xref: /linux/drivers/net/dsa/mt7530.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 static void
78 mt7530_mutex_lock(struct mt7530_priv *priv)
79 {
80 	if (priv->bus)
81 		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
82 }
83 
84 static void
85 mt7530_mutex_unlock(struct mt7530_priv *priv)
86 {
87 	if (priv->bus)
88 		mutex_unlock(&priv->bus->mdio_lock);
89 }
90 
91 static void
92 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
93 {
94 	struct mii_bus *bus = priv->bus;
95 	int ret;
96 
97 	mt7530_mutex_lock(priv);
98 
99 	/* Write the desired MMD Devad */
100 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
101 			 MII_MMD_CTRL, MDIO_MMD_VEND2);
102 	if (ret < 0)
103 		goto err;
104 
105 	/* Write the desired MMD register address */
106 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
107 			 MII_MMD_DATA, reg);
108 	if (ret < 0)
109 		goto err;
110 
111 	/* Select the Function : DATA with no post increment */
112 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
113 			 MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR);
114 	if (ret < 0)
115 		goto err;
116 
117 	/* Write the data into MMD's selected register */
118 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
119 			 MII_MMD_DATA, val);
120 err:
121 	if (ret < 0)
122 		dev_err(&bus->dev, "failed to write mmd register\n");
123 
124 	mt7530_mutex_unlock(priv);
125 }
126 
127 static void
128 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
129 {
130 	struct mii_bus *bus = priv->bus;
131 	u32 val;
132 	int ret;
133 
134 	mt7530_mutex_lock(priv);
135 
136 	/* Write the desired MMD Devad */
137 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
138 			 MII_MMD_CTRL, MDIO_MMD_VEND2);
139 	if (ret < 0)
140 		goto err;
141 
142 	/* Write the desired MMD register address */
143 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
144 			 MII_MMD_DATA, reg);
145 	if (ret < 0)
146 		goto err;
147 
148 	/* Select the Function : DATA with no post increment */
149 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
150 			 MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR);
151 	if (ret < 0)
152 		goto err;
153 
154 	/* Read the content of the MMD's selected register */
155 	val = bus->read(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
156 			MII_MMD_DATA);
157 	val &= ~mask;
158 	val |= set;
159 	/* Write the data into MMD's selected register */
160 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
161 			 MII_MMD_DATA, val);
162 err:
163 	if (ret < 0)
164 		dev_err(&bus->dev, "failed to write mmd register\n");
165 
166 	mt7530_mutex_unlock(priv);
167 }
168 
169 static void
170 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
171 {
172 	core_rmw(priv, reg, 0, val);
173 }
174 
175 static void
176 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
177 {
178 	core_rmw(priv, reg, val, 0);
179 }
180 
181 static int
182 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
183 {
184 	int ret;
185 
186 	ret = regmap_write(priv->regmap, reg, val);
187 
188 	if (ret < 0)
189 		dev_err(priv->dev,
190 			"failed to write mt7530 register\n");
191 
192 	return ret;
193 }
194 
195 static u32
196 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
197 {
198 	int ret;
199 	u32 val;
200 
201 	ret = regmap_read(priv->regmap, reg, &val);
202 	if (ret) {
203 		WARN_ON_ONCE(1);
204 		dev_err(priv->dev,
205 			"failed to read mt7530 register\n");
206 		return 0;
207 	}
208 
209 	return val;
210 }
211 
212 static void
213 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
214 {
215 	mt7530_mutex_lock(priv);
216 
217 	mt7530_mii_write(priv, reg, val);
218 
219 	mt7530_mutex_unlock(priv);
220 }
221 
222 static u32
223 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
224 {
225 	return mt7530_mii_read(p->priv, p->reg);
226 }
227 
228 static u32
229 _mt7530_read(struct mt7530_dummy_poll *p)
230 {
231 	u32 val;
232 
233 	mt7530_mutex_lock(p->priv);
234 
235 	val = mt7530_mii_read(p->priv, p->reg);
236 
237 	mt7530_mutex_unlock(p->priv);
238 
239 	return val;
240 }
241 
242 static u32
243 mt7530_read(struct mt7530_priv *priv, u32 reg)
244 {
245 	struct mt7530_dummy_poll p;
246 
247 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
248 	return _mt7530_read(&p);
249 }
250 
251 static void
252 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
253 	   u32 mask, u32 set)
254 {
255 	mt7530_mutex_lock(priv);
256 
257 	regmap_update_bits(priv->regmap, reg, mask, set);
258 
259 	mt7530_mutex_unlock(priv);
260 }
261 
262 static void
263 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
264 {
265 	mt7530_rmw(priv, reg, val, val);
266 }
267 
268 static void
269 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
270 {
271 	mt7530_rmw(priv, reg, val, 0);
272 }
273 
274 static int
275 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
276 {
277 	u32 val;
278 	int ret;
279 	struct mt7530_dummy_poll p;
280 
281 	/* Set the command operating upon the MAC address entries */
282 	val = ATC_BUSY | ATC_MAT(0) | cmd;
283 	mt7530_write(priv, MT7530_ATC, val);
284 
285 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
286 	ret = readx_poll_timeout(_mt7530_read, &p, val,
287 				 !(val & ATC_BUSY), 20, 20000);
288 	if (ret < 0) {
289 		dev_err(priv->dev, "reset timeout\n");
290 		return ret;
291 	}
292 
293 	/* Additional sanity for read command if the specified
294 	 * entry is invalid
295 	 */
296 	val = mt7530_read(priv, MT7530_ATC);
297 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
298 		return -EINVAL;
299 
300 	if (rsp)
301 		*rsp = val;
302 
303 	return 0;
304 }
305 
306 static void
307 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
308 {
309 	u32 reg[3];
310 	int i;
311 
312 	/* Read from ARL table into an array */
313 	for (i = 0; i < 3; i++) {
314 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
315 
316 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
317 			__func__, __LINE__, i, reg[i]);
318 	}
319 
320 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
321 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
322 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
323 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
324 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
325 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
326 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
327 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
328 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
329 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
330 }
331 
332 static void
333 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
334 		 u8 port_mask, const u8 *mac,
335 		 u8 aging, u8 type)
336 {
337 	u32 reg[3] = { 0 };
338 	int i;
339 
340 	reg[1] |= vid & CVID_MASK;
341 	reg[1] |= ATA2_IVL;
342 	reg[1] |= ATA2_FID(FID_BRIDGED);
343 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
344 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
345 	/* STATIC_ENT indicate that entry is static wouldn't
346 	 * be aged out and STATIC_EMP specified as erasing an
347 	 * entry
348 	 */
349 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
350 	reg[1] |= mac[5] << MAC_BYTE_5;
351 	reg[1] |= mac[4] << MAC_BYTE_4;
352 	reg[0] |= mac[3] << MAC_BYTE_3;
353 	reg[0] |= mac[2] << MAC_BYTE_2;
354 	reg[0] |= mac[1] << MAC_BYTE_1;
355 	reg[0] |= mac[0] << MAC_BYTE_0;
356 
357 	/* Write array into the ARL table */
358 	for (i = 0; i < 3; i++)
359 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
360 }
361 
362 /* Set up switch core clock for MT7530 */
363 static void mt7530_pll_setup(struct mt7530_priv *priv)
364 {
365 	/* Disable core clock */
366 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
367 
368 	/* Disable PLL */
369 	core_write(priv, CORE_GSWPLL_GRP1, 0);
370 
371 	/* Set core clock into 500Mhz */
372 	core_write(priv, CORE_GSWPLL_GRP2,
373 		   RG_GSWPLL_POSDIV_500M(1) |
374 		   RG_GSWPLL_FBKDIV_500M(25));
375 
376 	/* Enable PLL */
377 	core_write(priv, CORE_GSWPLL_GRP1,
378 		   RG_GSWPLL_EN_PRE |
379 		   RG_GSWPLL_POSDIV_200M(2) |
380 		   RG_GSWPLL_FBKDIV_200M(32));
381 
382 	udelay(20);
383 
384 	/* Enable core clock */
385 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
386 }
387 
388 /* If port 6 is available as a CPU port, always prefer that as the default,
389  * otherwise don't care.
390  */
391 static struct dsa_port *
392 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
393 {
394 	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
395 
396 	if (dsa_port_is_cpu(cpu_dp))
397 		return cpu_dp;
398 
399 	return NULL;
400 }
401 
402 /* Setup port 6 interface mode and TRGMII TX circuit */
403 static void
404 mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface)
405 {
406 	struct mt7530_priv *priv = ds->priv;
407 	u32 ncpo1, ssc_delta, xtal;
408 
409 	/* Disable the MT7530 TRGMII clocks */
410 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
411 
412 	if (interface == PHY_INTERFACE_MODE_RGMII) {
413 		mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
414 			   P6_INTF_MODE(0));
415 		return;
416 	}
417 
418 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1));
419 
420 	xtal = mt7530_read(priv, MT753X_MTRAP) & MT7530_XTAL_MASK;
421 
422 	if (xtal == MT7530_XTAL_25MHZ)
423 		ssc_delta = 0x57;
424 	else
425 		ssc_delta = 0x87;
426 
427 	if (priv->id == ID_MT7621) {
428 		/* PLL frequency: 125MHz: 1.0GBit */
429 		if (xtal == MT7530_XTAL_40MHZ)
430 			ncpo1 = 0x0640;
431 		if (xtal == MT7530_XTAL_25MHZ)
432 			ncpo1 = 0x0a00;
433 	} else { /* PLL frequency: 250MHz: 2.0Gbit */
434 		if (xtal == MT7530_XTAL_40MHZ)
435 			ncpo1 = 0x0c80;
436 		if (xtal == MT7530_XTAL_25MHZ)
437 			ncpo1 = 0x1400;
438 	}
439 
440 	/* Setup the MT7530 TRGMII Tx Clock */
441 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
442 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
443 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
444 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
445 	core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
446 		   RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
447 	core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL |
448 		   RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1));
449 	core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG |
450 		   RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
451 
452 	/* Enable the MT7530 TRGMII clocks */
453 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
454 }
455 
456 static void
457 mt7531_pll_setup(struct mt7530_priv *priv)
458 {
459 	enum mt7531_xtal_fsel xtal;
460 	u32 top_sig;
461 	u32 hwstrap;
462 	u32 val;
463 
464 	val = mt7530_read(priv, MT7531_CREV);
465 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
466 	hwstrap = mt7530_read(priv, MT753X_TRAP);
467 	if ((val & CHIP_REV_M) > 0)
468 		xtal = (top_sig & PAD_MCM_SMI_EN) ? MT7531_XTAL_FSEL_40MHZ :
469 						    MT7531_XTAL_FSEL_25MHZ;
470 	else
471 		xtal = (hwstrap & MT7531_XTAL25) ? MT7531_XTAL_FSEL_25MHZ :
472 						   MT7531_XTAL_FSEL_40MHZ;
473 
474 	/* Step 1 : Disable MT7531 COREPLL */
475 	val = mt7530_read(priv, MT7531_PLLGP_EN);
476 	val &= ~EN_COREPLL;
477 	mt7530_write(priv, MT7531_PLLGP_EN, val);
478 
479 	/* Step 2: switch to XTAL output */
480 	val = mt7530_read(priv, MT7531_PLLGP_EN);
481 	val |= SW_CLKSW;
482 	mt7530_write(priv, MT7531_PLLGP_EN, val);
483 
484 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
485 	val &= ~RG_COREPLL_EN;
486 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
487 
488 	/* Step 3: disable PLLGP and enable program PLLGP */
489 	val = mt7530_read(priv, MT7531_PLLGP_EN);
490 	val |= SW_PLLGP;
491 	mt7530_write(priv, MT7531_PLLGP_EN, val);
492 
493 	/* Step 4: program COREPLL output frequency to 500MHz */
494 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
495 	val &= ~RG_COREPLL_POSDIV_M;
496 	val |= 2 << RG_COREPLL_POSDIV_S;
497 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
498 	usleep_range(25, 35);
499 
500 	switch (xtal) {
501 	case MT7531_XTAL_FSEL_25MHZ:
502 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
503 		val &= ~RG_COREPLL_SDM_PCW_M;
504 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
505 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
506 		break;
507 	case MT7531_XTAL_FSEL_40MHZ:
508 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
509 		val &= ~RG_COREPLL_SDM_PCW_M;
510 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
511 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
512 		break;
513 	}
514 
515 	/* Set feedback divide ratio update signal to high */
516 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
517 	val |= RG_COREPLL_SDM_PCW_CHG;
518 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
519 	/* Wait for at least 16 XTAL clocks */
520 	usleep_range(10, 20);
521 
522 	/* Step 5: set feedback divide ratio update signal to low */
523 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
524 	val &= ~RG_COREPLL_SDM_PCW_CHG;
525 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
526 
527 	/* Enable 325M clock for SGMII */
528 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
529 
530 	/* Enable 250SSC clock for RGMII */
531 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
532 
533 	/* Step 6: Enable MT7531 PLL */
534 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
535 	val |= RG_COREPLL_EN;
536 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
537 
538 	val = mt7530_read(priv, MT7531_PLLGP_EN);
539 	val |= EN_COREPLL;
540 	mt7530_write(priv, MT7531_PLLGP_EN, val);
541 	usleep_range(25, 35);
542 }
543 
544 static void
545 mt7530_mib_reset(struct dsa_switch *ds)
546 {
547 	struct mt7530_priv *priv = ds->priv;
548 
549 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
550 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
551 }
552 
553 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
554 {
555 	return mdiobus_read_nested(priv->bus, port, regnum);
556 }
557 
558 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
559 				u16 val)
560 {
561 	return mdiobus_write_nested(priv->bus, port, regnum, val);
562 }
563 
564 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
565 			       int devad, int regnum)
566 {
567 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
