xref: /linux/drivers/net/dsa/mt7530.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 mt7530_mutex_lock(struct mt7530_priv *priv)
146 {
147 	if (priv->bus)
148 		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149 }
150 
151 static void
152 mt7530_mutex_unlock(struct mt7530_priv *priv)
153 {
154 	if (priv->bus)
155 		mutex_unlock(&priv->bus->mdio_lock);
156 }
157 
158 static void
159 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160 {
161 	mt7530_mutex_lock(priv);
162 
163 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164 
165 	mt7530_mutex_unlock(priv);
166 }
167 
168 static void
169 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170 {
171 	u32 val;
172 
173 	mt7530_mutex_lock(priv);
174 
175 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176 	val &= ~mask;
177 	val |= set;
178 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179 
180 	mt7530_mutex_unlock(priv);
181 }
182 
183 static void
184 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 	core_rmw(priv, reg, 0, val);
187 }
188 
189 static void
190 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191 {
192 	core_rmw(priv, reg, val, 0);
193 }
194 
195 static int
196 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197 {
198 	int ret;
199 
200 	ret = regmap_write(priv->regmap, reg, val);
201 
202 	if (ret < 0)
203 		dev_err(priv->dev,
204 			"failed to write mt7530 register\n");
205 
206 	return ret;
207 }
208 
209 static u32
210 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211 {
212 	int ret;
213 	u32 val;
214 
215 	ret = regmap_read(priv->regmap, reg, &val);
216 	if (ret) {
217 		WARN_ON_ONCE(1);
218 		dev_err(priv->dev,
219 			"failed to read mt7530 register\n");
220 		return 0;
221 	}
222 
223 	return val;
224 }
225 
226 static void
227 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 	mt7530_mutex_lock(priv);
230 
231 	mt7530_mii_write(priv, reg, val);
232 
233 	mt7530_mutex_unlock(priv);
234 }
235 
236 static u32
237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 	return mt7530_mii_read(p->priv, p->reg);
240 }
241 
242 static u32
243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 	u32 val;
246 
247 	mt7530_mutex_lock(p->priv);
248 
249 	val = mt7530_mii_read(p->priv, p->reg);
250 
251 	mt7530_mutex_unlock(p->priv);
252 
253 	return val;
254 }
255 
256 static u32
257 mt7530_read(struct mt7530_priv *priv, u32 reg)
258 {
259 	struct mt7530_dummy_poll p;
260 
261 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262 	return _mt7530_read(&p);
263 }
264 
265 static void
266 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 	   u32 mask, u32 set)
268 {
269 	mt7530_mutex_lock(priv);
270 
271 	regmap_update_bits(priv->regmap, reg, mask, set);
272 
273 	mt7530_mutex_unlock(priv);
274 }
275 
276 static void
277 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 	mt7530_rmw(priv, reg, val, val);
280 }
281 
282 static void
283 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284 {
285 	mt7530_rmw(priv, reg, val, 0);
286 }
287 
288 static int
289 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290 {
291 	u32 val;
292 	int ret;
293 	struct mt7530_dummy_poll p;
294 
295 	/* Set the command operating upon the MAC address entries */
296 	val = ATC_BUSY | ATC_MAT(0) | cmd;
297 	mt7530_write(priv, MT7530_ATC, val);
298 
299 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300 	ret = readx_poll_timeout(_mt7530_read, &p, val,
301 				 !(val & ATC_BUSY), 20, 20000);
302 	if (ret < 0) {
303 		dev_err(priv->dev, "reset timeout\n");
304 		return ret;
305 	}
306 
307 	/* Additional sanity for read command if the specified
308 	 * entry is invalid
309 	 */
310 	val = mt7530_read(priv, MT7530_ATC);
311 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 		return -EINVAL;
313 
314 	if (rsp)
315 		*rsp = val;
316 
317 	return 0;
318 }
319 
320 static void
321 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322 {
323 	u32 reg[3];
324 	int i;
325 
326 	/* Read from ARL table into an array */
327 	for (i = 0; i < 3; i++) {
328 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329 
330 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 			__func__, __LINE__, i, reg[i]);
332 	}
333 
334 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344 }
345 
346 static void
347 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 		 u8 port_mask, const u8 *mac,
349 		 u8 aging, u8 type)
350 {
351 	u32 reg[3] = { 0 };
352 	int i;
353 
354 	reg[1] |= vid & CVID_MASK;
355 	reg[1] |= ATA2_IVL;
356 	reg[1] |= ATA2_FID(FID_BRIDGED);
357 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 	/* STATIC_ENT indicate that entry is static wouldn't
360 	 * be aged out and STATIC_EMP specified as erasing an
361 	 * entry
362 	 */
363 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 	reg[1] |= mac[5] << MAC_BYTE_5;
365 	reg[1] |= mac[4] << MAC_BYTE_4;
366 	reg[0] |= mac[3] << MAC_BYTE_3;
367 	reg[0] |= mac[2] << MAC_BYTE_2;
368 	reg[0] |= mac[1] << MAC_BYTE_1;
369 	reg[0] |= mac[0] << MAC_BYTE_0;
370 
371 	/* Write array into the ARL table */
372 	for (i = 0; i < 3; i++)
373 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374 }
375 
376 /* Set up switch core clock for MT7530 */
377 static void mt7530_pll_setup(struct mt7530_priv *priv)
378 {
379 	/* Disable core clock */
380 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381 
382 	/* Disable PLL */
383 	core_write(priv, CORE_GSWPLL_GRP1, 0);
384 
385 	/* Set core clock into 500Mhz */
386 	core_write(priv, CORE_GSWPLL_GRP2,
387 		   RG_GSWPLL_POSDIV_500M(1) |
388 		   RG_GSWPLL_FBKDIV_500M(25));
389 
390 	/* Enable PLL */
391 	core_write(priv, CORE_GSWPLL_GRP1,
392 		   RG_GSWPLL_EN_PRE |
393 		   RG_GSWPLL_POSDIV_200M(2) |
394 		   RG_GSWPLL_FBKDIV_200M(32));
395 
396 	udelay(20);
397 
398 	/* Enable core clock */
399 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400 }
401 
402 /* If port 6 is available as a CPU port, always prefer that as the default,
403  * otherwise don't care.
404  */
405 static struct dsa_port *
406 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407 {
408 	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409 
410 	if (dsa_port_is_cpu(cpu_dp))
411 		return cpu_dp;
412 
413 	return NULL;
414 }
415 
416 /* Setup port 6 interface mode and TRGMII TX circuit */
417 static int
418 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
419 {
420 	struct mt7530_priv *priv = ds->priv;
421 	u32 ncpo1, ssc_delta, trgint, xtal;
422 
423 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
424 
425 	if (xtal == HWTRAP_XTAL_20MHZ) {
426 		dev_err(priv->dev,
427 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
428 			__func__);
429 		return -EINVAL;
430 	}
431 
432 	switch (interface) {
433 	case PHY_INTERFACE_MODE_RGMII:
434 		trgint = 0;
435 		break;
436 	case PHY_INTERFACE_MODE_TRGMII:
437 		trgint = 1;
438 		if (xtal == HWTRAP_XTAL_25MHZ)
439 			ssc_delta = 0x57;
440 		else
441 			ssc_delta = 0x87;
442 		if (priv->id == ID_MT7621) {
443 			/* PLL frequency: 125MHz: 1.0GBit */
444 			if (xtal == HWTRAP_XTAL_40MHZ)
445 				ncpo1 = 0x0640;
446 			if (xtal == HWTRAP_XTAL_25MHZ)
447 				ncpo1 = 0x0a00;
448 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
449 			if (xtal == HWTRAP_XTAL_40MHZ)
450 				ncpo1 = 0x0c80;
451 			if (xtal == HWTRAP_XTAL_25MHZ)
452 				ncpo1 = 0x1400;
453 		}
454 		break;
455 	default:
456 		dev_err(priv->dev, "xMII interface %d not supported\n",
457 			interface);
458 		return -EINVAL;
459 	}
460 
461 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
462 		   P6_INTF_MODE(trgint));
463 
464 	if (trgint) {
465 		/* Disable the MT7530 TRGMII clocks */
466 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
467 
468 		/* Setup the MT7530 TRGMII Tx Clock */
469 		core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
470 		core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
471 		core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
472 		core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
473 		core_write(priv, CORE_PLL_GROUP4,
474 			   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
475 			   RG_SYSPLL_BIAS_LPF_EN);
476 		core_write(priv, CORE_PLL_GROUP2,
477 			   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
478 			   RG_SYSPLL_POSDIV(1));
479 		core_write(priv, CORE_PLL_GROUP7,
480 			   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
481 			   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
482 
483 		/* Enable the MT7530 TRGMII clocks */
484 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
485 	}
486 
487 	return 0;
488 }
489 
490 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
491 {
492 	u32 val;
493 
494 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
495 
496 	return (val & PAD_DUAL_SGMII_EN) != 0;
497 }
498 
499 static int
500 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
501 {
502 	return 0;
503 }
504 
505 static void
506 mt7531_pll_setup(struct mt7530_priv *priv)
507 {
508 	u32 top_sig;
509 	u32 hwstrap;
510 	u32 xtal;
511 	u32 val;
512 
513 	if (mt7531_dual_sgmii_supported(priv))
514 		return;
515 
516 	val = mt7530_read(priv, MT7531_CREV);
517 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
518 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
519 	if ((val & CHIP_REV_M) > 0)
520 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
521 						    HWTRAP_XTAL_FSEL_25MHZ;
522 	else
523 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
524 
525 	/* Step 1 : Disable MT7531 COREPLL */
526 	val = mt7530_read(priv, MT7531_PLLGP_EN);
527 	val &= ~EN_COREPLL;
528 	mt7530_write(priv, MT7531_PLLGP_EN, val);
529 
530 	/* Step 2: switch to XTAL output */
531 	val = mt7530_read(priv, MT7531_PLLGP_EN);
532 	val |= SW_CLKSW;
533 	mt7530_write(priv, MT7531_PLLGP_EN, val);
534 
535 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
536 	val &= ~RG_COREPLL_EN;
537 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
538 
539 	/* Step 3: disable PLLGP and enable program PLLGP */
540 	val = mt7530_read(priv, MT7531_PLLGP_EN);
541 	val |= SW_PLLGP;
542 	mt7530_write(priv, MT7531_PLLGP_EN, val);
543 
544 	/* Step 4: program COREPLL output frequency to 500MHz */
545 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
546 	val &= ~RG_COREPLL_POSDIV_M;
547 	val |= 2 << RG_COREPLL_POSDIV_S;
548 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
549 	usleep_range(25, 35);
550 
551 	switch (xtal) {
552 	case HWTRAP_XTAL_FSEL_25MHZ:
553 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
554 		val &= ~RG_COREPLL_SDM_PCW_M;
555 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
556 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
557 		break;
558 	case HWTRAP_XTAL_FSEL_40MHZ:
559 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
560 		val &= ~RG_COREPLL_SDM_PCW_M;
561 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
562 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
563 		break;
564 	}
565 
566 	/* Set feedback divide ratio update signal to high */
567 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
568 	val |= RG_COREPLL_SDM_PCW_CHG;
569 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
570 	/* Wait for at least 16 XTAL clocks */
571 	usleep_range(10, 20);
572 
573 	/* Step 5: set feedback divide ratio update signal to low */
574 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
575 	val &= ~RG_COREPLL_SDM_PCW_CHG;
576 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
577 
578 	/* Enable 325M clock for SGMII */
579 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
580 
581 	/* Enable 250SSC clock for RGMII */
582 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
583 
584 	/* Step 6: Enable MT7531 PLL */
585 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
586 	val |= RG_COREPLL_EN;
587 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
588 
589 	val = mt7530_read(priv, MT7531_PLLGP_EN);
590 	val |= EN_COREPLL;
591 	mt7530_write(priv, MT7531_PLLGP_EN, val);
592 	usleep_range(25, 35);
593 }
594 
595 static void
596 mt7530_mib_reset(struct dsa_switch *ds)
597 {
598 	struct mt7530_priv *priv = ds->priv;
599 
600 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
601 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
602 }
603 
604 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
