xref: /linux/drivers/net/dsa/mt7530.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 static void
78 mt7530_mutex_lock(struct mt7530_priv *priv)
79 {
80 	if (priv->bus)
81 		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
82 }
83 
84 static void
85 mt7530_mutex_unlock(struct mt7530_priv *priv)
86 {
87 	if (priv->bus)
88 		mutex_unlock(&priv->bus->mdio_lock);
89 }
90 
91 static void
92 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
93 {
94 	struct mii_bus *bus = priv->bus;
95 	int ret;
96 
97 	mt7530_mutex_lock(priv);
98 
99 	/* Write the desired MMD Devad */
100 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
101 			 MII_MMD_CTRL, MDIO_MMD_VEND2);
102 	if (ret < 0)
103 		goto err;
104 
105 	/* Write the desired MMD register address */
106 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
107 			 MII_MMD_DATA, reg);
108 	if (ret < 0)
109 		goto err;
110 
111 	/* Select the Function : DATA with no post increment */
112 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
113 			 MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR);
114 	if (ret < 0)
115 		goto err;
116 
117 	/* Write the data into MMD's selected register */
118 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
119 			 MII_MMD_DATA, val);
120 err:
121 	if (ret < 0)
122 		dev_err(&bus->dev, "failed to write mmd register\n");
123 
124 	mt7530_mutex_unlock(priv);
125 }
126 
127 static void
128 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
129 {
130 	struct mii_bus *bus = priv->bus;
131 	u32 val;
132 	int ret;
133 
134 	mt7530_mutex_lock(priv);
135 
136 	/* Write the desired MMD Devad */
137 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
138 			 MII_MMD_CTRL, MDIO_MMD_VEND2);
139 	if (ret < 0)
140 		goto err;
141 
142 	/* Write the desired MMD register address */
143 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
144 			 MII_MMD_DATA, reg);
145 	if (ret < 0)
146 		goto err;
147 
148 	/* Select the Function : DATA with no post increment */
149 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
150 			 MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR);
151 	if (ret < 0)
152 		goto err;
153 
154 	/* Read the content of the MMD's selected register */
155 	val = bus->read(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
156 			MII_MMD_DATA);
157 	val &= ~mask;
158 	val |= set;
159 	/* Write the data into MMD's selected register */
160 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
161 			 MII_MMD_DATA, val);
162 err:
163 	if (ret < 0)
164 		dev_err(&bus->dev, "failed to write mmd register\n");
165 
166 	mt7530_mutex_unlock(priv);
167 }
168 
169 static void
170 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
171 {
172 	core_rmw(priv, reg, 0, val);
173 }
174 
175 static void
176 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
177 {
178 	core_rmw(priv, reg, val, 0);
179 }
180 
181 static int
182 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
183 {
184 	int ret;
185 
186 	ret = regmap_write(priv->regmap, reg, val);
187 
188 	if (ret < 0)
189 		dev_err(priv->dev,
190 			"failed to write mt7530 register\n");
191 
192 	return ret;
193 }
194 
195 static u32
196 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
197 {
198 	int ret;
199 	u32 val;
200 
201 	ret = regmap_read(priv->regmap, reg, &val);
202 	if (ret) {
203 		WARN_ON_ONCE(1);
204 		dev_err(priv->dev,
205 			"failed to read mt7530 register\n");
206 		return 0;
207 	}
208 
209 	return val;
210 }
211 
212 static void
213 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
214 {
215 	mt7530_mutex_lock(priv);
216 
217 	mt7530_mii_write(priv, reg, val);
218 
219 	mt7530_mutex_unlock(priv);
220 }
221 
222 static u32
223 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
224 {
225 	return mt7530_mii_read(p->priv, p->reg);
226 }
227 
228 static u32
229 _mt7530_read(struct mt7530_dummy_poll *p)
230 {
231 	u32 val;
232 
233 	mt7530_mutex_lock(p->priv);
234 
235 	val = mt7530_mii_read(p->priv, p->reg);
236 
237 	mt7530_mutex_unlock(p->priv);
238 
239 	return val;
240 }
241 
242 static u32
243 mt7530_read(struct mt7530_priv *priv, u32 reg)
244 {
245 	struct mt7530_dummy_poll p;
246 
247 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
248 	return _mt7530_read(&p);
249 }
250 
251 static void
252 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
253 	   u32 mask, u32 set)
254 {
255 	mt7530_mutex_lock(priv);
256 
257 	regmap_update_bits(priv->regmap, reg, mask, set);
258 
259 	mt7530_mutex_unlock(priv);
260 }
261 
262 static void
263 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
264 {
265 	mt7530_rmw(priv, reg, val, val);
266 }
267 
268 static void
269 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
270 {
271 	mt7530_rmw(priv, reg, val, 0);
272 }
273 
274 static int
275 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
276 {
277 	u32 val;
278 	int ret;
279 	struct mt7530_dummy_poll p;
280 
281 	/* Set the command operating upon the MAC address entries */
282 	val = ATC_BUSY | ATC_MAT(0) | cmd;
283 	mt7530_write(priv, MT7530_ATC, val);
284 
285 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
286 	ret = readx_poll_timeout(_mt7530_read, &p, val,
287 				 !(val & ATC_BUSY), 20, 20000);
288 	if (ret < 0) {
289 		dev_err(priv->dev, "reset timeout\n");
290 		return ret;
291 	}
292 
293 	/* Additional sanity for read command if the specified
294 	 * entry is invalid
295 	 */
296 	val = mt7530_read(priv, MT7530_ATC);
297 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
298 		return -EINVAL;
299 
300 	if (rsp)
301 		*rsp = val;
302 
303 	return 0;
304 }
305 
306 static void
307 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
308 {
309 	u32 reg[3];
310 	int i;
311 
312 	/* Read from ARL table into an array */
313 	for (i = 0; i < 3; i++) {
314 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
315 
316 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
317 			__func__, __LINE__, i, reg[i]);
318 	}
319 
320 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
321 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
322 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
323 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
324 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
325 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
326 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
327 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
328 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
329 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
330 }
331 
332 static void
333 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
334 		 u8 port_mask, const u8 *mac,
335 		 u8 aging, u8 type)
336 {
337 	u32 reg[3] = { 0 };
338 	int i;
339 
340 	reg[1] |= vid & CVID_MASK;
341 	reg[1] |= ATA2_IVL;
342 	reg[1] |= ATA2_FID(FID_BRIDGED);
343 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
344 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
345 	/* STATIC_ENT indicate that entry is static wouldn't
346 	 * be aged out and STATIC_EMP specified as erasing an
347 	 * entry
348 	 */
349 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
350 	reg[1] |= mac[5] << MAC_BYTE_5;
351 	reg[1] |= mac[4] << MAC_BYTE_4;
352 	reg[0] |= mac[3] << MAC_BYTE_3;
353 	reg[0] |= mac[2] << MAC_BYTE_2;
354 	reg[0] |= mac[1] << MAC_BYTE_1;
355 	reg[0] |= mac[0] << MAC_BYTE_0;
356 
357 	/* Write array into the ARL table */
358 	for (i = 0; i < 3; i++)
359 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
360 }
361 
362 /* Set up switch core clock for MT7530 */
363 static void mt7530_pll_setup(struct mt7530_priv *priv)
364 {
365 	/* Disable core clock */
366 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
367 
368 	/* Disable PLL */
369 	core_write(priv, CORE_GSWPLL_GRP1, 0);
370 
371 	/* Set core clock into 500Mhz */
372 	core_write(priv, CORE_GSWPLL_GRP2,
373 		   RG_GSWPLL_POSDIV_500M(1) |
374 		   RG_GSWPLL_FBKDIV_500M(25));
375 
376 	/* Enable PLL */
377 	core_write(priv, CORE_GSWPLL_GRP1,
378 		   RG_GSWPLL_EN_PRE |
379 		   RG_GSWPLL_POSDIV_200M(2) |
380 		   RG_GSWPLL_FBKDIV_200M(32));
381 
382 	udelay(20);
383 
384 	/* Enable core clock */
385 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
386 }
387 
388 /* If port 6 is available as a CPU port, always prefer that as the default,
389  * otherwise don't care.
390  */
391 static struct dsa_port *
392 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
393 {
394 	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
395 
396 	if (dsa_port_is_cpu(cpu_dp))
397 		return cpu_dp;
398 
399 	return NULL;
400 }
401 
402 /* Setup port 6 interface mode and TRGMII TX circuit */
403 static void
404 mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface)
405 {
406 	struct mt7530_priv *priv = ds->priv;
407 	u32 ncpo1, ssc_delta, xtal;
408 
409 	/* Disable the MT7530 TRGMII clocks */
410 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
411 
412 	if (interface == PHY_INTERFACE_MODE_RGMII) {
413 		mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
414 			   P6_INTF_MODE(0));
415 		return;
416 	}
417 
418 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1));
419 
420 	xtal = mt7530_read(priv, MT753X_MTRAP) & MT7530_XTAL_MASK;
421 
422 	if (xtal == MT7530_XTAL_25MHZ)
423 		ssc_delta = 0x57;
424 	else
425 		ssc_delta = 0x87;
426 
427 	if (priv->id == ID_MT7621) {
428 		/* PLL frequency: 125MHz: 1.0GBit */
429 		if (xtal == MT7530_XTAL_40MHZ)
430 			ncpo1 = 0x0640;
431 		if (xtal == MT7530_XTAL_25MHZ)
432 			ncpo1 = 0x0a00;
433 	} else { /* PLL frequency: 250MHz: 2.0Gbit */
434 		if (xtal == MT7530_XTAL_40MHZ)
435 			ncpo1 = 0x0c80;
436 		if (xtal == MT7530_XTAL_25MHZ)
437 			ncpo1 = 0x1400;
438 	}
439 
440 	/* Setup the MT7530 TRGMII Tx Clock */
441 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
442 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
443 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
444 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
445 	core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
446 		   RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
447 	core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL |
448 		   RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1));
449 	core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG |
450 		   RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
451 
452 	/* Enable the MT7530 TRGMII clocks */
453 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
454 }
455 
456 static void
457 mt7531_pll_setup(struct mt7530_priv *priv)
458 {
459 	enum mt7531_xtal_fsel xtal;
460 	u32 top_sig;
461 	u32 hwstrap;
462 	u32 val;
463 
464 	val = mt7530_read(priv, MT7531_CREV);
465 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
466 	hwstrap = mt7530_read(priv, MT753X_TRAP);
467 	if ((val & CHIP_REV_M) > 0)
468 		xtal = (top_sig & PAD_MCM_SMI_EN) ? MT7531_XTAL_FSEL_40MHZ :
469 						    MT7531_XTAL_FSEL_25MHZ;
470 	else
471 		xtal = (hwstrap & MT7531_XTAL25) ? MT7531_XTAL_FSEL_25MHZ :
472 						   MT7531_XTAL_FSEL_40MHZ;
473 
474 	/* Step 1 : Disable MT7531 COREPLL */
475 	val = mt7530_read(priv, MT7531_PLLGP_EN);
476 	val &= ~EN_COREPLL;
477 	mt7530_write(priv, MT7531_PLLGP_EN, val);
478 
479 	/* Step 2: switch to XTAL output */
480 	val = mt7530_read(priv, MT7531_PLLGP_EN);
481 	val |= SW_CLKSW;
482 	mt7530_write(priv, MT7531_PLLGP_EN, val);
483 
484 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
485 	val &= ~RG_COREPLL_EN;
486 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
487 
488 	/* Step 3: disable PLLGP and enable program PLLGP */
489 	val = mt7530_read(priv, MT7531_PLLGP_EN);
490 	val |= SW_PLLGP;
491 	mt7530_write(priv, MT7531_PLLGP_EN, val);
492 
493 	/* Step 4: program COREPLL output frequency to 500MHz */
494 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
495 	val &= ~RG_COREPLL_POSDIV_M;
496 	val |= 2 << RG_COREPLL_POSDIV_S;
497 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
498 	usleep_range(25, 35);
499 
500 	switch (xtal) {
501 	case MT7531_XTAL_FSEL_25MHZ:
502 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
503 		val &= ~RG_COREPLL_SDM_PCW_M;
504 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
505 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
506 		break;
507 	case MT7531_XTAL_FSEL_40MHZ:
508 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
509 		val &= ~RG_COREPLL_SDM_PCW_M;
510 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
511 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
512 		break;
513 	}
514 
515 	/* Set feedback divide ratio update signal to high */
516 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
517 	val |= RG_COREPLL_SDM_PCW_CHG;
518 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
519 	/* Wait for at least 16 XTAL clocks */
520 	usleep_range(10, 20);
521 
522 	/* Step 5: set feedback divide ratio update signal to low */
523 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
524 	val &= ~RG_COREPLL_SDM_PCW_CHG;
525 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
526 
527 	/* Enable 325M clock for SGMII */
528 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
529 
530 	/* Enable 250SSC clock for RGMII */
531 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
532 
533 	/* Step 6: Enable MT7531 PLL */
534 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
535 	val |= RG_COREPLL_EN;
536 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
537 
538 	val = mt7530_read(priv, MT7531_PLLGP_EN);
539 	val |= EN_COREPLL;
540 	mt7530_write(priv, MT7531_PLLGP_EN, val);
541 	usleep_range(25, 35);
542 }
543 
544 static void
545 mt7530_mib_reset(struct dsa_switch *ds)
546 {
547 	struct mt7530_priv *priv = ds->priv;
548 
549 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
550 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
551 }
552 
553 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
554 {
555 	return mdiobus_read_nested(priv->bus, port, regnum);
556 }
557 
558 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
559 				u16 val)
560 {
561 	return mdiobus_write_nested(priv->bus, port, regnum, val);