568 }
569 
570 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
571 				int regnum, u16 val)
572 {
573 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
574 }
575 
576 static int
577 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
578 			int regnum)
579 {
580 	struct mt7530_dummy_poll p;
581 	u32 reg, val;
582 	int ret;
583 
584 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
585 
586 	mt7530_mutex_lock(priv);
587 
588 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
589 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
590 	if (ret < 0) {
591 		dev_err(priv->dev, "poll timeout\n");
592 		goto out;
593 	}
594 
595 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
596 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
597 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
598 
599 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
600 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
601 	if (ret < 0) {
602 		dev_err(priv->dev, "poll timeout\n");
603 		goto out;
604 	}
605 
606 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
607 	      MT7531_MDIO_DEV_ADDR(devad);
608 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
609 
610 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
611 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
612 	if (ret < 0) {
613 		dev_err(priv->dev, "poll timeout\n");
614 		goto out;
615 	}
616 
617 	ret = val & MT7531_MDIO_RW_DATA_MASK;
618 out:
619 	mt7530_mutex_unlock(priv);
620 
621 	return ret;
622 }
623 
624 static int
625 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
626 			 int regnum, u16 data)
627 {
628 	struct mt7530_dummy_poll p;
629 	u32 val, reg;
630 	int ret;
631 
632 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
633 
634 	mt7530_mutex_lock(priv);
635 
636 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
637 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
638 	if (ret < 0) {
639 		dev_err(priv->dev, "poll timeout\n");
640 		goto out;
641 	}
642 
643 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
644 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
645 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
646 
647 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
648 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
649 	if (ret < 0) {
650 		dev_err(priv->dev, "poll timeout\n");
651 		goto out;
652 	}
653 
654 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
655 	      MT7531_MDIO_DEV_ADDR(devad) | data;
656 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
657 
658 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
659 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
660 	if (ret < 0) {
661 		dev_err(priv->dev, "poll timeout\n");
662 		goto out;
663 	}
664 
665 out:
666 	mt7530_mutex_unlock(priv);
667 
668 	return ret;
669 }
670 
671 static int
672 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
673 {
674 	struct mt7530_dummy_poll p;
675 	int ret;
676 	u32 val;
677 
678 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
679 
680 	mt7530_mutex_lock(priv);
681 
682 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
683 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
684 	if (ret < 0) {
685 		dev_err(priv->dev, "poll timeout\n");
686 		goto out;
687 	}
688 
689 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
690 	      MT7531_MDIO_REG_ADDR(regnum);
691 
692 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
693 
694 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
695 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
696 	if (ret < 0) {
697 		dev_err(priv->dev, "poll timeout\n");
698 		goto out;
699 	}
700 
701 	ret = val & MT7531_MDIO_RW_DATA_MASK;
702 out:
703 	mt7530_mutex_unlock(priv);
704 
705 	return ret;
706 }
707 
708 static int
709 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
710 			 u16 data)
711 {
712 	struct mt7530_dummy_poll p;
713 	int ret;
714 	u32 reg;
715 
716 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
717 
718 	mt7530_mutex_lock(priv);
719 
720 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
721 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
722 	if (ret < 0) {
723 		dev_err(priv->dev, "poll timeout\n");
724 		goto out;
725 	}
726 
727 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
728 	      MT7531_MDIO_REG_ADDR(regnum) | data;
729 
730 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
731 
732 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
733 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
734 	if (ret < 0) {
735 		dev_err(priv->dev, "poll timeout\n");
736 		goto out;
737 	}
738 
739 out:
740 	mt7530_mutex_unlock(priv);
741 
742 	return ret;
743 }
744 
745 static int
746 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
747 {
748 	struct mt7530_priv *priv = bus->priv;
749 
750 	return priv->info->phy_read_c22(priv, port, regnum);
751 }
752 
753 static int
754 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
755 {
756 	struct mt7530_priv *priv = bus->priv;
757 
758 	return priv->info->phy_read_c45(priv, port, devad, regnum);
759 }
760 
761 static int
762 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
763 {
764 	struct mt7530_priv *priv = bus->priv;
765 
766 	return priv->info->phy_write_c22(priv, port, regnum, val);
767 }
768 
769 static int
770 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
771 		     u16 val)
772 {
773 	struct mt7530_priv *priv = bus->priv;
774 
775 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
776 }
777 
778 static void
779 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
780 		   uint8_t *data)
781 {
782 	int i;
783 
784 	if (stringset != ETH_SS_STATS)
785 		return;
786 
787 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
788 		ethtool_puts(&data, mt7530_mib[i].name);
789 }
790 
791 static void
792 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
793 			 uint64_t *data)
794 {
795 	struct mt7530_priv *priv = ds->priv;
796 	const struct mt7530_mib_desc *mib;
797 	u32 reg, i;
798 	u64 hi;
799 
800 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
801 		mib = &mt7530_mib[i];
802 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
803 
804 		data[i] = mt7530_read(priv, reg);
805 		if (mib->size == 2) {
806 			hi = mt7530_read(priv, reg + 4);
807 			data[i] |= hi << 32;
808 		}
809 	}
810 }
811 
812 static int
813 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
814 {
815 	if (sset != ETH_SS_STATS)
816 		return 0;
817 
818 	return ARRAY_SIZE(mt7530_mib);
819 }
820 
821 static int
822 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
823 {
824 	struct mt7530_priv *priv = ds->priv;
825 	unsigned int secs = msecs / 1000;
826 	unsigned int tmp_age_count;
827 	unsigned int error = -1;
828 	unsigned int age_count;
829 	unsigned int age_unit;
830 
831 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
832 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
833 		return -ERANGE;
834 
835 	/* iterate through all possible age_count to find the closest pair */
836 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
837 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
838 
839 		if (tmp_age_unit <= AGE_UNIT_MAX) {
840 			unsigned int tmp_error = secs -
841 				(tmp_age_count + 1) * (tmp_age_unit + 1);
842 
843 			/* found a closer pair */
844 			if (error > tmp_error) {
845 				error = tmp_error;
846 				age_count = tmp_age_count;
847 				age_unit = tmp_age_unit;
848 			}
849 
850 			/* found the exact match, so break the loop */
851 			if (!error)
852 				break;
853 		}
854 	}
855 
856 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
857 
858 	return 0;
859 }
860 
861 static const char *mt7530_p5_mode_str(unsigned int mode)
862 {
863 	switch (mode) {
864 	case MUX_PHY_P0:
865 		return "MUX PHY P0";
866 	case MUX_PHY_P4:
867 		return "MUX PHY P4";
868 	default:
869 		return "GMAC5";
870 	}
871 }
872 
873 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
874 {
875 	struct mt7530_priv *priv = ds->priv;
876 	u8 tx_delay = 0;
877 	int val;
878 
879 	mutex_lock(&priv->reg_mutex);
880 
881 	val = mt7530_read(priv, MT753X_MTRAP);
882 
883 	val &= ~MT7530_P5_PHY0_SEL & ~MT7530_P5_MAC_SEL & ~MT7530_P5_RGMII_MODE;
884 
885 	switch (priv->p5_mode) {
886 	/* MUX_PHY_P0: P0 -> P5 -> SoC MAC */
887 	case MUX_PHY_P0:
888 		val |= MT7530_P5_PHY0_SEL;
889 		fallthrough;
890 
891 	/* MUX_PHY_P4: P4 -> P5 -> SoC MAC */
892 	case MUX_PHY_P4:
893 		/* Setup the MAC by default for the cpu port */
894 		mt7530_write(priv, MT753X_PMCR_P(5), 0x56300);
895 		break;
896 
897 	/* GMAC5: P5 -> SoC MAC or external PHY */
898 	default:
899 		val |= MT7530_P5_MAC_SEL;
900 		break;
901 	}
902 
903 	/* Setup RGMII settings */
904 	if (phy_interface_mode_is_rgmii(interface)) {
905 		val |= MT7530_P5_RGMII_MODE;
906 
907 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
908 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
909 
910 		/* Don't set delay in DSA mode */
911 		if (!dsa_is_dsa_port(priv->ds, 5) &&
912 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
913 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
914 			tx_delay = 4; /* n * 0.5 ns */
915 
916 		/* P5 RGMII TX Clock Control: delay x */
917 		mt7530_write(priv, MT7530_P5RGMIITXCR,
918 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
919 
920 		/* reduce P5 RGMII Tx driving, 8mA */
921 		mt7530_write(priv, MT7530_IO_DRV_CR,
922 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
923 	}
924 
925 	mt7530_write(priv, MT753X_MTRAP, val);
926 
927 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, mode=%s, phy-mode=%s\n", val,
928 		mt7530_p5_mode_str(priv->p5_mode), phy_modes(interface));
929 
930 	mutex_unlock(&priv->reg_mutex);
931 }
932 
933 /* In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer (DLL)
934  * of the Open Systems Interconnection basic reference model (OSI/RM) are
935  * described; the medium access control (MAC) and logical link control (LLC)
936  * sublayers. The MAC sublayer is the one facing the physical layer.
937  *
938  * In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A
939  * Bridge component comprises a MAC Relay Entity for interconnecting the Ports
940  * of the Bridge, at least two Ports, and higher layer entities with at least a
941  * Spanning Tree Protocol Entity included.
942  *
943  * Each Bridge Port also functions as an end station and shall provide the MAC
944  * Service to an LLC Entity. Each instance of the MAC Service is provided to a
945  * distinct LLC Entity that supports protocol identification, multiplexing, and
946  * demultiplexing, for protocol data unit (PDU) transmission and reception by
947  * one or more higher layer entities.
948  *
949  * It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC
950  * Entity associated with each Bridge Port is modeled as being directly
951  * connected to the attached Local Area Network (LAN).
952  *
953  * On the switch with CPU port architecture, CPU port functions as Management
954  * Port, and the Management Port functionality is provided by software which
955  * functions as an end station. Software is connected to an IEEE 802 LAN that is
956  * wholly contained within the system that incorporates the Bridge. Software
957  * provides access to the LLC Entity associated with each Bridge Port by the
958  * value of the source port field on the special tag on the frame received by
959  * software.
960  *
961  * We call frames that carry control information to determine the active
962  * topology and current extent of each Virtual Local Area Network (VLAN), i.e.,
963  * spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN Registration
964  * Protocol Data Units (MVRPDUs), and frames from other link constrained
965  * protocols, such as Extensible Authentication Protocol over LAN (EAPOL) and
966  * Link Layer Discovery Protocol (LLDP), link-local frames. They are not
967  * forwarded by a Bridge. Permanently configured entries in the filtering
968  * database (FDB) ensure that such frames are discarded by the Forwarding
969  * Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in detail:
970  *
971  * Each of the reserved MAC addresses specified in Table 8-1
972  * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be
973  * permanently configured in the FDB in C-VLAN components and ERs.
974  *
975  * Each of the reserved MAC addresses specified in Table 8-2
976  * (01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently
977  * configured in the FDB in S-VLAN components.
978  *
979  * Each of the reserved MAC addresses specified in Table 8-3
980  * (01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB in
981  * TPMR components.
982  *
983  * The FDB entries for reserved MAC addresses shall specify filtering for all
984  * Bridge Ports and all VIDs. Management shall not provide the capability to
985  * modify or remove entries for reserved MAC addresses.
986  *
987  * The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of
988  * propagation of PDUs within a Bridged Network, as follows:
989  *
990  *   The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that no
991  *   conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN)
992  *   component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward.
993  *   PDUs transmitted using this destination address, or any other addresses
994  *   that appear in Table 8-1, Table 8-2, and Table 8-3
995  *   (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can
996  *   therefore travel no further than those stations that can be reached via a
997  *   single individual LAN from the originating station.
998  *
999  *   The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an
1000  *   address that no conformant S-VLAN component, C-VLAN component, or MAC
1001  *   Bridge can forward; however, this address is relayed by a TPMR component.
1002  *   PDUs using this destination address, or any of the other addresses that
1003  *   appear in both Table 8-1 and Table 8-2 but not in Table 8-3
1004  *   (01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed by
1005  *   any TPMRs but will propagate no further than the nearest S-VLAN component,
1006  *   C-VLAN component, or MAC Bridge.
