xref: /linux/drivers/net/dsa/mt7530.c (revision e7c22eeaff8565d9a8374f320238c251ca31480b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_mdio.h>
14 #include <linux/of_net.h>
15 #include <linux/of_platform.h>
16 #include <linux/phylink.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/reset.h>
20 #include <linux/gpio/consumer.h>
21 #include <net/dsa.h>
22 
23 #include "mt7530.h"
24 
25 /* String, offset, and register size in bytes if different from 4 bytes */
26 static const struct mt7530_mib_desc mt7530_mib[] = {
27 	MIB_DESC(1, 0x00, "TxDrop"),
28 	MIB_DESC(1, 0x04, "TxCrcErr"),
29 	MIB_DESC(1, 0x08, "TxUnicast"),
30 	MIB_DESC(1, 0x0c, "TxMulticast"),
31 	MIB_DESC(1, 0x10, "TxBroadcast"),
32 	MIB_DESC(1, 0x14, "TxCollision"),
33 	MIB_DESC(1, 0x18, "TxSingleCollision"),
34 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
35 	MIB_DESC(1, 0x20, "TxDeferred"),
36 	MIB_DESC(1, 0x24, "TxLateCollision"),
37 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
38 	MIB_DESC(1, 0x2c, "TxPause"),
39 	MIB_DESC(1, 0x30, "TxPktSz64"),
40 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
41 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
42 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
43 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
44 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
45 	MIB_DESC(2, 0x48, "TxBytes"),
46 	MIB_DESC(1, 0x60, "RxDrop"),
47 	MIB_DESC(1, 0x64, "RxFiltering"),
48 	MIB_DESC(1, 0x6c, "RxMulticast"),
49 	MIB_DESC(1, 0x70, "RxBroadcast"),
50 	MIB_DESC(1, 0x74, "RxAlignErr"),
51 	MIB_DESC(1, 0x78, "RxCrcErr"),
52 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
53 	MIB_DESC(1, 0x80, "RxFragErr"),
54 	MIB_DESC(1, 0x84, "RxOverSzErr"),
55 	MIB_DESC(1, 0x88, "RxJabberErr"),
56 	MIB_DESC(1, 0x8c, "RxPause"),
57 	MIB_DESC(1, 0x90, "RxPktSz64"),
58 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
59 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
60 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
61 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
62 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
63 	MIB_DESC(2, 0xa8, "RxBytes"),
64 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
65 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
66 	MIB_DESC(1, 0xb8, "RxArlDrop"),
67 };
68 
69 static int
70 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
71 {
72 	struct mii_bus *bus = priv->bus;
73 	int value, ret;
74 
75 	/* Write the desired MMD Devad */
76 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
77 	if (ret < 0)
78 		goto err;
79 
80 	/* Write the desired MMD register address */
81 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
82 	if (ret < 0)
83 		goto err;
84 
85 	/* Select the Function : DATA with no post increment */
86 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
87 	if (ret < 0)
88 		goto err;
89 
90 	/* Read the content of the MMD's selected register */
91 	value = bus->read(bus, 0, MII_MMD_DATA);
92 
93 	return value;
94 err:
95 	dev_err(&bus->dev,  "failed to read mmd register\n");
96 
97 	return ret;
98 }
99 
100 static int
101 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
102 			int devad, u32 data)
103 {
104 	struct mii_bus *bus = priv->bus;
105 	int ret;
106 
107 	/* Write the desired MMD Devad */
108 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
109 	if (ret < 0)
110 		goto err;
111 
112 	/* Write the desired MMD register address */
113 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
114 	if (ret < 0)
115 		goto err;
116 
117 	/* Select the Function : DATA with no post increment */
118 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
119 	if (ret < 0)
120 		goto err;
121 
122 	/* Write the data into MMD's selected register */
123 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
124 err:
125 	if (ret < 0)
126 		dev_err(&bus->dev,
127 			"failed to write mmd register\n");
128 	return ret;
129 }
130 
131 static void
132 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
133 {
134 	struct mii_bus *bus = priv->bus;
135 
136 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
137 
138 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
139 
140 	mutex_unlock(&bus->mdio_lock);
141 }
142 
143 static void
144 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
145 {
146 	struct mii_bus *bus = priv->bus;
147 	u32 val;
148 
149 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
150 
151 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
152 	val &= ~mask;
153 	val |= set;
154 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
155 
156 	mutex_unlock(&bus->mdio_lock);
157 }
158 
159 static void
160 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
161 {
162 	core_rmw(priv, reg, 0, val);
163 }
164 
165 static void
166 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
167 {
168 	core_rmw(priv, reg, val, 0);
169 }
170 
171 static int
172 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
173 {
174 	struct mii_bus *bus = priv->bus;
175 	u16 page, r, lo, hi;
176 	int ret;
177 
178 	page = (reg >> 6) & 0x3ff;
179 	r  = (reg >> 2) & 0xf;
180 	lo = val & 0xffff;
181 	hi = val >> 16;
182 
183 	/* MT7530 uses 31 as the pseudo port */
184 	ret = bus->write(bus, 0x1f, 0x1f, page);
185 	if (ret < 0)
186 		goto err;
187 
188 	ret = bus->write(bus, 0x1f, r,  lo);
189 	if (ret < 0)
190 		goto err;
191 
192 	ret = bus->write(bus, 0x1f, 0x10, hi);
193 err:
194 	if (ret < 0)
195 		dev_err(&bus->dev,
196 			"failed to write mt7530 register\n");
197 	return ret;
198 }
199 
200 static u32
201 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
202 {
203 	struct mii_bus *bus = priv->bus;
204 	u16 page, r, lo, hi;
205 	int ret;
206 
207 	page = (reg >> 6) & 0x3ff;
208 	r = (reg >> 2) & 0xf;
209 
210 	/* MT7530 uses 31 as the pseudo port */
211 	ret = bus->write(bus, 0x1f, 0x1f, page);
212 	if (ret < 0) {
213 		dev_err(&bus->dev,
214 			"failed to read mt7530 register\n");
215 		return ret;
216 	}
217 
218 	lo = bus->read(bus, 0x1f, r);
219 	hi = bus->read(bus, 0x1f, 0x10);
220 
221 	return (hi << 16) | (lo & 0xffff);
222 }
223 
224 static void
225 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
226 {
227 	struct mii_bus *bus = priv->bus;
228 
229 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
230 
231 	mt7530_mii_write(priv, reg, val);
232 
233 	mutex_unlock(&bus->mdio_lock);
234 }
235 
236 static u32
237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 	return mt7530_mii_read(p->priv, p->reg);
240 }
241 
242 static u32
243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 	struct mii_bus		*bus = p->priv->bus;
246 	u32 val;
247 
248 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
249 
250 	val = mt7530_mii_read(p->priv, p->reg);
251 
252 	mutex_unlock(&bus->mdio_lock);
253 
254 	return val;
255 }
256 
257 static u32
258 mt7530_read(struct mt7530_priv *priv, u32 reg)
259 {
260 	struct mt7530_dummy_poll p;
261 
262 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
263 	return _mt7530_read(&p);
264 }
265 
266 static void
267 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
268 	   u32 mask, u32 set)
269 {
270 	struct mii_bus *bus = priv->bus;
271 	u32 val;
272 
273 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
274 
275 	val = mt7530_mii_read(priv, reg);
276 	val &= ~mask;
277 	val |= set;
278 	mt7530_mii_write(priv, reg, val);
279 
280 	mutex_unlock(&bus->mdio_lock);
281 }
282 
283 static void
284 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
285 {
286 	mt7530_rmw(priv, reg, 0, val);
287 }
288 
289 static void
290 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
291 {
292 	mt7530_rmw(priv, reg, val, 0);
293 }
294 
295 static int
296 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
297 {
298 	u32 val;
299 	int ret;
300 	struct mt7530_dummy_poll p;
301 
302 	/* Set the command operating upon the MAC address entries */
303 	val = ATC_BUSY | ATC_MAT(0) | cmd;
304 	mt7530_write(priv, MT7530_ATC, val);
305 
306 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
307 	ret = readx_poll_timeout(_mt7530_read, &p, val,
308 				 !(val & ATC_BUSY), 20, 20000);
309 	if (ret < 0) {
310 		dev_err(priv->dev, "reset timeout\n");
311 		return ret;
312 	}
313 
314 	/* Additional sanity for read command if the specified
315 	 * entry is invalid
316 	 */
317 	val = mt7530_read(priv, MT7530_ATC);
318 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
319 		return -EINVAL;
320 
321 	if (rsp)
322 		*rsp = val;
323 
324 	return 0;
325 }
326 
327 static void
328 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
329 {
330 	u32 reg[3];
331 	int i;
332 
333 	/* Read from ARL table into an array */
334 	for (i = 0; i < 3; i++) {
335 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
336 
337 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
338 			__func__, __LINE__, i, reg[i]);
339 	}
340 
341 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
342 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
343 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
344 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
345 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
346 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
347 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
348 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
349 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
350 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
351 }
352 
353 static void
354 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
355 		 u8 port_mask, const u8 *mac,
356 		 u8 aging, u8 type)
357 {
358 	u32 reg[3] = { 0 };
359 	int i;
360 
361 	reg[1] |= vid & CVID_MASK;
362 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
363 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
364 	/* STATIC_ENT indicate that entry is static wouldn't
365 	 * be aged out and STATIC_EMP specified as erasing an
366 	 * entry
367 	 */
368 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
369 	reg[1] |= mac[5] << MAC_BYTE_5;
370 	reg[1] |= mac[4] << MAC_BYTE_4;
371 	reg[0] |= mac[3] << MAC_BYTE_3;
372 	reg[0] |= mac[2] << MAC_BYTE_2;
373 	reg[0] |= mac[1] << MAC_BYTE_1;
374 	reg[0] |= mac[0] << MAC_BYTE_0;
375 
376 	/* Write array into the ARL table */
377 	for (i = 0; i < 3; i++)
378 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
379 }
380 
381 /* Setup TX circuit including relevant PAD and driving */
382 static int
383 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
384 {
385 	struct mt7530_priv *priv = ds->priv;
386 	u32 ncpo1, ssc_delta, trgint, i, xtal;
387 
388 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
389 
390 	if (xtal == HWTRAP_XTAL_20MHZ) {
391 		dev_err(priv->dev,
392 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
393 			__func__);
394 		return -EINVAL;
395 	}
396 
397 	switch (interface) {
398 	case PHY_INTERFACE_MODE_RGMII:
399 		trgint = 0;
400 		/* PLL frequency: 125MHz */
401 		ncpo1 = 0x0c80;
402 		break;
403 	case PHY_INTERFACE_MODE_TRGMII:
404 		trgint = 1;
405 		if (priv->id == ID_MT7621) {
406 			/* PLL frequency: 150MHz: 1.2GBit */
407 			if (xtal == HWTRAP_XTAL_40MHZ)
408 				ncpo1 = 0x0780;
409 			if (xtal == HWTRAP_XTAL_25MHZ)
410 				ncpo1 = 0x0a00;
411 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
412 			if (xtal == HWTRAP_XTAL_40MHZ)
413 				ncpo1 = 0x0c80;
414 			if (xtal == HWTRAP_XTAL_25MHZ)
415 				ncpo1 = 0x1400;
416 		}
417 		break;
418 	default:
419 		dev_err(priv->dev, "xMII interface %d not supported\n",
420 			interface);
421 		return -EINVAL;
422 	}
423 
424 	if (xtal == HWTRAP_XTAL_25MHZ)
425 		ssc_delta = 0x57;
426 	else
427 		ssc_delta = 0x87;
428 
429 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
430 		   P6_INTF_MODE(trgint));
431 
432 	/* Lower Tx Driving for TRGMII path */
433 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
434 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
435 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
436 
437 	/* Setup core clock for MT7530 */
438 	if (!trgint) {
439 		/* Disable MT7530 core clock */
440 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
441 
442 		/* Disable PLL, since phy_device has not yet been created
443 		 * provided for phy_[read,write]_mmd_indirect is called, we
444 		 * provide our own core_write_mmd_indirect to complete this
445 		 * function.
