->id == ID_MT7530) {
1622 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
1623 		ret = regulator_enable(priv->core_pwr);
1624 		if (ret < 0) {
1625 			dev_err(priv->dev,
1626 				"Failed to enable core power: %d\n", ret);
1627 			return ret;
1628 		}
1629 
1630 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
1631 		ret = regulator_enable(priv->io_pwr);
1632 		if (ret < 0) {
1633 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
1634 				ret);
1635 			return ret;
1636 		}
1637 	}
1638 
1639 	/* Reset whole chip through gpio pin or memory-mapped registers for
1640 	 * different type of hardware
1641 	 */
1642 	if (priv->mcm) {
1643 		reset_control_assert(priv->rstc);
1644 		usleep_range(1000, 1100);
1645 		reset_control_deassert(priv->rstc);
1646 	} else {
1647 		gpiod_set_value_cansleep(priv->reset, 0);
1648 		usleep_range(1000, 1100);
1649 		gpiod_set_value_cansleep(priv->reset, 1);
1650 	}
1651 
1652 	/* Waiting for MT7530 got to stable */
1653 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1654 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1655 				 20, 1000000);
1656 	if (ret < 0) {
1657 		dev_err(priv->dev, "reset timeout\n");
1658 		return ret;
1659 	}
1660 
1661 	id = mt7530_read(priv, MT7530_CREV);
1662 	id >>= CHIP_NAME_SHIFT;
1663 	if (id != MT7530_ID) {
1664 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1665 		return -ENODEV;
1666 	}
1667 
1668 	/* Reset the switch through internal reset */
1669 	mt7530_write(priv, MT7530_SYS_CTRL,
1670 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1671 		     SYS_CTRL_REG_RST);
1672 
1673 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
1674 	val = mt7530_read(priv, MT7530_MHWTRAP);
1675 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
1676 	val |= MHWTRAP_MANUAL;
1677 	mt7530_write(priv, MT7530_MHWTRAP, val);
1678 
1679 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
1680 
1681 	/* Enable and reset MIB counters */
1682 	mt7530_mib_reset(ds);
1683 
1684 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1685 		/* Disable forwarding by default on all ports */
1686 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1687 			   PCR_MATRIX_CLR);
1688 
1689 		if (dsa_is_cpu_port(ds, i)) {
1690 			ret = mt753x_cpu_port_enable(ds, i);
1691 			if (ret)
1692 				return ret;
1693 		} else
1694 			mt7530_port_disable(ds, i);
1695 
1696 		/* Enable consistent egress tag */
1697 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
1698 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1699 	}
1700 
1701 	/* Setup port 5 */
1702 	priv->p5_intf_sel = P5_DISABLED;
1703 	interface = PHY_INTERFACE_MODE_NA;
1704 
1705 	if (!dsa_is_unused_port(ds, 5)) {
1706 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
1707 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
1708 		if (ret && ret != -ENODEV)
1709 			return ret;
1710 	} else {
1711 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
1712 		for_each_child_of_node(dn, mac_np) {
1713 			if (!of_device_is_compatible(mac_np,
1714 						     "mediatek,eth-mac"))
1715 				continue;
1716 
1717 			ret = of_property_read_u32(mac_np, "reg", &id);
1718 			if (ret < 0 || id != 1)
1719 				continue;
1720 
1721 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
1722 			if (!phy_node)
1723 				continue;
1724 
1725 			if (phy_node->parent == priv->dev->of_node->parent) {
1726 				ret = of_get_phy_mode(mac_np, &interface);
1727 				if (ret && ret != -ENODEV) {
1728 					of_node_put(mac_np);
1729 					return ret;
1730 				}
1731 				id = of_mdio_parse_addr(ds->dev, phy_node);
1732 				if (id == 0)
1733 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
1734 				if (id == 4)
1735 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
1736 			}
1737 			of_node_put(mac_np);
1738 			of_node_put(phy_node);
1739 			break;
1740 		}
1741 	}
1742 
1743 	mt7530_setup_port5(ds, interface);
1744 
1745 	/* Flush the FDB table */
1746 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1747 	if (ret < 0)
1748 		return ret;
1749 
1750 	return 0;
1751 }
1752 
1753 static int
1754 mt7531_setup(struct dsa_switch *ds)
1755 {
1756 	struct mt7530_priv *priv = ds->priv;
1757 	struct mt7530_dummy_poll p;
1758 	u32 val, id;
1759 	int ret, i;
1760 
1761 	/* Reset whole chip through gpio pin or memory-mapped registers for
1762 	 * different type of hardware
1763 	 */
1764 	if (priv->mcm) {
1765 		reset_control_assert(priv->rstc);
1766 		usleep_range(1000, 1100);
1767 		reset_control_deassert(priv->rstc);
1768 	} else {
1769 		gpiod_set_value_cansleep(priv->reset, 0);
1770 		usleep_range(1000, 1100);
1771 		gpiod_set_value_cansleep(priv->reset, 1);
1772 	}
1773 
1774 	/* Waiting for MT7530 got to stable */
1775 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1776 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1777 				 20, 1000000);