1007  *
1008  *   The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an address
1009  *   that no conformant C-VLAN component, MAC Bridge can forward; however, it is
1010  *   relayed by TPMR components and S-VLAN components. PDUs using this
1011  *   destination address, or any of the other addresses that appear in Table 8-1
1012  *   but not in either Table 8-2 or Table 8-3 (01-80-C2-00-00-[00,0B,0C,0D,0F]),
1013  *   will be relayed by TPMR components and S-VLAN components but will propagate
1014  *   no further than the nearest C-VLAN component or MAC Bridge.
1015  *
1016  * Because the LLC Entity associated with each Bridge Port is provided via CPU
1017  * port, we must not filter these frames but forward them to CPU port.
1018  *
1019  * In a Bridge, the transmission Port is majorly decided by ingress and egress
1020  * rules, FDB, and spanning tree Port State functions of the Forwarding Process.
1021  * For link-local frames, only CPU port should be designated as destination port
1022  * in the FDB, and the other functions of the Forwarding Process must not
1023  * interfere with the decision of the transmission Port. We call this process
1024  * trapping frames to CPU port.
1025  *
1026  * Therefore, on the switch with CPU port architecture, link-local frames must
1027  * be trapped to CPU port, and certain link-local frames received by a Port of a
1028  * Bridge comprising a TPMR component or an S-VLAN component must be excluded
1029  * from it.
1030  *
1031  * A Bridge of the switch with CPU port architecture cannot comprise a Two-Port
1032  * MAC Relay (TPMR) component as a TPMR component supports only a subset of the
1033  * functionality of a MAC Bridge. A Bridge comprising two Ports (Management Port
1034  * doesn't count) of this architecture will either function as a standard MAC
1035  * Bridge or a standard VLAN Bridge.
1036  *
1037  * Therefore, a Bridge of this architecture can only comprise S-VLAN components,
1038  * C-VLAN components, or MAC Bridge components. Since there's no TPMR component,
1039  * we don't need to relay PDUs using the destination addresses specified on the
1040  * Nearest non-TPMR section, and the proportion of the Nearest Customer Bridge
1041  * section where they must be relayed by TPMR components.
1042  *
1043  * One option to trap link-local frames to CPU port is to add static FDB entries
1044  * with CPU port designated as destination port. However, because that
1045  * Independent VLAN Learning (IVL) is being used on every VID, each entry only
1046  * applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC
1047  * Bridge component or a C-VLAN component, there would have to be 16 times 4096
1048  * entries. This switch intellectual property can only hold a maximum of 2048
1049  * entries. Using this option, there also isn't a mechanism to prevent
1050  * link-local frames from being discarded when the spanning tree Port State of
1051  * the reception Port is discarding.
1052  *
1053  * The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4
1054  * registers. Whilst this applies to every VID, it doesn't contain all of the
1055  * reserved MAC addresses without affecting the remaining Standard Group MAC
1056  * Addresses. The REV_UN frame tag utilised using the RGAC4 register covers the
1057  * remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination
1058  * addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF
1059  * destination addresses which may be relayed by MAC Bridges or VLAN Bridges.
1060  * The latter option provides better but not complete conformance.
1061  *
1062  * This switch intellectual property also does not provide a mechanism to trap
1063  * link-local frames with specific destination addresses to CPU port by Bridge,
1064  * to conform to the filtering rules for the distinct Bridge components.
1065  *
1066  * Therefore, regardless of the type of the Bridge component, link-local frames
1067  * with these destination addresses will be trapped to CPU port:
1068  *
1069  * 01-80-C2-00-00-[00,01,02,03,0E]
1070  *
1071  * In a Bridge comprising a MAC Bridge component or a C-VLAN component:
1072  *
1073  *   Link-local frames with these destination addresses won't be trapped to CPU
1074  *   port which won't conform to IEEE Std 802.1Q-2022:
1075  *
1076  *   01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F]
1077  *
1078  * In a Bridge comprising an S-VLAN component:
1079  *
1080  *   Link-local frames with these destination addresses will be trapped to CPU
1081  *   port which won't conform to IEEE Std 802.1Q-2022:
1082  *
1083  *   01-80-C2-00-00-00
1084  *
1085  *   Link-local frames with these destination addresses won't be trapped to CPU
1086  *   port which won't conform to IEEE Std 802.1Q-2022:
1087  *
1088  *   01-80-C2-00-00-[04,05,06,07,08,09,0A]
1089  *
1090  * To trap link-local frames to CPU port as conformant as this switch
1091  * intellectual property can allow, link-local frames are made to be regarded as
1092  * Bridge Protocol Data Units (BPDUs). This is because this switch intellectual
1093  * property only lets the frames regarded as BPDUs bypass the spanning tree Port
1094  * State function of the Forwarding Process.
1095  *
1096  * The only remaining interference is the ingress rules. When the reception Port
1097  * has no PVID assigned on software, VLAN-untagged frames won't be allowed in.
1098  * There doesn't seem to be a mechanism on the switch intellectual property to
1099  * have link-local frames bypass this function of the Forwarding Process.
1100  */
1101 static void
1102 mt753x_trap_frames(struct mt7530_priv *priv)
1103 {
1104 	/* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
1105 	 * VLAN-untagged.
1106 	 */
1107 	mt7530_rmw(priv, MT753X_BPC,
1108 		   PAE_BPDU_FR | PAE_EG_TAG_MASK | PAE_PORT_FW_MASK |
1109 			   BPDU_EG_TAG_MASK | BPDU_PORT_FW_MASK,
1110 		   PAE_BPDU_FR | PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1111 			   PAE_PORT_FW(TO_CPU_FW_CPU_ONLY) |
1112 			   BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1113 			   TO_CPU_FW_CPU_ONLY);
1114 
1115 	/* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
1116 	 * them VLAN-untagged.
1117 	 */
1118 	mt7530_rmw(priv, MT753X_RGAC1,
1119 		   R02_BPDU_FR | R02_EG_TAG_MASK | R02_PORT_FW_MASK |
1120 			   R01_BPDU_FR | R01_EG_TAG_MASK | R01_PORT_FW_MASK,
1121 		   R02_BPDU_FR | R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1122 			   R02_PORT_FW(TO_CPU_FW_CPU_ONLY) | R01_BPDU_FR |
1123 			   R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1124 			   TO_CPU_FW_CPU_ONLY);
1125 
1126 	/* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
1127 	 * them VLAN-untagged.
1128 	 */
1129 	mt7530_rmw(priv, MT753X_RGAC2,
1130 		   R0E_BPDU_FR | R0E_EG_TAG_MASK | R0E_PORT_FW_MASK |
1131 			   R03_BPDU_FR | R03_EG_TAG_MASK | R03_PORT_FW_MASK,
1132 		   R0E_BPDU_FR | R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1133 			   R0E_PORT_FW(TO_CPU_FW_CPU_ONLY) | R03_BPDU_FR |
1134 			   R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1135 			   TO_CPU_FW_CPU_ONLY);
1136 }
1137 
1138 static void
1139 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1140 {
1141 	struct mt7530_priv *priv = ds->priv;
1142 
1143 	/* Enable Mediatek header mode on the cpu port */
1144 	mt7530_write(priv, MT7530_PVC_P(port),
1145 		     PORT_SPEC_TAG);
1146 
1147 	/* Enable flooding on the CPU port */
1148 	mt7530_set(priv, MT753X_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1149 		   UNU_FFP(BIT(port)));
1150 
1151 	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1152 	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1153 	 * is affine to the inbound user port.
1154 	 */
1155 	if (priv->id == ID_MT7531 || priv->id == ID_MT7988 ||
1156 	    priv->id == ID_EN7581)
1157 		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1158 
1159 	/* CPU port gets connected to all user ports of
1160 	 * the switch.
1161 	 */
1162 	mt7530_write(priv, MT7530_PCR_P(port),
1163 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1164 
1165 	/* Set to fallback mode for independent VLAN learning */
1166 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1167 		   MT7530_PORT_FALLBACK_MODE);
1168 }
1169 
1170 static int
1171 mt7530_port_enable(struct dsa_switch *ds, int port,
1172 		   struct phy_device *phy)
1173 {
1174 	struct dsa_port *dp = dsa_to_port(ds, port);
1175 	struct mt7530_priv *priv = ds->priv;
1176 
1177 	mutex_lock(&priv->reg_mutex);
1178 
1179 	/* Allow the user port gets connected to the cpu port and also
1180 	 * restore the port matrix if the port is the member of a certain
1181 	 * bridge.
1182 	 */
1183 	if (dsa_port_is_user(dp)) {
1184 		struct dsa_port *cpu_dp = dp->cpu_dp;
1185 
1186 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1187 	}
1188 	priv->ports[port].enable = true;
1189 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1190 		   priv->ports[port].pm);
1191 
1192 	mutex_unlock(&priv->reg_mutex);
1193 
1194 	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
1195 		return 0;
1196 
1197 	if (port == 5)
1198 		mt7530_clear(priv, MT753X_MTRAP, MT7530_P5_DIS);
1199 	else if (port == 6)
1200 		mt7530_clear(priv, MT753X_MTRAP, MT7530_P6_DIS);
1201 
1202 	return 0;
1203 }
1204 
1205 static void
1206 mt7530_port_disable(struct dsa_switch *ds, int port)
1207 {
1208 	struct mt7530_priv *priv = ds->priv;
1209 
1210 	mutex_lock(&priv->reg_mutex);
1211 
1212 	/* Clear up all port matrix which could be restored in the next
1213 	 * enablement for the port.
1214 	 */
1215 	priv->ports[port].enable = false;
1216 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1217 		   PCR_MATRIX_CLR);
1218 
1219 	mutex_unlock(&priv->reg_mutex);
1220 
1221 	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
1222 		return;
1223 
1224 	/* Do not set MT7530_P5_DIS when port 5 is being used for PHY muxing. */
1225 	if (port == 5 && priv->p5_mode == GMAC5)
1226 		mt7530_set(priv, MT753X_MTRAP, MT7530_P5_DIS);
1227 	else if (port == 6)
1228 		mt7530_set(priv, MT753X_MTRAP, MT7530_P6_DIS);
1229 }
1230 
1231 static int
1232 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1233 {
1234 	struct mt7530_priv *priv = ds->priv;
1235 	int length;
1236 	u32 val;
1237 
1238 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1239 	 * largest MTU of the user ports. Because the switch only has a global
1240 	 * RX length register, only allowing CPU port here is enough.
1241 	 */
1242 	if (!dsa_is_cpu_port(ds, port))
1243 		return 0;
1244 
1245 	mt7530_mutex_lock(priv);
1246 
1247 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1248 	val &= ~MAX_RX_PKT_LEN_MASK;
1249 
1250 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1251 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1252 	if (length <= 1522) {
1253 		val |= MAX_RX_PKT_LEN_1522;
1254 	} else if (length <= 1536) {
1255 		val |= MAX_RX_PKT_LEN_1536;
1256 	} else if (length <= 1552) {
1257 		val |= MAX_RX_PKT_LEN_1552;
1258 	} else {
1259 		val &= ~MAX_RX_JUMBO_MASK;
1260 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1261 		val |= MAX_RX_PKT_LEN_JUMBO;
1262 	}
1263 
1264 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1265 
1266 	mt7530_mutex_unlock(priv);
1267 
1268 	return 0;
1269 }
1270 
1271 static int
1272 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1273 {
1274 	return MT7530_MAX_MTU;
1275 }
1276 
1277 static void
1278 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1279 {
1280 	struct mt7530_priv *priv = ds->priv;
1281 	u32 stp_state;
1282 
1283 	switch (state) {
1284 	case BR_STATE_DISABLED:
1285 		stp_state = MT7530_STP_DISABLED;
1286 		break;
1287 	case BR_STATE_BLOCKING:
1288 		stp_state = MT7530_STP_BLOCKING;
1289 		break;
1290 	case BR_STATE_LISTENING:
1291 		stp_state = MT7530_STP_LISTENING;
1292 		break;
1293 	case BR_STATE_LEARNING:
1294 		stp_state = MT7530_STP_LEARNING;
1295 		break;
1296 	case BR_STATE_FORWARDING:
1297 	default:
1298 		stp_state = MT7530_STP_FORWARDING;
1299 		break;
1300 	}
1301 
1302 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1303 		   FID_PST(FID_BRIDGED, stp_state));
1304 }
1305 
1306 static void mt7530_update_port_member(struct mt7530_priv *priv, int port,
1307 				      const struct net_device *bridge_dev,
1308 				      bool join) __must_hold(&priv->reg_mutex)
1309 {
1310 	struct dsa_port *dp = dsa_to_port(priv->ds, port), *other_dp;
1311 	struct mt7530_port *p = &priv->ports[port], *other_p;
1312 	struct dsa_port *cpu_dp = dp->cpu_dp;
1313 	u32 port_bitmap = BIT(cpu_dp->index);
1314 	int other_port;
1315 	bool isolated;
1316 
1317 	dsa_switch_for_each_user_port(other_dp, priv->ds) {
1318 		other_port = other_dp->index;
1319 		other_p = &priv->ports[other_port];
1320 
1321 		if (dp == other_dp)
1322 			continue;
1323 
1324 		/* Add/remove this port to/from the port matrix of the other
1325 		 * ports in the same bridge. If the port is disabled, port
1326 		 * matrix is kept and not being setup until the port becomes
1327 		 * enabled.