605 {
606 	return mdiobus_read_nested(priv->bus, port, regnum);
607 }
608 
609 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
610 				u16 val)
611 {
612 	return mdiobus_write_nested(priv->bus, port, regnum, val);
613 }
614 
615 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
616 			       int devad, int regnum)
617 {
618 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
619 }
620 
621 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
622 				int regnum, u16 val)
623 {
624 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
625 }
626 
627 static int
628 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
629 			int regnum)
630 {
631 	struct mt7530_dummy_poll p;
632 	u32 reg, val;
633 	int ret;
634 
635 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
636 
637 	mt7530_mutex_lock(priv);
638 
639 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
640 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
641 	if (ret < 0) {
642 		dev_err(priv->dev, "poll timeout\n");
643 		goto out;
644 	}
645 
646 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
647 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
648 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
649 
650 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
651 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
652 	if (ret < 0) {
653 		dev_err(priv->dev, "poll timeout\n");
654 		goto out;
655 	}
656 
657 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
658 	      MT7531_MDIO_DEV_ADDR(devad);
659 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
660 
661 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
662 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
663 	if (ret < 0) {
664 		dev_err(priv->dev, "poll timeout\n");
665 		goto out;
666 	}
667 
668 	ret = val & MT7531_MDIO_RW_DATA_MASK;
669 out:
670 	mt7530_mutex_unlock(priv);
671 
672 	return ret;
673 }
674 
675 static int
676 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
677 			 int regnum, u16 data)
678 {
679 	struct mt7530_dummy_poll p;
680 	u32 val, reg;
681 	int ret;
682 
683 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
684 
685 	mt7530_mutex_lock(priv);
686 
687 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
688 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
689 	if (ret < 0) {
690 		dev_err(priv->dev, "poll timeout\n");
691 		goto out;
692 	}
693 
694 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
695 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
696 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
697 
698 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
699 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
700 	if (ret < 0) {
701 		dev_err(priv->dev, "poll timeout\n");
702 		goto out;
703 	}
704 
705 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
706 	      MT7531_MDIO_DEV_ADDR(devad) | data;
707 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
708 
709 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
710 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
711 	if (ret < 0) {
712 		dev_err(priv->dev, "poll timeout\n");
713 		goto out;
714 	}
715 
716 out:
717 	mt7530_mutex_unlock(priv);
718 
719 	return ret;
720 }
721 
722 static int
723 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
724 {
725 	struct mt7530_dummy_poll p;
726 	int ret;
727 	u32 val;
728 
729 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
730 
731 	mt7530_mutex_lock(priv);
732 
733 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
734 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
735 	if (ret < 0) {
736 		dev_err(priv->dev, "poll timeout\n");
737 		goto out;
738 	}
739 
740 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
741 	      MT7531_MDIO_REG_ADDR(regnum);
742 
743 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
744 
745 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
746 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
747 	if (ret < 0) {
748 		dev_err(priv->dev, "poll timeout\n");
749 		goto out;
750 	}
751 
752 	ret = val & MT7531_MDIO_RW_DATA_MASK;
753 out:
754 	mt7530_mutex_unlock(priv);
755 
756 	return ret;
757 }
758 
759 static int
760 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
761 			 u16 data)
762 {
763 	struct mt7530_dummy_poll p;
764 	int ret;
765 	u32 reg;
766 
767 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
768 
769 	mt7530_mutex_lock(priv);
770 
771 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
772 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
773 	if (ret < 0) {
774 		dev_err(priv->dev, "poll timeout\n");
775 		goto out;
776 	}
777 
778 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
779 	      MT7531_MDIO_REG_ADDR(regnum) | data;
780 
781 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
782 
783 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
784 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
785 	if (ret < 0) {
786 		dev_err(priv->dev, "poll timeout\n");
787 		goto out;
788 	}
789 
790 out:
791 	mt7530_mutex_unlock(priv);
792 
793 	return ret;
794 }
795 
796 static int
797 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
798 {
799 	struct mt7530_priv *priv = bus->priv;
800 
801 	return priv->info->phy_read_c22(priv, port, regnum);
802 }
803 
804 static int
805 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
806 {
807 	struct mt7530_priv *priv = bus->priv;
808 
809 	return priv->info->phy_read_c45(priv, port, devad, regnum);
810 }
811 
812 static int
813 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
814 {
815 	struct mt7530_priv *priv = bus->priv;
816 
817 	return priv->info->phy_write_c22(priv, port, regnum, val);
818 }
819 
820 static int
821 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
822 		     u16 val)
823 {
824 	struct mt7530_priv *priv = bus->priv;
825 
826 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
827 }
828 
829 static void
830 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
831 		   uint8_t *data)
832 {
833 	int i;
834 
835 	if (stringset != ETH_SS_STATS)
836 		return;
837 
838 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
839 		ethtool_puts(&data, mt7530_mib[i].name);
840 }
841 
842 static void
843 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
844 			 uint64_t *data)
845 {
846 	struct mt7530_priv *priv = ds->priv;
847 	const struct mt7530_mib_desc *mib;
848 	u32 reg, i;
849 	u64 hi;
850 
851 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
852 		mib = &mt7530_mib[i];
853 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
854 
855 		data[i] = mt7530_read(priv, reg);
856 		if (mib->size == 2) {
857 			hi = mt7530_read(priv, reg + 4);
858 			data[i] |= hi << 32;
859 		}
860 	}
861 }
862 
863 static int
864 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
865 {
866 	if (sset != ETH_SS_STATS)
867 		return 0;
868 
869 	return ARRAY_SIZE(mt7530_mib);
870 }
871 
872 static int
873 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
874 {
875 	struct mt7530_priv *priv = ds->priv;
876 	unsigned int secs = msecs / 1000;
877 	unsigned int tmp_age_count;
878 	unsigned int error = -1;
879 	unsigned int age_count;
880 	unsigned int age_unit;
881 
882 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
883 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
884 		return -ERANGE;
885 
886 	/* iterate through all possible age_count to find the closest pair */
887 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
888 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
889 
890 		if (tmp_age_unit <= AGE_UNIT_MAX) {
891 			unsigned int tmp_error = secs -
892 				(tmp_age_count + 1) * (tmp_age_unit + 1);
893 
894 			/* found a closer pair */
895 			if (error > tmp_error) {
896 				error = tmp_error;
897 				age_count = tmp_age_count;
898 				age_unit = tmp_age_unit;
899 			}
900 
901 			/* found the exact match, so break the loop */
902 			if (!error)
903 				break;
904 		}
905 	}
906 
907 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
908 
909 	return 0;
910 }
911 
912 static const char *p5_intf_modes(unsigned int p5_interface)
913 {
914 	switch (p5_interface) {
915 	case P5_DISABLED:
916 		return "DISABLED";
917 	case P5_INTF_SEL_PHY_P0:
918 		return "PHY P0";
919 	case P5_INTF_SEL_PHY_P4:
920 		return "PHY P4";
921 	case P5_INTF_SEL_GMAC5:
922 		return "GMAC5";
923 	case P5_INTF_SEL_GMAC5_SGMII:
924 		return "GMAC5_SGMII";
925 	default:
926 		return "unknown";
927 	}
928 }
929 
930 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
931 {
932 	struct mt7530_priv *priv = ds->priv;
933 	u8 tx_delay = 0;
934 	int val;
935 
936 	mutex_lock(&priv->reg_mutex);
937 
938 	val = mt7530_read(priv, MT7530_MHWTRAP);
939 
940 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
941 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
942 
943 	switch (priv->p5_intf_sel) {
944 	case P5_INTF_SEL_PHY_P0:
945 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
946 		val |= MHWTRAP_PHY0_SEL;
947 		fallthrough;
948 	case P5_INTF_SEL_PHY_P4:
949 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
950 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
951 
952 		/* Setup the MAC by default for the cpu port */
953 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
954 		break;
955 	case P5_INTF_SEL_GMAC5:
956 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
957 		val &= ~MHWTRAP_P5_DIS;
958 		break;
959 	case P5_DISABLED:
960 		interface = PHY_INTERFACE_MODE_NA;
961 		break;
962 	default:
963 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
964 			priv->p5_intf_sel);
965 		goto unlock_exit;
966 	}
967 
968 	/* Setup RGMII settings */
969 	if (phy_interface_mode_is_rgmii(interface)) {
970 		val |= MHWTRAP_P5_RGMII_MODE;
971 
972 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
973 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
974 
975 		/* Don't set delay in DSA mode */
976 		if (!dsa_is_dsa_port(priv->ds, 5) &&
977 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
978 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
979 			tx_delay = 4; /* n * 0.5 ns */
980 
981 		/* P5 RGMII TX Clock Control: delay x */
982 		mt7530_write(priv, MT7530_P5RGMIITXCR,
983 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
984 
985 		/* reduce P5 RGMII Tx driving, 8mA */
986 		mt7530_write(priv, MT7530_IO_DRV_CR,
987 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
988 	}
989 
990 	mt7530_write(priv, MT7530_MHWTRAP, val);
991 
992 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
993 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
994 
995 	priv->p5_interface = interface;
996 
997 unlock_exit:
998 	mutex_unlock(&priv->reg_mutex);
999 }
1000 
1001 static void
1002 mt753x_trap_frames(struct mt7530_priv *priv)
1003 {
1004 	/* Trap BPDUs to the CPU port(s) */
1005 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
1006 		   MT753X_BPDU_CPU_ONLY);
1007 
1008 	/* Trap 802.1X PAE frames to the CPU port(s) */
1009 	mt7530_rmw(priv, MT753X_BPC, MT753X_PAE_PORT_FW_MASK,
1010 		   MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY));
1011 
1012 	/* Trap LLDP frames with :0E MAC DA to the CPU port(s) */
1013 	mt7530_rmw(priv, MT753X_RGAC2, MT753X_R0E_PORT_FW_MASK,
1014 		   MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY));
1015 }
1016 
1017 static int
1018 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1019 {
1020 	struct mt7530_priv *priv = ds->priv;
1021 	int ret;
1022 
1023 	/* Setup max capability of CPU port at first */
1024 	if (priv->info->cpu_port_config) {
1025 		ret = priv->info->cpu_port_config(ds, port);
1026 		if (ret)
1027 			return ret;
1028 	}
1029 
1030 	/* Enable Mediatek header mode on the cpu port */
1031 	mt7530_write(priv, MT7530_PVC_P(port),
1032 		     PORT_SPEC_TAG);
1033 
1034 	/* Enable flooding on the CPU port */
1035 	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1036 		   UNU_FFP(BIT(port)));
1037 
1038 	/* Set CPU port number */
1039 	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
1040 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1041 
1042 	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1043 	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1044 	 * is affine to the inbound user port.
