xref: /linux/drivers/net/dsa/mt7530.c (revision bdce82e960d1205d118662f575cec39379984e34)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 mt7530_mutex_lock(struct mt7530_priv *priv)
146 {
147 	if (priv->bus)
148 		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149 }
150 
151 static void
152 mt7530_mutex_unlock(struct mt7530_priv *priv)
153 {
154 	if (priv->bus)
155 		mutex_unlock(&priv->bus->mdio_lock);
156 }
157 
158 static void
159 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160 {
161 	mt7530_mutex_lock(priv);
162 
163 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164 
165 	mt7530_mutex_unlock(priv);
166 }
167 
168 static void
169 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170 {
171 	u32 val;
172 
173 	mt7530_mutex_lock(priv);
174 
175 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176 	val &= ~mask;
177 	val |= set;
178 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179 
180 	mt7530_mutex_unlock(priv);
181 }
182 
183 static void
184 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 	core_rmw(priv, reg, 0, val);
187 }
188 
189 static void
190 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191 {
192 	core_rmw(priv, reg, val, 0);
193 }
194 
195 static int
196 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197 {
198 	int ret;
199 
200 	ret = regmap_write(priv->regmap, reg, val);
201 
202 	if (ret < 0)
203 		dev_err(priv->dev,
204 			"failed to write mt7530 register\n");
205 
206 	return ret;
207 }
208 
209 static u32
210 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211 {
212 	int ret;
213 	u32 val;
214 
215 	ret = regmap_read(priv->regmap, reg, &val);
216 	if (ret) {
217 		WARN_ON_ONCE(1);
218 		dev_err(priv->dev,
219 			"failed to read mt7530 register\n");
220 		return 0;
221 	}
222 
223 	return val;
224 }
225 
226 static void
227 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 	mt7530_mutex_lock(priv);
230 
231 	mt7530_mii_write(priv, reg, val);
232 
233 	mt7530_mutex_unlock(priv);
234 }
235 
236 static u32
237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 	return mt7530_mii_read(p->priv, p->reg);
240 }
241 
242 static u32
243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 	u32 val;
246 
247 	mt7530_mutex_lock(p->priv);
248 
249 	val = mt7530_mii_read(p->priv, p->reg);
250 
251 	mt7530_mutex_unlock(p->priv);
252 
253 	return val;
254 }
255 
256 static u32
257 mt7530_read(struct mt7530_priv *priv, u32 reg)
258 {
259 	struct mt7530_dummy_poll p;
260 
261 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262 	return _mt7530_read(&p);
263 }
264 
265 static void
266 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 	   u32 mask, u32 set)
268 {
269 	mt7530_mutex_lock(priv);
270 
271 	regmap_update_bits(priv->regmap, reg, mask, set);
272 
273 	mt7530_mutex_unlock(priv);
274 }
275 
276 static void
277 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 	mt7530_rmw(priv, reg, val, val);
280 }
281 
282 static void
283 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284 {
285 	mt7530_rmw(priv, reg, val, 0);
286 }
287 
288 static int
289 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290 {
291 	u32 val;
292 	int ret;
293 	struct mt7530_dummy_poll p;
294 
295 	/* Set the command operating upon the MAC address entries */
296 	val = ATC_BUSY | ATC_MAT(0) | cmd;
297 	mt7530_write(priv, MT7530_ATC, val);
298 
299 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300 	ret = readx_poll_timeout(_mt7530_read, &p, val,
301 				 !(val & ATC_BUSY), 20, 20000);
302 	if (ret < 0) {
303 		dev_err(priv->dev, "reset timeout\n");
304 		return ret;
305 	}
306 
307 	/* Additional sanity for read command if the specified
308 	 * entry is invalid
309 	 */
310 	val = mt7530_read(priv, MT7530_ATC);
311 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 		return -EINVAL;
313 
314 	if (rsp)
315 		*rsp = val;
316 
317 	return 0;
318 }
319 
320 static void
321 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322 {
323 	u32 reg[3];
324 	int i;
325 
326 	/* Read from ARL table into an array */
327 	for (i = 0; i < 3; i++) {
328 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329 
330 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 			__func__, __LINE__, i, reg[i]);
332 	}
333 
334 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344 }
345 
346 static void
347 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 		 u8 port_mask, const u8 *mac,
349 		 u8 aging, u8 type)
350 {
351 	u32 reg[3] = { 0 };
352 	int i;
353 
354 	reg[1] |= vid & CVID_MASK;
355 	reg[1] |= ATA2_IVL;
356 	reg[1] |= ATA2_FID(FID_BRIDGED);
357 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 	/* STATIC_ENT indicate that entry is static wouldn't
360 	 * be aged out and STATIC_EMP specified as erasing an
361 	 * entry
362 	 */
363 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 	reg[1] |= mac[5] << MAC_BYTE_5;
365 	reg[1] |= mac[4] << MAC_BYTE_4;
366 	reg[0] |= mac[3] << MAC_BYTE_3;
367 	reg[0] |= mac[2] << MAC_BYTE_2;
368 	reg[0] |= mac[1] << MAC_BYTE_1;
369 	reg[0] |= mac[0] << MAC_BYTE_0;
370 
371 	/* Write array into the ARL table */
372 	for (i = 0; i < 3; i++)
373 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374 }
375 
376 /* Set up switch core clock for MT7530 */
377 static void mt7530_pll_setup(struct mt7530_priv *priv)
378 {
379 	/* Disable core clock */
380 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381 
382 	/* Disable PLL */
383 	core_write(priv, CORE_GSWPLL_GRP1, 0);
384 
385 	/* Set core clock into 500Mhz */
386 	core_write(priv, CORE_GSWPLL_GRP2,
387 		   RG_GSWPLL_POSDIV_500M(1) |
388 		   RG_GSWPLL_FBKDIV_500M(25));
389 
390 	/* Enable PLL */
391 	core_write(priv, CORE_GSWPLL_GRP1,
392 		   RG_GSWPLL_EN_PRE |
393 		   RG_GSWPLL_POSDIV_200M(2) |
394 		   RG_GSWPLL_FBKDIV_200M(32));
395 
396 	udelay(20);
397 
398 	/* Enable core clock */
399 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400 }
401 
402 /* If port 6 is available as a CPU port, always prefer that as the default,
403  * otherwise don't care.
404  */
405 static struct dsa_port *
406 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407 {
408 	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409 
410 	if (dsa_port_is_cpu(cpu_dp))
411 		return cpu_dp;
412 
413 	return NULL;
414 }
415 
416 /* Setup port 6 interface mode and TRGMII TX circuit */
417 static int
418 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
419 {
420 	struct mt7530_priv *priv = ds->priv;
421 	u32 ncpo1, ssc_delta, trgint, xtal;
422 
423 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
424 
425 	if (xtal == HWTRAP_XTAL_20MHZ) {
426 		dev_err(priv->dev,
427 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
428 			__func__);
429 		return -EINVAL;
430 	}
431 
432 	switch (interface) {
433 	case PHY_INTERFACE_MODE_RGMII:
434 		trgint = 0;
435 		break;
436 	case PHY_INTERFACE_MODE_TRGMII:
437 		trgint = 1;
438 		if (xtal == HWTRAP_XTAL_25MHZ)
439 			ssc_delta = 0x57;
440 		else
441 			ssc_delta = 0x87;
442 		if (priv->id == ID_MT7621) {
443 			/* PLL frequency: 125MHz: 1.0GBit */
444 			if (xtal == HWTRAP_XTAL_40MHZ)
445 				ncpo1 = 0x0640;
446 			if (xtal == HWTRAP_XTAL_25MHZ)
447 				ncpo1 = 0x0a00;
448 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
449 			if (xtal == HWTRAP_XTAL_40MHZ)
450 				ncpo1 = 0x0c80;
451 			if (xtal == HWTRAP_XTAL_25MHZ)
452 				ncpo1 = 0x1400;
453 		}
454 		break;
455 	default:
456 		dev_err(priv->dev, "xMII interface %d not supported\n",
457 			interface);
458 		return -EINVAL;
459 	}
460 
461 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
462 		   P6_INTF_MODE(trgint));
463 
464 	if (trgint) {
465 		/* Disable the MT7530 TRGMII clocks */
466 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
467 
468 		/* Setup the MT7530 TRGMII Tx Clock */
469 		core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
470 		core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
471 		core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
472 		core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
473 		core_write(priv, CORE_PLL_GROUP4,
474 			   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
475 			   RG_SYSPLL_BIAS_LPF_EN);
476 		core_write(priv, CORE_PLL_GROUP2,
477 			   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
478 			   RG_SYSPLL_POSDIV(1));
479 		core_write(priv, CORE_PLL_GROUP7,
480 			   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
481 			   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
482 
483 		/* Enable the MT7530 TRGMII clocks */
484 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
485 	}
486 
487 	return 0;
488 }
489 
490 static int
491 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
492 {
493 	return 0;
494 }
495 
496 static void
497 mt7531_pll_setup(struct mt7530_priv *priv)
498 {
499 	u32 top_sig;
500 	u32 hwstrap;
501 	u32 xtal;
502 	u32 val;
503 
504 	val = mt7530_read(priv, MT7531_CREV);
505 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
506 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
507 	if ((val & CHIP_REV_M) > 0)
508 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
509 						    HWTRAP_XTAL_FSEL_25MHZ;
510 	else
511 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
512 
513 	/* Step 1 : Disable MT7531 COREPLL */
514 	val = mt7530_read(priv, MT7531_PLLGP_EN);
515 	val &= ~EN_COREPLL;
516 	mt7530_write(priv, MT7531_PLLGP_EN, val);
517 
518 	/* Step 2: switch to XTAL output */
519 	val = mt7530_read(priv, MT7531_PLLGP_EN);
520 	val |= SW_CLKSW;
521 	mt7530_write(priv, MT7531_PLLGP_EN, val);
522 
523 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
524 	val &= ~RG_COREPLL_EN;
525 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
526 
527 	/* Step 3: disable PLLGP and enable program PLLGP */
528 	val = mt7530_read(priv, MT7531_PLLGP_EN);
529 	val |= SW_PLLGP;
530 	mt7530_write(priv, MT7531_PLLGP_EN, val);
531 
532 	/* Step 4: program COREPLL output frequency to 500MHz */
533 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
534 	val &= ~RG_COREPLL_POSDIV_M;
535 	val |= 2 << RG_COREPLL_POSDIV_S;
536 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
537 	usleep_range(25, 35);
538 
539 	switch (xtal) {
540 	case HWTRAP_XTAL_FSEL_25MHZ:
541 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
542 		val &= ~RG_COREPLL_SDM_PCW_M;
543 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
544 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
545 		break;
546 	case HWTRAP_XTAL_FSEL_40MHZ:
547 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
548 		val &= ~RG_COREPLL_SDM_PCW_M;
549 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
550 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
551 		break;
552 	}
553 
554 	/* Set feedback divide ratio update signal to high */
555 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
556 	val |= RG_COREPLL_SDM_PCW_CHG;
557 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
558 	/* Wait for at least 16 XTAL clocks */
559 	usleep_range(10, 20);
560 
561 	/* Step 5: set feedback divide ratio update signal to low */
562 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
563 	val &= ~RG_COREPLL_SDM_PCW_CHG;
564 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
565 
566 	/* Enable 325M clock for SGMII */
567 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
568 
569 	/* Enable 250SSC clock for RGMII */
570 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
571 
572 	/* Step 6: Enable MT7531 PLL */
573 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
574 	val |= RG_COREPLL_EN;
575 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
576 
577 	val = mt7530_read(priv, MT7531_PLLGP_EN);
578 	val |= EN_COREPLL;
579 	mt7530_write(priv, MT7531_PLLGP_EN, val);
580 	usleep_range(25, 35);
581 }
582 
583 static void
584 mt7530_mib_reset(struct dsa_switch *ds)
585 {
586 	struct mt7530_priv *priv = ds->priv;
587 
588 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
589 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
590 }
591 
592 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
593 {