1328 		 */
1329 		if (!dsa_port_offloads_bridge_dev(other_dp, bridge_dev))
1330 			continue;
1331 
1332 		isolated = p->isolated && other_p->isolated;
1333 
1334 		if (join && !isolated) {
1335 			other_p->pm |= PCR_MATRIX(BIT(port));
1336 			port_bitmap |= BIT(other_port);
1337 		} else {
1338 			other_p->pm &= ~PCR_MATRIX(BIT(port));
1339 		}
1340 
1341 		if (other_p->enable)
1342 			mt7530_rmw(priv, MT7530_PCR_P(other_port),
1343 				   PCR_MATRIX_MASK, other_p->pm);
1344 	}
1345 
1346 	/* Add/remove the all other ports to this port matrix. For !join
1347 	 * (leaving the bridge), only the CPU port will remain in the port matrix
1348 	 * of this port.
1349 	 */
1350 	p->pm = PCR_MATRIX(port_bitmap);
1351 	if (priv->ports[port].enable)
1352 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, p->pm);
1353 }
1354 
1355 static int
1356 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1357 			     struct switchdev_brport_flags flags,
1358 			     struct netlink_ext_ack *extack)
1359 {
1360 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1361 			   BR_BCAST_FLOOD | BR_ISOLATED))
1362 		return -EINVAL;
1363 
1364 	return 0;
1365 }
1366 
1367 static int
1368 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1369 			 struct switchdev_brport_flags flags,
1370 			 struct netlink_ext_ack *extack)
1371 {
1372 	struct mt7530_priv *priv = ds->priv;
1373 
1374 	if (flags.mask & BR_LEARNING)
1375 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1376 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1377 
1378 	if (flags.mask & BR_FLOOD)
1379 		mt7530_rmw(priv, MT753X_MFC, UNU_FFP(BIT(port)),
1380 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1381 
1382 	if (flags.mask & BR_MCAST_FLOOD)
1383 		mt7530_rmw(priv, MT753X_MFC, UNM_FFP(BIT(port)),
1384 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1385 
1386 	if (flags.mask & BR_BCAST_FLOOD)
1387 		mt7530_rmw(priv, MT753X_MFC, BC_FFP(BIT(port)),
1388 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1389 
1390 	if (flags.mask & BR_ISOLATED) {
1391 		struct dsa_port *dp = dsa_to_port(ds, port);
1392 		struct net_device *bridge_dev = dsa_port_bridge_dev_get(dp);
1393 
1394 		priv->ports[port].isolated = !!(flags.val & BR_ISOLATED);
1395 
1396 		mutex_lock(&priv->reg_mutex);
1397 		mt7530_update_port_member(priv, port, bridge_dev, true);
1398 		mutex_unlock(&priv->reg_mutex);
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 static int
1405 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1406 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1407 			struct netlink_ext_ack *extack)
1408 {
1409 	struct mt7530_priv *priv = ds->priv;
1410 
1411 	mutex_lock(&priv->reg_mutex);
1412 
1413 	mt7530_update_port_member(priv, port, bridge.dev, true);
1414 
1415 	/* Set to fallback mode for independent VLAN learning */
1416 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1417 		   MT7530_PORT_FALLBACK_MODE);
1418 
1419 	mutex_unlock(&priv->reg_mutex);
1420 
1421 	return 0;
1422 }
1423 
1424 static void
1425 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1426 {
1427 	struct mt7530_priv *priv = ds->priv;
1428 	bool all_user_ports_removed = true;
1429 	int i;
1430 
1431 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1432 	 * bridge. Don't set standalone ports to fallback mode.
1433 	 */
1434 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1435 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1436 			   MT7530_PORT_FALLBACK_MODE);
1437 
1438 	mt7530_rmw(priv, MT7530_PVC_P(port),
1439 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1440 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1441 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1442 		   MT7530_VLAN_ACC_ALL);
1443 
1444 	/* Set PVID to 0 */
1445 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1446 		   G0_PORT_VID_DEF);
1447 
1448 	for (i = 0; i < priv->ds->num_ports; i++) {
1449 		if (dsa_is_user_port(ds, i) &&
1450 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1451 			all_user_ports_removed = false;
1452 			break;
1453 		}
1454 	}
1455 
1456 	/* CPU port also does the same thing until all user ports belonging to
1457 	 * the CPU port get out of VLAN filtering mode.
1458 	 */
1459 	if (all_user_ports_removed) {
1460 		struct dsa_port *dp = dsa_to_port(ds, port);
1461 		struct dsa_port *cpu_dp = dp->cpu_dp;
1462 
1463 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1464 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1465 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1466 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1467 	}
1468 }
1469 
1470 static void
1471 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1472 {
1473 	struct mt7530_priv *priv = ds->priv;
1474 
1475 	/* Trapped into security mode allows packet forwarding through VLAN
1476 	 * table lookup.
1477 	 */
1478 	if (dsa_is_user_port(ds, port)) {
1479 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1480 			   MT7530_PORT_SECURITY_MODE);
1481 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1482 			   G0_PORT_VID(priv->ports[port].pvid));
1483 
1484 		/* Only accept tagged frames if PVID is not set */
1485 		if (!priv->ports[port].pvid)
1486 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1487 				   MT7530_VLAN_ACC_TAGGED);
1488 
1489 		/* Set the port as a user port which is to be able to recognize
1490 		 * VID from incoming packets before fetching entry within the
1491 		 * VLAN table.
1492 		 */
1493 		mt7530_rmw(priv, MT7530_PVC_P(port),
1494 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1495 			   VLAN_ATTR(MT7530_VLAN_USER) |
1496 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1497 	} else {
1498 		/* Also set CPU ports to the "user" VLAN port attribute, to
1499 		 * allow VLAN classification, but keep the EG_TAG attribute as
1500 		 * "consistent" (i.o.w. don't change its value) for packets
1501 		 * received by the switch from the CPU, so that tagged packets
1502 		 * are forwarded to user ports as tagged, and untagged as
1503 		 * untagged.
1504 		 */
1505 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1506 			   VLAN_ATTR(MT7530_VLAN_USER));
1507 	}
1508 }
1509 
1510 static void
1511 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1512 			 struct dsa_bridge bridge)
1513 {
1514 	struct mt7530_priv *priv = ds->priv;
1515 
1516 	mutex_lock(&priv->reg_mutex);
1517 
1518 	mt7530_update_port_member(priv, port, bridge.dev, false);
1519 
1520 	/* When a port is removed from the bridge, the port would be set up
1521 	 * back to the default as is at initial boot which is a VLAN-unaware
1522 	 * port.
1523 	 */
1524 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1525 		   MT7530_PORT_MATRIX_MODE);
1526 
1527 	mutex_unlock(&priv->reg_mutex);
1528 }
1529 
1530 static int
1531 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1532 		    const unsigned char *addr, u16 vid,
1533 		    struct dsa_db db)
1534 {
1535 	struct mt7530_priv *priv = ds->priv;
1536 	int ret;
1537 	u8 port_mask = BIT(port);
1538 
1539 	mutex_lock(&priv->reg_mutex);
1540 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1541 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1542 	mutex_unlock(&priv->reg_mutex);
1543 
1544 	return ret;
1545 }
1546 
1547 static int
1548 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1549 		    const unsigned char *addr, u16 vid,
1550 		    struct dsa_db db)
1551 {
1552 	struct mt7530_priv *priv = ds->priv;
1553 	int ret;
1554 	u8 port_mask = BIT(port);
1555 
1556 	mutex_lock(&priv->reg_mutex);
1557 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1558 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1559 	mutex_unlock(&priv->reg_mutex);
1560 
1561 	return ret;
1562 }
1563 
1564 static int
1565 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1566 		     dsa_fdb_dump_cb_t *cb, void *data)
1567 {
1568 	struct mt7530_priv *priv = ds->priv;
1569 	struct mt7530_fdb _fdb = { 0 };
1570 	int cnt = MT7530_NUM_FDB_RECORDS;
1571 	int ret = 0;
1572 	u32 rsp = 0;
1573 
1574 	mutex_lock(&priv->reg_mutex);
1575 
1576 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1577 	if (ret < 0)
1578 		goto err;
1579 
1580 	do {
1581 		if (rsp & ATC_SRCH_HIT) {
1582 			mt7530_fdb_read(priv, &_fdb);
1583 			if (_fdb.port_mask & BIT(port)) {
1584 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1585 					 data);
1586 				if (ret < 0)
1587 					break;
1588 			}
1589 		}
1590 	} while (--cnt &&
1591 		 !(rsp & ATC_SRCH_END) &&
1592 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1593 err:
1594 	mutex_unlock(&priv->reg_mutex);
1595 
1596 	return 0;
1597 }
1598 
1599 static int
1600 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1601 		    const struct switchdev_obj_port_mdb *mdb,
1602 		    struct dsa_db db)
1603 {
1604 	struct mt7530_priv *priv = ds->priv;
1605 	const u8 *addr = mdb->addr;
1606 	u16 vid = mdb->vid;
1607 	u8 port_mask = 0;
1608 	int ret;
1609 
1610 	mutex_lock(&priv->reg_mutex);
1611 
1612 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1613 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1614 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1615 			    & PORT_MAP_MASK;
1616 
1617 	port_mask |= BIT(port);
1618 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1619 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1620 
1621 	mutex_unlock(&priv->reg_mutex);
1622 
1623 	return ret;
1624 }
1625 
1626 static int
1627 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1628 		    const struct switchdev_obj_port_mdb *mdb,
1629 		    struct dsa_db db)
1630 {
1631 	struct mt7530_priv *priv = ds->priv;
1632 	const u8 *addr = mdb->addr;
1633 	u16 vid = mdb->vid;
1634 	u8 port_mask = 0;
1635 	int ret;
1636 
1637 	mutex_lock(&priv->reg_mutex);
1638 
1639 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1640 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1641 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1642 			    & PORT_MAP_MASK;
1643 
1644 	port_mask &= ~BIT(port);
1645 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1646 			 port_mask ? STATIC_ENT : STATIC_EMP);
1647 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1648 
1649 	mutex_unlock(&priv->reg_mutex);
1650 
1651 	return ret;
1652 }
1653 
1654 static int
1655 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1656 {
1657 	struct mt7530_dummy_poll p;
1658 	u32 val;
1659 	int ret;
1660 
1661 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1662 	mt7530_write(priv, MT7530_VTCR, val);
1663 
1664 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1665 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1666 				 !(val & VTCR_BUSY), 20, 20000);
1667 	if (ret < 0) {
1668 		dev_err(priv->dev, "poll timeout\n");
1669 		return ret;
1670 	}
1671 
1672 	val = mt7530_read(priv, MT7530_VTCR);
1673 	if (val & VTCR_INVALID) {
1674 		dev_err(priv->dev, "read VTCR invalid\n");
1675 		return -EINVAL;
1676 	}
1677 
1678 	return 0;
1679 }
1680 
1681 static int
1682 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1683 			   struct netlink_ext_ack *extack)
1684 {
1685 	struct dsa_port *dp = dsa_to_port(ds, port);
1686 	struct dsa_port *cpu_dp = dp->cpu_dp;
1687 
1688 	if (vlan_filtering) {
1689 		/* The port is being kept as VLAN-unaware port when bridge is
1690 		 * set up with vlan_filtering not being set, Otherwise, the
1691 		 * port and the corresponding CPU port is required the setup
1692 		 * for becoming a VLAN-aware port.
1693 		 */
1694 		mt7530_port_set_vlan_aware(ds, port);
1695 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1696 	} else {
1697 		mt7530_port_set_vlan_unaware(ds, port);
1698 	}
1699 
1700 	return 0;
1701 }
1702 
1703 static void
1704 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1705 		   struct mt7530_hw_vlan_entry *entry)
1706 {
1707 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1708 	u8 new_members;
1709 	u32 val;
1710 
1711 	new_members = entry->old_members | BIT(entry->port);
1712 
1713 	/* Validate the entry with independent learning, create egress tag per
1714 	 * VLAN and joining the port as one of the port members.
1715 	 */
1716 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1717 	      VLAN_VALID;
1718 	mt7530_write(priv, MT7530_VAWD1, val);
1719 
1720 	/* Decide whether adding tag or not for those outgoing packets from the
1721 	 * port inside the VLAN.
1722 	 * CPU port is always taken as a tagged port for serving more than one
1723 	 * VLANs across and also being applied with egress type stack mode for
1724 	 * that VLAN tags would be appended after hardware special tag used as
1725 	 * DSA tag.