562 }
563 
564 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
565 			       int devad, int regnum)
566 {
567 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
568 }
569 
570 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
571 				int regnum, u16 val)
572 {
573 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
574 }
575 
576 static int
577 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
578 			int regnum)
579 {
580 	struct mt7530_dummy_poll p;
581 	u32 reg, val;
582 	int ret;
583 
584 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
585 
586 	mt7530_mutex_lock(priv);
587 
588 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
589 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
590 	if (ret < 0) {
591 		dev_err(priv->dev, "poll timeout\n");
592 		goto out;
593 	}
594 
595 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
596 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
597 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
598 
599 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
600 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
601 	if (ret < 0) {
602 		dev_err(priv->dev, "poll timeout\n");
603 		goto out;
604 	}
605 
606 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
607 	      MT7531_MDIO_DEV_ADDR(devad);
608 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
609 
610 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
611 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
612 	if (ret < 0) {
613 		dev_err(priv->dev, "poll timeout\n");
614 		goto out;
615 	}
616 
617 	ret = val & MT7531_MDIO_RW_DATA_MASK;
618 out:
619 	mt7530_mutex_unlock(priv);
620 
621 	return ret;
622 }
623 
624 static int
625 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
626 			 int regnum, u16 data)
627 {
628 	struct mt7530_dummy_poll p;
629 	u32 val, reg;
630 	int ret;
631 
632 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
633 
634 	mt7530_mutex_lock(priv);
635 
636 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
637 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
638 	if (ret < 0) {
639 		dev_err(priv->dev, "poll timeout\n");
640 		goto out;
641 	}
642 
643 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
644 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
645 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
646 
647 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
648 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
649 	if (ret < 0) {
650 		dev_err(priv->dev, "poll timeout\n");
651 		goto out;
652 	}
653 
654 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
655 	      MT7531_MDIO_DEV_ADDR(devad) | data;
656 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
657 
658 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
659 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
660 	if (ret < 0) {
661 		dev_err(priv->dev, "poll timeout\n");
662 		goto out;
663 	}
664 
665 out:
666 	mt7530_mutex_unlock(priv);
667 
668 	return ret;
669 }
670 
671 static int
672 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
673 {
674 	struct mt7530_dummy_poll p;
675 	int ret;
676 	u32 val;
677 
678 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
679 
680 	mt7530_mutex_lock(priv);
681 
682 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
683 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
684 	if (ret < 0) {
685 		dev_err(priv->dev, "poll timeout\n");
686 		goto out;
687 	}
688 
689 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
690 	      MT7531_MDIO_REG_ADDR(regnum);
691 
692 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
693 
694 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
695 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
696 	if (ret < 0) {
697 		dev_err(priv->dev, "poll timeout\n");
698 		goto out;
699 	}
700 
701 	ret = val & MT7531_MDIO_RW_DATA_MASK;
702 out:
703 	mt7530_mutex_unlock(priv);
704 
705 	return ret;
706 }
707 
708 static int
709 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
710 			 u16 data)
711 {
712 	struct mt7530_dummy_poll p;
713 	int ret;
714 	u32 reg;
715 
716 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
717 
718 	mt7530_mutex_lock(priv);
719 
720 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
721 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
722 	if (ret < 0) {
723 		dev_err(priv->dev, "poll timeout\n");
724 		goto out;
725 	}
726 
727 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
728 	      MT7531_MDIO_REG_ADDR(regnum) | data;
729 
730 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
731 
732 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
733 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
734 	if (ret < 0) {
735 		dev_err(priv->dev, "poll timeout\n");
736 		goto out;
737 	}
738 
739 out:
740 	mt7530_mutex_unlock(priv);
741 
742 	return ret;
743 }
744 
745 static int
746 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
747 {
748 	struct mt7530_priv *priv = bus->priv;
749 
750 	return priv->info->phy_read_c22(priv, port, regnum);
751 }
752 
753 static int
754 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
755 {
756 	struct mt7530_priv *priv = bus->priv;
757 
758 	return priv->info->phy_read_c45(priv, port, devad, regnum);
759 }
760 
761 static int
762 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
763 {
764 	struct mt7530_priv *priv = bus->priv;
765 
766 	return priv->info->phy_write_c22(priv, port, regnum, val);
767 }
768 
769 static int
770 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
771 		     u16 val)
772 {
773 	struct mt7530_priv *priv = bus->priv;
774 
775 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
776 }
777 
778 static void
779 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
780 		   uint8_t *data)
781 {
782 	int i;
783 
784 	if (stringset != ETH_SS_STATS)
785 		return;
786 
787 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
788 		ethtool_puts(&data, mt7530_mib[i].name);
789 }
790 
791 static void
792 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
793 			 uint64_t *data)
794 {
795 	struct mt7530_priv *priv = ds->priv;
796 	const struct mt7530_mib_desc *mib;
797 	u32 reg, i;
798 	u64 hi;
799 
800 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
801 		mib = &mt7530_mib[i];
802 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
803 
804 		data[i] = mt7530_read(priv, reg);
805 		if (mib->size == 2) {
806 			hi = mt7530_read(priv, reg + 4);
807 			data[i] |= hi << 32;
808 		}
809 	}
810 }
811 
812 static int
813 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
814 {
815 	if (sset != ETH_SS_STATS)
816 		return 0;
817 
818 	return ARRAY_SIZE(mt7530_mib);
819 }
820 
821 static int
822 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
823 {
824 	struct mt7530_priv *priv = ds->priv;
825 	unsigned int secs = msecs / 1000;
826 	unsigned int tmp_age_count;
827 	unsigned int error = -1;
828 	unsigned int age_count;
829 	unsigned int age_unit;
830 
831 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
832 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
833 		return -ERANGE;
834 
835 	/* iterate through all possible age_count to find the closest pair */
836 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
837 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
838 
839 		if (tmp_age_unit <= AGE_UNIT_MAX) {
840 			unsigned int tmp_error = secs -
841 				(tmp_age_count + 1) * (tmp_age_unit + 1);
842 
843 			/* found a closer pair */
844 			if (error > tmp_error) {
845 				error = tmp_error;
846 				age_count = tmp_age_count;
847 				age_unit = tmp_age_unit;
848 			}
849 
850 			/* found the exact match, so break the loop */
851 			if (!error)
852 				break;
853 		}
854 	}
855 
856 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
857 
858 	return 0;
859 }
860 
861 static const char *mt7530_p5_mode_str(unsigned int mode)
862 {
863 	switch (mode) {
864 	case MUX_PHY_P0:
865 		return "MUX PHY P0";
866 	case MUX_PHY_P4:
867 		return "MUX PHY P4";
868 	default:
869 		return "GMAC5";
870 	}
871 }
872 
873 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
874 {
875 	struct mt7530_priv *priv = ds->priv;
876 	u8 tx_delay = 0;
877 	int val;
878 
879 	mutex_lock(&priv->reg_mutex);
880 
881 	val = mt7530_read(priv, MT753X_MTRAP);
882 
883 	val &= ~MT7530_P5_PHY0_SEL & ~MT7530_P5_MAC_SEL & ~MT7530_P5_RGMII_MODE;
884 
885 	switch (priv->p5_mode) {
886 	/* MUX_PHY_P0: P0 -> P5 -> SoC MAC */
887 	case MUX_PHY_P0:
888 		val |= MT7530_P5_PHY0_SEL;
889 		fallthrough;
890 
891 	/* MUX_PHY_P4: P4 -> P5 -> SoC MAC */
892 	case MUX_PHY_P4:
893 		/* Setup the MAC by default for the cpu port */
894 		mt7530_write(priv, MT753X_PMCR_P(5), 0x56300);
895 		break;
896 
897 	/* GMAC5: P5 -> SoC MAC or external PHY */
898 	default:
899 		val |= MT7530_P5_MAC_SEL;
900 		break;
901 	}
902 
903 	/* Setup RGMII settings */
904 	if (phy_interface_mode_is_rgmii(interface)) {
905 		val |= MT7530_P5_RGMII_MODE;
906 
907 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
908 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
909 
910 		/* Don't set delay in DSA mode */
911 		if (!dsa_is_dsa_port(priv->ds, 5) &&
912 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
913 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
914 			tx_delay = 4; /* n * 0.5 ns */
915 
916 		/* P5 RGMII TX Clock Control: delay x */
917 		mt7530_write(priv, MT7530_P5RGMIITXCR,
918 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
919 
920 		/* reduce P5 RGMII Tx driving, 8mA */
921 		mt7530_write(priv, MT7530_IO_DRV_CR,
922 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
923 	}
924 
925 	mt7530_write(priv, MT753X_MTRAP, val);
926 
927 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, mode=%s, phy-mode=%s\n", val,
928 		mt7530_p5_mode_str(priv->p5_mode), phy_modes(interface));
929 
930 	mutex_unlock(&priv->reg_mutex);
931 }
932 
933 /* In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer (DLL)
934  * of the Open Systems Interconnection basic reference model (OSI/RM) are
935  * described; the medium access control (MAC) and logical link control (LLC)
936  * sublayers. The MAC sublayer is the one facing the physical layer.
937  *
938  * In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A
939  * Bridge component comprises a MAC Relay Entity for interconnecting the Ports
940  * of the Bridge, at least two Ports, and higher layer entities with at least a
941  * Spanning Tree Protocol Entity included.
942  *
943  * Each Bridge Port also functions as an end station and shall provide the MAC
944  * Service to an LLC Entity. Each instance of the MAC Service is provided to a
945  * distinct LLC Entity that supports protocol identification, multiplexing, and
946  * demultiplexing, for protocol data unit (PDU) transmission and reception by
947  * one or more higher layer entities.
948  *
949  * It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC
950  * Entity associated with each Bridge Port is modeled as being directly
951  * connected to the attached Local Area Network (LAN).
952  *
953  * On the switch with CPU port architecture, CPU port functions as Management
954  * Port, and the Management Port functionality is provided by software which
955  * functions as an end station. Software is connected to an IEEE 802 LAN that is
956  * wholly contained within the system that incorporates the Bridge. Software
957  * provides access to the LLC Entity associated with each Bridge Port by the
958  * value of the source port field on the special tag on the frame received by
959  * software.
960  *
961  * We call frames that carry control information to determine the active
962  * topology and current extent of each Virtual Local Area Network (VLAN), i.e.,
963  * spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN Registration
964  * Protocol Data Units (MVRPDUs), and frames from other link constrained
965  * protocols, such as Extensible Authentication Protocol over LAN (EAPOL) and
966  * Link Layer Discovery Protocol (LLDP), link-local frames. They are not
967  * forwarded by a Bridge. Permanently configured entries in the filtering
968  * database (FDB) ensure that such frames are discarded by the Forwarding
969  * Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in detail:
970  *
971  * Each of the reserved MAC addresses specified in Table 8-1
972  * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be
973  * permanently configured in the FDB in C-VLAN components and ERs.
974  *
975  * Each of the reserved MAC addresses specified in Table 8-2
976  * (01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently
977  * configured in the FDB in S-VLAN components.
978  *
979  * Each of the reserved MAC addresses specified in Table 8-3
980  * (01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB in
981  * TPMR components.
982  *
983  * The FDB entries for reserved MAC addresses shall specify filtering for all
984  * Bridge Ports and all VIDs. Management shall not provide the capability to
985  * modify or remove entries for reserved MAC addresses.
986  *
987  * The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of
988  * propagation of PDUs within a Bridged Network, as follows:
989  *
990  *   The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that no
991  *   conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN)
992  *   component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward.
993  *   PDUs transmitted using this destination address, or any other addresses
994  *   that appear in Table 8-1, Table 8-2, and Table 8-3
995  *   (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can
996  *   therefore travel no further than those stations that can be reached via a
997  *   single individual LAN from the originating station.
998  *
999  *   The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an
1000  *   address that no conformant S-VLAN component, C-VLAN component, or MAC
1001  *   Bridge can forward; however, this address is relayed by a TPMR component.
