xref: /linux/drivers/net/dsa/mt7530.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 mt7530_mutex_lock(struct mt7530_priv *priv)
146 {
147 	if (priv->bus)
148 		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149 }
150 
151 static void
152 mt7530_mutex_unlock(struct mt7530_priv *priv)
153 {
154 	if (priv->bus)
155 		mutex_unlock(&priv->bus->mdio_lock);
156 }
157 
158 static void
159 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160 {
161 	mt7530_mutex_lock(priv);
162 
163 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164 
165 	mt7530_mutex_unlock(priv);
166 }
167 
168 static void
169 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170 {
171 	u32 val;
172 
173 	mt7530_mutex_lock(priv);
174 
175 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176 	val &= ~mask;
177 	val |= set;
178 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179 
180 	mt7530_mutex_unlock(priv);
181 }
182 
183 static void
184 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 	core_rmw(priv, reg, 0, val);
187 }
188 
189 static void
190 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191 {
192 	core_rmw(priv, reg, val, 0);
193 }
194 
195 static int
196 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197 {
198 	int ret;
199 
200 	ret = regmap_write(priv->regmap, reg, val);
201 
202 	if (ret < 0)
203 		dev_err(priv->dev,
204 			"failed to write mt7530 register\n");
205 
206 	return ret;
207 }
208 
209 static u32
210 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211 {
212 	int ret;
213 	u32 val;
214 
215 	ret = regmap_read(priv->regmap, reg, &val);
216 	if (ret) {
217 		WARN_ON_ONCE(1);
218 		dev_err(priv->dev,
219 			"failed to read mt7530 register\n");
220 		return 0;
221 	}
222 
223 	return val;
224 }
225 
226 static void
227 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 	mt7530_mutex_lock(priv);
230 
231 	mt7530_mii_write(priv, reg, val);
232 
233 	mt7530_mutex_unlock(priv);
234 }
235 
236 static u32
237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 	return mt7530_mii_read(p->priv, p->reg);
240 }
241 
242 static u32
243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 	u32 val;
246 
247 	mt7530_mutex_lock(p->priv);
248 
249 	val = mt7530_mii_read(p->priv, p->reg);
250 
251 	mt7530_mutex_unlock(p->priv);
252 
253 	return val;
254 }
255 
256 static u32
257 mt7530_read(struct mt7530_priv *priv, u32 reg)
258 {
259 	struct mt7530_dummy_poll p;
260 
261 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262 	return _mt7530_read(&p);
263 }
264 
265 static void
266 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 	   u32 mask, u32 set)
268 {
269 	mt7530_mutex_lock(priv);
270 
271 	regmap_update_bits(priv->regmap, reg, mask, set);
272 
273 	mt7530_mutex_unlock(priv);
274 }
275 
276 static void
277 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 	mt7530_rmw(priv, reg, val, val);
280 }
281 
282 static void
283 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284 {
285 	mt7530_rmw(priv, reg, val, 0);
286 }
287 
288 static int
289 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290 {
291 	u32 val;
292 	int ret;
293 	struct mt7530_dummy_poll p;
294 
295 	/* Set the command operating upon the MAC address entries */
296 	val = ATC_BUSY | ATC_MAT(0) | cmd;
297 	mt7530_write(priv, MT7530_ATC, val);
298 
299 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300 	ret = readx_poll_timeout(_mt7530_read, &p, val,
301 				 !(val & ATC_BUSY), 20, 20000);
302 	if (ret < 0) {
303 		dev_err(priv->dev, "reset timeout\n");
304 		return ret;
305 	}
306 
307 	/* Additional sanity for read command if the specified
308 	 * entry is invalid
309 	 */
310 	val = mt7530_read(priv, MT7530_ATC);
311 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 		return -EINVAL;
313 
314 	if (rsp)
315 		*rsp = val;
316 
317 	return 0;
318 }
319 
320 static void
321 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322 {
323 	u32 reg[3];
324 	int i;
325 
326 	/* Read from ARL table into an array */
327 	for (i = 0; i < 3; i++) {
328 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329 
330 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 			__func__, __LINE__, i, reg[i]);
332 	}
333 
334 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344 }
345 
346 static void
347 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 		 u8 port_mask, const u8 *mac,
349 		 u8 aging, u8 type)
350 {
351 	u32 reg[3] = { 0 };
352 	int i;
353 
354 	reg[1] |= vid & CVID_MASK;
355 	reg[1] |= ATA2_IVL;
356 	reg[1] |= ATA2_FID(FID_BRIDGED);
357 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 	/* STATIC_ENT indicate that entry is static wouldn't
360 	 * be aged out and STATIC_EMP specified as erasing an
361 	 * entry
362 	 */
363 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 	reg[1] |= mac[5] << MAC_BYTE_5;
365 	reg[1] |= mac[4] << MAC_BYTE_4;
366 	reg[0] |= mac[3] << MAC_BYTE_3;
367 	reg[0] |= mac[2] << MAC_BYTE_2;
368 	reg[0] |= mac[1] << MAC_BYTE_1;
369 	reg[0] |= mac[0] << MAC_BYTE_0;
370 
371 	/* Write array into the ARL table */
372 	for (i = 0; i < 3; i++)
373 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374 }
375 
376 /* Set up switch core clock for MT7530 */
377 static void mt7530_pll_setup(struct mt7530_priv *priv)
378 {
379 	/* Disable core clock */
380 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381 
382 	/* Disable PLL */
383 	core_write(priv, CORE_GSWPLL_GRP1, 0);
384 
385 	/* Set core clock into 500Mhz */
386 	core_write(priv, CORE_GSWPLL_GRP2,
387 		   RG_GSWPLL_POSDIV_500M(1) |
388 		   RG_GSWPLL_FBKDIV_500M(25));
389 
390 	/* Enable PLL */
391 	core_write(priv, CORE_GSWPLL_GRP1,
392 		   RG_GSWPLL_EN_PRE |
393 		   RG_GSWPLL_POSDIV_200M(2) |
394 		   RG_GSWPLL_FBKDIV_200M(32));
395 
396 	udelay(20);
397 
398 	/* Enable core clock */
399 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400 }
401 
402 /* If port 6 is available as a CPU port, always prefer that as the default,
403  * otherwise don't care.
404  */
405 static struct dsa_port *
406 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407 {
408 	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409 
410 	if (dsa_port_is_cpu(cpu_dp))
411 		return cpu_dp;
412 
413 	return NULL;
414 }
415 
416 /* Setup port 6 interface mode and TRGMII TX circuit */
417 static void
418 mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface)
419 {
420 	struct mt7530_priv *priv = ds->priv;
421 	u32 ncpo1, ssc_delta, xtal;
422 
423 	/* Disable the MT7530 TRGMII clocks */
424 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
425 
426 	if (interface == PHY_INTERFACE_MODE_RGMII) {
427 		mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
428 			   P6_INTF_MODE(0));
429 		return;
430 	}
431 
432 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1));
433 
434 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
435 
436 	if (xtal == HWTRAP_XTAL_25MHZ)
437 		ssc_delta = 0x57;
438 	else
439 		ssc_delta = 0x87;
440 
441 	if (priv->id == ID_MT7621) {
442 		/* PLL frequency: 125MHz: 1.0GBit */
443 		if (xtal == HWTRAP_XTAL_40MHZ)
444 			ncpo1 = 0x0640;
445 		if (xtal == HWTRAP_XTAL_25MHZ)
446 			ncpo1 = 0x0a00;
447 	} else { /* PLL frequency: 250MHz: 2.0Gbit */
448 		if (xtal == HWTRAP_XTAL_40MHZ)
449 			ncpo1 = 0x0c80;
450 		if (xtal == HWTRAP_XTAL_25MHZ)
451 			ncpo1 = 0x1400;
452 	}
453 
454 	/* Setup the MT7530 TRGMII Tx Clock */
455 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
456 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
457 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
458 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
459 	core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
460 		   RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
461 	core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL |
462 		   RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1));
463 	core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG |
464 		   RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
465 
466 	/* Enable the MT7530 TRGMII clocks */
467 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
468 }
469 
470 static void
471 mt7531_pll_setup(struct mt7530_priv *priv)
472 {
473 	u32 top_sig;
474 	u32 hwstrap;
475 	u32 xtal;
476 	u32 val;
477 
478 	val = mt7530_read(priv, MT7531_CREV);
479 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
480 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
481 	if ((val & CHIP_REV_M) > 0)
482 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
483 						    HWTRAP_XTAL_FSEL_25MHZ;
484 	else
485 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
486 
487 	/* Step 1 : Disable MT7531 COREPLL */
488 	val = mt7530_read(priv, MT7531_PLLGP_EN);
489 	val &= ~EN_COREPLL;
490 	mt7530_write(priv, MT7531_PLLGP_EN, val);
491 
492 	/* Step 2: switch to XTAL output */
493 	val = mt7530_read(priv, MT7531_PLLGP_EN);
494 	val |= SW_CLKSW;
495 	mt7530_write(priv, MT7531_PLLGP_EN, val);
496 
497 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
498 	val &= ~RG_COREPLL_EN;
499 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
500 
501 	/* Step 3: disable PLLGP and enable program PLLGP */
502 	val = mt7530_read(priv, MT7531_PLLGP_EN);
503 	val |= SW_PLLGP;
504 	mt7530_write(priv, MT7531_PLLGP_EN, val);
505 
506 	/* Step 4: program COREPLL output frequency to 500MHz */
507 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
508 	val &= ~RG_COREPLL_POSDIV_M;
509 	val |= 2 << RG_COREPLL_POSDIV_S;
510 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
511 	usleep_range(25, 35);
512 
513 	switch (xtal) {
514 	case HWTRAP_XTAL_FSEL_25MHZ:
515 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
516 		val &= ~RG_COREPLL_SDM_PCW_M;
517 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
518 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
519 		break;
520 	case HWTRAP_XTAL_FSEL_40MHZ:
521 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
522 		val &= ~RG_COREPLL_SDM_PCW_M;
523 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
524 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
525 		break;
526 	}
527 
528 	/* Set feedback divide ratio update signal to high */
529 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
530 	val |= RG_COREPLL_SDM_PCW_CHG;
531 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
532 	/* Wait for at least 16 XTAL clocks */
533 	usleep_range(10, 20);
534 
535 	/* Step 5: set feedback divide ratio update signal to low */
536 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
537 	val &= ~RG_COREPLL_SDM_PCW_CHG;
538 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
539 
540 	/* Enable 325M clock for SGMII */
541 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
542 
543 	/* Enable 250SSC clock for RGMII */
544 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
545 
546 	/* Step 6: Enable MT7531 PLL */
547 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
548 	val |= RG_COREPLL_EN;
549 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
550 
551 	val = mt7530_read(priv, MT7531_PLLGP_EN);
552 	val |= EN_COREPLL;
553 	mt7530_write(priv, MT7531_PLLGP_EN, val);
554 	usleep_range(25, 35);
555 }
556 
557 static void
558 mt7530_mib_reset(struct dsa_switch *ds)
559 {
560 	struct mt7530_priv *priv = ds->priv;
561 
562 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
563 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
564 }
565 
566 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
567 {
568 	return mdiobus_read_nested(priv->bus, port, regnum);
569 }
570 
571 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
572 				u16 val)
573 {
574 	return mdiobus_write_nested(priv->bus, port, regnum, val);
575 }
576 
577 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
578 			       int devad, int regnum)
579 {
580 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
581 }
582 
583 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
584 				int regnum, u16 val)
585 {
586 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
587 }
588 
589 static int
590 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
591 			int regnum)
592 {
593 	struct mt7530_dummy_poll p;
594 	u32 reg, val;
595 	int ret;
596 
597 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
598 
599 	mt7530_mutex_lock(priv);
600 
601 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
602 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
603 	if (ret < 0) {
604 		dev_err(priv->dev, "poll timeout\n");
605 		goto out;
606 	}
607 
608 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
609 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
610 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
611 
612 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
613 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
614 	if (ret < 0) {
615 		dev_err(priv->dev, "poll timeout\n");
616 		goto out;
617 	}
618 
619 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
620 	      MT7531_MDIO_DEV_ADDR(devad);
621 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
622 
623 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
624 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
625 	if (ret < 0) {
626 		dev_err(priv->dev, "poll timeout\n");
627 		goto out;
628 	}
629 
630 	ret = val & MT7531_MDIO_RW_DATA_MASK;
631 out:
632 	mt7530_mutex_unlock(priv);
633 
634 	return ret;
635 }
636 
637 static int
638 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
639 			 int regnum, u16 data)
640 {
