xref: /linux/drivers/net/dsa/mt7530.c (revision a5d9265e017f081f0dc133c0e2f45103d027b874)
1 /*
2  * Mediatek MT7530 DSA Switch driver
3  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 #include <linux/etherdevice.h>
15 #include <linux/if_bridge.h>
16 #include <linux/iopoll.h>
17 #include <linux/mdio.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of_mdio.h>
22 #include <linux/of_net.h>
23 #include <linux/of_platform.h>
24 #include <linux/phy.h>
25 #include <linux/regmap.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/reset.h>
28 #include <linux/gpio/consumer.h>
29 #include <net/dsa.h>
30 
31 #include "mt7530.h"
32 
33 /* String, offset, and register size in bytes if different from 4 bytes */
34 static const struct mt7530_mib_desc mt7530_mib[] = {
35 	MIB_DESC(1, 0x00, "TxDrop"),
36 	MIB_DESC(1, 0x04, "TxCrcErr"),
37 	MIB_DESC(1, 0x08, "TxUnicast"),
38 	MIB_DESC(1, 0x0c, "TxMulticast"),
39 	MIB_DESC(1, 0x10, "TxBroadcast"),
40 	MIB_DESC(1, 0x14, "TxCollision"),
41 	MIB_DESC(1, 0x18, "TxSingleCollision"),
42 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
43 	MIB_DESC(1, 0x20, "TxDeferred"),
44 	MIB_DESC(1, 0x24, "TxLateCollision"),
45 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
46 	MIB_DESC(1, 0x2c, "TxPause"),
47 	MIB_DESC(1, 0x30, "TxPktSz64"),
48 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
49 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
50 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
51 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
52 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
53 	MIB_DESC(2, 0x48, "TxBytes"),
54 	MIB_DESC(1, 0x60, "RxDrop"),
55 	MIB_DESC(1, 0x64, "RxFiltering"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 static int
78 mt7623_trgmii_write(struct mt7530_priv *priv,  u32 reg, u32 val)
79 {
80 	int ret;
81 
82 	ret =  regmap_write(priv->ethernet, TRGMII_BASE(reg), val);
83 	if (ret < 0)
84 		dev_err(priv->dev,
85 			"failed to priv write register\n");
86 	return ret;
87 }
88 
89 static u32
90 mt7623_trgmii_read(struct mt7530_priv *priv, u32 reg)
91 {
92 	int ret;
93 	u32 val;
94 
95 	ret = regmap_read(priv->ethernet, TRGMII_BASE(reg), &val);
96 	if (ret < 0) {
97 		dev_err(priv->dev,
98 			"failed to priv read register\n");
99 		return ret;
100 	}
101 
102 	return val;
103 }
104 
105 static void
106 mt7623_trgmii_rmw(struct mt7530_priv *priv, u32 reg,
107 		  u32 mask, u32 set)
108 {
109 	u32 val;
110 
111 	val = mt7623_trgmii_read(priv, reg);
112 	val &= ~mask;
113 	val |= set;
114 	mt7623_trgmii_write(priv, reg, val);
115 }
116 
117 static void
118 mt7623_trgmii_set(struct mt7530_priv *priv, u32 reg, u32 val)
119 {
120 	mt7623_trgmii_rmw(priv, reg, 0, val);
121 }
122 
123 static void
124 mt7623_trgmii_clear(struct mt7530_priv *priv, u32 reg, u32 val)
125 {
126 	mt7623_trgmii_rmw(priv, reg, val, 0);
127 }
128 
129 static int
130 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
131 {
132 	struct mii_bus *bus = priv->bus;
133 	int value, ret;
134 
135 	/* Write the desired MMD Devad */
136 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
137 	if (ret < 0)
138 		goto err;
139 
140 	/* Write the desired MMD register address */
141 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
142 	if (ret < 0)
143 		goto err;
144 
145 	/* Select the Function : DATA with no post increment */
146 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
147 	if (ret < 0)
148 		goto err;
149 
150 	/* Read the content of the MMD's selected register */
151 	value = bus->read(bus, 0, MII_MMD_DATA);
152 
153 	return value;
154 err:
155 	dev_err(&bus->dev,  "failed to read mmd register\n");
156 
157 	return ret;
158 }
159 
160 static int
161 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
162 			int devad, u32 data)
163 {
164 	struct mii_bus *bus = priv->bus;
165 	int ret;
166 
167 	/* Write the desired MMD Devad */
168 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
169 	if (ret < 0)
170 		goto err;
171 
172 	/* Write the desired MMD register address */
173 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
174 	if (ret < 0)
175 		goto err;
176 
177 	/* Select the Function : DATA with no post increment */
178 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
179 	if (ret < 0)
180 		goto err;
181 
182 	/* Write the data into MMD's selected register */
183 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
184 err:
185 	if (ret < 0)
186 		dev_err(&bus->dev,
187 			"failed to write mmd register\n");
188 	return ret;
189 }
190 
191 static void
192 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
193 {
194 	struct mii_bus *bus = priv->bus;
195 
196 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
197 
198 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
199 
200 	mutex_unlock(&bus->mdio_lock);
201 }
202 
203 static void
204 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
205 {
206 	struct mii_bus *bus = priv->bus;
207 	u32 val;
208 
209 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
210 
211 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
212 	val &= ~mask;
213 	val |= set;
214 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
215 
216 	mutex_unlock(&bus->mdio_lock);
217 }
218 
219 static void
220 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
221 {
222 	core_rmw(priv, reg, 0, val);
223 }
224 
225 static void
226 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
227 {
228 	core_rmw(priv, reg, val, 0);
229 }
230 
231 static int
232 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
233 {
234 	struct mii_bus *bus = priv->bus;
235 	u16 page, r, lo, hi;
236 	int ret;
237 
238 	page = (reg >> 6) & 0x3ff;
239 	r  = (reg >> 2) & 0xf;
240 	lo = val & 0xffff;
241 	hi = val >> 16;
242 
243 	/* MT7530 uses 31 as the pseudo port */
244 	ret = bus->write(bus, 0x1f, 0x1f, page);
245 	if (ret < 0)
246 		goto err;
247 
248 	ret = bus->write(bus, 0x1f, r,  lo);
249 	if (ret < 0)
250 		goto err;
251 
252 	ret = bus->write(bus, 0x1f, 0x10, hi);
253 err:
254 	if (ret < 0)
255 		dev_err(&bus->dev,
256 			"failed to write mt7530 register\n");
257 	return ret;
258 }
259 
260 static u32
261 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
262 {
263 	struct mii_bus *bus = priv->bus;
264 	u16 page, r, lo, hi;
265 	int ret;
266 
267 	page = (reg >> 6) & 0x3ff;
268 	r = (reg >> 2) & 0xf;
269 
270 	/* MT7530 uses 31 as the pseudo port */
271 	ret = bus->write(bus, 0x1f, 0x1f, page);
272 	if (ret < 0) {
273 		dev_err(&bus->dev,
274 			"failed to read mt7530 register\n");
275 		return ret;
276 	}
277 
278 	lo = bus->read(bus, 0x1f, r);
279 	hi = bus->read(bus, 0x1f, 0x10);
280 
281 	return (hi << 16) | (lo & 0xffff);
282 }
283 
284 static void
285 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
286 {
287 	struct mii_bus *bus = priv->bus;
288 
289 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
290 
291 	mt7530_mii_write(priv, reg, val);
292 
293 	mutex_unlock(&bus->mdio_lock);
294 }
295 
296 static u32
297 _mt7530_read(struct mt7530_dummy_poll *p)
298 {
299 	struct mii_bus		*bus = p->priv->bus;
300 	u32 val;
301 
302 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
303 
304 	val = mt7530_mii_read(p->priv, p->reg);
305 
306 	mutex_unlock(&bus->mdio_lock);
307 
308 	return val;
309 }
310 
311 static u32
312 mt7530_read(struct mt7530_priv *priv, u32 reg)
313 {
314 	struct mt7530_dummy_poll p;
315 
316 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
317 	return _mt7530_read(&p);
318 }
319 
320 static void
321 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
322 	   u32 mask, u32 set)
323 {
324 	struct mii_bus *bus = priv->bus;
325 	u32 val;
326 
327 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
328 
329 	val = mt7530_mii_read(priv, reg);
330 	val &= ~mask;
331 	val |= set;
332 	mt7530_mii_write(priv, reg, val);
333 
334 	mutex_unlock(&bus->mdio_lock);
335 }
336 
337 static void
338 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
339 {
340 	mt7530_rmw(priv, reg, 0, val);
341 }
342 
343 static void
344 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
345 {
346 	mt7530_rmw(priv, reg, val, 0);
347 }
348 
349 static int
350 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
351 {
352 	u32 val;
353 	int ret;
354 	struct mt7530_dummy_poll p;
355 
356 	/* Set the command operating upon the MAC address entries */
357 	val = ATC_BUSY | ATC_MAT(0) | cmd;
358 	mt7530_write(priv, MT7530_ATC, val);
359 
360 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
361 	ret = readx_poll_timeout(_mt7530_read, &p, val,
362 				 !(val & ATC_BUSY), 20, 20000);
363 	if (ret < 0) {
364 		dev_err(priv->dev, "reset timeout\n");
365 		return ret;
366 	}
367 
368 	/* Additional sanity for read command if the specified
369 	 * entry is invalid
370 	 */
371 	val = mt7530_read(priv, MT7530_ATC);
372 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
373 		return -EINVAL;
374 
375 	if (rsp)
376 		*rsp = val;
377 
378 	return 0;
379 }
380 
381 static void
382 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
383 {
384 	u32 reg[3];
385 	int i;
386 
387 	/* Read from ARL table into an array */
388 	for (i = 0; i < 3; i++) {
389 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
390 
391 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
392 			__func__, __LINE__, i, reg[i]);
393 	}
394 
395 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
396 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
397 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
398 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
399 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
400 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
401 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
402 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
403 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
404 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
405 }
406 
407 static void
408 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
409 		 u8 port_mask, const u8 *mac,
410 		 u8 aging, u8 type)
411 {
412 	u32 reg[3] = { 0 };
413 	int i;
414 
415 	reg[1] |= vid & CVID_MASK;
416 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
417 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
418 	/* STATIC_ENT indicate that entry is static wouldn't
419 	 * be aged out and STATIC_EMP specified as erasing an
420 	 * entry
421 	 */
422 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
423 	reg[1] |= mac[5] << MAC_BYTE_5;
424 	reg[1] |= mac[4] << MAC_BYTE_4;
425 	reg[0] |= mac[3] << MAC_BYTE_3;
426 	reg[0] |= mac[2] << MAC_BYTE_2;
427 	reg[0] |= mac[1] << MAC_BYTE_1;
428 	reg[0] |= mac[0] << MAC_BYTE_0;
429 
430 	/* Write array into the ARL table */
431 	for (i = 0; i < 3; i++)
432 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
433 }
434 
435 static int
436 mt7530_pad_clk_setup(struct dsa_switch *ds, int mode)
437 {
438 	struct mt7530_priv *priv = ds->priv;
439 	u32 ncpo1, ssc_delta, trgint, i;
440 
441 	switch (mode) {
442 	case PHY_INTERFACE_MODE_RGMII:
443 		trgint = 0;
444 		ncpo1 = 0x0c80;
445 		ssc_delta = 0x87;
446 		break;
447 	case PHY_INTERFACE_MODE_TRGMII:
448 		trgint = 1;
449 		ncpo1 = 0x1400;
450 		ssc_delta = 0x57;
451 		break;
452 	default:
453 		dev_err(priv->dev, "xMII mode %d not supported\n", mode);
454 		return -EINVAL;
455 	}
456 
457 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
458 		   P6_INTF_MODE(trgint));
459 
460 	/* Lower Tx Driving for TRGMII path */
461 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
462 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
463 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
464 
465 	/* Setup core clock for MT7530 */
466 	if (!trgint) {
467 		/* Disable MT7530 core clock */
468 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
469 
470 		/* Disable PLL, since phy_device has not yet been created
471 		 * provided for phy_[read,write]_mmd_indirect is called, we
472 		 * provide our own core_write_mmd_indirect to complete this
473 		 * function.
