1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Mediatek MT7530 DSA Switch driver 4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com> 5 */ 6 #include <linux/etherdevice.h> 7 #include <linux/if_bridge.h> 8 #include <linux/iopoll.h> 9 #include <linux/mdio.h> 10 #include <linux/mfd/syscon.h> 11 #include <linux/module.h> 12 #include <linux/netdevice.h> 13 #include <linux/of_mdio.h> 14 #include <linux/of_net.h> 15 #include <linux/of_platform.h> 16 #include <linux/phylink.h> 17 #include <linux/regmap.h> 18 #include <linux/regulator/consumer.h> 19 #include <linux/reset.h> 20 #include <linux/gpio/consumer.h> 21 #include <net/dsa.h> 22 23 #include "mt7530.h" 24 25 /* String, offset, and register size in bytes if different from 4 bytes */ 26 static const struct mt7530_mib_desc mt7530_mib[] = { 27 MIB_DESC(1, 0x00, "TxDrop"), 28 MIB_DESC(1, 0x04, "TxCrcErr"), 29 MIB_DESC(1, 0x08, "TxUnicast"), 30 MIB_DESC(1, 0x0c, "TxMulticast"), 31 MIB_DESC(1, 0x10, "TxBroadcast"), 32 MIB_DESC(1, 0x14, "TxCollision"), 33 MIB_DESC(1, 0x18, "TxSingleCollision"), 34 MIB_DESC(1, 0x1c, "TxMultipleCollision"), 35 MIB_DESC(1, 0x20, "TxDeferred"), 36 MIB_DESC(1, 0x24, "TxLateCollision"), 37 MIB_DESC(1, 0x28, "TxExcessiveCollistion"), 38 MIB_DESC(1, 0x2c, "TxPause"), 39 MIB_DESC(1, 0x30, "TxPktSz64"), 40 MIB_DESC(1, 0x34, "TxPktSz65To127"), 41 MIB_DESC(1, 0x38, "TxPktSz128To255"), 42 MIB_DESC(1, 0x3c, "TxPktSz256To511"), 43 MIB_DESC(1, 0x40, "TxPktSz512To1023"), 44 MIB_DESC(1, 0x44, "Tx1024ToMax"), 45 MIB_DESC(2, 0x48, "TxBytes"), 46 MIB_DESC(1, 0x60, "RxDrop"), 47 MIB_DESC(1, 0x64, "RxFiltering"), 48 MIB_DESC(1, 0x6c, "RxMulticast"), 49 MIB_DESC(1, 0x70, "RxBroadcast"), 50 MIB_DESC(1, 0x74, "RxAlignErr"), 51 MIB_DESC(1, 0x78, "RxCrcErr"), 52 MIB_DESC(1, 0x7c, "RxUnderSizeErr"), 53 MIB_DESC(1, 0x80, "RxFragErr"), 54 MIB_DESC(1, 0x84, "RxOverSzErr"), 55 MIB_DESC(1, 0x88, "RxJabberErr"), 56 MIB_DESC(1, 0x8c, "RxPause"), 57 MIB_DESC(1, 0x90, "RxPktSz64"), 58 MIB_DESC(1, 0x94, "RxPktSz65To127"), 59 MIB_DESC(1, 0x98, "RxPktSz128To255"), 60 MIB_DESC(1, 0x9c, "RxPktSz256To511"), 61 MIB_DESC(1, 0xa0, "RxPktSz512To1023"), 62 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"), 63 MIB_DESC(2, 0xa8, "RxBytes"), 64 MIB_DESC(1, 0xb0, "RxCtrlDrop"), 65 MIB_DESC(1, 0xb4, "RxIngressDrop"), 66 MIB_DESC(1, 0xb8, "RxArlDrop"), 67 }; 68 69 static int 70 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad) 71 { 72 struct mii_bus *bus = priv->bus; 73 int value, ret; 74 75 /* Write the desired MMD Devad */ 76 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 77 if (ret < 0) 78 goto err; 79 80 /* Write the desired MMD register address */ 81 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 82 if (ret < 0) 83 goto err; 84 85 /* Select the Function : DATA with no post increment */ 86 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 87 if (ret < 0) 88 goto err; 89 90 /* Read the content of the MMD's selected register */ 91 value = bus->read(bus, 0, MII_MMD_DATA); 92 93 return value; 94 err: 95 dev_err(&bus->dev, "failed to read mmd register\n"); 96 97 return ret; 98 } 99 100 static int 101 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad, 102 int devad, u32 data) 103 { 104 struct mii_bus *bus = priv->bus; 105 int ret; 106 107 /* Write the desired MMD Devad */ 108 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 109 if (ret < 0) 110 goto err; 111 112 /* Write the desired MMD register address */ 113 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 114 if (ret < 0) 115 goto err; 116 117 /* Select the Function : DATA with no post increment */ 118 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 119 if (ret < 0) 120 goto err; 121 122 /* Write the data into MMD's selected register */ 123 ret = bus->write(bus, 0, MII_MMD_DATA, data); 124 err: 125 if (ret < 0) 126 dev_err(&bus->dev, 127 "failed to write mmd register\n"); 128 return ret; 129 } 130 131 static void 132 core_write(struct mt7530_priv *priv, u32 reg, u32 val) 133 { 134 struct mii_bus *bus = priv->bus; 135 136 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 137 138 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 139 140 mutex_unlock(&bus->mdio_lock); 141 } 142 143 static void 144 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) 145 { 146 struct mii_bus *bus = priv->bus; 147 u32 val; 148 149 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 150 151 val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2); 152 val &= ~mask; 153 val |= set; 154 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 155 156 mutex_unlock(&bus->mdio_lock); 157 } 158 159 static void 160 core_set(struct mt7530_priv *priv, u32 reg, u32 val) 161 { 162 core_rmw(priv, reg, 0, val); 163 } 164 165 static void 166 core_clear(struct mt7530_priv *priv, u32 reg, u32 val) 167 { 168 core_rmw(priv, reg, val, 0); 169 } 170 171 static int 172 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val) 173 { 174 struct mii_bus *bus = priv->bus; 175 u16 page, r, lo, hi; 176 int ret; 177 178 page = (reg >> 6) & 0x3ff; 179 r = (reg >> 2) & 0xf; 180 lo = val & 0xffff; 181 hi = val >> 16; 182 183 /* MT7530 uses 31 as the pseudo port */ 184 ret = bus->write(bus, 0x1f, 0x1f, page); 185 if (ret < 0) 186 goto err; 187 188 ret = bus->write(bus, 0x1f, r, lo); 189 if (ret < 0) 190 goto err; 191 192 ret = bus->write(bus, 0x1f, 0x10, hi); 193 err: 194 if (ret < 0) 195 dev_err(&bus->dev, 196 "failed to write mt7530 register\n"); 197 return ret; 198 } 199 200 static u32 201 mt7530_mii_read(struct mt7530_priv *priv, u32 reg) 202 { 203 struct mii_bus *bus = priv->bus; 204 u16 page, r, lo, hi; 205 int ret; 206 207 page = (reg >> 6) & 0x3ff; 208 r = (reg >> 2) & 0xf; 209 210 /* MT7530 uses 31 as the pseudo port */ 211 ret = bus->write(bus, 0x1f, 0x1f, page); 212 if (ret < 0) { 213 dev_err(&bus->dev, 214 "failed to read mt7530 register\n"); 215 return ret; 216 } 217 218 lo = bus->read(bus, 0x1f, r); 219 hi = bus->read(bus, 0x1f, 0x10); 220 221 return (hi << 16) | (lo & 0xffff); 222 } 223 224 static void 225 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val) 226 { 227 struct mii_bus *bus = priv->bus; 228 229 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 230 231 mt7530_mii_write(priv, reg, val); 232 233 mutex_unlock(&bus->mdio_lock); 234 } 235 236 static u32 237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p) 238 { 239 return mt7530_mii_read(p->priv, p->reg); 240 } 241 242 static u32 243 _mt7530_read(struct mt7530_dummy_poll *p) 244 { 245 struct mii_bus *bus = p->priv->bus; 246 u32 val; 247 248 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 249 250 val = mt7530_mii_read(p->priv, p->reg); 251 252 mutex_unlock(&bus->mdio_lock); 253 254 return val; 255 } 256 257 static u32 258 mt7530_read(struct mt7530_priv *priv, u32 reg) 259 { 260 struct mt7530_dummy_poll p; 261 262 INIT_MT7530_DUMMY_POLL(&p, priv, reg); 263 return _mt7530_read(&p); 264 } 265 266 static void 267 mt7530_rmw(struct mt7530_priv *priv, u32 reg, 268 u32 mask, u32 set) 269 { 270 struct mii_bus *bus = priv->bus; 271 u32 val; 272 273 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 274 275 val = mt7530_mii_read(priv, reg); 276 val &= ~mask; 277 val |= set; 278 mt7530_mii_write(priv, reg, val); 279 280 mutex_unlock(&bus->mdio_lock); 281 } 282 283 static void 284 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val) 285 { 286 mt7530_rmw(priv, reg, 0, val); 287 } 288 289 static void 290 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val) 291 { 292 mt7530_rmw(priv, reg, val, 0); 293 } 294 295 static int 296 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp) 297 { 298 u32 val; 299 int ret; 300 struct mt7530_dummy_poll p; 301 302 /* Set the command operating upon the MAC address entries */ 303 val = ATC_BUSY | ATC_MAT(0) | cmd; 304 mt7530_write(priv, MT7530_ATC, val); 305 306 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC); 307 ret = readx_poll_timeout(_mt7530_read, &p, val, 308 !(val & ATC_BUSY), 20, 20000); 309 if (ret < 0) { 310 dev_err(priv->dev, "reset timeout\n"); 311 return ret; 312 } 313 314 /* Additional sanity for read command if the specified 315 * entry is invalid 316 */ 317 val = mt7530_read(priv, MT7530_ATC); 318 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID)) 319 return -EINVAL; 320 321 if (rsp) 322 *rsp = val; 323 324 return 0; 325 } 326 327 static void 328 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb) 329 { 330 u32 reg[3]; 331 int i; 332 333 /* Read from ARL table into an array */ 334 for (i = 0; i < 3; i++) { 335 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4)); 336 337 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n", 338 __func__, __LINE__, i, reg[i]); 339 } 340 341 fdb->vid = (reg[1] >> CVID) & CVID_MASK; 342 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK; 343 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK; 344 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK; 345 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK; 346 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK; 347 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK; 348 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK; 349 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK; 350 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT; 351 } 352 353 static void 354 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid, 355 u8 port_mask, const u8 *mac, 356 u8 aging, u8 type) 357 { 358 u32 reg[3] = { 0 }; 359 int i; 360 361 reg[1] |= vid & CVID_MASK; 362 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER; 363 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP; 364 /* STATIC_ENT indicate that entry is static wouldn't 365 * be aged out and STATIC_EMP specified as erasing an 366 * entry 367 */ 368 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS; 369 reg[1] |= mac[5] << MAC_BYTE_5; 370 reg[1] |= mac[4] << MAC_BYTE_4; 371 reg[0] |= mac[3] << MAC_BYTE_3; 372 reg[0] |= mac[2] << MAC_BYTE_2; 373 reg[0] |= mac[1] << MAC_BYTE_1; 374 reg[0] |= mac[0] << MAC_BYTE_0; 375 376 /* Write array into the ARL table */ 377 for (i = 0; i < 3; i++) 378 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]); 379 } 380 381 /* Setup TX circuit including relevant PAD and driving */ 382 static int 383 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface) 384 { 385 struct mt7530_priv *priv = ds->priv; 386 u32 ncpo1, ssc_delta, trgint, i, xtal; 387 388 xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK; 389 390 if (xtal == HWTRAP_XTAL_20MHZ) { 391 dev_err(priv->dev, 392 "%s: MT7530 with a 20MHz XTAL is not supported!