446 		 */
447 		core_write_mmd_indirect(priv,
448 					CORE_GSWPLL_GRP1,
449 					MDIO_MMD_VEND2,
450 					0);
451 
452 		/* Set core clock into 500Mhz */
453 		core_write(priv, CORE_GSWPLL_GRP2,
454 			   RG_GSWPLL_POSDIV_500M(1) |
455 			   RG_GSWPLL_FBKDIV_500M(25));
456 
457 		/* Enable PLL */
458 		core_write(priv, CORE_GSWPLL_GRP1,
459 			   RG_GSWPLL_EN_PRE |
460 			   RG_GSWPLL_POSDIV_200M(2) |
461 			   RG_GSWPLL_FBKDIV_200M(32));
462 
463 		/* Enable MT7530 core clock */
464 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
465 	}
466 
467 	/* Setup the MT7530 TRGMII Tx Clock */
468 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
469 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
470 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
471 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
472 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
473 	core_write(priv, CORE_PLL_GROUP4,
474 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
475 		   RG_SYSPLL_BIAS_LPF_EN);
476 	core_write(priv, CORE_PLL_GROUP2,
477 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
478 		   RG_SYSPLL_POSDIV(1));
479 	core_write(priv, CORE_PLL_GROUP7,
480 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
481 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
482 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
483 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
484 
485 	if (!trgint)
486 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
487 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
488 				   RD_TAP_MASK, RD_TAP(16));
489 	return 0;
490 }
491 
492 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
493 {
494 	u32 val;
495 
496 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
497 
498 	return (val & PAD_DUAL_SGMII_EN) != 0;
499 }
500 
501 static int
502 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
503 {
504 	struct mt7530_priv *priv = ds->priv;
505 	u32 top_sig;
506 	u32 hwstrap;
507 	u32 xtal;
508 	u32 val;
509 
510 	if (mt7531_dual_sgmii_supported(priv))
511 		return 0;
512 
513 	val = mt7530_read(priv, MT7531_CREV);
514 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
515 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
516 	if ((val & CHIP_REV_M) > 0)
517 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
518 						    HWTRAP_XTAL_FSEL_25MHZ;
519 	else
520 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
521 
522 	/* Step 1 : Disable MT7531 COREPLL */
523 	val = mt7530_read(priv, MT7531_PLLGP_EN);
524 	val &= ~EN_COREPLL;
525 	mt7530_write(priv, MT7531_PLLGP_EN, val);
526 
527 	/* Step 2: switch to XTAL output */
528 	val = mt7530_read(priv, MT7531_PLLGP_EN);
529 	val |= SW_CLKSW;
530 	mt7530_write(priv, MT7531_PLLGP_EN, val);
531 
532 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
533 	val &= ~RG_COREPLL_EN;
534 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
535 
536 	/* Step 3: disable PLLGP and enable program PLLGP */
537 	val = mt7530_read(priv, MT7531_PLLGP_EN);
538 	val |= SW_PLLGP;
539 	mt7530_write(priv, MT7531_PLLGP_EN, val);
540 
541 	/* Step 4: program COREPLL output frequency to 500MHz */
542 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
543 	val &= ~RG_COREPLL_POSDIV_M;
544 	val |= 2 << RG_COREPLL_POSDIV_S;
545 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
546 	usleep_range(25, 35);
547 
548 	switch (xtal) {
549 	case HWTRAP_XTAL_FSEL_25MHZ:
550 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
551 		val &= ~RG_COREPLL_SDM_PCW_M;
552 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
553 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
554 		break;
555 	case HWTRAP_XTAL_FSEL_40MHZ:
556 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
557 		val &= ~RG_COREPLL_SDM_PCW_M;
558 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
559 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
560 		break;
561 	}
562 
563 	/* Set feedback divide ratio update signal to high */
564 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
565 	val |= RG_COREPLL_SDM_PCW_CHG;
566 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
567 	/* Wait for at least 16 XTAL clocks */
568 	usleep_range(10, 20);
569 
570 	/* Step 5: set feedback divide ratio update signal to low */
571 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
572 	val &= ~RG_COREPLL_SDM_PCW_CHG;
573 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
574 
575 	/* Enable 325M clock for SGMII */
576 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
577 
578 	/* Enable 250SSC clock for RGMII */
579 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
580 
581 	/* Step 6: Enable MT7531 PLL */
582 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
583 	val |= RG_COREPLL_EN;
584 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
585 
586 	val = mt7530_read(priv, MT7531_PLLGP_EN);
587 	val |= EN_COREPLL;
588 	mt7530_write(priv, MT7531_PLLGP_EN, val);
589 	usleep_range(25, 35);
590 
591 	return 0;
592 }
593 
594 static void
595 mt7530_mib_reset(struct dsa_switch *ds)
596 {
597 	struct mt7530_priv *priv = ds->priv;
598 
599 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
600 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
601 }
602 
603 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
604 {
605 	struct mt7530_priv *priv = ds->priv;
606 
607 	return mdiobus_read_nested(priv->bus, port, regnum);
608 }
609 
610 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
611 			    u16 val)
612 {
613 	struct mt7530_priv *priv = ds->priv;
614 
615 	return mdiobus_write_nested(priv->bus, port, regnum, val);
616 }
617 
618 static int
619 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
620 			int regnum)
621 {
622 	struct mii_bus *bus = priv->bus;
623 	struct mt7530_dummy_poll p;
624 	u32 reg, val;
625 	int ret;
626 
627 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
628 
629 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
630 
631 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
632 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
633 	if (ret < 0) {
634 		dev_err(priv->dev, "poll timeout\n");
635 		goto out;
636 	}
637 
638 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
639 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
640 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
641 
642 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
643 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
644 	if (ret < 0) {
645 		dev_err(priv->dev, "poll timeout\n");
646 		goto out;
647 	}
648 
649 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
650 	      MT7531_MDIO_DEV_ADDR(devad);
651 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
652 
653 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
654 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
655 	if (ret < 0) {
656 		dev_err(priv->dev, "poll timeout\n");
657 		goto out;
658 	}
659 
660 	ret = val & MT7531_MDIO_RW_DATA_MASK;
661 out:
662 	mutex_unlock(&bus->mdio_lock);
663 
664 	return ret;
665 }
666 
667 static int
668 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
669 			 int regnum, u32 data)
670 {
671 	struct mii_bus *bus = priv->bus;
672 	struct mt7530_dummy_poll p;
673 	u32 val, reg;
674 	int ret;
675 
676 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
677 
678 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
679 
680 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
681 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
682 	if (ret < 0) {
683 		dev_err(priv->dev, "poll timeout\n");
684 		goto out;
685 	}
686 
687 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
688 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
689 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
690 
691 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
692 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
693 	if (ret < 0) {
694 		dev_err(priv->dev, "poll timeout\n");
695 		goto out;
696 	}
697 
698 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
699 	      MT7531_MDIO_DEV_ADDR(devad) | data;
700 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
701 
702 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
703 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
704 	if (ret < 0) {
705 		dev_err(priv->dev, "poll timeout\n");
706 		goto out;
707 	}
708 
709 out:
710 	mutex_unlock(&bus->mdio_lock);
711 
712 	return ret;
713 }
714 
715 static int
716 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
717 {
718 	struct mii_bus *bus = priv->bus;
719 	struct mt7530_dummy_poll p;
720 	int ret;
721 	u32 val;
722 
723 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
724 
725 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
726 
727 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
728 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
729 	if (ret < 0) {
730 		dev_err(priv->dev, "poll timeout\n");
731 		goto out;
732 	}
733 
734 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
735 	      MT7531_MDIO_REG_ADDR(regnum);
736 
737 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
738 
739 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
740 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
741 	if (ret < 0) {
742 		dev_err(priv->dev, "poll timeout\n");
743 		goto out;
744 	}
745 
746 	ret = val & MT7531_MDIO_RW_DATA_MASK;
747 out:
748 	mutex_unlock(&bus->mdio_lock);
749 
750 	return ret;
751 }
752 
753 static int
754 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
755 			 u16 data)
756 {
757 	struct mii_bus *bus = priv->bus;
758 	struct mt7530_dummy_poll p;
759 	int ret;
760 	u32 reg;
761 
762 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
763 
764 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
765 
766 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
767 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
768 	if (ret < 0) {
769 		dev_err(priv->dev, "poll timeout\n");
770 		goto out;
771 	}
772 
773 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
774 	      MT7531_MDIO_REG_ADDR(regnum) | data;
775 
776 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
777 
778 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
779 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
780 	if (ret < 0) {
781 		dev_err(priv->dev, "poll timeout\n");
782 		goto out;
783 	}
784 
785 out:
786 	mutex_unlock(&bus->mdio_lock);
787 
788 	return ret;
789 }
790 
791 static int
792 mt7531_ind_phy_read(struct dsa_switch *ds, int port, int regnum)
793 {
794 	struct mt7530_priv *priv = ds->priv;
795 	int devad;
796 	int ret;
797 
798 	if (regnum & MII_ADDR_C45) {
799 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
800 		ret = mt7531_ind_c45_phy_read(priv, port, devad,
801 					      regnum & MII_REGADDR_C45_MASK);
802 	} else {
803 		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
804 	}
805 
806 	return ret;
807 }
808 
809 static int
810 mt7531_ind_phy_write(struct dsa_switch *ds, int port, int regnum,
811 		     u16 data)
812 {
813 	struct mt7530_priv *priv = ds->priv;
814 	int devad;
815 	int ret;
816 
817 	if (regnum & MII_ADDR_C45) {
818 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
819 		ret = mt7531_ind_c45_phy_write(priv, port, devad,
820 					       regnum & MII_REGADDR_C45_MASK,
821 					       data);
822 	} else {
823 		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
824 	}
825 
826 	return ret;
827 }
828 
829 static void
830 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
831 		   uint8_t *data)
832 {
833 	int i;
834 
835 	if (stringset != ETH_SS_STATS)
836 		return;
837 
838 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
839 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
840 			ETH_GSTRING_LEN);
841 }
842 
843 static void
844 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
845 			 uint64_t *data)
846 {
847 	struct mt7530_priv *priv = ds->priv;
848 	const struct mt7530_mib_desc *mib;
849 	u32 reg, i;
850 	u64 hi;
851 
852 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
853 		mib = &mt7530_mib[i];
854 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
855 
856 		data[i] = mt7530_read(priv, reg);
857 		if (mib->size == 2) {
858 			hi = mt7530_read(priv, reg + 4);
859 			data[i] |= hi << 32;
860 		}
861 	}
862 }
863 
864 static int
865 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
866 {
867 	if (sset != ETH_SS_STATS)
868 		return 0;
869 
870 	return ARRAY_SIZE(mt7530_mib);
871 }
872 
873 static int
874 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
875 {
876 	struct mt7530_priv *priv = ds->priv;
877 	unsigned int secs = msecs / 1000;
878 	unsigned int tmp_age_count;
879 	unsigned int error = -1;
880 	unsigned int age_count;
881 	unsigned int age_unit;
882 
883 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
884 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
885 		return -ERANGE;
886 
887 	/* iterate through all possible age_count to find the closest pair */
888 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
889 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
890 
891 		if (tmp_age_unit <= AGE_UNIT_MAX) {
892 			unsigned int tmp_error = secs -
893 				(tmp_age_count + 1) * (tmp_age_unit + 1);
894 
895 			/* found a closer pair */
896 			if (error > tmp_error) {
897 				error = tmp_error;
898 				age_count = tmp_age_count;
899 				age_unit = tmp_age_unit;
900 			}
901 
902 			/* found the exact match, so break the loop */
903 			if (!error)
904 				break;
905 		}
906 	}
907 
908 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
909 
910 	return 0;
911 }
912 
913 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
914 {
915 	struct mt7530_priv *priv = ds->priv;
916 	u8 tx_delay = 0;
917 	int val;
918 
919 	mutex_lock(&priv->reg_mutex);
920 
921 	val = mt7530_read(priv, MT7530_MHWTRAP);
922 
923 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
924 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
925 
926 	switch (priv->p5_intf_sel) {
927 	case P5_INTF_SEL_PHY_P0:
928 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
929 		val |= MHWTRAP_PHY0_SEL;
930 		fallthrough;
931 	case P5_INTF_SEL_PHY_P4:
932 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
933 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
934 
935 		/* Setup the MAC by default for the cpu port */
936 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
937 		break;
938 	case P5_INTF_SEL_GMAC5:
939 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
940 		val &= ~MHWTRAP_P5_DIS;
941 		break;
942 	case P5_DISABLED:
943 		interface = PHY_INTERFACE_MODE_NA;
944 		break;
945 	default:
946 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
947 			priv->p5_intf_sel);
948 		goto unlock_exit;
949 	}
950 
951 	/* Setup RGMII settings */
952 	if (phy_interface_mode_is_rgmii(interface)) {
953 		val |= MHWTRAP_P5_RGMII_MODE;
954 
955 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
956 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
957 
958 		/* Don't set delay in DSA mode */
959 		if (!dsa_is_dsa_port(priv->ds, 5) &&
960 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
961 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
962 			tx_delay = 4; /* n * 0.5 ns */
963 
964 		/* P5 RGMII TX Clock Control: delay x */
965 		mt7530_write(priv, MT7530_P5RGMIITXCR,
966 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
967 
968 		/* reduce P5 RGMII Tx driving, 8mA */
969 		mt7530_write(priv, MT7530_IO_DRV_CR,
970 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
971 	}
972 
973 	mt7530_write(priv, MT7530_MHWTRAP, val);
974 
975 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
976 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
977 
978 	priv->p5_interface = interface;
979 
980 unlock_exit:
981 	mutex_unlock(&priv->reg_mutex);
982 }
983 
984 static int
985 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
986 {
987 	struct mt7530_priv *priv = ds->priv;
988 	int ret;
989 
990 	/* Setup max capability of CPU port at first */
991 	if (priv->info->cpu_port_config) {
992 		ret = priv->info->cpu_port_config(ds, port);
993 		if (ret)
994 			return ret;
995 	}
996 
997 	/* Enable Mediatek header mode on the cpu port */
998 	mt7530_write(priv, MT7530_PVC_P(port),
999 		     PORT_SPEC_TAG);
1000 
1001 	/* Unknown multicast frame forwarding to the cpu port */
1002 	mt7530_rmw(priv, MT7530_MFC, UNM_FFP_MASK, UNM_FFP(BIT(port)));
1003 
1004 	/* Set CPU port number */
1005 	if (priv->id == ID_MT7621)
1006 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1007 
1008 	/* CPU port gets connected to all user ports of
1009 	 * the switch.
1010 	 */
1011 	mt7530_write(priv, MT7530_PCR_P(port),
1012 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1013 
1014 	return 0;
1015 }
1016 
1017 static int
1018 mt7530_port_enable(struct dsa_switch *ds, int port,
1019 		   struct phy_device *phy)
1020 {
1021 	struct mt7530_priv *priv = ds->priv;
1022 
1023 	if (!dsa_is_user_port(ds, port))
1024 		return 0;
1025 
1026 	mutex_lock(&priv->reg_mutex);
1027 
1028 	/* Allow the user port gets connected to the cpu port and also
1029 	 * restore the port matrix if the port is the member of a certain
1030 	 * bridge.
1031 	 */
1032 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
1033 	priv->ports[port].enable = true;
1034 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1035 		   priv->ports[port].pm);
1036 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1037 
1038 	mutex_unlock(&priv->reg_mutex);
1039 
1040 	return 0;
1041 }
1042 
1043 static void
1044 mt7530_port_disable(struct dsa_switch *ds, int port)
1045 {
1046 	struct mt7530_priv *priv = ds->priv;
1047 
1048 	if (!dsa_is_user_port(ds, port))
1049 		return;
1050 
1051 	mutex_lock(&priv->reg_mutex);
1052 
1053 	/* Clear up all port matrix which could be restored in the next
1054 	 * enablement for the port.
1055 	 */
1056 	priv->ports[port].enable = false;
1057 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1058 		   PCR_MATRIX_CLR);
1059 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1060 
1061 	mutex_unlock(&priv->reg_mutex);
1062 }
1063 
1064 static int
1065 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1066 {
1067 	struct mt7530_priv *priv = ds->priv;
1068 	struct mii_bus *bus = priv->bus;
1069 	int length;
1070 	u32 val;
1071 
1072 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1073 	 * largest MTU of the slave ports. Because the switch only has a global
1074 	 * RX length register, only allowing CPU port here is enough.
1075 	 */
1076 	if (!dsa_is_cpu_port(ds, port))
1077 		return 0;
1078 
1079 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1080 
1081 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1082 	val &= ~MAX_RX_PKT_LEN_MASK;
1083 
1084 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1085 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1086 	if (length <= 1522) {
1087 		val |= MAX_RX_PKT_LEN_1522;
1088 	} else if (length <= 1536) {
1089 		val |= MAX_RX_PKT_LEN_1536;
1090 	} else if (length <= 1552) {
1091 		val |= MAX_RX_PKT_LEN_1552;
1092 	} else {
1093 		val &= ~MAX_RX_JUMBO_MASK;
1094 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1095 		val |= MAX_RX_PKT_LEN_JUMBO;
1096 	}
1097 
1098 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1099 
1100 	mutex_unlock(&bus->mdio_lock);
1101 
1102 	return 0;
1103 }
1104 
1105 static int
1106 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1107 {
1108 	return MT7530_MAX_MTU;
1109 }
1110 
1111 static void
1112 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1113 {
1114 	struct mt7530_priv *priv = ds->priv;
1115 	u32 stp_state;
1116 
1117 	switch (state) {
1118 	case BR_STATE_DISABLED:
1119 		stp_state = MT7530_STP_DISABLED;
1120 		break;
1121 	case BR_STATE_BLOCKING:
1122 		stp_state = MT7530_STP_BLOCKING;
1123 		break;
1124 	case BR_STATE_LISTENING:
1125 		stp_state = MT7530_STP_LISTENING;
1126 		break;
1127 	case BR_STATE_LEARNING:
1128 		stp_state = MT7530_STP_LEARNING;
1129 		break;
1130 	case BR_STATE_FORWARDING:
1131 	default:
1132 		stp_state = MT7530_STP_FORWARDING;
1133 		break;
1134 	}
1135 
1136 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
1137 }
1138 
1139 static int
1140 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1141 			struct net_device *bridge)
1142 {
1143 	struct mt7530_priv *priv = ds->priv;
1144 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
1145 	int i;
1146 
1147 	mutex_lock(&priv->reg_mutex);
1148 
1149 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1150 		/* Add this port to the port matrix of the other ports in the
1151 		 * same bridge. If the port is disabled, port matrix is kept
1152 		 * and not being setup until the port becomes enabled.