641 	struct mt7530_dummy_poll p;
642 	u32 val, reg;
643 	int ret;
644 
645 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
646 
647 	mt7530_mutex_lock(priv);
648 
649 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
650 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
651 	if (ret < 0) {
652 		dev_err(priv->dev, "poll timeout\n");
653 		goto out;
654 	}
655 
656 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
657 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
658 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
659 
660 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
661 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
662 	if (ret < 0) {
663 		dev_err(priv->dev, "poll timeout\n");
664 		goto out;
665 	}
666 
667 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
668 	      MT7531_MDIO_DEV_ADDR(devad) | data;
669 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
670 
671 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
672 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
673 	if (ret < 0) {
674 		dev_err(priv->dev, "poll timeout\n");
675 		goto out;
676 	}
677 
678 out:
679 	mt7530_mutex_unlock(priv);
680 
681 	return ret;
682 }
683 
684 static int
685 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
686 {
687 	struct mt7530_dummy_poll p;
688 	int ret;
689 	u32 val;
690 
691 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
692 
693 	mt7530_mutex_lock(priv);
694 
695 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
696 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
697 	if (ret < 0) {
698 		dev_err(priv->dev, "poll timeout\n");
699 		goto out;
700 	}
701 
702 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
703 	      MT7531_MDIO_REG_ADDR(regnum);
704 
705 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
706 
707 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
708 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
709 	if (ret < 0) {
710 		dev_err(priv->dev, "poll timeout\n");
711 		goto out;
712 	}
713 
714 	ret = val & MT7531_MDIO_RW_DATA_MASK;
715 out:
716 	mt7530_mutex_unlock(priv);
717 
718 	return ret;
719 }
720 
721 static int
722 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
723 			 u16 data)
724 {
725 	struct mt7530_dummy_poll p;
726 	int ret;
727 	u32 reg;
728 
729 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
730 
731 	mt7530_mutex_lock(priv);
732 
733 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
734 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
735 	if (ret < 0) {
736 		dev_err(priv->dev, "poll timeout\n");
737 		goto out;
738 	}
739 
740 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
741 	      MT7531_MDIO_REG_ADDR(regnum) | data;
742 
743 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
744 
745 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
746 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
747 	if (ret < 0) {
748 		dev_err(priv->dev, "poll timeout\n");
749 		goto out;
750 	}
751 
752 out:
753 	mt7530_mutex_unlock(priv);
754 
755 	return ret;
756 }
757 
758 static int
759 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
760 {
761 	struct mt7530_priv *priv = bus->priv;
762 
763 	return priv->info->phy_read_c22(priv, port, regnum);
764 }
765 
766 static int
767 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
768 {
769 	struct mt7530_priv *priv = bus->priv;
770 
771 	return priv->info->phy_read_c45(priv, port, devad, regnum);
772 }
773 
774 static int
775 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
776 {
777 	struct mt7530_priv *priv = bus->priv;
778 
779 	return priv->info->phy_write_c22(priv, port, regnum, val);
780 }
781 
782 static int
783 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
784 		     u16 val)
785 {
786 	struct mt7530_priv *priv = bus->priv;
787 
788 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
789 }
790 
791 static void
792 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
793 		   uint8_t *data)
794 {
795 	int i;
796 
797 	if (stringset != ETH_SS_STATS)
798 		return;
799 
800 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
801 		ethtool_puts(&data, mt7530_mib[i].name);
802 }
803 
804 static void
805 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
806 			 uint64_t *data)
807 {
808 	struct mt7530_priv *priv = ds->priv;
809 	const struct mt7530_mib_desc *mib;
810 	u32 reg, i;
811 	u64 hi;
812 
813 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
814 		mib = &mt7530_mib[i];
815 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
816 
817 		data[i] = mt7530_read(priv, reg);
818 		if (mib->size == 2) {
819 			hi = mt7530_read(priv, reg + 4);
820 			data[i] |= hi << 32;
821 		}
822 	}
823 }
824 
825 static int
826 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
827 {
828 	if (sset != ETH_SS_STATS)
829 		return 0;
830 
831 	return ARRAY_SIZE(mt7530_mib);
832 }
833 
834 static int
835 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
836 {
837 	struct mt7530_priv *priv = ds->priv;
838 	unsigned int secs = msecs / 1000;
839 	unsigned int tmp_age_count;
840 	unsigned int error = -1;
841 	unsigned int age_count;
842 	unsigned int age_unit;
843 
844 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
845 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
846 		return -ERANGE;
847 
848 	/* iterate through all possible age_count to find the closest pair */
849 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
850 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
851 
852 		if (tmp_age_unit <= AGE_UNIT_MAX) {
853 			unsigned int tmp_error = secs -
854 				(tmp_age_count + 1) * (tmp_age_unit + 1);
855 
856 			/* found a closer pair */
857 			if (error > tmp_error) {
858 				error = tmp_error;
859 				age_count = tmp_age_count;
860 				age_unit = tmp_age_unit;
861 			}
862 
863 			/* found the exact match, so break the loop */
864 			if (!error)
865 				break;
866 		}
867 	}
868 
869 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
870 
871 	return 0;
872 }
873 
874 static const char *p5_intf_modes(unsigned int p5_interface)
875 {
876 	switch (p5_interface) {
877 	case P5_DISABLED:
878 		return "DISABLED";
879 	case P5_INTF_SEL_PHY_P0:
880 		return "PHY P0";
881 	case P5_INTF_SEL_PHY_P4:
882 		return "PHY P4";
883 	case P5_INTF_SEL_GMAC5:
884 		return "GMAC5";
885 	default:
886 		return "unknown";
887 	}
888 }
889 
890 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
891 {
892 	struct mt7530_priv *priv = ds->priv;
893 	u8 tx_delay = 0;
894 	int val;
895 
896 	mutex_lock(&priv->reg_mutex);
897 
898 	val = mt7530_read(priv, MT7530_MHWTRAP);
899 
900 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
901 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
902 
903 	switch (priv->p5_intf_sel) {
904 	case P5_INTF_SEL_PHY_P0:
905 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
906 		val |= MHWTRAP_PHY0_SEL;
907 		fallthrough;
908 	case P5_INTF_SEL_PHY_P4:
909 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
910 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
911 
912 		/* Setup the MAC by default for the cpu port */
913 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
914 		break;
915 	case P5_INTF_SEL_GMAC5:
916 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
917 		val &= ~MHWTRAP_P5_DIS;
918 		break;
919 	default:
920 		break;
921 	}
922 
923 	/* Setup RGMII settings */
924 	if (phy_interface_mode_is_rgmii(interface)) {
925 		val |= MHWTRAP_P5_RGMII_MODE;
926 
927 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
928 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
929 
930 		/* Don't set delay in DSA mode */
931 		if (!dsa_is_dsa_port(priv->ds, 5) &&
932 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
933 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
934 			tx_delay = 4; /* n * 0.5 ns */
935 
936 		/* P5 RGMII TX Clock Control: delay x */
937 		mt7530_write(priv, MT7530_P5RGMIITXCR,
938 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
939 
940 		/* reduce P5 RGMII Tx driving, 8mA */
941 		mt7530_write(priv, MT7530_IO_DRV_CR,
942 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
943 	}
944 
945 	mt7530_write(priv, MT7530_MHWTRAP, val);
946 
947 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
948 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
949 
950 	mutex_unlock(&priv->reg_mutex);
951 }
952 
953 /* In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer (DLL)
954  * of the Open Systems Interconnection basic reference model (OSI/RM) are
955  * described; the medium access control (MAC) and logical link control (LLC)
956  * sublayers. The MAC sublayer is the one facing the physical layer.
957  *
958  * In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A
959  * Bridge component comprises a MAC Relay Entity for interconnecting the Ports
960  * of the Bridge, at least two Ports, and higher layer entities with at least a
961  * Spanning Tree Protocol Entity included.
962  *
963  * Each Bridge Port also functions as an end station and shall provide the MAC
964  * Service to an LLC Entity. Each instance of the MAC Service is provided to a
965  * distinct LLC Entity that supports protocol identification, multiplexing, and
966  * demultiplexing, for protocol data unit (PDU) transmission and reception by
967  * one or more higher layer entities.
968  *
969  * It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC
970  * Entity associated with each Bridge Port is modeled as being directly
971  * connected to the attached Local Area Network (LAN).
972  *
973  * On the switch with CPU port architecture, CPU port functions as Management
974  * Port, and the Management Port functionality is provided by software which
975  * functions as an end station. Software is connected to an IEEE 802 LAN that is
976  * wholly contained within the system that incorporates the Bridge. Software
977  * provides access to the LLC Entity associated with each Bridge Port by the
978  * value of the source port field on the special tag on the frame received by
979  * software.
980  *
981  * We call frames that carry control information to determine the active
982  * topology and current extent of each Virtual Local Area Network (VLAN), i.e.,
983  * spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN Registration
984  * Protocol Data Units (MVRPDUs), and frames from other link constrained
985  * protocols, such as Extensible Authentication Protocol over LAN (EAPOL) and
986  * Link Layer Discovery Protocol (LLDP), link-local frames. They are not
987  * forwarded by a Bridge. Permanently configured entries in the filtering
988  * database (FDB) ensure that such frames are discarded by the Forwarding
989  * Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in detail:
990  *
991  * Each of the reserved MAC addresses specified in Table 8-1
992  * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be
993  * permanently configured in the FDB in C-VLAN components and ERs.
994  *
995  * Each of the reserved MAC addresses specified in Table 8-2
996  * (01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently
997  * configured in the FDB in S-VLAN components.
998  *
999  * Each of the reserved MAC addresses specified in Table 8-3
1000  * (01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB in
1001  * TPMR components.
1002  *
1003  * The FDB entries for reserved MAC addresses shall specify filtering for all
1004  * Bridge Ports and all VIDs. Management shall not provide the capability to
1005  * modify or remove entries for reserved MAC addresses.
1006  *
1007  * The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of
1008  * propagation of PDUs within a Bridged Network, as follows:
1009  *
1010  *   The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that no
1011  *   conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN)
1012  *   component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward.
1013  *   PDUs transmitted using this destination address, or any other addresses
1014  *   that appear in Table 8-1, Table 8-2, and Table 8-3
1015  *   (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can
1016  *   therefore travel no further than those stations that can be reached via a
1017  *   single individual LAN from the originating station.
1018  *
1019  *   The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an
1020  *   address that no conformant S-VLAN component, C-VLAN component, or MAC
1021  *   Bridge can forward; however, this address is relayed by a TPMR component.
1022  *   PDUs using this destination address, or any of the other addresses that
1023  *   appear in both Table 8-1 and Table 8-2 but not in Table 8-3
1024  *   (01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed by
1025  *   any TPMRs but will propagate no further than the nearest S-VLAN component,
1026  *   C-VLAN component, or MAC Bridge.
1027  *
1028  *   The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an address
1029  *   that no conformant C-VLAN component, MAC Bridge can forward; however, it is
1030  *   relayed by TPMR components and S-VLAN components. PDUs using this
1031  *   destination address, or any of the other addresses that appear in Table 8-1
1032  *   but not in either Table 8-2 or Table 8-3 (01-80-C2-00-00-[00,0B,0C,0D,0F]),
1033  *   will be relayed by TPMR components and S-VLAN components but will propagate
1034  *   no further than the nearest C-VLAN component or MAC Bridge.