\n", 393 __func__); 394 return -EINVAL; 395 } 396 397 switch (interface) { 398 case PHY_INTERFACE_MODE_RGMII: 399 trgint = 0; 400 /* PLL frequency: 125MHz */ 401 ncpo1 = 0x0c80; 402 break; 403 case PHY_INTERFACE_MODE_TRGMII: 404 trgint = 1; 405 if (priv->id == ID_MT7621) { 406 /* PLL frequency: 150MHz: 1.2GBit */ 407 if (xtal == HWTRAP_XTAL_40MHZ) 408 ncpo1 = 0x0780; 409 if (xtal == HWTRAP_XTAL_25MHZ) 410 ncpo1 = 0x0a00; 411 } else { /* PLL frequency: 250MHz: 2.0Gbit */ 412 if (xtal == HWTRAP_XTAL_40MHZ) 413 ncpo1 = 0x0c80; 414 if (xtal == HWTRAP_XTAL_25MHZ) 415 ncpo1 = 0x1400; 416 } 417 break; 418 default: 419 dev_err(priv->dev, "xMII interface %d not supported\n", 420 interface); 421 return -EINVAL; 422 } 423 424 if (xtal == HWTRAP_XTAL_25MHZ) 425 ssc_delta = 0x57; 426 else 427 ssc_delta = 0x87; 428 429 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, 430 P6_INTF_MODE(trgint)); 431 432 /* Lower Tx Driving for TRGMII path */ 433 for (i = 0 ; i < NUM_TRGMII_CTRL ; i++) 434 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i), 435 TD_DM_DRVP(8) | TD_DM_DRVN(8)); 436 437 /* Setup core clock for MT7530 */ 438 if (!trgint) { 439 /* Disable MT7530 core clock */ 440 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 441 442 /* Disable PLL, since phy_device has not yet been created 443 * provided for phy_[read,write]_mmd_indirect is called, we 444 * provide our own core_write_mmd_indirect to complete this 445 * function. 446 */ 447 core_write_mmd_indirect(priv, 448 CORE_GSWPLL_GRP1, 449 MDIO_MMD_VEND2, 450 0); 451 452 /* Set core clock into 500Mhz */ 453 core_write(priv, CORE_GSWPLL_GRP2, 454 RG_GSWPLL_POSDIV_500M(1) | 455 RG_GSWPLL_FBKDIV_500M(25)); 456 457 /* Enable PLL */ 458 core_write(priv, CORE_GSWPLL_GRP1, 459 RG_GSWPLL_EN_PRE | 460 RG_GSWPLL_POSDIV_200M(2) | 461 RG_GSWPLL_FBKDIV_200M(32)); 462 463 /* Enable MT7530 core clock */ 464 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 465 } 466 467 /* Setup the MT7530 TRGMII Tx Clock */ 468 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 469 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1)); 470 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0)); 471 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta)); 472 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta)); 473 core_write(priv, CORE_PLL_GROUP4, 474 RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN | 475 RG_SYSPLL_BIAS_LPF_EN); 476 core_write(priv, CORE_PLL_GROUP2, 477 RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN | 478 RG_SYSPLL_POSDIV(1)); 479 core_write(priv, CORE_PLL_GROUP7, 480 RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) | 481 RG_LCDDS_PWDB | RG_LCDDS_ISO_EN); 482 core_set(priv, CORE_TRGMII_GSW_CLK_CG, 483 REG_GSWCK_EN | REG_TRGMIICK_EN); 484 485 if (!trgint) 486 for (i = 0 ; i < NUM_TRGMII_CTRL; i++) 487 mt7530_rmw(priv, MT7530_TRGMII_RD(i), 488 RD_TAP_MASK, RD_TAP(16)); 489 return 0; 490 } 491 492 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv) 493 { 494 u32 val; 495 496 val = mt7530_read(priv, MT7531_TOP_SIG_SR); 497 498 return (val & PAD_DUAL_SGMII_EN) != 0; 499 } 500 501 static int 502 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface) 503 { 504 struct mt7530_priv *priv = ds->priv; 505 u32 top_sig; 506 u32 hwstrap; 507 u32 xtal; 508 u32 val; 509 510 if (mt7531_dual_sgmii_supported(priv)) 511 return 0; 512 513 val = mt7530_read(priv, MT7531_CREV); 514 top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR); 515 hwstrap = mt7530_read(priv, MT7531_HWTRAP); 516 if ((val & CHIP_REV_M) > 0) 517 xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ : 518 HWTRAP_XTAL_FSEL_25MHZ; 519 else 520 xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK; 521 522 /* Step 1 : Disable MT7531 COREPLL */ 523 val = mt7530_read(priv, MT7531_PLLGP_EN); 524 val &= ~EN_COREPLL; 525 mt7530_write(priv, MT7531_PLLGP_EN, val); 526 527 /* Step 2: switch to XTAL output */ 528 val = mt7530_read(priv, MT7531_PLLGP_EN); 529 val |= SW_CLKSW; 530 mt7530_write(priv, MT7531_PLLGP_EN, val); 531 532 val = mt7530_read(priv, MT7531_PLLGP_CR0); 533 val &= ~RG_COREPLL_EN; 534 mt7530_write(priv, MT7531_PLLGP_CR0, val); 535 536 /* Step 3: disable PLLGP and enable program PLLGP */ 537 val = mt7530_read(priv, MT7531_PLLGP_EN); 538 val |= SW_PLLGP; 539 mt7530_write(priv, MT7531_PLLGP_EN, val); 540 541 /* Step 4: program COREPLL output frequency to 500MHz */ 542 val = mt7530_read(priv, MT7531_PLLGP_CR0); 543 val &= ~RG_COREPLL_POSDIV_M; 544 val |= 2 << RG_COREPLL_POSDIV_S; 545 mt7530_write(priv, MT7531_PLLGP_CR0, val); 546 usleep_range(25, 35); 547 548 switch (xtal) { 549 case HWTRAP_XTAL_FSEL_25MHZ: 550 val = mt7530_read(priv, MT7531_PLLGP_CR0); 551 val &= ~RG_COREPLL_SDM_PCW_M; 552 val |= 0x140000 << RG_COREPLL_SDM_PCW_S; 553 mt7530_write(priv, MT7531_PLLGP_CR0, val); 554 break; 555 case HWTRAP_XTAL_FSEL_40MHZ: 556 val = mt7530_read(priv, MT7531_PLLGP_CR0); 557 val &= ~RG_COREPLL_SDM_PCW_M; 558 val |= 0x190000 << RG_COREPLL_SDM_PCW_S; 559 mt7530_write(priv, MT7531_PLLGP_CR0, val); 560 break; 561 } 562 563 /* Set feedback divide ratio update signal to high */ 564 val = mt7530_read(priv, MT7531_PLLGP_CR0); 565 val |= RG_COREPLL_SDM_PCW_CHG; 566 mt7530_write(priv, MT7531_PLLGP_CR0, val); 567 /* Wait for at least 16 XTAL clocks */ 568 usleep_range(10, 20); 569 570 /* Step 5: set feedback divide ratio update signal to low */ 571 val = mt7530_read(priv, MT7531_PLLGP_CR0); 572 val &= ~RG_COREPLL_SDM_PCW_CHG; 573 mt7530_write(priv, MT7531_PLLGP_CR0, val); 574 575 /* Enable 325M clock for SGMII */ 576 mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000); 577 578 /* Enable 250SSC clock for RGMII */ 579 mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000); 580 581 /* Step 6: Enable MT7531 PLL */ 582 val = mt7530_read(priv, MT7531_PLLGP_CR0); 583 val |= RG_COREPLL_EN; 584 mt7530_write(priv, MT7531_PLLGP_CR0, val); 585 586 val = mt7530_read(priv, MT7531_PLLGP_EN); 587 val |= EN_COREPLL; 588 mt7530_write(priv, MT7531_PLLGP_EN, val); 589 usleep_range(25, 35); 590 591 return 0; 592 } 593 594 static void 595 mt7530_mib_reset(struct dsa_switch *ds) 596 { 597 struct mt7530_priv *priv = ds->priv; 598 599 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH); 600 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE); 601 } 602 603 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum) 604 { 605 struct mt7530_priv *priv = ds->priv; 606 607 return mdiobus_read_nested(priv->bus, port, regnum); 608 } 609 610 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum, 611 u16 val) 612 { 613 struct mt7530_priv *priv = ds->priv; 614 615 return mdiobus_write_nested(priv->bus, port, regnum, val); 616 } 617 618 static int 619 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad, 620 int regnum) 621 { 622 struct mii_bus *bus = priv->bus; 623 struct mt7530_dummy_poll p; 624 u32 reg, val; 625 int ret; 626 627 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 628 629 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 630 631 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 632 !(val & MT7531_PHY_ACS_ST), 20, 100000); 633 if (ret < 0) { 634 dev_err(priv->dev, "poll timeout\n"); 635 goto out; 636 } 637 638 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | 639 MT7531_MDIO_DEV_ADDR(devad) | regnum; 640 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 641 642 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 643 !(val & MT7531_PHY_ACS_ST), 20, 100000); 644 if (ret < 0) { 645 dev_err(priv->dev, "poll timeout\n"); 646 goto out; 647 } 648 649 reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) | 650 MT7531_MDIO_DEV_ADDR(devad); 651 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 652 653 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 654 !(val & MT7531_PHY_ACS_ST), 20, 100000); 655 if (ret < 0) { 656 dev_err(priv->dev, "poll timeout\n"); 657 goto out; 658 } 659 660 ret = val & MT7531_MDIO_RW_DATA_MASK; 661 out: 662 mutex_unlock(&bus->mdio_lock); 663 664 return ret; 665 } 666 667 static int 668 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad, 669 int regnum, u32 data) 670 { 671 struct mii_bus *bus = priv->bus; 672 struct mt7530_dummy_poll p; 673 u32 val, reg; 674 int ret; 675 676 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 677 678 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 679 680 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 681 !(val & MT7531_PHY_ACS_ST), 20, 100000); 682 if (ret < 0) { 683 dev_err(priv->dev, "poll timeout\n"); 684 goto out; 685 } 686 687 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | 688 MT7531_MDIO_DEV_ADDR(devad) | regnum; 689 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 690 691 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 692 !(val & MT7531_PHY_ACS_ST), 20, 100000); 693 if (ret < 0) { 694 dev_err(priv->dev, "poll timeout\n"); 695 goto out; 696 } 697 698 reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) | 699 MT7531_MDIO_DEV_ADDR(devad) | data; 700 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 701 702 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 703 !(val & MT7531_PHY_ACS_ST), 20, 100000); 704 if (ret < 0) { 705 dev_err(priv->dev, "poll timeout\n"); 706 goto out; 707 } 708 709 out: 710 mutex_unlock(&bus->mdio_lock); 711 712 return ret; 713 } 714 715 static int 716 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum) 717 { 718 struct mii_bus *bus = priv->bus; 719 struct mt7530_dummy_poll p; 720 int ret; 721 u32 val; 722 723 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 724 725 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 726 727 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 728 !