594 	return mdiobus_read_nested(priv->bus, port, regnum);
595 }
596 
597 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
598 				u16 val)
599 {
600 	return mdiobus_write_nested(priv->bus, port, regnum, val);
601 }
602 
603 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
604 			       int devad, int regnum)
605 {
606 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
607 }
608 
609 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
610 				int regnum, u16 val)
611 {
612 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
613 }
614 
615 static int
616 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
617 			int regnum)
618 {
619 	struct mt7530_dummy_poll p;
620 	u32 reg, val;
621 	int ret;
622 
623 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
624 
625 	mt7530_mutex_lock(priv);
626 
627 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
628 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
629 	if (ret < 0) {
630 		dev_err(priv->dev, "poll timeout\n");
631 		goto out;
632 	}
633 
634 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
635 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
636 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
637 
638 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
639 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
640 	if (ret < 0) {
641 		dev_err(priv->dev, "poll timeout\n");
642 		goto out;
643 	}
644 
645 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
646 	      MT7531_MDIO_DEV_ADDR(devad);
647 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
648 
649 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
650 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
651 	if (ret < 0) {
652 		dev_err(priv->dev, "poll timeout\n");
653 		goto out;
654 	}
655 
656 	ret = val & MT7531_MDIO_RW_DATA_MASK;
657 out:
658 	mt7530_mutex_unlock(priv);
659 
660 	return ret;
661 }
662 
663 static int
664 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
665 			 int regnum, u16 data)
666 {
667 	struct mt7530_dummy_poll p;
668 	u32 val, reg;
669 	int ret;
670 
671 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
672 
673 	mt7530_mutex_lock(priv);
674 
675 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
676 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
677 	if (ret < 0) {
678 		dev_err(priv->dev, "poll timeout\n");
679 		goto out;
680 	}
681 
682 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
683 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
684 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
685 
686 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
687 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
688 	if (ret < 0) {
689 		dev_err(priv->dev, "poll timeout\n");
690 		goto out;
691 	}
692 
693 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
694 	      MT7531_MDIO_DEV_ADDR(devad) | data;
695 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
696 
697 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
698 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
699 	if (ret < 0) {
700 		dev_err(priv->dev, "poll timeout\n");
701 		goto out;
702 	}
703 
704 out:
705 	mt7530_mutex_unlock(priv);
706 
707 	return ret;
708 }
709 
710 static int
711 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
712 {
713 	struct mt7530_dummy_poll p;
714 	int ret;
715 	u32 val;
716 
717 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
718 
719 	mt7530_mutex_lock(priv);
720 
721 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
722 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
723 	if (ret < 0) {
724 		dev_err(priv->dev, "poll timeout\n");
725 		goto out;
726 	}
727 
728 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
729 	      MT7531_MDIO_REG_ADDR(regnum);
730 
731 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
732 
733 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
734 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
735 	if (ret < 0) {
736 		dev_err(priv->dev, "poll timeout\n");
737 		goto out;
738 	}
739 
740 	ret = val & MT7531_MDIO_RW_DATA_MASK;
741 out:
742 	mt7530_mutex_unlock(priv);
743 
744 	return ret;
745 }
746 
747 static int
748 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
749 			 u16 data)
750 {
751 	struct mt7530_dummy_poll p;
752 	int ret;
753 	u32 reg;
754 
755 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
756 
757 	mt7530_mutex_lock(priv);
758 
759 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
760 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
761 	if (ret < 0) {
762 		dev_err(priv->dev, "poll timeout\n");
763 		goto out;
764 	}
765 
766 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
767 	      MT7531_MDIO_REG_ADDR(regnum) | data;
768 
769 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
770 
771 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
772 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
773 	if (ret < 0) {
774 		dev_err(priv->dev, "poll timeout\n");
775 		goto out;
776 	}
777 
778 out:
779 	mt7530_mutex_unlock(priv);
780 
781 	return ret;
782 }
783 
784 static int
785 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
786 {
787 	struct mt7530_priv *priv = bus->priv;
788 
789 	return priv->info->phy_read_c22(priv, port, regnum);
790 }
791 
792 static int
793 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
794 {
795 	struct mt7530_priv *priv = bus->priv;
796 
797 	return priv->info->phy_read_c45(priv, port, devad, regnum);
798 }
799 
800 static int
801 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
802 {
803 	struct mt7530_priv *priv = bus->priv;
804 
805 	return priv->info->phy_write_c22(priv, port, regnum, val);
806 }
807 
808 static int
809 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
810 		     u16 val)
811 {
812 	struct mt7530_priv *priv = bus->priv;
813 
814 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
815 }
816 
817 static void
818 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
819 		   uint8_t *data)
820 {
821 	int i;
822 
823 	if (stringset != ETH_SS_STATS)
824 		return;
825 
826 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
827 		ethtool_puts(&data, mt7530_mib[i].name);
828 }
829 
830 static void
831 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
832 			 uint64_t *data)
833 {
834 	struct mt7530_priv *priv = ds->priv;
835 	const struct mt7530_mib_desc *mib;
836 	u32 reg, i;
837 	u64 hi;
838 
839 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
840 		mib = &mt7530_mib[i];
841 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
842 
843 		data[i] = mt7530_read(priv, reg);
844 		if (mib->size == 2) {
845 			hi = mt7530_read(priv, reg + 4);
846 			data[i] |= hi << 32;
847 		}
848 	}
849 }
850 
851 static int
852 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
853 {
854 	if (sset != ETH_SS_STATS)
855 		return 0;
856 
857 	return ARRAY_SIZE(mt7530_mib);
858 }
859 
860 static int
861 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
862 {
863 	struct mt7530_priv *priv = ds->priv;
864 	unsigned int secs = msecs / 1000;
865 	unsigned int tmp_age_count;
866 	unsigned int error = -1;
867 	unsigned int age_count;
868 	unsigned int age_unit;
869 
870 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
871 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
872 		return -ERANGE;
873 
874 	/* iterate through all possible age_count to find the closest pair */
875 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
876 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
877 
878 		if (tmp_age_unit <= AGE_UNIT_MAX) {
879 			unsigned int tmp_error = secs -
880 				(tmp_age_count + 1) * (tmp_age_unit + 1);
881 
882 			/* found a closer pair */
883 			if (error > tmp_error) {
884 				error = tmp_error;
885 				age_count = tmp_age_count;
886 				age_unit = tmp_age_unit;
887 			}
888 
889 			/* found the exact match, so break the loop */
890 			if (!error)
891 				break;
892 		}
893 	}
894 
895 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
896 
897 	return 0;
898 }
899 
900 static const char *p5_intf_modes(unsigned int p5_interface)
901 {
902 	switch (p5_interface) {
903 	case P5_DISABLED:
904 		return "DISABLED";
905 	case P5_INTF_SEL_PHY_P0:
906 		return "PHY P0";
907 	case P5_INTF_SEL_PHY_P4:
908 		return "PHY P4";
909 	case P5_INTF_SEL_GMAC5:
910 		return "GMAC5";
911 	default:
912 		return "unknown";
913 	}
914 }
915 
916 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
917 {
918 	struct mt7530_priv *priv = ds->priv;
919 	u8 tx_delay = 0;
920 	int val;
921 
922 	mutex_lock(&priv->reg_mutex);
923 
924 	val = mt7530_read(priv, MT7530_MHWTRAP);
925 
926 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
927 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
928 
929 	switch (priv->p5_intf_sel) {
930 	case P5_INTF_SEL_PHY_P0:
931 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
932 		val |= MHWTRAP_PHY0_SEL;
933 		fallthrough;
934 	case P5_INTF_SEL_PHY_P4:
935 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
936 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
937 
938 		/* Setup the MAC by default for the cpu port */
939 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
940 		break;
941 	case P5_INTF_SEL_GMAC5:
942 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
943 		val &= ~MHWTRAP_P5_DIS;
944 		break;
945 	default:
946 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
947 			priv->p5_intf_sel);
948 		goto unlock_exit;
949 	}
950 
951 	/* Setup RGMII settings */
952 	if (phy_interface_mode_is_rgmii(interface)) {
953 		val |= MHWTRAP_P5_RGMII_MODE;
954 
955 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
956 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
957 
958 		/* Don't set delay in DSA mode */
959 		if (!dsa_is_dsa_port(priv->ds, 5) &&
960 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
961 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
962 			tx_delay = 4; /* n * 0.5 ns */
963 
964 		/* P5 RGMII TX Clock Control: delay x */
965 		mt7530_write(priv, MT7530_P5RGMIITXCR,
966 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
967 
968 		/* reduce P5 RGMII Tx driving, 8mA */
969 		mt7530_write(priv, MT7530_IO_DRV_CR,
970 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
971 	}
972 
973 	mt7530_write(priv, MT7530_MHWTRAP, val);
974 
975 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
976 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
977 
978 unlock_exit:
979 	mutex_unlock(&priv->reg_mutex);
980 }
981 
982 static void
983 mt753x_trap_frames(struct mt7530_priv *priv)
984 {
985 	/* Trap BPDUs to the CPU port(s) */
986 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
987 		   MT753X_BPDU_CPU_ONLY);
988 
989 	/* Trap 802.1X PAE frames to the CPU port(s) */
990 	mt7530_rmw(priv, MT753X_BPC, MT753X_PAE_PORT_FW_MASK,
991 		   MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY));
992 
993 	/* Trap LLDP frames with :0E MAC DA to the CPU port(s) */
994 	mt7530_rmw(priv, MT753X_RGAC2, MT753X_R0E_PORT_FW_MASK,
995 		   MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY));
996 }
997 
998 static int
999 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1000 {
1001 	struct mt7530_priv *priv = ds->priv;
1002 	int ret;
1003 
1004 	/* Setup max capability of CPU port at first */
1005 	if (priv->info->cpu_port_config) {
1006 		ret = priv->info->cpu_port_config(ds, port);
1007 		if (ret)
1008 			return ret;
1009 	}
1010 
1011 	/* Enable Mediatek header mode on the cpu port */
1012 	mt7530_write(priv, MT7530_PVC_P(port),
1013 		     PORT_SPEC_TAG);
1014 
1015 	/* Enable flooding on the CPU port */
1016 	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1017 		   UNU_FFP(BIT(port)));
1018 
1019 	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1020 	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1021 	 * is affine to the inbound user port.
1022 	 */
1023 	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1024 		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1025 
1026 	/* CPU port gets connected to all user ports of
1027 	 * the switch.