1035  *
1036  * Because the LLC Entity associated with each Bridge Port is provided via CPU
1037  * port, we must not filter these frames but forward them to CPU port.
1038  *
1039  * In a Bridge, the transmission Port is majorly decided by ingress and egress
1040  * rules, FDB, and spanning tree Port State functions of the Forwarding Process.
1041  * For link-local frames, only CPU port should be designated as destination port
1042  * in the FDB, and the other functions of the Forwarding Process must not
1043  * interfere with the decision of the transmission Port. We call this process
1044  * trapping frames to CPU port.
1045  *
1046  * Therefore, on the switch with CPU port architecture, link-local frames must
1047  * be trapped to CPU port, and certain link-local frames received by a Port of a
1048  * Bridge comprising a TPMR component or an S-VLAN component must be excluded
1049  * from it.
1050  *
1051  * A Bridge of the switch with CPU port architecture cannot comprise a Two-Port
1052  * MAC Relay (TPMR) component as a TPMR component supports only a subset of the
1053  * functionality of a MAC Bridge. A Bridge comprising two Ports (Management Port
1054  * doesn't count) of this architecture will either function as a standard MAC
1055  * Bridge or a standard VLAN Bridge.
1056  *
1057  * Therefore, a Bridge of this architecture can only comprise S-VLAN components,
1058  * C-VLAN components, or MAC Bridge components. Since there's no TPMR component,
1059  * we don't need to relay PDUs using the destination addresses specified on the
1060  * Nearest non-TPMR section, and the proportion of the Nearest Customer Bridge
1061  * section where they must be relayed by TPMR components.
1062  *
1063  * One option to trap link-local frames to CPU port is to add static FDB entries
1064  * with CPU port designated as destination port. However, because that
1065  * Independent VLAN Learning (IVL) is being used on every VID, each entry only
1066  * applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC
1067  * Bridge component or a C-VLAN component, there would have to be 16 times 4096
1068  * entries. This switch intellectual property can only hold a maximum of 2048
1069  * entries. Using this option, there also isn't a mechanism to prevent
1070  * link-local frames from being discarded when the spanning tree Port State of
1071  * the reception Port is discarding.
1072  *
1073  * The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4
1074  * registers. Whilst this applies to every VID, it doesn't contain all of the
1075  * reserved MAC addresses without affecting the remaining Standard Group MAC
1076  * Addresses. The REV_UN frame tag utilised using the RGAC4 register covers the
1077  * remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination
1078  * addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF
1079  * destination addresses which may be relayed by MAC Bridges or VLAN Bridges.
1080  * The latter option provides better but not complete conformance.
1081  *
1082  * This switch intellectual property also does not provide a mechanism to trap
1083  * link-local frames with specific destination addresses to CPU port by Bridge,
1084  * to conform to the filtering rules for the distinct Bridge components.
1085  *
1086  * Therefore, regardless of the type of the Bridge component, link-local frames
1087  * with these destination addresses will be trapped to CPU port:
1088  *
1089  * 01-80-C2-00-00-[00,01,02,03,0E]
1090  *
1091  * In a Bridge comprising a MAC Bridge component or a C-VLAN component:
1092  *
1093  *   Link-local frames with these destination addresses won't be trapped to CPU
1094  *   port which won't conform to IEEE Std 802.1Q-2022:
1095  *
1096  *   01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F]
1097  *
1098  * In a Bridge comprising an S-VLAN component:
1099  *
1100  *   Link-local frames with these destination addresses will be trapped to CPU
1101  *   port which won't conform to IEEE Std 802.1Q-2022:
1102  *
1103  *   01-80-C2-00-00-00
1104  *
1105  *   Link-local frames with these destination addresses won't be trapped to CPU
1106  *   port which won't conform to IEEE Std 802.1Q-2022:
1107  *
1108  *   01-80-C2-00-00-[04,05,06,07,08,09,0A]
1109  *
1110  * To trap link-local frames to CPU port as conformant as this switch
1111  * intellectual property can allow, link-local frames are made to be regarded as
1112  * Bridge Protocol Data Units (BPDUs). This is because this switch intellectual
1113  * property only lets the frames regarded as BPDUs bypass the spanning tree Port
1114  * State function of the Forwarding Process.
1115  *
1116  * The only remaining interference is the ingress rules. When the reception Port
1117  * has no PVID assigned on software, VLAN-untagged frames won't be allowed in.
1118  * There doesn't seem to be a mechanism on the switch intellectual property to
1119  * have link-local frames bypass this function of the Forwarding Process.
1120  */
1121 static void
1122 mt753x_trap_frames(struct mt7530_priv *priv)
1123 {
1124 	/* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
1125 	 * VLAN-untagged.
1126 	 */
1127 	mt7530_rmw(priv, MT753X_BPC,
1128 		   MT753X_PAE_BPDU_FR | MT753X_PAE_EG_TAG_MASK |
1129 			   MT753X_PAE_PORT_FW_MASK | MT753X_BPDU_EG_TAG_MASK |
1130 			   MT753X_BPDU_PORT_FW_MASK,
1131 		   MT753X_PAE_BPDU_FR |
1132 			   MT753X_PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1133 			   MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1134 			   MT753X_BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1135 			   MT753X_BPDU_CPU_ONLY);
1136 
1137 	/* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
1138 	 * them VLAN-untagged.
1139 	 */
1140 	mt7530_rmw(priv, MT753X_RGAC1,
1141 		   MT753X_R02_BPDU_FR | MT753X_R02_EG_TAG_MASK |
1142 			   MT753X_R02_PORT_FW_MASK | MT753X_R01_BPDU_FR |
1143 			   MT753X_R01_EG_TAG_MASK | MT753X_R01_PORT_FW_MASK,
1144 		   MT753X_R02_BPDU_FR |
1145 			   MT753X_R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1146 			   MT753X_R02_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1147 			   MT753X_R01_BPDU_FR |
1148 			   MT753X_R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1149 			   MT753X_BPDU_CPU_ONLY);
1150 
1151 	/* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
1152 	 * them VLAN-untagged.
1153 	 */
1154 	mt7530_rmw(priv, MT753X_RGAC2,
1155 		   MT753X_R0E_BPDU_FR | MT753X_R0E_EG_TAG_MASK |
1156 			   MT753X_R0E_PORT_FW_MASK | MT753X_R03_BPDU_FR |
1157 			   MT753X_R03_EG_TAG_MASK | MT753X_R03_PORT_FW_MASK,
1158 		   MT753X_R0E_BPDU_FR |
1159 			   MT753X_R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1160 			   MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1161 			   MT753X_R03_BPDU_FR |
1162 			   MT753X_R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1163 			   MT753X_BPDU_CPU_ONLY);
1164 }
1165 
1166 static void
1167 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1168 {
1169 	struct mt7530_priv *priv = ds->priv;
1170 
1171 	/* Enable Mediatek header mode on the cpu port */
1172 	mt7530_write(priv, MT7530_PVC_P(port),
1173 		     PORT_SPEC_TAG);
1174 
1175 	/* Enable flooding on the CPU port */
1176 	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1177 		   UNU_FFP(BIT(port)));
1178 
1179 	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1180 	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1181 	 * is affine to the inbound user port.
1182 	 */
1183 	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1184 		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1185 
1186 	/* CPU port gets connected to all user ports of
1187 	 * the switch.
1188 	 */
1189 	mt7530_write(priv, MT7530_PCR_P(port),
1190 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1191 
1192 	/* Set to fallback mode for independent VLAN learning */
1193 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1194 		   MT7530_PORT_FALLBACK_MODE);
1195 }
1196 
1197 static int
1198 mt7530_port_enable(struct dsa_switch *ds, int port,
1199 		   struct phy_device *phy)
1200 {
1201 	struct dsa_port *dp = dsa_to_port(ds, port);
1202 	struct mt7530_priv *priv = ds->priv;
1203 
1204 	mutex_lock(&priv->reg_mutex);
1205 
1206 	/* Allow the user port gets connected to the cpu port and also
1207 	 * restore the port matrix if the port is the member of a certain
1208 	 * bridge.
1209 	 */
1210 	if (dsa_port_is_user(dp)) {
1211 		struct dsa_port *cpu_dp = dp->cpu_dp;
1212 
1213 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1214 	}
1215 	priv->ports[port].enable = true;
1216 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1217 		   priv->ports[port].pm);
1218 
1219 	mutex_unlock(&priv->reg_mutex);
1220 
1221 	return 0;
1222 }
1223 
1224 static void
1225 mt7530_port_disable(struct dsa_switch *ds, int port)
1226 {
1227 	struct mt7530_priv *priv = ds->priv;
1228 
1229 	mutex_lock(&priv->reg_mutex);
1230 
1231 	/* Clear up all port matrix which could be restored in the next
1232 	 * enablement for the port.
1233 	 */
1234 	priv->ports[port].enable = false;
1235 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1236 		   PCR_MATRIX_CLR);
1237 
1238 	mutex_unlock(&priv->reg_mutex);
1239 }
1240 
1241 static int
1242 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1243 {
1244 	struct mt7530_priv *priv = ds->priv;
1245 	int length;
1246 	u32 val;
1247 
1248 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1249 	 * largest MTU of the user ports. Because the switch only has a global
1250 	 * RX length register, only allowing CPU port here is enough.
1251 	 */
1252 	if (!dsa_is_cpu_port(ds, port))
1253 		return 0;
1254 
1255 	mt7530_mutex_lock(priv);
1256 
1257 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1258 	val &= ~MAX_RX_PKT_LEN_MASK;
1259 
1260 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1261 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1262 	if (length <= 1522) {
1263 		val |= MAX_RX_PKT_LEN_1522;
1264 	} else if (length <= 1536) {
1265 		val |= MAX_RX_PKT_LEN_1536;
1266 	} else if (length <= 1552) {
1267 		val |= MAX_RX_PKT_LEN_1552;
1268 	} else {
1269 		val &= ~MAX_RX_JUMBO_MASK;
1270 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1271 		val |= MAX_RX_PKT_LEN_JUMBO;
1272 	}
1273 
1274 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1275 
1276 	mt7530_mutex_unlock(priv);
1277 
1278 	return 0;
1279 }
1280 
1281 static int
1282 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1283 {
1284 	return MT7530_MAX_MTU;
1285 }
1286 
1287 static void
1288 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1289 {
1290 	struct mt7530_priv *priv = ds->priv;
1291 	u32 stp_state;
1292 
1293 	switch (state) {
1294 	case BR_STATE_DISABLED:
1295 		stp_state = MT7530_STP_DISABLED;
1296 		break;
1297 	case BR_STATE_BLOCKING:
1298 		stp_state = MT7530_STP_BLOCKING;
1299 		break;
1300 	case BR_STATE_LISTENING:
1301 		stp_state = MT7530_STP_LISTENING;
1302 		break;
1303 	case BR_STATE_LEARNING:
1304 		stp_state = MT7530_STP_LEARNING;
1305 		break;
1306 	case BR_STATE_FORWARDING:
1307 	default:
1308 		stp_state = MT7530_STP_FORWARDING;
1309 		break;
1310 	}
1311 
1312 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1313 		   FID_PST(FID_BRIDGED, stp_state));
1314 }
1315 
1316 static int
1317 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1318 			     struct switchdev_brport_flags flags,
1319 			     struct netlink_ext_ack *extack)
1320 {
1321 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1322 			   BR_BCAST_FLOOD))
1323 		return -EINVAL;
1324 
1325 	return 0;
1326 }
1327 
1328 static int
1329 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1330 			 struct switchdev_brport_flags flags,
1331 			 struct netlink_ext_ack *extack)
1332 {
1333 	struct mt7530_priv *priv = ds->priv;
1334 
1335 	if (flags.mask & BR_LEARNING)
1336 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1337 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1338 
1339 	if (flags.mask & BR_FLOOD)
1340 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1341 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1342 
1343 	if (flags.mask & BR_MCAST_FLOOD)
1344 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1345 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1346 
1347 	if (flags.mask & BR_BCAST_FLOOD)
1348 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1349 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1350 
1351 	return 0;
1352 }
1353 
1354 static int
1355 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1356 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1357 			struct netlink_ext_ack *extack)
1358 {
1359 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1360 	struct dsa_port *cpu_dp = dp->cpu_dp;
1361 	u32 port_bitmap = BIT(cpu_dp->index);
1362 	struct mt7530_priv *priv = ds->priv;
1363 
1364 	mutex_lock(&priv->reg_mutex);
1365 
1366 	dsa_switch_for_each_user_port(other_dp, ds) {
1367 		int other_port = other_dp->index;
1368 
1369 		if (dp == other_dp)
1370 			continue;
1371 
1372 		/* Add this port to the port matrix of the other ports in the
1373 		 * same bridge. If the port is disabled, port matrix is kept
1374 		 * and not being setup until the port becomes enabled.