1153 		 */
1154 		if (dsa_is_user_port(ds, i) && i != port) {
1155 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1156 				continue;
1157 			if (priv->ports[i].enable)
1158 				mt7530_set(priv, MT7530_PCR_P(i),
1159 					   PCR_MATRIX(BIT(port)));
1160 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
1161 
1162 			port_bitmap |= BIT(i);
1163 		}
1164 	}
1165 
1166 	/* Add the all other ports to this port matrix. */
1167 	if (priv->ports[port].enable)
1168 		mt7530_rmw(priv, MT7530_PCR_P(port),
1169 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1170 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1171 
1172 	mutex_unlock(&priv->reg_mutex);
1173 
1174 	return 0;
1175 }
1176 
1177 static void
1178 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1179 {
1180 	struct mt7530_priv *priv = ds->priv;
1181 	bool all_user_ports_removed = true;
1182 	int i;
1183 
1184 	/* When a port is removed from the bridge, the port would be set up
1185 	 * back to the default as is at initial boot which is a VLAN-unaware
1186 	 * port.
1187 	 */
1188 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1189 		   MT7530_PORT_MATRIX_MODE);
1190 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1191 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1192 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1193 
1194 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1195 		if (dsa_is_user_port(ds, i) &&
1196 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1197 			all_user_ports_removed = false;
1198 			break;
1199 		}
1200 	}
1201 
1202 	/* CPU port also does the same thing until all user ports belonging to
1203 	 * the CPU port get out of VLAN filtering mode.
1204 	 */
1205 	if (all_user_ports_removed) {
1206 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
1207 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1208 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
1209 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1210 	}
1211 }
1212 
1213 static void
1214 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1215 {
1216 	struct mt7530_priv *priv = ds->priv;
1217 
1218 	/* The real fabric path would be decided on the membership in the
1219 	 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
1220 	 * means potential VLAN can be consisting of certain subset of all
1221 	 * ports.
1222 	 */
1223 	mt7530_rmw(priv, MT7530_PCR_P(port),
1224 		   PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
1225 
1226 	/* Trapped into security mode allows packet forwarding through VLAN
1227 	 * table lookup. CPU port is set to fallback mode to let untagged
1228 	 * frames pass through.
1229 	 */
1230 	if (dsa_is_cpu_port(ds, port))
1231 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1232 			   MT7530_PORT_FALLBACK_MODE);
1233 	else
1234 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1235 			   MT7530_PORT_SECURITY_MODE);
1236 
1237 	/* Set the port as a user port which is to be able to recognize VID
1238 	 * from incoming packets before fetching entry within the VLAN table.
1239 	 */
1240 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1241 		   VLAN_ATTR(MT7530_VLAN_USER) |
1242 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1243 }
1244 
1245 static void
1246 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1247 			 struct net_device *bridge)
1248 {
1249 	struct mt7530_priv *priv = ds->priv;
1250 	int i;
1251 
1252 	mutex_lock(&priv->reg_mutex);
1253 
1254 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1255 		/* Remove this port from the port matrix of the other ports
1256 		 * in the same bridge. If the port is disabled, port matrix
1257 		 * is kept and not being setup until the port becomes enabled.
1258 		 * And the other port's port matrix cannot be broken when the
1259 		 * other port is still a VLAN-aware port.
1260 		 */
1261 		if (dsa_is_user_port(ds, i) && i != port &&
1262 		   !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1263 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1264 				continue;
1265 			if (priv->ports[i].enable)
1266 				mt7530_clear(priv, MT7530_PCR_P(i),
1267 					     PCR_MATRIX(BIT(port)));
1268 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
1269 		}
1270 	}
1271 
1272 	/* Set the cpu port to be the only one in the port matrix of
1273 	 * this port.
1274 	 */
1275 	if (priv->ports[port].enable)
1276 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1277 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
1278 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
1279 
1280 	mutex_unlock(&priv->reg_mutex);
1281 }
1282 
1283 static int
1284 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1285 		    const unsigned char *addr, u16 vid)
1286 {
1287 	struct mt7530_priv *priv = ds->priv;
1288 	int ret;
1289 	u8 port_mask = BIT(port);
1290 
1291 	mutex_lock(&priv->reg_mutex);
1292 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1293 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1294 	mutex_unlock(&priv->reg_mutex);
1295 
1296 	return ret;
1297 }
1298 
1299 static int
1300 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1301 		    const unsigned char *addr, u16 vid)
1302 {
1303 	struct mt7530_priv *priv = ds->priv;
1304 	int ret;
1305 	u8 port_mask = BIT(port);
1306 
1307 	mutex_lock(&priv->reg_mutex);
1308 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1309 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1310 	mutex_unlock(&priv->reg_mutex);
1311 
1312 	return ret;
1313 }
1314 
1315 static int
1316 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1317 		     dsa_fdb_dump_cb_t *cb, void *data)
1318 {
1319 	struct mt7530_priv *priv = ds->priv;
1320 	struct mt7530_fdb _fdb = { 0 };
1321 	int cnt = MT7530_NUM_FDB_RECORDS;
1322 	int ret = 0;
1323 	u32 rsp = 0;
1324 
1325 	mutex_lock(&priv->reg_mutex);
1326 
1327 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1328 	if (ret < 0)
1329 		goto err;
1330 
1331 	do {
1332 		if (rsp & ATC_SRCH_HIT) {
1333 			mt7530_fdb_read(priv, &_fdb);
1334 			if (_fdb.port_mask & BIT(port)) {
1335 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1336 					 data);
1337 				if (ret < 0)
1338 					break;
1339 			}
1340 		}
1341 	} while (--cnt &&
1342 		 !(rsp & ATC_SRCH_END) &&
1343 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1344 err:
1345 	mutex_unlock(&priv->reg_mutex);
1346 
1347 	return 0;
1348 }
1349 
1350 static int
1351 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1352 {
1353 	struct mt7530_dummy_poll p;
1354 	u32 val;
1355 	int ret;
1356 
1357 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1358 	mt7530_write(priv, MT7530_VTCR, val);
1359 
1360 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1361 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1362 				 !(val & VTCR_BUSY), 20, 20000);
1363 	if (ret < 0) {
1364 		dev_err(priv->dev, "poll timeout\n");
1365 		return ret;
1366 	}
1367 
1368 	val = mt7530_read(priv, MT7530_VTCR);
1369 	if (val & VTCR_INVALID) {
1370 		dev_err(priv->dev, "read VTCR invalid\n");
1371 		return -EINVAL;
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 static int
1378 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port,
1379 			   bool vlan_filtering,
1380 			   struct switchdev_trans *trans)
1381 {
1382 	if (switchdev_trans_ph_prepare(trans))
1383 		return 0;
1384 
1385 	if (vlan_filtering) {
1386 		/* The port is being kept as VLAN-unaware port when bridge is
1387 		 * set up with vlan_filtering not being set, Otherwise, the
1388 		 * port and the corresponding CPU port is required the setup
1389 		 * for becoming a VLAN-aware port.
1390 		 */
1391 		mt7530_port_set_vlan_aware(ds, port);
1392 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1393 	} else {
1394 		mt7530_port_set_vlan_unaware(ds, port);
1395 	}
1396 
1397 	return 0;
1398 }
1399 
1400 static int
1401 mt7530_port_vlan_prepare(struct dsa_switch *ds, int port,
1402 			 const struct switchdev_obj_port_vlan *vlan)
1403 {
1404 	/* nothing needed */
1405 
1406 	return 0;
1407 }
1408 
1409 static void
1410 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1411 		   struct mt7530_hw_vlan_entry *entry)
1412 {
1413 	u8 new_members;
1414 	u32 val;
1415 
1416 	new_members = entry->old_members | BIT(entry->port) |
1417 		      BIT(MT7530_CPU_PORT);
1418 
1419 	/* Validate the entry with independent learning, create egress tag per
1420 	 * VLAN and joining the port as one of the port members.
1421 	 */
1422 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1423 	mt7530_write(priv, MT7530_VAWD1, val);
1424 
1425 	/* Decide whether adding tag or not for those outgoing packets from the
1426 	 * port inside the VLAN.
1427 	 */
1428 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1429 				MT7530_VLAN_EGRESS_TAG;
1430 	mt7530_rmw(priv, MT7530_VAWD2,
1431 		   ETAG_CTRL_P_MASK(entry->port),
1432 		   ETAG_CTRL_P(entry->port, val));
1433 
1434 	/* CPU port is always taken as a tagged port for serving more than one
1435 	 * VLANs across and also being applied with egress type stack mode for
1436 	 * that VLAN tags would be appended after hardware special tag used as
1437 	 * DSA tag.
1438 	 */
1439 	mt7530_rmw(priv, MT7530_VAWD2,
1440 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1441 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1442 			       MT7530_VLAN_EGRESS_STACK));
1443 }
1444 
1445 static void
1446 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1447 		   struct mt7530_hw_vlan_entry *entry)
1448 {
1449 	u8 new_members;
1450 	u32 val;
1451 
1452 	new_members = entry->old_members & ~BIT(entry->port);
1453 
1454 	val = mt7530_read(priv, MT7530_VAWD1);
1455 	if (!(val & VLAN_VALID)) {
1456 		dev_err(priv->dev,
1457 			"Cannot be deleted due to invalid entry\n");
1458 		return;
1459 	}
1460 
1461 	/* If certain member apart from CPU port is still alive in the VLAN,
1462 	 * the entry would be kept valid. Otherwise, the entry is got to be
1463 	 * disabled.