1028 	 */
1029 	mt7530_write(priv, MT7530_PCR_P(port),
1030 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1031 
1032 	/* Set to fallback mode for independent VLAN learning */
1033 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1034 		   MT7530_PORT_FALLBACK_MODE);
1035 
1036 	return 0;
1037 }
1038 
1039 static int
1040 mt7530_port_enable(struct dsa_switch *ds, int port,
1041 		   struct phy_device *phy)
1042 {
1043 	struct dsa_port *dp = dsa_to_port(ds, port);
1044 	struct mt7530_priv *priv = ds->priv;
1045 
1046 	mutex_lock(&priv->reg_mutex);
1047 
1048 	/* Allow the user port gets connected to the cpu port and also
1049 	 * restore the port matrix if the port is the member of a certain
1050 	 * bridge.
1051 	 */
1052 	if (dsa_port_is_user(dp)) {
1053 		struct dsa_port *cpu_dp = dp->cpu_dp;
1054 
1055 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1056 	}
1057 	priv->ports[port].enable = true;
1058 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1059 		   priv->ports[port].pm);
1060 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1061 
1062 	mutex_unlock(&priv->reg_mutex);
1063 
1064 	return 0;
1065 }
1066 
1067 static void
1068 mt7530_port_disable(struct dsa_switch *ds, int port)
1069 {
1070 	struct mt7530_priv *priv = ds->priv;
1071 
1072 	mutex_lock(&priv->reg_mutex);
1073 
1074 	/* Clear up all port matrix which could be restored in the next
1075 	 * enablement for the port.
1076 	 */
1077 	priv->ports[port].enable = false;
1078 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1079 		   PCR_MATRIX_CLR);
1080 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1081 
1082 	mutex_unlock(&priv->reg_mutex);
1083 }
1084 
1085 static int
1086 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1087 {
1088 	struct mt7530_priv *priv = ds->priv;
1089 	int length;
1090 	u32 val;
1091 
1092 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1093 	 * largest MTU of the user ports. Because the switch only has a global
1094 	 * RX length register, only allowing CPU port here is enough.
1095 	 */
1096 	if (!dsa_is_cpu_port(ds, port))
1097 		return 0;
1098 
1099 	mt7530_mutex_lock(priv);
1100 
1101 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1102 	val &= ~MAX_RX_PKT_LEN_MASK;
1103 
1104 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1105 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1106 	if (length <= 1522) {
1107 		val |= MAX_RX_PKT_LEN_1522;
1108 	} else if (length <= 1536) {
1109 		val |= MAX_RX_PKT_LEN_1536;
1110 	} else if (length <= 1552) {
1111 		val |= MAX_RX_PKT_LEN_1552;
1112 	} else {
1113 		val &= ~MAX_RX_JUMBO_MASK;
1114 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1115 		val |= MAX_RX_PKT_LEN_JUMBO;
1116 	}
1117 
1118 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1119 
1120 	mt7530_mutex_unlock(priv);
1121 
1122 	return 0;
1123 }
1124 
1125 static int
1126 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1127 {
1128 	return MT7530_MAX_MTU;
1129 }
1130 
1131 static void
1132 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1133 {
1134 	struct mt7530_priv *priv = ds->priv;
1135 	u32 stp_state;
1136 
1137 	switch (state) {
1138 	case BR_STATE_DISABLED:
1139 		stp_state = MT7530_STP_DISABLED;
1140 		break;
1141 	case BR_STATE_BLOCKING:
1142 		stp_state = MT7530_STP_BLOCKING;
1143 		break;
1144 	case BR_STATE_LISTENING:
1145 		stp_state = MT7530_STP_LISTENING;
1146 		break;
1147 	case BR_STATE_LEARNING:
1148 		stp_state = MT7530_STP_LEARNING;
1149 		break;
1150 	case BR_STATE_FORWARDING:
1151 	default:
1152 		stp_state = MT7530_STP_FORWARDING;
1153 		break;
1154 	}
1155 
1156 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1157 		   FID_PST(FID_BRIDGED, stp_state));
1158 }
1159 
1160 static int
1161 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1162 			     struct switchdev_brport_flags flags,
1163 			     struct netlink_ext_ack *extack)
1164 {
1165 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1166 			   BR_BCAST_FLOOD))
1167 		return -EINVAL;
1168 
1169 	return 0;
1170 }
1171 
1172 static int
1173 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1174 			 struct switchdev_brport_flags flags,
1175 			 struct netlink_ext_ack *extack)
1176 {
1177 	struct mt7530_priv *priv = ds->priv;
1178 
1179 	if (flags.mask & BR_LEARNING)
1180 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1181 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1182 
1183 	if (flags.mask & BR_FLOOD)
1184 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1185 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1186 
1187 	if (flags.mask & BR_MCAST_FLOOD)
1188 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1189 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1190 
1191 	if (flags.mask & BR_BCAST_FLOOD)
1192 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1193 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1194 
1195 	return 0;
1196 }
1197 
1198 static int
1199 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1200 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1201 			struct netlink_ext_ack *extack)
1202 {
1203 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1204 	struct dsa_port *cpu_dp = dp->cpu_dp;
1205 	u32 port_bitmap = BIT(cpu_dp->index);
1206 	struct mt7530_priv *priv = ds->priv;
1207 
1208 	mutex_lock(&priv->reg_mutex);
1209 
1210 	dsa_switch_for_each_user_port(other_dp, ds) {
1211 		int other_port = other_dp->index;
1212 
1213 		if (dp == other_dp)
1214 			continue;
1215 
1216 		/* Add this port to the port matrix of the other ports in the
1217 		 * same bridge. If the port is disabled, port matrix is kept
1218 		 * and not being setup until the port becomes enabled.
1219 		 */
1220 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1221 			continue;
1222 
1223 		if (priv->ports[other_port].enable)
1224 			mt7530_set(priv, MT7530_PCR_P(other_port),
1225 				   PCR_MATRIX(BIT(port)));
1226 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1227 
1228 		port_bitmap |= BIT(other_port);
1229 	}
1230 
1231 	/* Add the all other ports to this port matrix. */
1232 	if (priv->ports[port].enable)
1233 		mt7530_rmw(priv, MT7530_PCR_P(port),
1234 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1235 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1236 
1237 	/* Set to fallback mode for independent VLAN learning */
1238 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1239 		   MT7530_PORT_FALLBACK_MODE);
1240 
1241 	mutex_unlock(&priv->reg_mutex);
1242 
1243 	return 0;
1244 }
1245 
1246 static void
1247 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1248 {
1249 	struct mt7530_priv *priv = ds->priv;
1250 	bool all_user_ports_removed = true;
1251 	int i;
1252 
1253 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1254 	 * bridge. Don't set standalone ports to fallback mode.
1255 	 */
1256 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1257 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1258 			   MT7530_PORT_FALLBACK_MODE);
1259 
1260 	mt7530_rmw(priv, MT7530_PVC_P(port),
1261 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1262 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1263 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1264 		   MT7530_VLAN_ACC_ALL);
1265 
1266 	/* Set PVID to 0 */
1267 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1268 		   G0_PORT_VID_DEF);
1269 
1270 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1271 		if (dsa_is_user_port(ds, i) &&
1272 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1273 			all_user_ports_removed = false;
1274 			break;
1275 		}
1276 	}
1277 
1278 	/* CPU port also does the same thing until all user ports belonging to
1279 	 * the CPU port get out of VLAN filtering mode.
1280 	 */
1281 	if (all_user_ports_removed) {
1282 		struct dsa_port *dp = dsa_to_port(ds, port);
1283 		struct dsa_port *cpu_dp = dp->cpu_dp;
1284 
1285 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1286 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1287 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1288 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1289 	}
1290 }
1291 
1292 static void
1293 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1294 {
1295 	struct mt7530_priv *priv = ds->priv;
1296 
1297 	/* Trapped into security mode allows packet forwarding through VLAN
1298 	 * table lookup.
1299 	 */
1300 	if (dsa_is_user_port(ds, port)) {
1301 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1302 			   MT7530_PORT_SECURITY_MODE);
1303 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1304 			   G0_PORT_VID(priv->ports[port].pvid));
1305 
1306 		/* Only accept tagged frames if PVID is not set */
1307 		if (!priv->ports[port].pvid)
1308 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1309 				   MT7530_VLAN_ACC_TAGGED);
1310 
1311 		/* Set the port as a user port which is to be able to recognize
1312 		 * VID from incoming packets before fetching entry within the
1313 		 * VLAN table.
1314 		 */
1315 		mt7530_rmw(priv, MT7530_PVC_P(port),
1316 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1317 			   VLAN_ATTR(MT7530_VLAN_USER) |
1318 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1319 	} else {
1320 		/* Also set CPU ports to the "user" VLAN port attribute, to
1321 		 * allow VLAN classification, but keep the EG_TAG attribute as
1322 		 * "consistent" (i.o.w. don't change its value) for packets
1323 		 * received by the switch from the CPU, so that tagged packets
1324 		 * are forwarded to user ports as tagged, and untagged as
1325 		 * untagged.
1326 		 */
1327 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1328 			   VLAN_ATTR(MT7530_VLAN_USER));
1329 	}
1330 }
1331 
1332 static void
1333 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1334 			 struct dsa_bridge bridge)
1335 {
1336 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1337 	struct dsa_port *cpu_dp = dp->cpu_dp;
1338 	struct mt7530_priv *priv = ds->priv;
1339 
1340 	mutex_lock(&priv->reg_mutex);
1341 
1342 	dsa_switch_for_each_user_port(other_dp, ds) {
1343 		int other_port = other_dp->index;
1344 
1345 		if (dp == other_dp)
1346 			continue;
1347 
1348 		/* Remove this port from the port matrix of the other ports
1349 		 * in the same bridge. If the port is disabled, port matrix
1350 		 * is kept and not being setup until the port becomes enabled.
1351 		 */
1352 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1353 			continue;
1354 
1355 		if (priv->ports[other_port].enable)
1356 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1357 				     PCR_MATRIX(BIT(port)));
1358 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1359 	}
1360 
1361 	/* Set the cpu port to be the only one in the port matrix of
1362 	 * this port.
1363 	 */
1364 	if (priv->ports[port].enable)
1365 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1366 			   PCR_MATRIX(BIT(cpu_dp->index)));
1367 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1368 
1369 	/* When a port is removed from the bridge, the port would be set up
1370 	 * back to the default as is at initial boot which is a VLAN-unaware
1371 	 * port.