1002  *   PDUs using this destination address, or any of the other addresses that
1003  *   appear in both Table 8-1 and Table 8-2 but not in Table 8-3
1004  *   (01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed by
1005  *   any TPMRs but will propagate no further than the nearest S-VLAN component,
1006  *   C-VLAN component, or MAC Bridge.
1007  *
1008  *   The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an address
1009  *   that no conformant C-VLAN component, MAC Bridge can forward; however, it is
1010  *   relayed by TPMR components and S-VLAN components. PDUs using this
1011  *   destination address, or any of the other addresses that appear in Table 8-1
1012  *   but not in either Table 8-2 or Table 8-3 (01-80-C2-00-00-[00,0B,0C,0D,0F]),
1013  *   will be relayed by TPMR components and S-VLAN components but will propagate
1014  *   no further than the nearest C-VLAN component or MAC Bridge.
1015  *
1016  * Because the LLC Entity associated with each Bridge Port is provided via CPU
1017  * port, we must not filter these frames but forward them to CPU port.
1018  *
1019  * In a Bridge, the transmission Port is majorly decided by ingress and egress
1020  * rules, FDB, and spanning tree Port State functions of the Forwarding Process.
1021  * For link-local frames, only CPU port should be designated as destination port
1022  * in the FDB, and the other functions of the Forwarding Process must not
1023  * interfere with the decision of the transmission Port. We call this process
1024  * trapping frames to CPU port.
1025  *
1026  * Therefore, on the switch with CPU port architecture, link-local frames must
1027  * be trapped to CPU port, and certain link-local frames received by a Port of a
1028  * Bridge comprising a TPMR component or an S-VLAN component must be excluded
1029  * from it.
1030  *
1031  * A Bridge of the switch with CPU port architecture cannot comprise a Two-Port
1032  * MAC Relay (TPMR) component as a TPMR component supports only a subset of the
1033  * functionality of a MAC Bridge. A Bridge comprising two Ports (Management Port
1034  * doesn't count) of this architecture will either function as a standard MAC
1035  * Bridge or a standard VLAN Bridge.
1036  *
1037  * Therefore, a Bridge of this architecture can only comprise S-VLAN components,
1038  * C-VLAN components, or MAC Bridge components. Since there's no TPMR component,
1039  * we don't need to relay PDUs using the destination addresses specified on the
1040  * Nearest non-TPMR section, and the proportion of the Nearest Customer Bridge
1041  * section where they must be relayed by TPMR components.
1042  *
1043  * One option to trap link-local frames to CPU port is to add static FDB entries
1044  * with CPU port designated as destination port. However, because that
1045  * Independent VLAN Learning (IVL) is being used on every VID, each entry only
1046  * applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC
1047  * Bridge component or a C-VLAN component, there would have to be 16 times 4096
1048  * entries. This switch intellectual property can only hold a maximum of 2048
1049  * entries. Using this option, there also isn't a mechanism to prevent
1050  * link-local frames from being discarded when the spanning tree Port State of
1051  * the reception Port is discarding.
1052  *
1053  * The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4
1054  * registers. Whilst this applies to every VID, it doesn't contain all of the
1055  * reserved MAC addresses without affecting the remaining Standard Group MAC
1056  * Addresses. The REV_UN frame tag utilised using the RGAC4 register covers the
1057  * remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination
1058  * addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF
1059  * destination addresses which may be relayed by MAC Bridges or VLAN Bridges.
1060  * The latter option provides better but not complete conformance.
1061  *
1062  * This switch intellectual property also does not provide a mechanism to trap
1063  * link-local frames with specific destination addresses to CPU port by Bridge,
1064  * to conform to the filtering rules for the distinct Bridge components.
1065  *
1066  * Therefore, regardless of the type of the Bridge component, link-local frames
1067  * with these destination addresses will be trapped to CPU port:
1068  *
1069  * 01-80-C2-00-00-[00,01,02,03,0E]
1070  *
1071  * In a Bridge comprising a MAC Bridge component or a C-VLAN component:
1072  *
1073  *   Link-local frames with these destination addresses won't be trapped to CPU
1074  *   port which won't conform to IEEE Std 802.1Q-2022:
1075  *
1076  *   01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F]
1077  *
1078  * In a Bridge comprising an S-VLAN component:
1079  *
1080  *   Link-local frames with these destination addresses will be trapped to CPU
1081  *   port which won't conform to IEEE Std 802.1Q-2022:
1082  *
1083  *   01-80-C2-00-00-00
1084  *
1085  *   Link-local frames with these destination addresses won't be trapped to CPU
1086  *   port which won't conform to IEEE Std 802.1Q-2022:
1087  *
1088  *   01-80-C2-00-00-[04,05,06,07,08,09,0A]
1089  *
1090  * To trap link-local frames to CPU port as conformant as this switch
1091  * intellectual property can allow, link-local frames are made to be regarded as
1092  * Bridge Protocol Data Units (BPDUs). This is because this switch intellectual
1093  * property only lets the frames regarded as BPDUs bypass the spanning tree Port
1094  * State function of the Forwarding Process.
1095  *
1096  * The only remaining interference is the ingress rules. When the reception Port
1097  * has no PVID assigned on software, VLAN-untagged frames won't be allowed in.
1098  * There doesn't seem to be a mechanism on the switch intellectual property to
1099  * have link-local frames bypass this function of the Forwarding Process.
1100  */
1101 static void
1102 mt753x_trap_frames(struct mt7530_priv *priv)
1103 {
1104 	/* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
1105 	 * VLAN-untagged.
1106 	 */
1107 	mt7530_rmw(priv, MT753X_BPC,
1108 		   PAE_BPDU_FR | PAE_EG_TAG_MASK | PAE_PORT_FW_MASK |
1109 			   BPDU_EG_TAG_MASK | BPDU_PORT_FW_MASK,
1110 		   PAE_BPDU_FR | PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1111 			   PAE_PORT_FW(TO_CPU_FW_CPU_ONLY) |
1112 			   BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1113 			   TO_CPU_FW_CPU_ONLY);
1114 
1115 	/* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
1116 	 * them VLAN-untagged.
1117 	 */
1118 	mt7530_rmw(priv, MT753X_RGAC1,
1119 		   R02_BPDU_FR | R02_EG_TAG_MASK | R02_PORT_FW_MASK |
1120 			   R01_BPDU_FR | R01_EG_TAG_MASK | R01_PORT_FW_MASK,
1121 		   R02_BPDU_FR | R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1122 			   R02_PORT_FW(TO_CPU_FW_CPU_ONLY) | R01_BPDU_FR |
1123 			   R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1124 			   TO_CPU_FW_CPU_ONLY);
1125 
1126 	/* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
1127 	 * them VLAN-untagged.
1128 	 */
1129 	mt7530_rmw(priv, MT753X_RGAC2,
1130 		   R0E_BPDU_FR | R0E_EG_TAG_MASK | R0E_PORT_FW_MASK |
1131 			   R03_BPDU_FR | R03_EG_TAG_MASK | R03_PORT_FW_MASK,
1132 		   R0E_BPDU_FR | R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1133 			   R0E_PORT_FW(TO_CPU_FW_CPU_ONLY) | R03_BPDU_FR |
1134 			   R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1135 			   TO_CPU_FW_CPU_ONLY);
1136 }
1137 
1138 static void
1139 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1140 {
1141 	struct mt7530_priv *priv = ds->priv;
1142 
1143 	/* Enable Mediatek header mode on the cpu port */
1144 	mt7530_write(priv, MT7530_PVC_P(port),
1145 		     PORT_SPEC_TAG);
1146 
1147 	/* Enable flooding on the CPU port */
1148 	mt7530_set(priv, MT753X_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1149 		   UNU_FFP(BIT(port)));
1150 
1151 	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1152 	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1153 	 * is affine to the inbound user port.
1154 	 */
1155 	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1156 		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1157 
1158 	/* CPU port gets connected to all user ports of
1159 	 * the switch.
1160 	 */
1161 	mt7530_write(priv, MT7530_PCR_P(port),
1162 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1163 
1164 	/* Set to fallback mode for independent VLAN learning */
1165 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1166 		   MT7530_PORT_FALLBACK_MODE);
1167 }
1168 
1169 static int
1170 mt7530_port_enable(struct dsa_switch *ds, int port,
1171 		   struct phy_device *phy)
1172 {
1173 	struct dsa_port *dp = dsa_to_port(ds, port);
1174 	struct mt7530_priv *priv = ds->priv;
1175 
1176 	mutex_lock(&priv->reg_mutex);
1177 
1178 	/* Allow the user port gets connected to the cpu port and also
1179 	 * restore the port matrix if the port is the member of a certain
1180 	 * bridge.
1181 	 */
1182 	if (dsa_port_is_user(dp)) {
1183 		struct dsa_port *cpu_dp = dp->cpu_dp;
1184 
1185 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1186 	}
1187 	priv->ports[port].enable = true;
1188 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1189 		   priv->ports[port].pm);
1190 
1191 	mutex_unlock(&priv->reg_mutex);
1192 
1193 	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
1194 		return 0;
1195 
1196 	if (port == 5)
1197 		mt7530_clear(priv, MT753X_MTRAP, MT7530_P5_DIS);
1198 	else if (port == 6)
1199 		mt7530_clear(priv, MT753X_MTRAP, MT7530_P6_DIS);
1200 
1201 	return 0;
1202 }
1203 
1204 static void
1205 mt7530_port_disable(struct dsa_switch *ds, int port)
1206 {
1207 	struct mt7530_priv *priv = ds->priv;
1208 
1209 	mutex_lock(&priv->reg_mutex);
1210 
1211 	/* Clear up all port matrix which could be restored in the next
1212 	 * enablement for the port.
1213 	 */
1214 	priv->ports[port].enable = false;
1215 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1216 		   PCR_MATRIX_CLR);
1217 
1218 	mutex_unlock(&priv->reg_mutex);
1219 
1220 	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
1221 		return;
1222 
1223 	/* Do not set MT7530_P5_DIS when port 5 is being used for PHY muxing. */
1224 	if (port == 5 && priv->p5_mode == GMAC5)
1225 		mt7530_set(priv, MT753X_MTRAP, MT7530_P5_DIS);
1226 	else if (port == 6)
1227 		mt7530_set(priv, MT753X_MTRAP, MT7530_P6_DIS);
1228 }
1229 
1230 static int
1231 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1232 {
1233 	struct mt7530_priv *priv = ds->priv;
1234 	int length;
1235 	u32 val;
1236 
1237 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1238 	 * largest MTU of the user ports. Because the switch only has a global
1239 	 * RX length register, only allowing CPU port here is enough.
1240 	 */
1241 	if (!dsa_is_cpu_port(ds, port))
1242 		return 0;
1243 
1244 	mt7530_mutex_lock(priv);
1245 
1246 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1247 	val &= ~MAX_RX_PKT_LEN_MASK;
1248 
1249 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1250 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1251 	if (length <= 1522) {
1252 		val |= MAX_RX_PKT_LEN_1522;
1253 	} else if (length <= 1536) {
1254 		val |= MAX_RX_PKT_LEN_1536;
1255 	} else if (length <= 1552) {
1256 		val |= MAX_RX_PKT_LEN_1552;
1257 	} else {
1258 		val &= ~MAX_RX_JUMBO_MASK;
1259 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1260 		val |= MAX_RX_PKT_LEN_JUMBO;
1261 	}
1262 
1263 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1264 
1265 	mt7530_mutex_unlock(priv);
1266 
1267 	return 0;
1268 }
1269 
1270 static int
1271 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1272 {
1273 	return MT7530_MAX_MTU;
1274 }
1275 
1276 static void
1277 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1278 {
1279 	struct mt7530_priv *priv = ds->priv;
1280 	u32 stp_state;
1281 
1282 	switch (state) {
1283 	case BR_STATE_DISABLED:
1284 		stp_state = MT7530_STP_DISABLED;
1285 		break;
1286 	case BR_STATE_BLOCKING:
1287 		stp_state = MT7530_STP_BLOCKING;
1288 		break;
1289 	case BR_STATE_LISTENING:
1290 		stp_state = MT7530_STP_LISTENING;
1291 		break;
1292 	case BR_STATE_LEARNING:
1293 		stp_state = MT7530_STP_LEARNING;
1294 		break;
1295 	case BR_STATE_FORWARDING:
1296 	default:
1297 		stp_state = MT7530_STP_FORWARDING;
1298 		break;
1299 	}
1300 
1301 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1302 		   FID_PST(FID_BRIDGED, stp_state));
1303 }
1304 
1305 static void mt7530_update_port_member(struct mt7530_priv *priv, int port,
1306 				      const struct net_device *bridge_dev,
1307 				      bool join) __must_hold(&priv->reg_mutex)
1308 {
1309 	struct dsa_port *dp = dsa_to_port(priv->ds, port), *other_dp;
1310 	struct mt7530_port *p = &priv->ports[port], *other_p;
1311 	struct dsa_port *cpu_dp = dp->cpu_dp;
1312 	u32 port_bitmap = BIT(cpu_dp->index);
1313 	int other_port;
1314 	bool isolated;
1315 
1316 	dsa_switch_for_each_user_port(other_dp, priv->ds) {
1317 		other_port = other_dp->index;
1318 		other_p = &priv->ports[other_port];
1319 
1320 		if (dp == other_dp)
1321 			continue;
1322 
1323 		/* Add/remove this port to/from the port matrix of the other
1324 		 * ports in the same bridge. If the port is disabled, port
1325 		 * matrix is kept and not being setup until the port becomes
1326 		 * enabled.