1726 	 */
1727 	if (dsa_port_is_cpu(dp))
1728 		val = MT7530_VLAN_EGRESS_STACK;
1729 	else if (entry->untagged)
1730 		val = MT7530_VLAN_EGRESS_UNTAG;
1731 	else
1732 		val = MT7530_VLAN_EGRESS_TAG;
1733 	mt7530_rmw(priv, MT7530_VAWD2,
1734 		   ETAG_CTRL_P_MASK(entry->port),
1735 		   ETAG_CTRL_P(entry->port, val));
1736 }
1737 
1738 static void
1739 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1740 		   struct mt7530_hw_vlan_entry *entry)
1741 {
1742 	u8 new_members;
1743 	u32 val;
1744 
1745 	new_members = entry->old_members & ~BIT(entry->port);
1746 
1747 	val = mt7530_read(priv, MT7530_VAWD1);
1748 	if (!(val & VLAN_VALID)) {
1749 		dev_err(priv->dev,
1750 			"Cannot be deleted due to invalid entry\n");
1751 		return;
1752 	}
1753 
1754 	if (new_members) {
1755 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1756 		      VLAN_VALID;
1757 		mt7530_write(priv, MT7530_VAWD1, val);
1758 	} else {
1759 		mt7530_write(priv, MT7530_VAWD1, 0);
1760 		mt7530_write(priv, MT7530_VAWD2, 0);
1761 	}
1762 }
1763 
1764 static void
1765 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1766 		      struct mt7530_hw_vlan_entry *entry,
1767 		      mt7530_vlan_op vlan_op)
1768 {
1769 	u32 val;
1770 
1771 	/* Fetch entry */
1772 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1773 
1774 	val = mt7530_read(priv, MT7530_VAWD1);
1775 
1776 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1777 
1778 	/* Manipulate entry */
1779 	vlan_op(priv, entry);
1780 
1781 	/* Flush result to hardware */
1782 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1783 }
1784 
1785 static int
1786 mt7530_setup_vlan0(struct mt7530_priv *priv)
1787 {
1788 	u32 val;
1789 
1790 	/* Validate the entry with independent learning, keep the original
1791 	 * ingress tag attribute.
1792 	 */
1793 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1794 	      VLAN_VALID;
1795 	mt7530_write(priv, MT7530_VAWD1, val);
1796 
1797 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1798 }
1799 
1800 static int
1801 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1802 		     const struct switchdev_obj_port_vlan *vlan,
1803 		     struct netlink_ext_ack *extack)
1804 {
1805 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1806 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1807 	struct mt7530_hw_vlan_entry new_entry;
1808 	struct mt7530_priv *priv = ds->priv;
1809 
1810 	mutex_lock(&priv->reg_mutex);
1811 
1812 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1813 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1814 
1815 	if (pvid) {
1816 		priv->ports[port].pvid = vlan->vid;
1817 
1818 		/* Accept all frames if PVID is set */
1819 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1820 			   MT7530_VLAN_ACC_ALL);
1821 
1822 		/* Only configure PVID if VLAN filtering is enabled */
1823 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1824 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1825 				   G0_PORT_VID_MASK,
1826 				   G0_PORT_VID(vlan->vid));
1827 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1828 		/* This VLAN is overwritten without PVID, so unset it */
1829 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1830 
1831 		/* Only accept tagged frames if the port is VLAN-aware */
1832 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1833 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1834 				   MT7530_VLAN_ACC_TAGGED);
1835 
1836 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1837 			   G0_PORT_VID_DEF);
1838 	}
1839 
1840 	mutex_unlock(&priv->reg_mutex);
1841 
1842 	return 0;
1843 }
1844 
1845 static int
1846 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1847 		     const struct switchdev_obj_port_vlan *vlan)
1848 {
1849 	struct mt7530_hw_vlan_entry target_entry;
1850 	struct mt7530_priv *priv = ds->priv;
1851 
1852 	mutex_lock(&priv->reg_mutex);
1853 
1854 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1855 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1856 			      mt7530_hw_vlan_del);
1857 
1858 	/* PVID is being restored to the default whenever the PVID port
1859 	 * is being removed from the VLAN.
1860 	 */
1861 	if (priv->ports[port].pvid == vlan->vid) {
1862 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1863 
1864 		/* Only accept tagged frames if the port is VLAN-aware */
1865 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1866 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1867 				   MT7530_VLAN_ACC_TAGGED);
1868 
1869 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1870 			   G0_PORT_VID_DEF);
1871 	}
1872 
1873 
1874 	mutex_unlock(&priv->reg_mutex);
1875 
1876 	return 0;
1877 }
1878 
1879 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1880 				  struct dsa_mall_mirror_tc_entry *mirror,
1881 				  bool ingress, struct netlink_ext_ack *extack)
1882 {
1883 	struct mt7530_priv *priv = ds->priv;
1884 	int monitor_port;
1885 	u32 val;
1886 
1887 	/* Check for existent entry */
1888 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1889 		return -EEXIST;
1890 
1891 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1892 
1893 	/* MT7530 only supports one monitor port */
1894 	monitor_port = MT753X_MIRROR_PORT_GET(priv->id, val);
1895 	if (val & MT753X_MIRROR_EN(priv->id) &&
1896 	    monitor_port != mirror->to_local_port)
1897 		return -EEXIST;
1898 
1899 	val |= MT753X_MIRROR_EN(priv->id);
1900 	val &= ~MT753X_MIRROR_PORT_MASK(priv->id);
1901 	val |= MT753X_MIRROR_PORT_SET(priv->id, mirror->to_local_port);
1902 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1903 
1904 	val = mt7530_read(priv, MT7530_PCR_P(port));
1905 	if (ingress) {
1906 		val |= PORT_RX_MIR;
1907 		priv->mirror_rx |= BIT(port);
1908 	} else {
1909 		val |= PORT_TX_MIR;
1910 		priv->mirror_tx |= BIT(port);
1911 	}
1912 	mt7530_write(priv, MT7530_PCR_P(port), val);
1913 
1914 	return 0;
1915 }
1916 
1917 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1918 				   struct dsa_mall_mirror_tc_entry *mirror)
1919 {
1920 	struct mt7530_priv *priv = ds->priv;
1921 	u32 val;
1922 
1923 	val = mt7530_read(priv, MT7530_PCR_P(port));
1924 	if (mirror->ingress) {
1925 		val &= ~PORT_RX_MIR;
1926 		priv->mirror_rx &= ~BIT(port);
1927 	} else {
1928 		val &= ~PORT_TX_MIR;
1929 		priv->mirror_tx &= ~BIT(port);
1930 	}
1931 	mt7530_write(priv, MT7530_PCR_P(port), val);
1932 
1933 	if (!priv->mirror_rx && !priv->mirror_tx) {
1934 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1935 		val &= ~MT753X_MIRROR_EN(priv->id);
1936 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1937 	}
1938 }
1939 
1940 static enum dsa_tag_protocol
1941 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1942 		     enum dsa_tag_protocol mp)
1943 {
1944 	return DSA_TAG_PROTO_MTK;
1945 }
1946 
1947 #ifdef CONFIG_GPIOLIB
1948 static inline u32
1949 mt7530_gpio_to_bit(unsigned int offset)
1950 {
1951 	/* Map GPIO offset to register bit
1952 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1953 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1954 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1955 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1956 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1957 	 */
1958 	return BIT(offset + offset / 3);
1959 }
1960 
1961 static int
1962 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1963 {
1964 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1965 	u32 bit = mt7530_gpio_to_bit(offset);
1966 
1967 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1968 }
1969 
1970 static void
1971 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1972 {
1973 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1974 	u32 bit = mt7530_gpio_to_bit(offset);
1975 
1976 	if (value)
1977 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1978 	else
1979 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1980 }
1981 
1982 static int
1983 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1984 {
1985 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1986 	u32 bit = mt7530_gpio_to_bit(offset);
1987 
1988 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1989 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1990 }
1991 
1992 static int
1993 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1994 {
1995 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1996 	u32 bit = mt7530_gpio_to_bit(offset);
1997 
1998 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1999 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
2000 
2001 	return 0;
2002 }
2003 
2004 static int
2005 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
2006 {
2007 	struct mt7530_priv *priv = gpiochip_get_data(gc);
2008 	u32 bit = mt7530_gpio_to_bit(offset);
2009 
2010 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
2011 
2012 	if (value)
2013 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
2014 	else
2015 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
2016 
2017 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
2018 
2019 	return 0;
2020 }
2021 
2022 static int
2023 mt7530_setup_gpio(struct mt7530_priv *priv)
2024 {
2025 	struct device *dev = priv->dev;
2026 	struct gpio_chip *gc;
2027 
2028 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
2029 	if (!gc)
2030 		return -ENOMEM;
2031 
2032 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
2033 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
2034 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
2035 
2036 	gc->label = "mt7530";
2037 	gc->parent = dev;
2038 	gc->owner = THIS_MODULE;
2039 	gc->get_direction = mt7530_gpio_get_direction;
2040 	gc->direction_input = mt7530_gpio_direction_input;
2041 	gc->direction_output = mt7530_gpio_direction_output;
2042 	gc->get = mt7530_gpio_get;
2043 	gc->set = mt7530_gpio_set;
2044 	gc->base = -1;
2045 	gc->ngpio = 15;
2046 	gc->can_sleep = true;
2047 
2048 	return devm_gpiochip_add_data(dev, gc, priv);
2049 }
2050 #endif /* CONFIG_GPIOLIB */
2051 
2052 static irqreturn_t
2053 mt7530_irq_thread_fn(int irq, void *dev_id)
2054 {
2055 	struct mt7530_priv *priv = dev_id;
2056 	bool handled = false;
2057 	u32 val;
2058 	int p;
2059 
2060 	mt7530_mutex_lock(priv);
2061 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
2062 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
2063 	mt7530_mutex_unlock(priv);
2064 
2065 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2066 		if (BIT(p) & val) {
2067 			unsigned int irq;
2068 
2069 			irq = irq_find_mapping(priv->irq_domain, p);
2070 			handle_nested_irq(irq);
2071 			handled = true;
2072 		}
2073 	}
2074 
2075 	return IRQ_RETVAL(handled);
2076 }
2077 
2078 static void
2079 mt7530_irq_mask(struct irq_data *d)
2080 {
2081 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2082 
2083 	priv->irq_enable &= ~BIT(d->hwirq);
2084 }
2085 
2086 static void
2087 mt7530_irq_unmask(struct irq_data *d)
2088 {
2089 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2090 
2091 	priv->irq_enable |= BIT(d->hwirq);
2092 }
2093 
2094 static void
2095 mt7530_irq_bus_lock(struct irq_data *d)
2096 {
2097 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2098 
2099 	mt7530_mutex_lock(priv);
2100 }
2101 
2102 static void
2103 mt7530_irq_bus_sync_unlock(struct irq_data *d)
2104 {
2105 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2106 
2107 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2108 	mt7530_mutex_unlock(priv);
2109 }
2110 
2111 static struct irq_chip mt7530_irq_chip = {
2112 	.name = KBUILD_MODNAME,
2113 	.irq_mask = mt7530_irq_mask,
2114 	.irq_unmask = mt7530_irq_unmask,
2115 	.irq_bus_lock = mt7530_irq_bus_lock,
2116 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2117 };
2118 
2119 static int
2120 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2121 	       irq_hw_number_t hwirq)
2122 {
2123 	irq_set_chip_data(irq, domain->host_data);
2124 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2125 	irq_set_nested_thread(irq, true);
2126 	irq_set_noprobe(irq);
2127 
2128 	return 0;
2129 }
2130 
2131 static const struct irq_domain_ops mt7530_irq_domain_ops = {
2132 	.map = mt7530_irq_map,
2133 	.xlate = irq_domain_xlate_onecell,
2134 };
2135 
2136 static void
2137 mt7988_irq_mask(struct irq_data *d)
2138 {
2139 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2140 