1372 	 */
1373 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1374 		   MT7530_PORT_MATRIX_MODE);
1375 
1376 	mutex_unlock(&priv->reg_mutex);
1377 }
1378 
1379 static int
1380 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1381 		    const unsigned char *addr, u16 vid,
1382 		    struct dsa_db db)
1383 {
1384 	struct mt7530_priv *priv = ds->priv;
1385 	int ret;
1386 	u8 port_mask = BIT(port);
1387 
1388 	mutex_lock(&priv->reg_mutex);
1389 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1390 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1391 	mutex_unlock(&priv->reg_mutex);
1392 
1393 	return ret;
1394 }
1395 
1396 static int
1397 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1398 		    const unsigned char *addr, u16 vid,
1399 		    struct dsa_db db)
1400 {
1401 	struct mt7530_priv *priv = ds->priv;
1402 	int ret;
1403 	u8 port_mask = BIT(port);
1404 
1405 	mutex_lock(&priv->reg_mutex);
1406 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1407 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1408 	mutex_unlock(&priv->reg_mutex);
1409 
1410 	return ret;
1411 }
1412 
1413 static int
1414 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1415 		     dsa_fdb_dump_cb_t *cb, void *data)
1416 {
1417 	struct mt7530_priv *priv = ds->priv;
1418 	struct mt7530_fdb _fdb = { 0 };
1419 	int cnt = MT7530_NUM_FDB_RECORDS;
1420 	int ret = 0;
1421 	u32 rsp = 0;
1422 
1423 	mutex_lock(&priv->reg_mutex);
1424 
1425 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1426 	if (ret < 0)
1427 		goto err;
1428 
1429 	do {
1430 		if (rsp & ATC_SRCH_HIT) {
1431 			mt7530_fdb_read(priv, &_fdb);
1432 			if (_fdb.port_mask & BIT(port)) {
1433 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1434 					 data);
1435 				if (ret < 0)
1436 					break;
1437 			}
1438 		}
1439 	} while (--cnt &&
1440 		 !(rsp & ATC_SRCH_END) &&
1441 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1442 err:
1443 	mutex_unlock(&priv->reg_mutex);
1444 
1445 	return 0;
1446 }
1447 
1448 static int
1449 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1450 		    const struct switchdev_obj_port_mdb *mdb,
1451 		    struct dsa_db db)
1452 {
1453 	struct mt7530_priv *priv = ds->priv;
1454 	const u8 *addr = mdb->addr;
1455 	u16 vid = mdb->vid;
1456 	u8 port_mask = 0;
1457 	int ret;
1458 
1459 	mutex_lock(&priv->reg_mutex);
1460 
1461 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1462 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1463 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1464 			    & PORT_MAP_MASK;
1465 
1466 	port_mask |= BIT(port);
1467 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1468 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1469 
1470 	mutex_unlock(&priv->reg_mutex);
1471 
1472 	return ret;
1473 }
1474 
1475 static int
1476 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1477 		    const struct switchdev_obj_port_mdb *mdb,
1478 		    struct dsa_db db)
1479 {
1480 	struct mt7530_priv *priv = ds->priv;
1481 	const u8 *addr = mdb->addr;
1482 	u16 vid = mdb->vid;
1483 	u8 port_mask = 0;
1484 	int ret;
1485 
1486 	mutex_lock(&priv->reg_mutex);
1487 
1488 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1489 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1490 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1491 			    & PORT_MAP_MASK;
1492 
1493 	port_mask &= ~BIT(port);
1494 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1495 			 port_mask ? STATIC_ENT : STATIC_EMP);
1496 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1497 
1498 	mutex_unlock(&priv->reg_mutex);
1499 
1500 	return ret;
1501 }
1502 
1503 static int
1504 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1505 {
1506 	struct mt7530_dummy_poll p;
1507 	u32 val;
1508 	int ret;
1509 
1510 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1511 	mt7530_write(priv, MT7530_VTCR, val);
1512 
1513 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1514 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1515 				 !(val & VTCR_BUSY), 20, 20000);
1516 	if (ret < 0) {
1517 		dev_err(priv->dev, "poll timeout\n");
1518 		return ret;
1519 	}
1520 
1521 	val = mt7530_read(priv, MT7530_VTCR);
1522 	if (val & VTCR_INVALID) {
1523 		dev_err(priv->dev, "read VTCR invalid\n");
1524 		return -EINVAL;
1525 	}
1526 
1527 	return 0;
1528 }
1529 
1530 static int
1531 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1532 			   struct netlink_ext_ack *extack)
1533 {
1534 	struct dsa_port *dp = dsa_to_port(ds, port);
1535 	struct dsa_port *cpu_dp = dp->cpu_dp;
1536 
1537 	if (vlan_filtering) {
1538 		/* The port is being kept as VLAN-unaware port when bridge is
1539 		 * set up with vlan_filtering not being set, Otherwise, the
1540 		 * port and the corresponding CPU port is required the setup
1541 		 * for becoming a VLAN-aware port.
1542 		 */
1543 		mt7530_port_set_vlan_aware(ds, port);
1544 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1545 	} else {
1546 		mt7530_port_set_vlan_unaware(ds, port);
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 static void
1553 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1554 		   struct mt7530_hw_vlan_entry *entry)
1555 {
1556 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1557 	u8 new_members;
1558 	u32 val;
1559 
1560 	new_members = entry->old_members | BIT(entry->port);
1561 
1562 	/* Validate the entry with independent learning, create egress tag per
1563 	 * VLAN and joining the port as one of the port members.
1564 	 */
1565 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1566 	      VLAN_VALID;
1567 	mt7530_write(priv, MT7530_VAWD1, val);
1568 
1569 	/* Decide whether adding tag or not for those outgoing packets from the
1570 	 * port inside the VLAN.
1571 	 * CPU port is always taken as a tagged port for serving more than one
1572 	 * VLANs across and also being applied with egress type stack mode for
1573 	 * that VLAN tags would be appended after hardware special tag used as
1574 	 * DSA tag.
1575 	 */
1576 	if (dsa_port_is_cpu(dp))
1577 		val = MT7530_VLAN_EGRESS_STACK;
1578 	else if (entry->untagged)
1579 		val = MT7530_VLAN_EGRESS_UNTAG;
1580 	else
1581 		val = MT7530_VLAN_EGRESS_TAG;
1582 	mt7530_rmw(priv, MT7530_VAWD2,
1583 		   ETAG_CTRL_P_MASK(entry->port),
1584 		   ETAG_CTRL_P(entry->port, val));
1585 }
1586 
1587 static void
1588 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1589 		   struct mt7530_hw_vlan_entry *entry)
1590 {
1591 	u8 new_members;
1592 	u32 val;
1593 
1594 	new_members = entry->old_members & ~BIT(entry->port);
1595 
1596 	val = mt7530_read(priv, MT7530_VAWD1);
1597 	if (!(val & VLAN_VALID)) {
1598 		dev_err(priv->dev,
1599 			"Cannot be deleted due to invalid entry\n");
1600 		return;
1601 	}
1602 
1603 	if (new_members) {
1604 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1605 		      VLAN_VALID;
1606 		mt7530_write(priv, MT7530_VAWD1, val);
1607 	} else {
1608 		mt7530_write(priv, MT7530_VAWD1, 0);
1609 		mt7530_write(priv, MT7530_VAWD2, 0);
1610 	}
1611 }
1612 
1613 static void
1614 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1615 		      struct mt7530_hw_vlan_entry *entry,
1616 		      mt7530_vlan_op vlan_op)
1617 {
1618 	u32 val;
1619 
1620 	/* Fetch entry */
1621 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1622 
1623 	val = mt7530_read(priv, MT7530_VAWD1);
1624 
1625 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1626 
1627 	/* Manipulate entry */
1628 	vlan_op(priv, entry);
1629 
1630 	/* Flush result to hardware */
1631 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1632 }
1633 
1634 static int
1635 mt7530_setup_vlan0(struct mt7530_priv *priv)
1636 {
1637 	u32 val;
1638 
1639 	/* Validate the entry with independent learning, keep the original
1640 	 * ingress tag attribute.
1641 	 */
1642 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1643 	      VLAN_VALID;
1644 	mt7530_write(priv, MT7530_VAWD1, val);
1645 
1646 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1647 }
1648 
1649 static int
1650 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1651 		     const struct switchdev_obj_port_vlan *vlan,
1652 		     struct netlink_ext_ack *extack)
1653 {
1654 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1655 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1656 	struct mt7530_hw_vlan_entry new_entry;
1657 	struct mt7530_priv *priv = ds->priv;
1658 
1659 	mutex_lock(&priv->reg_mutex);
1660 
1661 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1662 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1663 
1664 	if (pvid) {
1665 		priv->ports[port].pvid = vlan->vid;
1666 
1667 		/* Accept all frames if PVID is set */
1668 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1669 			   MT7530_VLAN_ACC_ALL);
1670 
1671 		/* Only configure PVID if VLAN filtering is enabled */
1672 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1673 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1674 				   G0_PORT_VID_MASK,
1675 				   G0_PORT_VID(vlan->vid));
1676 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1677 		/* This VLAN is overwritten without PVID, so unset it */
1678 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1679 
1680 		/* Only accept tagged frames if the port is VLAN-aware */
1681 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1682 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1683 				   MT7530_VLAN_ACC_TAGGED);
1684 
1685 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1686 			   G0_PORT_VID_DEF);
1687 	}
1688 
1689 	mutex_unlock(&priv->reg_mutex);
1690 
1691 	return 0;
1692 }
1693 
1694 static int
1695 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1696 		     const struct switchdev_obj_port_vlan *vlan)
1697 {
1698 	struct mt7530_hw_vlan_entry target_entry;
1699 	struct mt7530_priv *priv = ds->priv;
1700 
1701 	mutex_lock(&priv->reg_mutex);
1702 
1703 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1704 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1705 			      mt7530_hw_vlan_del);
1706 
1707 	/* PVID is being restored to the default whenever the PVID port
1708 	 * is being removed from the VLAN.