1778 	if (ret < 0) {
1779 		dev_err(priv->dev, "reset timeout\n");
1780 		return ret;
1781 	}
1782 
1783 	id = mt7530_read(priv, MT7531_CREV);
1784 	id >>= CHIP_NAME_SHIFT;
1785 
1786 	if (id != MT7531_ID) {
1787 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1788 		return -ENODEV;
1789 	}
1790 
1791 	/* Reset the switch through internal reset */
1792 	mt7530_write(priv, MT7530_SYS_CTRL,
1793 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1794 		     SYS_CTRL_REG_RST);
1795 
1796 	if (mt7531_dual_sgmii_supported(priv)) {
1797 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
1798 
1799 		/* Let ds->slave_mii_bus be able to access external phy. */
1800 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
1801 			   MT7531_EXT_P_MDC_11);
1802 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
1803 			   MT7531_EXT_P_MDIO_12);
1804 	} else {
1805 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
1806 	}
1807 	dev_dbg(ds->dev, "P5 support %s interface\n",
1808 		p5_intf_modes(priv->p5_intf_sel));
1809 
1810 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
1811 		   MT7531_GPIO0_INTERRUPT);
1812 
1813 	/* Let phylink decide the interface later. */
1814 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
1815 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
1816 
1817 	/* Enable PHY core PLL, since phy_device has not yet been created
1818 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
1819 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
1820 	 * function.
1821 	 */
1822 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
1823 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
1824 	val |= MT7531_PHY_PLL_BYPASS_MODE;
1825 	val &= ~MT7531_PHY_PLL_OFF;
1826 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
1827 				 CORE_PLL_GROUP4, val);
1828 
1829 	/* BPDU to CPU port */
1830 	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
1831 		   BIT(MT7530_CPU_PORT));
1832 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
1833 		   MT753X_BPDU_CPU_ONLY);
1834 
1835 	/* Enable and reset MIB counters */
1836 	mt7530_mib_reset(ds);
1837 
1838 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1839 		/* Disable forwarding by default on all ports */
1840 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1841 			   PCR_MATRIX_CLR);
1842 
1843 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
1844 
1845 		if (dsa_is_cpu_port(ds, i)) {
1846 			ret = mt753x_cpu_port_enable(ds, i);
1847 			if (ret)
1848 				return ret;
1849 		} else
1850 			mt7530_port_disable(ds, i);
1851 
1852 		/* Enable consistent egress tag */
1853 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
1854 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1855 	}
1856 
1857 	ds->configure_vlan_while_not_filtering = true;
1858 
1859 	/* Flush the FDB table */
1860 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1861 	if (ret < 0)
1862 		return ret;
1863 
1864 	return 0;
1865 }
1866 
1867 static bool
1868 mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
1869 			  const struct phylink_link_state *state)
1870 {
1871 	struct mt7530_priv *priv = ds->priv;
1872 
1873 	switch (port) {
1874 	case 0 ... 4: /* Internal phy */
1875 		if (state->interface != PHY_INTERFACE_MODE_GMII)
1876 			return false;
1877 		break;
1878 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
1879 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1880 		    state->interface != PHY_INTERFACE_MODE_MII &&
1881 		    state->interface != PHY_INTERFACE_MODE_GMII)
1882 			return false;
1883 		break;
1884 	case 6: /* 1st cpu port */
1885 		if (state->interface != PHY_INTERFACE_MODE_RGMII &&
1886 		    state->interface != PHY_INTERFACE_MODE_TRGMII)
1887 			return false;
1888 		break;
1889 	default:
1890 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
1891 			port);
1892 		return false;
1893 	}
1894 
1895 	return true;
1896 }
1897 
1898 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
1899 {
1900 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
1901 }
1902 
1903 static bool
1904 mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
1905 			  const struct phylink_link_state *state)
1906 {
1907 	struct mt7530_priv *priv = ds->priv;
1908 
1909 	switch (port) {
1910 	case 0 ... 4: /* Internal phy */
1911 		if (state->interface != PHY_INTERFACE_MODE_GMII)
1912 			return false;
1913 		break;
1914 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
1915 		if (mt7531_is_rgmii_port(priv, port))
1916 			return phy_interface_mode_is_rgmii(state->interface);
1917 		fallthrough;
1918 	case 6: /* 1st cpu port supports sgmii/8023z only */
1919 		if (state->interface != PHY_INTERFACE_MODE_SGMII &&