1375 		 */
1376 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1377 			continue;
1378 
1379 		if (priv->ports[other_port].enable)
1380 			mt7530_set(priv, MT7530_PCR_P(other_port),
1381 				   PCR_MATRIX(BIT(port)));
1382 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1383 
1384 		port_bitmap |= BIT(other_port);
1385 	}
1386 
1387 	/* Add the all other ports to this port matrix. */
1388 	if (priv->ports[port].enable)
1389 		mt7530_rmw(priv, MT7530_PCR_P(port),
1390 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1391 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1392 
1393 	/* Set to fallback mode for independent VLAN learning */
1394 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1395 		   MT7530_PORT_FALLBACK_MODE);
1396 
1397 	mutex_unlock(&priv->reg_mutex);
1398 
1399 	return 0;
1400 }
1401 
1402 static void
1403 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1404 {
1405 	struct mt7530_priv *priv = ds->priv;
1406 	bool all_user_ports_removed = true;
1407 	int i;
1408 
1409 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1410 	 * bridge. Don't set standalone ports to fallback mode.
1411 	 */
1412 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1413 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1414 			   MT7530_PORT_FALLBACK_MODE);
1415 
1416 	mt7530_rmw(priv, MT7530_PVC_P(port),
1417 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1418 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1419 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1420 		   MT7530_VLAN_ACC_ALL);
1421 
1422 	/* Set PVID to 0 */
1423 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1424 		   G0_PORT_VID_DEF);
1425 
1426 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1427 		if (dsa_is_user_port(ds, i) &&
1428 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1429 			all_user_ports_removed = false;
1430 			break;
1431 		}
1432 	}
1433 
1434 	/* CPU port also does the same thing until all user ports belonging to
1435 	 * the CPU port get out of VLAN filtering mode.
1436 	 */
1437 	if (all_user_ports_removed) {
1438 		struct dsa_port *dp = dsa_to_port(ds, port);
1439 		struct dsa_port *cpu_dp = dp->cpu_dp;
1440 
1441 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1442 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1443 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1444 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1445 	}
1446 }
1447 
1448 static void
1449 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1450 {
1451 	struct mt7530_priv *priv = ds->priv;
1452 
1453 	/* Trapped into security mode allows packet forwarding through VLAN
1454 	 * table lookup.
1455 	 */
1456 	if (dsa_is_user_port(ds, port)) {
1457 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1458 			   MT7530_PORT_SECURITY_MODE);
1459 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1460 			   G0_PORT_VID(priv->ports[port].pvid));
1461 
1462 		/* Only accept tagged frames if PVID is not set */
1463 		if (!priv->ports[port].pvid)
1464 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1465 				   MT7530_VLAN_ACC_TAGGED);
1466 
1467 		/* Set the port as a user port which is to be able to recognize
1468 		 * VID from incoming packets before fetching entry within the
1469 		 * VLAN table.
1470 		 */
1471 		mt7530_rmw(priv, MT7530_PVC_P(port),
1472 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1473 			   VLAN_ATTR(MT7530_VLAN_USER) |
1474 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1475 	} else {
1476 		/* Also set CPU ports to the "user" VLAN port attribute, to
1477 		 * allow VLAN classification, but keep the EG_TAG attribute as
1478 		 * "consistent" (i.o.w. don't change its value) for packets
1479 		 * received by the switch from the CPU, so that tagged packets
1480 		 * are forwarded to user ports as tagged, and untagged as
1481 		 * untagged.
1482 		 */
1483 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1484 			   VLAN_ATTR(MT7530_VLAN_USER));
1485 	}
1486 }
1487 
1488 static void
1489 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1490 			 struct dsa_bridge bridge)
1491 {
1492 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1493 	struct dsa_port *cpu_dp = dp->cpu_dp;
1494 	struct mt7530_priv *priv = ds->priv;
1495 
1496 	mutex_lock(&priv->reg_mutex);
1497 
1498 	dsa_switch_for_each_user_port(other_dp, ds) {
1499 		int other_port = other_dp->index;
1500 
1501 		if (dp == other_dp)
1502 			continue;
1503 
1504 		/* Remove this port from the port matrix of the other ports
1505 		 * in the same bridge. If the port is disabled, port matrix
1506 		 * is kept and not being setup until the port becomes enabled.
1507 		 */
1508 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1509 			continue;
1510 
1511 		if (priv->ports[other_port].enable)
1512 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1513 				     PCR_MATRIX(BIT(port)));
1514 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1515 	}
1516 
1517 	/* Set the cpu port to be the only one in the port matrix of
1518 	 * this port.
1519 	 */
1520 	if (priv->ports[port].enable)
1521 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1522 			   PCR_MATRIX(BIT(cpu_dp->index)));
1523 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1524 
1525 	/* When a port is removed from the bridge, the port would be set up
1526 	 * back to the default as is at initial boot which is a VLAN-unaware
1527 	 * port.
1528 	 */
1529 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1530 		   MT7530_PORT_MATRIX_MODE);
1531 
1532 	mutex_unlock(&priv->reg_mutex);
1533 }
1534 
1535 static int
1536 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1537 		    const unsigned char *addr, u16 vid,
1538 		    struct dsa_db db)
1539 {
1540 	struct mt7530_priv *priv = ds->priv;
1541 	int ret;
1542 	u8 port_mask = BIT(port);
1543 
1544 	mutex_lock(&priv->reg_mutex);
1545 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1546 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1547 	mutex_unlock(&priv->reg_mutex);
1548 
1549 	return ret;
1550 }
1551 
1552 static int
1553 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1554 		    const unsigned char *addr, u16 vid,
1555 		    struct dsa_db db)
1556 {
1557 	struct mt7530_priv *priv = ds->priv;
1558 	int ret;
1559 	u8 port_mask = BIT(port);
1560 
1561 	mutex_lock(&priv->reg_mutex);
1562 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1563 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1564 	mutex_unlock(&priv->reg_mutex);
1565 
1566 	return ret;
1567 }
1568 
1569 static int
1570 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1571 		     dsa_fdb_dump_cb_t *cb, void *data)
1572 {
1573 	struct mt7530_priv *priv = ds->priv;
1574 	struct mt7530_fdb _fdb = { 0 };
1575 	int cnt = MT7530_NUM_FDB_RECORDS;
1576 	int ret = 0;
1577 	u32 rsp = 0;
1578 
1579 	mutex_lock(&priv->reg_mutex);
1580 
1581 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1582 	if (ret < 0)
1583 		goto err;
1584 
1585 	do {
1586 		if (rsp & ATC_SRCH_HIT) {
1587 			mt7530_fdb_read(priv, &_fdb);
1588 			if (_fdb.port_mask & BIT(port)) {
1589 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1590 					 data);
1591 				if (ret < 0)
1592 					break;
1593 			}
1594 		}
1595 	} while (--cnt &&
1596 		 !(rsp & ATC_SRCH_END) &&
1597 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1598 err:
1599 	mutex_unlock(&priv->reg_mutex);
1600 
1601 	return 0;
1602 }
1603 
1604 static int
1605 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1606 		    const struct switchdev_obj_port_mdb *mdb,
1607 		    struct dsa_db db)
1608 {
1609 	struct mt7530_priv *priv = ds->priv;
1610 	const u8 *addr = mdb->addr;
1611 	u16 vid = mdb->vid;
1612 	u8 port_mask = 0;
1613 	int ret;
1614 
1615 	mutex_lock(&priv->reg_mutex);
1616 
1617 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1618 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1619 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1620 			    & PORT_MAP_MASK;
1621 
1622 	port_mask |= BIT(port);
1623 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1624 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1625 
1626 	mutex_unlock(&priv->reg_mutex);
1627 
1628 	return ret;
1629 }
1630 
1631 static int
1632 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1633 		    const struct switchdev_obj_port_mdb *mdb,
1634 		    struct dsa_db db)
1635 {
1636 	struct mt7530_priv *priv = ds->priv;
1637 	const u8 *addr = mdb->addr;
1638 	u16 vid = mdb->vid;
1639 	u8 port_mask = 0;
1640 	int ret;
1641 
1642 	mutex_lock(&priv->reg_mutex);
1643 
1644 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1645 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1646 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1647 			    & PORT_MAP_MASK;
1648 
1649 	port_mask &= ~BIT(port);
1650 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1651 			 port_mask ? STATIC_ENT : STATIC_EMP);
1652 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1653 
1654 	mutex_unlock(&priv->reg_mutex);
1655 
1656 	return ret;
1657 }
1658 
1659 static int
1660 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1661 {
1662 	struct mt7530_dummy_poll p;
1663 	u32 val;
1664 	int ret;
1665 
1666 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1667 	mt7530_write(priv, MT7530_VTCR, val);
1668 
1669 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1670 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1671 				 !(val & VTCR_BUSY), 20, 20000);
1672 	if (ret < 0) {
1673 		dev_err(priv->dev, "poll timeout\n");
1674 		return ret;
1675 	}
1676 
1677 	val = mt7530_read(priv, MT7530_VTCR);
1678 	if (val & VTCR_INVALID) {
1679 		dev_err(priv->dev, "read VTCR invalid\n");
1680 		return -EINVAL;
1681 	}
1682 
1683 	return 0;
1684 }
1685 
1686 static int
1687 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1688 			   struct netlink_ext_ack *extack)
1689 {
1690 	struct dsa_port *dp = dsa_to_port(ds, port);
1691 	struct dsa_port *cpu_dp = dp->cpu_dp;
1692 
1693 	if (vlan_filtering) {
1694 		/* The port is being kept as VLAN-unaware port when bridge is
1695 		 * set up with vlan_filtering not being set, Otherwise, the
1696 		 * port and the corresponding CPU port is required the setup
1697 		 * for becoming a VLAN-aware port.
1698 		 */
1699 		mt7530_port_set_vlan_aware(ds, port);
1700 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1701 	} else {
1702 		mt7530_port_set_vlan_unaware(ds, port);
1703 	}
1704 
1705 	return 0;
1706 }
1707 
1708 static void
1709 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1710 		   struct mt7530_hw_vlan_entry *entry)
1711 {
1712 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1713 	u8 new_members;
1714 	u32 val;
1715 
1716 	new_members = entry->old_members | BIT(entry->port);
1717 
1718 	/* Validate the entry with independent learning, create egress tag per
1719 	 * VLAN and joining the port as one of the port members.
1720 	 */
1721 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1722 	      VLAN_VALID;
1723 	mt7530_write(priv, MT7530_VAWD1, val);
1724 
1725 	/* Decide whether adding tag or not for those outgoing packets from the
1726 	 * port inside the VLAN.
1727 	 * CPU port is always taken as a tagged port for serving more than one
1728 	 * VLANs across and also being applied with egress type stack mode for
1729 	 * that VLAN tags would be appended after hardware special tag used as
1730 	 * DSA tag.