1045 	 */
1046 	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1047 		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1048 
1049 	/* CPU port gets connected to all user ports of
1050 	 * the switch.
1051 	 */
1052 	mt7530_write(priv, MT7530_PCR_P(port),
1053 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1054 
1055 	/* Set to fallback mode for independent VLAN learning */
1056 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1057 		   MT7530_PORT_FALLBACK_MODE);
1058 
1059 	return 0;
1060 }
1061 
1062 static int
1063 mt7530_port_enable(struct dsa_switch *ds, int port,
1064 		   struct phy_device *phy)
1065 {
1066 	struct dsa_port *dp = dsa_to_port(ds, port);
1067 	struct mt7530_priv *priv = ds->priv;
1068 
1069 	mutex_lock(&priv->reg_mutex);
1070 
1071 	/* Allow the user port gets connected to the cpu port and also
1072 	 * restore the port matrix if the port is the member of a certain
1073 	 * bridge.
1074 	 */
1075 	if (dsa_port_is_user(dp)) {
1076 		struct dsa_port *cpu_dp = dp->cpu_dp;
1077 
1078 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1079 	}
1080 	priv->ports[port].enable = true;
1081 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1082 		   priv->ports[port].pm);
1083 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1084 
1085 	mutex_unlock(&priv->reg_mutex);
1086 
1087 	return 0;
1088 }
1089 
1090 static void
1091 mt7530_port_disable(struct dsa_switch *ds, int port)
1092 {
1093 	struct mt7530_priv *priv = ds->priv;
1094 
1095 	mutex_lock(&priv->reg_mutex);
1096 
1097 	/* Clear up all port matrix which could be restored in the next
1098 	 * enablement for the port.
1099 	 */
1100 	priv->ports[port].enable = false;
1101 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1102 		   PCR_MATRIX_CLR);
1103 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1104 
1105 	mutex_unlock(&priv->reg_mutex);
1106 }
1107 
1108 static int
1109 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1110 {
1111 	struct mt7530_priv *priv = ds->priv;
1112 	int length;
1113 	u32 val;
1114 
1115 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1116 	 * largest MTU of the user ports. Because the switch only has a global
1117 	 * RX length register, only allowing CPU port here is enough.
1118 	 */
1119 	if (!dsa_is_cpu_port(ds, port))
1120 		return 0;
1121 
1122 	mt7530_mutex_lock(priv);
1123 
1124 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1125 	val &= ~MAX_RX_PKT_LEN_MASK;
1126 
1127 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1128 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1129 	if (length <= 1522) {
1130 		val |= MAX_RX_PKT_LEN_1522;
1131 	} else if (length <= 1536) {
1132 		val |= MAX_RX_PKT_LEN_1536;
1133 	} else if (length <= 1552) {
1134 		val |= MAX_RX_PKT_LEN_1552;
1135 	} else {
1136 		val &= ~MAX_RX_JUMBO_MASK;
1137 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1138 		val |= MAX_RX_PKT_LEN_JUMBO;
1139 	}
1140 
1141 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1142 
1143 	mt7530_mutex_unlock(priv);
1144 
1145 	return 0;
1146 }
1147 
1148 static int
1149 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1150 {
1151 	return MT7530_MAX_MTU;
1152 }
1153 
1154 static void
1155 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1156 {
1157 	struct mt7530_priv *priv = ds->priv;
1158 	u32 stp_state;
1159 
1160 	switch (state) {
1161 	case BR_STATE_DISABLED:
1162 		stp_state = MT7530_STP_DISABLED;
1163 		break;
1164 	case BR_STATE_BLOCKING:
1165 		stp_state = MT7530_STP_BLOCKING;
1166 		break;
1167 	case BR_STATE_LISTENING:
1168 		stp_state = MT7530_STP_LISTENING;
1169 		break;
1170 	case BR_STATE_LEARNING:
1171 		stp_state = MT7530_STP_LEARNING;
1172 		break;
1173 	case BR_STATE_FORWARDING:
1174 	default:
1175 		stp_state = MT7530_STP_FORWARDING;
1176 		break;
1177 	}
1178 
1179 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1180 		   FID_PST(FID_BRIDGED, stp_state));
1181 }
1182 
1183 static int
1184 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1185 			     struct switchdev_brport_flags flags,
1186 			     struct netlink_ext_ack *extack)
1187 {
1188 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1189 			   BR_BCAST_FLOOD))
1190 		return -EINVAL;
1191 
1192 	return 0;
1193 }
1194 
1195 static int
1196 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1197 			 struct switchdev_brport_flags flags,
1198 			 struct netlink_ext_ack *extack)
1199 {
1200 	struct mt7530_priv *priv = ds->priv;
1201 
1202 	if (flags.mask & BR_LEARNING)
1203 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1204 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1205 
1206 	if (flags.mask & BR_FLOOD)
1207 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1208 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1209 
1210 	if (flags.mask & BR_MCAST_FLOOD)
1211 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1212 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1213 
1214 	if (flags.mask & BR_BCAST_FLOOD)
1215 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1216 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1217 
1218 	return 0;
1219 }
1220 
1221 static int
1222 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1223 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1224 			struct netlink_ext_ack *extack)
1225 {
1226 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1227 	struct dsa_port *cpu_dp = dp->cpu_dp;
1228 	u32 port_bitmap = BIT(cpu_dp->index);
1229 	struct mt7530_priv *priv = ds->priv;
1230 
1231 	mutex_lock(&priv->reg_mutex);
1232 
1233 	dsa_switch_for_each_user_port(other_dp, ds) {
1234 		int other_port = other_dp->index;
1235 
1236 		if (dp == other_dp)
1237 			continue;
1238 
1239 		/* Add this port to the port matrix of the other ports in the
1240 		 * same bridge. If the port is disabled, port matrix is kept
1241 		 * and not being setup until the port becomes enabled.
1242 		 */
1243 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1244 			continue;
1245 
1246 		if (priv->ports[other_port].enable)
1247 			mt7530_set(priv, MT7530_PCR_P(other_port),
1248 				   PCR_MATRIX(BIT(port)));
1249 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1250 
1251 		port_bitmap |= BIT(other_port);
1252 	}
1253 
1254 	/* Add the all other ports to this port matrix. */
1255 	if (priv->ports[port].enable)
1256 		mt7530_rmw(priv, MT7530_PCR_P(port),
1257 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1258 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1259 
1260 	/* Set to fallback mode for independent VLAN learning */
1261 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1262 		   MT7530_PORT_FALLBACK_MODE);
1263 
1264 	mutex_unlock(&priv->reg_mutex);
1265 
1266 	return 0;
1267 }
1268 
1269 static void
1270 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1271 {
1272 	struct mt7530_priv *priv = ds->priv;
1273 	bool all_user_ports_removed = true;
1274 	int i;
1275 
1276 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1277 	 * bridge. Don't set standalone ports to fallback mode.
1278 	 */
1279 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1280 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1281 			   MT7530_PORT_FALLBACK_MODE);
1282 
1283 	mt7530_rmw(priv, MT7530_PVC_P(port),
1284 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1285 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1286 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1287 		   MT7530_VLAN_ACC_ALL);
1288 
1289 	/* Set PVID to 0 */
1290 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1291 		   G0_PORT_VID_DEF);
1292 
1293 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1294 		if (dsa_is_user_port(ds, i) &&
1295 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1296 			all_user_ports_removed = false;
1297 			break;
1298 		}
1299 	}
1300 
1301 	/* CPU port also does the same thing until all user ports belonging to
1302 	 * the CPU port get out of VLAN filtering mode.
1303 	 */
1304 	if (all_user_ports_removed) {
1305 		struct dsa_port *dp = dsa_to_port(ds, port);
1306 		struct dsa_port *cpu_dp = dp->cpu_dp;
1307 
1308 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1309 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1310 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1311 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1312 	}
1313 }
1314 
1315 static void
1316 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1317 {
1318 	struct mt7530_priv *priv = ds->priv;
1319 
1320 	/* Trapped into security mode allows packet forwarding through VLAN
1321 	 * table lookup.
1322 	 */
1323 	if (dsa_is_user_port(ds, port)) {
1324 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1325 			   MT7530_PORT_SECURITY_MODE);
1326 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1327 			   G0_PORT_VID(priv->ports[port].pvid));
1328 
1329 		/* Only accept tagged frames if PVID is not set */
1330 		if (!priv->ports[port].pvid)
1331 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1332 				   MT7530_VLAN_ACC_TAGGED);
1333 
1334 		/* Set the port as a user port which is to be able to recognize
1335 		 * VID from incoming packets before fetching entry within the
1336 		 * VLAN table.
1337 		 */
1338 		mt7530_rmw(priv, MT7530_PVC_P(port),
1339 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1340 			   VLAN_ATTR(MT7530_VLAN_USER) |
1341 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1342 	} else {
1343 		/* Also set CPU ports to the "user" VLAN port attribute, to
1344 		 * allow VLAN classification, but keep the EG_TAG attribute as
1345 		 * "consistent" (i.o.w. don't change its value) for packets
1346 		 * received by the switch from the CPU, so that tagged packets
1347 		 * are forwarded to user ports as tagged, and untagged as
1348 		 * untagged.
1349 		 */
1350 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1351 			   VLAN_ATTR(MT7530_VLAN_USER));
1352 	}
1353 }
1354 
1355 static void
1356 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1357 			 struct dsa_bridge bridge)
1358 {
1359 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1360 	struct dsa_port *cpu_dp = dp->cpu_dp;
1361 	struct mt7530_priv *priv = ds->priv;
1362 
1363 	mutex_lock(&priv->reg_mutex);
1364 
1365 	dsa_switch_for_each_user_port(other_dp, ds) {
1366 		int other_port = other_dp->index;
1367 
1368 		if (dp == other_dp)
1369 			continue;
1370 
1371 		/* Remove this port from the port matrix of the other ports
1372 		 * in the same bridge. If the port is disabled, port matrix
1373 		 * is kept and not being setup until the port becomes enabled.
1374 		 */
1375 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1376 			continue;
1377 
1378 		if (priv->ports[other_port].enable)
1379 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1380 				     PCR_MATRIX(BIT(port)));
1381 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1382 	}
1383 
1384 	/* Set the cpu port to be the only one in the port matrix of
1385 	 * this port.
1386 	 */
1387 	if (priv->ports[port].enable)
1388 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1389 			   PCR_MATRIX(BIT(cpu_dp->index)));
1390 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1391 
1392 	/* When a port is removed from the bridge, the port would be set up
1393 	 * back to the default as is at initial boot which is a VLAN-unaware
1394 	 * port.