1920 		    !phy_interface_mode_is_8023z(state->interface))
1921 			return false;
1922 		break;
1923 	default:
1924 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
1925 			port);
1926 		return false;
1927 	}
1928 
1929 	return true;
1930 }
1931 
1932 static bool
1933 mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
1934 			  const struct phylink_link_state *state)
1935 {
1936 	struct mt7530_priv *priv = ds->priv;
1937 
1938 	return priv->info->phy_mode_supported(ds, port, state);
1939 }
1940 
1941 static int
1942 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
1943 {
1944 	struct mt7530_priv *priv = ds->priv;
1945 
1946 	return priv->info->pad_setup(ds, state->interface);
1947 }
1948 
1949 static int
1950 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
1951 		  phy_interface_t interface)
1952 {
1953 	struct mt7530_priv *priv = ds->priv;
1954 
1955 	/* Only need to setup port5. */
1956 	if (port != 5)
1957 		return 0;
1958 
1959 	mt7530_setup_port5(priv->ds, interface);
1960 
1961 	return 0;
1962 }
1963 
1964 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
1965 			      phy_interface_t interface,
1966 			      struct phy_device *phydev)
1967 {
1968 	u32 val;
1969 
1970 	if (!mt7531_is_rgmii_port(priv, port)) {
1971 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
1972 			port);
1973 		return -EINVAL;
1974 	}
1975 
1976 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
1977 	val |= GP_CLK_EN;
1978 	val &= ~GP_MODE_MASK;
1979 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
1980 	val &= ~CLK_SKEW_IN_MASK;
1981 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
1982 	val &= ~CLK_SKEW_OUT_MASK;
1983 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
1984 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
1985 
1986 	/* Do not adjust rgmii delay when vendor phy driver presents. */
1987 	if (!phydev || phy_driver_is_genphy(phydev)) {
1988 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
1989 		switch (interface) {
1990 		case PHY_INTERFACE_MODE_RGMII:
1991 			val |= TXCLK_NO_REVERSE;
1992 			val |= RXCLK_NO_DELAY;
1993 			break;
1994 		case PHY_INTERFACE_MODE_RGMII_RXID:
1995 			val |= TXCLK_NO_REVERSE;
1996 			break;
1997 		case PHY_INTERFACE_MODE_RGMII_TXID:
1998 			val |= RXCLK_NO_DELAY;
1999 			break;
2000 		case PHY_INTERFACE_MODE_RGMII_ID:
2001 			break;
2002 		default:
2003 			return -EINVAL;
2004 		}
2005 	}
2006 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2007 
2008 	return 0;
2009 }
2010 
2011 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
2012 				  unsigned long *supported)
2013 {
2014 	/* Port5 supports ethier RGMII or SGMII.
2015 	 * Port6 supports SGMII only.
2016 	 */
2017 	switch (port) {
2018 	case 5:
2019 		if (mt7531_is_rgmii_port(priv, port))
2020 			break;
2021 		fallthrough;
2022 	case 6:
2023 		phylink_set(supported, 1000baseX_Full);
2024 		phylink_set(supported, 2500baseX_Full);
2025 		phylink_set(supported, 2500baseT_Full);
2026 	}
2027 }
2028 
2029 static void
2030 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
2031 			   unsigned int mode, phy_interface_t interface,
2032 			   int speed, int duplex)
2033 {
2034 	struct mt7530_priv *priv = ds->priv;
2035 	unsigned int val;
2036 
2037 	/* For adjusting speed and duplex of SGMII force mode. */
2038 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2039 	    phylink_autoneg_inband(mode))
2040 		return;
2041 
2042 	/* SGMII force mode setting */
2043 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2044 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2045 
2046 	switch (speed) {
2047 	case SPEED_10:
2048 		val |= MT7531_SGMII_FORCE_SPEED_10;
2049 		break;
2050 	case SPEED_100:
2051 		val |= MT7531_SGMII_FORCE_SPEED_100;
2052 		break;
2053 	case SPEED_1000:
2054 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2055 		break;
2056 	}
2057 
2058 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2059 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2060 	 */
2061 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2062 	    duplex != DUPLEX_FULL)
2063 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2064 
2065 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2066 }
2067 
2068 static bool mt753x_is_mac_port(u32 port)
2069 {
2070 	return (port == 5 || port == 6);
2071 }
2072 
2073 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2074 					 phy_interface_t interface)
2075 {
2076 	u32 val;
2077 
2078 	if (!mt753x_is_mac_port(port))
2079 		return -EINVAL;
2080 
2081 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2082 		   MT7531_SGMII_PHYA_PWD);
2083 
2084 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2085 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2086 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2087 	 * encoding.