1709 	 */
1710 	if (priv->ports[port].pvid == vlan->vid) {
1711 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1712 
1713 		/* Only accept tagged frames if the port is VLAN-aware */
1714 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1715 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1716 				   MT7530_VLAN_ACC_TAGGED);
1717 
1718 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1719 			   G0_PORT_VID_DEF);
1720 	}
1721 
1722 
1723 	mutex_unlock(&priv->reg_mutex);
1724 
1725 	return 0;
1726 }
1727 
1728 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1729 {
1730 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1731 				   MIRROR_PORT(val);
1732 }
1733 
1734 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1735 {
1736 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1737 				   MIRROR_PORT(val);
1738 }
1739 
1740 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1741 				  struct dsa_mall_mirror_tc_entry *mirror,
1742 				  bool ingress, struct netlink_ext_ack *extack)
1743 {
1744 	struct mt7530_priv *priv = ds->priv;
1745 	int monitor_port;
1746 	u32 val;
1747 
1748 	/* Check for existent entry */
1749 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1750 		return -EEXIST;
1751 
1752 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1753 
1754 	/* MT7530 only supports one monitor port */
1755 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1756 	if (val & MT753X_MIRROR_EN(priv->id) &&
1757 	    monitor_port != mirror->to_local_port)
1758 		return -EEXIST;
1759 
1760 	val |= MT753X_MIRROR_EN(priv->id);
1761 	val &= ~MT753X_MIRROR_MASK(priv->id);
1762 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1763 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1764 
1765 	val = mt7530_read(priv, MT7530_PCR_P(port));
1766 	if (ingress) {
1767 		val |= PORT_RX_MIR;
1768 		priv->mirror_rx |= BIT(port);
1769 	} else {
1770 		val |= PORT_TX_MIR;
1771 		priv->mirror_tx |= BIT(port);
1772 	}
1773 	mt7530_write(priv, MT7530_PCR_P(port), val);
1774 
1775 	return 0;
1776 }
1777 
1778 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1779 				   struct dsa_mall_mirror_tc_entry *mirror)
1780 {
1781 	struct mt7530_priv *priv = ds->priv;
1782 	u32 val;
1783 
1784 	val = mt7530_read(priv, MT7530_PCR_P(port));
1785 	if (mirror->ingress) {
1786 		val &= ~PORT_RX_MIR;
1787 		priv->mirror_rx &= ~BIT(port);
1788 	} else {
1789 		val &= ~PORT_TX_MIR;
1790 		priv->mirror_tx &= ~BIT(port);
1791 	}
1792 	mt7530_write(priv, MT7530_PCR_P(port), val);
1793 
1794 	if (!priv->mirror_rx && !priv->mirror_tx) {
1795 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1796 		val &= ~MT753X_MIRROR_EN(priv->id);
1797 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1798 	}
1799 }
1800 
1801 static enum dsa_tag_protocol
1802 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1803 		     enum dsa_tag_protocol mp)
1804 {
1805 	return DSA_TAG_PROTO_MTK;
1806 }
1807 
1808 #ifdef CONFIG_GPIOLIB
1809 static inline u32
1810 mt7530_gpio_to_bit(unsigned int offset)
1811 {
1812 	/* Map GPIO offset to register bit
1813 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1814 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1815 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1816 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1817 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1818 	 */
1819 	return BIT(offset + offset / 3);
1820 }
1821 
1822 static int
1823 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1824 {
1825 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1826 	u32 bit = mt7530_gpio_to_bit(offset);
1827 
1828 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1829 }
1830 
1831 static void
1832 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1833 {
1834 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1835 	u32 bit = mt7530_gpio_to_bit(offset);
1836 
1837 	if (value)
1838 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1839 	else
1840 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1841 }
1842 
1843 static int
1844 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1845 {
1846 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1847 	u32 bit = mt7530_gpio_to_bit(offset);
1848 
1849 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1850 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1851 }
1852 
1853 static int
1854 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1855 {
1856 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1857 	u32 bit = mt7530_gpio_to_bit(offset);
1858 
1859 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1860 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1861 
1862 	return 0;
1863 }
1864 
1865 static int
1866 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1867 {
1868 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1869 	u32 bit = mt7530_gpio_to_bit(offset);
1870 
1871 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1872 
1873 	if (value)
1874 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1875 	else
1876 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1877 
1878 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1879 
1880 	return 0;
1881 }
1882 
1883 static int
1884 mt7530_setup_gpio(struct mt7530_priv *priv)
1885 {
1886 	struct device *dev = priv->dev;
1887 	struct gpio_chip *gc;
1888 
1889 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1890 	if (!gc)
1891 		return -ENOMEM;
1892 
1893 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1894 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1895 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1896 
1897 	gc->label = "mt7530";
1898 	gc->parent = dev;
1899 	gc->owner = THIS_MODULE;
1900 	gc->get_direction = mt7530_gpio_get_direction;
1901 	gc->direction_input = mt7530_gpio_direction_input;
1902 	gc->direction_output = mt7530_gpio_direction_output;
1903 	gc->get = mt7530_gpio_get;
1904 	gc->set = mt7530_gpio_set;
1905 	gc->base = -1;
1906 	gc->ngpio = 15;
1907 	gc->can_sleep = true;
1908 
1909 	return devm_gpiochip_add_data(dev, gc, priv);
1910 }
1911 #endif /* CONFIG_GPIOLIB */
1912 
1913 static irqreturn_t
1914 mt7530_irq_thread_fn(int irq, void *dev_id)
1915 {
1916 	struct mt7530_priv *priv = dev_id;
1917 	bool handled = false;
1918 	u32 val;
1919 	int p;
1920 
1921 	mt7530_mutex_lock(priv);
1922 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1923 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1924 	mt7530_mutex_unlock(priv);
1925 
1926 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1927 		if (BIT(p) & val) {
1928 			unsigned int irq;
1929 
1930 			irq = irq_find_mapping(priv->irq_domain, p);
1931 			handle_nested_irq(irq);
1932 			handled = true;
1933 		}
1934 	}
1935 
1936 	return IRQ_RETVAL(handled);
1937 }
1938 
1939 static void
1940 mt7530_irq_mask(struct irq_data *d)
1941 {
1942 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1943 
1944 	priv->irq_enable &= ~BIT(d->hwirq);
1945 }
1946 
1947 static void
1948 mt7530_irq_unmask(struct irq_data *d)
1949 {
1950 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1951 
1952 	priv->irq_enable |= BIT(d->hwirq);
1953 }
1954 
1955 static void
1956 mt7530_irq_bus_lock(struct irq_data *d)
1957 {
1958 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1959 
1960 	mt7530_mutex_lock(priv);
1961 }
1962 
1963 static void
1964 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1965 {
1966 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1967 
1968 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1969 	mt7530_mutex_unlock(priv);
1970 }
1971 
1972 static struct irq_chip mt7530_irq_chip = {
1973 	.name = KBUILD_MODNAME,
1974 	.irq_mask = mt7530_irq_mask,
1975 	.irq_unmask = mt7530_irq_unmask,
1976 	.irq_bus_lock = mt7530_irq_bus_lock,
1977 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1978 };
1979 
1980 static int
1981 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1982 	       irq_hw_number_t hwirq)
1983 {
1984 	irq_set_chip_data(irq, domain->host_data);
1985 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1986 	irq_set_nested_thread(irq, true);
1987 	irq_set_noprobe(irq);
1988 
1989 	return 0;
1990 }
1991 
1992 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1993 	.map = mt7530_irq_map,
1994 	.xlate = irq_domain_xlate_onecell,
1995 };
1996 
1997 static void
1998 mt7988_irq_mask(struct irq_data *d)
1999 {
2000 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2001 
2002 	priv->irq_enable &= ~BIT(d->hwirq);
2003 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2004 }
2005 
2006 static void
2007 mt7988_irq_unmask(struct irq_data *d)
2008 {
2009 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2010 
2011 	priv->irq_enable |= BIT(d->hwirq);
2012 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2013 }
2014 
2015 static struct irq_chip mt7988_irq_chip = {
2016 	.name = KBUILD_MODNAME,
2017 	.irq_mask = mt7988_irq_mask,
2018 	.irq_unmask = mt7988_irq_unmask,
2019 };
2020 
2021 static int
2022 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2023 	       irq_hw_number_t hwirq)
2024 {
2025 	irq_set_chip_data(irq, domain->host_data);
2026 	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2027 	irq_set_nested_thread(irq, true);
2028 	irq_set_noprobe(irq);
2029 
2030 	return 0;
2031 }
2032 
2033 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2034 	.map = mt7988_irq_map,
2035 	.xlate = irq_domain_xlate_onecell,
2036 };
2037 
2038 static void
2039 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2040 {
2041 	struct dsa_switch *ds = priv->ds;
2042 	int p;
2043 
2044 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2045 		if (BIT(p) & ds->phys_mii_mask) {
2046 			unsigned int irq;
2047 
2048 			irq = irq_create_mapping(priv->irq_domain, p);
2049 			ds->user_mii_bus->irq[p] = irq;
2050 		}
2051 	}
2052 }
2053 
2054 static int
2055 mt7530_setup_irq(struct mt7530_priv *priv)
2056 {
2057 	struct device *dev = priv->dev;
2058 	struct device_node *np = dev->of_node;
2059 	int ret;
2060 
2061 	if (!of_property_read_bool(np, "interrupt-controller")) {
2062 		dev_info(dev, "no interrupt support\n");
2063 		return 0;
2064 	}
2065 
2066 	priv->irq = of_irq_get(np, 0);
2067 	if (priv->irq <= 0) {
2068 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2069 		return priv->irq ? : -EINVAL;
2070 	}
2071 
2072 	if (priv->id == ID_MT7988)
2073 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2074 							 &mt7988_irq_domain_ops,
2075 							 priv);
2076 	else
2077 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2078 							 &mt7530_irq_domain_ops,
2079 							 priv);
2080 
2081 	if (!priv->irq_domain) {
2082 		dev_err(dev, "failed to create IRQ domain\n");
2083 		return -ENOMEM;
2084 	}
2085 
2086 	/* This register must be set for MT7530 to properly fire interrupts */
2087 	if (priv->id != ID_MT7531)
2088 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2089 
2090 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2091 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2092 	if (ret) {
2093 		irq_domain_remove(priv->irq_domain);
2094 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2095 		return ret;
2096 	}
2097 
2098 	return 0;
2099 }
2100 
2101 static void
2102 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2103 {
2104 	int p;
2105 
2106 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2107 		if (BIT(p) & priv->ds->phys_mii_mask) {
2108 			unsigned int irq;
2109 
2110 			irq = irq_find_mapping(priv->irq_domain, p);
2111 			irq_dispose_mapping(irq);
2112 		}
2113 	}
2114 }
2115 
2116 static void
2117 mt7530_free_irq_common(struct mt7530_priv *priv)
2118 {
2119 	free_irq(priv->irq, priv);
2120 	irq_domain_remove(priv->irq_domain);
2121 }
2122 
2123 static void
2124 mt7530_free_irq(struct mt7530_priv *priv)
2125 {
2126 	struct device_node *mnp, *np = priv->dev->of_node;
2127 
2128 	mnp = of_get_child_by_name(np, "mdio");
2129 	if (!mnp)
2130 		mt7530_free_mdio_irq(priv);
2131 	of_node_put(mnp);
2132 
2133 	mt7530_free_irq_common(priv);
2134 }
2135 
2136 static int
2137 mt7530_setup_mdio(struct mt7530_priv *priv)
2138 {
2139 	struct device_node *mnp, *np = priv->dev->of_node;
2140 	struct dsa_switch *ds = priv->ds;
2141 	struct device *dev = priv->dev;
2142 	struct mii_bus *bus;
2143 	static int idx;
2144 	int ret = 0;
2145 
2146 	mnp = of_get_child_by_name(np, "mdio");
2147 
2148 	if (mnp && !of_device_is_available(mnp))
2149 		goto out;
2150 
2151 	bus = devm_mdiobus_alloc(dev);
2152 	if (!bus) {
2153 		ret = -ENOMEM;
2154 		goto out;
2155 	}
2156 
2157 	if (!mnp)
2158 		ds->user_mii_bus = bus;
2159 
2160 	bus->priv = priv;
2161 	bus->name = KBUILD_MODNAME "-mii";
2162 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2163 	bus->read = mt753x_phy_read_c22;
2164 	bus->write = mt753x_phy_write_c22;
2165 	bus->read_c45 = mt753x_phy_read_c45;
2166 	bus->write_c45 = mt753x_phy_write_c45;
2167 	bus->parent = dev;
2168 	bus->phy_mask = ~ds->phys_mii_mask;
2169 
2170 	if (priv->irq && !mnp)
2171 		mt7530_setup_mdio_irq(priv);
2172 
2173 	ret = devm_of_mdiobus_register(dev, bus, mnp);
2174 	if (ret) {
2175 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2176 		if (priv->irq && !mnp)
2177 			mt7530_free_mdio_irq(priv);
2178 	}
2179 
2180 out:
2181 	of_node_put(mnp);
2182 	return ret;
2183 }
2184 
2185 static int
2186 mt7530_setup(struct dsa_switch *ds)
2187 {
2188 	struct mt7530_priv *priv = ds->priv;
2189 	struct device_node *dn = NULL;
2190 	struct device_node *phy_node;
2191 	struct device_node *mac_np;
2192 	struct mt7530_dummy_poll p;
2193 	phy_interface_t interface;
2194 	struct dsa_port *cpu_dp;
2195 	u32 id, val;
2196 	int ret, i;
2197 
2198 	/* The parent node of conduit netdev which holds the common system
2199 	 * controller also is the container for two GMACs nodes representing
2200 	 * as two netdev instances.