(val & MT7531_PHY_ACS_ST), 20, 100000); 729 if (ret < 0) { 730 dev_err(priv->dev, "poll timeout\n"); 731 goto out; 732 } 733 734 val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) | 735 MT7531_MDIO_REG_ADDR(regnum); 736 737 mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST); 738 739 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 740 !(val & MT7531_PHY_ACS_ST), 20, 100000); 741 if (ret < 0) { 742 dev_err(priv->dev, "poll timeout\n"); 743 goto out; 744 } 745 746 ret = val & MT7531_MDIO_RW_DATA_MASK; 747 out: 748 mutex_unlock(&bus->mdio_lock); 749 750 return ret; 751 } 752 753 static int 754 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum, 755 u16 data) 756 { 757 struct mii_bus *bus = priv->bus; 758 struct mt7530_dummy_poll p; 759 int ret; 760 u32 reg; 761 762 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 763 764 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 765 766 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, 767 !(reg & MT7531_PHY_ACS_ST), 20, 100000); 768 if (ret < 0) { 769 dev_err(priv->dev, "poll timeout\n"); 770 goto out; 771 } 772 773 reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) | 774 MT7531_MDIO_REG_ADDR(regnum) | data; 775 776 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 777 778 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, 779 !(reg & MT7531_PHY_ACS_ST), 20, 100000); 780 if (ret < 0) { 781 dev_err(priv->dev, "poll timeout\n"); 782 goto out; 783 } 784 785 out: 786 mutex_unlock(&bus->mdio_lock); 787 788 return ret; 789 } 790 791 static int 792 mt7531_ind_phy_read(struct dsa_switch *ds, int port, int regnum) 793 { 794 struct mt7530_priv *priv = ds->priv; 795 int devad; 796 int ret; 797 798 if (regnum & MII_ADDR_C45) { 799 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f; 800 ret = mt7531_ind_c45_phy_read(priv, port, devad, 801 regnum & MII_REGADDR_C45_MASK); 802 } else { 803 ret = mt7531_ind_c22_phy_read(priv, port, regnum); 804 } 805 806 return ret; 807 } 808 809 static int 810 mt7531_ind_phy_write(struct dsa_switch *ds, int port, int regnum, 811 u16 data) 812 { 813 struct mt7530_priv *priv = ds->priv; 814 int devad; 815 int ret; 816 817 if (regnum & MII_ADDR_C45) { 818 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f; 819 ret = mt7531_ind_c45_phy_write(priv, port, devad, 820 regnum & MII_REGADDR_C45_MASK, 821 data); 822 } else { 823 ret = mt7531_ind_c22_phy_write(priv, port, regnum, data); 824 } 825 826 return ret; 827 } 828 829 static void 830 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset, 831 uint8_t *data) 832 { 833 int i; 834 835 if (stringset != ETH_SS_STATS) 836 return; 837 838 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) 839 strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name, 840 ETH_GSTRING_LEN); 841 } 842 843 static void 844 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port, 845 uint64_t *data) 846 { 847 struct mt7530_priv *priv = ds->priv; 848 const struct mt7530_mib_desc *mib; 849 u32 reg, i; 850 u64 hi; 851 852 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) { 853 mib = &mt7530_mib[i]; 854 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset; 855 856 data[i] = mt7530_read(priv, reg); 857 if (mib->size == 2) { 858 hi = mt7530_read(priv, reg + 4); 859 data[i] |= hi << 32; 860 } 861 } 862 } 863 864 static int 865 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset) 866 { 867 if (sset != ETH_SS_STATS) 868 return 0; 869 870 return ARRAY_SIZE(mt7530_mib); 871 } 872 873 static int 874 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) 875 { 876 struct mt7530_priv *priv = ds->priv; 877 unsigned int secs = msecs / 1000; 878 unsigned int tmp_age_count; 879 unsigned int error = -1; 880 unsigned int age_count; 881 unsigned int age_unit; 882 883 /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */ 884 if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1)) 885 return -ERANGE; 886 887 /* iterate through all possible age_count to find the closest pair */ 888 for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) { 889 unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1; 890 891 if (tmp_age_unit <= AGE_UNIT_MAX) { 892 unsigned int tmp_error = secs - 893 (tmp_age_count + 1) * (tmp_age_unit + 1); 894 895 /* found a closer pair */ 896 if (error > tmp_error) { 897 error = tmp_error; 898 age_count = tmp_age_count; 899 age_unit = tmp_age_unit; 900 } 901 902 /* found the exact match, so break the loop */ 903 if (!error) 904 break; 905 } 906 } 907 908 mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit)); 909 910 return 0; 911 } 912 913 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface) 914 { 915 struct mt7530_priv *priv = ds->priv; 916 u8 tx_delay = 0; 917 int val; 918 919 mutex_lock(&priv->reg_mutex); 920 921 val = mt7530_read(priv, MT7530_MHWTRAP); 922 923 val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS; 924 val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL; 925 926 switch (priv->p5_intf_sel) { 927 case P5_INTF_SEL_PHY_P0: 928 /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */ 929 val |= MHWTRAP_PHY0_SEL; 930 fallthrough; 931 case P5_INTF_SEL_PHY_P4: 932 /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */ 933 val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS; 934 935 /* Setup the MAC by default for the cpu port */ 936 mt7530_write(priv, MT7530_PMCR_P(5), 0x56300); 937 break; 938 case P5_INTF_SEL_GMAC5: 939 /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */ 940 val &= ~MHWTRAP_P5_DIS; 941 break; 942 case P5_DISABLED: 943 interface = PHY_INTERFACE_MODE_NA; 944 break; 945 default: 946 dev_err(ds->dev, "Unsupported p5_intf_sel %d\n", 947 priv->p5_intf_sel); 948 goto unlock_exit; 949 } 950 951 /* Setup RGMII settings */ 952 if (phy_interface_mode_is_rgmii(interface)) { 953 val |= MHWTRAP_P5_RGMII_MODE; 954 955 /* P5 RGMII RX Clock Control: delay setting for 1000M */ 956 mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN); 957 958 /* Don't set delay in DSA mode */ 959 if (!dsa_is_dsa_port(priv->ds, 5) && 960 (interface == PHY_INTERFACE_MODE_RGMII_TXID || 961 interface == PHY_INTERFACE_MODE_RGMII_ID)) 962 tx_delay = 4; /* n * 0.5 ns */ 963 964 /* P5 RGMII TX Clock Control: delay x */ 965 mt7530_write(priv, MT7530_P5RGMIITXCR, 966 CSR_RGMII_TXC_CFG(0x10 + tx_delay)); 967 968 /* reduce P5 RGMII Tx driving, 8mA */ 969 mt7530_write(priv, MT7530_IO_DRV_CR, 970 P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1)); 971 } 972 973 mt7530_write(priv, MT7530_MHWTRAP, val); 974 975 dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n", 976 val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface)); 977 978 priv->p5_interface = interface; 979 980 unlock_exit: 981 mutex_unlock(&priv->reg_mutex); 982 } 983 984 static int 985 mt753x_cpu_port_enable(struct dsa_switch *ds, int port) 986 { 987 struct mt7530_priv *priv = ds->priv; 988 int ret; 989 990 /* Setup max capability of CPU port at first */ 991 if (priv->info->cpu_port_config) { 992 ret = priv->info->cpu_port_config(ds, port); 993 if (ret) 994 return ret; 995 } 996 997 /* Enable Mediatek header mode on the cpu port */ 998 mt7530_write(priv, MT7530_PVC_P(port), 999 PORT_SPEC_TAG); 1000 1001 /* Unknown multicast frame forwarding to the cpu port */ 1002 mt7530_rmw(priv, MT7530_MFC, UNM_FFP_MASK, UNM_FFP(BIT(port))); 1003 1004 /* Set CPU port number */ 1005 if (priv->id == ID_MT7621) 1006 mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port)); 1007 1008 /* CPU port gets connected to all user ports of 1009 * the switch. 1010 */ 1011 mt7530_write(priv, MT7530_PCR_P(port), 1012 PCR_MATRIX(dsa_user_ports(priv->ds))); 1013 1014 return 0; 1015 } 1016 1017 static int 1018 mt7530_port_enable(struct dsa_switch *ds, int port, 1019 struct phy_device *phy) 1020 { 1021 struct mt7530_priv *priv = ds->priv; 1022 1023 if (!dsa_is_user_port(ds, port)) 1024 return 0; 1025 1026 mutex_lock(&priv->reg_mutex); 1027 1028 /* Allow the user port gets connected to the cpu port and also 1029 * restore the port matrix if the port is the member of a certain 1030 * bridge. 1031 */ 1032 priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT)); 1033 priv->ports[port].enable = true; 1034 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1035 priv->ports[port].pm); 1036 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 1037 1038 mutex_unlock(&priv->reg_mutex); 1039 1040 return 0; 1041 } 1042 1043 static void 1044 mt7530_port_disable(struct dsa_switch *ds, int port) 1045 { 1046 struct mt7530_priv *priv = ds->priv; 1047 1048 if (!dsa_is_user_port(ds, port)) 1049 return; 1050 1051 mutex_lock(&priv->reg_mutex); 1052 1053 /* Clear up all port matrix which could be restored in the next 1054 * enablement for the port. 1055 */ 1056 priv->ports[port].enable = false; 1057 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1058 PCR_MATRIX_CLR); 1059 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 1060 1061 mutex_unlock(&priv->reg_mutex); 1062 } 1063 1064 static int 1065 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu) 1066 { 1067 struct mt7530_priv *priv = ds->priv; 1068 struct mii_bus *bus = priv->bus; 1069 int length; 1070 u32 val; 1071 1072 /* When a new MTU is set, DSA always set the CPU port's MTU to the 1073 * largest MTU of the slave ports. Because the switch only has a global 1074 * RX length register, only allowing CPU port here is enough. 