1731 	 */
1732 	if (dsa_port_is_cpu(dp))
1733 		val = MT7530_VLAN_EGRESS_STACK;
1734 	else if (entry->untagged)
1735 		val = MT7530_VLAN_EGRESS_UNTAG;
1736 	else
1737 		val = MT7530_VLAN_EGRESS_TAG;
1738 	mt7530_rmw(priv, MT7530_VAWD2,
1739 		   ETAG_CTRL_P_MASK(entry->port),
1740 		   ETAG_CTRL_P(entry->port, val));
1741 }
1742 
1743 static void
1744 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1745 		   struct mt7530_hw_vlan_entry *entry)
1746 {
1747 	u8 new_members;
1748 	u32 val;
1749 
1750 	new_members = entry->old_members & ~BIT(entry->port);
1751 
1752 	val = mt7530_read(priv, MT7530_VAWD1);
1753 	if (!(val & VLAN_VALID)) {
1754 		dev_err(priv->dev,
1755 			"Cannot be deleted due to invalid entry\n");
1756 		return;
1757 	}
1758 
1759 	if (new_members) {
1760 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1761 		      VLAN_VALID;
1762 		mt7530_write(priv, MT7530_VAWD1, val);
1763 	} else {
1764 		mt7530_write(priv, MT7530_VAWD1, 0);
1765 		mt7530_write(priv, MT7530_VAWD2, 0);
1766 	}
1767 }
1768 
1769 static void
1770 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1771 		      struct mt7530_hw_vlan_entry *entry,
1772 		      mt7530_vlan_op vlan_op)
1773 {
1774 	u32 val;
1775 
1776 	/* Fetch entry */
1777 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1778 
1779 	val = mt7530_read(priv, MT7530_VAWD1);
1780 
1781 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1782 
1783 	/* Manipulate entry */
1784 	vlan_op(priv, entry);
1785 
1786 	/* Flush result to hardware */
1787 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1788 }
1789 
1790 static int
1791 mt7530_setup_vlan0(struct mt7530_priv *priv)
1792 {
1793 	u32 val;
1794 
1795 	/* Validate the entry with independent learning, keep the original
1796 	 * ingress tag attribute.
1797 	 */
1798 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1799 	      VLAN_VALID;
1800 	mt7530_write(priv, MT7530_VAWD1, val);
1801 
1802 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1803 }
1804 
1805 static int
1806 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1807 		     const struct switchdev_obj_port_vlan *vlan,
1808 		     struct netlink_ext_ack *extack)
1809 {
1810 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1811 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1812 	struct mt7530_hw_vlan_entry new_entry;
1813 	struct mt7530_priv *priv = ds->priv;
1814 
1815 	mutex_lock(&priv->reg_mutex);
1816 
1817 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1818 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1819 
1820 	if (pvid) {
1821 		priv->ports[port].pvid = vlan->vid;
1822 
1823 		/* Accept all frames if PVID is set */
1824 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1825 			   MT7530_VLAN_ACC_ALL);
1826 
1827 		/* Only configure PVID if VLAN filtering is enabled */
1828 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1829 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1830 				   G0_PORT_VID_MASK,
1831 				   G0_PORT_VID(vlan->vid));
1832 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1833 		/* This VLAN is overwritten without PVID, so unset it */
1834 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1835 
1836 		/* Only accept tagged frames if the port is VLAN-aware */
1837 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1838 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1839 				   MT7530_VLAN_ACC_TAGGED);
1840 
1841 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1842 			   G0_PORT_VID_DEF);
1843 	}
1844 
1845 	mutex_unlock(&priv->reg_mutex);
1846 
1847 	return 0;
1848 }
1849 
1850 static int
1851 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1852 		     const struct switchdev_obj_port_vlan *vlan)
1853 {
1854 	struct mt7530_hw_vlan_entry target_entry;
1855 	struct mt7530_priv *priv = ds->priv;
1856 
1857 	mutex_lock(&priv->reg_mutex);
1858 
1859 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1860 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1861 			      mt7530_hw_vlan_del);
1862 
1863 	/* PVID is being restored to the default whenever the PVID port
1864 	 * is being removed from the VLAN.
1865 	 */
1866 	if (priv->ports[port].pvid == vlan->vid) {
1867 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1868 
1869 		/* Only accept tagged frames if the port is VLAN-aware */
1870 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1871 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1872 				   MT7530_VLAN_ACC_TAGGED);
1873 
1874 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1875 			   G0_PORT_VID_DEF);
1876 	}
1877 
1878 
1879 	mutex_unlock(&priv->reg_mutex);
1880 
1881 	return 0;
1882 }
1883 
1884 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1885 {
1886 	return (id == ID_MT7531 || id == ID_MT7988) ?
1887 		       MT7531_MIRROR_PORT_GET(val) :
1888 		       MIRROR_PORT(val);
1889 }
1890 
1891 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1892 {
1893 	return (id == ID_MT7531 || id == ID_MT7988) ?
1894 		       MT7531_MIRROR_PORT_SET(val) :
1895 		       MIRROR_PORT(val);
1896 }
1897 
1898 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1899 				  struct dsa_mall_mirror_tc_entry *mirror,
1900 				  bool ingress, struct netlink_ext_ack *extack)
1901 {
1902 	struct mt7530_priv *priv = ds->priv;
1903 	int monitor_port;
1904 	u32 val;
1905 
1906 	/* Check for existent entry */
1907 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1908 		return -EEXIST;
1909 
1910 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1911 
1912 	/* MT7530 only supports one monitor port */
1913 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1914 	if (val & MT753X_MIRROR_EN(priv->id) &&
1915 	    monitor_port != mirror->to_local_port)
1916 		return -EEXIST;
1917 
1918 	val |= MT753X_MIRROR_EN(priv->id);
1919 	val &= ~MT753X_MIRROR_MASK(priv->id);
1920 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1921 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1922 
1923 	val = mt7530_read(priv, MT7530_PCR_P(port));
1924 	if (ingress) {
1925 		val |= PORT_RX_MIR;
1926 		priv->mirror_rx |= BIT(port);
1927 	} else {
1928 		val |= PORT_TX_MIR;
1929 		priv->mirror_tx |= BIT(port);
1930 	}
1931 	mt7530_write(priv, MT7530_PCR_P(port), val);
1932 
1933 	return 0;
1934 }
1935 
1936 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1937 				   struct dsa_mall_mirror_tc_entry *mirror)
1938 {
1939 	struct mt7530_priv *priv = ds->priv;
1940 	u32 val;
1941 
1942 	val = mt7530_read(priv, MT7530_PCR_P(port));
1943 	if (mirror->ingress) {
1944 		val &= ~PORT_RX_MIR;
1945 		priv->mirror_rx &= ~BIT(port);
1946 	} else {
1947 		val &= ~PORT_TX_MIR;
1948 		priv->mirror_tx &= ~BIT(port);
1949 	}
1950 	mt7530_write(priv, MT7530_PCR_P(port), val);
1951 
1952 	if (!priv->mirror_rx && !priv->mirror_tx) {
1953 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1954 		val &= ~MT753X_MIRROR_EN(priv->id);
1955 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1956 	}
1957 }
1958 
1959 static enum dsa_tag_protocol
1960 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1961 		     enum dsa_tag_protocol mp)
1962 {
1963 	return DSA_TAG_PROTO_MTK;
1964 }
1965 
1966 #ifdef CONFIG_GPIOLIB
1967 static inline u32
1968 mt7530_gpio_to_bit(unsigned int offset)
1969 {
1970 	/* Map GPIO offset to register bit
1971 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1972 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1973 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1974 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1975 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1976 	 */
1977 	return BIT(offset + offset / 3);
1978 }
1979 
1980 static int
1981 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1982 {
1983 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1984 	u32 bit = mt7530_gpio_to_bit(offset);
1985 
1986 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1987 }
1988 
1989 static void
1990 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1991 {
1992 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1993 	u32 bit = mt7530_gpio_to_bit(offset);
1994 
1995 	if (value)
1996 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1997 	else
1998 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1999 }
2000 
2001 static int
2002 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
2003 {
2004 	struct mt7530_priv *priv = gpiochip_get_data(gc);
2005 	u32 bit = mt7530_gpio_to_bit(offset);
2006 
2007 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
2008 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
2009 }
2010 
2011 static int
2012 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
2013 {
2014 	struct mt7530_priv *priv = gpiochip_get_data(gc);
2015 	u32 bit = mt7530_gpio_to_bit(offset);
2016 
2017 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
2018 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
2019 
2020 	return 0;
2021 }
2022 
2023 static int
2024 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
2025 {
2026 	struct mt7530_priv *priv = gpiochip_get_data(gc);
2027 	u32 bit = mt7530_gpio_to_bit(offset);
2028 
2029 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
2030 
2031 	if (value)
2032 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
2033 	else
2034 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
2035 
2036 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
2037 
2038 	return 0;
2039 }
2040 
2041 static int
2042 mt7530_setup_gpio(struct mt7530_priv *priv)
2043 {
2044 	struct device *dev = priv->dev;
2045 	struct gpio_chip *gc;
2046 
2047 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
2048 	if (!gc)
2049 		return -ENOMEM;
2050 
2051 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
2052 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
2053 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
2054 
2055 	gc->label = "mt7530";
2056 	gc->parent = dev;
2057 	gc->owner = THIS_MODULE;
2058 	gc->get_direction = mt7530_gpio_get_direction;
2059 	gc->direction_input = mt7530_gpio_direction_input;
2060 	gc->direction_output = mt7530_gpio_direction_output;
2061 	gc->get = mt7530_gpio_get;
2062 	gc->set = mt7530_gpio_set;
2063 	gc->base = -1;
2064 	gc->ngpio = 15;
2065 	gc->can_sleep = true;
2066 
2067 	return devm_gpiochip_add_data(dev, gc, priv);
2068 }
2069 #endif /* CONFIG_GPIOLIB */
2070 
2071 static irqreturn_t
2072 mt7530_irq_thread_fn(int irq, void *dev_id)
2073 {
2074 	struct mt7530_priv *priv = dev_id;
2075 	bool handled = false;
2076 	u32 val;
2077 	int p;
2078 
2079 	mt7530_mutex_lock(priv);
2080 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
2081 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
2082 	mt7530_mutex_unlock(priv);
2083 
2084 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2085 		if (BIT(p) & val) {
2086 			unsigned int irq;
2087 
2088 			irq = irq_find_mapping(priv->irq_domain, p);
2089 			handle_nested_irq(irq);
2090 			handled = true;
2091 		}
2092 	}
2093 
2094 	return IRQ_RETVAL(handled);
2095 }
2096 
2097 static void
2098 mt7530_irq_mask(struct irq_data *d)
2099 {
2100 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2101 
2102 	priv->irq_enable &= ~BIT(d->hwirq);
2103 }
2104 
2105 static void
2106 mt7530_irq_unmask(struct irq_data *d)
2107 {
2108 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2109 
2110 	priv->irq_enable |= BIT(d->hwirq);
2111 }
2112 
2113 static void
2114 mt7530_irq_bus_lock(struct irq_data *d)
2115 {
2116 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2117 
2118 	mt7530_mutex_lock(priv);
2119 }
2120 
2121 static void
2122 mt7530_irq_bus_sync_unlock(struct irq_data *d)
2123 {
2124 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2125 
2126 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2127 	mt7530_mutex_unlock(priv);
2128 }
2129 
2130 static struct irq_chip mt7530_irq_chip = {
2131 	.name = KBUILD_MODNAME,
2132 	.irq_mask = mt7530_irq_mask,
2133 	.irq_unmask = mt7530_irq_unmask,
2134 	.irq_bus_lock = mt7530_irq_bus_lock,
2135 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2136 };
2137 
2138 static int
2139 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2140 	       irq_hw_number_t hwirq)
2141 {
2142 	irq_set_chip_data(irq, domain->host_data);
2143 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2144 	irq_set_nested_thread(irq, true);
2145 	irq_set_noprobe(irq);
2146 
2147 	return 0;
2148 }
2149 