2141 	priv->irq_enable &= ~BIT(d->hwirq);
2142 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2143 }
2144 
2145 static void
2146 mt7988_irq_unmask(struct irq_data *d)
2147 {
2148 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2149 
2150 	priv->irq_enable |= BIT(d->hwirq);
2151 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2152 }
2153 
2154 static struct irq_chip mt7988_irq_chip = {
2155 	.name = KBUILD_MODNAME,
2156 	.irq_mask = mt7988_irq_mask,
2157 	.irq_unmask = mt7988_irq_unmask,
2158 };
2159 
2160 static int
2161 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2162 	       irq_hw_number_t hwirq)
2163 {
2164 	irq_set_chip_data(irq, domain->host_data);
2165 	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2166 	irq_set_nested_thread(irq, true);
2167 	irq_set_noprobe(irq);
2168 
2169 	return 0;
2170 }
2171 
2172 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2173 	.map = mt7988_irq_map,
2174 	.xlate = irq_domain_xlate_onecell,
2175 };
2176 
2177 static void
2178 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2179 {
2180 	struct dsa_switch *ds = priv->ds;
2181 	int p;
2182 
2183 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2184 		if (BIT(p) & ds->phys_mii_mask) {
2185 			unsigned int irq;
2186 
2187 			irq = irq_create_mapping(priv->irq_domain, p);
2188 			ds->user_mii_bus->irq[p] = irq;
2189 		}
2190 	}
2191 }
2192 
2193 static int
2194 mt7530_setup_irq(struct mt7530_priv *priv)
2195 {
2196 	struct device *dev = priv->dev;
2197 	struct device_node *np = dev->of_node;
2198 	int ret;
2199 
2200 	if (!of_property_read_bool(np, "interrupt-controller")) {
2201 		dev_info(dev, "no interrupt support\n");
2202 		return 0;
2203 	}
2204 
2205 	priv->irq = of_irq_get(np, 0);
2206 	if (priv->irq <= 0) {
2207 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2208 		return priv->irq ? : -EINVAL;
2209 	}
2210 
2211 	if (priv->id == ID_MT7988 || priv->id == ID_EN7581)
2212 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2213 							 &mt7988_irq_domain_ops,
2214 							 priv);
2215 	else
2216 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2217 							 &mt7530_irq_domain_ops,
2218 							 priv);
2219 
2220 	if (!priv->irq_domain) {
2221 		dev_err(dev, "failed to create IRQ domain\n");
2222 		return -ENOMEM;
2223 	}
2224 
2225 	/* This register must be set for MT7530 to properly fire interrupts */
2226 	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
2227 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2228 
2229 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2230 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2231 	if (ret) {
2232 		irq_domain_remove(priv->irq_domain);
2233 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2234 		return ret;
2235 	}
2236 
2237 	return 0;
2238 }
2239 
2240 static void
2241 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2242 {
2243 	int p;
2244 
2245 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2246 		if (BIT(p) & priv->ds->phys_mii_mask) {
2247 			unsigned int irq;
2248 
2249 			irq = irq_find_mapping(priv->irq_domain, p);
2250 			irq_dispose_mapping(irq);
2251 		}
2252 	}
2253 }
2254 
2255 static void
2256 mt7530_free_irq_common(struct mt7530_priv *priv)
2257 {
2258 	free_irq(priv->irq, priv);
2259 	irq_domain_remove(priv->irq_domain);
2260 }
2261 
2262 static void
2263 mt7530_free_irq(struct mt7530_priv *priv)
2264 {
2265 	struct device_node *mnp, *np = priv->dev->of_node;
2266 
2267 	mnp = of_get_child_by_name(np, "mdio");
2268 	if (!mnp)
2269 		mt7530_free_mdio_irq(priv);
2270 	of_node_put(mnp);
2271 
2272 	mt7530_free_irq_common(priv);
2273 }
2274 
2275 static int
2276 mt7530_setup_mdio(struct mt7530_priv *priv)
2277 {
2278 	struct device_node *mnp, *np = priv->dev->of_node;
2279 	struct dsa_switch *ds = priv->ds;
2280 	struct device *dev = priv->dev;
2281 	struct mii_bus *bus;
2282 	static int idx;
2283 	int ret = 0;
2284 
2285 	mnp = of_get_child_by_name(np, "mdio");
2286 
2287 	if (mnp && !of_device_is_available(mnp))
2288 		goto out;
2289 
2290 	bus = devm_mdiobus_alloc(dev);
2291 	if (!bus) {
2292 		ret = -ENOMEM;
2293 		goto out;
2294 	}
2295 
2296 	if (!mnp)
2297 		ds->user_mii_bus = bus;
2298 
2299 	bus->priv = priv;
2300 	bus->name = KBUILD_MODNAME "-mii";
2301 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2302 	bus->read = mt753x_phy_read_c22;
2303 	bus->write = mt753x_phy_write_c22;
2304 	bus->read_c45 = mt753x_phy_read_c45;
2305 	bus->write_c45 = mt753x_phy_write_c45;
2306 	bus->parent = dev;
2307 	bus->phy_mask = ~ds->phys_mii_mask;
2308 
2309 	if (priv->irq && !mnp)
2310 		mt7530_setup_mdio_irq(priv);
2311 
2312 	ret = devm_of_mdiobus_register(dev, bus, mnp);
2313 	if (ret) {
2314 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2315 		if (priv->irq && !mnp)
2316 			mt7530_free_mdio_irq(priv);
2317 	}
2318 
2319 out:
2320 	of_node_put(mnp);
2321 	return ret;
2322 }
2323 
2324 static int
2325 mt7530_setup(struct dsa_switch *ds)
2326 {
2327 	struct mt7530_priv *priv = ds->priv;
2328 	struct device_node *dn = NULL;
2329 	struct device_node *phy_node;
2330 	struct device_node *mac_np;
2331 	struct mt7530_dummy_poll p;
2332 	phy_interface_t interface;
2333 	struct dsa_port *cpu_dp;
2334 	u32 id, val;
2335 	int ret, i;
2336 
2337 	/* The parent node of conduit netdev which holds the common system
2338 	 * controller also is the container for two GMACs nodes representing
2339 	 * as two netdev instances.
2340 	 */
2341 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2342 		dn = cpu_dp->conduit->dev.of_node->parent;
2343 		/* It doesn't matter which CPU port is found first,
2344 		 * their conduits should share the same parent OF node
2345 		 */
2346 		break;
2347 	}
2348 
2349 	if (!dn) {
2350 		dev_err(ds->dev, "parent OF node of DSA conduit not found");
2351 		return -EINVAL;
2352 	}
2353 
2354 	ds->assisted_learning_on_cpu_port = true;
2355 	ds->mtu_enforcement_ingress = true;
2356 
2357 	if (priv->id == ID_MT7530) {
2358 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2359 		ret = regulator_enable(priv->core_pwr);
2360 		if (ret < 0) {
2361 			dev_err(priv->dev,
2362 				"Failed to enable core power: %d\n", ret);
2363 			return ret;
2364 		}
2365 
2366 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2367 		ret = regulator_enable(priv->io_pwr);
2368 		if (ret < 0) {
2369 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2370 				ret);
2371 			return ret;
2372 		}
2373 	}
2374 
2375 	/* Reset whole chip through gpio pin or memory-mapped registers for
2376 	 * different type of hardware
2377 	 */
2378 	if (priv->mcm) {
2379 		reset_control_assert(priv->rstc);
2380 		usleep_range(5000, 5100);
2381 		reset_control_deassert(priv->rstc);
2382 	} else {
2383 		gpiod_set_value_cansleep(priv->reset, 0);
2384 		usleep_range(5000, 5100);
2385 		gpiod_set_value_cansleep(priv->reset, 1);
2386 	}
2387 
2388 	/* Waiting for MT7530 got to stable */
2389 	INIT_MT7530_DUMMY_POLL(&p, priv, MT753X_TRAP);
2390 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2391 				 20, 1000000);
2392 	if (ret < 0) {
2393 		dev_err(priv->dev, "reset timeout\n");
2394 		return ret;
2395 	}
2396 
2397 	id = mt7530_read(priv, MT7530_CREV);
2398 	id >>= CHIP_NAME_SHIFT;
2399 	if (id != MT7530_ID) {
2400 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2401 		return -ENODEV;
2402 	}
2403 
2404 	if ((val & MT7530_XTAL_MASK) == MT7530_XTAL_20MHZ) {
2405 		dev_err(priv->dev,
2406 			"MT7530 with a 20MHz XTAL is not supported!\n");
2407 		return -EINVAL;
2408 	}
2409 
2410 	/* Reset the switch through internal reset */
2411 	mt7530_write(priv, MT7530_SYS_CTRL,
2412 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2413 		     SYS_CTRL_REG_RST);
2414 
2415 	/* Lower Tx driving for TRGMII path */
2416 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2417 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2418 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2419 
2420 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2421 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2422 			   RD_TAP_MASK, RD_TAP(16));
2423 
2424 	/* Allow modifying the trap and directly access PHY registers via the
2425 	 * MDIO bus the switch is on.
2426 	 */
2427 	mt7530_rmw(priv, MT753X_MTRAP, MT7530_CHG_TRAP |
2428 		   MT7530_PHY_INDIRECT_ACCESS, MT7530_CHG_TRAP);
2429 
2430 	if ((val & MT7530_XTAL_MASK) == MT7530_XTAL_40MHZ)
2431 		mt7530_pll_setup(priv);
2432 
2433 	mt753x_trap_frames(priv);
2434 
2435 	/* Enable and reset MIB counters */
2436 	mt7530_mib_reset(ds);
2437 
2438 	for (i = 0; i < priv->ds->num_ports; i++) {
2439 		/* Clear link settings and enable force mode to force link down
2440 		 * on all ports until they're enabled later.
2441 		 */
2442 		mt7530_rmw(priv, MT753X_PMCR_P(i),
2443 			   PMCR_LINK_SETTINGS_MASK |
2444 			   MT753X_FORCE_MODE(priv->id),
2445 			   MT753X_FORCE_MODE(priv->id));
2446 
2447 		/* Disable forwarding by default on all ports */
2448 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2449 			   PCR_MATRIX_CLR);
2450 
2451 		/* Disable learning by default on all ports */
2452 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2453 
2454 		if (dsa_is_cpu_port(ds, i)) {
2455 			mt753x_cpu_port_enable(ds, i);
2456 		} else {
2457 			mt7530_port_disable(ds, i);
2458 
2459 			/* Set default PVID to 0 on all user ports */
2460 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2461 				   G0_PORT_VID_DEF);
2462 		}
2463 		/* Enable consistent egress tag */
2464 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2465 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2466 	}
2467 
2468 	/* Allow mirroring frames received on the local port (monitor port). */
2469 	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2470 
2471 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2472 	ret = mt7530_setup_vlan0(priv);
2473 	if (ret)
2474 		return ret;
2475 
2476 	/* Check for PHY muxing on port 5 */
2477 	if (dsa_is_unused_port(ds, 5)) {
2478 		/* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
2479 		 * Set priv->p5_mode to the appropriate value if PHY muxing is
2480 		 * detected.
2481 		 */
2482 		for_each_child_of_node(dn, mac_np) {
2483 			if (!of_device_is_compatible(mac_np,
2484 						     "mediatek,eth-mac"))
2485 				continue;
2486 
2487 			ret = of_property_read_u32(mac_np, "reg", &id);
2488 			if (ret < 0 || id != 1)
2489 				continue;
2490 
2491 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2492 			if (!phy_node)
2493 				continue;
2494 
2495 			if (phy_node->parent == priv->dev->of_node->parent ||
2496 			    phy_node->parent->parent == priv->dev->of_node) {
2497 				ret = of_get_phy_mode(mac_np, &interface);
2498 				if (ret && ret != -ENODEV) {
2499 					of_node_put(mac_np);
2500 					of_node_put(phy_node);
2501 					return ret;
2502 				}
2503 				id = of_mdio_parse_addr(ds->dev, phy_node);
2504 				if (id == 0)
2505 					priv->p5_mode = MUX_PHY_P0;
2506 				if (id == 4)
2507 					priv->p5_mode = MUX_PHY_P4;
2508 			}
2509 			of_node_put(mac_np);
2510 			of_node_put(phy_node);
2511 			break;
2512 		}
2513 
2514 		if (priv->p5_mode == MUX_PHY_P0 ||
2515 		    priv->p5_mode == MUX_PHY_P4) {
2516 			mt7530_clear(priv, MT753X_MTRAP, MT7530_P5_DIS);
2517 			mt7530_setup_port5(ds, interface);
2518 		}
2519 	}
2520 
2521 #ifdef CONFIG_GPIOLIB
2522 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2523 		ret = mt7530_setup_gpio(priv);
2524 		if (ret)
2525 			return ret;
2526 	}
2527 #endif /* CONFIG_GPIOLIB */
2528 
2529 	/* Flush the FDB table */
2530 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2531 	if (ret < 0)
2532 		return ret;
2533 
2534 	return 0;
2535 }
2536 
2537 static int
2538 mt7531_setup_common(struct dsa_switch *ds)
2539 {
2540 	struct mt7530_priv *priv = ds->priv;
2541 	int ret, i;
2542 
2543 	mt753x_trap_frames(priv);
2544 
2545 	/* Enable and reset MIB counters */
2546 	mt7530_mib_reset(ds);
2547 
2548 	/* Disable flooding on all ports */
2549 	mt7530_clear(priv, MT753X_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2550 		     UNU_FFP_MASK);
2551 
2552 	for (i = 0; i < priv->ds->num_ports; i++) {
2553 		/* Clear link settings and enable force mode to force link down
2554 		 * on all ports until they're enabled later.