1075 */ 1076 if (!dsa_is_cpu_port(ds, port)) 1077 return 0; 1078 1079 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 1080 1081 val = mt7530_mii_read(priv, MT7530_GMACCR); 1082 val &= ~MAX_RX_PKT_LEN_MASK; 1083 1084 /* RX length also includes Ethernet header, MTK tag, and FCS length */ 1085 length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN; 1086 if (length <= 1522) { 1087 val |= MAX_RX_PKT_LEN_1522; 1088 } else if (length <= 1536) { 1089 val |= MAX_RX_PKT_LEN_1536; 1090 } else if (length <= 1552) { 1091 val |= MAX_RX_PKT_LEN_1552; 1092 } else { 1093 val &= ~MAX_RX_JUMBO_MASK; 1094 val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024)); 1095 val |= MAX_RX_PKT_LEN_JUMBO; 1096 } 1097 1098 mt7530_mii_write(priv, MT7530_GMACCR, val); 1099 1100 mutex_unlock(&bus->mdio_lock); 1101 1102 return 0; 1103 } 1104 1105 static int 1106 mt7530_port_max_mtu(struct dsa_switch *ds, int port) 1107 { 1108 return MT7530_MAX_MTU; 1109 } 1110 1111 static void 1112 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state) 1113 { 1114 struct mt7530_priv *priv = ds->priv; 1115 u32 stp_state; 1116 1117 switch (state) { 1118 case BR_STATE_DISABLED: 1119 stp_state = MT7530_STP_DISABLED; 1120 break; 1121 case BR_STATE_BLOCKING: 1122 stp_state = MT7530_STP_BLOCKING; 1123 break; 1124 case BR_STATE_LISTENING: 1125 stp_state = MT7530_STP_LISTENING; 1126 break; 1127 case BR_STATE_LEARNING: 1128 stp_state = MT7530_STP_LEARNING; 1129 break; 1130 case BR_STATE_FORWARDING: 1131 default: 1132 stp_state = MT7530_STP_FORWARDING; 1133 break; 1134 } 1135 1136 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state); 1137 } 1138 1139 static int 1140 mt7530_port_bridge_join(struct dsa_switch *ds, int port, 1141 struct net_device *bridge) 1142 { 1143 struct mt7530_priv *priv = ds->priv; 1144 u32 port_bitmap = BIT(MT7530_CPU_PORT); 1145 int i; 1146 1147 mutex_lock(&priv->reg_mutex); 1148 1149 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1150 /* Add this port to the port matrix of the other ports in the 1151 * same bridge. If the port is disabled, port matrix is kept 1152 * and not being setup until the port becomes enabled. 1153 */ 1154 if (dsa_is_user_port(ds, i) && i != port) { 1155 if (dsa_to_port(ds, i)->bridge_dev != bridge) 1156 continue; 1157 if (priv->ports[i].enable) 1158 mt7530_set(priv, MT7530_PCR_P(i), 1159 PCR_MATRIX(BIT(port))); 1160 priv->ports[i].pm |= PCR_MATRIX(BIT(port)); 1161 1162 port_bitmap |= BIT(i); 1163 } 1164 } 1165 1166 /* Add the all other ports to this port matrix. */ 1167 if (priv->ports[port].enable) 1168 mt7530_rmw(priv, MT7530_PCR_P(port), 1169 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap)); 1170 priv->ports[port].pm |= PCR_MATRIX(port_bitmap); 1171 1172 mutex_unlock(&priv->reg_mutex); 1173 1174 return 0; 1175 } 1176 1177 static void 1178 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port) 1179 { 1180 struct mt7530_priv *priv = ds->priv; 1181 bool all_user_ports_removed = true; 1182 int i; 1183 1184 /* When a port is removed from the bridge, the port would be set up 1185 * back to the default as is at initial boot which is a VLAN-unaware 1186 * port. 1187 */ 1188 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1189 MT7530_PORT_MATRIX_MODE); 1190 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, 1191 VLAN_ATTR(MT7530_VLAN_TRANSPARENT) | 1192 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1193 1194 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1195 if (dsa_is_user_port(ds, i) && 1196 dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { 1197 all_user_ports_removed = false; 1198 break; 1199 } 1200 } 1201 1202 /* CPU port also does the same thing until all user ports belonging to 1203 * the CPU port get out of VLAN filtering mode. 1204 */ 1205 if (all_user_ports_removed) { 1206 mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT), 1207 PCR_MATRIX(dsa_user_ports(priv->ds))); 1208 mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG 1209 | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1210 } 1211 } 1212 1213 static void 1214 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port) 1215 { 1216 struct mt7530_priv *priv = ds->priv; 1217 1218 /* The real fabric path would be decided on the membership in the 1219 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS 1220 * means potential VLAN can be consisting of certain subset of all 1221 * ports. 1222 */ 1223 mt7530_rmw(priv, MT7530_PCR_P(port), 1224 PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS)); 1225 1226 /* Trapped into security mode allows packet forwarding through VLAN 1227 * table lookup. CPU port is set to fallback mode to let untagged 1228 * frames pass through. 1229 */ 1230 if (dsa_is_cpu_port(ds, port)) 1231 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1232 MT7530_PORT_FALLBACK_MODE); 1233 else 1234 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1235 MT7530_PORT_SECURITY_MODE); 1236 1237 /* Set the port as a user port which is to be able to recognize VID 1238 * from incoming packets before fetching entry within the VLAN table. 1239 */ 1240 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, 1241 VLAN_ATTR(MT7530_VLAN_USER) | 1242 PVC_EG_TAG(MT7530_VLAN_EG_DISABLED)); 1243 } 1244 1245 static void 1246 mt7530_port_bridge_leave(struct dsa_switch *ds, int port, 1247 struct net_device *bridge) 1248 { 1249 struct mt7530_priv *priv = ds->priv; 1250 int i; 1251 1252 mutex_lock(&priv->reg_mutex); 1253 1254 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1255 /* Remove this port from the port matrix of the other ports 1256 * in the same bridge. If the port is disabled, port matrix 1257 * is kept and not being setup until the port becomes enabled. 1258 * And the other port's port matrix cannot be broken when the 1259 * other port is still a VLAN-aware port. 1260 */ 1261 if (dsa_is_user_port(ds, i) && i != port && 1262 !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { 1263 if (dsa_to_port(ds, i)->bridge_dev != bridge) 1264 continue; 1265 if (priv->ports[i].enable) 1266 mt7530_clear(priv, MT7530_PCR_P(i), 1267 PCR_MATRIX(BIT(port))); 1268 priv->ports[i].pm &= ~PCR_MATRIX(BIT(port)); 1269 } 1270 } 1271 1272 /* Set the cpu port to be the only one in the port matrix of 1273 * this port. 1274 */ 1275 if (priv->ports[port].enable) 1276 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1277 PCR_MATRIX(BIT(MT7530_CPU_PORT))); 1278 priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT)); 1279 1280 mutex_unlock(&priv->reg_mutex); 1281 } 1282 1283 static int 1284 mt7530_port_fdb_add(struct dsa_switch *ds, int port, 1285 const unsigned char *addr, u16 vid) 1286 { 1287 struct mt7530_priv *priv = ds->priv; 1288 int ret; 1289 u8 port_mask = BIT(port); 1290 1291 mutex_lock(&priv->reg_mutex); 1292 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); 1293 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1294 mutex_unlock(&priv->reg_mutex); 1295 1296 return ret; 1297 } 1298 1299 static int 1300 mt7530_port_fdb_del(struct dsa_switch *ds, int port, 1301 const unsigned char *addr, u16 vid) 1302 { 1303 struct mt7530_priv *priv = ds->priv; 1304 int ret; 1305 u8 port_mask = BIT(port); 1306 1307 mutex_lock(&priv->reg_mutex); 1308 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP); 1309 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1310 mutex_unlock(&priv->reg_mutex); 1311 1312 return ret; 1313 } 1314 1315 static int 1316 mt7530_port_fdb_dump(struct dsa_switch *ds, int port, 1317 dsa_fdb_dump_cb_t *cb, void *data) 1318 { 1319 struct mt7530_priv *priv = ds->priv; 1320 struct mt7530_fdb _fdb = { 0 }; 1321 int cnt = MT7530_NUM_FDB_RECORDS; 1322 int ret = 0; 1323 u32 rsp = 0; 1324 1325 mutex_lock(&priv->reg_mutex); 1326 1327 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp); 1328 if (ret < 0) 1329 goto err; 1330 1331 do { 1332 if (rsp & ATC_SRCH_HIT) { 1333 mt7530_fdb_read(priv, &_fdb); 1334 if (_fdb.port_mask & BIT(port)) { 1335 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp, 1336 data); 1337 if (ret < 0) 1338 break; 1339 } 1340 } 1341 } while (--cnt && 1342 !(rsp & ATC_SRCH_END) && 1343 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp)); 1344 err: 1345 mutex_unlock(&priv->reg_mutex); 1346 1347 return 0; 1348 } 1349 1350 static int 1351 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid) 1352 { 1353 struct mt7530_dummy_poll p; 1354 u32 val; 1355 int ret; 1356 1357 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid; 1358 mt7530_write(priv, MT7530_VTCR, val); 1359 1360 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR); 1361 ret = readx_poll_timeout(_mt7530_read, &p, val, 1362 !(val & VTCR_BUSY), 20, 20000); 1363 if (ret < 0) { 1364 dev_err(priv->dev, "poll timeout\n"); 1365 return ret; 1366 } 1367 1368 val = mt7530_read(priv, MT7530_VTCR); 1369 if (val & VTCR_INVALID) { 1370 dev_err(priv->dev, "read VTCR invalid\n"); 1371 return -EINVAL; 1372 } 1373 1374 return 0; 1375 } 1376 1377 static int 1378 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, 1379 bool vlan_filtering, 1380 struct switchdev_trans *trans) 1381 { 1382 if (switchdev_trans_ph_prepare(trans)) 1383 return 0; 1384 1385 if (vlan_filtering) { 1386 /* The port is being kept as VLAN-unaware port when bridge is 1387 * set up with vlan_filtering not being set, Otherwise, the 1388 * port and the corresponding CPU port is required the setup 1389 * for becoming a VLAN-aware port. 1390 */ 1391 mt7530_port_set_vlan_aware(ds, port); 1392 mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT); 1393 } else { 1394 mt7530_port_set_vlan_unaware(ds, port); 1395 } 1396 1397 return 0; 1398 } 1399 1400 static int 1401 mt7530_port_vlan_prepare(struct dsa_switch *ds, int port, 1402 const struct switchdev_obj_port_vlan *vlan) 1403 { 1404 /* nothing needed */ 1405 1406 return 0; 1407 } 1408 1409 static void 1410 mt7530_hw_vlan_add(struct mt7530_priv *priv, 1411 struct mt7530_hw_vlan_entry *entry) 1412 { 1413 u8 new_members; 1414 u32 val; 1415 1416 new_members = entry->old_members | BIT(entry->port) | 1417 BIT(MT7530_CPU_PORT); 1418 1419 /* Validate the entry with independent learning, create egress tag per 1420 * VLAN and joining the port as one of the port members. 