1395 	 */
1396 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1397 		   MT7530_PORT_MATRIX_MODE);
1398 
1399 	mutex_unlock(&priv->reg_mutex);
1400 }
1401 
1402 static int
1403 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1404 		    const unsigned char *addr, u16 vid,
1405 		    struct dsa_db db)
1406 {
1407 	struct mt7530_priv *priv = ds->priv;
1408 	int ret;
1409 	u8 port_mask = BIT(port);
1410 
1411 	mutex_lock(&priv->reg_mutex);
1412 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1413 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1414 	mutex_unlock(&priv->reg_mutex);
1415 
1416 	return ret;
1417 }
1418 
1419 static int
1420 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1421 		    const unsigned char *addr, u16 vid,
1422 		    struct dsa_db db)
1423 {
1424 	struct mt7530_priv *priv = ds->priv;
1425 	int ret;
1426 	u8 port_mask = BIT(port);
1427 
1428 	mutex_lock(&priv->reg_mutex);
1429 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1430 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1431 	mutex_unlock(&priv->reg_mutex);
1432 
1433 	return ret;
1434 }
1435 
1436 static int
1437 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1438 		     dsa_fdb_dump_cb_t *cb, void *data)
1439 {
1440 	struct mt7530_priv *priv = ds->priv;
1441 	struct mt7530_fdb _fdb = { 0 };
1442 	int cnt = MT7530_NUM_FDB_RECORDS;
1443 	int ret = 0;
1444 	u32 rsp = 0;
1445 
1446 	mutex_lock(&priv->reg_mutex);
1447 
1448 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1449 	if (ret < 0)
1450 		goto err;
1451 
1452 	do {
1453 		if (rsp & ATC_SRCH_HIT) {
1454 			mt7530_fdb_read(priv, &_fdb);
1455 			if (_fdb.port_mask & BIT(port)) {
1456 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1457 					 data);
1458 				if (ret < 0)
1459 					break;
1460 			}
1461 		}
1462 	} while (--cnt &&
1463 		 !(rsp & ATC_SRCH_END) &&
1464 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1465 err:
1466 	mutex_unlock(&priv->reg_mutex);
1467 
1468 	return 0;
1469 }
1470 
1471 static int
1472 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1473 		    const struct switchdev_obj_port_mdb *mdb,
1474 		    struct dsa_db db)
1475 {
1476 	struct mt7530_priv *priv = ds->priv;
1477 	const u8 *addr = mdb->addr;
1478 	u16 vid = mdb->vid;
1479 	u8 port_mask = 0;
1480 	int ret;
1481 
1482 	mutex_lock(&priv->reg_mutex);
1483 
1484 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1485 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1486 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1487 			    & PORT_MAP_MASK;
1488 
1489 	port_mask |= BIT(port);
1490 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1491 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1492 
1493 	mutex_unlock(&priv->reg_mutex);
1494 
1495 	return ret;
1496 }
1497 
1498 static int
1499 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1500 		    const struct switchdev_obj_port_mdb *mdb,
1501 		    struct dsa_db db)
1502 {
1503 	struct mt7530_priv *priv = ds->priv;
1504 	const u8 *addr = mdb->addr;
1505 	u16 vid = mdb->vid;
1506 	u8 port_mask = 0;
1507 	int ret;
1508 
1509 	mutex_lock(&priv->reg_mutex);
1510 
1511 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1512 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1513 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1514 			    & PORT_MAP_MASK;
1515 
1516 	port_mask &= ~BIT(port);
1517 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1518 			 port_mask ? STATIC_ENT : STATIC_EMP);
1519 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1520 
1521 	mutex_unlock(&priv->reg_mutex);
1522 
1523 	return ret;
1524 }
1525 
1526 static int
1527 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1528 {
1529 	struct mt7530_dummy_poll p;
1530 	u32 val;
1531 	int ret;
1532 
1533 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1534 	mt7530_write(priv, MT7530_VTCR, val);
1535 
1536 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1537 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1538 				 !(val & VTCR_BUSY), 20, 20000);
1539 	if (ret < 0) {
1540 		dev_err(priv->dev, "poll timeout\n");
1541 		return ret;
1542 	}
1543 
1544 	val = mt7530_read(priv, MT7530_VTCR);
1545 	if (val & VTCR_INVALID) {
1546 		dev_err(priv->dev, "read VTCR invalid\n");
1547 		return -EINVAL;
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 static int
1554 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1555 			   struct netlink_ext_ack *extack)
1556 {
1557 	struct dsa_port *dp = dsa_to_port(ds, port);
1558 	struct dsa_port *cpu_dp = dp->cpu_dp;
1559 
1560 	if (vlan_filtering) {
1561 		/* The port is being kept as VLAN-unaware port when bridge is
1562 		 * set up with vlan_filtering not being set, Otherwise, the
1563 		 * port and the corresponding CPU port is required the setup
1564 		 * for becoming a VLAN-aware port.
1565 		 */
1566 		mt7530_port_set_vlan_aware(ds, port);
1567 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1568 	} else {
1569 		mt7530_port_set_vlan_unaware(ds, port);
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 static void
1576 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1577 		   struct mt7530_hw_vlan_entry *entry)
1578 {
1579 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1580 	u8 new_members;
1581 	u32 val;
1582 
1583 	new_members = entry->old_members | BIT(entry->port);
1584 
1585 	/* Validate the entry with independent learning, create egress tag per
1586 	 * VLAN and joining the port as one of the port members.
1587 	 */
1588 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1589 	      VLAN_VALID;
1590 	mt7530_write(priv, MT7530_VAWD1, val);
1591 
1592 	/* Decide whether adding tag or not for those outgoing packets from the
1593 	 * port inside the VLAN.
1594 	 * CPU port is always taken as a tagged port for serving more than one
1595 	 * VLANs across and also being applied with egress type stack mode for
1596 	 * that VLAN tags would be appended after hardware special tag used as
1597 	 * DSA tag.
1598 	 */
1599 	if (dsa_port_is_cpu(dp))
1600 		val = MT7530_VLAN_EGRESS_STACK;
1601 	else if (entry->untagged)
1602 		val = MT7530_VLAN_EGRESS_UNTAG;
1603 	else
1604 		val = MT7530_VLAN_EGRESS_TAG;
1605 	mt7530_rmw(priv, MT7530_VAWD2,
1606 		   ETAG_CTRL_P_MASK(entry->port),
1607 		   ETAG_CTRL_P(entry->port, val));
1608 }
1609 
1610 static void
1611 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1612 		   struct mt7530_hw_vlan_entry *entry)
1613 {
1614 	u8 new_members;
1615 	u32 val;
1616 
1617 	new_members = entry->old_members & ~BIT(entry->port);
1618 
1619 	val = mt7530_read(priv, MT7530_VAWD1);
1620 	if (!(val & VLAN_VALID)) {
1621 		dev_err(priv->dev,
1622 			"Cannot be deleted due to invalid entry\n");
1623 		return;
1624 	}
1625 
1626 	if (new_members) {
1627 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1628 		      VLAN_VALID;
1629 		mt7530_write(priv, MT7530_VAWD1, val);
1630 	} else {
1631 		mt7530_write(priv, MT7530_VAWD1, 0);
1632 		mt7530_write(priv, MT7530_VAWD2, 0);
1633 	}
1634 }
1635 
1636 static void
1637 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1638 		      struct mt7530_hw_vlan_entry *entry,
1639 		      mt7530_vlan_op vlan_op)
1640 {
1641 	u32 val;
1642 
1643 	/* Fetch entry */
1644 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1645 
1646 	val = mt7530_read(priv, MT7530_VAWD1);
1647 
1648 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1649 
1650 	/* Manipulate entry */
1651 	vlan_op(priv, entry);
1652 
1653 	/* Flush result to hardware */
1654 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1655 }
1656 
1657 static int
1658 mt7530_setup_vlan0(struct mt7530_priv *priv)
1659 {
1660 	u32 val;
1661 
1662 	/* Validate the entry with independent learning, keep the original
1663 	 * ingress tag attribute.
1664 	 */
1665 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1666 	      VLAN_VALID;
1667 	mt7530_write(priv, MT7530_VAWD1, val);
1668 
1669 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1670 }
1671 
1672 static int
1673 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1674 		     const struct switchdev_obj_port_vlan *vlan,
1675 		     struct netlink_ext_ack *extack)
1676 {
1677 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1678 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1679 	struct mt7530_hw_vlan_entry new_entry;
1680 	struct mt7530_priv *priv = ds->priv;
1681 
1682 	mutex_lock(&priv->reg_mutex);
1683 
1684 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1685 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1686 
1687 	if (pvid) {
1688 		priv->ports[port].pvid = vlan->vid;
1689 
1690 		/* Accept all frames if PVID is set */
1691 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1692 			   MT7530_VLAN_ACC_ALL);
1693 
1694 		/* Only configure PVID if VLAN filtering is enabled */
1695 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1696 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1697 				   G0_PORT_VID_MASK,
1698 				   G0_PORT_VID(vlan->vid));
1699 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1700 		/* This VLAN is overwritten without PVID, so unset it */
1701 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1702 
1703 		/* Only accept tagged frames if the port is VLAN-aware */
1704 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1705 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1706 				   MT7530_VLAN_ACC_TAGGED);
1707 
1708 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1709 			   G0_PORT_VID_DEF);
1710 	}
1711 
1712 	mutex_unlock(&priv->reg_mutex);
1713 
1714 	return 0;
1715 }
1716 
1717 static int
1718 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1719 		     const struct switchdev_obj_port_vlan *vlan)
1720 {
1721 	struct mt7530_hw_vlan_entry target_entry;
1722 	struct mt7530_priv *priv = ds->priv;
1723 
1724 	mutex_lock(&priv->reg_mutex);
1725 
1726 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1727 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1728 			      mt7530_hw_vlan_del);
1729 
1730 	/* PVID is being restored to the default whenever the PVID port
1731 	 * is being removed from the VLAN.
