xref: /linux/drivers/net/dsa/mt7530.c (revision 920c293af8d01942caa10300ad97eabf778e8598)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 /* String, offset, and register size in bytes if different from 4 bytes */
28 static const struct mt7530_mib_desc mt7530_mib[] = {
29 	MIB_DESC(1, 0x00, "TxDrop"),
30 	MIB_DESC(1, 0x04, "TxCrcErr"),
31 	MIB_DESC(1, 0x08, "TxUnicast"),
32 	MIB_DESC(1, 0x0c, "TxMulticast"),
33 	MIB_DESC(1, 0x10, "TxBroadcast"),
34 	MIB_DESC(1, 0x14, "TxCollision"),
35 	MIB_DESC(1, 0x18, "TxSingleCollision"),
36 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
37 	MIB_DESC(1, 0x20, "TxDeferred"),
38 	MIB_DESC(1, 0x24, "TxLateCollision"),
39 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
40 	MIB_DESC(1, 0x2c, "TxPause"),
41 	MIB_DESC(1, 0x30, "TxPktSz64"),
42 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
43 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
44 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
45 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
46 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
47 	MIB_DESC(2, 0x48, "TxBytes"),
48 	MIB_DESC(1, 0x60, "RxDrop"),
49 	MIB_DESC(1, 0x64, "RxFiltering"),
50 	MIB_DESC(1, 0x68, "RxUnicast"),
51 	MIB_DESC(1, 0x6c, "RxMulticast"),
52 	MIB_DESC(1, 0x70, "RxBroadcast"),
53 	MIB_DESC(1, 0x74, "RxAlignErr"),
54 	MIB_DESC(1, 0x78, "RxCrcErr"),
55 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
56 	MIB_DESC(1, 0x80, "RxFragErr"),
57 	MIB_DESC(1, 0x84, "RxOverSzErr"),
58 	MIB_DESC(1, 0x88, "RxJabberErr"),
59 	MIB_DESC(1, 0x8c, "RxPause"),
60 	MIB_DESC(1, 0x90, "RxPktSz64"),
61 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
62 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
63 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
64 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
65 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
66 	MIB_DESC(2, 0xa8, "RxBytes"),
67 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
68 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
69 	MIB_DESC(1, 0xb8, "RxArlDrop"),
70 };
71 
72 /* Since phy_device has not yet been created and
73  * phy_{read,write}_mmd_indirect is not available, we provide our own
74  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
75  * to complete this function.
76  */
77 static int
78 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
79 {
80 	struct mii_bus *bus = priv->bus;
81 	int value, ret;
82 
83 	/* Write the desired MMD Devad */
84 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
85 	if (ret < 0)
86 		goto err;
87 
88 	/* Write the desired MMD register address */
89 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Select the Function : DATA with no post increment */
94 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Read the content of the MMD's selected register */
99 	value = bus->read(bus, 0, MII_MMD_DATA);
100 
101 	return value;
102 err:
103 	dev_err(&bus->dev,  "failed to read mmd register\n");
104 
105 	return ret;
106 }
107 
108 static int
109 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
110 			int devad, u32 data)
111 {
112 	struct mii_bus *bus = priv->bus;
113 	int ret;
114 
115 	/* Write the desired MMD Devad */
116 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
117 	if (ret < 0)
118 		goto err;
119 
120 	/* Write the desired MMD register address */
121 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Select the Function : DATA with no post increment */
126 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Write the data into MMD's selected register */
131 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
132 err:
133 	if (ret < 0)
134 		dev_err(&bus->dev,
135 			"failed to write mmd register\n");
136 	return ret;
137 }
138 
139 static void
140 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
141 {
142 	struct mii_bus *bus = priv->bus;
143 
144 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
145 
146 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
147 
148 	mutex_unlock(&bus->mdio_lock);
149 }
150 
151 static void
152 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
153 {
154 	struct mii_bus *bus = priv->bus;
155 	u32 val;
156 
157 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
158 
159 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
160 	val &= ~mask;
161 	val |= set;
162 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
163 
164 	mutex_unlock(&bus->mdio_lock);
165 }
166 
167 static void
168 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
169 {
170 	core_rmw(priv, reg, 0, val);
171 }
172 
173 static void
174 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
175 {
176 	core_rmw(priv, reg, val, 0);
177 }
178 
179 static int
180 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
181 {
182 	struct mii_bus *bus = priv->bus;
183 	u16 page, r, lo, hi;
184 	int ret;
185 
186 	page = (reg >> 6) & 0x3ff;
187 	r  = (reg >> 2) & 0xf;
188 	lo = val & 0xffff;
189 	hi = val >> 16;
190 
191 	/* MT7530 uses 31 as the pseudo port */
192 	ret = bus->write(bus, 0x1f, 0x1f, page);
193 	if (ret < 0)
194 		goto err;
195 
196 	ret = bus->write(bus, 0x1f, r,  lo);
197 	if (ret < 0)
198 		goto err;
199 
200 	ret = bus->write(bus, 0x1f, 0x10, hi);
201 err:
202 	if (ret < 0)
203 		dev_err(&bus->dev,
204 			"failed to write mt7530 register\n");
205 	return ret;
206 }
207 
208 static u32
209 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
210 {
211 	struct mii_bus *bus = priv->bus;
212 	u16 page, r, lo, hi;
213 	int ret;
214 
215 	page = (reg >> 6) & 0x3ff;
216 	r = (reg >> 2) & 0xf;
217 
218 	/* MT7530 uses 31 as the pseudo port */
219 	ret = bus->write(bus, 0x1f, 0x1f, page);
220 	if (ret < 0) {
221 		dev_err(&bus->dev,
222 			"failed to read mt7530 register\n");
223 		return ret;
224 	}
225 
226 	lo = bus->read(bus, 0x1f, r);
227 	hi = bus->read(bus, 0x1f, 0x10);
228 
229 	return (hi << 16) | (lo & 0xffff);
230 }
231 
232 static void
233 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
234 {
235 	struct mii_bus *bus = priv->bus;
236 
237 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
238 
239 	mt7530_mii_write(priv, reg, val);
240 
241 	mutex_unlock(&bus->mdio_lock);
242 }
243 
244 static u32
245 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
246 {
247 	return mt7530_mii_read(p->priv, p->reg);
248 }
249 
250 static u32
251 _mt7530_read(struct mt7530_dummy_poll *p)
252 {
253 	struct mii_bus		*bus = p->priv->bus;
254 	u32 val;
255 
256 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
257 
258 	val = mt7530_mii_read(p->priv, p->reg);
259 
260 	mutex_unlock(&bus->mdio_lock);
261 
262 	return val;
263 }
264 
265 static u32
266 mt7530_read(struct mt7530_priv *priv, u32 reg)
267 {
268 	struct mt7530_dummy_poll p;
269 
270 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
271 	return _mt7530_read(&p);
272 }
273 
274 static void
275 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
276 	   u32 mask, u32 set)
277 {
278 	struct mii_bus *bus = priv->bus;
279 	u32 val;
280 
281 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
282 
283 	val = mt7530_mii_read(priv, reg);
284 	val &= ~mask;
285 	val |= set;
286 	mt7530_mii_write(priv, reg, val);
287 
288 	mutex_unlock(&bus->mdio_lock);
289 }
290 
291 static void
292 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
293 {
294 	mt7530_rmw(priv, reg, 0, val);
295 }
296 
297 static void
298 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
299 {
300 	mt7530_rmw(priv, reg, val, 0);
301 }
302 
303 static int
304 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
305 {
306 	u32 val;
307 	int ret;
308 	struct mt7530_dummy_poll p;
309 
310 	/* Set the command operating upon the MAC address entries */
311 	val = ATC_BUSY | ATC_MAT(0) | cmd;
312 	mt7530_write(priv, MT7530_ATC, val);
313 
314 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
315 	ret = readx_poll_timeout(_mt7530_read, &p, val,
316 				 !(val & ATC_BUSY), 20, 20000);
317 	if (ret < 0) {
318 		dev_err(priv->dev, "reset timeout\n");
319 		return ret;
320 	}
321 
322 	/* Additional sanity for read command if the specified
323 	 * entry is invalid
324 	 */
325 	val = mt7530_read(priv, MT7530_ATC);
326 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
327 		return -EINVAL;
328 
329 	if (rsp)
330 		*rsp = val;
331 
332 	return 0;
333 }
334 
335 static void
336 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
337 {
338 	u32 reg[3];
339 	int i;
340 
341 	/* Read from ARL table into an array */
342 	for (i = 0; i < 3; i++) {
343 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
344 
345 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
346 			__func__, __LINE__, i, reg[i]);
347 	}
348 
349 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
350 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
351 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
352 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
353 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
354 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
355 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
356 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
357 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
358 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
359 }
360 
361 static void
362 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
363 		 u8 port_mask, const u8 *mac,
364 		 u8 aging, u8 type)
365 {
366 	u32 reg[3] = { 0 };
367 	int i;
368 
369 	reg[1] |= vid & CVID_MASK;
370 	reg[1] |= ATA2_IVL;
371 	reg[1] |= ATA2_FID(FID_BRIDGED);
372 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
373 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
374 	/* STATIC_ENT indicate that entry is static wouldn't
375 	 * be aged out and STATIC_EMP specified as erasing an
376 	 * entry
377 	 */
378 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
379 	reg[1] |= mac[5] << MAC_BYTE_5;
380 	reg[1] |= mac[4] << MAC_BYTE_4;
381 	reg[0] |= mac[3] << MAC_BYTE_3;
382 	reg[0] |= mac[2] << MAC_BYTE_2;
383 	reg[0] |= mac[1] << MAC_BYTE_1;
384 	reg[0] |= mac[0] << MAC_BYTE_0;
385 
386 	/* Write array into the ARL table */
387 	for (i = 0; i < 3; i++)
388 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
389 }
390 
391 /* Setup TX circuit including relevant PAD and driving */
392 static int
393 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
394 {
395 	struct mt7530_priv *priv = ds->priv;
396 	u32 ncpo1, ssc_delta, trgint, i, xtal;
397 
398 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
399 
400 	if (xtal == HWTRAP_XTAL_20MHZ) {
401 		dev_err(priv->dev,
402 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
403 			__func__);
404 		return -EINVAL;
405 	}
406 
407 	switch (interface) {
408 	case PHY_INTERFACE_MODE_RGMII:
409 		trgint = 0;
410 		/* PLL frequency: 125MHz */
411 		ncpo1 = 0x0c80;
412 		break;
413 	case PHY_INTERFACE_MODE_TRGMII:
414 		trgint = 1;
415 		if (priv->id == ID_MT7621) {
416 			/* PLL frequency: 150MHz: 1.2GBit */
417 			if (xtal == HWTRAP_XTAL_40MHZ)
418 				ncpo1 = 0x0780;
419 			if (xtal == HWTRAP_XTAL_25MHZ)
420 				ncpo1 = 0x0a00;
421 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
422 			if (xtal == HWTRAP_XTAL_40MHZ)
423 				ncpo1 = 0x0c80;
424 			if (xtal == HWTRAP_XTAL_25MHZ)
425 				ncpo1 = 0x1400;
426 		}
427 		break;
428 	default:
429 		dev_err(priv->dev, "xMII interface %d not supported\n",
430 			interface);
431 		return -EINVAL;