1421 */ 1422 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID; 1423 mt7530_write(priv, MT7530_VAWD1, val); 1424 1425 /* Decide whether adding tag or not for those outgoing packets from the 1426 * port inside the VLAN. 1427 */ 1428 val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG : 1429 MT7530_VLAN_EGRESS_TAG; 1430 mt7530_rmw(priv, MT7530_VAWD2, 1431 ETAG_CTRL_P_MASK(entry->port), 1432 ETAG_CTRL_P(entry->port, val)); 1433 1434 /* CPU port is always taken as a tagged port for serving more than one 1435 * VLANs across and also being applied with egress type stack mode for 1436 * that VLAN tags would be appended after hardware special tag used as 1437 * DSA tag. 1438 */ 1439 mt7530_rmw(priv, MT7530_VAWD2, 1440 ETAG_CTRL_P_MASK(MT7530_CPU_PORT), 1441 ETAG_CTRL_P(MT7530_CPU_PORT, 1442 MT7530_VLAN_EGRESS_STACK)); 1443 } 1444 1445 static void 1446 mt7530_hw_vlan_del(struct mt7530_priv *priv, 1447 struct mt7530_hw_vlan_entry *entry) 1448 { 1449 u8 new_members; 1450 u32 val; 1451 1452 new_members = entry->old_members & ~BIT(entry->port); 1453 1454 val = mt7530_read(priv, MT7530_VAWD1); 1455 if (!(val & VLAN_VALID)) { 1456 dev_err(priv->dev, 1457 "Cannot be deleted due to invalid entry\n"); 1458 return; 1459 } 1460 1461 /* If certain member apart from CPU port is still alive in the VLAN, 1462 * the entry would be kept valid. Otherwise, the entry is got to be 1463 * disabled. 1464 */ 1465 if (new_members && new_members != BIT(MT7530_CPU_PORT)) { 1466 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | 1467 VLAN_VALID; 1468 mt7530_write(priv, MT7530_VAWD1, val); 1469 } else { 1470 mt7530_write(priv, MT7530_VAWD1, 0); 1471 mt7530_write(priv, MT7530_VAWD2, 0); 1472 } 1473 } 1474 1475 static void 1476 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid, 1477 struct mt7530_hw_vlan_entry *entry, 1478 mt7530_vlan_op vlan_op) 1479 { 1480 u32 val; 1481 1482 /* Fetch entry */ 1483 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid); 1484 1485 val = mt7530_read(priv, MT7530_VAWD1); 1486 1487 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK; 1488 1489 /* Manipulate entry */ 1490 vlan_op(priv, entry); 1491 1492 /* Flush result to hardware */ 1493 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid); 1494 } 1495 1496 static void 1497 mt7530_port_vlan_add(struct dsa_switch *ds, int port, 1498 const struct switchdev_obj_port_vlan *vlan) 1499 { 1500 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 1501 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; 1502 struct mt7530_hw_vlan_entry new_entry; 1503 struct mt7530_priv *priv = ds->priv; 1504 u16 vid; 1505 1506 mutex_lock(&priv->reg_mutex); 1507 1508 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { 1509 mt7530_hw_vlan_entry_init(&new_entry, port, untagged); 1510 mt7530_hw_vlan_update(priv, vid, &new_entry, 1511 mt7530_hw_vlan_add); 1512 } 1513 1514 if (pvid) { 1515 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1516 G0_PORT_VID(vlan->vid_end)); 1517 priv->ports[port].pvid = vlan->vid_end; 1518 } 1519 1520 mutex_unlock(&priv->reg_mutex); 1521 } 1522 1523 static int 1524 mt7530_port_vlan_del(struct dsa_switch *ds, int port, 1525 const struct switchdev_obj_port_vlan *vlan) 1526 { 1527 struct mt7530_hw_vlan_entry target_entry; 1528 struct mt7530_priv *priv = ds->priv; 1529 u16 vid, pvid; 1530 1531 mutex_lock(&priv->reg_mutex); 1532 1533 pvid = priv->ports[port].pvid; 1534 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { 1535 mt7530_hw_vlan_entry_init(&target_entry, port, 0); 1536 mt7530_hw_vlan_update(priv, vid, &target_entry, 1537 mt7530_hw_vlan_del); 1538 1539 /* PVID is being restored to the default whenever the PVID port 1540 * is being removed from the VLAN. 1541 */ 1542 if (pvid == vid) 1543 pvid = G0_PORT_VID_DEF; 1544 } 1545 1546 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid); 1547 priv->ports[port].pvid = pvid; 1548 1549 mutex_unlock(&priv->reg_mutex); 1550 1551 return 0; 1552 } 1553 1554 static int mt753x_mirror_port_get(unsigned int id, u32 val) 1555 { 1556 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) : 1557 MIRROR_PORT(val); 1558 } 1559 1560 static int mt753x_mirror_port_set(unsigned int id, u32 val) 1561 { 1562 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) : 1563 MIRROR_PORT(val); 1564 } 1565 1566 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port, 1567 struct dsa_mall_mirror_tc_entry *mirror, 1568 bool ingress) 1569 { 1570 struct mt7530_priv *priv = ds->priv; 1571 int monitor_port; 1572 u32 val; 1573 1574 /* Check for existent entry */ 1575 if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port)) 1576 return -EEXIST; 1577 1578 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); 1579 1580 /* MT7530 only supports one monitor port */ 1581 monitor_port = mt753x_mirror_port_get(priv->id, val); 1582 if (val & MT753X_MIRROR_EN(priv->id) && 1583 monitor_port != mirror->to_local_port) 1584 return -EEXIST; 1585 1586 val |= MT753X_MIRROR_EN(priv->id); 1587 val &= ~MT753X_MIRROR_MASK(priv->id); 1588 val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port); 1589 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); 1590 1591 val = mt7530_read(priv, MT7530_PCR_P(port)); 1592 if (ingress) { 1593 val |= PORT_RX_MIR; 1594 priv->mirror_rx |= BIT(port); 1595 } else { 1596 val |= PORT_TX_MIR; 1597 priv->mirror_tx |= BIT(port); 1598 } 1599 mt7530_write(priv, MT7530_PCR_P(port), val); 1600 1601 return 0; 1602 } 1603 1604 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port, 1605 struct dsa_mall_mirror_tc_entry *mirror) 1606 { 1607 struct mt7530_priv *priv = ds->priv; 1608 u32 val; 1609 1610 val = mt7530_read(priv, MT7530_PCR_P(port)); 1611 if (mirror->ingress) { 1612 val &= ~PORT_RX_MIR; 1613 priv->mirror_rx &= ~BIT(port); 1614 } else { 1615 val &= ~PORT_TX_MIR; 1616 priv->mirror_tx &= ~BIT(port); 1617 } 1618 mt7530_write(priv, MT7530_PCR_P(port), val); 1619 1620 if (!priv->mirror_rx && !priv->mirror_tx) { 1621 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); 1622 val &= ~MT753X_MIRROR_EN(priv->id); 1623 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); 1624 } 1625 } 1626 1627 static enum dsa_tag_protocol 1628 mtk_get_tag_protocol(struct dsa_switch *ds, int port, 1629 enum dsa_tag_protocol mp) 1630 { 1631 struct mt7530_priv *priv = ds->priv; 1632 1633 if (port != MT7530_CPU_PORT) { 1634 dev_warn(priv->dev, 1635 "port not matched with tagging CPU port\n"); 1636 return DSA_TAG_PROTO_NONE; 1637 } else { 1638 return DSA_TAG_PROTO_MTK; 1639 } 1640 } 1641 1642 static int 1643 mt7530_setup(struct dsa_switch *ds) 1644 { 1645 struct mt7530_priv *priv = ds->priv; 1646 struct device_node *phy_node; 1647 struct device_node *mac_np; 1648 struct mt7530_dummy_poll p; 1649 phy_interface_t interface; 1650 struct device_node *dn; 1651 u32 id, val; 1652 int ret, i; 1653 1654 /* The parent node of master netdev which holds the common system 1655 * controller also is the container for two GMACs nodes representing 1656 * as two netdev instances. 1657 */ 1658 dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent; 1659 ds->configure_vlan_while_not_filtering = true; 1660 1661 if (priv->id == ID_MT7530) { 1662 regulator_set_voltage(priv->core_pwr, 1000000, 1000000); 1663 ret = regulator_enable(priv->core_pwr); 1664 if (ret < 0) { 1665 dev_err(priv->dev, 1666 "Failed to enable core power: %d\n", ret); 1667 return ret; 1668 } 1669 1670 regulator_set_voltage(priv->io_pwr, 3300000, 3300000); 1671 ret = regulator_enable(priv->io_pwr); 1672 if (ret < 0) { 1673 dev_err(priv->dev, "Failed to enable io pwr: %d\n", 1674 ret); 1675 return ret; 1676 } 1677 } 1678 1679 /* Reset whole chip through gpio pin or memory-mapped registers for 1680 * different type of hardware 1681 */ 1682 if (priv->mcm) { 1683 reset_control_assert(priv->rstc); 1684 usleep_range(1000, 1100); 1685 reset_control_deassert(priv->rstc); 1686 } else { 1687 gpiod_set_value_cansleep(priv->reset, 0); 1688 usleep_range(1000, 1100); 1689 gpiod_set_value_cansleep(priv->reset, 1); 1690 } 1691 1692 /* Waiting for MT7530 got to stable */ 1693 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); 1694 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 1695 20, 1000000); 1696 if (ret < 0) { 1697 dev_err(priv->dev, "reset timeout\n"); 1698 return ret; 1699 } 1700 1701 id = mt7530_read(priv, MT7530_CREV); 1702 id >>= CHIP_NAME_SHIFT; 1703 if (id != MT7530_ID) { 1704 dev_err(priv->dev, "chip %x can't be supported\n", id); 1705 return -ENODEV; 1706 } 1707 1708 /* Reset the switch through internal reset */ 1709 mt7530_write(priv, MT7530_SYS_CTRL, 1710 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | 1711 SYS_CTRL_REG_RST); 1712 1713 /* Enable Port 6 only; P5 as GMAC5 which currently is not supported */ 1714 val = mt7530_read(priv, MT7530_MHWTRAP); 1715 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS; 1716 val |= MHWTRAP_MANUAL; 1717 mt7530_write(priv, MT7530_MHWTRAP, val); 1718 1719 priv->p6_interface = PHY_INTERFACE_MODE_NA; 1720 1721 /* Enable and reset MIB counters */ 1722 mt7530_mib_reset(ds); 1723 1724 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1725 /* Disable forwarding by default on all ports */ 1726 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, 1727 PCR_MATRIX_CLR); 1728 1729 if (dsa_is_cpu_port(ds, i)) { 1730 ret = mt753x_cpu_port_enable(ds, i); 1731 if (ret) 1732 return ret; 1733 } else 1734 mt7530_port_disable(ds, i); 1735 1736 /* Enable consistent egress tag */ 1737 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, 1738 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1739 } 1740 1741 /* Setup port 5 */ 1742 priv->p5_intf_sel = P5_DISABLED; 1743 interface = PHY_INTERFACE_MODE_NA; 1744 1745 if (!dsa_is_unused_port(ds, 5)) { 1746 priv->p5_intf_sel = P5_INTF_SEL_GMAC5; 1747 ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface); 1748 if (ret && ret != -ENODEV) 1749 return ret; 1750 } else { 1751 /* Scan the ethernet nodes. look for GMAC1, lookup used phy */ 1752 for_each_child_of_node(dn, mac_np) { 1753 if (!of_device_is_compatible(mac_np, 1754 "mediatek,eth-mac")) 1755 continue; 1756 1757 ret = of_property_read_u32(mac_np, "reg", &id); 1758 if (ret < 0 || id != 1) 1759 continue; 1760 1761 phy_node = of_parse_phandle(mac_np, "phy-handle", 0); 1762 if (!phy_node) 1763 continue; 1764 1765 if (phy_node->parent == priv->dev->of_node->parent) { 1766 ret = of_get_phy_mode(mac_np, &interface); 1767 if (ret && ret != -ENODEV) { 1768 of_node_put(mac_np); 1769 return ret; 1770 } 1771 id = of_mdio_parse_addr(ds->dev, phy_node); 1772 if (id == 0) 1773 