1327 		 */
1328 		if (!dsa_port_offloads_bridge_dev(other_dp, bridge_dev))
1329 			continue;
1330 
1331 		isolated = p->isolated && other_p->isolated;
1332 
1333 		if (join && !isolated) {
1334 			other_p->pm |= PCR_MATRIX(BIT(port));
1335 			port_bitmap |= BIT(other_port);
1336 		} else {
1337 			other_p->pm &= ~PCR_MATRIX(BIT(port));
1338 		}
1339 
1340 		if (other_p->enable)
1341 			mt7530_rmw(priv, MT7530_PCR_P(other_port),
1342 				   PCR_MATRIX_MASK, other_p->pm);
1343 	}
1344 
1345 	/* Add/remove the all other ports to this port matrix. For !join
1346 	 * (leaving the bridge), only the CPU port will remain in the port matrix
1347 	 * of this port.
1348 	 */
1349 	p->pm = PCR_MATRIX(port_bitmap);
1350 	if (priv->ports[port].enable)
1351 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, p->pm);
1352 }
1353 
1354 static int
1355 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1356 			     struct switchdev_brport_flags flags,
1357 			     struct netlink_ext_ack *extack)
1358 {
1359 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1360 			   BR_BCAST_FLOOD | BR_ISOLATED))
1361 		return -EINVAL;
1362 
1363 	return 0;
1364 }
1365 
1366 static int
1367 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1368 			 struct switchdev_brport_flags flags,
1369 			 struct netlink_ext_ack *extack)
1370 {
1371 	struct mt7530_priv *priv = ds->priv;
1372 
1373 	if (flags.mask & BR_LEARNING)
1374 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1375 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1376 
1377 	if (flags.mask & BR_FLOOD)
1378 		mt7530_rmw(priv, MT753X_MFC, UNU_FFP(BIT(port)),
1379 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1380 
1381 	if (flags.mask & BR_MCAST_FLOOD)
1382 		mt7530_rmw(priv, MT753X_MFC, UNM_FFP(BIT(port)),
1383 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1384 
1385 	if (flags.mask & BR_BCAST_FLOOD)
1386 		mt7530_rmw(priv, MT753X_MFC, BC_FFP(BIT(port)),
1387 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1388 
1389 	if (flags.mask & BR_ISOLATED) {
1390 		struct dsa_port *dp = dsa_to_port(ds, port);
1391 		struct net_device *bridge_dev = dsa_port_bridge_dev_get(dp);
1392 
1393 		priv->ports[port].isolated = !!(flags.val & BR_ISOLATED);
1394 
1395 		mutex_lock(&priv->reg_mutex);
1396 		mt7530_update_port_member(priv, port, bridge_dev, true);
1397 		mutex_unlock(&priv->reg_mutex);
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static int
1404 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1405 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1406 			struct netlink_ext_ack *extack)
1407 {
1408 	struct mt7530_priv *priv = ds->priv;
1409 
1410 	mutex_lock(&priv->reg_mutex);
1411 
1412 	mt7530_update_port_member(priv, port, bridge.dev, true);
1413 
1414 	/* Set to fallback mode for independent VLAN learning */
1415 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1416 		   MT7530_PORT_FALLBACK_MODE);
1417 
1418 	mutex_unlock(&priv->reg_mutex);
1419 
1420 	return 0;
1421 }
1422 
1423 static void
1424 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1425 {
1426 	struct mt7530_priv *priv = ds->priv;
1427 	bool all_user_ports_removed = true;
1428 	int i;
1429 
1430 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1431 	 * bridge. Don't set standalone ports to fallback mode.
1432 	 */
1433 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1434 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1435 			   MT7530_PORT_FALLBACK_MODE);
1436 
1437 	mt7530_rmw(priv, MT7530_PVC_P(port),
1438 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1439 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1440 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1441 		   MT7530_VLAN_ACC_ALL);
1442 
1443 	/* Set PVID to 0 */
1444 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1445 		   G0_PORT_VID_DEF);
1446 
1447 	for (i = 0; i < priv->ds->num_ports; i++) {
1448 		if (dsa_is_user_port(ds, i) &&
1449 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1450 			all_user_ports_removed = false;
1451 			break;
1452 		}
1453 	}
1454 
1455 	/* CPU port also does the same thing until all user ports belonging to
1456 	 * the CPU port get out of VLAN filtering mode.
1457 	 */
1458 	if (all_user_ports_removed) {
1459 		struct dsa_port *dp = dsa_to_port(ds, port);
1460 		struct dsa_port *cpu_dp = dp->cpu_dp;
1461 
1462 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1463 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1464 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1465 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1466 	}
1467 }
1468 
1469 static void
1470 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1471 {
1472 	struct mt7530_priv *priv = ds->priv;
1473 
1474 	/* Trapped into security mode allows packet forwarding through VLAN
1475 	 * table lookup.
1476 	 */
1477 	if (dsa_is_user_port(ds, port)) {
1478 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1479 			   MT7530_PORT_SECURITY_MODE);
1480 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1481 			   G0_PORT_VID(priv->ports[port].pvid));
1482 
1483 		/* Only accept tagged frames if PVID is not set */
1484 		if (!priv->ports[port].pvid)
1485 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1486 				   MT7530_VLAN_ACC_TAGGED);
1487 
1488 		/* Set the port as a user port which is to be able to recognize
1489 		 * VID from incoming packets before fetching entry within the
1490 		 * VLAN table.
1491 		 */
1492 		mt7530_rmw(priv, MT7530_PVC_P(port),
1493 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1494 			   VLAN_ATTR(MT7530_VLAN_USER) |
1495 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1496 	} else {
1497 		/* Also set CPU ports to the "user" VLAN port attribute, to
1498 		 * allow VLAN classification, but keep the EG_TAG attribute as
1499 		 * "consistent" (i.o.w. don't change its value) for packets
1500 		 * received by the switch from the CPU, so that tagged packets
1501 		 * are forwarded to user ports as tagged, and untagged as
1502 		 * untagged.
1503 		 */
1504 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1505 			   VLAN_ATTR(MT7530_VLAN_USER));
1506 	}
1507 }
1508 
1509 static void
1510 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1511 			 struct dsa_bridge bridge)
1512 {
1513 	struct mt7530_priv *priv = ds->priv;
1514 
1515 	mutex_lock(&priv->reg_mutex);
1516 
1517 	mt7530_update_port_member(priv, port, bridge.dev, false);
1518 
1519 	/* When a port is removed from the bridge, the port would be set up
1520 	 * back to the default as is at initial boot which is a VLAN-unaware
1521 	 * port.
1522 	 */
1523 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1524 		   MT7530_PORT_MATRIX_MODE);
1525 
1526 	mutex_unlock(&priv->reg_mutex);
1527 }
1528 
1529 static int
1530 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1531 		    const unsigned char *addr, u16 vid,
1532 		    struct dsa_db db)
1533 {
1534 	struct mt7530_priv *priv = ds->priv;
1535 	int ret;
1536 	u8 port_mask = BIT(port);
1537 
1538 	mutex_lock(&priv->reg_mutex);
1539 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1540 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1541 	mutex_unlock(&priv->reg_mutex);
1542 
1543 	return ret;
1544 }
1545 
1546 static int
1547 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1548 		    const unsigned char *addr, u16 vid,
1549 		    struct dsa_db db)
1550 {
1551 	struct mt7530_priv *priv = ds->priv;
1552 	int ret;
1553 	u8 port_mask = BIT(port);
1554 
1555 	mutex_lock(&priv->reg_mutex);
1556 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1557 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1558 	mutex_unlock(&priv->reg_mutex);
1559 
1560 	return ret;
1561 }
1562 
1563 static int
1564 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1565 		     dsa_fdb_dump_cb_t *cb, void *data)
1566 {
1567 	struct mt7530_priv *priv = ds->priv;
1568 	struct mt7530_fdb _fdb = { 0 };
1569 	int cnt = MT7530_NUM_FDB_RECORDS;
1570 	int ret = 0;
1571 	u32 rsp = 0;
1572 
1573 	mutex_lock(&priv->reg_mutex);
1574 
1575 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1576 	if (ret < 0)
1577 		goto err;
1578 
1579 	do {
1580 		if (rsp & ATC_SRCH_HIT) {
1581 			mt7530_fdb_read(priv, &_fdb);
1582 			if (_fdb.port_mask & BIT(port)) {
1583 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1584 					 data);
1585 				if (ret < 0)
1586 					break;
1587 			}
1588 		}
1589 	} while (--cnt &&
1590 		 !(rsp & ATC_SRCH_END) &&
1591 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1592 err:
1593 	mutex_unlock(&priv->reg_mutex);
1594 
1595 	return 0;
1596 }
1597 
1598 static int
1599 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1600 		    const struct switchdev_obj_port_mdb *mdb,
1601 		    struct dsa_db db)
1602 {
1603 	struct mt7530_priv *priv = ds->priv;
1604 	const u8 *addr = mdb->addr;
1605 	u16 vid = mdb->vid;
1606 	u8 port_mask = 0;
1607 	int ret;
1608 
1609 	mutex_lock(&priv->reg_mutex);
1610 
1611 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1612 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1613 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1614 			    & PORT_MAP_MASK;
1615 
1616 	port_mask |= BIT(port);
1617 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1618 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1619 
1620 	mutex_unlock(&priv->reg_mutex);
1621 
1622 	return ret;
1623 }
1624 
1625 static int
1626 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1627 		    const struct switchdev_obj_port_mdb *mdb,
1628 		    struct dsa_db db)
1629 {
1630 	struct mt7530_priv *priv = ds->priv;
1631 	const u8 *addr = mdb->addr;
1632 	u16 vid = mdb->vid;
1633 	u8 port_mask = 0;
1634 	int ret;
1635 
1636 	mutex_lock(&priv->reg_mutex);
1637 
1638 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1639 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1640 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1641 			    & PORT_MAP_MASK;
1642 
1643 	port_mask &= ~BIT(port);
1644 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1645 			 port_mask ? STATIC_ENT : STATIC_EMP);
1646 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1647 
1648 	mutex_unlock(&priv->reg_mutex);
1649 
1650 	return ret;
1651 }
1652 
1653 static int
1654 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1655 {
1656 	struct mt7530_dummy_poll p;
1657 	u32 val;
1658 	int ret;
1659 
1660 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1661 	mt7530_write(priv, MT7530_VTCR, val);
1662 
1663 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1664 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1665 				 !(val & VTCR_BUSY), 20, 20000);
1666 	if (ret < 0) {
1667 		dev_err(priv->dev, "poll timeout\n");
1668 		return ret;
1669 	}
1670 
1671 	val = mt7530_read(priv, MT7530_VTCR);
1672 	if (val & VTCR_INVALID) {
1673 		dev_err(priv->dev, "read VTCR invalid\n");
1674 		return -EINVAL;
1675 	}
1676 
1677 	return 0;
1678 }
1679 
1680 static int
1681 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1682 			   struct netlink_ext_ack *extack)
1683 {
1684 	struct dsa_port *dp = dsa_to_port(ds, port);
1685 	struct dsa_port *cpu_dp = dp->cpu_dp;
1686 
1687 	if (vlan_filtering) {
1688 		/* The port is being kept as VLAN-unaware port when bridge is
1689 		 * set up with vlan_filtering not being set, Otherwise, the
1690 		 * port and the corresponding CPU port is required the setup
1691 		 * for becoming a VLAN-aware port.
1692 		 */
1693 		mt7530_port_set_vlan_aware(ds, port);
1694 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1695 	} else {
1696 		mt7530_port_set_vlan_unaware(ds, port);
1697 	}
1698 
1699 	return 0;
1700 }
1701 
1702 static void
1703 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1704 		   struct mt7530_hw_vlan_entry *entry)
1705 {
1706 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1707 	u8 new_members;
1708 	u32 val;
1709 
1710 	new_members = entry->old_members | BIT(entry->port);
1711 
1712 	/* Validate the entry with independent learning, create egress tag per
1713 	 * VLAN and joining the port as one of the port members.