432 	}
433 
434 	if (xtal == HWTRAP_XTAL_25MHZ)
435 		ssc_delta = 0x57;
436 	else
437 		ssc_delta = 0x87;
438 
439 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
440 		   P6_INTF_MODE(trgint));
441 
442 	/* Lower Tx Driving for TRGMII path */
443 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
444 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
445 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
446 
447 	/* Disable MT7530 core and TRGMII Tx clocks */
448 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
449 		   REG_GSWCK_EN | REG_TRGMIICK_EN);
450 
451 	/* Setup core clock for MT7530 */
452 	/* Disable PLL */
453 	core_write(priv, CORE_GSWPLL_GRP1, 0);
454 
455 	/* Set core clock into 500Mhz */
456 	core_write(priv, CORE_GSWPLL_GRP2,
457 		   RG_GSWPLL_POSDIV_500M(1) |
458 		   RG_GSWPLL_FBKDIV_500M(25));
459 
460 	/* Enable PLL */
461 	core_write(priv, CORE_GSWPLL_GRP1,
462 		   RG_GSWPLL_EN_PRE |
463 		   RG_GSWPLL_POSDIV_200M(2) |
464 		   RG_GSWPLL_FBKDIV_200M(32));
465 
466 	/* Setup the MT7530 TRGMII Tx Clock */
467 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
468 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
469 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
470 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
471 	core_write(priv, CORE_PLL_GROUP4,
472 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
473 		   RG_SYSPLL_BIAS_LPF_EN);
474 	core_write(priv, CORE_PLL_GROUP2,
475 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
476 		   RG_SYSPLL_POSDIV(1));
477 	core_write(priv, CORE_PLL_GROUP7,
478 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
479 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
480 
481 	/* Enable MT7530 core and TRGMII Tx clocks */
482 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
483 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
484 
485 	if (!trgint)
486 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
487 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
488 				   RD_TAP_MASK, RD_TAP(16));
489 	return 0;
490 }
491 
492 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
493 {
494 	u32 val;
495 
496 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
497 
498 	return (val & PAD_DUAL_SGMII_EN) != 0;
499 }
500 
501 static int
502 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
503 {
504 	struct mt7530_priv *priv = ds->priv;
505 	u32 top_sig;
506 	u32 hwstrap;
507 	u32 xtal;
508 	u32 val;
509 
510 	if (mt7531_dual_sgmii_supported(priv))
511 		return 0;
512 
513 	val = mt7530_read(priv, MT7531_CREV);
514 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
515 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
516 	if ((val & CHIP_REV_M) > 0)
517 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
518 						    HWTRAP_XTAL_FSEL_25MHZ;
519 	else
520 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
521 
522 	/* Step 1 : Disable MT7531 COREPLL */
523 	val = mt7530_read(priv, MT7531_PLLGP_EN);
524 	val &= ~EN_COREPLL;
525 	mt7530_write(priv, MT7531_PLLGP_EN, val);
526 
527 	/* Step 2: switch to XTAL output */
528 	val = mt7530_read(priv, MT7531_PLLGP_EN);
529 	val |= SW_CLKSW;
530 	mt7530_write(priv, MT7531_PLLGP_EN, val);
531 
532 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
533 	val &= ~RG_COREPLL_EN;
534 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
535 
536 	/* Step 3: disable PLLGP and enable program PLLGP */
537 	val = mt7530_read(priv, MT7531_PLLGP_EN);
538 	val |= SW_PLLGP;
539 	mt7530_write(priv, MT7531_PLLGP_EN, val);
540 
541 	/* Step 4: program COREPLL output frequency to 500MHz */
542 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
543 	val &= ~RG_COREPLL_POSDIV_M;
544 	val |= 2 << RG_COREPLL_POSDIV_S;
545 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
546 	usleep_range(25, 35);
547 
548 	switch (xtal) {
549 	case HWTRAP_XTAL_FSEL_25MHZ:
550 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
551 		val &= ~RG_COREPLL_SDM_PCW_M;
552 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
553 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
554 		break;
555 	case HWTRAP_XTAL_FSEL_40MHZ:
556 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
557 		val &= ~RG_COREPLL_SDM_PCW_M;
558 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
559 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
560 		break;
561 	}
562 
563 	/* Set feedback divide ratio update signal to high */
564 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
565 	val |= RG_COREPLL_SDM_PCW_CHG;
566 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
567 	/* Wait for at least 16 XTAL clocks */
568 	usleep_range(10, 20);
569 
570 	/* Step 5: set feedback divide ratio update signal to low */
571 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
572 	val &= ~RG_COREPLL_SDM_PCW_CHG;
573 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
574 
575 	/* Enable 325M clock for SGMII */
576 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
577 
578 	/* Enable 250SSC clock for RGMII */
579 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
580 
581 	/* Step 6: Enable MT7531 PLL */
582 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
583 	val |= RG_COREPLL_EN;
584 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
585 
586 	val = mt7530_read(priv, MT7531_PLLGP_EN);
587 	val |= EN_COREPLL;
588 	mt7530_write(priv, MT7531_PLLGP_EN, val);
589 	usleep_range(25, 35);
590 
591 	return 0;
592 }
593 
594 static void
595 mt7530_mib_reset(struct dsa_switch *ds)
596 {
597 	struct mt7530_priv *priv = ds->priv;
598 
599 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
600 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
601 }
602 
603 static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
604 {
605 	return mdiobus_read_nested(priv->bus, port, regnum);
606 }
607 
608 static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
609 			    u16 val)
610 {
611 	return mdiobus_write_nested(priv->bus, port, regnum, val);
612 }
613 
614 static int
615 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
616 			int regnum)
617 {
618 	struct mii_bus *bus = priv->bus;
619 	struct mt7530_dummy_poll p;
620 	u32 reg, val;
621 	int ret;
622 
623 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
624 
625 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
626 
627 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
628 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
629 	if (ret < 0) {
630 		dev_err(priv->dev, "poll timeout\n");
631 		goto out;
632 	}
633 
634 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
635 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
636 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
637 
638 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
639 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
640 	if (ret < 0) {
641 		dev_err(priv->dev, "poll timeout\n");
642 		goto out;
643 	}
644 
645 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
646 	      MT7531_MDIO_DEV_ADDR(devad);
647 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
648 
649 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
650 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
651 	if (ret < 0) {
652 		dev_err(priv->dev, "poll timeout\n");
653 		goto out;
654 	}
655 
656 	ret = val & MT7531_MDIO_RW_DATA_MASK;
657 out:
658 	mutex_unlock(&bus->mdio_lock);
659 
660 	return ret;
661 }
662 
663 static int
664 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
665 			 int regnum, u32 data)
666 {
667 	struct mii_bus *bus = priv->bus;
668 	struct mt7530_dummy_poll p;
669 	u32 val, reg;
670 	int ret;
671 
672 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
673 
674 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
675 
676 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
677 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
678 	if (ret < 0) {
679 		dev_err(priv->dev, "poll timeout\n");
680 		goto out;
681 	}
682 
683 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
684 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
685 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
686 
687 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
688 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
689 	if (ret < 0) {
690 		dev_err(priv->dev, "poll timeout\n");
691 		goto out;
692 	}
693 
694 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
695 	      MT7531_MDIO_DEV_ADDR(devad) | data;
696 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
697 
698 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
699 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
700 	if (ret < 0) {
701 		dev_err(priv->dev, "poll timeout\n");
702 		goto out;
703 	}
704 
705 out:
706 	mutex_unlock(&bus->mdio_lock);
707 
708 	return ret;
709 }
710 
711 static int
712 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
713 {
714 	struct mii_bus *bus = priv->bus;
715 	struct mt7530_dummy_poll p;
716 	int ret;
717 	u32 val;
718 
719 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
720 
721 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
722 
723 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
724 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
725 	if (ret < 0) {
726 		dev_err(priv->dev, "poll timeout\n");
727 		goto out;
728 	}
729 
730 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
731 	      MT7531_MDIO_REG_ADDR(regnum);
732 
733 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
734 
735 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
736 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
737 	if (ret < 0) {
738 		dev_err(priv->dev, "poll timeout\n");
739 		goto out;
740 	}
741 
742 	ret = val & MT7531_MDIO_RW_DATA_MASK;
743 out:
744 	mutex_unlock(&bus->mdio_lock);
745 
746 	return ret;
747 }
748 
749 static int
750 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
751 			 u16 data)
752 {
753 	struct mii_bus *bus = priv->bus;
754 	struct mt7530_dummy_poll p;
755 	int ret;
756 	u32 reg;
757 
758 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
759 
760 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
761 
762 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
763 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
764 	if (ret < 0) {
765 		dev_err(priv->dev, "poll timeout\n");
766 		goto out;
767 	}
768 
769 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
770 	      MT7531_MDIO_REG_ADDR(regnum) | data;
771 
772 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
773 
774 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
775 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
776 	if (ret < 0) {
777 		dev_err(priv->dev, "poll timeout\n");
778 		goto out;
779 	}
780 
781 out:
782 	mutex_unlock(&bus->mdio_lock);
783 
784 	return ret;
785 }
786 
787 static int
788 mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
789 {
790 	int devad;
791 	int ret;
792 
793 	if (regnum & MII_ADDR_C45) {
794 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
795 		ret = mt7531_ind_c45_phy_read(priv, port, devad,
796 					      regnum & MII_REGADDR_C45_MASK);
797 	} else {
798 		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
799 	}
800 
801 	return ret;
802 }
803 
804 static int
805 mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
806 		     u16 data)
807 {
808 	int devad;
809 	int ret;
810 
811 	if (regnum & MII_ADDR_C45) {