2555 		 */
2556 		mt7530_rmw(priv, MT753X_PMCR_P(i),
2557 			   PMCR_LINK_SETTINGS_MASK |
2558 			   MT753X_FORCE_MODE(priv->id),
2559 			   MT753X_FORCE_MODE(priv->id));
2560 
2561 		/* Disable forwarding by default on all ports */
2562 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2563 			   PCR_MATRIX_CLR);
2564 
2565 		/* Disable learning by default on all ports */
2566 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2567 
2568 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2569 
2570 		if (dsa_is_cpu_port(ds, i)) {
2571 			mt753x_cpu_port_enable(ds, i);
2572 		} else {
2573 			mt7530_port_disable(ds, i);
2574 
2575 			/* Set default PVID to 0 on all user ports */
2576 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2577 				   G0_PORT_VID_DEF);
2578 		}
2579 
2580 		/* Enable consistent egress tag */
2581 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2582 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2583 	}
2584 
2585 	/* Allow mirroring frames received on the local port (monitor port). */
2586 	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2587 
2588 	/* Flush the FDB table */
2589 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2590 	if (ret < 0)
2591 		return ret;
2592 
2593 	return 0;
2594 }
2595 
2596 static int
2597 mt7531_setup(struct dsa_switch *ds)
2598 {
2599 	struct mt7530_priv *priv = ds->priv;
2600 	struct mt7530_dummy_poll p;
2601 	u32 val, id;
2602 	int ret, i;
2603 
2604 	/* Reset whole chip through gpio pin or memory-mapped registers for
2605 	 * different type of hardware
2606 	 */
2607 	if (priv->mcm) {
2608 		reset_control_assert(priv->rstc);
2609 		usleep_range(5000, 5100);
2610 		reset_control_deassert(priv->rstc);
2611 	} else {
2612 		gpiod_set_value_cansleep(priv->reset, 0);
2613 		usleep_range(5000, 5100);
2614 		gpiod_set_value_cansleep(priv->reset, 1);
2615 	}
2616 
2617 	/* Waiting for MT7530 got to stable */
2618 	INIT_MT7530_DUMMY_POLL(&p, priv, MT753X_TRAP);
2619 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2620 				 20, 1000000);
2621 	if (ret < 0) {
2622 		dev_err(priv->dev, "reset timeout\n");
2623 		return ret;
2624 	}
2625 
2626 	id = mt7530_read(priv, MT7531_CREV);
2627 	id >>= CHIP_NAME_SHIFT;
2628 
2629 	if (id != MT7531_ID) {
2630 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2631 		return -ENODEV;
2632 	}
2633 
2634 	/* MT7531AE has got two SGMII units. One for port 5, one for port 6.
2635 	 * MT7531BE has got only one SGMII unit which is for port 6.
2636 	 */
2637 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
2638 	priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
2639 
2640 	/* Force link down on all ports before internal reset */
2641 	for (i = 0; i < priv->ds->num_ports; i++)
2642 		mt7530_write(priv, MT753X_PMCR_P(i), MT7531_FORCE_MODE_LNK);
2643 
2644 	/* Reset the switch through internal reset */
2645 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST);
2646 
2647 	if (!priv->p5_sgmii) {
2648 		mt7531_pll_setup(priv);
2649 	} else {
2650 		/* Unlike MT7531BE, the GPIO 6-12 pins are not used for RGMII on
2651 		 * MT7531AE. Set the GPIO 11-12 pins to function as MDC and MDIO
2652 		 * to expose the MDIO bus of the switch.
2653 		 */
2654 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2655 			   MT7531_EXT_P_MDC_11);
2656 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2657 			   MT7531_EXT_P_MDIO_12);
2658 	}
2659 
2660 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2661 		   MT7531_GPIO0_INTERRUPT);
2662 
2663 	/* Enable Energy-Efficient Ethernet (EEE) and PHY core PLL, since
2664 	 * phy_device has not yet been created provided for
2665 	 * phy_[read,write]_mmd_indirect is called, we provide our own
2666 	 * mt7531_ind_mmd_phy_[read,write] to complete this function.
2667 	 */
2668 	val = mt7531_ind_c45_phy_read(priv,
2669 				      MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
2670 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2671 	val |= MT7531_RG_SYSPLL_DMY2 | MT7531_PHY_PLL_BYPASS_MODE;
2672 	val &= ~MT7531_PHY_PLL_OFF;
2673 	mt7531_ind_c45_phy_write(priv,
2674 				 MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
2675 				 MDIO_MMD_VEND2, CORE_PLL_GROUP4, val);
2676 
2677 	/* Disable EEE advertisement on the switch PHYs. */
2678 	for (i = MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr);
2679 	     i < MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr) + MT7530_NUM_PHYS;
2680 	     i++) {
2681 		mt7531_ind_c45_phy_write(priv, i, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2682 					 0);
2683 	}
2684 
2685 	ret = mt7531_setup_common(ds);
2686 	if (ret)
2687 		return ret;
2688 
2689 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2690 	ret = mt7530_setup_vlan0(priv);
2691 	if (ret)
2692 		return ret;
2693 
2694 	ds->assisted_learning_on_cpu_port = true;
2695 	ds->mtu_enforcement_ingress = true;
2696 
2697 	return 0;
2698 }
2699 
2700 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2701 				     struct phylink_config *config)
2702 {
2703 	config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2704 
2705 	switch (port) {
2706 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2707 	case 0 ... 4:
2708 		__set_bit(PHY_INTERFACE_MODE_GMII,
2709 			  config->supported_interfaces);
2710 		break;
2711 
2712 	/* Port 5 supports rgmii with delays, mii, and gmii. */
2713 	case 5:
2714 		phy_interface_set_rgmii(config->supported_interfaces);
2715 		__set_bit(PHY_INTERFACE_MODE_MII,
2716 			  config->supported_interfaces);
2717 		__set_bit(PHY_INTERFACE_MODE_GMII,
2718 			  config->supported_interfaces);
2719 		break;
2720 
2721 	/* Port 6 supports rgmii and trgmii. */
2722 	case 6:
2723 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2724 			  config->supported_interfaces);
2725 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2726 			  config->supported_interfaces);
2727 		break;
2728 	}
2729 }
2730 
2731 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2732 				     struct phylink_config *config)
2733 {
2734 	struct mt7530_priv *priv = ds->priv;
2735 
2736 	config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2737 
2738 	switch (port) {
2739 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2740 	case 0 ... 4:
2741 		__set_bit(PHY_INTERFACE_MODE_GMII,
2742 			  config->supported_interfaces);
2743 		break;
2744 
2745 	/* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
2746 	 * MT7531AE.
2747 	 */
2748 	case 5:
2749 		if (!priv->p5_sgmii) {
2750 			phy_interface_set_rgmii(config->supported_interfaces);
2751 			break;
2752 		}
2753 		fallthrough;
2754 
2755 	/* Port 6 supports sgmii/802.3z. */
2756 	case 6:
2757 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2758 			  config->supported_interfaces);
2759 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2760 			  config->supported_interfaces);
2761 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2762 			  config->supported_interfaces);
2763 
2764 		config->mac_capabilities |= MAC_2500FD;
2765 		break;
2766 	}
2767 }
2768 
2769 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2770 				     struct phylink_config *config)
2771 {
2772 	switch (port) {
2773 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2774 	case 0 ... 3:
2775 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2776 			  config->supported_interfaces);
2777 
2778 		config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2779 		break;
2780 
2781 	/* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2782 	case 6:
2783 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2784 			  config->supported_interfaces);
2785 
2786 		config->mac_capabilities |= MAC_10000FD;
2787 		break;
2788 	}
2789 }
2790 
2791 static void en7581_mac_port_get_caps(struct dsa_switch *ds, int port,
2792 				     struct phylink_config *config)
2793 {
2794 	switch (port) {
2795 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2796 	case 0 ... 4:
2797 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2798 			  config->supported_interfaces);
2799 
2800 		config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2801 		break;
2802 
2803 	/* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2804 	case 6:
2805 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2806 			  config->supported_interfaces);
2807 
2808 		config->mac_capabilities |= MAC_10000FD;
2809 		break;
2810 	}
2811 }
2812 
2813 static void
2814 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2815 		  phy_interface_t interface)
2816 {
2817 	struct mt7530_priv *priv = ds->priv;
2818 
2819 	if (port == 5)
2820 		mt7530_setup_port5(priv->ds, interface);
2821 	else if (port == 6)
2822 		mt7530_setup_port6(priv->ds, interface);
2823 }
2824 
2825 static void mt7531_rgmii_setup(struct mt7530_priv *priv,
2826 			       phy_interface_t interface,
2827 			       struct phy_device *phydev)
2828 {
2829 	u32 val;
2830 
2831 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2832 	val |= GP_CLK_EN;
2833 	val &= ~GP_MODE_MASK;
2834 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2835 	val &= ~CLK_SKEW_IN_MASK;
2836 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2837 	val &= ~CLK_SKEW_OUT_MASK;
2838 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2839 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2840 
2841 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2842 	if (!phydev || phy_driver_is_genphy(phydev)) {
2843 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2844 		switch (interface) {
2845 		case PHY_INTERFACE_MODE_RGMII:
2846 			val |= TXCLK_NO_REVERSE;
2847 			val |= RXCLK_NO_DELAY;
2848 			break;
2849 		case PHY_INTERFACE_MODE_RGMII_RXID:
2850 			val |= TXCLK_NO_REVERSE;
2851 			break;
2852 		case PHY_INTERFACE_MODE_RGMII_TXID:
2853 			val |= RXCLK_NO_DELAY;
2854 			break;
2855 		case PHY_INTERFACE_MODE_RGMII_ID:
2856 			break;
2857 		default:
2858 			break;
2859 		}
2860 	}
2861 
2862 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2863 }
2864 
2865 static void
2866 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2867 		  phy_interface_t interface)
2868 {
2869 	struct mt7530_priv *priv = ds->priv;
2870 	struct phy_device *phydev;
2871 	struct dsa_port *dp;
2872 
2873 	if (phy_interface_mode_is_rgmii(interface)) {
2874 		dp = dsa_to_port(ds, port);
2875 		phydev = dp->user->phydev;
2876 		mt7531_rgmii_setup(priv, interface, phydev);
2877 	}
2878 }
2879 
2880 static struct phylink_pcs *
2881 mt753x_phylink_mac_select_pcs(struct phylink_config *config,
2882 			      phy_interface_t interface)
2883 {
2884 	struct dsa_port *dp = dsa_phylink_to_port(config);
2885 	struct mt7530_priv *priv = dp->ds->priv;
2886 
2887 	switch (interface) {
2888 	case PHY_INTERFACE_MODE_TRGMII:
2889 		return &priv->pcs[dp->index].pcs;
2890 	case PHY_INTERFACE_MODE_SGMII:
2891 	case PHY_INTERFACE_MODE_1000BASEX:
2892 	case PHY_INTERFACE_MODE_2500BASEX:
2893 		return priv->ports[dp->index].sgmii_pcs;
2894 	default:
2895 		return NULL;
2896 	}
2897 }
2898 
2899 static void
2900 mt753x_phylink_mac_config(struct phylink_config *config, unsigned int mode,
2901 			  const struct phylink_link_state *state)
2902 {
2903 	struct dsa_port *dp = dsa_phylink_to_port(config);
2904 	struct dsa_switch *ds = dp->ds;
2905 	struct mt7530_priv *priv;
2906 	int port = dp->index;
2907 
2908 	priv = ds->priv;
2909 
2910 	if ((port == 5 || port == 6) && priv->info->mac_port_config)
2911 		priv->info->mac_port_config(ds, port, mode, state->interface);
2912 
2913 	/* Are we connected to external phy */
2914 	if (port == 5 && dsa_is_user_port(ds, 5))
2915 		mt7530_set(priv, MT753X_PMCR_P(port), PMCR_EXT_PHY);
2916 }
2917 
2918 static void mt753x_phylink_mac_link_down(struct phylink_config *config,
2919 					 unsigned int mode,
2920 					 phy_interface_t interface)
2921 {
2922 	struct dsa_port *dp = dsa_phylink_to_port(config);
2923 	struct mt7530_priv *priv = dp->ds->priv;
2924 
2925 	mt7530_clear(priv, MT753X_PMCR_P(dp->index), PMCR_LINK_SETTINGS_MASK);