1714 	 */
1715 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1716 	      VLAN_VALID;
1717 	mt7530_write(priv, MT7530_VAWD1, val);
1718 
1719 	/* Decide whether adding tag or not for those outgoing packets from the
1720 	 * port inside the VLAN.
1721 	 * CPU port is always taken as a tagged port for serving more than one
1722 	 * VLANs across and also being applied with egress type stack mode for
1723 	 * that VLAN tags would be appended after hardware special tag used as
1724 	 * DSA tag.
1725 	 */
1726 	if (dsa_port_is_cpu(dp))
1727 		val = MT7530_VLAN_EGRESS_STACK;
1728 	else if (entry->untagged)
1729 		val = MT7530_VLAN_EGRESS_UNTAG;
1730 	else
1731 		val = MT7530_VLAN_EGRESS_TAG;
1732 	mt7530_rmw(priv, MT7530_VAWD2,
1733 		   ETAG_CTRL_P_MASK(entry->port),
1734 		   ETAG_CTRL_P(entry->port, val));
1735 }
1736 
1737 static void
1738 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1739 		   struct mt7530_hw_vlan_entry *entry)
1740 {
1741 	u8 new_members;
1742 	u32 val;
1743 
1744 	new_members = entry->old_members & ~BIT(entry->port);
1745 
1746 	val = mt7530_read(priv, MT7530_VAWD1);
1747 	if (!(val & VLAN_VALID)) {
1748 		dev_err(priv->dev,
1749 			"Cannot be deleted due to invalid entry\n");
1750 		return;
1751 	}
1752 
1753 	if (new_members) {
1754 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1755 		      VLAN_VALID;
1756 		mt7530_write(priv, MT7530_VAWD1, val);
1757 	} else {
1758 		mt7530_write(priv, MT7530_VAWD1, 0);
1759 		mt7530_write(priv, MT7530_VAWD2, 0);
1760 	}
1761 }
1762 
1763 static void
1764 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1765 		      struct mt7530_hw_vlan_entry *entry,
1766 		      mt7530_vlan_op vlan_op)
1767 {
1768 	u32 val;
1769 
1770 	/* Fetch entry */
1771 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1772 
1773 	val = mt7530_read(priv, MT7530_VAWD1);
1774 
1775 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1776 
1777 	/* Manipulate entry */
1778 	vlan_op(priv, entry);
1779 
1780 	/* Flush result to hardware */
1781 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1782 }
1783 
1784 static int
1785 mt7530_setup_vlan0(struct mt7530_priv *priv)
1786 {
1787 	u32 val;
1788 
1789 	/* Validate the entry with independent learning, keep the original
1790 	 * ingress tag attribute.
1791 	 */
1792 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1793 	      VLAN_VALID;
1794 	mt7530_write(priv, MT7530_VAWD1, val);
1795 
1796 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1797 }
1798 
1799 static int
1800 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1801 		     const struct switchdev_obj_port_vlan *vlan,
1802 		     struct netlink_ext_ack *extack)
1803 {
1804 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1805 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1806 	struct mt7530_hw_vlan_entry new_entry;
1807 	struct mt7530_priv *priv = ds->priv;
1808 
1809 	mutex_lock(&priv->reg_mutex);
1810 
1811 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1812 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1813 
1814 	if (pvid) {
1815 		priv->ports[port].pvid = vlan->vid;
1816 
1817 		/* Accept all frames if PVID is set */
1818 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1819 			   MT7530_VLAN_ACC_ALL);
1820 
1821 		/* Only configure PVID if VLAN filtering is enabled */
1822 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1823 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1824 				   G0_PORT_VID_MASK,
1825 				   G0_PORT_VID(vlan->vid));
1826 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1827 		/* This VLAN is overwritten without PVID, so unset it */
1828 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1829 
1830 		/* Only accept tagged frames if the port is VLAN-aware */
1831 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1832 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1833 				   MT7530_VLAN_ACC_TAGGED);
1834 
1835 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1836 			   G0_PORT_VID_DEF);
1837 	}
1838 
1839 	mutex_unlock(&priv->reg_mutex);
1840 
1841 	return 0;
1842 }
1843 
1844 static int
1845 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1846 		     const struct switchdev_obj_port_vlan *vlan)
1847 {
1848 	struct mt7530_hw_vlan_entry target_entry;
1849 	struct mt7530_priv *priv = ds->priv;
1850 
1851 	mutex_lock(&priv->reg_mutex);
1852 
1853 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1854 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1855 			      mt7530_hw_vlan_del);
1856 
1857 	/* PVID is being restored to the default whenever the PVID port
1858 	 * is being removed from the VLAN.
1859 	 */
1860 	if (priv->ports[port].pvid == vlan->vid) {
1861 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1862 
1863 		/* Only accept tagged frames if the port is VLAN-aware */
1864 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1865 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1866 				   MT7530_VLAN_ACC_TAGGED);
1867 
1868 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1869 			   G0_PORT_VID_DEF);
1870 	}
1871 
1872 
1873 	mutex_unlock(&priv->reg_mutex);
1874 
1875 	return 0;
1876 }
1877 
1878 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1879 				  struct dsa_mall_mirror_tc_entry *mirror,
1880 				  bool ingress, struct netlink_ext_ack *extack)
1881 {
1882 	struct mt7530_priv *priv = ds->priv;
1883 	int monitor_port;
1884 	u32 val;
1885 
1886 	/* Check for existent entry */
1887 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1888 		return -EEXIST;
1889 
1890 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1891 
1892 	/* MT7530 only supports one monitor port */
1893 	monitor_port = MT753X_MIRROR_PORT_GET(priv->id, val);
1894 	if (val & MT753X_MIRROR_EN(priv->id) &&
1895 	    monitor_port != mirror->to_local_port)
1896 		return -EEXIST;
1897 
1898 	val |= MT753X_MIRROR_EN(priv->id);
1899 	val &= ~MT753X_MIRROR_PORT_MASK(priv->id);
1900 	val |= MT753X_MIRROR_PORT_SET(priv->id, mirror->to_local_port);
1901 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1902 
1903 	val = mt7530_read(priv, MT7530_PCR_P(port));
1904 	if (ingress) {
1905 		val |= PORT_RX_MIR;
1906 		priv->mirror_rx |= BIT(port);
1907 	} else {
1908 		val |= PORT_TX_MIR;
1909 		priv->mirror_tx |= BIT(port);
1910 	}
1911 	mt7530_write(priv, MT7530_PCR_P(port), val);
1912 
1913 	return 0;
1914 }
1915 
1916 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1917 				   struct dsa_mall_mirror_tc_entry *mirror)
1918 {
1919 	struct mt7530_priv *priv = ds->priv;
1920 	u32 val;
1921 
1922 	val = mt7530_read(priv, MT7530_PCR_P(port));
1923 	if (mirror->ingress) {
1924 		val &= ~PORT_RX_MIR;
1925 		priv->mirror_rx &= ~BIT(port);
1926 	} else {
1927 		val &= ~PORT_TX_MIR;
1928 		priv->mirror_tx &= ~BIT(port);
1929 	}
1930 	mt7530_write(priv, MT7530_PCR_P(port), val);
1931 
1932 	if (!priv->mirror_rx && !priv->mirror_tx) {
1933 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1934 		val &= ~MT753X_MIRROR_EN(priv->id);
1935 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1936 	}
1937 }
1938 
1939 static enum dsa_tag_protocol
1940 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1941 		     enum dsa_tag_protocol mp)
1942 {
1943 	return DSA_TAG_PROTO_MTK;
1944 }
1945 
1946 #ifdef CONFIG_GPIOLIB
1947 static inline u32
1948 mt7530_gpio_to_bit(unsigned int offset)
1949 {
1950 	/* Map GPIO offset to register bit
1951 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1952 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1953 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1954 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1955 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1956 	 */
1957 	return BIT(offset + offset / 3);
1958 }
1959 
1960 static int
1961 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1962 {
1963 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1964 	u32 bit = mt7530_gpio_to_bit(offset);
1965 
1966 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1967 }
1968 
1969 static void
1970 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1971 {
1972 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1973 	u32 bit = mt7530_gpio_to_bit(offset);
1974 
1975 	if (value)
1976 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1977 	else
1978 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1979 }
1980 
1981 static int
1982 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1983 {
1984 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1985 	u32 bit = mt7530_gpio_to_bit(offset);
1986 
1987 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1988 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1989 }
1990 
1991 static int
1992 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1993 {
1994 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1995 	u32 bit = mt7530_gpio_to_bit(offset);
1996 
1997 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1998 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1999 
2000 	return 0;
2001 }
2002 
2003 static int
2004 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
2005 {
2006 	struct mt7530_priv *priv = gpiochip_get_data(gc);
2007 	u32 bit = mt7530_gpio_to_bit(offset);
2008 
2009 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
2010 
2011 	if (value)
2012 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
2013 	else
2014 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
2015 
2016 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
2017 
2018 	return 0;
2019 }
2020 
2021 static int
2022 mt7530_setup_gpio(struct mt7530_priv *priv)
2023 {
2024 	struct device *dev = priv->dev;
2025 	struct gpio_chip *gc;
2026 
2027 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
2028 	if (!gc)
2029 		return -ENOMEM;
2030 
2031 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
2032 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
2033 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
2034 
2035 	gc->label = "mt7530";
2036 	gc->parent = dev;
2037 	gc->owner = THIS_MODULE;
2038 	gc->get_direction = mt7530_gpio_get_direction;
2039 	gc->direction_input = mt7530_gpio_direction_input;
2040 	gc->direction_output = mt7530_gpio_direction_output;
2041 	gc->get = mt7530_gpio_get;
2042 	gc->set = mt7530_gpio_set;
2043 	gc->base = -1;
2044 	gc->ngpio = 15;
2045 	gc->can_sleep = true;
2046 
2047 	return devm_gpiochip_add_data(dev, gc, priv);
2048 }
2049 #endif /* CONFIG_GPIOLIB */
2050 
2051 static irqreturn_t
2052 mt7530_irq_thread_fn(int irq, void *dev_id)
2053 {
2054 	struct mt7530_priv *priv = dev_id;
2055 	bool handled = false;
2056 	u32 val;
2057 	int p;
2058 
2059 	mt7530_mutex_lock(priv);
2060 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
2061 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
2062 	mt7530_mutex_unlock(priv);
2063 
2064 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2065 		if (BIT(p) & val) {
2066 			unsigned int irq;
2067 
2068 			irq = irq_find_mapping(priv->irq_domain, p);
2069 			handle_nested_irq(irq);
2070 			handled = true;
2071 		}
2072 	}
2073 
2074 	return IRQ_RETVAL(handled);
2075 }
2076 
2077 static void
2078 mt7530_irq_mask(struct irq_data *d)
2079 {
2080 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2081 
2082 	priv->irq_enable &= ~BIT(d->hwirq);
2083 }
2084 
2085 static void
2086 mt7530_irq_unmask(struct irq_data *d)
2087 {
2088 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2089 
2090 	priv->irq_enable |= BIT(d->hwirq);
2091 }
2092 
2093 static void
2094 mt7530_irq_bus_lock(struct irq_data *d)
2095 {
2096 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2097 
2098 	mt7530_mutex_lock(priv);
2099 }
2100 
2101 static void
2102 mt7530_irq_bus_sync_unlock(struct irq_data *d)
2103 {
2104 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2105 
2106 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2107 	mt7530_mutex_unlock(priv);
2108 }
2109 
2110 static struct irq_chip mt7530_irq_chip = {
2111 	.name = KBUILD_MODNAME,
2112 	.irq_mask = mt7530_irq_mask,
2113 	.irq_unmask = mt7530_irq_unmask,
2114 	.irq_bus_lock = mt7530_irq_bus_lock,
2115 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2116 };
2117 
2118 static int
2119 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2120 	       irq_hw_number_t hwirq)
2121 {
2122 	irq_set_chip_data(irq, domain->host_data);
2123 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2124 	irq_set_nested_thread(irq, true);
2125 	irq_set_noprobe(irq);
2126 
2127 	return 0;
2128 }