1464 	 */
1465 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1466 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1467 		      VLAN_VALID;
1468 		mt7530_write(priv, MT7530_VAWD1, val);
1469 	} else {
1470 		mt7530_write(priv, MT7530_VAWD1, 0);
1471 		mt7530_write(priv, MT7530_VAWD2, 0);
1472 	}
1473 }
1474 
1475 static void
1476 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1477 		      struct mt7530_hw_vlan_entry *entry,
1478 		      mt7530_vlan_op vlan_op)
1479 {
1480 	u32 val;
1481 
1482 	/* Fetch entry */
1483 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1484 
1485 	val = mt7530_read(priv, MT7530_VAWD1);
1486 
1487 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1488 
1489 	/* Manipulate entry */
1490 	vlan_op(priv, entry);
1491 
1492 	/* Flush result to hardware */
1493 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1494 }
1495 
1496 static void
1497 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1498 		     const struct switchdev_obj_port_vlan *vlan)
1499 {
1500 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1501 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1502 	struct mt7530_hw_vlan_entry new_entry;
1503 	struct mt7530_priv *priv = ds->priv;
1504 	u16 vid;
1505 
1506 	mutex_lock(&priv->reg_mutex);
1507 
1508 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1509 		mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1510 		mt7530_hw_vlan_update(priv, vid, &new_entry,
1511 				      mt7530_hw_vlan_add);
1512 	}
1513 
1514 	if (pvid) {
1515 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1516 			   G0_PORT_VID(vlan->vid_end));
1517 		priv->ports[port].pvid = vlan->vid_end;
1518 	}
1519 
1520 	mutex_unlock(&priv->reg_mutex);
1521 }
1522 
1523 static int
1524 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1525 		     const struct switchdev_obj_port_vlan *vlan)
1526 {
1527 	struct mt7530_hw_vlan_entry target_entry;
1528 	struct mt7530_priv *priv = ds->priv;
1529 	u16 vid, pvid;
1530 
1531 	mutex_lock(&priv->reg_mutex);
1532 
1533 	pvid = priv->ports[port].pvid;
1534 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1535 		mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1536 		mt7530_hw_vlan_update(priv, vid, &target_entry,
1537 				      mt7530_hw_vlan_del);
1538 
1539 		/* PVID is being restored to the default whenever the PVID port
1540 		 * is being removed from the VLAN.
1541 		 */
1542 		if (pvid == vid)
1543 			pvid = G0_PORT_VID_DEF;
1544 	}
1545 
1546 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1547 	priv->ports[port].pvid = pvid;
1548 
1549 	mutex_unlock(&priv->reg_mutex);
1550 
1551 	return 0;
1552 }
1553 
1554 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1555 {
1556 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1557 				   MIRROR_PORT(val);
1558 }
1559 
1560 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1561 {
1562 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1563 				   MIRROR_PORT(val);
1564 }
1565 
1566 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1567 				  struct dsa_mall_mirror_tc_entry *mirror,
1568 				  bool ingress)
1569 {
1570 	struct mt7530_priv *priv = ds->priv;
1571 	int monitor_port;
1572 	u32 val;
1573 
1574 	/* Check for existent entry */
1575 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1576 		return -EEXIST;
1577 
1578 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1579 
1580 	/* MT7530 only supports one monitor port */
1581 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1582 	if (val & MT753X_MIRROR_EN(priv->id) &&
1583 	    monitor_port != mirror->to_local_port)
1584 		return -EEXIST;
1585 
1586 	val |= MT753X_MIRROR_EN(priv->id);
1587 	val &= ~MT753X_MIRROR_MASK(priv->id);
1588 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1589 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1590 
1591 	val = mt7530_read(priv, MT7530_PCR_P(port));
1592 	if (ingress) {
1593 		val |= PORT_RX_MIR;
1594 		priv->mirror_rx |= BIT(port);
1595 	} else {
1596 		val |= PORT_TX_MIR;
1597 		priv->mirror_tx |= BIT(port);
1598 	}
1599 	mt7530_write(priv, MT7530_PCR_P(port), val);
1600 
1601 	return 0;
1602 }
1603 
1604 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1605 				   struct dsa_mall_mirror_tc_entry *mirror)
1606 {
1607 	struct mt7530_priv *priv = ds->priv;
1608 	u32 val;
1609 
1610 	val = mt7530_read(priv, MT7530_PCR_P(port));
1611 	if (mirror->ingress) {
1612 		val &= ~PORT_RX_MIR;
1613 		priv->mirror_rx &= ~BIT(port);
1614 	} else {
1615 		val &= ~PORT_TX_MIR;
1616 		priv->mirror_tx &= ~BIT(port);
1617 	}
1618 	mt7530_write(priv, MT7530_PCR_P(port), val);
1619 
1620 	if (!priv->mirror_rx && !priv->mirror_tx) {
1621 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1622 		val &= ~MT753X_MIRROR_EN(priv->id);
1623 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1624 	}
1625 }
1626 
1627 static enum dsa_tag_protocol
1628 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1629 		     enum dsa_tag_protocol mp)
1630 {
1631 	struct mt7530_priv *priv = ds->priv;
1632 
1633 	if (port != MT7530_CPU_PORT) {
1634 		dev_warn(priv->dev,
1635 			 "port not matched with tagging CPU port\n");
1636 		return DSA_TAG_PROTO_NONE;
1637 	} else {
1638 		return DSA_TAG_PROTO_MTK;
1639 	}
1640 }
1641 
1642 static int
1643 mt7530_setup(struct dsa_switch *ds)
1644 {
1645 	struct mt7530_priv *priv = ds->priv;
1646 	struct device_node *phy_node;
1647 	struct device_node *mac_np;
1648 	struct mt7530_dummy_poll p;
1649 	phy_interface_t interface;
1650 	struct device_node *dn;
1651 	u32 id, val;
1652 	int ret, i;
1653 
1654 	/* The parent node of master netdev which holds the common system
1655 	 * controller also is the container for two GMACs nodes representing
1656 	 * as two netdev instances.
1657 	 */
1658 	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
1659 	ds->configure_vlan_while_not_filtering = true;
1660 	ds->mtu_enforcement_ingress = true;
1661 
1662 	if (priv->id == ID_MT7530) {
1663 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
1664 		ret = regulator_enable(priv->core_pwr);
1665 		if (ret < 0) {
1666 			dev_err(priv->dev,
1667 				"Failed to enable core power: %d\n", ret);
1668 			return ret;
1669 		}
1670 
1671 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
1672 		ret = regulator_enable(priv->io_pwr);
1673 		if (ret < 0) {
1674 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
1675 				ret);
1676 			return ret;
1677 		}
1678 	}
1679 
1680 	/* Reset whole chip through gpio pin or memory-mapped registers for
1681 	 * different type of hardware
1682 	 */
1683 	if (priv->mcm) {
1684 		reset_control_assert(priv->rstc);
1685 		usleep_range(1000, 1100);
1686 		reset_control_deassert(priv->rstc);
1687 	} else {
1688 		gpiod_set_value_cansleep(priv->reset, 0);
1689 		usleep_range(1000, 1100);
1690 		gpiod_set_value_cansleep(priv->reset, 1);
1691 	}
1692 
1693 	/* Waiting for MT7530 got to stable */
1694 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1695 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1696 				 20, 1000000);
1697 	if (ret < 0) {
1698 		dev_err(priv->dev, "reset timeout\n");
1699 		return ret;
1700 	}
1701 
1702 	id = mt7530_read(priv, MT7530_CREV);
1703 	id >>= CHIP_NAME_SHIFT;
1704 	if (id != MT7530_ID) {
1705 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1706 		return -ENODEV;
1707 	}
1708 
1709 	/* Reset the switch through internal reset */
1710 	mt7530_write(priv, MT7530_SYS_CTRL,
1711 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1712 		     SYS_CTRL_REG_RST);
1713 
1714 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
1715 	val = mt7530_read(priv, MT7530_MHWTRAP);
1716 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
1717 	val |= MHWTRAP_MANUAL;
1718 	mt7530_write(priv, MT7530_MHWTRAP, val);
1719 
1720 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
1721 
1722 	/* Enable and reset MIB counters */
1723 	mt7530_mib_reset(ds);
1724 
1725 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1726 		/* Disable forwarding by default on all ports */
1727 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1728 			   PCR_MATRIX_CLR);
1729 
1730 		if (dsa_is_cpu_port(ds, i)) {
1731 			ret = mt753x_cpu_port_enable(ds, i);
1732 			if (ret)
1733 				return ret;
1734 		} else
1735 			mt7530_port_disable(ds, i);
1736 
1737 		/* Enable consistent egress tag */
1738 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
1739 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1740 	}
1741 
1742 	/* Setup port 5 */
1743 	priv->p5_intf_sel = P5_DISABLED;
1744 	interface = PHY_INTERFACE_MODE_NA;
1745 
1746 	if (!dsa_is_unused_port(ds, 5)) {
1747 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
1748 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
1749 		if (ret && ret != -ENODEV)
1750 			return ret;
1751 	} else {
1752 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
1753 		for_each_child_of_node(dn, mac_np) {
1754 			if (!of_device_is_compatible(mac_np,
1755 						     "mediatek,eth-mac"))
1756 				continue;
1757 
1758 			ret = of_property_read_u32(mac_np, "reg", &id);
1759 			if (ret < 0 || id != 1)
1760 				continue;
1761 
1762 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
1763 			if (!phy_node)
1764 				continue;
1765 
1766 			if (phy_node->parent == priv->dev->of_node->parent) {
1767 				ret = of_get_phy_mode(mac_np, &interface);
1768 				if (ret && ret != -ENODEV) {
1769 					of_node_put(mac_np);
1770 					return ret;
1771 				}
1772 				id = of_mdio_parse_addr(ds->dev, phy_node);
1773 				if (id == 0)
1774 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
1775 				if (id == 4)
1776 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
1777 			}
1778 			of_node_put(mac_np);
1779 			of_node_put(phy_node);
1780 			break;
1781 		}
1782 	}
1783 
1784 	mt7530_setup_port5(ds, interface);
1785 
1786 	/* Flush the FDB table */
1787 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1788 	if (ret < 0)
1789 		return ret;
1790 
1791 	return 0;
1792 }
1793 
1794 static int
1795 mt7531_setup(struct dsa_switch *ds)
1796 {
1797 	struct mt7530_priv *priv = ds->priv;
1798 	struct mt7530_dummy_poll p;
1799 	u32 val, id;
1800 	int ret, i;
1801 
1802 	/* Reset whole chip through gpio pin or memory-mapped registers for
1803 	 * different type of hardware
1804 	 */
1805 	if (priv->mcm) {
1806 		reset_control_assert(priv->rstc);
1807 		usleep_range(1000, 1100);
1808 		reset_control_deassert(priv->rstc);
1809 	} else {
1810 		gpiod_set_value_cansleep(priv->reset, 0);
1811 		usleep_range(1000, 1100);
1812 		gpiod_set_value_cansleep(priv->reset, 1);
1813 	}
1814 
1815 	/* Waiting for MT7530 got to stable */
1816 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1817 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1818 				 20, 1000000);
1819 	if (ret < 0) {
1820 		dev_err(priv->dev, "reset timeout\n");
1821 		return ret;
1822 	}
1823 
1824 	id = mt7530_read(priv, MT7531_CREV);
1825 	id >>= CHIP_NAME_SHIFT;
1826 
1827 	if (id != MT7531_ID) {
1828 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1829 		return -ENODEV;
1830 	}
1831 
1832 	/* Reset the switch through internal reset */
1833 	mt7530_write(priv, MT7530_SYS_CTRL,
1834 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1835 		     SYS_CTRL_REG_RST);
1836 
1837 	if (mt7531_dual_sgmii_supported(priv)) {
1838 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
1839 
1840 		/* Let ds->slave_mii_bus be able to access external phy. */
1841 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
1842 			   MT7531_EXT_P_MDC_11);
1843 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
1844 			   MT7531_EXT_P_MDIO_12);
1845 	} else {
1846 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
1847 	}
1848 	dev_dbg(ds->dev, "P5 support %s interface\n",
1849 		p5_intf_modes(priv->p5_intf_sel));
1850 
1851 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
1852 		   MT7531_GPIO0_INTERRUPT);
1853 
1854 	/* Let phylink decide the interface later. */
1855 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
1856 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
1857 
1858 	/* Enable PHY core PLL, since phy_device has not yet been created
1859 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
1860 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
1861 	 * function.