474 		 */
475 		core_write_mmd_indirect(priv,
476 					CORE_GSWPLL_GRP1,
477 					MDIO_MMD_VEND2,
478 					0);
479 
480 		/* Set core clock into 500Mhz */
481 		core_write(priv, CORE_GSWPLL_GRP2,
482 			   RG_GSWPLL_POSDIV_500M(1) |
483 			   RG_GSWPLL_FBKDIV_500M(25));
484 
485 		/* Enable PLL */
486 		core_write(priv, CORE_GSWPLL_GRP1,
487 			   RG_GSWPLL_EN_PRE |
488 			   RG_GSWPLL_POSDIV_200M(2) |
489 			   RG_GSWPLL_FBKDIV_200M(32));
490 
491 		/* Enable MT7530 core clock */
492 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
493 	}
494 
495 	/* Setup the MT7530 TRGMII Tx Clock */
496 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
497 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
498 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
499 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
500 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
501 	core_write(priv, CORE_PLL_GROUP4,
502 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
503 		   RG_SYSPLL_BIAS_LPF_EN);
504 	core_write(priv, CORE_PLL_GROUP2,
505 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
506 		   RG_SYSPLL_POSDIV(1));
507 	core_write(priv, CORE_PLL_GROUP7,
508 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
509 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
510 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
511 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
512 
513 	if (!trgint)
514 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
515 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
516 				   RD_TAP_MASK, RD_TAP(16));
517 	else
518 		mt7623_trgmii_set(priv, GSW_INTF_MODE, INTF_MODE_TRGMII);
519 
520 	return 0;
521 }
522 
523 static int
524 mt7623_pad_clk_setup(struct dsa_switch *ds)
525 {
526 	struct mt7530_priv *priv = ds->priv;
527 	int i;
528 
529 	for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
530 		mt7623_trgmii_write(priv, GSW_TRGMII_TD_ODT(i),
531 				    TD_DM_DRVP(8) | TD_DM_DRVN(8));
532 
533 	mt7623_trgmii_set(priv, GSW_TRGMII_RCK_CTRL, RX_RST | RXC_DQSISEL);
534 	mt7623_trgmii_clear(priv, GSW_TRGMII_RCK_CTRL, RX_RST);
535 
536 	return 0;
537 }
538 
539 static void
540 mt7530_mib_reset(struct dsa_switch *ds)
541 {
542 	struct mt7530_priv *priv = ds->priv;
543 
544 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
545 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
546 }
547 
548 static void
549 mt7530_port_set_status(struct mt7530_priv *priv, int port, int enable)
550 {
551 	u32 mask = PMCR_TX_EN | PMCR_RX_EN;
552 
553 	if (enable)
554 		mt7530_set(priv, MT7530_PMCR_P(port), mask);
555 	else
556 		mt7530_clear(priv, MT7530_PMCR_P(port), mask);
557 }
558 
559 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
560 {
561 	struct mt7530_priv *priv = ds->priv;
562 
563 	return mdiobus_read_nested(priv->bus, port, regnum);
564 }
565 
566 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
567 			    u16 val)
568 {
569 	struct mt7530_priv *priv = ds->priv;
570 
571 	return mdiobus_write_nested(priv->bus, port, regnum, val);
572 }
573 
574 static void
575 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
576 		   uint8_t *data)
577 {
578 	int i;
579 
580 	if (stringset != ETH_SS_STATS)
581 		return;
582 
583 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
584 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
585 			ETH_GSTRING_LEN);
586 }
587 
588 static void
589 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
590 			 uint64_t *data)
591 {
592 	struct mt7530_priv *priv = ds->priv;
593 	const struct mt7530_mib_desc *mib;
594 	u32 reg, i;
595 	u64 hi;
596 
597 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
598 		mib = &mt7530_mib[i];
599 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
600 
601 		data[i] = mt7530_read(priv, reg);
602 		if (mib->size == 2) {
603 			hi = mt7530_read(priv, reg + 4);
604 			data[i] |= hi << 32;
605 		}
606 	}
607 }
608 
609 static int
610 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
611 {
612 	if (sset != ETH_SS_STATS)
613 		return 0;
614 
615 	return ARRAY_SIZE(mt7530_mib);
616 }
617 
618 static void mt7530_adjust_link(struct dsa_switch *ds, int port,
619 			       struct phy_device *phydev)
620 {
621 	struct mt7530_priv *priv = ds->priv;
622 
623 	if (phy_is_pseudo_fixed_link(phydev)) {
624 		if (priv->id == ID_MT7530) {
625 			dev_dbg(priv->dev, "phy-mode for master device = %x\n",
626 				phydev->interface);
627 
628 			/* Setup TX circuit incluing relevant PAD and driving */
629 			mt7530_pad_clk_setup(ds, phydev->interface);
630 
631 			/* Setup RX circuit, relevant PAD and driving on the
632 			 * host which must be placed after the setup on the
633 			 * device side is all finished.