1732 	 */
1733 	if (priv->ports[port].pvid == vlan->vid) {
1734 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1735 
1736 		/* Only accept tagged frames if the port is VLAN-aware */
1737 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1738 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1739 				   MT7530_VLAN_ACC_TAGGED);
1740 
1741 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1742 			   G0_PORT_VID_DEF);
1743 	}
1744 
1745 
1746 	mutex_unlock(&priv->reg_mutex);
1747 
1748 	return 0;
1749 }
1750 
1751 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1752 {
1753 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1754 				   MIRROR_PORT(val);
1755 }
1756 
1757 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1758 {
1759 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1760 				   MIRROR_PORT(val);
1761 }
1762 
1763 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1764 				  struct dsa_mall_mirror_tc_entry *mirror,
1765 				  bool ingress, struct netlink_ext_ack *extack)
1766 {
1767 	struct mt7530_priv *priv = ds->priv;
1768 	int monitor_port;
1769 	u32 val;
1770 
1771 	/* Check for existent entry */
1772 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1773 		return -EEXIST;
1774 
1775 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1776 
1777 	/* MT7530 only supports one monitor port */
1778 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1779 	if (val & MT753X_MIRROR_EN(priv->id) &&
1780 	    monitor_port != mirror->to_local_port)
1781 		return -EEXIST;
1782 
1783 	val |= MT753X_MIRROR_EN(priv->id);
1784 	val &= ~MT753X_MIRROR_MASK(priv->id);
1785 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1786 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1787 
1788 	val = mt7530_read(priv, MT7530_PCR_P(port));
1789 	if (ingress) {
1790 		val |= PORT_RX_MIR;
1791 		priv->mirror_rx |= BIT(port);
1792 	} else {
1793 		val |= PORT_TX_MIR;
1794 		priv->mirror_tx |= BIT(port);
1795 	}
1796 	mt7530_write(priv, MT7530_PCR_P(port), val);
1797 
1798 	return 0;
1799 }
1800 
1801 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1802 				   struct dsa_mall_mirror_tc_entry *mirror)
1803 {
1804 	struct mt7530_priv *priv = ds->priv;
1805 	u32 val;
1806 
1807 	val = mt7530_read(priv, MT7530_PCR_P(port));
1808 	if (mirror->ingress) {
1809 		val &= ~PORT_RX_MIR;
1810 		priv->mirror_rx &= ~BIT(port);
1811 	} else {
1812 		val &= ~PORT_TX_MIR;
1813 		priv->mirror_tx &= ~BIT(port);
1814 	}
1815 	mt7530_write(priv, MT7530_PCR_P(port), val);
1816 
1817 	if (!priv->mirror_rx && !priv->mirror_tx) {
1818 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1819 		val &= ~MT753X_MIRROR_EN(priv->id);
1820 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1821 	}
1822 }
1823 
1824 static enum dsa_tag_protocol
1825 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1826 		     enum dsa_tag_protocol mp)
1827 {
1828 	return DSA_TAG_PROTO_MTK;
1829 }
1830 
1831 #ifdef CONFIG_GPIOLIB
1832 static inline u32
1833 mt7530_gpio_to_bit(unsigned int offset)
1834 {
1835 	/* Map GPIO offset to register bit
1836 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1837 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1838 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1839 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1840 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1841 	 */
1842 	return BIT(offset + offset / 3);
1843 }
1844 
1845 static int
1846 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1847 {
1848 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1849 	u32 bit = mt7530_gpio_to_bit(offset);
1850 
1851 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1852 }
1853 
1854 static void
1855 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1856 {
1857 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1858 	u32 bit = mt7530_gpio_to_bit(offset);
1859 
1860 	if (value)
1861 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1862 	else
1863 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1864 }
1865 
1866 static int
1867 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1868 {
1869 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1870 	u32 bit = mt7530_gpio_to_bit(offset);
1871 
1872 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1873 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1874 }
1875 
1876 static int
1877 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1878 {
1879 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1880 	u32 bit = mt7530_gpio_to_bit(offset);
1881 
1882 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1883 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1884 
1885 	return 0;
1886 }
1887 
1888 static int
1889 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1890 {
1891 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1892 	u32 bit = mt7530_gpio_to_bit(offset);
1893 
1894 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1895 
1896 	if (value)
1897 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1898 	else
1899 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1900 
1901 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1902 
1903 	return 0;
1904 }
1905 
1906 static int
1907 mt7530_setup_gpio(struct mt7530_priv *priv)
1908 {
1909 	struct device *dev = priv->dev;
1910 	struct gpio_chip *gc;
1911 
1912 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1913 	if (!gc)
1914 		return -ENOMEM;
1915 
1916 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1917 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1918 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1919 
1920 	gc->label = "mt7530";
1921 	gc->parent = dev;
1922 	gc->owner = THIS_MODULE;
1923 	gc->get_direction = mt7530_gpio_get_direction;
1924 	gc->direction_input = mt7530_gpio_direction_input;
1925 	gc->direction_output = mt7530_gpio_direction_output;
1926 	gc->get = mt7530_gpio_get;
1927 	gc->set = mt7530_gpio_set;
1928 	gc->base = -1;
1929 	gc->ngpio = 15;
1930 	gc->can_sleep = true;
1931 
1932 	return devm_gpiochip_add_data(dev, gc, priv);
1933 }
1934 #endif /* CONFIG_GPIOLIB */
1935 
1936 static irqreturn_t
1937 mt7530_irq_thread_fn(int irq, void *dev_id)
1938 {
1939 	struct mt7530_priv *priv = dev_id;
1940 	bool handled = false;
1941 	u32 val;
1942 	int p;
1943 
1944 	mt7530_mutex_lock(priv);
1945 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1946 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1947 	mt7530_mutex_unlock(priv);
1948 
1949 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1950 		if (BIT(p) & val) {
1951 			unsigned int irq;
1952 
1953 			irq = irq_find_mapping(priv->irq_domain, p);
1954 			handle_nested_irq(irq);
1955 			handled = true;
1956 		}
1957 	}
1958 
1959 	return IRQ_RETVAL(handled);
1960 }
1961 
1962 static void
1963 mt7530_irq_mask(struct irq_data *d)
1964 {
1965 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1966 
1967 	priv->irq_enable &= ~BIT(d->hwirq);
1968 }
1969 
1970 static void
1971 mt7530_irq_unmask(struct irq_data *d)
1972 {
1973 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1974 
1975 	priv->irq_enable |= BIT(d->hwirq);
1976 }
1977 
1978 static void
1979 mt7530_irq_bus_lock(struct irq_data *d)
1980 {
1981 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1982 
1983 	mt7530_mutex_lock(priv);
1984 }
1985 
1986 static void
1987 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1988 {
1989 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1990 
1991 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1992 	mt7530_mutex_unlock(priv);
1993 }
1994 
1995 static struct irq_chip mt7530_irq_chip = {
1996 	.name = KBUILD_MODNAME,
1997 	.irq_mask = mt7530_irq_mask,
1998 	.irq_unmask = mt7530_irq_unmask,
1999 	.irq_bus_lock = mt7530_irq_bus_lock,
2000 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2001 };
2002 
2003 static int
2004 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2005 	       irq_hw_number_t hwirq)
2006 {
2007 	irq_set_chip_data(irq, domain->host_data);
2008 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2009 	irq_set_nested_thread(irq, true);
2010 	irq_set_noprobe(irq);
2011 
2012 	return 0;
2013 }
2014 
2015 static const struct irq_domain_ops mt7530_irq_domain_ops = {
2016 	.map = mt7530_irq_map,
2017 	.xlate = irq_domain_xlate_onecell,
2018 };
2019 
2020 static void
2021 mt7988_irq_mask(struct irq_data *d)
2022 {
2023 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2024 
2025 	priv->irq_enable &= ~BIT(d->hwirq);
2026 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2027 }
2028 
2029 static void
2030 mt7988_irq_unmask(struct irq_data *d)
2031 {
2032 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2033 
2034 	priv->irq_enable |= BIT(d->hwirq);
2035 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2036 }
2037 
2038 static struct irq_chip mt7988_irq_chip = {
2039 	.name = KBUILD_MODNAME,
2040 	.irq_mask = mt7988_irq_mask,
2041 	.irq_unmask = mt7988_irq_unmask,
2042 };
2043 
2044 static int
2045 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2046 	       irq_hw_number_t hwirq)
2047 {
2048 	irq_set_chip_data(irq, domain->host_data);
2049 	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2050 	irq_set_nested_thread(irq, true);
2051 	irq_set_noprobe(irq);
2052 
2053 	return 0;
2054 }
2055 
2056 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2057 	.map = mt7988_irq_map,
2058 	.xlate = irq_domain_xlate_onecell,
2059 };
2060 
2061 static void
2062 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2063 {
2064 	struct dsa_switch *ds = priv->ds;
2065 	int p;
2066 
2067 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2068 		if (BIT(p) & ds->phys_mii_mask) {
2069 			unsigned int irq;
2070 
2071 			irq = irq_create_mapping(priv->irq_domain, p);
2072 			ds->user_mii_bus->irq[p] = irq;
2073 		}
2074 	}
2075 }
2076 
2077 static int
2078 mt7530_setup_irq(struct mt7530_priv *priv)
2079 {
2080 	struct device *dev = priv->dev;
2081 	struct device_node *np = dev->of_node;
2082 	int ret;
2083 
2084 	if (!of_property_read_bool(np, "interrupt-controller")) {
2085 		dev_info(dev, "no interrupt support\n");
2086 		return 0;
2087 	}
2088 
2089 	priv->irq = of_irq_get(np, 0);
2090 	if (priv->irq <= 0) {
2091 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2092 		return priv->irq ? : -EINVAL;
2093 	}
2094 
2095 	if (priv->id == ID_MT7988)
2096 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2097 							 &mt7988_irq_domain_ops,
2098 							 priv);
2099 	else
2100 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2101 							 &mt7530_irq_domain_ops,
2102 							 priv);
2103 
2104 	if (!priv->irq_domain) {
2105 		dev_err(dev, "failed to create IRQ domain\n");
2106 		return -ENOMEM;
2107 	}
2108 
2109 	/* This register must be set for MT7530 to properly fire interrupts */
2110 	if (priv->id != ID_MT7531)
2111 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2112 
2113 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2114 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2115 	if (ret) {
2116 		irq_domain_remove(priv->irq_domain);
2117 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2118 		return ret;
2119 	}
2120 
2121 	return 0;
2122 }
2123 
2124 static void
2125 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2126 {
2127 	int p;
2128 
2129 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2130 		if (BIT(p) & priv->ds->phys_mii_mask) {
2131 			unsigned int irq;
2132 
2133 			irq = irq_find_mapping(priv->irq_domain, p);
2134 			irq_dispose_mapping(irq);
2135 		}
2136 	}
2137 }
2138 
2139 static void
2140 mt7530_free_irq_common(struct mt7530_priv *priv)
2141 {
2142 	free_irq(priv->irq, priv);
2143 	irq_domain_remove(priv->irq_domain);
2144 }
2145 
2146 static void
2147 mt7530_free_irq(struct mt7530_priv *priv)
2148 {
2149 	mt7530_free_mdio_irq(priv);
2150 	mt7530_free_irq_common(priv);
2151 }
2152 
2153 static int
2154 mt7530_setup_mdio(struct mt7530_priv *priv)
2155 {
2156 	struct dsa_switch *ds = priv->ds;
2157 	struct device *dev = priv->dev;
2158 	struct mii_bus *bus;
2159 	static int idx;
2160 	int ret;
2161 
2162 	bus = devm_mdiobus_alloc(dev);
2163 	if (!bus)
2164 		return -ENOMEM;
2165 
2166 	ds->user_mii_bus = bus;
2167 	bus->priv = priv;
2168 	bus->name = KBUILD_MODNAME "-mii";
2169 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2170 	bus->read = mt753x_phy_read_c22;
2171 	bus->write = mt753x_phy_write_c22;
2172 	bus->read_c45 = mt753x_phy_read_c45;
2173 	bus->write_c45 = mt753x_phy_write_c45;
2174 	bus->parent = dev;
2175 	bus->phy_mask = ~ds->phys_mii_mask;
2176 
2177 	if (priv->irq)
2178 		mt7530_setup_mdio_irq(priv);
2179 
2180 	ret = devm_mdiobus_register(dev, bus);
2181 	if (ret) {
2182 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2183 		if (priv->irq)
2184 			mt7530_free_mdio_irq(priv);
2185 	}
2186 
2187 	return ret;
2188 }
2189 
2190 static int
2191 mt7530_setup(struct dsa_switch *ds)
2192 {
2193 	struct mt7530_priv *priv = ds->priv;
2194 	struct device_node *dn = NULL;
2195 	struct device_node *phy_node;
2196 	struct device_node *mac_np;
2197 	struct mt7530_dummy_poll p;
2198 	phy_interface_t interface;
2199 	struct dsa_port *cpu_dp;
2200 	u32 id, val;
2201 	int ret, i;
2202 
2203 	/* The parent node of conduit netdev which holds the common system
2204 	 * controller also is the container for two GMACs nodes representing
2205 	 * as two netdev instances.