priv->p5_intf_sel = P5_INTF_SEL_PHY_P0; 1774 if (id == 4) 1775 priv->p5_intf_sel = P5_INTF_SEL_PHY_P4; 1776 } 1777 of_node_put(mac_np); 1778 of_node_put(phy_node); 1779 break; 1780 } 1781 } 1782 1783 mt7530_setup_port5(ds, interface); 1784 1785 /* Flush the FDB table */ 1786 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); 1787 if (ret < 0) 1788 return ret; 1789 1790 return 0; 1791 } 1792 1793 static int 1794 mt7531_setup(struct dsa_switch *ds) 1795 { 1796 struct mt7530_priv *priv = ds->priv; 1797 struct mt7530_dummy_poll p; 1798 u32 val, id; 1799 int ret, i; 1800 1801 /* Reset whole chip through gpio pin or memory-mapped registers for 1802 * different type of hardware 1803 */ 1804 if (priv->mcm) { 1805 reset_control_assert(priv->rstc); 1806 usleep_range(1000, 1100); 1807 reset_control_deassert(priv->rstc); 1808 } else { 1809 gpiod_set_value_cansleep(priv->reset, 0); 1810 usleep_range(1000, 1100); 1811 gpiod_set_value_cansleep(priv->reset, 1); 1812 } 1813 1814 /* Waiting for MT7530 got to stable */ 1815 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); 1816 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 1817 20, 1000000); 1818 if (ret < 0) { 1819 dev_err(priv->dev, "reset timeout\n"); 1820 return ret; 1821 } 1822 1823 id = mt7530_read(priv, MT7531_CREV); 1824 id >>= CHIP_NAME_SHIFT; 1825 1826 if (id != MT7531_ID) { 1827 dev_err(priv->dev, "chip %x can't be supported\n", id); 1828 return -ENODEV; 1829 } 1830 1831 /* Reset the switch through internal reset */ 1832 mt7530_write(priv, MT7530_SYS_CTRL, 1833 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | 1834 SYS_CTRL_REG_RST); 1835 1836 if (mt7531_dual_sgmii_supported(priv)) { 1837 priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII; 1838 1839 /* Let ds->slave_mii_bus be able to access external phy. */ 1840 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK, 1841 MT7531_EXT_P_MDC_11); 1842 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK, 1843 MT7531_EXT_P_MDIO_12); 1844 } else { 1845 priv->p5_intf_sel = P5_INTF_SEL_GMAC5; 1846 } 1847 dev_dbg(ds->dev, "P5 support %s interface\n", 1848 p5_intf_modes(priv->p5_intf_sel)); 1849 1850 mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK, 1851 MT7531_GPIO0_INTERRUPT); 1852 1853 /* Let phylink decide the interface later. */ 1854 priv->p5_interface = PHY_INTERFACE_MODE_NA; 1855 priv->p6_interface = PHY_INTERFACE_MODE_NA; 1856 1857 /* Enable PHY core PLL, since phy_device has not yet been created 1858 * provided for phy_[read,write]_mmd_indirect is called, we provide 1859 * our own mt7531_ind_mmd_phy_[read,write] to complete this 1860 * function. 1861 */ 1862 val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR, 1863 MDIO_MMD_VEND2, CORE_PLL_GROUP4); 1864 val |= MT7531_PHY_PLL_BYPASS_MODE; 1865 val &= ~MT7531_PHY_PLL_OFF; 1866 mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2, 1867 CORE_PLL_GROUP4, val); 1868 1869 /* BPDU to CPU port */ 1870 mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK, 1871 BIT(MT7530_CPU_PORT)); 1872 mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK, 1873 MT753X_BPDU_CPU_ONLY); 1874 1875 /* Enable and reset MIB counters */ 1876 mt7530_mib_reset(ds); 1877 1878 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1879 /* Disable forwarding by default on all ports */ 1880 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, 1881 PCR_MATRIX_CLR); 1882 1883 mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR); 1884 1885 if (dsa_is_cpu_port(ds, i)) { 1886 ret = mt753x_cpu_port_enable(ds, i); 1887 if (ret) 1888 return ret; 1889 } else 1890 mt7530_port_disable(ds, i); 1891 1892 /* Enable consistent egress tag */ 1893 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, 1894 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1895 } 1896 1897 ds->configure_vlan_while_not_filtering = true; 1898 1899 /* Flush the FDB table */ 1900 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); 1901 if (ret < 0) 1902 return ret; 1903 1904 return 0; 1905 } 1906 1907 static bool 1908 mt7530_phy_mode_supported(struct dsa_switch *ds, int port, 1909 const struct phylink_link_state *state) 1910 { 1911 struct mt7530_priv *priv = ds->priv; 1912 1913 switch (port) { 1914 case 0 ... 4: /* Internal phy */ 1915 if (state->interface != PHY_INTERFACE_MODE_GMII) 1916 return false; 1917 break; 1918 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ 1919 if (!phy_interface_mode_is_rgmii(state->interface) && 1920 state->interface != PHY_INTERFACE_MODE_MII && 1921 state->interface != PHY_INTERFACE_MODE_GMII) 1922 return false; 1923 break; 1924 case 6: /* 1st cpu port */ 1925 if (state->interface != PHY_INTERFACE_MODE_RGMII && 1926 state->interface != PHY_INTERFACE_MODE_TRGMII) 1927 return false; 1928 break; 1929 default: 1930 dev_err(priv->dev, "%s: unsupported port: %i\n", __func__, 1931 port); 1932 return false; 1933 } 1934 1935 return true; 1936 } 1937 1938 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port) 1939 { 1940 return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII); 1941 } 1942 1943 static bool 1944 mt7531_phy_mode_supported(struct dsa_switch *ds, int port, 1945 const struct phylink_link_state *state) 1946 { 1947 struct mt7530_priv *priv = ds->priv; 1948 1949 switch (port) { 1950 case 0 ... 4: /* Internal phy */ 1951 if (state->interface != PHY_INTERFACE_MODE_GMII) 1952 return false; 1953 break; 1954 case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */ 1955 if (mt7531_is_rgmii_port(priv, port)) 1956 return phy_interface_mode_is_rgmii(state->interface); 1957 fallthrough; 1958 case 6: /* 1st cpu port supports sgmii/8023z only */ 1959 if (state->interface != PHY_INTERFACE_MODE_SGMII && 1960 !phy_interface_mode_is_8023z(state->interface)) 1961 return false; 1962 break; 1963 default: 1964 dev_err(priv->dev, "%s: unsupported port: %i\n", __func__, 1965 port); 1966 return false; 1967 } 1968 1969 return true; 1970 } 1971 1972 static bool 1973 mt753x_phy_mode_supported(struct dsa_switch *ds, int port, 1974 const struct phylink_link_state *state) 1975 { 1976 struct mt7530_priv *priv = ds->priv; 1977 1978 return priv->info->phy_mode_supported(ds, port, state); 1979 } 1980 1981 static int 1982 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state) 1983 { 1984 struct mt7530_priv *priv = ds->priv; 1985 1986 return priv->info->pad_setup(ds, state->interface); 1987 } 1988 1989 static int 1990 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 1991 phy_interface_t interface) 1992 { 1993 struct mt7530_priv *priv = ds->priv; 1994 1995 /* Only need to setup port5. */ 1996 if (port != 5) 1997 return 0; 1998 1999 mt7530_setup_port5(priv->ds, interface); 2000 2001 return 0; 2002 } 2003 2004 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port, 2005 phy_interface_t interface, 2006 struct phy_device *phydev) 2007 { 2008 u32 val; 2009 2010 if (!mt7531_is_rgmii_port(priv, port)) { 2011 dev_err(priv->dev, "RGMII mode is not available for port %d\n", 2012 port); 2013 return -EINVAL; 2014 } 2015 2016 val = mt7530_read(priv, MT7531_CLKGEN_CTRL); 2017 val |= GP_CLK_EN; 2018 val &= ~GP_MODE_MASK; 2019 val |= GP_MODE(MT7531_GP_MODE_RGMII); 2020 val &= ~CLK_SKEW_IN_MASK; 2021 val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG); 2022 val &= ~CLK_SKEW_OUT_MASK; 2023 val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG); 2024 val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY; 2025 2026 /* Do not adjust rgmii delay when vendor phy driver presents. */ 2027 if (!phydev || phy_driver_is_genphy(phydev)) { 2028 val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY); 2029 switch (interface) { 2030 case PHY_INTERFACE_MODE_RGMII: 2031 val |= TXCLK_NO_REVERSE; 2032 val |= RXCLK_NO_DELAY; 2033 break; 2034 case PHY_INTERFACE_MODE_RGMII_RXID: 2035 val |= TXCLK_NO_REVERSE; 2036 break; 2037 case PHY_INTERFACE_MODE_RGMII_TXID: 2038 val |= RXCLK_NO_DELAY; 2039 break; 2040 case PHY_INTERFACE_MODE_RGMII_ID: 2041 break; 2042 default: 2043 return -EINVAL; 2044 } 2045 } 2046 mt7530_write(priv, MT7531_CLKGEN_CTRL, val); 2047 2048 return 0; 2049 } 2050 2051 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port, 2052 unsigned long *supported) 2053 { 2054 /* Port5 supports ethier RGMII or SGMII. 2055 * Port6 supports SGMII only. 2056 */ 2057 switch (port) { 2058 case 5: 2059 if (mt7531_is_rgmii_port(priv, port)) 2060 break; 2061 fallthrough; 2062 case 6: 2063 phylink_set(supported, 1000baseX_Full); 2064 phylink_set(supported, 2500baseX_Full); 2065 phylink_set(supported, 2500baseT_Full); 2066 } 2067 } 2068 2069 static void 2070 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port, 2071 unsigned int mode, phy_interface_t interface, 2072 int speed, int duplex) 2073 { 2074 struct mt7530_priv *priv = ds->priv; 2075 unsigned int val; 2076 2077 /* For adjusting speed and duplex of SGMII force mode. */ 2078 if (interface != PHY_INTERFACE_MODE_SGMII || 2079 phylink_autoneg_inband(mode)) 2080 return; 2081 2082 /* SGMII force mode setting */ 2083 val = mt7530_read(priv, MT7531_SGMII_MODE(port)); 2084 val &= ~MT7531_SGMII_IF_MODE_MASK; 2085 2086 switch (speed) { 2087 case SPEED_10: 2088 val |= MT7531_SGMII_FORCE_SPEED_10; 2089 break; 2090 case SPEED_100: 2091 val |= MT7531_SGMII_FORCE_SPEED_100; 2092 break; 2093 case SPEED_1000: 2094 val |= MT7531_SGMII_FORCE_SPEED_1000; 2095 break; 2096 } 2097 2098 /* MT7531 SGMII 1G force mode can only work in full duplex mode, 2099 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not. 2100 */ 2101 if ((speed == SPEED_10 || speed == SPEED_100) && 2102 duplex != DUPLEX_FULL) 2103 val |= MT7531_SGMII_FORCE_HALF_DUPLEX; 2104 2105 mt7530_write(priv, MT7531_SGMII_MODE(port), val); 2106 } 2107 2108 static bool mt753x_is_mac_port(u32 port) 2109 { 2110 return (port == 5 || port == 6); 2111 } 2112 2113 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port, 2114 phy_interface_t interface) 2115 { 2116 u32 val; 2117 2118 if (!mt753x_is_mac_port(port)) 2119 return -EINVAL; 2120 2121 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 2122 MT7531_SGMII_PHYA_PWD); 2123 2124 val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port)); 2125 val &= ~MT7531_RG_TPHY_SPEED_MASK; 2126 /* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B 2127 * encoding. 