812 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
813 		ret = mt7531_ind_c45_phy_write(priv, port, devad,
814 					       regnum & MII_REGADDR_C45_MASK,
815 					       data);
816 	} else {
817 		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
818 	}
819 
820 	return ret;
821 }
822 
823 static int
824 mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
825 {
826 	struct mt7530_priv *priv = bus->priv;
827 
828 	return priv->info->phy_read(priv, port, regnum);
829 }
830 
831 static int
832 mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
833 {
834 	struct mt7530_priv *priv = bus->priv;
835 
836 	return priv->info->phy_write(priv, port, regnum, val);
837 }
838 
839 static void
840 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
841 		   uint8_t *data)
842 {
843 	int i;
844 
845 	if (stringset != ETH_SS_STATS)
846 		return;
847 
848 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
849 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
850 			ETH_GSTRING_LEN);
851 }
852 
853 static void
854 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
855 			 uint64_t *data)
856 {
857 	struct mt7530_priv *priv = ds->priv;
858 	const struct mt7530_mib_desc *mib;
859 	u32 reg, i;
860 	u64 hi;
861 
862 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
863 		mib = &mt7530_mib[i];
864 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
865 
866 		data[i] = mt7530_read(priv, reg);
867 		if (mib->size == 2) {
868 			hi = mt7530_read(priv, reg + 4);
869 			data[i] |= hi << 32;
870 		}
871 	}
872 }
873 
874 static int
875 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
876 {
877 	if (sset != ETH_SS_STATS)
878 		return 0;
879 
880 	return ARRAY_SIZE(mt7530_mib);
881 }
882 
883 static int
884 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
885 {
886 	struct mt7530_priv *priv = ds->priv;
887 	unsigned int secs = msecs / 1000;
888 	unsigned int tmp_age_count;
889 	unsigned int error = -1;
890 	unsigned int age_count;
891 	unsigned int age_unit;
892 
893 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
894 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
895 		return -ERANGE;
896 
897 	/* iterate through all possible age_count to find the closest pair */
898 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
899 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
900 
901 		if (tmp_age_unit <= AGE_UNIT_MAX) {
902 			unsigned int tmp_error = secs -
903 				(tmp_age_count + 1) * (tmp_age_unit + 1);
904 
905 			/* found a closer pair */
906 			if (error > tmp_error) {
907 				error = tmp_error;
908 				age_count = tmp_age_count;
909 				age_unit = tmp_age_unit;
910 			}
911 
912 			/* found the exact match, so break the loop */
913 			if (!error)
914 				break;
915 		}
916 	}
917 
918 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
919 
920 	return 0;
921 }
922 
923 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
924 {
925 	struct mt7530_priv *priv = ds->priv;
926 	u8 tx_delay = 0;
927 	int val;
928 
929 	mutex_lock(&priv->reg_mutex);
930 
931 	val = mt7530_read(priv, MT7530_MHWTRAP);
932 
933 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
934 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
935 
936 	switch (priv->p5_intf_sel) {
937 	case P5_INTF_SEL_PHY_P0:
938 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
939 		val |= MHWTRAP_PHY0_SEL;
940 		fallthrough;
941 	case P5_INTF_SEL_PHY_P4:
942 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
943 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
944 
945 		/* Setup the MAC by default for the cpu port */
946 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
947 		break;
948 	case P5_INTF_SEL_GMAC5:
949 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
950 		val &= ~MHWTRAP_P5_DIS;
951 		break;
952 	case P5_DISABLED:
953 		interface = PHY_INTERFACE_MODE_NA;
954 		break;
955 	default:
956 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
957 			priv->p5_intf_sel);
958 		goto unlock_exit;
959 	}
960 
961 	/* Setup RGMII settings */
962 	if (phy_interface_mode_is_rgmii(interface)) {
963 		val |= MHWTRAP_P5_RGMII_MODE;
964 
965 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
966 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
967 
968 		/* Don't set delay in DSA mode */
969 		if (!dsa_is_dsa_port(priv->ds, 5) &&
970 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
971 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
972 			tx_delay = 4; /* n * 0.5 ns */
973 
974 		/* P5 RGMII TX Clock Control: delay x */
975 		mt7530_write(priv, MT7530_P5RGMIITXCR,
976 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
977 
978 		/* reduce P5 RGMII Tx driving, 8mA */
979 		mt7530_write(priv, MT7530_IO_DRV_CR,
980 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
981 	}
982 
983 	mt7530_write(priv, MT7530_MHWTRAP, val);
984 
985 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
986 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
987 
988 	priv->p5_interface = interface;
989 
990 unlock_exit:
991 	mutex_unlock(&priv->reg_mutex);
992 }
993 
994 static int
995 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
996 {
997 	struct mt7530_priv *priv = ds->priv;
998 	int ret;
999 
1000 	/* Setup max capability of CPU port at first */
1001 	if (priv->info->cpu_port_config) {
1002 		ret = priv->info->cpu_port_config(ds, port);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 
1007 	/* Enable Mediatek header mode on the cpu port */
1008 	mt7530_write(priv, MT7530_PVC_P(port),
1009 		     PORT_SPEC_TAG);
1010 
1011 	/* Disable flooding by default */
1012 	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1013 		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1014 
1015 	/* Set CPU port number */
1016 	if (priv->id == ID_MT7621)
1017 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1018 
1019 	/* CPU port gets connected to all user ports of
1020 	 * the switch.
1021 	 */
1022 	mt7530_write(priv, MT7530_PCR_P(port),
1023 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1024 
1025 	/* Set to fallback mode for independent VLAN learning */
1026 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1027 		   MT7530_PORT_FALLBACK_MODE);
1028 
1029 	return 0;
1030 }
1031 
1032 static int
1033 mt7530_port_enable(struct dsa_switch *ds, int port,
1034 		   struct phy_device *phy)
1035 {
1036 	struct mt7530_priv *priv = ds->priv;
1037 
1038 	if (!dsa_is_user_port(ds, port))
1039 		return 0;
1040 
1041 	mutex_lock(&priv->reg_mutex);
1042 
1043 	/* Allow the user port gets connected to the cpu port and also
1044 	 * restore the port matrix if the port is the member of a certain
1045 	 * bridge.
1046 	 */
1047 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
1048 	priv->ports[port].enable = true;
1049 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1050 		   priv->ports[port].pm);
1051 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1052 
1053 	mutex_unlock(&priv->reg_mutex);
1054 
1055 	return 0;
1056 }
1057 
1058 static void
1059 mt7530_port_disable(struct dsa_switch *ds, int port)
1060 {
1061 	struct mt7530_priv *priv = ds->priv;
1062 
1063 	if (!dsa_is_user_port(ds, port))
1064 		return;
1065 
1066 	mutex_lock(&priv->reg_mutex);
1067 
1068 	/* Clear up all port matrix which could be restored in the next
1069 	 * enablement for the port.
1070 	 */
1071 	priv->ports[port].enable = false;
1072 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1073 		   PCR_MATRIX_CLR);
1074 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1075 
1076 	mutex_unlock(&priv->reg_mutex);
1077 }
1078 
1079 static int
1080 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1081 {
1082 	struct mt7530_priv *priv = ds->priv;
1083 	struct mii_bus *bus = priv->bus;
1084 	int length;
1085 	u32 val;
1086 
1087 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1088 	 * largest MTU of the slave ports. Because the switch only has a global
1089 	 * RX length register, only allowing CPU port here is enough.
1090 	 */
1091 	if (!dsa_is_cpu_port(ds, port))
1092 		return 0;
1093 
1094 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1095 
1096 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1097 	val &= ~MAX_RX_PKT_LEN_MASK;
1098 
1099 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1100 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1101 	if (length <= 1522) {
1102 		val |= MAX_RX_PKT_LEN_1522;
1103 	} else if (length <= 1536) {
1104 		val |= MAX_RX_PKT_LEN_1536;
1105 	} else if (length <= 1552) {
1106 		val |= MAX_RX_PKT_LEN_1552;
1107 	} else {
1108 		val &= ~MAX_RX_JUMBO_MASK;
1109 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1110 		val |= MAX_RX_PKT_LEN_JUMBO;
1111 	}
1112 
1113 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1114 
1115 	mutex_unlock(&bus->mdio_lock);
1116 
1117 	return 0;
1118 }
1119 
1120 static int
1121 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1122 {
1123 	return MT7530_MAX_MTU;
1124 }
1125 
1126 static void
1127 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1128 {
1129 	struct mt7530_priv *priv = ds->priv;
1130 	u32 stp_state;
1131 
1132 	switch (state) {
1133 	case BR_STATE_DISABLED:
1134 		stp_state = MT7530_STP_DISABLED;
1135 		break;
1136 	case BR_STATE_BLOCKING:
1137 		stp_state = MT7530_STP_BLOCKING;
1138 		break;
1139 	case BR_STATE_LISTENING:
1140 		stp_state = MT7530_STP_LISTENING;
1141 		break;
1142 	case BR_STATE_LEARNING:
1143 		stp_state = MT7530_STP_LEARNING;
1144 		break;
1145 	case BR_STATE_FORWARDING:
1146 	default:
1147 		stp_state = MT7530_STP_FORWARDING;
1148 		break;
1149 	}
1150 
1151 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1152 		   FID_PST(FID_BRIDGED, stp_state));
1153 }
1154 
1155 static int
1156 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1157 			     struct switchdev_brport_flags flags,
1158 			     struct netlink_ext_ack *extack)
1159 {
1160 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1161 			   BR_BCAST_FLOOD))
1162 		return -EINVAL;
1163 
1164 	return 0;
1165 }
1166 
1167 static int
1168 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1169 			 struct switchdev_brport_flags flags,
1170 			 struct netlink_ext_ack *extack)
1171 {
1172 	struct mt7530_priv *priv = ds->priv;
1173 
1174 	if (flags.mask & BR_LEARNING)
1175 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1176 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1177 
1178 	if (flags.mask & BR_FLOOD)
1179 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1180 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1181 
1182 	if (flags.mask & BR_MCAST_FLOOD)
1183 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1184 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1185 
1186 	if (flags.mask & BR_BCAST_FLOOD)
1187 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1188 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1189 
1190 	return 0;
1191 }
1192 
1193 static int
1194 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1195 			struct net_device *bridge)
1196 {
1197 	struct mt7530_priv *priv = ds->priv;
1198 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
1199 	int i;
1200 
1201 	mutex_lock(&priv->reg_mutex);
1202 
1203 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1204 		/* Add this port to the port matrix of the other ports in the
1205 		 * same bridge. If the port is disabled, port matrix is kept
1206 		 * and not being setup until the port becomes enabled.