2206 	 */
2207 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2208 		dn = cpu_dp->conduit->dev.of_node->parent;
2209 		/* It doesn't matter which CPU port is found first,
2210 		 * their conduits should share the same parent OF node
2211 		 */
2212 		break;
2213 	}
2214 
2215 	if (!dn) {
2216 		dev_err(ds->dev, "parent OF node of DSA conduit not found");
2217 		return -EINVAL;
2218 	}
2219 
2220 	ds->assisted_learning_on_cpu_port = true;
2221 	ds->mtu_enforcement_ingress = true;
2222 
2223 	if (priv->id == ID_MT7530) {
2224 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2225 		ret = regulator_enable(priv->core_pwr);
2226 		if (ret < 0) {
2227 			dev_err(priv->dev,
2228 				"Failed to enable core power: %d\n", ret);
2229 			return ret;
2230 		}
2231 
2232 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2233 		ret = regulator_enable(priv->io_pwr);
2234 		if (ret < 0) {
2235 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2236 				ret);
2237 			return ret;
2238 		}
2239 	}
2240 
2241 	/* Reset whole chip through gpio pin or memory-mapped registers for
2242 	 * different type of hardware
2243 	 */
2244 	if (priv->mcm) {
2245 		reset_control_assert(priv->rstc);
2246 		usleep_range(1000, 1100);
2247 		reset_control_deassert(priv->rstc);
2248 	} else {
2249 		gpiod_set_value_cansleep(priv->reset, 0);
2250 		usleep_range(1000, 1100);
2251 		gpiod_set_value_cansleep(priv->reset, 1);
2252 	}
2253 
2254 	/* Waiting for MT7530 got to stable */
2255 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2256 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2257 				 20, 1000000);
2258 	if (ret < 0) {
2259 		dev_err(priv->dev, "reset timeout\n");
2260 		return ret;
2261 	}
2262 
2263 	id = mt7530_read(priv, MT7530_CREV);
2264 	id >>= CHIP_NAME_SHIFT;
2265 	if (id != MT7530_ID) {
2266 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2267 		return -ENODEV;
2268 	}
2269 
2270 	/* Reset the switch through internal reset */
2271 	mt7530_write(priv, MT7530_SYS_CTRL,
2272 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2273 		     SYS_CTRL_REG_RST);
2274 
2275 	mt7530_pll_setup(priv);
2276 
2277 	/* Lower Tx driving for TRGMII path */
2278 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2279 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2280 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2281 
2282 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2283 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2284 			   RD_TAP_MASK, RD_TAP(16));
2285 
2286 	/* Enable port 6 */
2287 	val = mt7530_read(priv, MT7530_MHWTRAP);
2288 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2289 	val |= MHWTRAP_MANUAL;
2290 	mt7530_write(priv, MT7530_MHWTRAP, val);
2291 
2292 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2293 
2294 	mt753x_trap_frames(priv);
2295 
2296 	/* Enable and reset MIB counters */
2297 	mt7530_mib_reset(ds);
2298 
2299 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2300 		/* Disable forwarding by default on all ports */
2301 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2302 			   PCR_MATRIX_CLR);
2303 
2304 		/* Disable learning by default on all ports */
2305 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2306 
2307 		if (dsa_is_cpu_port(ds, i)) {
2308 			ret = mt753x_cpu_port_enable(ds, i);
2309 			if (ret)
2310 				return ret;
2311 		} else {
2312 			mt7530_port_disable(ds, i);
2313 
2314 			/* Set default PVID to 0 on all user ports */
2315 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2316 				   G0_PORT_VID_DEF);
2317 		}
2318 		/* Enable consistent egress tag */
2319 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2320 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2321 	}
2322 
2323 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2324 	ret = mt7530_setup_vlan0(priv);
2325 	if (ret)
2326 		return ret;
2327 
2328 	/* Setup port 5 */
2329 	priv->p5_intf_sel = P5_DISABLED;
2330 	interface = PHY_INTERFACE_MODE_NA;
2331 
2332 	if (!dsa_is_unused_port(ds, 5)) {
2333 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2334 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2335 		if (ret && ret != -ENODEV)
2336 			return ret;
2337 	} else {
2338 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2339 		for_each_child_of_node(dn, mac_np) {
2340 			if (!of_device_is_compatible(mac_np,
2341 						     "mediatek,eth-mac"))
2342 				continue;
2343 
2344 			ret = of_property_read_u32(mac_np, "reg", &id);
2345 			if (ret < 0 || id != 1)
2346 				continue;
2347 
2348 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2349 			if (!phy_node)
2350 				continue;
2351 
2352 			if (phy_node->parent == priv->dev->of_node->parent) {
2353 				ret = of_get_phy_mode(mac_np, &interface);
2354 				if (ret && ret != -ENODEV) {
2355 					of_node_put(mac_np);
2356 					of_node_put(phy_node);
2357 					return ret;
2358 				}
2359 				id = of_mdio_parse_addr(ds->dev, phy_node);
2360 				if (id == 0)
2361 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2362 				if (id == 4)
2363 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2364 			}
2365 			of_node_put(mac_np);
2366 			of_node_put(phy_node);
2367 			break;
2368 		}
2369 	}
2370 
2371 #ifdef CONFIG_GPIOLIB
2372 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2373 		ret = mt7530_setup_gpio(priv);
2374 		if (ret)
2375 			return ret;
2376 	}
2377 #endif /* CONFIG_GPIOLIB */
2378 
2379 	mt7530_setup_port5(ds, interface);
2380 
2381 	/* Flush the FDB table */
2382 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2383 	if (ret < 0)
2384 		return ret;
2385 
2386 	return 0;
2387 }
2388 
2389 static int
2390 mt7531_setup_common(struct dsa_switch *ds)
2391 {
2392 	struct mt7530_priv *priv = ds->priv;
2393 	int ret, i;
2394 
2395 	mt753x_trap_frames(priv);
2396 
2397 	/* Enable and reset MIB counters */
2398 	mt7530_mib_reset(ds);
2399 
2400 	/* Disable flooding on all ports */
2401 	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2402 		     UNU_FFP_MASK);
2403 
2404 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2405 		/* Disable forwarding by default on all ports */
2406 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2407 			   PCR_MATRIX_CLR);
2408 
2409 		/* Disable learning by default on all ports */
2410 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2411 
2412 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2413 
2414 		if (dsa_is_cpu_port(ds, i)) {
2415 			ret = mt753x_cpu_port_enable(ds, i);
2416 			if (ret)
2417 				return ret;
2418 		} else {
2419 			mt7530_port_disable(ds, i);
2420 
2421 			/* Set default PVID to 0 on all user ports */
2422 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2423 				   G0_PORT_VID_DEF);
2424 		}
2425 
2426 		/* Enable consistent egress tag */
2427 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2428 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2429 	}
2430 
2431 	/* Flush the FDB table */
2432 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2433 	if (ret < 0)
2434 		return ret;
2435 
2436 	return 0;
2437 }
2438 
2439 static int
2440 mt7531_setup(struct dsa_switch *ds)
2441 {
2442 	struct mt7530_priv *priv = ds->priv;
2443 	struct mt7530_dummy_poll p;
2444 	u32 val, id;
2445 	int ret, i;
2446 
2447 	/* Reset whole chip through gpio pin or memory-mapped registers for
2448 	 * different type of hardware
2449 	 */
2450 	if (priv->mcm) {
2451 		reset_control_assert(priv->rstc);
2452 		usleep_range(1000, 1100);
2453 		reset_control_deassert(priv->rstc);
2454 	} else {
2455 		gpiod_set_value_cansleep(priv->reset, 0);
2456 		usleep_range(1000, 1100);
2457 		gpiod_set_value_cansleep(priv->reset, 1);
2458 	}
2459 
2460 	/* Waiting for MT7530 got to stable */
2461 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2462 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2463 				 20, 1000000);
2464 	if (ret < 0) {
2465 		dev_err(priv->dev, "reset timeout\n");
2466 		return ret;
2467 	}
2468 
2469 	id = mt7530_read(priv, MT7531_CREV);
2470 	id >>= CHIP_NAME_SHIFT;
2471 
2472 	if (id != MT7531_ID) {
2473 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2474 		return -ENODEV;
2475 	}
2476 
2477 	/* all MACs must be forced link-down before sw reset */
2478 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2479 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2480 
2481 	/* Reset the switch through internal reset */
2482 	mt7530_write(priv, MT7530_SYS_CTRL,
2483 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2484 		     SYS_CTRL_REG_RST);
2485 
2486 	mt7531_pll_setup(priv);
2487 
2488 	if (mt7531_dual_sgmii_supported(priv)) {
2489 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2490 
2491 		/* Let ds->user_mii_bus be able to access external phy. */
2492 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2493 			   MT7531_EXT_P_MDC_11);
2494 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2495 			   MT7531_EXT_P_MDIO_12);
2496 	} else {
2497 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2498 	}
2499 	dev_dbg(ds->dev, "P5 support %s interface\n",
2500 		p5_intf_modes(priv->p5_intf_sel));
2501 
2502 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2503 		   MT7531_GPIO0_INTERRUPT);
2504 
2505 	/* Let phylink decide the interface later. */
2506 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2507 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2508 
2509 	/* Enable PHY core PLL, since phy_device has not yet been created
2510 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2511 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2512 	 * function.