1862 	 */
1863 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
1864 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
1865 	val |= MT7531_PHY_PLL_BYPASS_MODE;
1866 	val &= ~MT7531_PHY_PLL_OFF;
1867 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
1868 				 CORE_PLL_GROUP4, val);
1869 
1870 	/* BPDU to CPU port */
1871 	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
1872 		   BIT(MT7530_CPU_PORT));
1873 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
1874 		   MT753X_BPDU_CPU_ONLY);
1875 
1876 	/* Enable and reset MIB counters */
1877 	mt7530_mib_reset(ds);
1878 
1879 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1880 		/* Disable forwarding by default on all ports */
1881 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1882 			   PCR_MATRIX_CLR);
1883 
1884 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
1885 
1886 		if (dsa_is_cpu_port(ds, i)) {
1887 			ret = mt753x_cpu_port_enable(ds, i);
1888 			if (ret)
1889 				return ret;
1890 		} else
1891 			mt7530_port_disable(ds, i);
1892 
1893 		/* Enable consistent egress tag */
1894 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
1895 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1896 	}
1897 
1898 	ds->configure_vlan_while_not_filtering = true;
1899 	ds->mtu_enforcement_ingress = true;
1900 
1901 	/* Flush the FDB table */
1902 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1903 	if (ret < 0)
1904 		return ret;
1905 
1906 	return 0;
1907 }
1908 
1909 static bool
1910 mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
1911 			  const struct phylink_link_state *state)
1912 {
1913 	struct mt7530_priv *priv = ds->priv;
1914 
1915 	switch (port) {
1916 	case 0 ... 4: /* Internal phy */
1917 		if (state->interface != PHY_INTERFACE_MODE_GMII)
1918 			return false;
1919 		break;
1920 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
1921 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1922 		    state->interface != PHY_INTERFACE_MODE_MII &&
1923 		    state->interface != PHY_INTERFACE_MODE_GMII)
1924 			return false;
1925 		break;
1926 	case 6: /* 1st cpu port */
1927 		if (state->interface != PHY_INTERFACE_MODE_RGMII &&
1928 		    state->interface != PHY_INTERFACE_MODE_TRGMII)
1929 			return false;
1930 		break;
1931 	default:
1932 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
1933 			port);
1934 		return false;
1935 	}
1936 
1937 	return true;
1938 }
1939 
1940 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
1941 {
1942 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
1943 }
1944 
1945 static bool
1946 mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
1947 			  const struct phylink_link_state *state)
1948 {
1949 	struct mt7530_priv *priv = ds->priv;
1950 
1951 	switch (port) {
1952 	case 0 ... 4: /* Internal phy */
1953 		if (state->interface != PHY_INTERFACE_MODE_GMII)
1954 			return false;
1955 		break;
1956 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
1957 		if (mt7531_is_rgmii_port(priv, port))
1958 			return phy_interface_mode_is_rgmii(state->interface);
1959 		fallthrough;
1960 	case 6: /* 1st cpu port supports sgmii/8023z only */
1961 		if (state->interface != PHY_INTERFACE_MODE_SGMII &&
1962 		    !phy_interface_mode_is_8023z(state->interface))
1963 			return false;
1964 		break;
1965 	default:
1966 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
1967 			port);
1968 		return false;
1969 	}
1970 
1971 	return true;
1972 }
1973 
1974 static bool
1975 mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
1976 			  const struct phylink_link_state *state)
1977 {
1978 	struct mt7530_priv *priv = ds->priv;
1979 
1980 	return priv->info->phy_mode_supported(ds, port, state);
1981 }
1982 
1983 static int
1984 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
1985 {
1986 	struct mt7530_priv *priv = ds->priv;
1987 
1988 	return priv->info->pad_setup(ds, state->interface);
1989 }
1990 
1991 static int
1992 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
1993 		  phy_interface_t interface)
1994 {
1995 	struct mt7530_priv *priv = ds->priv;
1996 
1997 	/* Only need to setup port5. */
1998 	if (port != 5)
1999 		return 0;
2000 
2001 	mt7530_setup_port5(priv->ds, interface);
2002 
2003 	return 0;
2004 }
2005 
2006 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2007 			      phy_interface_t interface,
2008 			      struct phy_device *phydev)
2009 {
2010 	u32 val;
2011 
2012 	if (!mt7531_is_rgmii_port(priv, port)) {
2013 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2014 			port);
2015 		return -EINVAL;
2016 	}
2017 
2018 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2019 	val |= GP_CLK_EN;
2020 	val &= ~GP_MODE_MASK;
2021 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2022 	val &= ~CLK_SKEW_IN_MASK;
2023 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2024 	val &= ~CLK_SKEW_OUT_MASK;
2025 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2026 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2027 
2028 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2029 	if (!phydev || phy_driver_is_genphy(phydev)) {
2030 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2031 		switch (interface) {
2032 		case PHY_INTERFACE_MODE_RGMII:
2033 			val |= TXCLK_NO_REVERSE;
2034 			val |= RXCLK_NO_DELAY;
2035 			break;
2036 		case PHY_INTERFACE_MODE_RGMII_RXID:
2037 			val |= TXCLK_NO_REVERSE;
2038 			break;
2039 		case PHY_INTERFACE_MODE_RGMII_TXID:
2040 			val |= RXCLK_NO_DELAY;
2041 			break;
2042 		case PHY_INTERFACE_MODE_RGMII_ID:
2043 			break;
2044 		default:
2045 			return -EINVAL;
2046 		}
2047 	}
2048 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2049 
2050 	return 0;
2051 }
2052 
2053 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
2054 				  unsigned long *supported)
2055 {
2056 	/* Port5 supports ethier RGMII or SGMII.
2057 	 * Port6 supports SGMII only.
2058 	 */
2059 	switch (port) {
2060 	case 5:
2061 		if (mt7531_is_rgmii_port(priv, port))
2062 			break;
2063 		fallthrough;
2064 	case 6:
2065 		phylink_set(supported, 1000baseX_Full);
2066 		phylink_set(supported, 2500baseX_Full);
2067 		phylink_set(supported, 2500baseT_Full);
2068 	}
2069 }
2070 
2071 static void
2072 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
2073 			   unsigned int mode, phy_interface_t interface,
2074 			   int speed, int duplex)
2075 {
2076 	struct mt7530_priv *priv = ds->priv;
2077 	unsigned int val;
2078 
2079 	/* For adjusting speed and duplex of SGMII force mode. */
2080 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2081 	    phylink_autoneg_inband(mode))
2082 		return;
2083 
2084 	/* SGMII force mode setting */
2085 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2086 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2087 
2088 	switch (speed) {
2089 	case SPEED_10:
2090 		val |= MT7531_SGMII_FORCE_SPEED_10;
2091 		break;
2092 	case SPEED_100:
2093 		val |= MT7531_SGMII_FORCE_SPEED_100;
2094 		break;
2095 	case SPEED_1000:
2096 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2097 		break;
2098 	}
2099 
2100 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2101 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2102 	 */
2103 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2104 	    duplex != DUPLEX_FULL)
2105 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2106 
2107 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2108 }
2109 
2110 static bool mt753x_is_mac_port(u32 port)
2111 {
2112 	return (port == 5 || port == 6);
2113 }
2114 
2115 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2116 					 phy_interface_t interface)
2117 {
2118 	u32 val;
2119 
2120 	if (!mt753x_is_mac_port(port))
2121 		return -EINVAL;
2122 
2123 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2124 		   MT7531_SGMII_PHYA_PWD);
2125 
2126 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2127 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2128 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2129 	 * encoding.