1207 		 */
1208 		if (dsa_is_user_port(ds, i) && i != port) {
1209 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1210 				continue;
1211 			if (priv->ports[i].enable)
1212 				mt7530_set(priv, MT7530_PCR_P(i),
1213 					   PCR_MATRIX(BIT(port)));
1214 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
1215 
1216 			port_bitmap |= BIT(i);
1217 		}
1218 	}
1219 
1220 	/* Add the all other ports to this port matrix. */
1221 	if (priv->ports[port].enable)
1222 		mt7530_rmw(priv, MT7530_PCR_P(port),
1223 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1224 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1225 
1226 	/* Set to fallback mode for independent VLAN learning */
1227 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1228 		   MT7530_PORT_FALLBACK_MODE);
1229 
1230 	mutex_unlock(&priv->reg_mutex);
1231 
1232 	return 0;
1233 }
1234 
1235 static void
1236 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1237 {
1238 	struct mt7530_priv *priv = ds->priv;
1239 	bool all_user_ports_removed = true;
1240 	int i;
1241 
1242 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1243 	 * bridge. Don't set standalone ports to fallback mode.
1244 	 */
1245 	if (dsa_to_port(ds, port)->bridge_dev)
1246 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1247 			   MT7530_PORT_FALLBACK_MODE);
1248 
1249 	mt7530_rmw(priv, MT7530_PVC_P(port),
1250 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1251 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1252 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1253 		   MT7530_VLAN_ACC_ALL);
1254 
1255 	/* Set PVID to 0 */
1256 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1257 		   G0_PORT_VID_DEF);
1258 
1259 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1260 		if (dsa_is_user_port(ds, i) &&
1261 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1262 			all_user_ports_removed = false;
1263 			break;
1264 		}
1265 	}
1266 
1267 	/* CPU port also does the same thing until all user ports belonging to
1268 	 * the CPU port get out of VLAN filtering mode.
1269 	 */
1270 	if (all_user_ports_removed) {
1271 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
1272 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1273 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
1274 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1275 	}
1276 }
1277 
1278 static void
1279 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1280 {
1281 	struct mt7530_priv *priv = ds->priv;
1282 
1283 	/* Trapped into security mode allows packet forwarding through VLAN
1284 	 * table lookup.
1285 	 */
1286 	if (dsa_is_user_port(ds, port)) {
1287 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1288 			   MT7530_PORT_SECURITY_MODE);
1289 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1290 			   G0_PORT_VID(priv->ports[port].pvid));
1291 
1292 		/* Only accept tagged frames if PVID is not set */
1293 		if (!priv->ports[port].pvid)
1294 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1295 				   MT7530_VLAN_ACC_TAGGED);
1296 	}
1297 
1298 	/* Set the port as a user port which is to be able to recognize VID
1299 	 * from incoming packets before fetching entry within the VLAN table.
1300 	 */
1301 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1302 		   VLAN_ATTR(MT7530_VLAN_USER) |
1303 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1304 }
1305 
1306 static void
1307 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1308 			 struct net_device *bridge)
1309 {
1310 	struct mt7530_priv *priv = ds->priv;
1311 	int i;
1312 
1313 	mutex_lock(&priv->reg_mutex);
1314 
1315 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1316 		/* Remove this port from the port matrix of the other ports
1317 		 * in the same bridge. If the port is disabled, port matrix
1318 		 * is kept and not being setup until the port becomes enabled.
1319 		 */
1320 		if (dsa_is_user_port(ds, i) && i != port) {
1321 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1322 				continue;
1323 			if (priv->ports[i].enable)
1324 				mt7530_clear(priv, MT7530_PCR_P(i),
1325 					     PCR_MATRIX(BIT(port)));
1326 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
1327 		}
1328 	}
1329 
1330 	/* Set the cpu port to be the only one in the port matrix of
1331 	 * this port.
1332 	 */
1333 	if (priv->ports[port].enable)
1334 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1335 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
1336 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
1337 
1338 	/* When a port is removed from the bridge, the port would be set up
1339 	 * back to the default as is at initial boot which is a VLAN-unaware
1340 	 * port.
1341 	 */
1342 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1343 		   MT7530_PORT_MATRIX_MODE);
1344 
1345 	mutex_unlock(&priv->reg_mutex);
1346 }
1347 
1348 static int
1349 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1350 		    const unsigned char *addr, u16 vid)
1351 {
1352 	struct mt7530_priv *priv = ds->priv;
1353 	int ret;
1354 	u8 port_mask = BIT(port);
1355 
1356 	mutex_lock(&priv->reg_mutex);
1357 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1358 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1359 	mutex_unlock(&priv->reg_mutex);
1360 
1361 	return ret;
1362 }
1363 
1364 static int
1365 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1366 		    const unsigned char *addr, u16 vid)
1367 {
1368 	struct mt7530_priv *priv = ds->priv;
1369 	int ret;
1370 	u8 port_mask = BIT(port);
1371 
1372 	mutex_lock(&priv->reg_mutex);
1373 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1374 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1375 	mutex_unlock(&priv->reg_mutex);
1376 
1377 	return ret;
1378 }
1379 
1380 static int
1381 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1382 		     dsa_fdb_dump_cb_t *cb, void *data)
1383 {
1384 	struct mt7530_priv *priv = ds->priv;
1385 	struct mt7530_fdb _fdb = { 0 };
1386 	int cnt = MT7530_NUM_FDB_RECORDS;
1387 	int ret = 0;
1388 	u32 rsp = 0;
1389 
1390 	mutex_lock(&priv->reg_mutex);
1391 
1392 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1393 	if (ret < 0)
1394 		goto err;
1395 
1396 	do {
1397 		if (rsp & ATC_SRCH_HIT) {
1398 			mt7530_fdb_read(priv, &_fdb);
1399 			if (_fdb.port_mask & BIT(port)) {
1400 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1401 					 data);
1402 				if (ret < 0)
1403 					break;
1404 			}
1405 		}
1406 	} while (--cnt &&
1407 		 !(rsp & ATC_SRCH_END) &&
1408 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1409 err:
1410 	mutex_unlock(&priv->reg_mutex);
1411 
1412 	return 0;
1413 }
1414 
1415 static int
1416 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1417 		    const struct switchdev_obj_port_mdb *mdb)
1418 {
1419 	struct mt7530_priv *priv = ds->priv;
1420 	const u8 *addr = mdb->addr;
1421 	u16 vid = mdb->vid;
1422 	u8 port_mask = 0;
1423 	int ret;
1424 
1425 	mutex_lock(&priv->reg_mutex);
1426 
1427 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1428 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1429 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1430 			    & PORT_MAP_MASK;
1431 
1432 	port_mask |= BIT(port);
1433 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1434 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1435 
1436 	mutex_unlock(&priv->reg_mutex);
1437 
1438 	return ret;
1439 }
1440 
1441 static int
1442 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1443 		    const struct switchdev_obj_port_mdb *mdb)
1444 {
1445 	struct mt7530_priv *priv = ds->priv;
1446 	const u8 *addr = mdb->addr;
1447 	u16 vid = mdb->vid;
1448 	u8 port_mask = 0;
1449 	int ret;
1450 
1451 	mutex_lock(&priv->reg_mutex);
1452 
1453 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1454 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1455 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1456 			    & PORT_MAP_MASK;
1457 
1458 	port_mask &= ~BIT(port);
1459 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1460 			 port_mask ? STATIC_ENT : STATIC_EMP);
1461 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1462 
1463 	mutex_unlock(&priv->reg_mutex);
1464 
1465 	return ret;
1466 }
1467 
1468 static int
1469 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1470 {
1471 	struct mt7530_dummy_poll p;
1472 	u32 val;
1473 	int ret;
1474 
1475 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1476 	mt7530_write(priv, MT7530_VTCR, val);
1477 
1478 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1479 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1480 				 !(val & VTCR_BUSY), 20, 20000);
1481 	if (ret < 0) {
1482 		dev_err(priv->dev, "poll timeout\n");
1483 		return ret;
1484 	}
1485 
1486 	val = mt7530_read(priv, MT7530_VTCR);
1487 	if (val & VTCR_INVALID) {
1488 		dev_err(priv->dev, "read VTCR invalid\n");
1489 		return -EINVAL;
1490 	}
1491 
1492 	return 0;
1493 }
1494 
1495 static int
1496 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1497 			   struct netlink_ext_ack *extack)
1498 {
1499 	if (vlan_filtering) {
1500 		/* The port is being kept as VLAN-unaware port when bridge is
1501 		 * set up with vlan_filtering not being set, Otherwise, the
1502 		 * port and the corresponding CPU port is required the setup
1503 		 * for becoming a VLAN-aware port.