2128 */ 2129 val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ? 2130 MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G; 2131 mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val); 2132 2133 mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE); 2134 2135 /* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex 2136 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not. 2137 */ 2138 mt7530_rmw(priv, MT7531_SGMII_MODE(port), 2139 MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS, 2140 MT7531_SGMII_FORCE_SPEED_1000); 2141 2142 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0); 2143 2144 return 0; 2145 } 2146 2147 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port, 2148 phy_interface_t interface) 2149 { 2150 if (!mt753x_is_mac_port(port)) 2151 return -EINVAL; 2152 2153 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 2154 MT7531_SGMII_PHYA_PWD); 2155 2156 mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port), 2157 MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G); 2158 2159 mt7530_set(priv, MT7531_SGMII_MODE(port), 2160 MT7531_SGMII_REMOTE_FAULT_DIS | 2161 MT7531_SGMII_SPEED_DUPLEX_AN); 2162 2163 mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port), 2164 MT7531_SGMII_TX_CONFIG_MASK, 1); 2165 2166 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE); 2167 2168 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART); 2169 2170 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0); 2171 2172 return 0; 2173 } 2174 2175 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port) 2176 { 2177 struct mt7530_priv *priv = ds->priv; 2178 u32 val; 2179 2180 /* Only restart AN when AN is enabled */ 2181 val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); 2182 if (val & MT7531_SGMII_AN_ENABLE) { 2183 val |= MT7531_SGMII_AN_RESTART; 2184 mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val); 2185 } 2186 } 2187 2188 static int 2189 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2190 phy_interface_t interface) 2191 { 2192 struct mt7530_priv *priv = ds->priv; 2193 struct phy_device *phydev; 2194 struct dsa_port *dp; 2195 2196 if (!mt753x_is_mac_port(port)) { 2197 dev_err(priv->dev, "port %d is not a MAC port\n", port); 2198 return -EINVAL; 2199 } 2200 2201 switch (interface) { 2202 case PHY_INTERFACE_MODE_RGMII: 2203 case PHY_INTERFACE_MODE_RGMII_ID: 2204 case PHY_INTERFACE_MODE_RGMII_RXID: 2205 case PHY_INTERFACE_MODE_RGMII_TXID: 2206 dp = dsa_to_port(ds, port); 2207 phydev = dp->slave->phydev; 2208 return mt7531_rgmii_setup(priv, port, interface, phydev); 2209 case PHY_INTERFACE_MODE_SGMII: 2210 return mt7531_sgmii_setup_mode_an(priv, port, interface); 2211 case PHY_INTERFACE_MODE_NA: 2212 case PHY_INTERFACE_MODE_1000BASEX: 2213 case PHY_INTERFACE_MODE_2500BASEX: 2214 if (phylink_autoneg_inband(mode)) 2215 return -EINVAL; 2216 2217 return mt7531_sgmii_setup_mode_force(priv, port, interface); 2218 default: 2219 return -EINVAL; 2220 } 2221 2222 return -EINVAL; 2223 } 2224 2225 static int 2226 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2227 const struct phylink_link_state *state) 2228 { 2229 struct mt7530_priv *priv = ds->priv; 2230 2231 return priv->info->mac_port_config(ds, port, mode, state->interface); 2232 } 2233 2234 static void 2235 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2236 const struct phylink_link_state *state) 2237 { 2238 struct mt7530_priv *priv = ds->priv; 2239 u32 mcr_cur, mcr_new; 2240 2241 if (!mt753x_phy_mode_supported(ds, port, state)) 2242 goto unsupported; 2243 2244 switch (port) { 2245 case 0 ... 4: /* Internal phy */ 2246 if (state->interface != PHY_INTERFACE_MODE_GMII) 2247 goto unsupported; 2248 break; 2249 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ 2250 if (priv->p5_interface == state->interface) 2251 break; 2252 2253 if (mt753x_mac_config(ds, port, mode, state) < 0) 2254 goto unsupported; 2255 2256 if (priv->p5_intf_sel != P5_DISABLED) 2257 priv->p5_interface = state->interface; 2258 break; 2259 case 6: /* 1st cpu port */ 2260 if (priv->p6_interface == state->interface) 2261 break; 2262 2263 mt753x_pad_setup(ds, state); 2264 2265 if (mt753x_mac_config(ds, port, mode, state) < 0) 2266 goto unsupported; 2267 2268 priv->p6_interface = state->interface; 2269 break; 2270 default: 2271 unsupported: 2272 dev_err(ds->dev, "%s: unsupported %s port: %i\n", 2273 __func__, phy_modes(state->interface), port); 2274 return; 2275 } 2276 2277 if (phylink_autoneg_inband(mode) && 2278 state->interface != PHY_INTERFACE_MODE_SGMII) { 2279 dev_err(ds->dev, "%s: in-band negotiation unsupported\n", 2280 __func__); 2281 return; 2282 } 2283 2284 mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port)); 2285 mcr_new = mcr_cur; 2286 mcr_new &= ~PMCR_LINK_SETTINGS_MASK; 2287 mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN | 2288 PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id); 2289 2290 /* Are we connected to external phy */ 2291 if (port == 5 && dsa_is_user_port(ds, 5)) 2292 mcr_new |= PMCR_EXT_PHY; 2293 2294 if (mcr_new != mcr_cur) 2295 mt7530_write(priv, MT7530_PMCR_P(port), mcr_new); 2296 } 2297 2298 static void 2299 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port) 2300 { 2301 struct mt7530_priv *priv = ds->priv; 2302 2303 if (!priv->info->mac_pcs_an_restart) 2304 return; 2305 2306 priv->info->mac_pcs_an_restart(ds, port); 2307 } 2308 2309 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port, 2310 unsigned int mode, 2311 phy_interface_t interface) 2312 { 2313 struct mt7530_priv *priv = ds->priv; 2314 2315 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 2316 } 2317 2318 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port, 2319 unsigned int mode, phy_interface_t interface, 2320 int speed, int duplex) 2321 { 2322 struct mt7530_priv *priv = ds->priv; 2323 2324 if (!priv->info->mac_pcs_link_up) 2325 return; 2326 2327 priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex); 2328 } 2329 2330 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port, 2331 unsigned int mode, 2332 phy_interface_t interface, 2333 struct phy_device *phydev, 2334 int speed, int duplex, 2335 bool tx_pause, bool rx_pause) 2336 { 2337 struct mt7530_priv *priv = ds->priv; 2338 u32 mcr; 2339 2340 mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex); 2341 2342 mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK; 2343 2344 /* MT753x MAC works in 1G full duplex mode for all up-clocked 2345 * variants. 2346 */ 2347 if (interface == PHY_INTERFACE_MODE_TRGMII || 2348 (phy_interface_mode_is_8023z(interface))) { 2349 speed = SPEED_1000; 2350 duplex = DUPLEX_FULL; 2351 } 2352 2353 switch (speed) { 2354 case SPEED_1000: 2355 mcr |= PMCR_FORCE_SPEED_1000; 2356 break; 2357 case SPEED_100: 2358 mcr |= PMCR_FORCE_SPEED_100; 2359 break; 2360 } 2361 if (duplex == DUPLEX_FULL) { 2362 mcr |= PMCR_FORCE_FDX; 2363 if (tx_pause) 2364 mcr |= PMCR_TX_FC_EN; 2365 if (rx_pause) 2366 mcr |= PMCR_RX_FC_EN; 2367 } 2368 2369 mt7530_set(priv, MT7530_PMCR_P(port), mcr); 2370 } 2371 2372 static int 2373 mt7531_cpu_port_config(struct dsa_switch *ds, int port) 2374 { 2375 struct mt7530_priv *priv = ds->priv; 2376 phy_interface_t interface; 2377 int speed; 2378 int ret; 2379 2380 switch (port) { 2381 case 5: 2382 if (mt7531_is_rgmii_port(priv, port)) 2383 interface = PHY_INTERFACE_MODE_RGMII; 2384 else 2385 interface = PHY_INTERFACE_MODE_2500BASEX; 2386 2387 priv->p5_interface = interface; 2388 break; 2389 case 6: 2390 interface = PHY_INTERFACE_MODE_2500BASEX; 2391 2392 mt7531_pad_setup(ds, interface); 2393 2394 priv->p6_interface = interface; 2395 break; 2396 default: 2397 return -EINVAL; 2398 } 2399 2400 if (interface == PHY_INTERFACE_MODE_2500BASEX) 2401 speed = SPEED_2500; 2402 else 2403 speed = SPEED_1000; 2404 2405 ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface); 2406 if (ret) 2407 return ret; 2408 mt7530_write(priv, MT7530_PMCR_P(port), 2409 PMCR_CPU_PORT_SETTING(priv->id)); 2410 mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL, 2411 speed, DUPLEX_FULL, true, true); 2412 2413 return 0; 2414 } 2415 2416 static void 2417 mt7530_mac_port_validate(struct dsa_switch *ds, int port, 2418 unsigned long *supported) 2419 { 2420 if (port == 5) 2421 phylink_set(supported, 1000baseX_Full); 2422 } 2423 2424 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port, 2425 unsigned long *supported) 2426 { 2427 struct mt7530_priv *priv = ds->priv; 2428 2429 mt7531_sgmii_validate(priv, port, supported); 2430 } 2431 2432 static void 2433 mt753x_phylink_validate(struct dsa_switch *ds, int port, 2434 unsigned long *supported, 2435 struct phylink_link_state *state) 2436 { 2437 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 2438 struct mt7530_priv *priv = ds->priv; 2439 2440 if (state->interface != PHY_INTERFACE_MODE_NA && 2441 !mt753x_phy_mode_supported(ds, port, state)) { 2442 linkmode_zero(supported); 2443 return; 2444 } 2445 2446 phylink_set_port_modes(mask); 2447 2448 if (state->interface != PHY_INTERFACE_MODE_TRGMII || 2449 !phy_interface_mode_is_8023z(state->interface)) { 2450 phylink_set(mask, 10baseT_Half); 2451 phylink_set(mask, 10baseT_Full); 2452 phylink_set(mask, 100baseT_Half); 2453 phylink_set(mask, 100baseT_Full); 2454 phylink_set(mask, Autoneg); 2455 } 2456 2457 /* This switch only supports 1G full-duplex. */ 2458 if (state->interface != PHY_INTERFACE_MODE_MII) 2459 phylink_set(mask, 1000baseT_Full); 2460 2461 priv->info->mac_port_validate(ds, port, mask); 2462 2463 phylink_set(mask, Pause); 2464 phylink_set(mask, Asym_Pause); 2465 2466 linkmode_and(supported, supported, mask); 2467 linkmode_and(state->advertising, state->advertising, mask); 2468 2469 /* We can only operate at 2500BaseX or 1000BaseX. If requested 2470 * to advertise both, only report advertising at 2500BaseX. 