2130 	 */
2131 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2132 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2133 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2134 
2135 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2136 
2137 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2138 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2139 	 */
2140 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2141 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2142 		   MT7531_SGMII_FORCE_SPEED_1000);
2143 
2144 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2145 
2146 	return 0;
2147 }
2148 
2149 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2150 				      phy_interface_t interface)
2151 {
2152 	if (!mt753x_is_mac_port(port))
2153 		return -EINVAL;
2154 
2155 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2156 		   MT7531_SGMII_PHYA_PWD);
2157 
2158 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2159 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2160 
2161 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2162 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2163 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2164 
2165 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2166 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2167 
2168 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2169 
2170 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2171 
2172 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2173 
2174 	return 0;
2175 }
2176 
2177 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
2178 {
2179 	struct mt7530_priv *priv = ds->priv;
2180 	u32 val;
2181 
2182 	/* Only restart AN when AN is enabled */
2183 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2184 	if (val & MT7531_SGMII_AN_ENABLE) {
2185 		val |= MT7531_SGMII_AN_RESTART;
2186 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2187 	}
2188 }
2189 
2190 static int
2191 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2192 		  phy_interface_t interface)
2193 {
2194 	struct mt7530_priv *priv = ds->priv;
2195 	struct phy_device *phydev;
2196 	struct dsa_port *dp;
2197 
2198 	if (!mt753x_is_mac_port(port)) {
2199 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2200 		return -EINVAL;
2201 	}
2202 
2203 	switch (interface) {
2204 	case PHY_INTERFACE_MODE_RGMII:
2205 	case PHY_INTERFACE_MODE_RGMII_ID:
2206 	case PHY_INTERFACE_MODE_RGMII_RXID:
2207 	case PHY_INTERFACE_MODE_RGMII_TXID:
2208 		dp = dsa_to_port(ds, port);
2209 		phydev = dp->slave->phydev;
2210 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2211 	case PHY_INTERFACE_MODE_SGMII:
2212 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2213 	case PHY_INTERFACE_MODE_NA:
2214 	case PHY_INTERFACE_MODE_1000BASEX:
2215 	case PHY_INTERFACE_MODE_2500BASEX:
2216 		if (phylink_autoneg_inband(mode))
2217 			return -EINVAL;
2218 
2219 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2220 	default:
2221 		return -EINVAL;
2222 	}
2223 
2224 	return -EINVAL;
2225 }
2226 
2227 static int
2228 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2229 		  const struct phylink_link_state *state)
2230 {
2231 	struct mt7530_priv *priv = ds->priv;
2232 
2233 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2234 }
2235 
2236 static void
2237 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2238 			  const struct phylink_link_state *state)
2239 {
2240 	struct mt7530_priv *priv = ds->priv;
2241 	u32 mcr_cur, mcr_new;
2242 
2243 	if (!mt753x_phy_mode_supported(ds, port, state))
2244 		goto unsupported;
2245 
2246 	switch (port) {
2247 	case 0 ... 4: /* Internal phy */
2248 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2249 			goto unsupported;
2250 		break;
2251 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2252 		if (priv->p5_interface == state->interface)
2253 			break;
2254 
2255 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2256 			goto unsupported;
2257 
2258 		if (priv->p5_intf_sel != P5_DISABLED)
2259 			priv->p5_interface = state->interface;
2260 		break;
2261 	case 6: /* 1st cpu port */
2262 		if (priv->p6_interface == state->interface)
2263 			break;
2264 
2265 		mt753x_pad_setup(ds, state);
2266 
2267 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2268 			goto unsupported;
2269 
2270 		priv->p6_interface = state->interface;
2271 		break;
2272 	default:
2273 unsupported:
2274 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2275 			__func__, phy_modes(state->interface), port);
2276 		return;
2277 	}
2278 
2279 	if (phylink_autoneg_inband(mode) &&
2280 	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2281 		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
2282 			__func__);
2283 		return;
2284 	}
2285 
2286 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2287 	mcr_new = mcr_cur;
2288 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2289 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2290 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2291 
2292 	/* Are we connected to external phy */
2293 	if (port == 5 && dsa_is_user_port(ds, 5))
2294 		mcr_new |= PMCR_EXT_PHY;
2295 
2296 	if (mcr_new != mcr_cur)
2297 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2298 }
2299 
2300 static void
2301 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port)
2302 {
2303 	struct mt7530_priv *priv = ds->priv;
2304 
2305 	if (!priv->info->mac_pcs_an_restart)
2306 		return;
2307 
2308 	priv->info->mac_pcs_an_restart(ds, port);
2309 }
2310 
2311 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2312 					 unsigned int mode,
2313 					 phy_interface_t interface)
2314 {
2315 	struct mt7530_priv *priv = ds->priv;
2316 
2317 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2318 }
2319 
2320 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port,
2321 				   unsigned int mode, phy_interface_t interface,
2322 				   int speed, int duplex)
2323 {
2324 	struct mt7530_priv *priv = ds->priv;
2325 
2326 	if (!priv->info->mac_pcs_link_up)
2327 		return;
2328 
2329 	priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2330 }
2331 
2332 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2333 				       unsigned int mode,
2334 				       phy_interface_t interface,
2335 				       struct phy_device *phydev,
2336 				       int speed, int duplex,
2337 				       bool tx_pause, bool rx_pause)
2338 {
2339 	struct mt7530_priv *priv = ds->priv;
2340 	u32 mcr;
2341 
2342 	mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2343 
2344 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2345 
2346 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2347 	 * variants.
2348 	 */
2349 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2350 	    (phy_interface_mode_is_8023z(interface))) {
2351 		speed = SPEED_1000;
2352 		duplex = DUPLEX_FULL;
2353 	}
2354 
2355 	switch (speed) {
2356 	case SPEED_1000:
2357 		mcr |= PMCR_FORCE_SPEED_1000;
2358 		break;
2359 	case SPEED_100:
2360 		mcr |= PMCR_FORCE_SPEED_100;
2361 		break;
2362 	}
2363 	if (duplex == DUPLEX_FULL) {
2364 		mcr |= PMCR_FORCE_FDX;
2365 		if (tx_pause)
2366 			mcr |= PMCR_TX_FC_EN;
2367 		if (rx_pause)
2368 			mcr |= PMCR_RX_FC_EN;
2369 	}
2370 
2371 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2372 }
2373 
2374 static int
2375 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2376 {
2377 	struct mt7530_priv *priv = ds->priv;
2378 	phy_interface_t interface;
2379 	int speed;
2380 	int ret;
2381 
2382 	switch (port) {
2383 	case 5:
2384 		if (mt7531_is_rgmii_port(priv, port))
2385 			interface = PHY_INTERFACE_MODE_RGMII;
2386 		else
2387 			interface = PHY_INTERFACE_MODE_2500BASEX;
2388 
2389 		priv->p5_interface = interface;
2390 		break;
2391 	case 6:
2392 		interface = PHY_INTERFACE_MODE_2500BASEX;
2393 
2394 		mt7531_pad_setup(ds, interface);
2395 
2396 		priv->p6_interface = interface;
2397 		break;
2398 	default:
2399 		return -EINVAL;
2400 	}
2401 
2402 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2403 		speed = SPEED_2500;
2404 	else
2405 		speed = SPEED_1000;
2406 
2407 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2408 	if (ret)
2409 		return ret;
2410 	mt7530_write(priv, MT7530_PMCR_P(port),
2411 		     PMCR_CPU_PORT_SETTING(priv->id));
2412 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2413 				   speed, DUPLEX_FULL, true, true);
2414 
2415 	return 0;
2416 }
2417 
2418 static void
2419 mt7530_mac_port_validate(struct dsa_switch *ds, int port,
2420 			 unsigned long *supported)
2421 {
2422 	if (port == 5)
2423 		phylink_set(supported, 1000baseX_Full);
2424 }
2425 
2426 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port,
2427 				     unsigned long *supported)
2428 {
2429 	struct mt7530_priv *priv = ds->priv;
2430 
2431 	mt7531_sgmii_validate(priv, port, supported);
2432 }
2433 
2434 static void
2435 mt753x_phylink_validate(struct dsa_switch *ds, int port,
2436 			unsigned long *supported,
2437 			struct phylink_link_state *state)
2438 {
2439 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2440 	struct mt7530_priv *priv = ds->priv;
2441 
2442 	if (state->interface != PHY_INTERFACE_MODE_NA &&
2443 	    !mt753x_phy_mode_supported(ds, port, state)) {
2444 		linkmode_zero(supported);
2445 		return;
2446 	}
2447 
2448 	phylink_set_port_modes(mask);
2449 
2450 	if (state->interface != PHY_INTERFACE_MODE_TRGMII ||
2451 	    !phy_interface_mode_is_8023z(state->interface)) {
2452 		phylink_set(mask, 10baseT_Half);
2453 		phylink_set(mask, 10baseT_Full);
2454 		phylink_set(mask, 100baseT_Half);
2455 		phylink_set(mask, 100baseT_Full);
2456 		phylink_set(mask, Autoneg);
2457 	}
2458 
2459 	/* This switch only supports 1G full-duplex. */
2460 	if (state->interface != PHY_INTERFACE_MODE_MII)
2461 		phylink_set(mask, 1000baseT_Full);
2462 
2463 	priv->info->mac_port_validate(ds, port, mask);
2464 
2465 	phylink_set(mask, Pause);
2466 	phylink_set(mask, Asym_Pause);
2467 
2468 	linkmode_and(supported, supported, mask);
2469 	linkmode_and(state->advertising, state->advertising, mask);
2470 
2471 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
2472 	 * to advertise both, only report advertising at 2500BaseX.