1504 		 */
1505 		mt7530_port_set_vlan_aware(ds, port);
1506 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1507 	} else {
1508 		mt7530_port_set_vlan_unaware(ds, port);
1509 	}
1510 
1511 	return 0;
1512 }
1513 
1514 static void
1515 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1516 		   struct mt7530_hw_vlan_entry *entry)
1517 {
1518 	u8 new_members;
1519 	u32 val;
1520 
1521 	new_members = entry->old_members | BIT(entry->port) |
1522 		      BIT(MT7530_CPU_PORT);
1523 
1524 	/* Validate the entry with independent learning, create egress tag per
1525 	 * VLAN and joining the port as one of the port members.
1526 	 */
1527 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1528 	      VLAN_VALID;
1529 	mt7530_write(priv, MT7530_VAWD1, val);
1530 
1531 	/* Decide whether adding tag or not for those outgoing packets from the
1532 	 * port inside the VLAN.
1533 	 */
1534 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1535 				MT7530_VLAN_EGRESS_TAG;
1536 	mt7530_rmw(priv, MT7530_VAWD2,
1537 		   ETAG_CTRL_P_MASK(entry->port),
1538 		   ETAG_CTRL_P(entry->port, val));
1539 
1540 	/* CPU port is always taken as a tagged port for serving more than one
1541 	 * VLANs across and also being applied with egress type stack mode for
1542 	 * that VLAN tags would be appended after hardware special tag used as
1543 	 * DSA tag.
1544 	 */
1545 	mt7530_rmw(priv, MT7530_VAWD2,
1546 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1547 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1548 			       MT7530_VLAN_EGRESS_STACK));
1549 }
1550 
1551 static void
1552 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1553 		   struct mt7530_hw_vlan_entry *entry)
1554 {
1555 	u8 new_members;
1556 	u32 val;
1557 
1558 	new_members = entry->old_members & ~BIT(entry->port);
1559 
1560 	val = mt7530_read(priv, MT7530_VAWD1);
1561 	if (!(val & VLAN_VALID)) {
1562 		dev_err(priv->dev,
1563 			"Cannot be deleted due to invalid entry\n");
1564 		return;
1565 	}
1566 
1567 	/* If certain member apart from CPU port is still alive in the VLAN,
1568 	 * the entry would be kept valid. Otherwise, the entry is got to be
1569 	 * disabled.
1570 	 */
1571 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1572 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1573 		      VLAN_VALID;
1574 		mt7530_write(priv, MT7530_VAWD1, val);
1575 	} else {
1576 		mt7530_write(priv, MT7530_VAWD1, 0);
1577 		mt7530_write(priv, MT7530_VAWD2, 0);
1578 	}
1579 }
1580 
1581 static void
1582 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1583 		      struct mt7530_hw_vlan_entry *entry,
1584 		      mt7530_vlan_op vlan_op)
1585 {
1586 	u32 val;
1587 
1588 	/* Fetch entry */
1589 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1590 
1591 	val = mt7530_read(priv, MT7530_VAWD1);
1592 
1593 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1594 
1595 	/* Manipulate entry */
1596 	vlan_op(priv, entry);
1597 
1598 	/* Flush result to hardware */
1599 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1600 }
1601 
1602 static int
1603 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1604 		     const struct switchdev_obj_port_vlan *vlan,
1605 		     struct netlink_ext_ack *extack)
1606 {
1607 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1608 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1609 	struct mt7530_hw_vlan_entry new_entry;
1610 	struct mt7530_priv *priv = ds->priv;
1611 
1612 	mutex_lock(&priv->reg_mutex);
1613 
1614 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1615 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1616 
1617 	if (pvid) {
1618 		priv->ports[port].pvid = vlan->vid;
1619 
1620 		/* Accept all frames if PVID is set */
1621 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1622 			   MT7530_VLAN_ACC_ALL);
1623 
1624 		/* Only configure PVID if VLAN filtering is enabled */
1625 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1626 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1627 				   G0_PORT_VID_MASK,
1628 				   G0_PORT_VID(vlan->vid));
1629 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1630 		/* This VLAN is overwritten without PVID, so unset it */
1631 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1632 
1633 		/* Only accept tagged frames if the port is VLAN-aware */
1634 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1635 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1636 				   MT7530_VLAN_ACC_TAGGED);
1637 
1638 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1639 			   G0_PORT_VID_DEF);
1640 	}
1641 
1642 	mutex_unlock(&priv->reg_mutex);
1643 
1644 	return 0;
1645 }
1646 
1647 static int
1648 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1649 		     const struct switchdev_obj_port_vlan *vlan)
1650 {
1651 	struct mt7530_hw_vlan_entry target_entry;
1652 	struct mt7530_priv *priv = ds->priv;
1653 
1654 	mutex_lock(&priv->reg_mutex);
1655 
1656 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1657 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1658 			      mt7530_hw_vlan_del);
1659 
1660 	/* PVID is being restored to the default whenever the PVID port
1661 	 * is being removed from the VLAN.
1662 	 */
1663 	if (priv->ports[port].pvid == vlan->vid) {
1664 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1665 
1666 		/* Only accept tagged frames if the port is VLAN-aware */
1667 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1668 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1669 				   MT7530_VLAN_ACC_TAGGED);
1670 
1671 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1672 			   G0_PORT_VID_DEF);
1673 	}
1674 
1675 
1676 	mutex_unlock(&priv->reg_mutex);
1677 
1678 	return 0;
1679 }
1680 
1681 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1682 {
1683 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1684 				   MIRROR_PORT(val);
1685 }
1686 
1687 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1688 {
1689 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1690 				   MIRROR_PORT(val);
1691 }
1692 
1693 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1694 				  struct dsa_mall_mirror_tc_entry *mirror,
1695 				  bool ingress)
1696 {
1697 	struct mt7530_priv *priv = ds->priv;
1698 	int monitor_port;
1699 	u32 val;
1700 
1701 	/* Check for existent entry */
1702 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1703 		return -EEXIST;
1704 
1705 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1706 
1707 	/* MT7530 only supports one monitor port */
1708 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1709 	if (val & MT753X_MIRROR_EN(priv->id) &&
1710 	    monitor_port != mirror->to_local_port)
1711 		return -EEXIST;
1712 
1713 	val |= MT753X_MIRROR_EN(priv->id);
1714 	val &= ~MT753X_MIRROR_MASK(priv->id);
1715 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1716 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1717 
1718 	val = mt7530_read(priv, MT7530_PCR_P(port));
1719 	if (ingress) {
1720 		val |= PORT_RX_MIR;
1721 		priv->mirror_rx |= BIT(port);
1722 	} else {
1723 		val |= PORT_TX_MIR;
1724 		priv->mirror_tx |= BIT(port);
1725 	}
1726 	mt7530_write(priv, MT7530_PCR_P(port), val);
1727 
1728 	return 0;
1729 }
1730 
1731 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1732 				   struct dsa_mall_mirror_tc_entry *mirror)
1733 {
1734 	struct mt7530_priv *priv = ds->priv;
1735 	u32 val;
1736 
1737 	val = mt7530_read(priv, MT7530_PCR_P(port));
1738 	if (mirror->ingress) {
1739 		val &= ~PORT_RX_MIR;
1740 		priv->mirror_rx &= ~BIT(port);
1741 	} else {
1742 		val &= ~PORT_TX_MIR;
1743 		priv->mirror_tx &= ~BIT(port);
1744 	}
1745 	mt7530_write(priv, MT7530_PCR_P(port), val);
1746 
1747 	if (!priv->mirror_rx && !priv->mirror_tx) {
1748 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1749 		val &= ~MT753X_MIRROR_EN(priv->id);
1750 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1751 	}
1752 }
1753 
1754 static enum dsa_tag_protocol
1755 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1756 		     enum dsa_tag_protocol mp)
1757 {
1758 	return DSA_TAG_PROTO_MTK;
1759 }
1760 
1761 #ifdef CONFIG_GPIOLIB
1762 static inline u32
1763 mt7530_gpio_to_bit(unsigned int offset)
1764 {
1765 	/* Map GPIO offset to register bit
1766 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1767 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1768 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1769 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1770 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1771 	 */
1772 	return BIT(offset + offset / 3);
1773 }
1774 
1775 static int
1776 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1777 {
1778 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1779 	u32 bit = mt7530_gpio_to_bit(offset);
1780 
1781 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1782 }
1783 
1784 static void
1785 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1786 {
1787 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1788 	u32 bit = mt7530_gpio_to_bit(offset);
1789 
1790 	if (value)
1791 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1792 	else
1793 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1794 }
1795 
1796 static int
1797 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1798 {
1799 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1800 	u32 bit = mt7530_gpio_to_bit(offset);
1801 
1802 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1803 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1804 }
1805 
1806 static int
1807 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1808 {
1809 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1810 	u32 bit = mt7530_gpio_to_bit(offset);
1811 
1812 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1813 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1814 
1815 	return 0;
1816 }
1817 
1818 static int
1819 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1820 {
1821 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1822 	u32 bit = mt7530_gpio_to_bit(offset);
1823 
1824 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1825 
1826 	if (value)
1827 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1828 	else
1829 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1830 
1831 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1832 
1833 	return 0;
1834 }
1835 
1836 static int
1837 mt7530_setup_gpio(struct mt7530_priv *priv)
1838 {
1839 	struct device *dev = priv->dev;
1840 	struct gpio_chip *gc;
1841 
1842 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1843 	if (!gc)
1844 		return -ENOMEM;
1845 
1846 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1847 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1848 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1849 
1850 	gc->label = "mt7530";