634 			 */
635 			mt7623_pad_clk_setup(ds);
636 		}
637 	} else {
638 		u16 lcl_adv = 0, rmt_adv = 0;
639 		u8 flowctrl;
640 		u32 mcr = PMCR_USERP_LINK | PMCR_FORCE_MODE;
641 
642 		switch (phydev->speed) {
643 		case SPEED_1000:
644 			mcr |= PMCR_FORCE_SPEED_1000;
645 			break;
646 		case SPEED_100:
647 			mcr |= PMCR_FORCE_SPEED_100;
648 			break;
649 		};
650 
651 		if (phydev->link)
652 			mcr |= PMCR_FORCE_LNK;
653 
654 		if (phydev->duplex) {
655 			mcr |= PMCR_FORCE_FDX;
656 
657 			if (phydev->pause)
658 				rmt_adv = LPA_PAUSE_CAP;
659 			if (phydev->asym_pause)
660 				rmt_adv |= LPA_PAUSE_ASYM;
661 
662 			lcl_adv = linkmode_adv_to_lcl_adv_t(
663 				phydev->advertising);
664 			flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
665 
666 			if (flowctrl & FLOW_CTRL_TX)
667 				mcr |= PMCR_TX_FC_EN;
668 			if (flowctrl & FLOW_CTRL_RX)
669 				mcr |= PMCR_RX_FC_EN;
670 		}
671 		mt7530_write(priv, MT7530_PMCR_P(port), mcr);
672 	}
673 }
674 
675 static int
676 mt7530_cpu_port_enable(struct mt7530_priv *priv,
677 		       int port)
678 {
679 	/* Enable Mediatek header mode on the cpu port */
680 	mt7530_write(priv, MT7530_PVC_P(port),
681 		     PORT_SPEC_TAG);
682 
683 	/* Setup the MAC by default for the cpu port */
684 	mt7530_write(priv, MT7530_PMCR_P(port), PMCR_CPUP_LINK);
685 
686 	/* Disable auto learning on the cpu port */
687 	mt7530_set(priv, MT7530_PSC_P(port), SA_DIS);
688 
689 	/* Unknown unicast frame fordwarding to the cpu port */
690 	mt7530_set(priv, MT7530_MFC, UNU_FFP(BIT(port)));
691 
692 	/* Set CPU port number */
693 	if (priv->id == ID_MT7621)
694 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
695 
696 	/* CPU port gets connected to all user ports of
697 	 * the switch
698 	 */
699 	mt7530_write(priv, MT7530_PCR_P(port),
700 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
701 
702 	return 0;
703 }
704 
705 static int
706 mt7530_port_enable(struct dsa_switch *ds, int port,
707 		   struct phy_device *phy)
708 {
709 	struct mt7530_priv *priv = ds->priv;
710 
711 	mutex_lock(&priv->reg_mutex);
712 
713 	/* Setup the MAC for the user port */
714 	mt7530_write(priv, MT7530_PMCR_P(port), PMCR_USERP_LINK);
715 
716 	/* Allow the user port gets connected to the cpu port and also
717 	 * restore the port matrix if the port is the member of a certain
718 	 * bridge.
719 	 */
720 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
721 	priv->ports[port].enable = true;
722 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
723 		   priv->ports[port].pm);
724 	mt7530_port_set_status(priv, port, 1);
725 
726 	mutex_unlock(&priv->reg_mutex);
727 
728 	return 0;
729 }
730 
731 static void
732 mt7530_port_disable(struct dsa_switch *ds, int port,
733 		    struct phy_device *phy)
734 {
735 	struct mt7530_priv *priv = ds->priv;
736 
737 	mutex_lock(&priv->reg_mutex);
738 
739 	/* Clear up all port matrix which could be restored in the next
740 	 * enablement for the port.
741 	 */
742 	priv->ports[port].enable = false;
743 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
744 		   PCR_MATRIX_CLR);
745 	mt7530_port_set_status(priv, port, 0);
746 
747 	mutex_unlock(&priv->reg_mutex);
748 }
749 
750 static void
751 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
752 {
753 	struct mt7530_priv *priv = ds->priv;
754 	u32 stp_state;
755 
756 	switch (state) {
757 	case BR_STATE_DISABLED:
758 		stp_state = MT7530_STP_DISABLED;
759 		break;
760 	case BR_STATE_BLOCKING:
761 		stp_state = MT7530_STP_BLOCKING;
762 		break;
763 	case BR_STATE_LISTENING:
764 		stp_state = MT7530_STP_LISTENING;
765 		break;
766 	case BR_STATE_LEARNING:
767 		stp_state = MT7530_STP_LEARNING;
768 		break;
769 	case BR_STATE_FORWARDING:
770 	default:
771 		stp_state = MT7530_STP_FORWARDING;
772 		break;
773 	}
774 
775 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
776 }
777 
778 static int
779 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
780 			struct net_device *bridge)
781 {
782 	struct mt7530_priv *priv = ds->priv;
783 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
784 	int i;
785 
786 	mutex_lock(&priv->reg_mutex);
787 
788 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
789 		/* Add this port to the port matrix of the other ports in the
790 		 * same bridge. If the port is disabled, port matrix is kept
791 		 * and not being setup until the port becomes enabled.