2129 
2130 static const struct irq_domain_ops mt7530_irq_domain_ops = {
2131 	.map = mt7530_irq_map,
2132 	.xlate = irq_domain_xlate_onecell,
2133 };
2134 
2135 static void
2136 mt7988_irq_mask(struct irq_data *d)
2137 {
2138 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2139 
2140 	priv->irq_enable &= ~BIT(d->hwirq);
2141 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2142 }
2143 
2144 static void
2145 mt7988_irq_unmask(struct irq_data *d)
2146 {
2147 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2148 
2149 	priv->irq_enable |= BIT(d->hwirq);
2150 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2151 }
2152 
2153 static struct irq_chip mt7988_irq_chip = {
2154 	.name = KBUILD_MODNAME,
2155 	.irq_mask = mt7988_irq_mask,
2156 	.irq_unmask = mt7988_irq_unmask,
2157 };
2158 
2159 static int
2160 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2161 	       irq_hw_number_t hwirq)
2162 {
2163 	irq_set_chip_data(irq, domain->host_data);
2164 	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2165 	irq_set_nested_thread(irq, true);
2166 	irq_set_noprobe(irq);
2167 
2168 	return 0;
2169 }
2170 
2171 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2172 	.map = mt7988_irq_map,
2173 	.xlate = irq_domain_xlate_onecell,
2174 };
2175 
2176 static void
2177 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2178 {
2179 	struct dsa_switch *ds = priv->ds;
2180 	int p;
2181 
2182 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2183 		if (BIT(p) & ds->phys_mii_mask) {
2184 			unsigned int irq;
2185 
2186 			irq = irq_create_mapping(priv->irq_domain, p);
2187 			ds->user_mii_bus->irq[p] = irq;
2188 		}
2189 	}
2190 }
2191 
2192 static int
2193 mt7530_setup_irq(struct mt7530_priv *priv)
2194 {
2195 	struct device *dev = priv->dev;
2196 	struct device_node *np = dev->of_node;
2197 	int ret;
2198 
2199 	if (!of_property_read_bool(np, "interrupt-controller")) {
2200 		dev_info(dev, "no interrupt support\n");
2201 		return 0;
2202 	}
2203 
2204 	priv->irq = of_irq_get(np, 0);
2205 	if (priv->irq <= 0) {
2206 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2207 		return priv->irq ? : -EINVAL;
2208 	}
2209 
2210 	if (priv->id == ID_MT7988)
2211 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2212 							 &mt7988_irq_domain_ops,
2213 							 priv);
2214 	else
2215 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2216 							 &mt7530_irq_domain_ops,
2217 							 priv);
2218 
2219 	if (!priv->irq_domain) {
2220 		dev_err(dev, "failed to create IRQ domain\n");
2221 		return -ENOMEM;
2222 	}
2223 
2224 	/* This register must be set for MT7530 to properly fire interrupts */
2225 	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
2226 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2227 
2228 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2229 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2230 	if (ret) {
2231 		irq_domain_remove(priv->irq_domain);
2232 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2233 		return ret;
2234 	}
2235 
2236 	return 0;
2237 }
2238 
2239 static void
2240 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2241 {
2242 	int p;
2243 
2244 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2245 		if (BIT(p) & priv->ds->phys_mii_mask) {
2246 			unsigned int irq;
2247 
2248 			irq = irq_find_mapping(priv->irq_domain, p);
2249 			irq_dispose_mapping(irq);
2250 		}
2251 	}
2252 }
2253 
2254 static void
2255 mt7530_free_irq_common(struct mt7530_priv *priv)
2256 {
2257 	free_irq(priv->irq, priv);
2258 	irq_domain_remove(priv->irq_domain);
2259 }
2260 
2261 static void
2262 mt7530_free_irq(struct mt7530_priv *priv)
2263 {
2264 	struct device_node *mnp, *np = priv->dev->of_node;
2265 
2266 	mnp = of_get_child_by_name(np, "mdio");
2267 	if (!mnp)
2268 		mt7530_free_mdio_irq(priv);
2269 	of_node_put(mnp);
2270 
2271 	mt7530_free_irq_common(priv);
2272 }
2273 
2274 static int
2275 mt7530_setup_mdio(struct mt7530_priv *priv)
2276 {
2277 	struct device_node *mnp, *np = priv->dev->of_node;
2278 	struct dsa_switch *ds = priv->ds;
2279 	struct device *dev = priv->dev;
2280 	struct mii_bus *bus;
2281 	static int idx;
2282 	int ret = 0;
2283 
2284 	mnp = of_get_child_by_name(np, "mdio");
2285 
2286 	if (mnp && !of_device_is_available(mnp))
2287 		goto out;
2288 
2289 	bus = devm_mdiobus_alloc(dev);
2290 	if (!bus) {
2291 		ret = -ENOMEM;
2292 		goto out;
2293 	}
2294 
2295 	if (!mnp)
2296 		ds->user_mii_bus = bus;
2297 
2298 	bus->priv = priv;
2299 	bus->name = KBUILD_MODNAME "-mii";
2300 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2301 	bus->read = mt753x_phy_read_c22;
2302 	bus->write = mt753x_phy_write_c22;
2303 	bus->read_c45 = mt753x_phy_read_c45;
2304 	bus->write_c45 = mt753x_phy_write_c45;
2305 	bus->parent = dev;
2306 	bus->phy_mask = ~ds->phys_mii_mask;
2307 
2308 	if (priv->irq && !mnp)
2309 		mt7530_setup_mdio_irq(priv);
2310 
2311 	ret = devm_of_mdiobus_register(dev, bus, mnp);
2312 	if (ret) {
2313 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2314 		if (priv->irq && !mnp)
2315 			mt7530_free_mdio_irq(priv);
2316 	}
2317 
2318 out:
2319 	of_node_put(mnp);
2320 	return ret;
2321 }
2322 
2323 static int
2324 mt7530_setup(struct dsa_switch *ds)
2325 {
2326 	struct mt7530_priv *priv = ds->priv;
2327 	struct device_node *dn = NULL;
2328 	struct device_node *phy_node;
2329 	struct device_node *mac_np;
2330 	struct mt7530_dummy_poll p;
2331 	phy_interface_t interface;
2332 	struct dsa_port *cpu_dp;
2333 	u32 id, val;
2334 	int ret, i;
2335 
2336 	/* The parent node of conduit netdev which holds the common system
2337 	 * controller also is the container for two GMACs nodes representing
2338 	 * as two netdev instances.
2339 	 */
2340 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2341 		dn = cpu_dp->conduit->dev.of_node->parent;
2342 		/* It doesn't matter which CPU port is found first,
2343 		 * their conduits should share the same parent OF node
2344 		 */
2345 		break;
2346 	}
2347 
2348 	if (!dn) {
2349 		dev_err(ds->dev, "parent OF node of DSA conduit not found");
2350 		return -EINVAL;
2351 	}
2352 
2353 	ds->assisted_learning_on_cpu_port = true;
2354 	ds->mtu_enforcement_ingress = true;
2355 
2356 	if (priv->id == ID_MT7530) {
2357 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2358 		ret = regulator_enable(priv->core_pwr);
2359 		if (ret < 0) {
2360 			dev_err(priv->dev,
2361 				"Failed to enable core power: %d\n", ret);
2362 			return ret;
2363 		}
2364 
2365 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2366 		ret = regulator_enable(priv->io_pwr);
2367 		if (ret < 0) {
2368 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2369 				ret);
2370 			return ret;
2371 		}
2372 	}
2373 
2374 	/* Reset whole chip through gpio pin or memory-mapped registers for
2375 	 * different type of hardware
2376 	 */
2377 	if (priv->mcm) {
2378 		reset_control_assert(priv->rstc);
2379 		usleep_range(5000, 5100);
2380 		reset_control_deassert(priv->rstc);
2381 	} else {
2382 		gpiod_set_value_cansleep(priv->reset, 0);
2383 		usleep_range(5000, 5100);
2384 		gpiod_set_value_cansleep(priv->reset, 1);
2385 	}
2386 
2387 	/* Waiting for MT7530 got to stable */
2388 	INIT_MT7530_DUMMY_POLL(&p, priv, MT753X_TRAP);
2389 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2390 				 20, 1000000);
2391 	if (ret < 0) {
2392 		dev_err(priv->dev, "reset timeout\n");
2393 		return ret;
2394 	}
2395 
2396 	id = mt7530_read(priv, MT7530_CREV);
2397 	id >>= CHIP_NAME_SHIFT;
2398 	if (id != MT7530_ID) {
2399 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2400 		return -ENODEV;
2401 	}
2402 
2403 	if ((val & MT7530_XTAL_MASK) == MT7530_XTAL_20MHZ) {
2404 		dev_err(priv->dev,
2405 			"MT7530 with a 20MHz XTAL is not supported!\n");
2406 		return -EINVAL;
2407 	}
2408 
2409 	/* Reset the switch through internal reset */
2410 	mt7530_write(priv, MT7530_SYS_CTRL,
2411 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2412 		     SYS_CTRL_REG_RST);
2413 
2414 	/* Lower Tx driving for TRGMII path */
2415 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2416 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2417 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2418 
2419 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2420 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2421 			   RD_TAP_MASK, RD_TAP(16));
2422 
2423 	/* Allow modifying the trap and directly access PHY registers via the
2424 	 * MDIO bus the switch is on.
2425 	 */
2426 	mt7530_rmw(priv, MT753X_MTRAP, MT7530_CHG_TRAP |
2427 		   MT7530_PHY_INDIRECT_ACCESS, MT7530_CHG_TRAP);
2428 
2429 	if ((val & MT7530_XTAL_MASK) == MT7530_XTAL_40MHZ)
2430 		mt7530_pll_setup(priv);
2431 
2432 	mt753x_trap_frames(priv);
2433 
2434 	/* Enable and reset MIB counters */
2435 	mt7530_mib_reset(ds);
2436 
2437 	for (i = 0; i < priv->ds->num_ports; i++) {
2438 		/* Clear link settings and enable force mode to force link down
2439 		 * on all ports until they're enabled later.
2440 		 */
2441 		mt7530_rmw(priv, MT753X_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2442 			   MT7530_FORCE_MODE, MT7530_FORCE_MODE);
2443 
2444 		/* Disable forwarding by default on all ports */
2445 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2446 			   PCR_MATRIX_CLR);
2447 
2448 		/* Disable learning by default on all ports */
2449 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2450 
2451 		if (dsa_is_cpu_port(ds, i)) {
2452 			mt753x_cpu_port_enable(ds, i);
2453 		} else {
2454 			mt7530_port_disable(ds, i);
2455 
2456 			/* Set default PVID to 0 on all user ports */
2457 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2458 				   G0_PORT_VID_DEF);
2459 		}
2460 		/* Enable consistent egress tag */
2461 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2462 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2463 	}
2464 
2465 	/* Allow mirroring frames received on the local port (monitor port). */
2466 	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2467 
2468 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2469 	ret = mt7530_setup_vlan0(priv);
2470 	if (ret)
2471 		return ret;
2472 
2473 	/* Check for PHY muxing on port 5 */
2474 	if (dsa_is_unused_port(ds, 5)) {
2475 		/* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
2476 		 * Set priv->p5_mode to the appropriate value if PHY muxing is
2477 		 * detected.
2478 		 */
2479 		for_each_child_of_node(dn, mac_np) {
2480 			if (!of_device_is_compatible(mac_np,
2481 						     "mediatek,eth-mac"))
2482 				continue;
2483 
2484 			ret = of_property_read_u32(mac_np, "reg", &id);
2485 			if (ret < 0 || id != 1)
2486 				continue;
2487 
2488 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2489 			if (!phy_node)
2490 				continue;
2491 
2492 			if (phy_node->parent == priv->dev->of_node->parent ||
2493 			    phy_node->parent->parent == priv->dev->of_node) {
2494 				ret = of_get_phy_mode(mac_np, &interface);
2495 				if (ret && ret != -ENODEV) {
2496 					of_node_put(mac_np);
2497 					of_node_put(phy_node);
2498 					return ret;
2499 				}
2500 				id = of_mdio_parse_addr(ds->dev, phy_node);
2501 				if (id == 0)
2502 					priv->p5_mode = MUX_PHY_P0;
2503 				if (id == 4)
2504 					priv->p5_mode = MUX_PHY_P4;
2505 			}
2506 			of_node_put(mac_np);
2507 			of_node_put(phy_node);
2508 			break;
2509 		}
2510 
2511 		if (priv->p5_mode == MUX_PHY_P0 ||
2512 		    priv->p5_mode == MUX_PHY_P4) {
2513 			mt7530_clear(priv, MT753X_MTRAP, MT7530_P5_DIS);
2514 			mt7530_setup_port5(ds, interface);
2515 		}
2516 	}
2517 
2518 #ifdef CONFIG_GPIOLIB
2519 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2520 		ret = mt7530_setup_gpio(priv);
2521 		if (ret)
2522 			return ret;
2523 	}
2524 #endif /* CONFIG_GPIOLIB */
2525 
2526 	/* Flush the FDB table */
2527 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2528 	if (ret < 0)
2529 		return ret;
2530 
2531 	return 0;
2532 }
2533 
2534 static int
2535 mt7531_setup_common(struct dsa_switch *ds)
2536 {
2537 	struct mt7530_priv *priv = ds->priv;
2538 	int ret, i;
2539 
2540 	mt753x_trap_frames(priv);
2541 
2542 	/* Enable and reset MIB counters */
2543 	mt7530_mib_reset(ds);
2544 
2545 	/* Disable flooding on all ports */
2546 	mt7530_clear(priv, MT753X_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2547 		     UNU_FFP_MASK);
2548 
2549 	for (i = 0; i < priv->ds->num_ports; i++) {
2550 		/* Clear link settings and enable force mode to force link down
2551 		 * on all ports until they're enabled later.