2088 	 */
2089 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2090 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2091 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2092 
2093 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2094 
2095 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2096 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2097 	 */
2098 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2099 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2100 		   MT7531_SGMII_FORCE_SPEED_1000);
2101 
2102 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2103 
2104 	return 0;
2105 }
2106 
2107 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2108 				      phy_interface_t interface)
2109 {
2110 	if (!mt753x_is_mac_port(port))
2111 		return -EINVAL;
2112 
2113 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2114 		   MT7531_SGMII_PHYA_PWD);
2115 
2116 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2117 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2118 
2119 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2120 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2121 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2122 
2123 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2124 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2125 
2126 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2127 
2128 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2129 
2130 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2131 
2132 	return 0;
2133 }
2134 
2135 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
2136 {
2137 	struct mt7530_priv *priv = ds->priv;
2138 	u32 val;
2139 
2140 	/* Only restart AN when AN is enabled */
2141 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2142 	if (val & MT7531_SGMII_AN_ENABLE) {
2143 		val |= MT7531_SGMII_AN_RESTART;
2144 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2145 	}
2146 }
2147 
2148 static int
2149 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2150 		  phy_interface_t interface)
2151 {
2152 	struct mt7530_priv *priv = ds->priv;
2153 	struct phy_device *phydev;
2154 	struct dsa_port *dp;
2155 
2156 	if (!mt753x_is_mac_port(port)) {
2157 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2158 		return -EINVAL;
2159 	}
2160 
2161 	switch (interface) {
2162 	case PHY_INTERFACE_MODE_RGMII:
2163 	case PHY_INTERFACE_MODE_RGMII_ID:
2164 	case PHY_INTERFACE_MODE_RGMII_RXID:
2165 	case PHY_INTERFACE_MODE_RGMII_TXID:
2166 		dp = dsa_to_port(ds, port);
2167 		phydev = dp->slave->phydev;
2168 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2169 	case PHY_INTERFACE_MODE_SGMII:
2170 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2171 	case PHY_INTERFACE_MODE_NA:
2172 	case PHY_INTERFACE_MODE_1000BASEX:
2173 	case PHY_INTERFACE_MODE_2500BASEX:
2174 		if (phylink_autoneg_inband(mode))
2175 			return -EINVAL;
2176 
2177 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2178 	default:
2179 		return -EINVAL;
2180 	}
2181 
2182 	return -EINVAL;
2183 }
2184 
2185 static int
2186 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2187 		  const struct phylink_link_state *state)
2188 {
2189 	struct mt7530_priv *priv = ds->priv;
2190 
2191 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2192 }
2193 
2194 static void
2195 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2196 			  const struct phylink_link_state *state)
2197 {
2198 	struct mt7530_priv *priv = ds->priv;
2199 	u32 mcr_cur, mcr_new;
2200 
2201 	if (!mt753x_phy_mode_supported(ds, port, state))
2202 		goto unsupported;
2203 
2204 	switch (port) {
2205 	case 0 ... 4: /* Internal phy */
2206 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2207 			goto unsupported;
2208 		break;
2209 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2210 		if (priv->p5_interface == state->interface)
2211 			break;
2212 
2213 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2214 			goto unsupported;
2215 
2216 		if (priv->p5_intf_sel != P5_DISABLED)
2217 			priv->p5_interface = state->interface;
2218 		break;
2219 	case 6: /* 1st cpu port */
2220 		if (priv->p6_interface == state->interface)
2221 			break;
2222 
2223 		mt753x_pad_setup(ds, state);
2224 
2225 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2226 			goto unsupported;
2227 
2228 		priv->p6_interface = state->interface;
2229 		break;