792 		 */
793 		if (dsa_is_user_port(ds, i) && i != port) {
794 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
795 				continue;
796 			if (priv->ports[i].enable)
797 				mt7530_set(priv, MT7530_PCR_P(i),
798 					   PCR_MATRIX(BIT(port)));
799 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
800 
801 			port_bitmap |= BIT(i);
802 		}
803 	}
804 
805 	/* Add the all other ports to this port matrix. */
806 	if (priv->ports[port].enable)
807 		mt7530_rmw(priv, MT7530_PCR_P(port),
808 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
809 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
810 
811 	mutex_unlock(&priv->reg_mutex);
812 
813 	return 0;
814 }
815 
816 static void
817 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
818 {
819 	struct mt7530_priv *priv = ds->priv;
820 	bool all_user_ports_removed = true;
821 	int i;
822 
823 	/* When a port is removed from the bridge, the port would be set up
824 	 * back to the default as is at initial boot which is a VLAN-unaware
825 	 * port.
826 	 */
827 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
828 		   MT7530_PORT_MATRIX_MODE);
829 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
830 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT));
831 
832 	priv->ports[port].vlan_filtering = false;
833 
834 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
835 		if (dsa_is_user_port(ds, i) &&
836 		    priv->ports[i].vlan_filtering) {
837 			all_user_ports_removed = false;
838 			break;
839 		}
840 	}
841 
842 	/* CPU port also does the same thing until all user ports belonging to
843 	 * the CPU port get out of VLAN filtering mode.
844 	 */
845 	if (all_user_ports_removed) {
846 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
847 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
848 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT),
849 			     PORT_SPEC_TAG);
850 	}
851 }
852 
853 static void
854 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
855 {
856 	struct mt7530_priv *priv = ds->priv;
857 
858 	/* The real fabric path would be decided on the membership in the
859 	 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
860 	 * means potential VLAN can be consisting of certain subset of all
861 	 * ports.
862 	 */
863 	mt7530_rmw(priv, MT7530_PCR_P(port),
864 		   PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
865 
866 	/* Trapped into security mode allows packet forwarding through VLAN
867 	 * table lookup.
868 	 */
869 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
870 		   MT7530_PORT_SECURITY_MODE);
871 
872 	/* Set the port as a user port which is to be able to recognize VID
873 	 * from incoming packets before fetching entry within the VLAN table.
874 	 */
875 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
876 		   VLAN_ATTR(MT7530_VLAN_USER));
877 }
878 
879 static void
880 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
881 			 struct net_device *bridge)
882 {
883 	struct mt7530_priv *priv = ds->priv;
884 	int i;
885 
886 	mutex_lock(&priv->reg_mutex);
887 
888 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
889 		/* Remove this port from the port matrix of the other ports
890 		 * in the same bridge. If the port is disabled, port matrix
891 		 * is kept and not being setup until the port becomes enabled.
892 		 * And the other port's port matrix cannot be broken when the
893 		 * other port is still a VLAN-aware port.
894 		 */
895 		if (!priv->ports[i].vlan_filtering &&
896 		    dsa_is_user_port(ds, i) && i != port) {
897 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
898 				continue;
899 			if (priv->ports[i].enable)
900 				mt7530_clear(priv, MT7530_PCR_P(i),
901 					     PCR_MATRIX(BIT(port)));
902 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
903 		}
904 	}
905 
906 	/* Set the cpu port to be the only one in the port matrix of
907 	 * this port.