2201 	 */
2202 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2203 		dn = cpu_dp->conduit->dev.of_node->parent;
2204 		/* It doesn't matter which CPU port is found first,
2205 		 * their conduits should share the same parent OF node
2206 		 */
2207 		break;
2208 	}
2209 
2210 	if (!dn) {
2211 		dev_err(ds->dev, "parent OF node of DSA conduit not found");
2212 		return -EINVAL;
2213 	}
2214 
2215 	ds->assisted_learning_on_cpu_port = true;
2216 	ds->mtu_enforcement_ingress = true;
2217 
2218 	if (priv->id == ID_MT7530) {
2219 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2220 		ret = regulator_enable(priv->core_pwr);
2221 		if (ret < 0) {
2222 			dev_err(priv->dev,
2223 				"Failed to enable core power: %d\n", ret);
2224 			return ret;
2225 		}
2226 
2227 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2228 		ret = regulator_enable(priv->io_pwr);
2229 		if (ret < 0) {
2230 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2231 				ret);
2232 			return ret;
2233 		}
2234 	}
2235 
2236 	/* Reset whole chip through gpio pin or memory-mapped registers for
2237 	 * different type of hardware
2238 	 */
2239 	if (priv->mcm) {
2240 		reset_control_assert(priv->rstc);
2241 		usleep_range(1000, 1100);
2242 		reset_control_deassert(priv->rstc);
2243 	} else {
2244 		gpiod_set_value_cansleep(priv->reset, 0);
2245 		usleep_range(1000, 1100);
2246 		gpiod_set_value_cansleep(priv->reset, 1);
2247 	}
2248 
2249 	/* Waiting for MT7530 got to stable */
2250 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2251 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2252 				 20, 1000000);
2253 	if (ret < 0) {
2254 		dev_err(priv->dev, "reset timeout\n");
2255 		return ret;
2256 	}
2257 
2258 	id = mt7530_read(priv, MT7530_CREV);
2259 	id >>= CHIP_NAME_SHIFT;
2260 	if (id != MT7530_ID) {
2261 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2262 		return -ENODEV;
2263 	}
2264 
2265 	/* Reset the switch through internal reset */
2266 	mt7530_write(priv, MT7530_SYS_CTRL,
2267 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2268 		     SYS_CTRL_REG_RST);
2269 
2270 	mt7530_pll_setup(priv);
2271 
2272 	/* Lower Tx driving for TRGMII path */
2273 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2274 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2275 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2276 
2277 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2278 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2279 			   RD_TAP_MASK, RD_TAP(16));
2280 
2281 	/* Enable port 6 */
2282 	val = mt7530_read(priv, MT7530_MHWTRAP);
2283 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2284 	val |= MHWTRAP_MANUAL;
2285 	mt7530_write(priv, MT7530_MHWTRAP, val);
2286 
2287 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2288 
2289 	mt753x_trap_frames(priv);
2290 
2291 	/* Enable and reset MIB counters */
2292 	mt7530_mib_reset(ds);
2293 
2294 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2295 		/* Disable forwarding by default on all ports */
2296 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2297 			   PCR_MATRIX_CLR);
2298 
2299 		/* Disable learning by default on all ports */
2300 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2301 
2302 		if (dsa_is_cpu_port(ds, i)) {
2303 			ret = mt753x_cpu_port_enable(ds, i);
2304 			if (ret)
2305 				return ret;
2306 		} else {
2307 			mt7530_port_disable(ds, i);
2308 
2309 			/* Set default PVID to 0 on all user ports */
2310 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2311 				   G0_PORT_VID_DEF);
2312 		}
2313 		/* Enable consistent egress tag */
2314 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2315 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2316 	}
2317 
2318 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2319 	ret = mt7530_setup_vlan0(priv);
2320 	if (ret)
2321 		return ret;
2322 
2323 	/* Setup port 5 */
2324 	if (!dsa_is_unused_port(ds, 5)) {
2325 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2326 	} else {
2327 		/* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
2328 		 * Set priv->p5_intf_sel to the appropriate value if PHY muxing
2329 		 * is detected.
2330 		 */
2331 		for_each_child_of_node(dn, mac_np) {
2332 			if (!of_device_is_compatible(mac_np,
2333 						     "mediatek,eth-mac"))
2334 				continue;
2335 
2336 			ret = of_property_read_u32(mac_np, "reg", &id);
2337 			if (ret < 0 || id != 1)
2338 				continue;
2339 
2340 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2341 			if (!phy_node)
2342 				continue;
2343 
2344 			if (phy_node->parent == priv->dev->of_node->parent) {
2345 				ret = of_get_phy_mode(mac_np, &interface);
2346 				if (ret && ret != -ENODEV) {
2347 					of_node_put(mac_np);
2348 					of_node_put(phy_node);
2349 					return ret;
2350 				}
2351 				id = of_mdio_parse_addr(ds->dev, phy_node);
2352 				if (id == 0)
2353 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2354 				if (id == 4)
2355 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2356 			}
2357 			of_node_put(mac_np);
2358 			of_node_put(phy_node);
2359 			break;
2360 		}
2361 
2362 		if (priv->p5_intf_sel == P5_INTF_SEL_PHY_P0 ||
2363 		    priv->p5_intf_sel == P5_INTF_SEL_PHY_P4)
2364 			mt7530_setup_port5(ds, interface);
2365 	}
2366 
2367 #ifdef CONFIG_GPIOLIB
2368 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2369 		ret = mt7530_setup_gpio(priv);
2370 		if (ret)
2371 			return ret;
2372 	}
2373 #endif /* CONFIG_GPIOLIB */
2374 
2375 	/* Flush the FDB table */
2376 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2377 	if (ret < 0)
2378 		return ret;
2379 
2380 	return 0;
2381 }
2382 
2383 static int
2384 mt7531_setup_common(struct dsa_switch *ds)
2385 {
2386 	struct mt7530_priv *priv = ds->priv;
2387 	int ret, i;
2388 
2389 	mt753x_trap_frames(priv);
2390 
2391 	/* Enable and reset MIB counters */
2392 	mt7530_mib_reset(ds);
2393 
2394 	/* Disable flooding on all ports */
2395 	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2396 		     UNU_FFP_MASK);
2397 
2398 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2399 		/* Disable forwarding by default on all ports */
2400 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2401 			   PCR_MATRIX_CLR);
2402 
2403 		/* Disable learning by default on all ports */
2404 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2405 
2406 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2407 
2408 		if (dsa_is_cpu_port(ds, i)) {
2409 			ret = mt753x_cpu_port_enable(ds, i);
2410 			if (ret)
2411 				return ret;
2412 		} else {
2413 			mt7530_port_disable(ds, i);
2414 
2415 			/* Set default PVID to 0 on all user ports */
2416 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2417 				   G0_PORT_VID_DEF);
2418 		}
2419 
2420 		/* Enable consistent egress tag */
2421 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2422 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2423 	}
2424 
2425 	/* Flush the FDB table */
2426 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2427 	if (ret < 0)
2428 		return ret;
2429 
2430 	return 0;
2431 }
2432 
2433 static int
2434 mt7531_setup(struct dsa_switch *ds)
2435 {
2436 	struct mt7530_priv *priv = ds->priv;
2437 	struct mt7530_dummy_poll p;
2438 	u32 val, id;
2439 	int ret, i;
2440 
2441 	/* Reset whole chip through gpio pin or memory-mapped registers for
2442 	 * different type of hardware
2443 	 */
2444 	if (priv->mcm) {
2445 		reset_control_assert(priv->rstc);
2446 		usleep_range(1000, 1100);
2447 		reset_control_deassert(priv->rstc);
2448 	} else {
2449 		gpiod_set_value_cansleep(priv->reset, 0);
2450 		usleep_range(1000, 1100);
2451 		gpiod_set_value_cansleep(priv->reset, 1);
2452 	}
2453 
2454 	/* Waiting for MT7530 got to stable */
2455 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2456 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2457 				 20, 1000000);
2458 	if (ret < 0) {
2459 		dev_err(priv->dev, "reset timeout\n");
2460 		return ret;
2461 	}
2462 
2463 	id = mt7530_read(priv, MT7531_CREV);
2464 	id >>= CHIP_NAME_SHIFT;
2465 
2466 	if (id != MT7531_ID) {
2467 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2468 		return -ENODEV;
2469 	}
2470 
2471 	/* MT7531AE has got two SGMII units. One for port 5, one for port 6.
2472 	 * MT7531BE has got only one SGMII unit which is for port 6.
2473 	 */
2474 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
2475 	priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
2476 
2477 	/* all MACs must be forced link-down before sw reset */
2478 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2479 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2480 
2481 	/* Reset the switch through internal reset */
2482 	mt7530_write(priv, MT7530_SYS_CTRL,
2483 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2484 		     SYS_CTRL_REG_RST);
2485 
2486 	if (!priv->p5_sgmii) {
2487 		mt7531_pll_setup(priv);
2488 	} else {
2489 		/* Let ds->user_mii_bus be able to access external phy. */
2490 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2491 			   MT7531_EXT_P_MDC_11);
2492 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2493 			   MT7531_EXT_P_MDIO_12);
2494 	}
2495 
2496 	if (!dsa_is_unused_port(ds, 5))
2497 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2498 
2499 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2500 		   MT7531_GPIO0_INTERRUPT);
2501 
2502 	/* Let phylink decide the interface later. */
2503 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2504 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2505 
2506 	/* Enable PHY core PLL, since phy_device has not yet been created
2507 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2508 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2509 	 * function.
2510 	 */
2511 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2512 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2513 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2514 	val &= ~MT7531_PHY_PLL_OFF;
2515 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2516 				 CORE_PLL_GROUP4, val);
2517 
2518 	mt7531_setup_common(ds);
2519 
2520 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2521 	ret = mt7530_setup_vlan0(priv);
2522 	if (ret)
2523 		return ret;
2524 
2525 	ds->assisted_learning_on_cpu_port = true;
2526 	ds->mtu_enforcement_ingress = true;
2527 
2528 	return 0;
2529 }
2530 
2531 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2532 				     struct phylink_config *config)
2533 {
2534 	switch (port) {
2535 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2536 	case 0 ... 4:
2537 		__set_bit(PHY_INTERFACE_MODE_GMII,
2538 			  config->supported_interfaces);
2539 		break;
2540 
2541 	/* Port 5 supports rgmii with delays, mii, and gmii. */
2542 	case 5:
2543 		phy_interface_set_rgmii(config->supported_interfaces);
2544 		__set_bit(PHY_INTERFACE_MODE_MII,
2545 			  config->supported_interfaces);
2546 		__set_bit(PHY_INTERFACE_MODE_GMII,
2547 			  config->supported_interfaces);
2548 		break;
2549 
2550 	/* Port 6 supports rgmii and trgmii. */
2551 	case 6:
2552 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2553 			  config->supported_interfaces);
2554 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2555 			  config->supported_interfaces);
2556 		break;
2557 	}
2558 }
2559 
2560 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2561 				     struct phylink_config *config)
2562 {
2563 	struct mt7530_priv *priv = ds->priv;
2564 
2565 	switch (port) {
2566 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2567 	case 0 ... 4:
2568 		__set_bit(PHY_INTERFACE_MODE_GMII,
2569 			  config->supported_interfaces);
2570 		break;
2571 
2572 	/* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
2573 	 * MT7531AE.