2471 */ 2472 phylink_helper_basex_speed(state); 2473 } 2474 2475 static int 2476 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port, 2477 struct phylink_link_state *state) 2478 { 2479 struct mt7530_priv *priv = ds->priv; 2480 u32 pmsr; 2481 2482 if (port < 0 || port >= MT7530_NUM_PORTS) 2483 return -EINVAL; 2484 2485 pmsr = mt7530_read(priv, MT7530_PMSR_P(port)); 2486 2487 state->link = (pmsr & PMSR_LINK); 2488 state->an_complete = state->link; 2489 state->duplex = !!(pmsr & PMSR_DPX); 2490 2491 switch (pmsr & PMSR_SPEED_MASK) { 2492 case PMSR_SPEED_10: 2493 state->speed = SPEED_10; 2494 break; 2495 case PMSR_SPEED_100: 2496 state->speed = SPEED_100; 2497 break; 2498 case PMSR_SPEED_1000: 2499 state->speed = SPEED_1000; 2500 break; 2501 default: 2502 state->speed = SPEED_UNKNOWN; 2503 break; 2504 } 2505 2506 state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX); 2507 if (pmsr & PMSR_RX_FC) 2508 state->pause |= MLO_PAUSE_RX; 2509 if (pmsr & PMSR_TX_FC) 2510 state->pause |= MLO_PAUSE_TX; 2511 2512 return 1; 2513 } 2514 2515 static int 2516 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port, 2517 struct phylink_link_state *state) 2518 { 2519 u32 status, val; 2520 u16 config_reg; 2521 2522 status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); 2523 state->link = !!(status & MT7531_SGMII_LINK_STATUS); 2524 if (state->interface == PHY_INTERFACE_MODE_SGMII && 2525 (status & MT7531_SGMII_AN_ENABLE)) { 2526 val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port)); 2527 config_reg = val >> 16; 2528 2529 switch (config_reg & LPA_SGMII_SPD_MASK) { 2530 case LPA_SGMII_1000: 2531 state->speed = SPEED_1000; 2532 break; 2533 case LPA_SGMII_100: 2534 state->speed = SPEED_100; 2535 break; 2536 case LPA_SGMII_10: 2537 state->speed = SPEED_10; 2538 break; 2539 default: 2540 dev_err(priv->dev, "invalid sgmii PHY speed\n"); 2541 state->link = false; 2542 return -EINVAL; 2543 } 2544 2545 if (config_reg & LPA_SGMII_FULL_DUPLEX) 2546 state->duplex = DUPLEX_FULL; 2547 else 2548 state->duplex = DUPLEX_HALF; 2549 } 2550 2551 return 0; 2552 } 2553 2554 static int 2555 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port, 2556 struct phylink_link_state *state) 2557 { 2558 struct mt7530_priv *priv = ds->priv; 2559 2560 if (state->interface == PHY_INTERFACE_MODE_SGMII) 2561 return mt7531_sgmii_pcs_get_state_an(priv, port, state); 2562 2563 return -EOPNOTSUPP; 2564 } 2565 2566 static int 2567 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port, 2568 struct phylink_link_state *state) 2569 { 2570 struct mt7530_priv *priv = ds->priv; 2571 2572 return priv->info->mac_port_get_state(ds, port, state); 2573 } 2574 2575 static int 2576 mt753x_setup(struct dsa_switch *ds) 2577 { 2578 struct mt7530_priv *priv = ds->priv; 2579 2580 return priv->info->sw_setup(ds); 2581 } 2582 2583 static int 2584 mt753x_phy_read(struct dsa_switch *ds, int port, int regnum) 2585 { 2586 struct mt7530_priv *priv = ds->priv; 2587 2588 return priv->info->phy_read(ds, port, regnum); 2589 } 2590 2591 static int 2592 mt753x_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val) 2593 { 2594 struct mt7530_priv *priv = ds->priv; 2595 2596 return priv->info->phy_write(ds, port, regnum, val); 2597 } 2598 2599 static const struct dsa_switch_ops mt7530_switch_ops = { 2600 .get_tag_protocol = mtk_get_tag_protocol, 2601 .setup = mt753x_setup, 2602 .get_strings = mt7530_get_strings, 2603 .phy_read = mt753x_phy_read, 2604 .phy_write = mt753x_phy_write, 2605 .get_ethtool_stats = mt7530_get_ethtool_stats, 2606 .get_sset_count = mt7530_get_sset_count, 2607 .set_ageing_time = mt7530_set_ageing_time, 2608 .port_enable = mt7530_port_enable, 2609 .port_disable = mt7530_port_disable, 2610 .port_change_mtu = mt7530_port_change_mtu, 2611 .port_max_mtu = mt7530_port_max_mtu, 2612 .port_stp_state_set = mt7530_stp_state_set, 2613 .port_bridge_join = mt7530_port_bridge_join, 2614 .port_bridge_leave = mt7530_port_bridge_leave, 2615 .port_fdb_add = mt7530_port_fdb_add, 2616 .port_fdb_del = mt7530_port_fdb_del, 2617 .port_fdb_dump = mt7530_port_fdb_dump, 2618 .port_vlan_filtering = mt7530_port_vlan_filtering, 2619 .port_vlan_prepare = mt7530_port_vlan_prepare, 2620 .port_vlan_add = mt7530_port_vlan_add, 2621 .port_vlan_del = mt7530_port_vlan_del, 2622 .port_mirror_add = mt753x_port_mirror_add, 2623 .port_mirror_del = mt753x_port_mirror_del, 2624 .phylink_validate = mt753x_phylink_validate, 2625 .phylink_mac_link_state = mt753x_phylink_mac_link_state, 2626 .phylink_mac_config = mt753x_phylink_mac_config, 2627 .phylink_mac_an_restart = mt753x_phylink_mac_an_restart, 2628 .phylink_mac_link_down = mt753x_phylink_mac_link_down, 2629 .phylink_mac_link_up = mt753x_phylink_mac_link_up, 2630 }; 2631 2632 static const struct mt753x_info mt753x_table[] = { 2633 [ID_MT7621] = { 2634 .id = ID_MT7621, 2635 .sw_setup = mt7530_setup, 2636 .phy_read = mt7530_phy_read, 2637 .phy_write = mt7530_phy_write, 2638 .pad_setup = mt7530_pad_clk_setup, 2639 .phy_mode_supported = mt7530_phy_mode_supported, 2640 .mac_port_validate = mt7530_mac_port_validate, 2641 .mac_port_get_state = mt7530_phylink_mac_link_state, 2642 .mac_port_config = mt7530_mac_config, 2643 }, 2644 [ID_MT7530] = { 2645 .id = ID_MT7530, 2646 .sw_setup = mt7530_setup, 2647 .phy_read = mt7530_phy_read, 2648 .phy_write = mt7530_phy_write, 2649 .pad_setup = mt7530_pad_clk_setup, 2650 .phy_mode_supported = mt7530_phy_mode_supported, 2651 .mac_port_validate = mt7530_mac_port_validate, 2652 .mac_port_get_state = mt7530_phylink_mac_link_state, 2653 .mac_port_config = mt7530_mac_config, 2654 }, 2655 [ID_MT7531] = { 2656 .id = ID_MT7531, 2657 .sw_setup = mt7531_setup, 2658 .phy_read = mt7531_ind_phy_read, 2659 .phy_write = mt7531_ind_phy_write, 2660 .pad_setup = mt7531_pad_setup, 2661 .cpu_port_config = mt7531_cpu_port_config, 2662 .phy_mode_supported = mt7531_phy_mode_supported, 2663 .mac_port_validate = mt7531_mac_port_validate, 2664 .mac_port_get_state = mt7531_phylink_mac_link_state, 2665 .mac_port_config = mt7531_mac_config, 2666 .mac_pcs_an_restart = mt7531_sgmii_restart_an, 2667 .mac_pcs_link_up = mt7531_sgmii_link_up_force, 2668 }, 2669 }; 2670 2671 static const struct of_device_id mt7530_of_match[] = { 2672 { .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], }, 2673 { .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], }, 2674 { .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], }, 2675 { /* sentinel */ }, 2676 }; 2677 MODULE_DEVICE_TABLE(of, mt7530_of_match); 2678 2679 static int 2680 mt7530_probe(struct mdio_device *mdiodev) 2681 { 2682 struct mt7530_priv *priv; 2683 struct device_node *dn; 2684 2685 dn = mdiodev->dev.of_node; 2686 2687 priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL); 2688 if (!priv) 2689 return -ENOMEM; 2690 2691 priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL); 2692 if (!priv->ds) 2693 return -ENOMEM; 2694 2695 priv->ds->dev = &mdiodev->dev; 2696 priv->ds->num_ports = DSA_MAX_PORTS; 2697 2698 /* Use medatek,mcm property to distinguish hardware type that would 2699 * casues a little bit differences on power-on sequence. 2700 */ 2701 priv->mcm = of_property_read_bool(dn, "mediatek,mcm"); 2702 if (priv->mcm) { 2703 dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n"); 2704 2705 priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm"); 2706 if (IS_ERR(priv->rstc)) { 2707 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 2708 return PTR_ERR(priv->rstc); 2709 } 2710 } 2711 2712 /* Get the hardware identifier from the devicetree node. 2713 * We will need it for some of the clock and regulator setup. 2714 */ 2715 priv->info = of_device_get_match_data(&mdiodev->dev); 2716 if (!priv->info) 2717 return -EINVAL; 2718 2719 /* Sanity check if these required device operations are filled 2720 * properly. 2721 */ 2722 if (!priv->info->sw_setup || !priv->info->pad_setup || 2723 !priv->info->phy_read || !priv->info->phy_write || 2724 !priv->info->phy_mode_supported || 2725 !priv->info->mac_port_validate || 2726 !priv->info->mac_port_get_state || !priv->info->mac_port_config) 2727 return -EINVAL; 2728 2729 priv->id = priv->info->id; 2730 2731 if (priv->id == ID_MT7530) { 2732 priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core"); 2733 if (IS_ERR(priv->core_pwr)) 2734 return PTR_ERR(priv->core_pwr); 2735 2736 priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io"); 2737 if (IS_ERR(priv->io_pwr)) 2738 return PTR_ERR(priv->io_pwr); 2739 } 2740 2741 /* Not MCM that indicates switch works as the remote standalone 2742 * integrated circuit so the GPIO pin would be used to complete 2743 * the reset, otherwise memory-mapped register accessing used 2744 * through syscon provides in the case of MCM. 2745 */ 2746 if (!priv->mcm) { 2747 priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset", 2748 GPIOD_OUT_LOW); 2749 if (IS_ERR(priv->reset)) { 2750 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 2751 return PTR_ERR(priv->reset); 2752 } 2753 } 2754 2755 priv->bus = mdiodev->bus; 2756 priv->dev = &mdiodev->dev; 2757 priv->ds->priv = priv; 2758 priv->ds->ops = &mt7530_switch_ops; 2759 mutex_init(&priv->reg_mutex); 2760 dev_set_drvdata(&mdiodev->dev, priv); 2761 2762 return dsa_register_switch(priv->ds); 2763 } 2764 2765 static void 2766 mt7530_remove(struct mdio_device *mdiodev) 2767 { 2768 struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev); 2769 int ret = 0; 2770 2771 ret = regulator_disable(priv->core_pwr); 2772 if (ret < 0) 2773 dev_err(priv->dev, 2774 "Failed to disable core power: %d\n", ret); 2775 2776 ret = regulator_disable(priv->io_pwr); 2777 if (ret < 0) 2778 dev_err(priv->dev, "Failed to disable io pwr: %d\n", 2779 ret); 2780 2781 dsa_unregister_switch(priv->ds); 2782 mutex_destroy(&priv->reg_mutex); 2783 } 2784 2785 static struct mdio_driver mt7530_mdio_driver = { 2786 .probe = mt7530_probe, 2787 .remove = mt7530_remove, 2788 .mdiodrv.driver = { 2789 .name = "mt7530", 2790 .of_match_table = mt7530_of_match, 2791 }, 2792 }; 2793 2794 mdio_module_driver(mt7530_mdio_driver); 2795 2796 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>"); 2797 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch"); 2798 MODULE_LICENSE("GPL"); 2799