2926 }
2927 
2928 static void mt753x_phylink_mac_link_up(struct phylink_config *config,
2929 				       struct phy_device *phydev,
2930 				       unsigned int mode,
2931 				       phy_interface_t interface,
2932 				       int speed, int duplex,
2933 				       bool tx_pause, bool rx_pause)
2934 {
2935 	struct dsa_port *dp = dsa_phylink_to_port(config);
2936 	struct mt7530_priv *priv = dp->ds->priv;
2937 	u32 mcr;
2938 
2939 	mcr = PMCR_MAC_RX_EN | PMCR_MAC_TX_EN | PMCR_FORCE_LNK;
2940 
2941 	switch (speed) {
2942 	case SPEED_1000:
2943 	case SPEED_2500:
2944 	case SPEED_10000:
2945 		mcr |= PMCR_FORCE_SPEED_1000;
2946 		break;
2947 	case SPEED_100:
2948 		mcr |= PMCR_FORCE_SPEED_100;
2949 		break;
2950 	}
2951 	if (duplex == DUPLEX_FULL) {
2952 		mcr |= PMCR_FORCE_FDX;
2953 		if (tx_pause)
2954 			mcr |= PMCR_FORCE_TX_FC_EN;
2955 		if (rx_pause)
2956 			mcr |= PMCR_FORCE_RX_FC_EN;
2957 	}
2958 
2959 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2960 		switch (speed) {
2961 		case SPEED_1000:
2962 		case SPEED_2500:
2963 			mcr |= PMCR_FORCE_EEE1G;
2964 			break;
2965 		case SPEED_100:
2966 			mcr |= PMCR_FORCE_EEE100;
2967 			break;
2968 		}
2969 	}
2970 
2971 	mt7530_set(priv, MT753X_PMCR_P(dp->index), mcr);
2972 }
2973 
2974 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2975 				    struct phylink_config *config)
2976 {
2977 	struct mt7530_priv *priv = ds->priv;
2978 
2979 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE;
2980 
2981 	priv->info->mac_port_get_caps(ds, port, config);
2982 }
2983 
2984 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2985 			       unsigned long *supported,
2986 			       const struct phylink_link_state *state)
2987 {
2988 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2989 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2990 	    phy_interface_mode_is_8023z(state->interface))
2991 		phylink_clear(supported, Autoneg);
2992 
2993 	return 0;
2994 }
2995 
2996 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2997 				 struct phylink_link_state *state)
2998 {
2999 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
3000 	int port = pcs_to_mt753x_pcs(pcs)->port;
3001 	u32 pmsr;
3002 
3003 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
3004 
3005 	state->link = (pmsr & PMSR_LINK);
3006 	state->an_complete = state->link;
3007 	state->duplex = !!(pmsr & PMSR_DPX);
3008 
3009 	switch (pmsr & PMSR_SPEED_MASK) {
3010 	case PMSR_SPEED_10:
3011 		state->speed = SPEED_10;
3012 		break;
3013 	case PMSR_SPEED_100:
3014 		state->speed = SPEED_100;
3015 		break;
3016 	case PMSR_SPEED_1000:
3017 		state->speed = SPEED_1000;
3018 		break;
3019 	default:
3020 		state->speed = SPEED_UNKNOWN;
3021 		break;
3022 	}
3023 
3024 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
3025 	if (pmsr & PMSR_RX_FC)
3026 		state->pause |= MLO_PAUSE_RX;
3027 	if (pmsr & PMSR_TX_FC)
3028 		state->pause |= MLO_PAUSE_TX;
3029 }
3030 
3031 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3032 			     phy_interface_t interface,
3033 			     const unsigned long *advertising,
3034 			     bool permit_pause_to_mac)
3035 {
3036 	return 0;
3037 }
3038 
3039 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3040 {
3041 }
3042 
3043 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3044 	.pcs_validate = mt753x_pcs_validate,
3045 	.pcs_get_state = mt7530_pcs_get_state,
3046 	.pcs_config = mt753x_pcs_config,
3047 	.pcs_an_restart = mt7530_pcs_an_restart,
3048 };
3049 
3050 static int
3051 mt753x_setup(struct dsa_switch *ds)
3052 {
3053 	struct mt7530_priv *priv = ds->priv;
3054 	int ret = priv->info->sw_setup(ds);
3055 	int i;
3056 
3057 	if (ret)
3058 		return ret;
3059 
3060 	ret = mt7530_setup_irq(priv);
3061 	if (ret)
3062 		return ret;
3063 
3064 	ret = mt7530_setup_mdio(priv);
3065 	if (ret && priv->irq)
3066 		mt7530_free_irq_common(priv);
3067 	if (ret)
3068 		return ret;
3069 
3070 	/* Initialise the PCS devices */
3071 	for (i = 0; i < priv->ds->num_ports; i++) {
3072 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3073 		priv->pcs[i].pcs.neg_mode = true;
3074 		priv->pcs[i].priv = priv;
3075 		priv->pcs[i].port = i;
3076 	}
3077 
3078 	if (priv->create_sgmii) {
3079 		ret = priv->create_sgmii(priv);
3080 		if (ret && priv->irq)
3081 			mt7530_free_irq(priv);
3082 	}
3083 
3084 	return ret;
3085 }
3086 
3087 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3088 			      struct ethtool_keee *e)
3089 {
3090 	struct mt7530_priv *priv = ds->priv;
3091 	u32 eeecr = mt7530_read(priv, MT753X_PMEEECR_P(port));
3092 
3093 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3094 	e->tx_lpi_timer = LPI_THRESH_GET(eeecr);
3095 
3096 	return 0;
3097 }
3098 
3099 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3100 			      struct ethtool_keee *e)
3101 {
3102 	struct mt7530_priv *priv = ds->priv;
3103 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3104 
3105 	if (e->tx_lpi_timer > 0xFFF)
3106 		return -EINVAL;
3107 
3108 	set = LPI_THRESH_SET(e->tx_lpi_timer);
3109 	if (!e->tx_lpi_enabled)
3110 		/* Force LPI Mode without a delay */
3111 		set |= LPI_MODE_EN;
3112 	mt7530_rmw(priv, MT753X_PMEEECR_P(port), mask, set);
3113 
3114 	return 0;
3115 }
3116 
3117 static void
3118 mt753x_conduit_state_change(struct dsa_switch *ds,
3119 			    const struct net_device *conduit,
3120 			    bool operational)
3121 {
3122 	struct dsa_port *cpu_dp = conduit->dsa_ptr;
3123 	struct mt7530_priv *priv = ds->priv;
3124 	int val = 0;
3125 	u8 mask;
3126 
3127 	/* Set the CPU port to trap frames to for MT7530. Trapped frames will be
3128 	 * forwarded to the numerically smallest CPU port whose conduit
3129 	 * interface is up.
3130 	 */
3131 	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
3132 		return;
3133 
3134 	mask = BIT(cpu_dp->index);
3135 
3136 	if (operational)
3137 		priv->active_cpu_ports |= mask;
3138 	else
3139 		priv->active_cpu_ports &= ~mask;
3140 
3141 	if (priv->active_cpu_ports) {
3142 		val = MT7530_CPU_EN |
3143 		      MT7530_CPU_PORT(__ffs(priv->active_cpu_ports));
3144 	}
3145 
3146 	mt7530_rmw(priv, MT753X_MFC, MT7530_CPU_EN | MT7530_CPU_PORT_MASK, val);
3147 }
3148 
3149 static int mt7988_setup(struct dsa_switch *ds)
3150 {
3151 	struct mt7530_priv *priv = ds->priv;
3152 
3153 	/* Reset the switch */
3154 	reset_control_assert(priv->rstc);
3155 	usleep_range(20, 50);
3156 	reset_control_deassert(priv->rstc);
3157 	usleep_range(20, 50);
3158 
3159 	/* Reset the switch PHYs */
3160 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3161 
3162 	return mt7531_setup_common(ds);
3163 }
3164 
3165 const struct dsa_switch_ops mt7530_switch_ops = {
3166 	.get_tag_protocol	= mtk_get_tag_protocol,
3167 	.setup			= mt753x_setup,
3168 	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3169 	.get_strings		= mt7530_get_strings,
3170 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3171 	.get_sset_count		= mt7530_get_sset_count,
3172 	.set_ageing_time	= mt7530_set_ageing_time,
3173 	.port_enable		= mt7530_port_enable,
3174 	.port_disable		= mt7530_port_disable,
3175 	.port_change_mtu	= mt7530_port_change_mtu,
3176 	.port_max_mtu		= mt7530_port_max_mtu,
3177 	.port_stp_state_set	= mt7530_stp_state_set,
3178 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3179 	.port_bridge_flags	= mt7530_port_bridge_flags,
3180 	.port_bridge_join	= mt7530_port_bridge_join,
3181 	.port_bridge_leave	= mt7530_port_bridge_leave,
3182 	.port_fdb_add		= mt7530_port_fdb_add,
3183 	.port_fdb_del		= mt7530_port_fdb_del,
3184 	.port_fdb_dump		= mt7530_port_fdb_dump,
3185 	.port_mdb_add		= mt7530_port_mdb_add,
3186 	.port_mdb_del		= mt7530_port_mdb_del,
3187 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3188 	.port_vlan_add		= mt7530_port_vlan_add,
3189 	.port_vlan_del		= mt7530_port_vlan_del,
3190 	.port_mirror_add	= mt753x_port_mirror_add,
3191 	.port_mirror_del	= mt753x_port_mirror_del,
3192 	.phylink_get_caps	= mt753x_phylink_get_caps,
3193 	.get_mac_eee		= mt753x_get_mac_eee,
3194 	.set_mac_eee		= mt753x_set_mac_eee,
3195 	.conduit_state_change	= mt753x_conduit_state_change,
3196 };
3197 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3198 
3199 static const struct phylink_mac_ops mt753x_phylink_mac_ops = {
3200 	.mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3201 	.mac_config	= mt753x_phylink_mac_config,
3202 	.mac_link_down	= mt753x_phylink_mac_link_down,
3203 	.mac_link_up	= mt753x_phylink_mac_link_up,
3204 };
3205 
3206 const struct mt753x_info mt753x_table[] = {
3207 	[ID_MT7621] = {
3208 		.id = ID_MT7621,
3209 		.pcs_ops = &mt7530_pcs_ops,
3210 		.sw_setup = mt7530_setup,
3211 		.phy_read_c22 = mt7530_phy_read_c22,
3212 		.phy_write_c22 = mt7530_phy_write_c22,
3213 		.phy_read_c45 = mt7530_phy_read_c45,
3214 		.phy_write_c45 = mt7530_phy_write_c45,
3215 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3216 		.mac_port_config = mt7530_mac_config,
3217 	},
3218 	[ID_MT7530] = {
3219 		.id = ID_MT7530,
3220 		.pcs_ops = &mt7530_pcs_ops,
3221 		.sw_setup = mt7530_setup,
3222 		.phy_read_c22 = mt7530_phy_read_c22,
3223 		.phy_write_c22 = mt7530_phy_write_c22,
3224 		.phy_read_c45 = mt7530_phy_read_c45,
3225 		.phy_write_c45 = mt7530_phy_write_c45,
3226 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3227 		.mac_port_config = mt7530_mac_config,
3228 	},
3229 	[ID_MT7531] = {
3230 		.id = ID_MT7531,
3231 		.pcs_ops = &mt7530_pcs_ops,
3232 		.sw_setup = mt7531_setup,
3233 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3234 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3235 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3236 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3237 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3238 		.mac_port_config = mt7531_mac_config,
3239 	},
3240 	[ID_MT7988] = {
3241 		.id = ID_MT7988,
3242 		.pcs_ops = &mt7530_pcs_ops,
3243 		.sw_setup = mt7988_setup,
3244 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3245 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3246 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3247 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3248 		.mac_port_get_caps = mt7988_mac_port_get_caps,
3249 	},
3250 	[ID_EN7581] = {
3251 		.id = ID_EN7581,
3252 		.pcs_ops = &mt7530_pcs_ops,
3253 		.sw_setup = mt7988_setup,
3254 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3255 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3256 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3257 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3258 		.mac_port_get_caps = en7581_mac_port_get_caps,
3259 	},
3260 };
3261 EXPORT_SYMBOL_GPL(mt753x_table);
3262 
3263 int
3264 mt7530_probe_common(struct mt7530_priv *priv)
3265 {
3266 	struct device *dev = priv->dev;
3267 
3268 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3269 	if (!priv->ds)
3270 		return -ENOMEM;
3271 
3272 	priv->ds->dev = dev;
3273 	priv->ds->num_ports = MT7530_NUM_PORTS;
3274 
3275 	/* Get the hardware identifier from the devicetree node.
3276 	 * We will need it for some of the clock and regulator setup.
3277 	 */
3278 	priv->info = of_device_get_match_data(dev);
3279 	if (!priv->info)
3280 		return -EINVAL;
3281 
3282 	priv->id = priv->info->id;
3283 	priv->dev = dev;
3284 	priv->ds->priv = priv;
3285 	priv->ds->ops = &mt7530_switch_ops;
3286 	priv->ds->phylink_mac_ops = &mt753x_phylink_mac_ops;
3287 	mutex_init(&priv->reg_mutex);
3288 	dev_set_drvdata(dev, priv);
3289 
3290 	return 0;
3291 }
3292 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3293 
3294 void
3295 mt7530_remove_common(struct mt7530_priv *priv)
3296 {
3297 	if (priv->irq)
3298 		mt7530_free_irq(priv);
3299 
3300 	dsa_unregister_switch(priv->ds);
3301 
3302 	mutex_destroy(&priv->reg_mutex);
3303 }
3304 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3305 
3306 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3307 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3308 MODULE_LICENSE("GPL");
3309