1851 	gc->parent = dev;
1852 	gc->owner = THIS_MODULE;
1853 	gc->get_direction = mt7530_gpio_get_direction;
1854 	gc->direction_input = mt7530_gpio_direction_input;
1855 	gc->direction_output = mt7530_gpio_direction_output;
1856 	gc->get = mt7530_gpio_get;
1857 	gc->set = mt7530_gpio_set;
1858 	gc->base = -1;
1859 	gc->ngpio = 15;
1860 	gc->can_sleep = true;
1861 
1862 	return devm_gpiochip_add_data(dev, gc, priv);
1863 }
1864 #endif /* CONFIG_GPIOLIB */
1865 
1866 static irqreturn_t
1867 mt7530_irq_thread_fn(int irq, void *dev_id)
1868 {
1869 	struct mt7530_priv *priv = dev_id;
1870 	bool handled = false;
1871 	u32 val;
1872 	int p;
1873 
1874 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1875 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1876 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1877 	mutex_unlock(&priv->bus->mdio_lock);
1878 
1879 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1880 		if (BIT(p) & val) {
1881 			unsigned int irq;
1882 
1883 			irq = irq_find_mapping(priv->irq_domain, p);
1884 			handle_nested_irq(irq);
1885 			handled = true;
1886 		}
1887 	}
1888 
1889 	return IRQ_RETVAL(handled);
1890 }
1891 
1892 static void
1893 mt7530_irq_mask(struct irq_data *d)
1894 {
1895 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1896 
1897 	priv->irq_enable &= ~BIT(d->hwirq);
1898 }
1899 
1900 static void
1901 mt7530_irq_unmask(struct irq_data *d)
1902 {
1903 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1904 
1905 	priv->irq_enable |= BIT(d->hwirq);
1906 }
1907 
1908 static void
1909 mt7530_irq_bus_lock(struct irq_data *d)
1910 {
1911 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1912 
1913 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1914 }
1915 
1916 static void
1917 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1918 {
1919 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1920 
1921 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1922 	mutex_unlock(&priv->bus->mdio_lock);
1923 }
1924 
1925 static struct irq_chip mt7530_irq_chip = {
1926 	.name = KBUILD_MODNAME,
1927 	.irq_mask = mt7530_irq_mask,
1928 	.irq_unmask = mt7530_irq_unmask,
1929 	.irq_bus_lock = mt7530_irq_bus_lock,
1930 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1931 };
1932 
1933 static int
1934 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1935 	       irq_hw_number_t hwirq)
1936 {
1937 	irq_set_chip_data(irq, domain->host_data);
1938 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1939 	irq_set_nested_thread(irq, true);
1940 	irq_set_noprobe(irq);
1941 
1942 	return 0;
1943 }
1944 
1945 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1946 	.map = mt7530_irq_map,
1947 	.xlate = irq_domain_xlate_onecell,
1948 };
1949 
1950 static void
1951 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1952 {
1953 	struct dsa_switch *ds = priv->ds;
1954 	int p;
1955 
1956 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1957 		if (BIT(p) & ds->phys_mii_mask) {
1958 			unsigned int irq;
1959 
1960 			irq = irq_create_mapping(priv->irq_domain, p);
1961 			ds->slave_mii_bus->irq[p] = irq;
1962 		}
1963 	}
1964 }
1965 
1966 static int
1967 mt7530_setup_irq(struct mt7530_priv *priv)
1968 {
1969 	struct device *dev = priv->dev;
1970 	struct device_node *np = dev->of_node;
1971 	int ret;
1972 
1973 	if (!of_property_read_bool(np, "interrupt-controller")) {
1974 		dev_info(dev, "no interrupt support\n");
1975 		return 0;
1976 	}
1977 
1978 	priv->irq = of_irq_get(np, 0);
1979 	if (priv->irq <= 0) {
1980 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
1981 		return priv->irq ? : -EINVAL;
1982 	}
1983 
1984 	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
1985 						 &mt7530_irq_domain_ops, priv);
1986 	if (!priv->irq_domain) {
1987 		dev_err(dev, "failed to create IRQ domain\n");
1988 		return -ENOMEM;
1989 	}
1990 
1991 	/* This register must be set for MT7530 to properly fire interrupts */
1992 	if (priv->id != ID_MT7531)
1993 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
1994 
1995 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
1996 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
1997 	if (ret) {
1998 		irq_domain_remove(priv->irq_domain);
1999 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2000 		return ret;
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 static void
2007 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2008 {
2009 	int p;
2010 
2011 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2012 		if (BIT(p) & priv->ds->phys_mii_mask) {
2013 			unsigned int irq;
2014 
2015 			irq = irq_find_mapping(priv->irq_domain, p);
2016 			irq_dispose_mapping(irq);
2017 		}
2018 	}
2019 }
2020 
2021 static void
2022 mt7530_free_irq_common(struct mt7530_priv *priv)
2023 {
2024 	free_irq(priv->irq, priv);
2025 	irq_domain_remove(priv->irq_domain);
2026 }
2027 
2028 static void
2029 mt7530_free_irq(struct mt7530_priv *priv)
2030 {
2031 	mt7530_free_mdio_irq(priv);
2032 	mt7530_free_irq_common(priv);
2033 }
2034 
2035 static int
2036 mt7530_setup_mdio(struct mt7530_priv *priv)
2037 {
2038 	struct dsa_switch *ds = priv->ds;
2039 	struct device *dev = priv->dev;
2040 	struct mii_bus *bus;
2041 	static int idx;
2042 	int ret;
2043 
2044 	bus = devm_mdiobus_alloc(dev);
2045 	if (!bus)
2046 		return -ENOMEM;
2047 
2048 	ds->slave_mii_bus = bus;
2049 	bus->priv = priv;
2050 	bus->name = KBUILD_MODNAME "-mii";
2051 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2052 	bus->read = mt753x_phy_read;
2053 	bus->write = mt753x_phy_write;
2054 	bus->parent = dev;
2055 	bus->phy_mask = ~ds->phys_mii_mask;
2056 
2057 	if (priv->irq)
2058 		mt7530_setup_mdio_irq(priv);
2059 
2060 	ret = mdiobus_register(bus);
2061 	if (ret) {
2062 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2063 		if (priv->irq)
2064 			mt7530_free_mdio_irq(priv);
2065 	}
2066 
2067 	return ret;
2068 }
2069 
2070 static int
2071 mt7530_setup(struct dsa_switch *ds)
2072 {
2073 	struct mt7530_priv *priv = ds->priv;
2074 	struct device_node *phy_node;
2075 	struct device_node *mac_np;
2076 	struct mt7530_dummy_poll p;
2077 	phy_interface_t interface;
2078 	struct device_node *dn;
2079 	u32 id, val;
2080 	int ret, i;
2081 
2082 	/* The parent node of master netdev which holds the common system
2083 	 * controller also is the container for two GMACs nodes representing
2084 	 * as two netdev instances.
2085 	 */
2086 	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
2087 	ds->assisted_learning_on_cpu_port = true;
2088 	ds->mtu_enforcement_ingress = true;
2089 
2090 	if (priv->id == ID_MT7530) {
2091 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2092 		ret = regulator_enable(priv->core_pwr);
2093 		if (ret < 0) {
2094 			dev_err(priv->dev,
2095 				"Failed to enable core power: %d\n", ret);
2096 			return ret;
2097 		}
2098 
2099 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2100 		ret = regulator_enable(priv->io_pwr);
2101 		if (ret < 0) {
2102 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2103 				ret);
2104 			return ret;
2105 		}
2106 	}
2107 
2108 	/* Reset whole chip through gpio pin or memory-mapped registers for
2109 	 * different type of hardware
2110 	 */
2111 	if (priv->mcm) {
2112 		reset_control_assert(priv->rstc);
2113 		usleep_range(1000, 1100);
2114 		reset_control_deassert(priv->rstc);
2115 	} else {
2116 		gpiod_set_value_cansleep(priv->reset, 0);
2117 		usleep_range(1000, 1100);
2118 		gpiod_set_value_cansleep(priv->reset, 1);
2119 	}
2120 
2121 	/* Waiting for MT7530 got to stable */
2122 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2123 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2124 				 20, 1000000);
2125 	if (ret < 0) {
2126 		dev_err(priv->dev, "reset timeout\n");
2127 		return ret;
2128 	}
2129 
2130 	id = mt7530_read(priv, MT7530_CREV);
2131 	id >>= CHIP_NAME_SHIFT;
2132 	if (id != MT7530_ID) {
2133 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2134 		return -ENODEV;
2135 	}
2136 
2137 	/* Reset the switch through internal reset */
2138 	mt7530_write(priv, MT7530_SYS_CTRL,
2139 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2140 		     SYS_CTRL_REG_RST);
2141 
2142 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
2143 	val = mt7530_read(priv, MT7530_MHWTRAP);
2144 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2145 	val |= MHWTRAP_MANUAL;
2146 	mt7530_write(priv, MT7530_MHWTRAP, val);
2147 
2148 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2149 
2150 	/* Enable and reset MIB counters */
2151 	mt7530_mib_reset(ds);
2152 
2153 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2154 		/* Disable forwarding by default on all ports */
2155 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2156 			   PCR_MATRIX_CLR);
2157 
2158 		/* Disable learning by default on all ports */
2159 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2160 
2161 		if (dsa_is_cpu_port(ds, i)) {
2162 			ret = mt753x_cpu_port_enable(ds, i);
2163 			if (ret)
2164 				return ret;
2165 		} else {
2166 			mt7530_port_disable(ds, i);
2167 
2168 			/* Set default PVID to 0 on all user ports */
2169 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2170 				   G0_PORT_VID_DEF);
2171 		}
2172 		/* Enable consistent egress tag */
2173 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2174 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2175 	}
2176 
2177 	/* Setup port 5 */
2178 	priv->p5_intf_sel = P5_DISABLED;
2179 	interface = PHY_INTERFACE_MODE_NA;
2180 
2181 	if (!dsa_is_unused_port(ds, 5)) {
2182 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2183 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2184 		if (ret && ret != -ENODEV)
2185 			return ret;
2186 	} else {
2187 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2188 		for_each_child_of_node(dn, mac_np) {
2189 			if (!of_device_is_compatible(mac_np,
2190 						     "mediatek,eth-mac"))
2191 				continue;
2192 
2193 			ret = of_property_read_u32(mac_np, "reg", &id);
2194 			if (ret < 0 || id != 1)
2195 				continue;
2196 
2197 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2198 			if (!phy_node)
2199 				continue;
2200 
2201 			if (phy_node->parent == priv->dev->of_node->parent) {
2202 				ret = of_get_phy_mode(mac_np, &interface);
2203 				if (ret && ret != -ENODEV) {
2204 					of_node_put(mac_np);
2205 					return ret;
2206 				}
2207 				id = of_mdio_parse_addr(ds->dev, phy_node);
2208 				if (id == 0)
2209 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2210 				if (id == 4)
2211 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2212 			}
2213 			of_node_put(mac_np);
2214 			of_node_put(phy_node);
2215 			break;
2216 		}
2217 	}
2218 
2219 #ifdef CONFIG_GPIOLIB
2220 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2221 		ret = mt7530_setup_gpio(priv);
2222 		if (ret)
2223 			return ret;
2224 	}