2473 	 */
2474 	phylink_helper_basex_speed(state);
2475 }
2476 
2477 static int
2478 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
2479 			      struct phylink_link_state *state)
2480 {
2481 	struct mt7530_priv *priv = ds->priv;
2482 	u32 pmsr;
2483 
2484 	if (port < 0 || port >= MT7530_NUM_PORTS)
2485 		return -EINVAL;
2486 
2487 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2488 
2489 	state->link = (pmsr & PMSR_LINK);
2490 	state->an_complete = state->link;
2491 	state->duplex = !!(pmsr & PMSR_DPX);
2492 
2493 	switch (pmsr & PMSR_SPEED_MASK) {
2494 	case PMSR_SPEED_10:
2495 		state->speed = SPEED_10;
2496 		break;
2497 	case PMSR_SPEED_100:
2498 		state->speed = SPEED_100;
2499 		break;
2500 	case PMSR_SPEED_1000:
2501 		state->speed = SPEED_1000;
2502 		break;
2503 	default:
2504 		state->speed = SPEED_UNKNOWN;
2505 		break;
2506 	}
2507 
2508 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2509 	if (pmsr & PMSR_RX_FC)
2510 		state->pause |= MLO_PAUSE_RX;
2511 	if (pmsr & PMSR_TX_FC)
2512 		state->pause |= MLO_PAUSE_TX;
2513 
2514 	return 1;
2515 }
2516 
2517 static int
2518 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2519 			      struct phylink_link_state *state)
2520 {
2521 	u32 status, val;
2522 	u16 config_reg;
2523 
2524 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2525 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2526 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
2527 	    (status & MT7531_SGMII_AN_ENABLE)) {
2528 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
2529 		config_reg = val >> 16;
2530 
2531 		switch (config_reg & LPA_SGMII_SPD_MASK) {
2532 		case LPA_SGMII_1000:
2533 			state->speed = SPEED_1000;
2534 			break;
2535 		case LPA_SGMII_100:
2536 			state->speed = SPEED_100;
2537 			break;
2538 		case LPA_SGMII_10:
2539 			state->speed = SPEED_10;
2540 			break;
2541 		default:
2542 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
2543 			state->link = false;
2544 			return -EINVAL;
2545 		}
2546 
2547 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
2548 			state->duplex = DUPLEX_FULL;
2549 		else
2550 			state->duplex = DUPLEX_HALF;
2551 	}
2552 
2553 	return 0;
2554 }
2555 
2556 static int
2557 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port,
2558 			      struct phylink_link_state *state)
2559 {
2560 	struct mt7530_priv *priv = ds->priv;
2561 
2562 	if (state->interface == PHY_INTERFACE_MODE_SGMII)
2563 		return mt7531_sgmii_pcs_get_state_an(priv, port, state);
2564 
2565 	return -EOPNOTSUPP;
2566 }
2567 
2568 static int
2569 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port,
2570 			      struct phylink_link_state *state)
2571 {
2572 	struct mt7530_priv *priv = ds->priv;
2573 
2574 	return priv->info->mac_port_get_state(ds, port, state);
2575 }
2576 
2577 static int
2578 mt753x_setup(struct dsa_switch *ds)
2579 {
2580 	struct mt7530_priv *priv = ds->priv;
2581 
2582 	return priv->info->sw_setup(ds);
2583 }
2584 
2585 static int
2586 mt753x_phy_read(struct dsa_switch *ds, int port, int regnum)
2587 {
2588 	struct mt7530_priv *priv = ds->priv;
2589 
2590 	return priv->info->phy_read(ds, port, regnum);
2591 }
2592 
2593 static int
2594 mt753x_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
2595 {
2596 	struct mt7530_priv *priv = ds->priv;
2597 
2598 	return priv->info->phy_write(ds, port, regnum, val);
2599 }
2600 
2601 static const struct dsa_switch_ops mt7530_switch_ops = {
2602 	.get_tag_protocol	= mtk_get_tag_protocol,
2603 	.setup			= mt753x_setup,
2604 	.get_strings		= mt7530_get_strings,
2605 	.phy_read		= mt753x_phy_read,
2606 	.phy_write		= mt753x_phy_write,
2607 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
2608 	.get_sset_count		= mt7530_get_sset_count,
2609 	.set_ageing_time	= mt7530_set_ageing_time,
2610 	.port_enable		= mt7530_port_enable,
2611 	.port_disable		= mt7530_port_disable,
2612 	.port_change_mtu	= mt7530_port_change_mtu,
2613 	.port_max_mtu		= mt7530_port_max_mtu,
2614 	.port_stp_state_set	= mt7530_stp_state_set,
2615 	.port_bridge_join	= mt7530_port_bridge_join,
2616 	.port_bridge_leave	= mt7530_port_bridge_leave,
2617 	.port_fdb_add		= mt7530_port_fdb_add,
2618 	.port_fdb_del		= mt7530_port_fdb_del,
2619 	.port_fdb_dump		= mt7530_port_fdb_dump,
2620 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
2621 	.port_vlan_prepare	= mt7530_port_vlan_prepare,
2622 	.port_vlan_add		= mt7530_port_vlan_add,
2623 	.port_vlan_del		= mt7530_port_vlan_del,
2624 	.port_mirror_add	= mt753x_port_mirror_add,
2625 	.port_mirror_del	= mt753x_port_mirror_del,
2626 	.phylink_validate	= mt753x_phylink_validate,
2627 	.phylink_mac_link_state	= mt753x_phylink_mac_link_state,
2628 	.phylink_mac_config	= mt753x_phylink_mac_config,
2629 	.phylink_mac_an_restart	= mt753x_phylink_mac_an_restart,
2630 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
2631 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
2632 };
2633 
2634 static const struct mt753x_info mt753x_table[] = {
2635 	[ID_MT7621] = {
2636 		.id = ID_MT7621,
2637 		.sw_setup = mt7530_setup,
2638 		.phy_read = mt7530_phy_read,
2639 		.phy_write = mt7530_phy_write,
2640 		.pad_setup = mt7530_pad_clk_setup,
2641 		.phy_mode_supported = mt7530_phy_mode_supported,
2642 		.mac_port_validate = mt7530_mac_port_validate,
2643 		.mac_port_get_state = mt7530_phylink_mac_link_state,
2644 		.mac_port_config = mt7530_mac_config,
2645 	},
2646 	[ID_MT7530] = {
2647 		.id = ID_MT7530,
2648 		.sw_setup = mt7530_setup,
2649 		.phy_read = mt7530_phy_read,
2650 		.phy_write = mt7530_phy_write,
2651 		.pad_setup = mt7530_pad_clk_setup,
2652 		.phy_mode_supported = mt7530_phy_mode_supported,
2653 		.mac_port_validate = mt7530_mac_port_validate,
2654 		.mac_port_get_state = mt7530_phylink_mac_link_state,
2655 		.mac_port_config = mt7530_mac_config,
2656 	},
2657 	[ID_MT7531] = {
2658 		.id = ID_MT7531,
2659 		.sw_setup = mt7531_setup,
2660 		.phy_read = mt7531_ind_phy_read,
2661 		.phy_write = mt7531_ind_phy_write,
2662 		.pad_setup = mt7531_pad_setup,
2663 		.cpu_port_config = mt7531_cpu_port_config,
2664 		.phy_mode_supported = mt7531_phy_mode_supported,
2665 		.mac_port_validate = mt7531_mac_port_validate,
2666 		.mac_port_get_state = mt7531_phylink_mac_link_state,
2667 		.mac_port_config = mt7531_mac_config,
2668 		.mac_pcs_an_restart = mt7531_sgmii_restart_an,
2669 		.mac_pcs_link_up = mt7531_sgmii_link_up_force,
2670 	},
2671 };
2672 
2673 static const struct of_device_id mt7530_of_match[] = {
2674 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
2675 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
2676 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
2677 	{ /* sentinel */ },
2678 };
2679 MODULE_DEVICE_TABLE(of, mt7530_of_match);
2680 
2681 static int
2682 mt7530_probe(struct mdio_device *mdiodev)
2683 {
2684 	struct mt7530_priv *priv;
2685 	struct device_node *dn;
2686 
2687 	dn = mdiodev->dev.of_node;
2688 
2689 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
2690 	if (!priv)
2691 		return -ENOMEM;
2692 
2693 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
2694 	if (!priv->ds)
2695 		return -ENOMEM;
2696 
2697 	priv->ds->dev = &mdiodev->dev;
2698 	priv->ds->num_ports = DSA_MAX_PORTS;
2699 
2700 	/* Use medatek,mcm property to distinguish hardware type that would
2701 	 * casues a little bit differences on power-on sequence.
2702 	 */
2703 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
2704 	if (priv->mcm) {
2705 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
2706 
2707 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
2708 		if (IS_ERR(priv->rstc)) {
2709 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
2710 			return PTR_ERR(priv->rstc);
2711 		}
2712 	}
2713 
2714 	/* Get the hardware identifier from the devicetree node.
2715 	 * We will need it for some of the clock and regulator setup.
2716 	 */
2717 	priv->info = of_device_get_match_data(&mdiodev->dev);
2718 	if (!priv->info)
2719 		return -EINVAL;
2720 
2721 	/* Sanity check if these required device operations are filled
2722 	 * properly.
2723 	 */
2724 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
2725 	    !priv->info->phy_read || !priv->info->phy_write ||
2726 	    !priv->info->phy_mode_supported ||
2727 	    !priv->info->mac_port_validate ||
2728 	    !priv->info->mac_port_get_state || !priv->info->mac_port_config)
2729 		return -EINVAL;
2730 
2731 	priv->id = priv->info->id;
2732 
2733 	if (priv->id == ID_MT7530) {
2734 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
2735 		if (IS_ERR(priv->core_pwr))
2736 			return PTR_ERR(priv->core_pwr);
2737 
2738 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
2739 		if (IS_ERR(priv->io_pwr))
2740 			return PTR_ERR(priv->io_pwr);
2741 	}
2742 
2743 	/* Not MCM that indicates switch works as the remote standalone
2744 	 * integrated circuit so the GPIO pin would be used to complete
2745 	 * the reset, otherwise memory-mapped register accessing used
2746 	 * through syscon provides in the case of MCM.
2747 	 */
2748 	if (!priv->mcm) {
2749 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
2750 						      GPIOD_OUT_LOW);
2751 		if (IS_ERR(priv->reset)) {
2752 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
2753 			return PTR_ERR(priv->reset);
2754 		}
2755 	}
2756 
2757 	priv->bus = mdiodev->bus;
2758 	priv->dev = &mdiodev->dev;
2759 	priv->ds->priv = priv;
2760 	priv->ds->ops = &mt7530_switch_ops;
2761 	mutex_init(&priv->reg_mutex);
2762 	dev_set_drvdata(&mdiodev->dev, priv);
2763 
2764 	return dsa_register_switch(priv->ds);
2765 }
2766 
2767 static void
2768 mt7530_remove(struct mdio_device *mdiodev)
2769 {
2770 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
2771 	int ret = 0;
2772 
2773 	ret = regulator_disable(priv->core_pwr);
2774 	if (ret < 0)
2775 		dev_err(priv->dev,
2776 			"Failed to disable core power: %d\n", ret);
2777 
2778 	ret = regulator_disable(priv->io_pwr);
2779 	if (ret < 0)
2780 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
2781 			ret);
2782 
2783 	dsa_unregister_switch(priv->ds);
2784 	mutex_destroy(&priv->reg_mutex);
2785 }
2786 
2787 static struct mdio_driver mt7530_mdio_driver = {
2788 	.probe  = mt7530_probe,
2789 	.remove = mt7530_remove,
2790 	.mdiodrv.driver = {
2791 		.name = "mt7530",
2792 		.of_match_table = mt7530_of_match,
2793 	},
2794 };
2795 
2796 mdio_module_driver(mt7530_mdio_driver);
2797 
2798 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
2799 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
2800 MODULE_LICENSE("GPL");
2801