2552 		 */
2553 		mt7530_rmw(priv, MT753X_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2554 			   MT7531_FORCE_MODE_MASK, MT7531_FORCE_MODE_MASK);
2555 
2556 		/* Disable forwarding by default on all ports */
2557 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2558 			   PCR_MATRIX_CLR);
2559 
2560 		/* Disable learning by default on all ports */
2561 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2562 
2563 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2564 
2565 		if (dsa_is_cpu_port(ds, i)) {
2566 			mt753x_cpu_port_enable(ds, i);
2567 		} else {
2568 			mt7530_port_disable(ds, i);
2569 
2570 			/* Set default PVID to 0 on all user ports */
2571 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2572 				   G0_PORT_VID_DEF);
2573 		}
2574 
2575 		/* Enable consistent egress tag */
2576 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2577 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2578 	}
2579 
2580 	/* Allow mirroring frames received on the local port (monitor port). */
2581 	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2582 
2583 	/* Flush the FDB table */
2584 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2585 	if (ret < 0)
2586 		return ret;
2587 
2588 	return 0;
2589 }
2590 
2591 static int
2592 mt7531_setup(struct dsa_switch *ds)
2593 {
2594 	struct mt7530_priv *priv = ds->priv;
2595 	struct mt7530_dummy_poll p;
2596 	u32 val, id;
2597 	int ret, i;
2598 
2599 	/* Reset whole chip through gpio pin or memory-mapped registers for
2600 	 * different type of hardware
2601 	 */
2602 	if (priv->mcm) {
2603 		reset_control_assert(priv->rstc);
2604 		usleep_range(5000, 5100);
2605 		reset_control_deassert(priv->rstc);
2606 	} else {
2607 		gpiod_set_value_cansleep(priv->reset, 0);
2608 		usleep_range(5000, 5100);
2609 		gpiod_set_value_cansleep(priv->reset, 1);
2610 	}
2611 
2612 	/* Waiting for MT7530 got to stable */
2613 	INIT_MT7530_DUMMY_POLL(&p, priv, MT753X_TRAP);
2614 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2615 				 20, 1000000);
2616 	if (ret < 0) {
2617 		dev_err(priv->dev, "reset timeout\n");
2618 		return ret;
2619 	}
2620 
2621 	id = mt7530_read(priv, MT7531_CREV);
2622 	id >>= CHIP_NAME_SHIFT;
2623 
2624 	if (id != MT7531_ID) {
2625 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2626 		return -ENODEV;
2627 	}
2628 
2629 	/* MT7531AE has got two SGMII units. One for port 5, one for port 6.
2630 	 * MT7531BE has got only one SGMII unit which is for port 6.
2631 	 */
2632 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
2633 	priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
2634 
2635 	/* Force link down on all ports before internal reset */
2636 	for (i = 0; i < priv->ds->num_ports; i++)
2637 		mt7530_write(priv, MT753X_PMCR_P(i), MT7531_FORCE_MODE_LNK);
2638 
2639 	/* Reset the switch through internal reset */
2640 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST);
2641 
2642 	if (!priv->p5_sgmii) {
2643 		mt7531_pll_setup(priv);
2644 	} else {
2645 		/* Unlike MT7531BE, the GPIO 6-12 pins are not used for RGMII on
2646 		 * MT7531AE. Set the GPIO 11-12 pins to function as MDC and MDIO
2647 		 * to expose the MDIO bus of the switch.
2648 		 */
2649 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2650 			   MT7531_EXT_P_MDC_11);
2651 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2652 			   MT7531_EXT_P_MDIO_12);
2653 	}
2654 
2655 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2656 		   MT7531_GPIO0_INTERRUPT);
2657 
2658 	/* Enable Energy-Efficient Ethernet (EEE) and PHY core PLL, since
2659 	 * phy_device has not yet been created provided for
2660 	 * phy_[read,write]_mmd_indirect is called, we provide our own
2661 	 * mt7531_ind_mmd_phy_[read,write] to complete this function.
2662 	 */
2663 	val = mt7531_ind_c45_phy_read(priv,
2664 				      MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
2665 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2666 	val |= MT7531_RG_SYSPLL_DMY2 | MT7531_PHY_PLL_BYPASS_MODE;
2667 	val &= ~MT7531_PHY_PLL_OFF;
2668 	mt7531_ind_c45_phy_write(priv,
2669 				 MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
2670 				 MDIO_MMD_VEND2, CORE_PLL_GROUP4, val);
2671 
2672 	/* Disable EEE advertisement on the switch PHYs. */
2673 	for (i = MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr);
2674 	     i < MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr) + MT7530_NUM_PHYS;
2675 	     i++) {
2676 		mt7531_ind_c45_phy_write(priv, i, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2677 					 0);
2678 	}
2679 
2680 	ret = mt7531_setup_common(ds);
2681 	if (ret)
2682 		return ret;
2683 
2684 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2685 	ret = mt7530_setup_vlan0(priv);
2686 	if (ret)
2687 		return ret;
2688 
2689 	ds->assisted_learning_on_cpu_port = true;
2690 	ds->mtu_enforcement_ingress = true;
2691 
2692 	return 0;
2693 }
2694 
2695 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2696 				     struct phylink_config *config)
2697 {
2698 	config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2699 
2700 	switch (port) {
2701 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2702 	case 0 ... 4:
2703 		__set_bit(PHY_INTERFACE_MODE_GMII,
2704 			  config->supported_interfaces);
2705 		break;
2706 
2707 	/* Port 5 supports rgmii with delays, mii, and gmii. */
2708 	case 5:
2709 		phy_interface_set_rgmii(config->supported_interfaces);
2710 		__set_bit(PHY_INTERFACE_MODE_MII,
2711 			  config->supported_interfaces);
2712 		__set_bit(PHY_INTERFACE_MODE_GMII,
2713 			  config->supported_interfaces);
2714 		break;
2715 
2716 	/* Port 6 supports rgmii and trgmii. */
2717 	case 6:
2718 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2719 			  config->supported_interfaces);
2720 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2721 			  config->supported_interfaces);
2722 		break;
2723 	}
2724 }
2725 
2726 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2727 				     struct phylink_config *config)
2728 {
2729 	struct mt7530_priv *priv = ds->priv;
2730 
2731 	config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2732 
2733 	switch (port) {
2734 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2735 	case 0 ... 4:
2736 		__set_bit(PHY_INTERFACE_MODE_GMII,
2737 			  config->supported_interfaces);
2738 		break;
2739 
2740 	/* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
2741 	 * MT7531AE.
2742 	 */
2743 	case 5:
2744 		if (!priv->p5_sgmii) {
2745 			phy_interface_set_rgmii(config->supported_interfaces);
2746 			break;
2747 		}
2748 		fallthrough;
2749 
2750 	/* Port 6 supports sgmii/802.3z. */
2751 	case 6:
2752 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2753 			  config->supported_interfaces);
2754 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2755 			  config->supported_interfaces);
2756 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2757 			  config->supported_interfaces);
2758 
2759 		config->mac_capabilities |= MAC_2500FD;
2760 		break;
2761 	}
2762 }
2763 
2764 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2765 				     struct phylink_config *config)
2766 {
2767 	switch (port) {
2768 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2769 	case 0 ... 3:
2770 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2771 			  config->supported_interfaces);
2772 
2773 		config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2774 		break;
2775 
2776 	/* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2777 	case 6:
2778 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2779 			  config->supported_interfaces);
2780 
2781 		config->mac_capabilities |= MAC_10000FD;
2782 		break;
2783 	}
2784 }
2785 
2786 static void
2787 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2788 		  phy_interface_t interface)
2789 {
2790 	struct mt7530_priv *priv = ds->priv;
2791 
2792 	if (port == 5)
2793 		mt7530_setup_port5(priv->ds, interface);
2794 	else if (port == 6)
2795 		mt7530_setup_port6(priv->ds, interface);
2796 }
2797 
2798 static void mt7531_rgmii_setup(struct mt7530_priv *priv,
2799 			       phy_interface_t interface,
2800 			       struct phy_device *phydev)
2801 {
2802 	u32 val;
2803 
2804 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2805 	val |= GP_CLK_EN;
2806 	val &= ~GP_MODE_MASK;
2807 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2808 	val &= ~CLK_SKEW_IN_MASK;
2809 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2810 	val &= ~CLK_SKEW_OUT_MASK;
2811 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2812 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2813 
2814 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2815 	if (!phydev || phy_driver_is_genphy(phydev)) {
2816 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2817 		switch (interface) {
2818 		case PHY_INTERFACE_MODE_RGMII:
2819 			val |= TXCLK_NO_REVERSE;
2820 			val |= RXCLK_NO_DELAY;
2821 			break;
2822 		case PHY_INTERFACE_MODE_RGMII_RXID:
2823 			val |= TXCLK_NO_REVERSE;
2824 			break;
2825 		case PHY_INTERFACE_MODE_RGMII_TXID:
2826 			val |= RXCLK_NO_DELAY;
2827 			break;
2828 		case PHY_INTERFACE_MODE_RGMII_ID:
2829 			break;
2830 		default:
2831 			break;
2832 		}
2833 	}
2834 
2835 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2836 }
2837 
2838 static void
2839 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2840 		  phy_interface_t interface)
2841 {
2842 	struct mt7530_priv *priv = ds->priv;
2843 	struct phy_device *phydev;
2844 	struct dsa_port *dp;
2845 
2846 	if (phy_interface_mode_is_rgmii(interface)) {
2847 		dp = dsa_to_port(ds, port);
2848 		phydev = dp->user->phydev;
2849 		mt7531_rgmii_setup(priv, interface, phydev);
2850 	}
2851 }
2852 
2853 static struct phylink_pcs *
2854 mt753x_phylink_mac_select_pcs(struct phylink_config *config,
2855 			      phy_interface_t interface)
2856 {
2857 	struct dsa_port *dp = dsa_phylink_to_port(config);
2858 	struct mt7530_priv *priv = dp->ds->priv;
2859 
2860 	switch (interface) {
2861 	case PHY_INTERFACE_MODE_TRGMII:
2862 		return &priv->pcs[dp->index].pcs;
2863 	case PHY_INTERFACE_MODE_SGMII:
2864 	case PHY_INTERFACE_MODE_1000BASEX:
2865 	case PHY_INTERFACE_MODE_2500BASEX:
2866 		return priv->ports[dp->index].sgmii_pcs;
2867 	default:
2868 		return NULL;
2869 	}
2870 }
2871 
2872 static void
2873 mt753x_phylink_mac_config(struct phylink_config *config, unsigned int mode,
2874 			  const struct phylink_link_state *state)
2875 {
2876 	struct dsa_port *dp = dsa_phylink_to_port(config);
2877 	struct dsa_switch *ds = dp->ds;
2878 	struct mt7530_priv *priv;
2879 	int port = dp->index;
2880 
2881 	priv = ds->priv;
2882 
2883 	if ((port == 5 || port == 6) && priv->info->mac_port_config)
2884 		priv->info->mac_port_config(ds, port, mode, state->interface);
2885 
2886 	/* Are we connected to external phy */
2887 	if (port == 5 && dsa_is_user_port(ds, 5))
2888 		mt7530_set(priv, MT753X_PMCR_P(port), PMCR_EXT_PHY);
2889 }
2890 
2891 static void mt753x_phylink_mac_link_down(struct phylink_config *config,
2892 					 unsigned int mode,
2893 					 phy_interface_t interface)
2894 {
2895 	struct dsa_port *dp = dsa_phylink_to_port(config);
2896 	struct mt7530_priv *priv = dp->ds->priv;
2897 
2898 	mt7530_clear(priv, MT753X_PMCR_P(dp->index), PMCR_LINK_SETTINGS_MASK);
2899 }
2900 
2901 static void mt753x_phylink_mac_link_up(struct phylink_config *config,
2902 				       struct phy_device *phydev,