2225 #endif /* CONFIG_GPIOLIB */
2226 
2227 	mt7530_setup_port5(ds, interface);
2228 
2229 	/* Flush the FDB table */
2230 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2231 	if (ret < 0)
2232 		return ret;
2233 
2234 	return 0;
2235 }
2236 
2237 static int
2238 mt7531_setup(struct dsa_switch *ds)
2239 {
2240 	struct mt7530_priv *priv = ds->priv;
2241 	struct mt7530_dummy_poll p;
2242 	u32 val, id;
2243 	int ret, i;
2244 
2245 	/* Reset whole chip through gpio pin or memory-mapped registers for
2246 	 * different type of hardware
2247 	 */
2248 	if (priv->mcm) {
2249 		reset_control_assert(priv->rstc);
2250 		usleep_range(1000, 1100);
2251 		reset_control_deassert(priv->rstc);
2252 	} else {
2253 		gpiod_set_value_cansleep(priv->reset, 0);
2254 		usleep_range(1000, 1100);
2255 		gpiod_set_value_cansleep(priv->reset, 1);
2256 	}
2257 
2258 	/* Waiting for MT7530 got to stable */
2259 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2260 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2261 				 20, 1000000);
2262 	if (ret < 0) {
2263 		dev_err(priv->dev, "reset timeout\n");
2264 		return ret;
2265 	}
2266 
2267 	id = mt7530_read(priv, MT7531_CREV);
2268 	id >>= CHIP_NAME_SHIFT;
2269 
2270 	if (id != MT7531_ID) {
2271 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2272 		return -ENODEV;
2273 	}
2274 
2275 	/* Reset the switch through internal reset */
2276 	mt7530_write(priv, MT7530_SYS_CTRL,
2277 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2278 		     SYS_CTRL_REG_RST);
2279 
2280 	if (mt7531_dual_sgmii_supported(priv)) {
2281 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2282 
2283 		/* Let ds->slave_mii_bus be able to access external phy. */
2284 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2285 			   MT7531_EXT_P_MDC_11);
2286 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2287 			   MT7531_EXT_P_MDIO_12);
2288 	} else {
2289 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2290 	}
2291 	dev_dbg(ds->dev, "P5 support %s interface\n",
2292 		p5_intf_modes(priv->p5_intf_sel));
2293 
2294 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2295 		   MT7531_GPIO0_INTERRUPT);
2296 
2297 	/* Let phylink decide the interface later. */
2298 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2299 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2300 
2301 	/* Enable PHY core PLL, since phy_device has not yet been created
2302 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2303 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2304 	 * function.
2305 	 */
2306 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2307 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2308 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2309 	val &= ~MT7531_PHY_PLL_OFF;
2310 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2311 				 CORE_PLL_GROUP4, val);
2312 
2313 	/* BPDU to CPU port */
2314 	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2315 		   BIT(MT7530_CPU_PORT));
2316 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2317 		   MT753X_BPDU_CPU_ONLY);
2318 
2319 	/* Enable and reset MIB counters */
2320 	mt7530_mib_reset(ds);
2321 
2322 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2323 		/* Disable forwarding by default on all ports */
2324 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2325 			   PCR_MATRIX_CLR);
2326 
2327 		/* Disable learning by default on all ports */
2328 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2329 
2330 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2331 
2332 		if (dsa_is_cpu_port(ds, i)) {
2333 			ret = mt753x_cpu_port_enable(ds, i);
2334 			if (ret)
2335 				return ret;
2336 		} else {
2337 			mt7530_port_disable(ds, i);
2338 
2339 			/* Set default PVID to 0 on all user ports */
2340 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2341 				   G0_PORT_VID_DEF);
2342 		}
2343 
2344 		/* Enable consistent egress tag */
2345 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2346 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2347 	}
2348 
2349 	ds->assisted_learning_on_cpu_port = true;
2350 	ds->mtu_enforcement_ingress = true;
2351 
2352 	/* Flush the FDB table */
2353 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2354 	if (ret < 0)
2355 		return ret;
2356 
2357 	return 0;
2358 }
2359 
2360 static bool
2361 mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
2362 			  const struct phylink_link_state *state)
2363 {
2364 	struct mt7530_priv *priv = ds->priv;
2365 
2366 	switch (port) {
2367 	case 0 ... 4: /* Internal phy */
2368 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2369 			return false;
2370 		break;
2371 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2372 		if (!phy_interface_mode_is_rgmii(state->interface) &&
2373 		    state->interface != PHY_INTERFACE_MODE_MII &&
2374 		    state->interface != PHY_INTERFACE_MODE_GMII)
2375 			return false;
2376 		break;
2377 	case 6: /* 1st cpu port */
2378 		if (state->interface != PHY_INTERFACE_MODE_RGMII &&
2379 		    state->interface != PHY_INTERFACE_MODE_TRGMII)
2380 			return false;
2381 		break;
2382 	default:
2383 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2384 			port);
2385 		return false;
2386 	}
2387 
2388 	return true;
2389 }
2390 
2391 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2392 {
2393 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2394 }
2395 
2396 static bool
2397 mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
2398 			  const struct phylink_link_state *state)
2399 {
2400 	struct mt7530_priv *priv = ds->priv;
2401 
2402 	switch (port) {
2403 	case 0 ... 4: /* Internal phy */
2404 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2405 			return false;
2406 		break;
2407 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2408 		if (mt7531_is_rgmii_port(priv, port))
2409 			return phy_interface_mode_is_rgmii(state->interface);
2410 		fallthrough;
2411 	case 6: /* 1st cpu port supports sgmii/8023z only */
2412 		if (state->interface != PHY_INTERFACE_MODE_SGMII &&
2413 		    !phy_interface_mode_is_8023z(state->interface))
2414 			return false;
2415 		break;
2416 	default:
2417 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2418 			port);
2419 		return false;
2420 	}
2421 
2422 	return true;
2423 }
2424 
2425 static bool
2426 mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
2427 			  const struct phylink_link_state *state)
2428 {
2429 	struct mt7530_priv *priv = ds->priv;
2430 
2431 	return priv->info->phy_mode_supported(ds, port, state);
2432 }
2433 
2434 static int
2435 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2436 {
2437 	struct mt7530_priv *priv = ds->priv;
2438 
2439 	return priv->info->pad_setup(ds, state->interface);
2440 }
2441 
2442 static int
2443 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2444 		  phy_interface_t interface)
2445 {
2446 	struct mt7530_priv *priv = ds->priv;
2447 
2448 	/* Only need to setup port5. */
2449 	if (port != 5)
2450 		return 0;
2451 
2452 	mt7530_setup_port5(priv->ds, interface);
2453 
2454 	return 0;
2455 }
2456 
2457 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2458 			      phy_interface_t interface,
2459 			      struct phy_device *phydev)
2460 {
2461 	u32 val;
2462 
2463 	if (!mt7531_is_rgmii_port(priv, port)) {
2464 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2465 			port);
2466 		return -EINVAL;
2467 	}
2468 
2469 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2470 	val |= GP_CLK_EN;
2471 	val &= ~GP_MODE_MASK;
2472 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2473 	val &= ~CLK_SKEW_IN_MASK;
2474 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2475 	val &= ~CLK_SKEW_OUT_MASK;
2476 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2477 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2478 
2479 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2480 	if (!phydev || phy_driver_is_genphy(phydev)) {
2481 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2482 		switch (interface) {
2483 		case PHY_INTERFACE_MODE_RGMII:
2484 			val |= TXCLK_NO_REVERSE;
2485 			val |= RXCLK_NO_DELAY;
2486 			break;
2487 		case PHY_INTERFACE_MODE_RGMII_RXID:
2488 			val |= TXCLK_NO_REVERSE;
2489 			break;
2490 		case PHY_INTERFACE_MODE_RGMII_TXID:
2491 			val |= RXCLK_NO_DELAY;
2492 			break;
2493 		case PHY_INTERFACE_MODE_RGMII_ID:
2494 			break;
2495 		default:
2496 			return -EINVAL;
2497 		}
2498 	}
2499 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2500 
2501 	return 0;
2502 }
2503 
2504 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
2505 				  unsigned long *supported)
2506 {
2507 	/* Port5 supports ethier RGMII or SGMII.
2508 	 * Port6 supports SGMII only.
2509 	 */
2510 	switch (port) {
2511 	case 5:
2512 		if (mt7531_is_rgmii_port(priv, port))
2513 			break;
2514 		fallthrough;
2515 	case 6:
2516 		phylink_set(supported, 1000baseX_Full);
2517 		phylink_set(supported, 2500baseX_Full);
2518 		phylink_set(supported, 2500baseT_Full);
2519 	}
2520 }
2521 
2522 static void
2523 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
2524 			   unsigned int mode, phy_interface_t interface,
2525 			   int speed, int duplex)
2526 {
2527 	struct mt7530_priv *priv = ds->priv;
2528 	unsigned int val;
2529 
2530 	/* For adjusting speed and duplex of SGMII force mode. */
2531 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2532 	    phylink_autoneg_inband(mode))
2533 		return;
2534 
2535 	/* SGMII force mode setting */
2536 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2537 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2538 
2539 	switch (speed) {
2540 	case SPEED_10:
2541 		val |= MT7531_SGMII_FORCE_SPEED_10;
2542 		break;
2543 	case SPEED_100:
2544 		val |= MT7531_SGMII_FORCE_SPEED_100;
2545 		break;
2546 	case SPEED_1000:
2547 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2548 		break;
2549 	}
2550 
2551 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2552 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2553 	 */
2554 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2555 	    duplex != DUPLEX_FULL)
2556 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2557 
2558 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2559 }
2560 
2561 static bool mt753x_is_mac_port(u32 port)
2562 {
2563 	return (port == 5 || port == 6);
2564 }
2565 
2566 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2567 					 phy_interface_t interface)
2568 {
2569 	u32 val;
2570 
2571 	if (!mt753x_is_mac_port(port))
2572 		return -EINVAL;
2573 
2574 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2575 		   MT7531_SGMII_PHYA_PWD);
2576 
2577 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2578 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2579 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2580 	 * encoding.