2230 	default:
2231 unsupported:
2232 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2233 			__func__, phy_modes(state->interface), port);
2234 		return;
2235 	}
2236 
2237 	if (phylink_autoneg_inband(mode) &&
2238 	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2239 		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
2240 			__func__);
2241 		return;
2242 	}
2243 
2244 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2245 	mcr_new = mcr_cur;
2246 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2247 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2248 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2249 
2250 	/* Are we connected to external phy */
2251 	if (port == 5 && dsa_is_user_port(ds, 5))
2252 		mcr_new |= PMCR_EXT_PHY;
2253 
2254 	if (mcr_new != mcr_cur)
2255 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2256 }
2257 
2258 static void
2259 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port)
2260 {
2261 	struct mt7530_priv *priv = ds->priv;
2262 
2263 	if (!priv->info->mac_pcs_an_restart)
2264 		return;
2265 
2266 	priv->info->mac_pcs_an_restart(ds, port);
2267 }
2268 
2269 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2270 					 unsigned int mode,
2271 					 phy_interface_t interface)
2272 {
2273 	struct mt7530_priv *priv = ds->priv;
2274 
2275 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2276 }
2277 
2278 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port,
2279 				   unsigned int mode, phy_interface_t interface,
2280 				   int speed, int duplex)
2281 {
2282 	struct mt7530_priv *priv = ds->priv;
2283 
2284 	if (!priv->info->mac_pcs_link_up)
2285 		return;
2286 
2287 	priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2288 }
2289 
2290 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2291 				       unsigned int mode,
2292 				       phy_interface_t interface,
2293 				       struct phy_device *phydev,
2294 				       int speed, int duplex,
2295 				       bool tx_pause, bool rx_pause)
2296 {
2297 	struct mt7530_priv *priv = ds->priv;
2298 	u32 mcr;
2299 
2300 	mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2301 
2302 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2303 
2304 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2305 	 * variants.
2306 	 */
2307 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2308 	    (phy_interface_mode_is_8023z(interface))) {
2309 		speed = SPEED_1000;
2310 		duplex = DUPLEX_FULL;
2311 	}
2312 
2313 	switch (speed) {
2314 	case SPEED_1000:
2315 		mcr |= PMCR_FORCE_SPEED_1000;
2316 		break;
2317 	case SPEED_100:
2318 		mcr |= PMCR_FORCE_SPEED_100;
2319 		break;
2320 	}
2321 	if (duplex == DUPLEX_FULL) {
2322 		mcr |= PMCR_FORCE_FDX;
2323 		if (tx_pause)
2324 			mcr |= PMCR_TX_FC_EN;
2325 		if (rx_pause)
2326 			mcr |= PMCR_RX_FC_EN;
2327 	}
2328 
2329 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2330 }
2331 
2332 static int
2333 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2334 {
2335 	struct mt7530_priv *priv = ds->priv;
2336 	phy_interface_t interface;
2337 	int speed;
2338 	int ret;
2339 
2340 	switch (port) {
2341 	case 5:
2342 		if (mt7531_is_rgmii_port(priv, port))
2343 			interface = PHY_INTERFACE_MODE_RGMII;
2344 		else
2345 			interface = PHY_INTERFACE_MODE_2500BASEX;
2346 
2347 		priv->p5_interface = interface;
2348 		break;
2349 	case 6:
2350 		interface = PHY_INTERFACE_MODE_2500BASEX;
2351 
2352 		mt7531_pad_setup(ds, interface);
2353 
2354 		priv->p6_interface = interface;
2355 		break;
2356 	default:
2357 		return -EINVAL;
2358 	}
2359 
2360 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2361 		speed = SPEED_2500;
2362 	else
2363 		speed = SPEED_1000;
2364 
2365 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2366 	if (ret)
2367 		return ret;
2368 	mt7530_write(priv, MT7530_PMCR_P(port),
2369 		     PMCR_CPU_PORT_SETTING(priv->id));
2370 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2371 				   speed, DUPLEX_FULL, true, true);
2372 
2373 	return 0;
2374 }
2375 
2376 static void
2377 mt7530_mac_port_validate(struct dsa_switch *ds, int port,
2378 			 unsigned long *supported)
2379 {
2380 	if (port == 5)
2381 		phylink_set(supported, 1000baseX_Full);
2382 }
2383 
2384 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port,
2385 				     unsigned long *supported)
2386 {
2387 	struct mt7530_priv *priv = ds->priv;