2513 	 */
2514 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2515 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2516 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2517 	val &= ~MT7531_PHY_PLL_OFF;
2518 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2519 				 CORE_PLL_GROUP4, val);
2520 
2521 	mt7531_setup_common(ds);
2522 
2523 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2524 	ret = mt7530_setup_vlan0(priv);
2525 	if (ret)
2526 		return ret;
2527 
2528 	ds->assisted_learning_on_cpu_port = true;
2529 	ds->mtu_enforcement_ingress = true;
2530 
2531 	return 0;
2532 }
2533 
2534 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2535 				     struct phylink_config *config)
2536 {
2537 	switch (port) {
2538 	case 0 ... 4: /* Internal phy */
2539 		__set_bit(PHY_INTERFACE_MODE_GMII,
2540 			  config->supported_interfaces);
2541 		break;
2542 
2543 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2544 		phy_interface_set_rgmii(config->supported_interfaces);
2545 		__set_bit(PHY_INTERFACE_MODE_MII,
2546 			  config->supported_interfaces);
2547 		__set_bit(PHY_INTERFACE_MODE_GMII,
2548 			  config->supported_interfaces);
2549 		break;
2550 
2551 	case 6: /* 1st cpu port */
2552 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2553 			  config->supported_interfaces);
2554 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2555 			  config->supported_interfaces);
2556 		break;
2557 	}
2558 }
2559 
2560 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2561 {
2562 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2563 }
2564 
2565 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2566 				     struct phylink_config *config)
2567 {
2568 	struct mt7530_priv *priv = ds->priv;
2569 
2570 	switch (port) {
2571 	case 0 ... 4: /* Internal phy */
2572 		__set_bit(PHY_INTERFACE_MODE_GMII,
2573 			  config->supported_interfaces);
2574 		break;
2575 
2576 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2577 		if (mt7531_is_rgmii_port(priv, port)) {
2578 			phy_interface_set_rgmii(config->supported_interfaces);
2579 			break;
2580 		}
2581 		fallthrough;
2582 
2583 	case 6: /* 1st cpu port supports sgmii/8023z only */
2584 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2585 			  config->supported_interfaces);
2586 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2587 			  config->supported_interfaces);
2588 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2589 			  config->supported_interfaces);
2590 
2591 		config->mac_capabilities |= MAC_2500FD;
2592 		break;
2593 	}
2594 }
2595 
2596 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2597 				     struct phylink_config *config)
2598 {
2599 	phy_interface_zero(config->supported_interfaces);
2600 
2601 	switch (port) {
2602 	case 0 ... 4: /* Internal phy */
2603 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2604 			  config->supported_interfaces);
2605 		break;
2606 
2607 	case 6:
2608 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2609 			  config->supported_interfaces);
2610 		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2611 					   MAC_10000FD;
2612 	}
2613 }
2614 
2615 static int
2616 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2617 {
2618 	struct mt7530_priv *priv = ds->priv;
2619 
2620 	return priv->info->pad_setup(ds, state->interface);
2621 }
2622 
2623 static int
2624 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2625 		  phy_interface_t interface)
2626 {
2627 	struct mt7530_priv *priv = ds->priv;
2628 
2629 	/* Only need to setup port5. */
2630 	if (port != 5)
2631 		return 0;
2632 
2633 	mt7530_setup_port5(priv->ds, interface);
2634 
2635 	return 0;
2636 }
2637 
2638 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2639 			      phy_interface_t interface,
2640 			      struct phy_device *phydev)
2641 {
2642 	u32 val;
2643 
2644 	if (!mt7531_is_rgmii_port(priv, port)) {
2645 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2646 			port);
2647 		return -EINVAL;
2648 	}
2649 
2650 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2651 	val |= GP_CLK_EN;
2652 	val &= ~GP_MODE_MASK;
2653 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2654 	val &= ~CLK_SKEW_IN_MASK;
2655 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2656 	val &= ~CLK_SKEW_OUT_MASK;
2657 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2658 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2659 
2660 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2661 	if (!phydev || phy_driver_is_genphy(phydev)) {
2662 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2663 		switch (interface) {
2664 		case PHY_INTERFACE_MODE_RGMII:
2665 			val |= TXCLK_NO_REVERSE;
2666 			val |= RXCLK_NO_DELAY;
2667 			break;
2668 		case PHY_INTERFACE_MODE_RGMII_RXID:
2669 			val |= TXCLK_NO_REVERSE;
2670 			break;
2671 		case PHY_INTERFACE_MODE_RGMII_TXID:
2672 			val |= RXCLK_NO_DELAY;
2673 			break;
2674 		case PHY_INTERFACE_MODE_RGMII_ID:
2675 			break;
2676 		default:
2677 			return -EINVAL;
2678 		}
2679 	}
2680 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2681 
2682 	return 0;
2683 }
2684 
2685 static bool mt753x_is_mac_port(u32 port)
2686 {
2687 	return (port == 5 || port == 6);
2688 }
2689 
2690 static int
2691 mt7988_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2692 		  phy_interface_t interface)
2693 {
2694 	if (dsa_is_cpu_port(ds, port) &&
2695 	    interface == PHY_INTERFACE_MODE_INTERNAL)
2696 		return 0;
2697 
2698 	return -EINVAL;
2699 }
2700 
2701 static int
2702 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2703 		  phy_interface_t interface)
2704 {
2705 	struct mt7530_priv *priv = ds->priv;
2706 	struct phy_device *phydev;
2707 	struct dsa_port *dp;
2708 
2709 	if (!mt753x_is_mac_port(port)) {
2710 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2711 		return -EINVAL;
2712 	}
2713 
2714 	switch (interface) {
2715 	case PHY_INTERFACE_MODE_RGMII:
2716 	case PHY_INTERFACE_MODE_RGMII_ID:
2717 	case PHY_INTERFACE_MODE_RGMII_RXID:
2718 	case PHY_INTERFACE_MODE_RGMII_TXID:
2719 		dp = dsa_to_port(ds, port);
2720 		phydev = dp->user->phydev;
2721 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2722 	case PHY_INTERFACE_MODE_SGMII:
2723 	case PHY_INTERFACE_MODE_NA:
2724 	case PHY_INTERFACE_MODE_1000BASEX:
2725 	case PHY_INTERFACE_MODE_2500BASEX:
2726 		/* handled in SGMII PCS driver */
2727 		return 0;
2728 	default:
2729 		return -EINVAL;
2730 	}
2731 
2732 	return -EINVAL;
2733 }
2734 
2735 static int
2736 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2737 		  const struct phylink_link_state *state)
2738 {
2739 	struct mt7530_priv *priv = ds->priv;
2740 
2741 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2742 }
2743 
2744 static struct phylink_pcs *
2745 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2746 			      phy_interface_t interface)
2747 {
2748 	struct mt7530_priv *priv = ds->priv;
2749 
2750 	switch (interface) {
2751 	case PHY_INTERFACE_MODE_TRGMII:
2752 		return &priv->pcs[port].pcs;
2753 	case PHY_INTERFACE_MODE_SGMII:
2754 	case PHY_INTERFACE_MODE_1000BASEX:
2755 	case PHY_INTERFACE_MODE_2500BASEX:
2756 		return priv->ports[port].sgmii_pcs;
2757 	default:
2758 		return NULL;
2759 	}
2760 }
2761 
2762 static void
2763 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2764 			  const struct phylink_link_state *state)
2765 {
2766 	struct mt7530_priv *priv = ds->priv;
2767 	u32 mcr_cur, mcr_new;
2768 
2769 	switch (port) {
2770 	case 0 ... 4: /* Internal phy */
2771 		if (state->interface != PHY_INTERFACE_MODE_GMII &&
2772 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
2773 			goto unsupported;
2774 		break;
2775 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2776 		if (priv->p5_interface == state->interface)
2777 			break;
2778 
2779 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2780 			goto unsupported;
2781 
2782 		if (priv->p5_intf_sel != P5_DISABLED)
2783 			priv->p5_interface = state->interface;
2784 		break;
2785 	case 6: /* 1st cpu port */
2786 		if (priv->p6_interface == state->interface)
2787 			break;
2788 
2789 		mt753x_pad_setup(ds, state);
2790 
2791 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2792 			goto unsupported;
2793 
2794 		priv->p6_interface = state->interface;
2795 		break;
2796 	default:
2797 unsupported:
2798 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2799 			__func__, phy_modes(state->interface), port);
2800 		return;
2801 	}
2802 
2803 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2804 	mcr_new = mcr_cur;
2805 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2806 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2807 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2808 
2809 	/* Are we connected to external phy */
2810 	if (port == 5 && dsa_is_user_port(ds, 5))
2811 		mcr_new |= PMCR_EXT_PHY;
2812 
2813 	if (mcr_new != mcr_cur)
2814 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2815 }
2816 
2817 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2818 					 unsigned int mode,
2819 					 phy_interface_t interface)
2820 {
2821 	struct mt7530_priv *priv = ds->priv;
2822 
2823 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2824 }
2825 
2826 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2827 				       unsigned int mode,
2828 				       phy_interface_t interface,
2829 				       struct phy_device *phydev,
2830 				       int speed, int duplex,
2831 				       bool tx_pause, bool rx_pause)
2832 {
2833 	struct mt7530_priv *priv = ds->priv;
2834 	u32 mcr;
2835 
2836 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2837 
2838 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2839 	 * variants.