908 	 */
909 	if (priv->ports[port].enable)
910 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
911 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
912 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
913 
914 	mt7530_port_set_vlan_unaware(ds, port);
915 
916 	mutex_unlock(&priv->reg_mutex);
917 }
918 
919 static int
920 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
921 		    const unsigned char *addr, u16 vid)
922 {
923 	struct mt7530_priv *priv = ds->priv;
924 	int ret;
925 	u8 port_mask = BIT(port);
926 
927 	mutex_lock(&priv->reg_mutex);
928 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
929 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
930 	mutex_unlock(&priv->reg_mutex);
931 
932 	return ret;
933 }
934 
935 static int
936 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
937 		    const unsigned char *addr, u16 vid)
938 {
939 	struct mt7530_priv *priv = ds->priv;
940 	int ret;
941 	u8 port_mask = BIT(port);
942 
943 	mutex_lock(&priv->reg_mutex);
944 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
945 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
946 	mutex_unlock(&priv->reg_mutex);
947 
948 	return ret;
949 }
950 
951 static int
952 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
953 		     dsa_fdb_dump_cb_t *cb, void *data)
954 {
955 	struct mt7530_priv *priv = ds->priv;
956 	struct mt7530_fdb _fdb = { 0 };
957 	int cnt = MT7530_NUM_FDB_RECORDS;
958 	int ret = 0;
959 	u32 rsp = 0;
960 
961 	mutex_lock(&priv->reg_mutex);
962 
963 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
964 	if (ret < 0)
965 		goto err;
966 
967 	do {
968 		if (rsp & ATC_SRCH_HIT) {
969 			mt7530_fdb_read(priv, &_fdb);
970 			if (_fdb.port_mask & BIT(port)) {
971 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
972 					 data);
973 				if (ret < 0)
974 					break;
975 			}
976 		}
977 	} while (--cnt &&
978 		 !(rsp & ATC_SRCH_END) &&
979 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
980 err:
981 	mutex_unlock(&priv->reg_mutex);
982 
983 	return 0;
984 }
985 
986 static int
987 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
988 {
989 	struct mt7530_dummy_poll p;
990 	u32 val;
991 	int ret;
992 
993 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
994 	mt7530_write(priv, MT7530_VTCR, val);
995 
996 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
997 	ret = readx_poll_timeout(_mt7530_read, &p, val,
998 				 !(val & VTCR_BUSY), 20, 20000);
999 	if (ret < 0) {
1000 		dev_err(priv->dev, "poll timeout\n");
1001 		return ret;
1002 	}
1003 
1004 	val = mt7530_read(priv, MT7530_VTCR);
1005 	if (val & VTCR_INVALID) {
1006 		dev_err(priv->dev, "read VTCR invalid\n");
1007 		return -EINVAL;
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 static int
1014 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port,
1015 			   bool vlan_filtering)
1016 {
1017 	struct mt7530_priv *priv = ds->priv;
1018 
1019 	priv->ports[port].vlan_filtering = vlan_filtering;
1020 
1021 	if (vlan_filtering) {
1022 		/* The port is being kept as VLAN-unaware port when bridge is
1023 		 * set up with vlan_filtering not being set, Otherwise, the
1024 		 * port and the corresponding CPU port is required the setup
1025 		 * for becoming a VLAN-aware port.
1026 		 */
1027 		mt7530_port_set_vlan_aware(ds, port);
1028 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static int
1035 mt7530_port_vlan_prepare(struct dsa_switch *ds, int port,
1036 			 const struct switchdev_obj_port_vlan *vlan)
1037 {
1038 	/* nothing needed */
1039 
1040 	return 0;
1041 }
1042 
1043 static void
1044 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1045 		   struct mt7530_hw_vlan_entry *entry)
1046 {
1047 	u8 new_members;
1048 	u32 val;
1049 
1050 	new_members = entry->old_members | BIT(entry->port) |
1051 		      BIT(MT7530_CPU_PORT);
1052 
1053 	/* Validate the entry with independent learning, create egress tag per
1054 	 * VLAN and joining the port as one of the port members.
1055 	 */
1056 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1057 	mt7530_write(priv, MT7530_VAWD1, val);
1058 
1059 	/* Decide whether adding tag or not for those outgoing packets from the
1060 	 * port inside the VLAN.
1061 	 */
1062 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1063 				MT7530_VLAN_EGRESS_TAG;
1064 	mt7530_rmw(priv, MT7530_VAWD2,
1065 		   ETAG_CTRL_P_MASK(entry->port),
1066 		   ETAG_CTRL_P(entry->port, val));
1067 
1068 	/* CPU port is always taken as a tagged port for serving more than one
1069 	 * VLANs across and also being applied with egress type stack mode for
1070 	 * that VLAN tags would be appended after hardware special tag used as
1071 	 * DSA tag.
1072 	 */
1073 	mt7530_rmw(priv, MT7530_VAWD2,
1074 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1075 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1076 			       MT7530_VLAN_EGRESS_STACK));
1077 }
1078 
1079 static void
1080 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1081 		   struct mt7530_hw_vlan_entry *entry)
1082 {
1083 	u8 new_members;
1084 	u32 val;
1085 
1086 	new_members = entry->old_members & ~BIT(entry->port);
1087 
1088 	val = mt7530_read(priv, MT7530_VAWD1);
1089 	if (!(val & VLAN_VALID)) {
1090 		dev_err(priv->dev,
1091 			"Cannot be deleted due to invalid entry\n");
1092 		return;
1093 	}
1094 
1095 	/* If certain member apart from CPU port is still alive in the VLAN,
1096 	 * the entry would be kept valid. Otherwise, the entry is got to be
1097 	 * disabled.
1098 	 */
1099 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1100 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1101 		      VLAN_VALID;
1102 		mt7530_write(priv, MT7530_VAWD1, val);
1103 	} else {
1104 		mt7530_write(priv, MT7530_VAWD1, 0);
1105 		mt7530_write(priv, MT7530_VAWD2, 0);
1106 	}
1107 }
1108 
1109 static void
1110 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1111 		      struct mt7530_hw_vlan_entry *entry,
1112 		      mt7530_vlan_op vlan_op)
1113 {
1114 	u32 val;
1115 
1116 	/* Fetch entry */
1117 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1118 
1119 	val = mt7530_read(priv, MT7530_VAWD1);
1120 
1121 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1122 
1123 	/* Manipulate entry */
1124 	vlan_op(priv, entry);
1125 
1126 	/* Flush result to hardware */
1127 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1128 }
1129 
1130 static void
1131 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1132 		     const struct switchdev_obj_port_vlan *vlan)
1133 {
1134 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1135 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1136 	struct mt7530_hw_vlan_entry new_entry;
1137 	struct mt7530_priv *priv = ds->priv;
1138 	u16 vid;
1139 
1140 	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1141 	 * being set.