2388 
2389 	mt7531_sgmii_validate(priv, port, supported);
2390 }
2391 
2392 static void
2393 mt753x_phylink_validate(struct dsa_switch *ds, int port,
2394 			unsigned long *supported,
2395 			struct phylink_link_state *state)
2396 {
2397 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2398 	struct mt7530_priv *priv = ds->priv;
2399 
2400 	if (state->interface != PHY_INTERFACE_MODE_NA &&
2401 	    !mt753x_phy_mode_supported(ds, port, state)) {
2402 		linkmode_zero(supported);
2403 		return;
2404 	}
2405 
2406 	phylink_set_port_modes(mask);
2407 
2408 	if (state->interface != PHY_INTERFACE_MODE_TRGMII ||
2409 	    !phy_interface_mode_is_8023z(state->interface)) {
2410 		phylink_set(mask, 10baseT_Half);
2411 		phylink_set(mask, 10baseT_Full);
2412 		phylink_set(mask, 100baseT_Half);
2413 		phylink_set(mask, 100baseT_Full);
2414 		phylink_set(mask, Autoneg);
2415 	}
2416 
2417 	/* This switch only supports 1G full-duplex. */
2418 	if (state->interface != PHY_INTERFACE_MODE_MII)
2419 		phylink_set(mask, 1000baseT_Full);
2420 
2421 	priv->info->mac_port_validate(ds, port, mask);
2422 
2423 	phylink_set(mask, Pause);
2424 	phylink_set(mask, Asym_Pause);
2425 
2426 	linkmode_and(supported, supported, mask);
2427 	linkmode_and(state->advertising, state->advertising, mask);
2428 
2429 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
2430 	 * to advertise both, only report advertising at 2500BaseX.
2431 	 */
2432 	phylink_helper_basex_speed(state);
2433 }
2434 
2435 static int
2436 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
2437 			      struct phylink_link_state *state)
2438 {
2439 	struct mt7530_priv *priv = ds->priv;
2440 	u32 pmsr;
2441 
2442 	if (port < 0 || port >= MT7530_NUM_PORTS)
2443 		return -EINVAL;
2444 
2445 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2446 
2447 	state->link = (pmsr & PMSR_LINK);
2448 	state->an_complete = state->link;
2449 	state->duplex = !!(pmsr & PMSR_DPX);
2450 
2451 	switch (pmsr & PMSR_SPEED_MASK) {
2452 	case PMSR_SPEED_10:
2453 		state->speed = SPEED_10;
2454 		break;
2455 	case PMSR_SPEED_100:
2456 		state->speed = SPEED_100;
2457 		break;
2458 	case PMSR_SPEED_1000:
2459 		state->speed = SPEED_1000;
2460 		break;
2461 	default:
2462 		state->speed = SPEED_UNKNOWN;
2463 		break;
2464 	}
2465 
2466 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2467 	if (pmsr & PMSR_RX_FC)
2468 		state->pause |= MLO_PAUSE_RX;
2469 	if (pmsr & PMSR_TX_FC)
2470 		state->pause |= MLO_PAUSE_TX;
2471 
2472 	return 1;
2473 }
2474 
2475 static int
2476 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2477 			      struct phylink_link_state *state)
2478 {
2479 	u32 status, val;
2480 	u16 config_reg;
2481 
2482 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2483 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2484 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
2485 	    (status & MT7531_SGMII_AN_ENABLE)) {
2486 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
2487 		config_reg = val >> 16;
2488 
2489 		switch (config_reg & LPA_SGMII_SPD_MASK) {
2490 		case LPA_SGMII_1000:
2491 			state->speed = SPEED_1000;
2492 			break;
2493 		case LPA_SGMII_100:
2494 			state->speed = SPEED_100;
2495 			break;
2496 		case LPA_SGMII_10:
2497 			state->speed = SPEED_10;
2498 			break;
2499 		default:
2500 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
2501 			state->link = false;
2502 			return -EINVAL;
2503 		}
2504 
2505 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
2506 			state->duplex = DUPLEX_FULL;
2507 		else
2508 			state->duplex = DUPLEX_HALF;
2509 	}
2510 
2511 	return 0;
2512 }
2513 
2514 static int
2515 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port,
2516 			      struct phylink_link_state *state)
2517 {
2518 	struct mt7530_priv *priv = ds->priv;
2519 
2520 	if (state->interface == PHY_INTERFACE_MODE_SGMII)
2521 		return mt7531_sgmii_pcs_get_state_an(priv, port, state);
2522 
2523 	return -EOPNOTSUPP;
2524 }
2525 
2526 static int
2527 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port,
2528 			      struct phylink_link_state *state)
2529 {
2530 	struct mt7530_priv *priv = ds->priv;
2531 
2532 	return priv->info->mac_port_get_state(ds, port, state);
2533 }
2534 
2535 static int
2536 mt753x_setup(struct dsa_switch *ds)
2537 {
2538 	struct mt7530_priv *priv = ds->priv;
2539 