2903 				       unsigned int mode,
2904 				       phy_interface_t interface,
2905 				       int speed, int duplex,
2906 				       bool tx_pause, bool rx_pause)
2907 {
2908 	struct dsa_port *dp = dsa_phylink_to_port(config);
2909 	struct mt7530_priv *priv = dp->ds->priv;
2910 	u32 mcr;
2911 
2912 	mcr = PMCR_MAC_RX_EN | PMCR_MAC_TX_EN | PMCR_FORCE_LNK;
2913 
2914 	switch (speed) {
2915 	case SPEED_1000:
2916 	case SPEED_2500:
2917 	case SPEED_10000:
2918 		mcr |= PMCR_FORCE_SPEED_1000;
2919 		break;
2920 	case SPEED_100:
2921 		mcr |= PMCR_FORCE_SPEED_100;
2922 		break;
2923 	}
2924 	if (duplex == DUPLEX_FULL) {
2925 		mcr |= PMCR_FORCE_FDX;
2926 		if (tx_pause)
2927 			mcr |= PMCR_FORCE_TX_FC_EN;
2928 		if (rx_pause)
2929 			mcr |= PMCR_FORCE_RX_FC_EN;
2930 	}
2931 
2932 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2933 		switch (speed) {
2934 		case SPEED_1000:
2935 		case SPEED_2500:
2936 			mcr |= PMCR_FORCE_EEE1G;
2937 			break;
2938 		case SPEED_100:
2939 			mcr |= PMCR_FORCE_EEE100;
2940 			break;
2941 		}
2942 	}
2943 
2944 	mt7530_set(priv, MT753X_PMCR_P(dp->index), mcr);
2945 }
2946 
2947 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2948 				    struct phylink_config *config)
2949 {
2950 	struct mt7530_priv *priv = ds->priv;
2951 
2952 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE;
2953 
2954 	priv->info->mac_port_get_caps(ds, port, config);
2955 }
2956 
2957 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2958 			       unsigned long *supported,
2959 			       const struct phylink_link_state *state)
2960 {
2961 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2962 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2963 	    phy_interface_mode_is_8023z(state->interface))
2964 		phylink_clear(supported, Autoneg);
2965 
2966 	return 0;
2967 }
2968 
2969 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2970 				 struct phylink_link_state *state)
2971 {
2972 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2973 	int port = pcs_to_mt753x_pcs(pcs)->port;
2974 	u32 pmsr;
2975 
2976 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2977 
2978 	state->link = (pmsr & PMSR_LINK);
2979 	state->an_complete = state->link;
2980 	state->duplex = !!(pmsr & PMSR_DPX);
2981 
2982 	switch (pmsr & PMSR_SPEED_MASK) {
2983 	case PMSR_SPEED_10:
2984 		state->speed = SPEED_10;
2985 		break;
2986 	case PMSR_SPEED_100:
2987 		state->speed = SPEED_100;
2988 		break;
2989 	case PMSR_SPEED_1000:
2990 		state->speed = SPEED_1000;
2991 		break;
2992 	default:
2993 		state->speed = SPEED_UNKNOWN;
2994 		break;
2995 	}
2996 
2997 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2998 	if (pmsr & PMSR_RX_FC)
2999 		state->pause |= MLO_PAUSE_RX;
3000 	if (pmsr & PMSR_TX_FC)
3001 		state->pause |= MLO_PAUSE_TX;
3002 }
3003 
3004 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3005 			     phy_interface_t interface,
3006 			     const unsigned long *advertising,
3007 			     bool permit_pause_to_mac)
3008 {
3009 	return 0;
3010 }
3011 
3012 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3013 {
3014 }
3015 
3016 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3017 	.pcs_validate = mt753x_pcs_validate,
3018 	.pcs_get_state = mt7530_pcs_get_state,
3019 	.pcs_config = mt753x_pcs_config,
3020 	.pcs_an_restart = mt7530_pcs_an_restart,
3021 };
3022 
3023 static int
3024 mt753x_setup(struct dsa_switch *ds)
3025 {
3026 	struct mt7530_priv *priv = ds->priv;
3027 	int ret = priv->info->sw_setup(ds);
3028 	int i;
3029 
3030 	if (ret)
3031 		return ret;
3032 
3033 	ret = mt7530_setup_irq(priv);
3034 	if (ret)
3035 		return ret;
3036 
3037 	ret = mt7530_setup_mdio(priv);
3038 	if (ret && priv->irq)
3039 		mt7530_free_irq_common(priv);
3040 	if (ret)
3041 		return ret;
3042 
3043 	/* Initialise the PCS devices */
3044 	for (i = 0; i < priv->ds->num_ports; i++) {
3045 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3046 		priv->pcs[i].pcs.neg_mode = true;
3047 		priv->pcs[i].priv = priv;
3048 		priv->pcs[i].port = i;
3049 	}
3050 
3051 	if (priv->create_sgmii) {
3052 		ret = priv->create_sgmii(priv);
3053 		if (ret && priv->irq)
3054 			mt7530_free_irq(priv);
3055 	}
3056 
3057 	return ret;
3058 }
3059 
3060 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3061 			      struct ethtool_keee *e)
3062 {
3063 	struct mt7530_priv *priv = ds->priv;
3064 	u32 eeecr = mt7530_read(priv, MT753X_PMEEECR_P(port));
3065 
3066 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3067 	e->tx_lpi_timer = LPI_THRESH_GET(eeecr);
3068 
3069 	return 0;
3070 }
3071 
3072 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3073 			      struct ethtool_keee *e)
3074 {
3075 	struct mt7530_priv *priv = ds->priv;
3076 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3077 
3078 	if (e->tx_lpi_timer > 0xFFF)
3079 		return -EINVAL;
3080 
3081 	set = LPI_THRESH_SET(e->tx_lpi_timer);
3082 	if (!e->tx_lpi_enabled)
3083 		/* Force LPI Mode without a delay */
3084 		set |= LPI_MODE_EN;
3085 	mt7530_rmw(priv, MT753X_PMEEECR_P(port), mask, set);
3086 
3087 	return 0;
3088 }
3089 
3090 static void
3091 mt753x_conduit_state_change(struct dsa_switch *ds,
3092 			    const struct net_device *conduit,
3093 			    bool operational)
3094 {
3095 	struct dsa_port *cpu_dp = conduit->dsa_ptr;
3096 	struct mt7530_priv *priv = ds->priv;
3097 	int val = 0;
3098 	u8 mask;
3099 
3100 	/* Set the CPU port to trap frames to for MT7530. Trapped frames will be
3101 	 * forwarded to the numerically smallest CPU port whose conduit
3102 	 * interface is up.
3103 	 */
3104 	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
3105 		return;
3106 
3107 	mask = BIT(cpu_dp->index);
3108 
3109 	if (operational)
3110 		priv->active_cpu_ports |= mask;
3111 	else
3112 		priv->active_cpu_ports &= ~mask;
3113 
3114 	if (priv->active_cpu_ports) {
3115 		val = MT7530_CPU_EN |
3116 		      MT7530_CPU_PORT(__ffs(priv->active_cpu_ports));
3117 	}
3118 
3119 	mt7530_rmw(priv, MT753X_MFC, MT7530_CPU_EN | MT7530_CPU_PORT_MASK, val);
3120 }
3121 
3122 static int mt7988_setup(struct dsa_switch *ds)
3123 {
3124 	struct mt7530_priv *priv = ds->priv;
3125 
3126 	/* Reset the switch */
3127 	reset_control_assert(priv->rstc);
3128 	usleep_range(20, 50);
3129 	reset_control_deassert(priv->rstc);
3130 	usleep_range(20, 50);
3131 
3132 	/* Reset the switch PHYs */
3133 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3134 
3135 	return mt7531_setup_common(ds);
3136 }
3137 
3138 const struct dsa_switch_ops mt7530_switch_ops = {
3139 	.get_tag_protocol	= mtk_get_tag_protocol,
3140 	.setup			= mt753x_setup,
3141 	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3142 	.get_strings		= mt7530_get_strings,
3143 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3144 	.get_sset_count		= mt7530_get_sset_count,
3145 	.set_ageing_time	= mt7530_set_ageing_time,
3146 	.port_enable		= mt7530_port_enable,
3147 	.port_disable		= mt7530_port_disable,
3148 	.port_change_mtu	= mt7530_port_change_mtu,
3149 	.port_max_mtu		= mt7530_port_max_mtu,
3150 	.port_stp_state_set	= mt7530_stp_state_set,
3151 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3152 	.port_bridge_flags	= mt7530_port_bridge_flags,
3153 	.port_bridge_join	= mt7530_port_bridge_join,
3154 	.port_bridge_leave	= mt7530_port_bridge_leave,
3155 	.port_fdb_add		= mt7530_port_fdb_add,
3156 	.port_fdb_del		= mt7530_port_fdb_del,
3157 	.port_fdb_dump		= mt7530_port_fdb_dump,
3158 	.port_mdb_add		= mt7530_port_mdb_add,
3159 	.port_mdb_del		= mt7530_port_mdb_del,
3160 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3161 	.port_vlan_add		= mt7530_port_vlan_add,
3162 	.port_vlan_del		= mt7530_port_vlan_del,
3163 	.port_mirror_add	= mt753x_port_mirror_add,
3164 	.port_mirror_del	= mt753x_port_mirror_del,
3165 	.phylink_get_caps	= mt753x_phylink_get_caps,
3166 	.get_mac_eee		= mt753x_get_mac_eee,
3167 	.set_mac_eee		= mt753x_set_mac_eee,
3168 	.conduit_state_change	= mt753x_conduit_state_change,
3169 };
3170 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3171 
3172 static const struct phylink_mac_ops mt753x_phylink_mac_ops = {
3173 	.mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3174 	.mac_config	= mt753x_phylink_mac_config,
3175 	.mac_link_down	= mt753x_phylink_mac_link_down,
3176 	.mac_link_up	= mt753x_phylink_mac_link_up,
3177 };
3178 
3179 const struct mt753x_info mt753x_table[] = {
3180 	[ID_MT7621] = {
3181 		.id = ID_MT7621,
3182 		.pcs_ops = &mt7530_pcs_ops,
3183 		.sw_setup = mt7530_setup,
3184 		.phy_read_c22 = mt7530_phy_read_c22,
3185 		.phy_write_c22 = mt7530_phy_write_c22,
3186 		.phy_read_c45 = mt7530_phy_read_c45,
3187 		.phy_write_c45 = mt7530_phy_write_c45,
3188 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3189 		.mac_port_config = mt7530_mac_config,
3190 	},
3191 	[ID_MT7530] = {
3192 		.id = ID_MT7530,
3193 		.pcs_ops = &mt7530_pcs_ops,
3194 		.sw_setup = mt7530_setup,
3195 		.phy_read_c22 = mt7530_phy_read_c22,
3196 		.phy_write_c22 = mt7530_phy_write_c22,
3197 		.phy_read_c45 = mt7530_phy_read_c45,
3198 		.phy_write_c45 = mt7530_phy_write_c45,
3199 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3200 		.mac_port_config = mt7530_mac_config,
3201 	},
3202 	[ID_MT7531] = {
3203 		.id = ID_MT7531,
3204 		.pcs_ops = &mt7530_pcs_ops,
3205 		.sw_setup = mt7531_setup,
3206 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3207 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3208 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3209 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3210 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3211 		.mac_port_config = mt7531_mac_config,
3212 	},
3213 	[ID_MT7988] = {
3214 		.id = ID_MT7988,
3215 		.pcs_ops = &mt7530_pcs_ops,
3216 		.sw_setup = mt7988_setup,
3217 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3218 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3219 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3220 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3221 		.mac_port_get_caps = mt7988_mac_port_get_caps,
3222 	},
3223 };
3224 EXPORT_SYMBOL_GPL(mt753x_table);
3225 
3226 int
3227 mt7530_probe_common(struct mt7530_priv *priv)
3228 {
3229 	struct device *dev = priv->dev;
3230 
3231 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3232 	if (!priv->ds)
3233 		return -ENOMEM;
3234 
3235 	priv->ds->dev = dev;
3236 	priv->ds->num_ports = MT7530_NUM_PORTS;
3237 
3238 	/* Get the hardware identifier from the devicetree node.
3239 	 * We will need it for some of the clock and regulator setup.
3240 	 */
3241 	priv->info = of_device_get_match_data(dev);
3242 	if (!priv->info)
3243 		return -EINVAL;
3244 
3245 	priv->id = priv->info->id;
3246 	priv->dev = dev;
3247 	priv->ds->priv = priv;
3248 	priv->ds->ops = &mt7530_switch_ops;
3249 	priv->ds->phylink_mac_ops = &mt753x_phylink_mac_ops;
3250 	mutex_init(&priv->reg_mutex);
3251 	dev_set_drvdata(dev, priv);
3252 
3253 	return 0;
3254 }
3255 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3256 
3257 void
3258 mt7530_remove_common(struct mt7530_priv *priv)
3259 {
3260 	if (priv->irq)
3261 		mt7530_free_irq(priv);
3262 
3263 	dsa_unregister_switch(priv->ds);
3264 
3265 	mutex_destroy(&priv->reg_mutex);
3266 }
3267 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3268 
3269 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3270 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3271 MODULE_LICENSE("GPL");
3272