1142 	 */
1143 	if (!priv->ports[port].vlan_filtering)
1144 		return;
1145 
1146 	mutex_lock(&priv->reg_mutex);
1147 
1148 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1149 		mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1150 		mt7530_hw_vlan_update(priv, vid, &new_entry,
1151 				      mt7530_hw_vlan_add);
1152 	}
1153 
1154 	if (pvid) {
1155 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1156 			   G0_PORT_VID(vlan->vid_end));
1157 		priv->ports[port].pvid = vlan->vid_end;
1158 	}
1159 
1160 	mutex_unlock(&priv->reg_mutex);
1161 }
1162 
1163 static int
1164 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1165 		     const struct switchdev_obj_port_vlan *vlan)
1166 {
1167 	struct mt7530_hw_vlan_entry target_entry;
1168 	struct mt7530_priv *priv = ds->priv;
1169 	u16 vid, pvid;
1170 
1171 	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1172 	 * being set.
1173 	 */
1174 	if (!priv->ports[port].vlan_filtering)
1175 		return 0;
1176 
1177 	mutex_lock(&priv->reg_mutex);
1178 
1179 	pvid = priv->ports[port].pvid;
1180 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1181 		mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1182 		mt7530_hw_vlan_update(priv, vid, &target_entry,
1183 				      mt7530_hw_vlan_del);
1184 
1185 		/* PVID is being restored to the default whenever the PVID port
1186 		 * is being removed from the VLAN.
1187 		 */
1188 		if (pvid == vid)
1189 			pvid = G0_PORT_VID_DEF;
1190 	}
1191 
1192 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1193 	priv->ports[port].pvid = pvid;
1194 
1195 	mutex_unlock(&priv->reg_mutex);
1196 
1197 	return 0;
1198 }
1199 
1200 static enum dsa_tag_protocol
1201 mtk_get_tag_protocol(struct dsa_switch *ds, int port)
1202 {
1203 	struct mt7530_priv *priv = ds->priv;
1204 
1205 	if (port != MT7530_CPU_PORT) {
1206 		dev_warn(priv->dev,
1207 			 "port not matched with tagging CPU port\n");
1208 		return DSA_TAG_PROTO_NONE;
1209 	} else {
1210 		return DSA_TAG_PROTO_MTK;
1211 	}
1212 }
1213 
1214 static int
1215 mt7530_setup(struct dsa_switch *ds)
1216 {
1217 	struct mt7530_priv *priv = ds->priv;
1218 	int ret, i;
1219 	u32 id, val;
1220 	struct device_node *dn;
1221 	struct mt7530_dummy_poll p;
1222 
1223 	/* The parent node of master netdev which holds the common system
1224 	 * controller also is the container for two GMACs nodes representing
1225 	 * as two netdev instances.
1226 	 */
1227 	dn = ds->ports[MT7530_CPU_PORT].master->dev.of_node->parent;
1228 
1229 	if (priv->id == ID_MT7530) {
1230 		priv->ethernet = syscon_node_to_regmap(dn);
1231 		if (IS_ERR(priv->ethernet))
1232 			return PTR_ERR(priv->ethernet);
1233 
1234 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
1235 		ret = regulator_enable(priv->core_pwr);
1236 		if (ret < 0) {
1237 			dev_err(priv->dev,
1238 				"Failed to enable core power: %d\n", ret);
1239 			return ret;
1240 		}
1241 
1242 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
1243 		ret = regulator_enable(priv->io_pwr);
1244 		if (ret < 0) {
1245 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
1246 				ret);
1247 			return ret;
1248 		}
1249 	}
1250 
1251 	/* Reset whole chip through gpio pin or memory-mapped registers for
1252 	 * different type of hardware
1253 	 */
1254 	if (priv->mcm) {
1255 		reset_control_assert(priv->rstc);
1256 		usleep_range(1000, 1100);
1257 		reset_control_deassert(priv->rstc);
1258 	} else {
1259 		gpiod_set_value_cansleep(priv->reset, 0);
1260 		usleep_range(1000, 1100);
1261 		gpiod_set_value_cansleep(priv->reset, 1);
1262 	}
1263 
1264 	/* Waiting for MT7530 got to stable */
1265 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1266 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1267 				 20, 1000000);
1268 	if (ret < 0) {
1269 		dev_err(priv->dev, "reset timeout\n");
1270 		return ret;
1271 	}
1272 
1273 	id = mt7530_read(priv, MT7530_CREV);
1274 	id >>= CHIP_NAME_SHIFT;
1275 	if (id != MT7530_ID) {
1276 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1277 		return -ENODEV;
1278 	}
1279 
1280 	/* Reset the switch through internal reset */
1281 	mt7530_write(priv, MT7530_SYS_CTRL,
1282 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1283 		     SYS_CTRL_REG_RST);
1284 
1285 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
1286 	val = mt7530_read(priv, MT7530_MHWTRAP);
1287 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
1288 	val |= MHWTRAP_MANUAL;
1289 	mt7530_write(priv, MT7530_MHWTRAP, val);
1290 
1291 	/* Enable and reset MIB counters */
1292 	mt7530_mib_reset(ds);
1293 
1294 	mt7530_clear(priv, MT7530_MFC, UNU_FFP_MASK);
1295 
1296 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1297 		/* Disable forwarding by default on all ports */
1298 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1299 			   PCR_MATRIX_CLR);
1300 