2150 static const struct irq_domain_ops mt7530_irq_domain_ops = {
2151 	.map = mt7530_irq_map,
2152 	.xlate = irq_domain_xlate_onecell,
2153 };
2154 
2155 static void
2156 mt7988_irq_mask(struct irq_data *d)
2157 {
2158 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2159 
2160 	priv->irq_enable &= ~BIT(d->hwirq);
2161 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2162 }
2163 
2164 static void
2165 mt7988_irq_unmask(struct irq_data *d)
2166 {
2167 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2168 
2169 	priv->irq_enable |= BIT(d->hwirq);
2170 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2171 }
2172 
2173 static struct irq_chip mt7988_irq_chip = {
2174 	.name = KBUILD_MODNAME,
2175 	.irq_mask = mt7988_irq_mask,
2176 	.irq_unmask = mt7988_irq_unmask,
2177 };
2178 
2179 static int
2180 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2181 	       irq_hw_number_t hwirq)
2182 {
2183 	irq_set_chip_data(irq, domain->host_data);
2184 	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2185 	irq_set_nested_thread(irq, true);
2186 	irq_set_noprobe(irq);
2187 
2188 	return 0;
2189 }
2190 
2191 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2192 	.map = mt7988_irq_map,
2193 	.xlate = irq_domain_xlate_onecell,
2194 };
2195 
2196 static void
2197 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2198 {
2199 	struct dsa_switch *ds = priv->ds;
2200 	int p;
2201 
2202 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2203 		if (BIT(p) & ds->phys_mii_mask) {
2204 			unsigned int irq;
2205 
2206 			irq = irq_create_mapping(priv->irq_domain, p);
2207 			ds->user_mii_bus->irq[p] = irq;
2208 		}
2209 	}
2210 }
2211 
2212 static int
2213 mt7530_setup_irq(struct mt7530_priv *priv)
2214 {
2215 	struct device *dev = priv->dev;
2216 	struct device_node *np = dev->of_node;
2217 	int ret;
2218 
2219 	if (!of_property_read_bool(np, "interrupt-controller")) {
2220 		dev_info(dev, "no interrupt support\n");
2221 		return 0;
2222 	}
2223 
2224 	priv->irq = of_irq_get(np, 0);
2225 	if (priv->irq <= 0) {
2226 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2227 		return priv->irq ? : -EINVAL;
2228 	}
2229 
2230 	if (priv->id == ID_MT7988)
2231 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2232 							 &mt7988_irq_domain_ops,
2233 							 priv);
2234 	else
2235 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2236 							 &mt7530_irq_domain_ops,
2237 							 priv);
2238 
2239 	if (!priv->irq_domain) {
2240 		dev_err(dev, "failed to create IRQ domain\n");
2241 		return -ENOMEM;
2242 	}
2243 
2244 	/* This register must be set for MT7530 to properly fire interrupts */
2245 	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
2246 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2247 
2248 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2249 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2250 	if (ret) {
2251 		irq_domain_remove(priv->irq_domain);
2252 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2253 		return ret;
2254 	}
2255 
2256 	return 0;
2257 }
2258 
2259 static void
2260 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2261 {
2262 	int p;
2263 
2264 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2265 		if (BIT(p) & priv->ds->phys_mii_mask) {
2266 			unsigned int irq;
2267 
2268 			irq = irq_find_mapping(priv->irq_domain, p);
2269 			irq_dispose_mapping(irq);
2270 		}
2271 	}
2272 }
2273 
2274 static void
2275 mt7530_free_irq_common(struct mt7530_priv *priv)
2276 {
2277 	free_irq(priv->irq, priv);
2278 	irq_domain_remove(priv->irq_domain);
2279 }
2280 
2281 static void
2282 mt7530_free_irq(struct mt7530_priv *priv)
2283 {
2284 	struct device_node *mnp, *np = priv->dev->of_node;
2285 
2286 	mnp = of_get_child_by_name(np, "mdio");
2287 	if (!mnp)
2288 		mt7530_free_mdio_irq(priv);
2289 	of_node_put(mnp);
2290 
2291 	mt7530_free_irq_common(priv);
2292 }
2293 
2294 static int
2295 mt7530_setup_mdio(struct mt7530_priv *priv)
2296 {
2297 	struct device_node *mnp, *np = priv->dev->of_node;
2298 	struct dsa_switch *ds = priv->ds;
2299 	struct device *dev = priv->dev;
2300 	struct mii_bus *bus;
2301 	static int idx;
2302 	int ret = 0;
2303 
2304 	mnp = of_get_child_by_name(np, "mdio");
2305 
2306 	if (mnp && !of_device_is_available(mnp))
2307 		goto out;
2308 
2309 	bus = devm_mdiobus_alloc(dev);
2310 	if (!bus) {
2311 		ret = -ENOMEM;
2312 		goto out;
2313 	}
2314 
2315 	if (!mnp)
2316 		ds->user_mii_bus = bus;
2317 
2318 	bus->priv = priv;
2319 	bus->name = KBUILD_MODNAME "-mii";
2320 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2321 	bus->read = mt753x_phy_read_c22;
2322 	bus->write = mt753x_phy_write_c22;
2323 	bus->read_c45 = mt753x_phy_read_c45;
2324 	bus->write_c45 = mt753x_phy_write_c45;
2325 	bus->parent = dev;
2326 	bus->phy_mask = ~ds->phys_mii_mask;
2327 
2328 	if (priv->irq && !mnp)
2329 		mt7530_setup_mdio_irq(priv);
2330 
2331 	ret = devm_of_mdiobus_register(dev, bus, mnp);
2332 	if (ret) {
2333 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2334 		if (priv->irq && !mnp)
2335 			mt7530_free_mdio_irq(priv);
2336 	}
2337 
2338 out:
2339 	of_node_put(mnp);
2340 	return ret;
2341 }
2342 
2343 static int
2344 mt7530_setup(struct dsa_switch *ds)
2345 {
2346 	struct mt7530_priv *priv = ds->priv;
2347 	struct device_node *dn = NULL;
2348 	struct device_node *phy_node;
2349 	struct device_node *mac_np;
2350 	struct mt7530_dummy_poll p;
2351 	phy_interface_t interface;
2352 	struct dsa_port *cpu_dp;
2353 	u32 id, val;
2354 	int ret, i;
2355 
2356 	/* The parent node of conduit netdev which holds the common system
2357 	 * controller also is the container for two GMACs nodes representing
2358 	 * as two netdev instances.
2359 	 */
2360 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2361 		dn = cpu_dp->conduit->dev.of_node->parent;
2362 		/* It doesn't matter which CPU port is found first,
2363 		 * their conduits should share the same parent OF node
2364 		 */
2365 		break;
2366 	}
2367 
2368 	if (!dn) {
2369 		dev_err(ds->dev, "parent OF node of DSA conduit not found");
2370 		return -EINVAL;
2371 	}
2372 
2373 	ds->assisted_learning_on_cpu_port = true;
2374 	ds->mtu_enforcement_ingress = true;
2375 
2376 	if (priv->id == ID_MT7530) {
2377 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2378 		ret = regulator_enable(priv->core_pwr);
2379 		if (ret < 0) {
2380 			dev_err(priv->dev,
2381 				"Failed to enable core power: %d\n", ret);
2382 			return ret;
2383 		}
2384 
2385 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2386 		ret = regulator_enable(priv->io_pwr);
2387 		if (ret < 0) {
2388 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2389 				ret);
2390 			return ret;
2391 		}
2392 	}
2393 
2394 	/* Reset whole chip through gpio pin or memory-mapped registers for
2395 	 * different type of hardware
2396 	 */
2397 	if (priv->mcm) {
2398 		reset_control_assert(priv->rstc);
2399 		usleep_range(5000, 5100);
2400 		reset_control_deassert(priv->rstc);
2401 	} else {
2402 		gpiod_set_value_cansleep(priv->reset, 0);
2403 		usleep_range(5000, 5100);
2404 		gpiod_set_value_cansleep(priv->reset, 1);
2405 	}
2406 
2407 	/* Waiting for MT7530 got to stable */
2408 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2409 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2410 				 20, 1000000);
2411 	if (ret < 0) {
2412 		dev_err(priv->dev, "reset timeout\n");
2413 		return ret;
2414 	}
2415 
2416 	id = mt7530_read(priv, MT7530_CREV);
2417 	id >>= CHIP_NAME_SHIFT;
2418 	if (id != MT7530_ID) {
2419 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2420 		return -ENODEV;
2421 	}
2422 
2423 	if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_20MHZ) {
2424 		dev_err(priv->dev,
2425 			"MT7530 with a 20MHz XTAL is not supported!\n");
2426 		return -EINVAL;
2427 	}
2428 
2429 	/* Reset the switch through internal reset */
2430 	mt7530_write(priv, MT7530_SYS_CTRL,
2431 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2432 		     SYS_CTRL_REG_RST);
2433 
2434 	/* Lower Tx driving for TRGMII path */
2435 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2436 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2437 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2438 
2439 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2440 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2441 			   RD_TAP_MASK, RD_TAP(16));
2442 
2443 	/* Enable port 6 */
2444 	val = mt7530_read(priv, MT7530_MHWTRAP);
2445 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2446 	val |= MHWTRAP_MANUAL;
2447 	mt7530_write(priv, MT7530_MHWTRAP, val);
2448 
2449 	if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_40MHZ)
2450 		mt7530_pll_setup(priv);
2451 
2452 	mt753x_trap_frames(priv);
2453 
2454 	/* Enable and reset MIB counters */
2455 	mt7530_mib_reset(ds);
2456 
2457 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2458 		/* Clear link settings and enable force mode to force link down
2459 		 * on all ports until they're enabled later.
2460 		 */
2461 		mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2462 			   PMCR_FORCE_MODE, PMCR_FORCE_MODE);
2463 
2464 		/* Disable forwarding by default on all ports */
2465 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2466 			   PCR_MATRIX_CLR);
2467 
2468 		/* Disable learning by default on all ports */
2469 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2470 
2471 		if (dsa_is_cpu_port(ds, i)) {
2472 			mt753x_cpu_port_enable(ds, i);
2473 		} else {
2474 			mt7530_port_disable(ds, i);
2475 
2476 			/* Set default PVID to 0 on all user ports */
2477 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2478 				   G0_PORT_VID_DEF);
2479 		}
2480 		/* Enable consistent egress tag */
2481 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2482 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2483 	}
2484 
2485 	/* Allow mirroring frames received on the local port (monitor port). */
2486 	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2487 
2488 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2489 	ret = mt7530_setup_vlan0(priv);
2490 	if (ret)
2491 		return ret;
2492 
2493 	/* Setup port 5 */
2494 	if (!dsa_is_unused_port(ds, 5)) {
2495 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2496 	} else {
2497 		/* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
2498 		 * Set priv->p5_intf_sel to the appropriate value if PHY muxing
2499 		 * is detected.
2500 		 */
2501 		for_each_child_of_node(dn, mac_np) {
2502 			if (!of_device_is_compatible(mac_np,
2503 						     "mediatek,eth-mac"))
2504 				continue;
2505 
2506 			ret = of_property_read_u32(mac_np, "reg", &id);
2507 			if (ret < 0 || id != 1)
2508 				continue;
2509 
2510 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2511 			if (!phy_node)
2512 				continue;
2513 
2514 			if (phy_node->parent == priv->dev->of_node->parent) {
2515 				ret = of_get_phy_mode(mac_np, &interface);
2516 				if (ret && ret != -ENODEV) {
2517 					of_node_put(mac_np);
2518 					of_node_put(phy_node);
2519 					return ret;
2520 				}
2521 				id = of_mdio_parse_addr(ds->dev, phy_node);
2522 				if (id == 0)
2523 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2524 				if (id == 4)
2525 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2526 			}
2527 			of_node_put(mac_np);
2528 			of_node_put(phy_node);
2529 			break;
2530 		}
2531 
2532 		if (priv->p5_intf_sel == P5_INTF_SEL_PHY_P0 ||
2533 		    priv->p5_intf_sel == P5_INTF_SEL_PHY_P4)
2534 			mt7530_setup_port5(ds, interface);
2535 	}
2536 
2537 #ifdef CONFIG_GPIOLIB
2538 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2539 		ret = mt7530_setup_gpio(priv);
2540 		if (ret)
2541 			return ret;
2542 	}
2543 #endif /* CONFIG_GPIOLIB */
2544 
2545 	/* Flush the FDB table */
2546 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2547 	if (ret < 0)
2548 		return ret;
2549 
2550 	return 0;
2551 }
2552 
2553 static int
2554 mt7531_setup_common(struct dsa_switch *ds)
2555 {
2556 	struct mt7530_priv *priv = ds->priv;
2557 	int ret, i;
2558 
2559 	mt753x_trap_frames(priv);
2560 
2561 	/* Enable and reset MIB counters */
2562 	mt7530_mib_reset(ds);
2563 
2564 	/* Disable flooding on all ports */
2565 	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2566 		     UNU_FFP_MASK);
2567 
2568 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2569 		/* Clear link settings and enable force mode to force link down
2570 		 * on all ports until they're enabled later.