2574 	 */
2575 	case 5:
2576 		if (!priv->p5_sgmii) {
2577 			phy_interface_set_rgmii(config->supported_interfaces);
2578 			break;
2579 		}
2580 		fallthrough;
2581 
2582 	/* Port 6 supports sgmii/802.3z. */
2583 	case 6:
2584 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2585 			  config->supported_interfaces);
2586 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2587 			  config->supported_interfaces);
2588 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2589 			  config->supported_interfaces);
2590 
2591 		config->mac_capabilities |= MAC_2500FD;
2592 		break;
2593 	}
2594 }
2595 
2596 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2597 				     struct phylink_config *config)
2598 {
2599 	phy_interface_zero(config->supported_interfaces);
2600 
2601 	switch (port) {
2602 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2603 	case 0 ... 4:
2604 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2605 			  config->supported_interfaces);
2606 		break;
2607 
2608 	/* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2609 	case 6:
2610 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2611 			  config->supported_interfaces);
2612 		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2613 					   MAC_10000FD;
2614 	}
2615 }
2616 
2617 static int
2618 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2619 {
2620 	struct mt7530_priv *priv = ds->priv;
2621 
2622 	return priv->info->pad_setup(ds, state->interface);
2623 }
2624 
2625 static int
2626 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2627 		  phy_interface_t interface)
2628 {
2629 	struct mt7530_priv *priv = ds->priv;
2630 
2631 	/* Only need to setup port5. */
2632 	if (port != 5)
2633 		return 0;
2634 
2635 	mt7530_setup_port5(priv->ds, interface);
2636 
2637 	return 0;
2638 }
2639 
2640 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2641 			      phy_interface_t interface,
2642 			      struct phy_device *phydev)
2643 {
2644 	u32 val;
2645 
2646 	if (priv->p5_sgmii) {
2647 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2648 			port);
2649 		return -EINVAL;
2650 	}
2651 
2652 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2653 	val |= GP_CLK_EN;
2654 	val &= ~GP_MODE_MASK;
2655 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2656 	val &= ~CLK_SKEW_IN_MASK;
2657 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2658 	val &= ~CLK_SKEW_OUT_MASK;
2659 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2660 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2661 
2662 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2663 	if (!phydev || phy_driver_is_genphy(phydev)) {
2664 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2665 		switch (interface) {
2666 		case PHY_INTERFACE_MODE_RGMII:
2667 			val |= TXCLK_NO_REVERSE;
2668 			val |= RXCLK_NO_DELAY;
2669 			break;
2670 		case PHY_INTERFACE_MODE_RGMII_RXID:
2671 			val |= TXCLK_NO_REVERSE;
2672 			break;
2673 		case PHY_INTERFACE_MODE_RGMII_TXID:
2674 			val |= RXCLK_NO_DELAY;
2675 			break;
2676 		case PHY_INTERFACE_MODE_RGMII_ID:
2677 			break;
2678 		default:
2679 			return -EINVAL;
2680 		}
2681 	}
2682 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2683 
2684 	return 0;
2685 }
2686 
2687 static bool mt753x_is_mac_port(u32 port)
2688 {
2689 	return (port == 5 || port == 6);
2690 }
2691 
2692 static int
2693 mt7988_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2694 		  phy_interface_t interface)
2695 {
2696 	if (dsa_is_cpu_port(ds, port) &&
2697 	    interface == PHY_INTERFACE_MODE_INTERNAL)
2698 		return 0;
2699 
2700 	return -EINVAL;
2701 }
2702 
2703 static int
2704 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2705 		  phy_interface_t interface)
2706 {
2707 	struct mt7530_priv *priv = ds->priv;
2708 	struct phy_device *phydev;
2709 	struct dsa_port *dp;
2710 
2711 	if (!mt753x_is_mac_port(port)) {
2712 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2713 		return -EINVAL;
2714 	}
2715 
2716 	switch (interface) {
2717 	case PHY_INTERFACE_MODE_RGMII:
2718 	case PHY_INTERFACE_MODE_RGMII_ID:
2719 	case PHY_INTERFACE_MODE_RGMII_RXID:
2720 	case PHY_INTERFACE_MODE_RGMII_TXID:
2721 		dp = dsa_to_port(ds, port);
2722 		phydev = dp->user->phydev;
2723 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2724 	case PHY_INTERFACE_MODE_SGMII:
2725 	case PHY_INTERFACE_MODE_NA:
2726 	case PHY_INTERFACE_MODE_1000BASEX:
2727 	case PHY_INTERFACE_MODE_2500BASEX:
2728 		/* handled in SGMII PCS driver */
2729 		return 0;
2730 	default:
2731 		return -EINVAL;
2732 	}
2733 
2734 	return -EINVAL;
2735 }
2736 
2737 static int
2738 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2739 		  const struct phylink_link_state *state)
2740 {
2741 	struct mt7530_priv *priv = ds->priv;
2742 
2743 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2744 }
2745 
2746 static struct phylink_pcs *
2747 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2748 			      phy_interface_t interface)
2749 {
2750 	struct mt7530_priv *priv = ds->priv;
2751 
2752 	switch (interface) {
2753 	case PHY_INTERFACE_MODE_TRGMII:
2754 		return &priv->pcs[port].pcs;
2755 	case PHY_INTERFACE_MODE_SGMII:
2756 	case PHY_INTERFACE_MODE_1000BASEX:
2757 	case PHY_INTERFACE_MODE_2500BASEX:
2758 		return priv->ports[port].sgmii_pcs;
2759 	default:
2760 		return NULL;
2761 	}
2762 }
2763 
2764 static void
2765 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2766 			  const struct phylink_link_state *state)
2767 {
2768 	struct mt7530_priv *priv = ds->priv;
2769 	u32 mcr_cur, mcr_new;
2770 
2771 	switch (port) {
2772 	case 0 ... 4:
2773 		if (state->interface != PHY_INTERFACE_MODE_GMII &&
2774 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
2775 			goto unsupported;
2776 		break;
2777 	case 5:
2778 		if (priv->p5_interface == state->interface)
2779 			break;
2780 
2781 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2782 			goto unsupported;
2783 
2784 		if (priv->p5_intf_sel != P5_DISABLED)
2785 			priv->p5_interface = state->interface;
2786 		break;
2787 	case 6:
2788 		if (priv->p6_interface == state->interface)
2789 			break;
2790 
2791 		mt753x_pad_setup(ds, state);
2792 
2793 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2794 			goto unsupported;
2795 
2796 		priv->p6_interface = state->interface;
2797 		break;
2798 	default:
2799 unsupported:
2800 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2801 			__func__, phy_modes(state->interface), port);
2802 		return;
2803 	}
2804 
2805 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2806 	mcr_new = mcr_cur;
2807 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2808 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2809 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2810 
2811 	/* Are we connected to external phy */
2812 	if (port == 5 && dsa_is_user_port(ds, 5))
2813 		mcr_new |= PMCR_EXT_PHY;
2814 
2815 	if (mcr_new != mcr_cur)
2816 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2817 }
2818 
2819 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2820 					 unsigned int mode,
2821 					 phy_interface_t interface)
2822 {
2823 	struct mt7530_priv *priv = ds->priv;
2824 
2825 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2826 }
2827 
2828 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2829 				       unsigned int mode,
2830 				       phy_interface_t interface,
2831 				       struct phy_device *phydev,
2832 				       int speed, int duplex,
2833 				       bool tx_pause, bool rx_pause)
2834 {
2835 	struct mt7530_priv *priv = ds->priv;
2836 	u32 mcr;
2837 
2838 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2839 
2840 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2841 	 * variants.
2842 	 */
2843 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2844 	    (phy_interface_mode_is_8023z(interface))) {
2845 		speed = SPEED_1000;
2846 		duplex = DUPLEX_FULL;
2847 	}
2848 
2849 	switch (speed) {
2850 	case SPEED_1000:
2851 		mcr |= PMCR_FORCE_SPEED_1000;
2852 		break;
2853 	case SPEED_100:
2854 		mcr |= PMCR_FORCE_SPEED_100;
2855 		break;
2856 	}
2857 	if (duplex == DUPLEX_FULL) {
2858 		mcr |= PMCR_FORCE_FDX;
2859 		if (tx_pause)
2860 			mcr |= PMCR_TX_FC_EN;
2861 		if (rx_pause)
2862 			mcr |= PMCR_RX_FC_EN;
2863 	}
2864 
2865 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2866 		switch (speed) {
2867 		case SPEED_1000:
2868 			mcr |= PMCR_FORCE_EEE1G;
2869 			break;
2870 		case SPEED_100:
2871 			mcr |= PMCR_FORCE_EEE100;
2872 			break;
2873 		}
2874 	}
2875 
2876 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2877 }
2878 
2879 static int
2880 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2881 {
2882 	struct mt7530_priv *priv = ds->priv;
2883 	phy_interface_t interface;
2884 	int speed;
2885 	int ret;
2886 
2887 	switch (port) {
2888 	case 5:
2889 		if (!priv->p5_sgmii)
2890 			interface = PHY_INTERFACE_MODE_RGMII;
2891 		else
2892 			interface = PHY_INTERFACE_MODE_2500BASEX;
2893 
2894 		priv->p5_interface = interface;
2895 		break;
2896 	case 6:
2897 		interface = PHY_INTERFACE_MODE_2500BASEX;
2898 
2899 		priv->p6_interface = interface;
2900 		break;
2901 	default:
2902 		return -EINVAL;
2903 	}
2904 
2905 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2906 		speed = SPEED_2500;
2907 	else
2908 		speed = SPEED_1000;
2909 
2910 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2911 	if (ret)
2912 		return ret;
2913 	mt7530_write(priv, MT7530_PMCR_P(port),
2914 		     PMCR_CPU_PORT_SETTING(priv->id));
2915 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2916 				   speed, DUPLEX_FULL, true, true);
2917 
2918 	return 0;
2919 }
2920 
2921 static int
2922 mt7988_cpu_port_config(struct dsa_switch *ds, int port)
2923 {
2924 	struct mt7530_priv *priv = ds->priv;
2925 
2926 	mt7530_write(priv, MT7530_PMCR_P(port),
2927 		     PMCR_CPU_PORT_SETTING(priv->id));
2928 
2929 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED,
2930 				   PHY_INTERFACE_MODE_INTERNAL, NULL,
2931 				   SPEED_10000, DUPLEX_FULL, true, true);
2932 
2933 	return 0;
2934 }
2935 
2936 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2937 				    struct phylink_config *config)
2938 {
2939 	struct mt7530_priv *priv = ds->priv;
2940 
2941 	/* This switch only supports full-duplex at 1Gbps */
2942 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2943 				   MAC_10 | MAC_100 | MAC_1000FD;
2944 
2945 	priv->info->mac_port_get_caps(ds, port, config);
2946 }
2947 
2948 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2949 			       unsigned long *supported,