1301 		if (dsa_is_cpu_port(ds, i))
1302 			mt7530_cpu_port_enable(priv, i);
1303 		else
1304 			mt7530_port_disable(ds, i, NULL);
1305 	}
1306 
1307 	/* Flush the FDB table */
1308 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1309 	if (ret < 0)
1310 		return ret;
1311 
1312 	return 0;
1313 }
1314 
1315 static const struct dsa_switch_ops mt7530_switch_ops = {
1316 	.get_tag_protocol	= mtk_get_tag_protocol,
1317 	.setup			= mt7530_setup,
1318 	.get_strings		= mt7530_get_strings,
1319 	.phy_read		= mt7530_phy_read,
1320 	.phy_write		= mt7530_phy_write,
1321 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
1322 	.get_sset_count		= mt7530_get_sset_count,
1323 	.adjust_link		= mt7530_adjust_link,
1324 	.port_enable		= mt7530_port_enable,
1325 	.port_disable		= mt7530_port_disable,
1326 	.port_stp_state_set	= mt7530_stp_state_set,
1327 	.port_bridge_join	= mt7530_port_bridge_join,
1328 	.port_bridge_leave	= mt7530_port_bridge_leave,
1329 	.port_fdb_add		= mt7530_port_fdb_add,
1330 	.port_fdb_del		= mt7530_port_fdb_del,
1331 	.port_fdb_dump		= mt7530_port_fdb_dump,
1332 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
1333 	.port_vlan_prepare	= mt7530_port_vlan_prepare,
1334 	.port_vlan_add		= mt7530_port_vlan_add,
1335 	.port_vlan_del		= mt7530_port_vlan_del,
1336 };
1337 
1338 static const struct of_device_id mt7530_of_match[] = {
1339 	{ .compatible = "mediatek,mt7621", .data = (void *)ID_MT7621, },
1340 	{ .compatible = "mediatek,mt7530", .data = (void *)ID_MT7530, },
1341 	{ /* sentinel */ },
1342 };
1343 MODULE_DEVICE_TABLE(of, mt7530_of_match);
1344 
1345 static int
1346 mt7530_probe(struct mdio_device *mdiodev)
1347 {
1348 	struct mt7530_priv *priv;
1349 	struct device_node *dn;
1350 
1351 	dn = mdiodev->dev.of_node;
1352 
1353 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
1354 	if (!priv)
1355 		return -ENOMEM;
1356 
1357 	priv->ds = dsa_switch_alloc(&mdiodev->dev, DSA_MAX_PORTS);
1358 	if (!priv->ds)
1359 		return -ENOMEM;
1360 
1361 	/* Use medatek,mcm property to distinguish hardware type that would
1362 	 * casues a little bit differences on power-on sequence.
1363 	 */
1364 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
1365 	if (priv->mcm) {
1366 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
1367 
1368 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
1369 		if (IS_ERR(priv->rstc)) {
1370 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1371 			return PTR_ERR(priv->rstc);
1372 		}
1373 	}
1374 
1375 	/* Get the hardware identifier from the devicetree node.
1376 	 * We will need it for some of the clock and regulator setup.
1377 	 */
1378 	priv->id = (unsigned int)(unsigned long)
1379 		of_device_get_match_data(&mdiodev->dev);
1380 
1381 	if (priv->id == ID_MT7530) {
1382 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
1383 		if (IS_ERR(priv->core_pwr))
1384 			return PTR_ERR(priv->core_pwr);
1385 
1386 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
1387 		if (IS_ERR(priv->io_pwr))
1388 			return PTR_ERR(priv->io_pwr);
1389 	}
1390 
1391 	/* Not MCM that indicates switch works as the remote standalone
1392 	 * integrated circuit so the GPIO pin would be used to complete
1393 	 * the reset, otherwise memory-mapped register accessing used
1394 	 * through syscon provides in the case of MCM.
1395 	 */
1396 	if (!priv->mcm) {
1397 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
1398 						      GPIOD_OUT_LOW);
1399 		if (IS_ERR(priv->reset)) {
1400 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1401 			return PTR_ERR(priv->reset);
1402 		}
1403 	}
1404 
1405 	priv->bus = mdiodev->bus;
1406 	priv->dev = &mdiodev->dev;
1407 	priv->ds->priv = priv;
1408 	priv->ds->ops = &mt7530_switch_ops;
1409 	mutex_init(&priv->reg_mutex);
1410 	dev_set_drvdata(&mdiodev->dev, priv);
1411 
1412 	return dsa_register_switch(priv->ds);
1413 }
1414 
1415 static void
1416 mt7530_remove(struct mdio_device *mdiodev)
1417 {
1418 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
1419 	int ret = 0;
1420 
1421 	ret = regulator_disable(priv->core_pwr);
1422 	if (ret < 0)
1423 		dev_err(priv->dev,
1424 			"Failed to disable core power: %d\n", ret);
1425 
1426 	ret = regulator_disable(priv->io_pwr);
1427 	if (ret < 0)
1428 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
1429 			ret);
1430 
1431 	dsa_unregister_switch(priv->ds);
1432 	mutex_destroy(&priv->reg_mutex);
1433 }
1434 
1435 static struct mdio_driver mt7530_mdio_driver = {
1436 	.probe  = mt7530_probe,
1437 	.remove = mt7530_remove,
1438 	.mdiodrv.driver = {
1439 		.name = "mt7530",
1440 		.of_match_table = mt7530_of_match,
1441 	},
1442 };
1443 
1444 mdio_module_driver(mt7530_mdio_driver);
1445 
1446 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1447 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
1448 MODULE_LICENSE("GPL");
1449