2571 		 */
2572 		mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2573 			   MT7531_FORCE_MODE, MT7531_FORCE_MODE);
2574 
2575 		/* Disable forwarding by default on all ports */
2576 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2577 			   PCR_MATRIX_CLR);
2578 
2579 		/* Disable learning by default on all ports */
2580 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2581 
2582 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2583 
2584 		if (dsa_is_cpu_port(ds, i)) {
2585 			mt753x_cpu_port_enable(ds, i);
2586 		} else {
2587 			mt7530_port_disable(ds, i);
2588 
2589 			/* Set default PVID to 0 on all user ports */
2590 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2591 				   G0_PORT_VID_DEF);
2592 		}
2593 
2594 		/* Enable consistent egress tag */
2595 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2596 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2597 	}
2598 
2599 	/* Allow mirroring frames received on the local port (monitor port). */
2600 	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2601 
2602 	/* Flush the FDB table */
2603 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2604 	if (ret < 0)
2605 		return ret;
2606 
2607 	return 0;
2608 }
2609 
2610 static int
2611 mt7531_setup(struct dsa_switch *ds)
2612 {
2613 	struct mt7530_priv *priv = ds->priv;
2614 	struct mt7530_dummy_poll p;
2615 	u32 val, id;
2616 	int ret, i;
2617 
2618 	/* Reset whole chip through gpio pin or memory-mapped registers for
2619 	 * different type of hardware
2620 	 */
2621 	if (priv->mcm) {
2622 		reset_control_assert(priv->rstc);
2623 		usleep_range(5000, 5100);
2624 		reset_control_deassert(priv->rstc);
2625 	} else {
2626 		gpiod_set_value_cansleep(priv->reset, 0);
2627 		usleep_range(5000, 5100);
2628 		gpiod_set_value_cansleep(priv->reset, 1);
2629 	}
2630 
2631 	/* Waiting for MT7530 got to stable */
2632 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2633 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2634 				 20, 1000000);
2635 	if (ret < 0) {
2636 		dev_err(priv->dev, "reset timeout\n");
2637 		return ret;
2638 	}
2639 
2640 	id = mt7530_read(priv, MT7531_CREV);
2641 	id >>= CHIP_NAME_SHIFT;
2642 
2643 	if (id != MT7531_ID) {
2644 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2645 		return -ENODEV;
2646 	}
2647 
2648 	/* MT7531AE has got two SGMII units. One for port 5, one for port 6.
2649 	 * MT7531BE has got only one SGMII unit which is for port 6.
2650 	 */
2651 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
2652 	priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
2653 
2654 	/* Force link down on all ports before internal reset */
2655 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2656 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2657 
2658 	/* Reset the switch through internal reset */
2659 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST);
2660 
2661 	if (!priv->p5_sgmii) {
2662 		mt7531_pll_setup(priv);
2663 	} else {
2664 		/* Let ds->user_mii_bus be able to access external phy. */
2665 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2666 			   MT7531_EXT_P_MDC_11);
2667 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2668 			   MT7531_EXT_P_MDIO_12);
2669 	}
2670 
2671 	if (!dsa_is_unused_port(ds, 5))
2672 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2673 
2674 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2675 		   MT7531_GPIO0_INTERRUPT);
2676 
2677 	/* Enable Energy-Efficient Ethernet (EEE) and PHY core PLL, since
2678 	 * phy_device has not yet been created provided for
2679 	 * phy_[read,write]_mmd_indirect is called, we provide our own
2680 	 * mt7531_ind_mmd_phy_[read,write] to complete this function.
2681 	 */
2682 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2683 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2684 	val |= MT7531_RG_SYSPLL_DMY2 | MT7531_PHY_PLL_BYPASS_MODE;
2685 	val &= ~MT7531_PHY_PLL_OFF;
2686 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2687 				 CORE_PLL_GROUP4, val);
2688 
2689 	/* Disable EEE advertisement on the switch PHYs. */
2690 	for (i = MT753X_CTRL_PHY_ADDR;
2691 	     i < MT753X_CTRL_PHY_ADDR + MT7530_NUM_PHYS; i++) {
2692 		mt7531_ind_c45_phy_write(priv, i, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2693 					 0);
2694 	}
2695 
2696 	mt7531_setup_common(ds);
2697 
2698 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2699 	ret = mt7530_setup_vlan0(priv);
2700 	if (ret)
2701 		return ret;
2702 
2703 	ds->assisted_learning_on_cpu_port = true;
2704 	ds->mtu_enforcement_ingress = true;
2705 
2706 	return 0;
2707 }
2708 
2709 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2710 				     struct phylink_config *config)
2711 {
2712 	switch (port) {
2713 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2714 	case 0 ... 4:
2715 		__set_bit(PHY_INTERFACE_MODE_GMII,
2716 			  config->supported_interfaces);
2717 		break;
2718 
2719 	/* Port 5 supports rgmii with delays, mii, and gmii. */
2720 	case 5:
2721 		phy_interface_set_rgmii(config->supported_interfaces);
2722 		__set_bit(PHY_INTERFACE_MODE_MII,
2723 			  config->supported_interfaces);
2724 		__set_bit(PHY_INTERFACE_MODE_GMII,
2725 			  config->supported_interfaces);
2726 		break;
2727 
2728 	/* Port 6 supports rgmii and trgmii. */
2729 	case 6:
2730 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2731 			  config->supported_interfaces);
2732 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2733 			  config->supported_interfaces);
2734 		break;
2735 	}
2736 }
2737 
2738 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2739 				     struct phylink_config *config)
2740 {
2741 	struct mt7530_priv *priv = ds->priv;
2742 
2743 	switch (port) {
2744 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2745 	case 0 ... 4:
2746 		__set_bit(PHY_INTERFACE_MODE_GMII,
2747 			  config->supported_interfaces);
2748 		break;
2749 
2750 	/* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
2751 	 * MT7531AE.
2752 	 */
2753 	case 5:
2754 		if (!priv->p5_sgmii) {
2755 			phy_interface_set_rgmii(config->supported_interfaces);
2756 			break;
2757 		}
2758 		fallthrough;
2759 
2760 	/* Port 6 supports sgmii/802.3z. */
2761 	case 6:
2762 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2763 			  config->supported_interfaces);
2764 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2765 			  config->supported_interfaces);
2766 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2767 			  config->supported_interfaces);
2768 
2769 		config->mac_capabilities |= MAC_2500FD;
2770 		break;
2771 	}
2772 }
2773 
2774 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2775 				     struct phylink_config *config)
2776 {
2777 	switch (port) {
2778 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2779 	case 0 ... 3:
2780 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2781 			  config->supported_interfaces);
2782 		break;
2783 
2784 	/* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2785 	case 6:
2786 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2787 			  config->supported_interfaces);
2788 		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2789 					   MAC_10000FD;
2790 	}
2791 }
2792 
2793 static void
2794 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2795 		  phy_interface_t interface)
2796 {
2797 	struct mt7530_priv *priv = ds->priv;
2798 
2799 	if (port == 5)
2800 		mt7530_setup_port5(priv->ds, interface);
2801 	else if (port == 6)
2802 		mt7530_setup_port6(priv->ds, interface);
2803 }
2804 
2805 static void mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2806 			       phy_interface_t interface,
2807 			       struct phy_device *phydev)
2808 {
2809 	u32 val;
2810 
2811 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2812 	val |= GP_CLK_EN;
2813 	val &= ~GP_MODE_MASK;
2814 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2815 	val &= ~CLK_SKEW_IN_MASK;
2816 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2817 	val &= ~CLK_SKEW_OUT_MASK;
2818 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2819 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2820 
2821 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2822 	if (!phydev || phy_driver_is_genphy(phydev)) {
2823 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2824 		switch (interface) {
2825 		case PHY_INTERFACE_MODE_RGMII:
2826 			val |= TXCLK_NO_REVERSE;
2827 			val |= RXCLK_NO_DELAY;
2828 			break;
2829 		case PHY_INTERFACE_MODE_RGMII_RXID:
2830 			val |= TXCLK_NO_REVERSE;
2831 			break;
2832 		case PHY_INTERFACE_MODE_RGMII_TXID:
2833 			val |= RXCLK_NO_DELAY;
2834 			break;
2835 		case PHY_INTERFACE_MODE_RGMII_ID:
2836 			break;
2837 		default:
2838 			break;
2839 		}
2840 	}
2841 
2842 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2843 }
2844 
2845 static void
2846 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2847 		  phy_interface_t interface)
2848 {
2849 	struct mt7530_priv *priv = ds->priv;
2850 	struct phy_device *phydev;
2851 	struct dsa_port *dp;
2852 
2853 	if (phy_interface_mode_is_rgmii(interface)) {
2854 		dp = dsa_to_port(ds, port);
2855 		phydev = dp->user->phydev;
2856 		mt7531_rgmii_setup(priv, port, interface, phydev);
2857 	}
2858 }
2859 
2860 static struct phylink_pcs *
2861 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2862 			      phy_interface_t interface)
2863 {
2864 	struct mt7530_priv *priv = ds->priv;
2865 
2866 	switch (interface) {
2867 	case PHY_INTERFACE_MODE_TRGMII:
2868 		return &priv->pcs[port].pcs;
2869 	case PHY_INTERFACE_MODE_SGMII:
2870 	case PHY_INTERFACE_MODE_1000BASEX:
2871 	case PHY_INTERFACE_MODE_2500BASEX:
2872 		return priv->ports[port].sgmii_pcs;
2873 	default:
2874 		return NULL;
2875 	}
2876 }
2877 
2878 static void
2879 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2880 			  const struct phylink_link_state *state)
2881 {
2882 	struct mt7530_priv *priv = ds->priv;
2883 
2884 	if ((port == 5 || port == 6) && priv->info->mac_port_config)
2885 		priv->info->mac_port_config(ds, port, mode, state->interface);
2886 
2887 	/* Are we connected to external phy */
2888 	if (port == 5 && dsa_is_user_port(ds, 5))
2889 		mt7530_set(priv, MT7530_PMCR_P(port), PMCR_EXT_PHY);
2890 }
2891 
2892 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2893 					 unsigned int mode,
2894 					 phy_interface_t interface)
2895 {
2896 	struct mt7530_priv *priv = ds->priv;
2897 
2898 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2899 }
2900 
2901 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2902 				       unsigned int mode,
2903 				       phy_interface_t interface,
2904 				       struct phy_device *phydev,
2905 				       int speed, int duplex,
2906 				       bool tx_pause, bool rx_pause)
2907 {
2908 	struct mt7530_priv *priv = ds->priv;
2909 	u32 mcr;
2910 
2911 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2912 
2913 	switch (speed) {
2914 	case SPEED_1000:
2915 	case SPEED_2500:
2916 	case SPEED_10000:
2917 		mcr |= PMCR_FORCE_SPEED_1000;
2918 		break;
2919 	case SPEED_100:
2920 		mcr |= PMCR_FORCE_SPEED_100;
2921 		break;
2922 	}
2923 	if (duplex == DUPLEX_FULL) {
2924 		mcr |= PMCR_FORCE_FDX;
2925 		if (tx_pause)
2926 			mcr |= PMCR_TX_FC_EN;
2927 		if (rx_pause)
2928 			mcr |= PMCR_RX_FC_EN;
2929 	}
2930 
2931 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2932 		switch (speed) {
2933 		case SPEED_1000:
2934 		case SPEED_2500:
2935 			mcr |= PMCR_FORCE_EEE1G;
2936 			break;
2937 		case SPEED_100:
2938 			mcr |= PMCR_FORCE_EEE100;
2939 			break;
2940 		}
2941 	}
2942 
2943 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2944 }
2945 
2946 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2947 				    struct phylink_config *config)
2948 {
2949 	struct mt7530_priv *priv = ds->priv;
2950 
2951 	/* This switch only supports full-duplex at 1Gbps */
2952 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2953 				   MAC_10 | MAC_100 | MAC_1000FD;
2954 
2955 	priv->info->mac_port_get_caps(ds, port, config);
2956 }
2957 
2958 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2959 			       unsigned long *supported,
2960 			       const struct phylink_link_state *state)
2961 {
2962 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2963 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2964 	    phy_interface_mode_is_8023z(state->interface))
2965 		phylink_clear(supported, Autoneg);
2966 
2967 	return 0;
2968 }
2969 
2970 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2971 				 struct phylink_link_state *state)
2972 {
2973 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2974 	int port = pcs_to_mt753x_pcs(pcs)->port;
2975 	u32 pmsr;
2976 
2977 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2978 
2979 	state->link = (pmsr & PMSR_LINK);
2980 	state->an_complete = state->link;
2981 	state->duplex = !!(pmsr & PMSR_DPX);
2982 
2983 	switch (pmsr & PMSR_SPEED_MASK) {
2984 	case PMSR_SPEED_10:
2985 		state->speed = SPEED_10;
2986 		break;
2987 	case PMSR_SPEED_100:
2988 		state->speed = SPEED_100;
2989 		break;
2990 	case PMSR_SPEED_1000:
2991 		state->speed = SPEED_1000;
2992 		break;
2993 	default:
2994 		state->speed = SPEED_UNKNOWN;
2995 		break;
2996 	}
2997 
2998 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2999 	if (pmsr & PMSR_RX_FC)
3000 		state->pause |= MLO_PAUSE_RX;
3001 	if (pmsr & PMSR_TX_FC)
3002 		state->pause |= MLO_PAUSE_TX;
3003 }
3004 
3005 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3006 			     phy_interface_t interface,
3007 			     const unsigned long *advertising,
3008 			     bool permit_pause_to_mac)
3009 {
3010 	return 0;
3011 }
3012 
3013 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3014 {
3015 }
3016 
3017 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3018 	.pcs_validate = mt753x_pcs_validate,
3019 	.pcs_get_state = mt7530_pcs_get_state,
3020 	.pcs_config = mt753x_pcs_config,
3021 	.pcs_an_restart = mt7530_pcs_an_restart,
3022 };
3023 
3024 static int
3025 mt753x_setup(struct dsa_switch *ds)
3026 {
3027 	struct mt7530_priv *priv = ds->priv;
3028 	int ret = priv->info->sw_setup(ds);
3029 	int i;
3030 
3031 	if (ret)
3032 		return ret;
3033 
3034 	ret = mt7530_setup_irq(priv);
3035 	if (ret)
3036 		return ret;
3037 
3038 	ret = mt7530_setup_mdio(priv);
3039 	if (ret && priv->irq)
3040 		mt7530_free_irq_common(priv);
3041 
3042 	/* Initialise the PCS devices */
3043 	for (i = 0; i < priv->ds->num_ports; i++) {
3044 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3045 		priv->pcs[i].pcs.neg_mode = true;
3046 		priv->pcs[i].priv = priv;
3047 		priv->pcs[i].port = i;
3048 	}
3049 
3050 	if (priv->create_sgmii) {
3051 		ret = priv->create_sgmii(priv);
3052 		if (ret && priv->irq)
3053 			mt7530_free_irq(priv);
3054 	}
3055 
3056 	return ret;
3057 }
3058 
3059 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3060 			      struct ethtool_keee *e)
3061 {
3062 	struct mt7530_priv *priv = ds->priv;
3063 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3064 
3065 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3066 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3067 
3068 	return 0;
3069 }
3070 
3071 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3072 			      struct ethtool_keee *e)
3073 {
3074 	struct mt7530_priv *priv = ds->priv;
3075 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3076 
3077 	if (e->tx_lpi_timer > 0xFFF)
3078 		return -EINVAL;
3079 
3080 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3081 	if (!e->tx_lpi_enabled)
3082 		/* Force LPI Mode without a delay */
3083 		set |= LPI_MODE_EN;
3084 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3085 
3086 	return 0;
3087 }
3088 
3089 static void
3090 mt753x_conduit_state_change(struct dsa_switch *ds,
3091 			    const struct net_device *conduit,
3092 			    bool operational)
3093 {
3094 	struct dsa_port *cpu_dp = conduit->dsa_ptr;
3095 	struct mt7530_priv *priv = ds->priv;
3096 	int val = 0;
3097 	u8 mask;
3098 
3099 	/* Set the CPU port to trap frames to for MT7530. Trapped frames will be
3100 	 * forwarded to the numerically smallest CPU port whose conduit
3101 	 * interface is up.
3102 	 */
3103 	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
3104 		return;
3105 
3106 	mask = BIT(cpu_dp->index);
3107 
3108 	if (operational)
3109 		priv->active_cpu_ports |= mask;
3110 	else
3111 		priv->active_cpu_ports &= ~mask;
3112 
3113 	if (priv->active_cpu_ports)
3114 		val = CPU_EN | CPU_PORT(__ffs(priv->active_cpu_ports));
3115 
3116 	mt7530_rmw(priv, MT7530_MFC, CPU_EN | CPU_PORT_MASK, val);
3117 }
3118 
3119 static int mt7988_setup(struct dsa_switch *ds)
3120 {
3121 	struct mt7530_priv *priv = ds->priv;
3122 
3123 	/* Reset the switch */
3124 	reset_control_assert(priv->rstc);
3125 	usleep_range(20, 50);
3126 	reset_control_deassert(priv->rstc);
3127 	usleep_range(20, 50);
3128 
3129 	/* Reset the switch PHYs */
3130 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3131 
3132 	return mt7531_setup_common(ds);
3133 }
3134 
3135 const struct dsa_switch_ops mt7530_switch_ops = {
3136 	.get_tag_protocol	= mtk_get_tag_protocol,
3137 	.setup			= mt753x_setup,
3138 	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3139 	.get_strings		= mt7530_get_strings,
3140 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3141 	.get_sset_count		= mt7530_get_sset_count,
3142 	.set_ageing_time	= mt7530_set_ageing_time,
3143 	.port_enable		= mt7530_port_enable,
3144 	.port_disable		= mt7530_port_disable,
3145 	.port_change_mtu	= mt7530_port_change_mtu,
3146 	.port_max_mtu		= mt7530_port_max_mtu,
3147 	.port_stp_state_set	= mt7530_stp_state_set,
3148 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3149 	.port_bridge_flags	= mt7530_port_bridge_flags,
3150 	.port_bridge_join	= mt7530_port_bridge_join,
3151 	.port_bridge_leave	= mt7530_port_bridge_leave,
3152 	.port_fdb_add		= mt7530_port_fdb_add,
3153 	.port_fdb_del		= mt7530_port_fdb_del,
3154 	.port_fdb_dump		= mt7530_port_fdb_dump,
3155 	.port_mdb_add		= mt7530_port_mdb_add,
3156 	.port_mdb_del		= mt7530_port_mdb_del,
3157 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3158 	.port_vlan_add		= mt7530_port_vlan_add,
3159 	.port_vlan_del		= mt7530_port_vlan_del,
3160 	.port_mirror_add	= mt753x_port_mirror_add,
3161 	.port_mirror_del	= mt753x_port_mirror_del,
3162 	.phylink_get_caps	= mt753x_phylink_get_caps,
3163 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3164 	.phylink_mac_config	= mt753x_phylink_mac_config,
3165 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3166 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3167 	.get_mac_eee		= mt753x_get_mac_eee,
3168 	.set_mac_eee		= mt753x_set_mac_eee,
3169 	.conduit_state_change	= mt753x_conduit_state_change,
3170 };
3171 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3172 
3173 const struct mt753x_info mt753x_table[] = {
3174 	[ID_MT7621] = {
3175 		.id = ID_MT7621,
3176 		.pcs_ops = &mt7530_pcs_ops,
3177 		.sw_setup = mt7530_setup,
3178 		.phy_read_c22 = mt7530_phy_read_c22,
3179 		.phy_write_c22 = mt7530_phy_write_c22,
3180 		.phy_read_c45 = mt7530_phy_read_c45,
3181 		.phy_write_c45 = mt7530_phy_write_c45,
3182 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3183 		.mac_port_config = mt7530_mac_config,
3184 	},
3185 	[ID_MT7530] = {
3186 		.id = ID_MT7530,
3187 		.pcs_ops = &mt7530_pcs_ops,
3188 		.sw_setup = mt7530_setup,
3189 		.phy_read_c22 = mt7530_phy_read_c22,
3190 		.phy_write_c22 = mt7530_phy_write_c22,
3191 		.phy_read_c45 = mt7530_phy_read_c45,
3192 		.phy_write_c45 = mt7530_phy_write_c45,
3193 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3194 		.mac_port_config = mt7530_mac_config,
3195 	},
3196 	[ID_MT7531] = {
3197 		.id = ID_MT7531,
3198 		.pcs_ops = &mt7530_pcs_ops,
3199 		.sw_setup = mt7531_setup,
3200 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3201 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3202 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3203 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3204 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3205 		.mac_port_config = mt7531_mac_config,
3206 	},
3207 	[ID_MT7988] = {
3208 		.id = ID_MT7988,
3209 		.pcs_ops = &mt7530_pcs_ops,
3210 		.sw_setup = mt7988_setup,
3211 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3212 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3213 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3214 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3215 		.mac_port_get_caps = mt7988_mac_port_get_caps,
3216 	},
3217 };
3218 EXPORT_SYMBOL_GPL(mt753x_table);
3219 
3220 int
3221 mt7530_probe_common(struct mt7530_priv *priv)
3222 {
3223 	struct device *dev = priv->dev;
3224 
3225 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3226 	if (!priv->ds)
3227 		return -ENOMEM;
3228 
3229 	priv->ds->dev = dev;
3230 	priv->ds->num_ports = MT7530_NUM_PORTS;
3231 
3232 	/* Get the hardware identifier from the devicetree node.
3233 	 * We will need it for some of the clock and regulator setup.
3234 	 */
3235 	priv->info = of_device_get_match_data(dev);
3236 	if (!priv->info)
3237 		return -EINVAL;
3238 
3239 	/* Sanity check if these required device operations are filled
3240 	 * properly.
3241 	 */
3242 	if (!priv->info->sw_setup || !priv->info->phy_read_c22 ||
3243 	    !priv->info->phy_write_c22 || !priv->info->mac_port_get_caps)
3244 		return -EINVAL;
3245 
3246 	priv->id = priv->info->id;
3247 	priv->dev = dev;
3248 	priv->ds->priv = priv;
3249 	priv->ds->ops = &mt7530_switch_ops;
3250 	mutex_init(&priv->reg_mutex);
3251 	dev_set_drvdata(dev, priv);
3252 
3253 	return 0;
3254 }
3255 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3256 
3257 void
3258 mt7530_remove_common(struct mt7530_priv *priv)
3259 {
3260 	if (priv->irq)
3261 		mt7530_free_irq(priv);
3262 
3263 	dsa_unregister_switch(priv->ds);
3264 
3265 	mutex_destroy(&priv->reg_mutex);
3266 }
3267 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3268 
3269 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3270 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3271 MODULE_LICENSE("GPL");
3272