2950 			       const struct phylink_link_state *state)
2951 {
2952 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2953 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2954 	    phy_interface_mode_is_8023z(state->interface))
2955 		phylink_clear(supported, Autoneg);
2956 
2957 	return 0;
2958 }
2959 
2960 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2961 				 struct phylink_link_state *state)
2962 {
2963 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2964 	int port = pcs_to_mt753x_pcs(pcs)->port;
2965 	u32 pmsr;
2966 
2967 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2968 
2969 	state->link = (pmsr & PMSR_LINK);
2970 	state->an_complete = state->link;
2971 	state->duplex = !!(pmsr & PMSR_DPX);
2972 
2973 	switch (pmsr & PMSR_SPEED_MASK) {
2974 	case PMSR_SPEED_10:
2975 		state->speed = SPEED_10;
2976 		break;
2977 	case PMSR_SPEED_100:
2978 		state->speed = SPEED_100;
2979 		break;
2980 	case PMSR_SPEED_1000:
2981 		state->speed = SPEED_1000;
2982 		break;
2983 	default:
2984 		state->speed = SPEED_UNKNOWN;
2985 		break;
2986 	}
2987 
2988 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2989 	if (pmsr & PMSR_RX_FC)
2990 		state->pause |= MLO_PAUSE_RX;
2991 	if (pmsr & PMSR_TX_FC)
2992 		state->pause |= MLO_PAUSE_TX;
2993 }
2994 
2995 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
2996 			     phy_interface_t interface,
2997 			     const unsigned long *advertising,
2998 			     bool permit_pause_to_mac)
2999 {
3000 	return 0;
3001 }
3002 
3003 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3004 {
3005 }
3006 
3007 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3008 	.pcs_validate = mt753x_pcs_validate,
3009 	.pcs_get_state = mt7530_pcs_get_state,
3010 	.pcs_config = mt753x_pcs_config,
3011 	.pcs_an_restart = mt7530_pcs_an_restart,
3012 };
3013 
3014 static int
3015 mt753x_setup(struct dsa_switch *ds)
3016 {
3017 	struct mt7530_priv *priv = ds->priv;
3018 	int i, ret;
3019 
3020 	/* Initialise the PCS devices */
3021 	for (i = 0; i < priv->ds->num_ports; i++) {
3022 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3023 		priv->pcs[i].pcs.neg_mode = true;
3024 		priv->pcs[i].priv = priv;
3025 		priv->pcs[i].port = i;
3026 	}
3027 
3028 	ret = priv->info->sw_setup(ds);
3029 	if (ret)
3030 		return ret;
3031 
3032 	ret = mt7530_setup_irq(priv);
3033 	if (ret)
3034 		return ret;
3035 
3036 	ret = mt7530_setup_mdio(priv);
3037 	if (ret && priv->irq)
3038 		mt7530_free_irq_common(priv);
3039 
3040 	if (priv->create_sgmii) {
3041 		ret = priv->create_sgmii(priv);
3042 		if (ret && priv->irq)
3043 			mt7530_free_irq(priv);
3044 	}
3045 
3046 	return ret;
3047 }
3048 
3049 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3050 			      struct ethtool_keee *e)
3051 {
3052 	struct mt7530_priv *priv = ds->priv;
3053 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3054 
3055 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3056 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3057 
3058 	return 0;
3059 }
3060 
3061 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3062 			      struct ethtool_keee *e)
3063 {
3064 	struct mt7530_priv *priv = ds->priv;
3065 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3066 
3067 	if (e->tx_lpi_timer > 0xFFF)
3068 		return -EINVAL;
3069 
3070 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3071 	if (!e->tx_lpi_enabled)
3072 		/* Force LPI Mode without a delay */
3073 		set |= LPI_MODE_EN;
3074 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3075 
3076 	return 0;
3077 }
3078 
3079 static void
3080 mt753x_conduit_state_change(struct dsa_switch *ds,
3081 			    const struct net_device *conduit,
3082 			    bool operational)
3083 {
3084 	struct dsa_port *cpu_dp = conduit->dsa_ptr;
3085 	struct mt7530_priv *priv = ds->priv;
3086 	int val = 0;
3087 	u8 mask;
3088 
3089 	/* Set the CPU port to trap frames to for MT7530. Trapped frames will be
3090 	 * forwarded to the numerically smallest CPU port whose conduit
3091 	 * interface is up.
3092 	 */
3093 	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
3094 		return;
3095 
3096 	mask = BIT(cpu_dp->index);
3097 
3098 	if (operational)
3099 		priv->active_cpu_ports |= mask;
3100 	else
3101 		priv->active_cpu_ports &= ~mask;
3102 
3103 	if (priv->active_cpu_ports)
3104 		val = CPU_EN | CPU_PORT(__ffs(priv->active_cpu_ports));
3105 
3106 	mt7530_rmw(priv, MT7530_MFC, CPU_EN | CPU_PORT_MASK, val);
3107 }
3108 
3109 static int mt7988_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
3110 {
3111 	return 0;
3112 }
3113 
3114 static int mt7988_setup(struct dsa_switch *ds)
3115 {
3116 	struct mt7530_priv *priv = ds->priv;
3117 
3118 	/* Reset the switch */
3119 	reset_control_assert(priv->rstc);
3120 	usleep_range(20, 50);
3121 	reset_control_deassert(priv->rstc);
3122 	usleep_range(20, 50);
3123 
3124 	/* Reset the switch PHYs */
3125 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3126 
3127 	return mt7531_setup_common(ds);
3128 }
3129 
3130 const struct dsa_switch_ops mt7530_switch_ops = {
3131 	.get_tag_protocol	= mtk_get_tag_protocol,
3132 	.setup			= mt753x_setup,
3133 	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3134 	.get_strings		= mt7530_get_strings,
3135 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3136 	.get_sset_count		= mt7530_get_sset_count,
3137 	.set_ageing_time	= mt7530_set_ageing_time,
3138 	.port_enable		= mt7530_port_enable,
3139 	.port_disable		= mt7530_port_disable,
3140 	.port_change_mtu	= mt7530_port_change_mtu,
3141 	.port_max_mtu		= mt7530_port_max_mtu,
3142 	.port_stp_state_set	= mt7530_stp_state_set,
3143 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3144 	.port_bridge_flags	= mt7530_port_bridge_flags,
3145 	.port_bridge_join	= mt7530_port_bridge_join,
3146 	.port_bridge_leave	= mt7530_port_bridge_leave,
3147 	.port_fdb_add		= mt7530_port_fdb_add,
3148 	.port_fdb_del		= mt7530_port_fdb_del,
3149 	.port_fdb_dump		= mt7530_port_fdb_dump,
3150 	.port_mdb_add		= mt7530_port_mdb_add,
3151 	.port_mdb_del		= mt7530_port_mdb_del,
3152 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3153 	.port_vlan_add		= mt7530_port_vlan_add,
3154 	.port_vlan_del		= mt7530_port_vlan_del,
3155 	.port_mirror_add	= mt753x_port_mirror_add,
3156 	.port_mirror_del	= mt753x_port_mirror_del,
3157 	.phylink_get_caps	= mt753x_phylink_get_caps,
3158 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3159 	.phylink_mac_config	= mt753x_phylink_mac_config,
3160 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3161 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3162 	.get_mac_eee		= mt753x_get_mac_eee,
3163 	.set_mac_eee		= mt753x_set_mac_eee,
3164 	.conduit_state_change	= mt753x_conduit_state_change,
3165 };
3166 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3167 
3168 const struct mt753x_info mt753x_table[] = {
3169 	[ID_MT7621] = {
3170 		.id = ID_MT7621,
3171 		.pcs_ops = &mt7530_pcs_ops,
3172 		.sw_setup = mt7530_setup,
3173 		.phy_read_c22 = mt7530_phy_read_c22,
3174 		.phy_write_c22 = mt7530_phy_write_c22,
3175 		.phy_read_c45 = mt7530_phy_read_c45,
3176 		.phy_write_c45 = mt7530_phy_write_c45,
3177 		.pad_setup = mt7530_pad_clk_setup,
3178 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3179 		.mac_port_config = mt7530_mac_config,
3180 	},
3181 	[ID_MT7530] = {
3182 		.id = ID_MT7530,
3183 		.pcs_ops = &mt7530_pcs_ops,
3184 		.sw_setup = mt7530_setup,
3185 		.phy_read_c22 = mt7530_phy_read_c22,
3186 		.phy_write_c22 = mt7530_phy_write_c22,
3187 		.phy_read_c45 = mt7530_phy_read_c45,
3188 		.phy_write_c45 = mt7530_phy_write_c45,
3189 		.pad_setup = mt7530_pad_clk_setup,
3190 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3191 		.mac_port_config = mt7530_mac_config,
3192 	},
3193 	[ID_MT7531] = {
3194 		.id = ID_MT7531,
3195 		.pcs_ops = &mt7530_pcs_ops,
3196 		.sw_setup = mt7531_setup,
3197 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3198 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3199 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3200 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3201 		.pad_setup = mt7531_pad_setup,
3202 		.cpu_port_config = mt7531_cpu_port_config,
3203 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3204 		.mac_port_config = mt7531_mac_config,
3205 	},
3206 	[ID_MT7988] = {
3207 		.id = ID_MT7988,
3208 		.pcs_ops = &mt7530_pcs_ops,
3209 		.sw_setup = mt7988_setup,
3210 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3211 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3212 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3213 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3214 		.pad_setup = mt7988_pad_setup,
3215 		.cpu_port_config = mt7988_cpu_port_config,
3216 		.mac_port_get_caps = mt7988_mac_port_get_caps,
3217 		.mac_port_config = mt7988_mac_config,
3218 	},
3219 };
3220 EXPORT_SYMBOL_GPL(mt753x_table);
3221 
3222 int
3223 mt7530_probe_common(struct mt7530_priv *priv)
3224 {
3225 	struct device *dev = priv->dev;
3226 
3227 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3228 	if (!priv->ds)
3229 		return -ENOMEM;
3230 
3231 	priv->ds->dev = dev;
3232 	priv->ds->num_ports = MT7530_NUM_PORTS;
3233 
3234 	/* Get the hardware identifier from the devicetree node.
3235 	 * We will need it for some of the clock and regulator setup.
3236 	 */
3237 	priv->info = of_device_get_match_data(dev);
3238 	if (!priv->info)
3239 		return -EINVAL;
3240 
3241 	/* Sanity check if these required device operations are filled
3242 	 * properly.
3243 	 */
3244 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3245 	    !priv->info->phy_read_c22 || !priv->info->phy_write_c22 ||
3246 	    !priv->info->mac_port_get_caps ||
3247 	    !priv->info->mac_port_config)
3248 		return -EINVAL;
3249 
3250 	priv->id = priv->info->id;
3251 	priv->dev = dev;
3252 	priv->ds->priv = priv;
3253 	priv->ds->ops = &mt7530_switch_ops;
3254 	mutex_init(&priv->reg_mutex);
3255 	dev_set_drvdata(dev, priv);
3256 
3257 	return 0;
3258 }
3259 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3260 
3261 void
3262 mt7530_remove_common(struct mt7530_priv *priv)
3263 {
3264 	if (priv->irq)
3265 		mt7530_free_irq(priv);
3266 
3267 	dsa_unregister_switch(priv->ds);
3268 
3269 	mutex_destroy(&priv->reg_mutex);
3270 }
3271 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3272 
3273 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3274 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3275 MODULE_LICENSE("GPL");
3276