2540 	return priv->info->sw_setup(ds);
2541 }
2542 
2543 static int
2544 mt753x_phy_read(struct dsa_switch *ds, int port, int regnum)
2545 {
2546 	struct mt7530_priv *priv = ds->priv;
2547 
2548 	return priv->info->phy_read(ds, port, regnum);
2549 }
2550 
2551 static int
2552 mt753x_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
2553 {
2554 	struct mt7530_priv *priv = ds->priv;
2555 
2556 	return priv->info->phy_write(ds, port, regnum, val);
2557 }
2558 
2559 static const struct dsa_switch_ops mt7530_switch_ops = {
2560 	.get_tag_protocol	= mtk_get_tag_protocol,
2561 	.setup			= mt753x_setup,
2562 	.get_strings		= mt7530_get_strings,
2563 	.phy_read		= mt753x_phy_read,
2564 	.phy_write		= mt753x_phy_write,
2565 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
2566 	.get_sset_count		= mt7530_get_sset_count,
2567 	.port_enable		= mt7530_port_enable,
2568 	.port_disable		= mt7530_port_disable,
2569 	.port_change_mtu	= mt7530_port_change_mtu,
2570 	.port_max_mtu		= mt7530_port_max_mtu,
2571 	.port_stp_state_set	= mt7530_stp_state_set,
2572 	.port_bridge_join	= mt7530_port_bridge_join,
2573 	.port_bridge_leave	= mt7530_port_bridge_leave,
2574 	.port_fdb_add		= mt7530_port_fdb_add,
2575 	.port_fdb_del		= mt7530_port_fdb_del,
2576 	.port_fdb_dump		= mt7530_port_fdb_dump,
2577 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
2578 	.port_vlan_prepare	= mt7530_port_vlan_prepare,
2579 	.port_vlan_add		= mt7530_port_vlan_add,
2580 	.port_vlan_del		= mt7530_port_vlan_del,
2581 	.port_mirror_add	= mt753x_port_mirror_add,
2582 	.port_mirror_del	= mt753x_port_mirror_del,
2583 	.phylink_validate	= mt753x_phylink_validate,
2584 	.phylink_mac_link_state	= mt753x_phylink_mac_link_state,
2585 	.phylink_mac_config	= mt753x_phylink_mac_config,
2586 	.phylink_mac_an_restart	= mt753x_phylink_mac_an_restart,
2587 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
2588 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
2589 };
2590 
2591 static const struct mt753x_info mt753x_table[] = {
2592 	[ID_MT7621] = {
2593 		.id = ID_MT7621,
2594 		.sw_setup = mt7530_setup,
2595 		.phy_read = mt7530_phy_read,
2596 		.phy_write = mt7530_phy_write,
2597 		.pad_setup = mt7530_pad_clk_setup,
2598 		.phy_mode_supported = mt7530_phy_mode_supported,
2599 		.mac_port_validate = mt7530_mac_port_validate,
2600 		.mac_port_get_state = mt7530_phylink_mac_link_state,
2601 		.mac_port_config = mt7530_mac_config,
2602 	},
2603 	[ID_MT7530] = {
2604 		.id = ID_MT7530,
2605 		.sw_setup = mt7530_setup,
2606 		.phy_read = mt7530_phy_read,
2607 		.phy_write = mt7530_phy_write,
2608 		.pad_setup = mt7530_pad_clk_setup,
2609 		.phy_mode_supported = mt7530_phy_mode_supported,
2610 		.mac_port_validate = mt7530_mac_port_validate,
2611 		.mac_port_get_state = mt7530_phylink_mac_link_state,
2612 		.mac_port_config = mt7530_mac_config,
2613 	},
2614 	[ID_MT7531] = {
2615 		.id = ID_MT7531,
2616 		.sw_setup = mt7531_setup,
2617 		.phy_read = mt7531_ind_phy_read,
2618 		.phy_write = mt7531_ind_phy_write,
2619 		.pad_setup = mt7531_pad_setup,
2620 		.cpu_port_config = mt7531_cpu_port_config,
2621 		.phy_mode_supported = mt7531_phy_mode_supported,
2622 		.mac_port_validate = mt7531_mac_port_validate,
2623 		.mac_port_get_state = mt7531_phylink_mac_link_state,
2624 		.mac_port_config = mt7531_mac_config,
2625 		.mac_pcs_an_restart = mt7531_sgmii_restart_an,
2626 		.mac_pcs_link_up = mt7531_sgmii_link_up_force,
2627 	},
2628 };
2629 
2630 static const struct of_device_id mt7530_of_match[] = {
2631 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
2632 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
2633 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
2634 	{ /* sentinel */ },
2635 };
2636 MODULE_DEVICE_TABLE(of, mt7530_of_match);
2637 
2638 static int
2639 mt7530_probe(struct mdio_device *mdiodev)
2640 {
2641 	struct mt7530_priv *priv;
2642 	struct device_node *dn;
2643 
2644 	dn = mdiodev->dev.of_node;
2645 
2646 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
2647 	if (!priv)
2648 		return -ENOMEM;
2649 
2650 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
2651 	if (!priv->ds)
2652 		return -ENOMEM;
2653 
2654 	priv->ds->dev = &mdiodev->dev;
2655 	priv->ds->num_ports = DSA_MAX_PORTS;
2656 
2657 	/* Use medatek,mcm property to distinguish hardware type that would
2658 	 * casues a little bit differences on power-on sequence.