2840 	 */
2841 	if (interface == PHY_INTERFACE_MODE_INTERNAL ||
2842 	    interface == PHY_INTERFACE_MODE_TRGMII ||
2843 	    (phy_interface_mode_is_8023z(interface))) {
2844 		speed = SPEED_1000;
2845 		duplex = DUPLEX_FULL;
2846 	}
2847 
2848 	switch (speed) {
2849 	case SPEED_1000:
2850 		mcr |= PMCR_FORCE_SPEED_1000;
2851 		break;
2852 	case SPEED_100:
2853 		mcr |= PMCR_FORCE_SPEED_100;
2854 		break;
2855 	}
2856 	if (duplex == DUPLEX_FULL) {
2857 		mcr |= PMCR_FORCE_FDX;
2858 		if (tx_pause)
2859 			mcr |= PMCR_TX_FC_EN;
2860 		if (rx_pause)
2861 			mcr |= PMCR_RX_FC_EN;
2862 	}
2863 
2864 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2865 		switch (speed) {
2866 		case SPEED_1000:
2867 			mcr |= PMCR_FORCE_EEE1G;
2868 			break;
2869 		case SPEED_100:
2870 			mcr |= PMCR_FORCE_EEE100;
2871 			break;
2872 		}
2873 	}
2874 
2875 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2876 }
2877 
2878 static int
2879 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2880 {
2881 	struct mt7530_priv *priv = ds->priv;
2882 	phy_interface_t interface;
2883 	int speed;
2884 	int ret;
2885 
2886 	switch (port) {
2887 	case 5:
2888 		if (mt7531_is_rgmii_port(priv, port))
2889 			interface = PHY_INTERFACE_MODE_RGMII;
2890 		else
2891 			interface = PHY_INTERFACE_MODE_2500BASEX;
2892 
2893 		priv->p5_interface = interface;
2894 		break;
2895 	case 6:
2896 		interface = PHY_INTERFACE_MODE_2500BASEX;
2897 
2898 		priv->p6_interface = interface;
2899 		break;
2900 	default:
2901 		return -EINVAL;
2902 	}
2903 
2904 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2905 		speed = SPEED_2500;
2906 	else
2907 		speed = SPEED_1000;
2908 
2909 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2910 	if (ret)
2911 		return ret;
2912 	mt7530_write(priv, MT7530_PMCR_P(port),
2913 		     PMCR_CPU_PORT_SETTING(priv->id));
2914 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2915 				   speed, DUPLEX_FULL, true, true);
2916 
2917 	return 0;
2918 }
2919 
2920 static int
2921 mt7988_cpu_port_config(struct dsa_switch *ds, int port)
2922 {
2923 	struct mt7530_priv *priv = ds->priv;
2924 
2925 	mt7530_write(priv, MT7530_PMCR_P(port),
2926 		     PMCR_CPU_PORT_SETTING(priv->id));
2927 
2928 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED,
2929 				   PHY_INTERFACE_MODE_INTERNAL, NULL,
2930 				   SPEED_10000, DUPLEX_FULL, true, true);
2931 
2932 	return 0;
2933 }
2934 
2935 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2936 				    struct phylink_config *config)
2937 {
2938 	struct mt7530_priv *priv = ds->priv;
2939 
2940 	/* This switch only supports full-duplex at 1Gbps */
2941 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2942 				   MAC_10 | MAC_100 | MAC_1000FD;
2943 
2944 	priv->info->mac_port_get_caps(ds, port, config);
2945 }
2946 
2947 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2948 			       unsigned long *supported,
2949 			       const struct phylink_link_state *state)
2950 {
2951 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2952 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2953 	    phy_interface_mode_is_8023z(state->interface))
2954 		phylink_clear(supported, Autoneg);
2955 
2956 	return 0;
2957 }
2958 
2959 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2960 				 struct phylink_link_state *state)
2961 {
2962 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2963 	int port = pcs_to_mt753x_pcs(pcs)->port;
2964 	u32 pmsr;
2965 
2966 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2967 
2968 	state->link = (pmsr & PMSR_LINK);
2969 	state->an_complete = state->link;
2970 	state->duplex = !!(pmsr & PMSR_DPX);
2971 
2972 	switch (pmsr & PMSR_SPEED_MASK) {
2973 	case PMSR_SPEED_10:
2974 		state->speed = SPEED_10;
2975 		break;
2976 	case PMSR_SPEED_100:
2977 		state->speed = SPEED_100;
2978 		break;
2979 	case PMSR_SPEED_1000:
2980 		state->speed = SPEED_1000;
2981 		break;
2982 	default:
2983 		state->speed = SPEED_UNKNOWN;
2984 		break;
2985 	}
2986 
2987 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2988 	if (pmsr & PMSR_RX_FC)
2989 		state->pause |= MLO_PAUSE_RX;
2990 	if (pmsr & PMSR_TX_FC)
2991 		state->pause |= MLO_PAUSE_TX;
2992 }
2993 
2994 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
2995 			     phy_interface_t interface,
2996 			     const unsigned long *advertising,
2997 			     bool permit_pause_to_mac)
2998 {
2999 	return 0;
3000 }
3001 
3002 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3003 {
3004 }
3005 
3006 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3007 	.pcs_validate = mt753x_pcs_validate,
3008 	.pcs_get_state = mt7530_pcs_get_state,
3009 	.pcs_config = mt753x_pcs_config,
3010 	.pcs_an_restart = mt7530_pcs_an_restart,
3011 };
3012 
3013 static int
3014 mt753x_setup(struct dsa_switch *ds)
3015 {
3016 	struct mt7530_priv *priv = ds->priv;
3017 	int i, ret;
3018 
3019 	/* Initialise the PCS devices */
3020 	for (i = 0; i < priv->ds->num_ports; i++) {
3021 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3022 		priv->pcs[i].pcs.neg_mode = true;
3023 		priv->pcs[i].priv = priv;
3024 		priv->pcs[i].port = i;
3025 	}
3026 
3027 	ret = priv->info->sw_setup(ds);
3028 	if (ret)
3029 		return ret;
3030 
3031 	ret = mt7530_setup_irq(priv);
3032 	if (ret)
3033 		return ret;
3034 
3035 	ret = mt7530_setup_mdio(priv);
3036 	if (ret && priv->irq)
3037 		mt7530_free_irq_common(priv);
3038 
3039 	if (priv->create_sgmii) {
3040 		ret = priv->create_sgmii(priv, mt7531_dual_sgmii_supported(priv));
3041 		if (ret && priv->irq)
3042 			mt7530_free_irq(priv);
3043 	}
3044 
3045 	return ret;
3046 }
3047 
3048 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3049 			      struct ethtool_eee *e)
3050 {
3051 	struct mt7530_priv *priv = ds->priv;
3052 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3053 
3054 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3055 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3056 
3057 	return 0;
3058 }
3059 
3060 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3061 			      struct ethtool_eee *e)
3062 {
3063 	struct mt7530_priv *priv = ds->priv;
3064 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3065 
3066 	if (e->tx_lpi_timer > 0xFFF)
3067 		return -EINVAL;
3068 
3069 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3070 	if (!e->tx_lpi_enabled)
3071 		/* Force LPI Mode without a delay */
3072 		set |= LPI_MODE_EN;
3073 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3074 
3075 	return 0;
3076 }
3077 
3078 static int mt7988_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
3079 {
3080 	return 0;
3081 }
3082 
3083 static int mt7988_setup(struct dsa_switch *ds)
3084 {
3085 	struct mt7530_priv *priv = ds->priv;
3086 
3087 	/* Reset the switch */
3088 	reset_control_assert(priv->rstc);
3089 	usleep_range(20, 50);
3090 	reset_control_deassert(priv->rstc);
3091 	usleep_range(20, 50);
3092 
3093 	/* Reset the switch PHYs */
3094 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3095 
3096 	return mt7531_setup_common(ds);
3097 }
3098 
3099 const struct dsa_switch_ops mt7530_switch_ops = {
3100 	.get_tag_protocol	= mtk_get_tag_protocol,
3101 	.setup			= mt753x_setup,
3102 	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3103 	.get_strings		= mt7530_get_strings,
3104 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3105 	.get_sset_count		= mt7530_get_sset_count,
3106 	.set_ageing_time	= mt7530_set_ageing_time,
3107 	.port_enable		= mt7530_port_enable,
3108 	.port_disable		= mt7530_port_disable,
3109 	.port_change_mtu	= mt7530_port_change_mtu,
3110 	.port_max_mtu		= mt7530_port_max_mtu,
3111 	.port_stp_state_set	= mt7530_stp_state_set,
3112 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3113 	.port_bridge_flags	= mt7530_port_bridge_flags,
3114 	.port_bridge_join	= mt7530_port_bridge_join,
3115 	.port_bridge_leave	= mt7530_port_bridge_leave,
3116 	.port_fdb_add		= mt7530_port_fdb_add,
3117 	.port_fdb_del		= mt7530_port_fdb_del,
3118 	.port_fdb_dump		= mt7530_port_fdb_dump,
3119 	.port_mdb_add		= mt7530_port_mdb_add,
3120 	.port_mdb_del		= mt7530_port_mdb_del,
3121 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3122 	.port_vlan_add		= mt7530_port_vlan_add,
3123 	.port_vlan_del		= mt7530_port_vlan_del,
3124 	.port_mirror_add	= mt753x_port_mirror_add,
3125 	.port_mirror_del	= mt753x_port_mirror_del,
3126 	.phylink_get_caps	= mt753x_phylink_get_caps,
3127 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3128 	.phylink_mac_config	= mt753x_phylink_mac_config,
3129 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3130 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3131 	.get_mac_eee		= mt753x_get_mac_eee,
3132 	.set_mac_eee		= mt753x_set_mac_eee,
3133 };
3134 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3135 
3136 const struct mt753x_info mt753x_table[] = {
3137 	[ID_MT7621] = {
3138 		.id = ID_MT7621,
3139 		.pcs_ops = &mt7530_pcs_ops,
3140 		.sw_setup = mt7530_setup,
3141 		.phy_read_c22 = mt7530_phy_read_c22,
3142 		.phy_write_c22 = mt7530_phy_write_c22,
3143 		.phy_read_c45 = mt7530_phy_read_c45,
3144 		.phy_write_c45 = mt7530_phy_write_c45,
3145 		.pad_setup = mt7530_pad_clk_setup,
3146 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3147 		.mac_port_config = mt7530_mac_config,
3148 	},
3149 	[ID_MT7530] = {
3150 		.id = ID_MT7530,
3151 		.pcs_ops = &mt7530_pcs_ops,
3152 		.sw_setup = mt7530_setup,
3153 		.phy_read_c22 = mt7530_phy_read_c22,
3154 		.phy_write_c22 = mt7530_phy_write_c22,
3155 		.phy_read_c45 = mt7530_phy_read_c45,
3156 		.phy_write_c45 = mt7530_phy_write_c45,
3157 		.pad_setup = mt7530_pad_clk_setup,
3158 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3159 		.mac_port_config = mt7530_mac_config,
3160 	},
3161 	[ID_MT7531] = {
3162 		.id = ID_MT7531,
3163 		.pcs_ops = &mt7530_pcs_ops,
3164 		.sw_setup = mt7531_setup,
3165 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3166 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3167 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3168 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3169 		.pad_setup = mt7531_pad_setup,
3170 		.cpu_port_config = mt7531_cpu_port_config,
3171 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3172 		.mac_port_config = mt7531_mac_config,
3173 	},
3174 	[ID_MT7988] = {
3175 		.id = ID_MT7988,
3176 		.pcs_ops = &mt7530_pcs_ops,
3177 		.sw_setup = mt7988_setup,
3178 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3179 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3180 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3181 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3182 		.pad_setup = mt7988_pad_setup,
3183 		.cpu_port_config = mt7988_cpu_port_config,
3184 		.mac_port_get_caps = mt7988_mac_port_get_caps,
3185 		.mac_port_config = mt7988_mac_config,
3186 	},
3187 };
3188 EXPORT_SYMBOL_GPL(mt753x_table);
3189 
3190 int
3191 mt7530_probe_common(struct mt7530_priv *priv)
3192 {
3193 	struct device *dev = priv->dev;
3194 
3195 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3196 	if (!priv->ds)
3197 		return -ENOMEM;
3198 
3199 	priv->ds->dev = dev;
3200 	priv->ds->num_ports = MT7530_NUM_PORTS;
3201 
3202 	/* Get the hardware identifier from the devicetree node.
3203 	 * We will need it for some of the clock and regulator setup.
3204 	 */
3205 	priv->info = of_device_get_match_data(dev);
3206 	if (!priv->info)
3207 		return -EINVAL;
3208 
3209 	/* Sanity check if these required device operations are filled
3210 	 * properly.
3211 	 */
3212 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3213 	    !priv->info->phy_read_c22 || !priv->info->phy_write_c22 ||
3214 	    !priv->info->mac_port_get_caps ||
3215 	    !priv->info->mac_port_config)
3216 		return -EINVAL;
3217 
3218 	priv->id = priv->info->id;
3219 	priv->dev = dev;
3220 	priv->ds->priv = priv;
3221 	priv->ds->ops = &mt7530_switch_ops;
3222 	mutex_init(&priv->reg_mutex);
3223 	dev_set_drvdata(dev, priv);
3224 
3225 	return 0;
3226 }
3227 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3228 
3229 void
3230 mt7530_remove_common(struct mt7530_priv *priv)
3231 {
3232 	if (priv->irq)
3233 		mt7530_free_irq(priv);
3234 
3235 	dsa_unregister_switch(priv->ds);
3236 
3237 	mutex_destroy(&priv->reg_mutex);
3238 }
3239 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3240 
3241 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3242 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3243 MODULE_LICENSE("GPL");
3244