2659 	 */
2660 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
2661 	if (priv->mcm) {
2662 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
2663 
2664 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
2665 		if (IS_ERR(priv->rstc)) {
2666 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
2667 			return PTR_ERR(priv->rstc);
2668 		}
2669 	}
2670 
2671 	/* Get the hardware identifier from the devicetree node.
2672 	 * We will need it for some of the clock and regulator setup.
2673 	 */
2674 	priv->info = of_device_get_match_data(&mdiodev->dev);
2675 	if (!priv->info)
2676 		return -EINVAL;
2677 
2678 	/* Sanity check if these required device operations are filled
2679 	 * properly.
2680 	 */
2681 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
2682 	    !priv->info->phy_read || !priv->info->phy_write ||
2683 	    !priv->info->phy_mode_supported ||
2684 	    !priv->info->mac_port_validate ||
2685 	    !priv->info->mac_port_get_state || !priv->info->mac_port_config)
2686 		return -EINVAL;
2687 
2688 	priv->id = priv->info->id;
2689 
2690 	if (priv->id == ID_MT7530) {
2691 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
2692 		if (IS_ERR(priv->core_pwr))
2693 			return PTR_ERR(priv->core_pwr);
2694 
2695 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
2696 		if (IS_ERR(priv->io_pwr))
2697 			return PTR_ERR(priv->io_pwr);
2698 	}
2699 
2700 	/* Not MCM that indicates switch works as the remote standalone
2701 	 * integrated circuit so the GPIO pin would be used to complete
2702 	 * the reset, otherwise memory-mapped register accessing used
2703 	 * through syscon provides in the case of MCM.
2704 	 */
2705 	if (!priv->mcm) {
2706 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
2707 						      GPIOD_OUT_LOW);
2708 		if (IS_ERR(priv->reset)) {
2709 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
2710 			return PTR_ERR(priv->reset);
2711 		}
2712 	}
2713 
2714 	priv->bus = mdiodev->bus;
2715 	priv->dev = &mdiodev->dev;
2716 	priv->ds->priv = priv;
2717 	priv->ds->ops = &mt7530_switch_ops;
2718 	mutex_init(&priv->reg_mutex);
2719 	dev_set_drvdata(&mdiodev->dev, priv);
2720 
2721 	return dsa_register_switch(priv->ds);
2722 }
2723 
2724 static void
2725 mt7530_remove(struct mdio_device *mdiodev)
2726 {
2727 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
2728 	int ret = 0;
2729 
2730 	ret = regulator_disable(priv->core_pwr);
2731 	if (ret < 0)
2732 		dev_err(priv->dev,
2733 			"Failed to disable core power: %d\n", ret);
2734 
2735 	ret = regulator_disable(priv->io_pwr);
2736 	if (ret < 0)
2737 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
2738 			ret);
2739 
2740 	dsa_unregister_switch(priv->ds);
2741 	mutex_destroy(&priv->reg_mutex);
2742 }
2743 
2744 static struct mdio_driver mt7530_mdio_driver = {
2745 	.probe  = mt7530_probe,
2746 	.remove = mt7530_remove,
2747 	.mdiodrv.driver = {
2748 		.name = "mt7530",
2749 		.of_match_table = mt7530_of_match,
2750 	},
2751 };
2752 
2753 mdio_module_driver(mt7530_mdio_driver);
2754 
2755 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
2756 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
2757 MODULE_LICENSE("GPL");
2758