2581 	 */
2582 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2583 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2584 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2585 
2586 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2587 
2588 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2589 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2590 	 */
2591 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2592 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2593 		   MT7531_SGMII_FORCE_SPEED_1000);
2594 
2595 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2596 
2597 	return 0;
2598 }
2599 
2600 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2601 				      phy_interface_t interface)
2602 {
2603 	if (!mt753x_is_mac_port(port))
2604 		return -EINVAL;
2605 
2606 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2607 		   MT7531_SGMII_PHYA_PWD);
2608 
2609 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2610 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2611 
2612 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2613 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2614 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2615 
2616 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2617 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2618 
2619 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2620 
2621 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2622 
2623 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2624 
2625 	return 0;
2626 }
2627 
2628 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
2629 {
2630 	struct mt7530_priv *priv = ds->priv;
2631 	u32 val;
2632 
2633 	/* Only restart AN when AN is enabled */
2634 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2635 	if (val & MT7531_SGMII_AN_ENABLE) {
2636 		val |= MT7531_SGMII_AN_RESTART;
2637 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2638 	}
2639 }
2640 
2641 static int
2642 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2643 		  phy_interface_t interface)
2644 {
2645 	struct mt7530_priv *priv = ds->priv;
2646 	struct phy_device *phydev;
2647 	struct dsa_port *dp;
2648 
2649 	if (!mt753x_is_mac_port(port)) {
2650 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2651 		return -EINVAL;
2652 	}
2653 
2654 	switch (interface) {
2655 	case PHY_INTERFACE_MODE_RGMII:
2656 	case PHY_INTERFACE_MODE_RGMII_ID:
2657 	case PHY_INTERFACE_MODE_RGMII_RXID:
2658 	case PHY_INTERFACE_MODE_RGMII_TXID:
2659 		dp = dsa_to_port(ds, port);
2660 		phydev = dp->slave->phydev;
2661 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2662 	case PHY_INTERFACE_MODE_SGMII:
2663 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2664 	case PHY_INTERFACE_MODE_NA:
2665 	case PHY_INTERFACE_MODE_1000BASEX:
2666 	case PHY_INTERFACE_MODE_2500BASEX:
2667 		if (phylink_autoneg_inband(mode))
2668 			return -EINVAL;
2669 
2670 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2671 	default:
2672 		return -EINVAL;
2673 	}
2674 
2675 	return -EINVAL;
2676 }
2677 
2678 static int
2679 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2680 		  const struct phylink_link_state *state)
2681 {
2682 	struct mt7530_priv *priv = ds->priv;
2683 
2684 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2685 }
2686 
2687 static void
2688 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2689 			  const struct phylink_link_state *state)
2690 {
2691 	struct mt7530_priv *priv = ds->priv;
2692 	u32 mcr_cur, mcr_new;
2693 
2694 	if (!mt753x_phy_mode_supported(ds, port, state))
2695 		goto unsupported;
2696 
2697 	switch (port) {
2698 	case 0 ... 4: /* Internal phy */
2699 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2700 			goto unsupported;
2701 		break;
2702 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2703 		if (priv->p5_interface == state->interface)
2704 			break;
2705 
2706 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2707 			goto unsupported;
2708 
2709 		if (priv->p5_intf_sel != P5_DISABLED)
2710 			priv->p5_interface = state->interface;
2711 		break;
2712 	case 6: /* 1st cpu port */
2713 		if (priv->p6_interface == state->interface)
2714 			break;
2715 
2716 		mt753x_pad_setup(ds, state);
2717 
2718 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2719 			goto unsupported;
2720 
2721 		priv->p6_interface = state->interface;
2722 		break;
2723 	default:
2724 unsupported:
2725 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2726 			__func__, phy_modes(state->interface), port);
2727 		return;
2728 	}
2729 
2730 	if (phylink_autoneg_inband(mode) &&
2731 	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2732 		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
2733 			__func__);
2734 		return;
2735 	}
2736 
2737 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2738 	mcr_new = mcr_cur;
2739 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2740 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2741 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2742 
2743 	/* Are we connected to external phy */
2744 	if (port == 5 && dsa_is_user_port(ds, 5))
2745 		mcr_new |= PMCR_EXT_PHY;
2746 
2747 	if (mcr_new != mcr_cur)
2748 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2749 }
2750 
2751 static void
2752 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port)
2753 {
2754 	struct mt7530_priv *priv = ds->priv;
2755 
2756 	if (!priv->info->mac_pcs_an_restart)
2757 		return;
2758 
2759 	priv->info->mac_pcs_an_restart(ds, port);
2760 }
2761 
2762 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2763 					 unsigned int mode,
2764 					 phy_interface_t interface)
2765 {
2766 	struct mt7530_priv *priv = ds->priv;
2767 
2768 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2769 }
2770 
2771 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port,
2772 				   unsigned int mode, phy_interface_t interface,
2773 				   int speed, int duplex)
2774 {
2775 	struct mt7530_priv *priv = ds->priv;
2776 
2777 	if (!priv->info->mac_pcs_link_up)
2778 		return;
2779 
2780 	priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2781 }
2782 
2783 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2784 				       unsigned int mode,
2785 				       phy_interface_t interface,
2786 				       struct phy_device *phydev,
2787 				       int speed, int duplex,
2788 				       bool tx_pause, bool rx_pause)
2789 {
2790 	struct mt7530_priv *priv = ds->priv;
2791 	u32 mcr;
2792 
2793 	mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2794 
2795 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2796 
2797 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2798 	 * variants.
2799 	 */
2800 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2801 	    (phy_interface_mode_is_8023z(interface))) {
2802 		speed = SPEED_1000;
2803 		duplex = DUPLEX_FULL;
2804 	}
2805 
2806 	switch (speed) {
2807 	case SPEED_1000:
2808 		mcr |= PMCR_FORCE_SPEED_1000;
2809 		break;
2810 	case SPEED_100:
2811 		mcr |= PMCR_FORCE_SPEED_100;
2812 		break;
2813 	}
2814 	if (duplex == DUPLEX_FULL) {
2815 		mcr |= PMCR_FORCE_FDX;
2816 		if (tx_pause)
2817 			mcr |= PMCR_TX_FC_EN;
2818 		if (rx_pause)
2819 			mcr |= PMCR_RX_FC_EN;
2820 	}
2821 
2822 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, 0) >= 0) {
2823 		switch (speed) {
2824 		case SPEED_1000:
2825 			mcr |= PMCR_FORCE_EEE1G;
2826 			break;
2827 		case SPEED_100:
2828 			mcr |= PMCR_FORCE_EEE100;
2829 			break;
2830 		}
2831 	}
2832 
2833 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2834 }
2835 
2836 static int
2837 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2838 {
2839 	struct mt7530_priv *priv = ds->priv;
2840 	phy_interface_t interface;
2841 	int speed;
2842 	int ret;
2843 
2844 	switch (port) {
2845 	case 5:
2846 		if (mt7531_is_rgmii_port(priv, port))
2847 			interface = PHY_INTERFACE_MODE_RGMII;
2848 		else
2849 			interface = PHY_INTERFACE_MODE_2500BASEX;
2850 
2851 		priv->p5_interface = interface;
2852 		break;
2853 	case 6:
2854 		interface = PHY_INTERFACE_MODE_2500BASEX;
2855 
2856 		mt7531_pad_setup(ds, interface);
2857 
2858 		priv->p6_interface = interface;
2859 		break;
2860 	default:
2861 		return -EINVAL;
2862 	}
2863 
2864 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2865 		speed = SPEED_2500;
2866 	else
2867 		speed = SPEED_1000;
2868 
2869 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2870 	if (ret)
2871 		return ret;
2872 	mt7530_write(priv, MT7530_PMCR_P(port),
2873 		     PMCR_CPU_PORT_SETTING(priv->id));
2874 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2875 				   speed, DUPLEX_FULL, true, true);
2876 
2877 	return 0;
2878 }
2879 
2880 static void
2881 mt7530_mac_port_validate(struct dsa_switch *ds, int port,
2882 			 unsigned long *supported)
2883 {
2884 	if (port == 5)
2885 		phylink_set(supported, 1000baseX_Full);
2886 }
2887 
2888 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port,
2889 				     unsigned long *supported)
2890 {
2891 	struct mt7530_priv *priv = ds->priv;
2892 
2893 	mt7531_sgmii_validate(priv, port, supported);
2894 }
2895 
2896 static void
2897 mt753x_phylink_validate(struct dsa_switch *ds, int port,
2898 			unsigned long *supported,
2899 			struct phylink_link_state *state)
2900 {
2901 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2902 	struct mt7530_priv *priv = ds->priv;
2903 
2904 	if (state->interface != PHY_INTERFACE_MODE_NA &&
2905 	    !mt753x_phy_mode_supported(ds, port, state)) {
2906 		linkmode_zero(supported);
2907 		return;
2908 	}
2909 
2910 	phylink_set_port_modes(mask);
2911 
2912 	if (state->interface != PHY_INTERFACE_MODE_TRGMII ||
2913 	    !phy_interface_mode_is_8023z(state->interface)) {
2914 		phylink_set(mask, 10baseT_Half);
2915 		phylink_set(mask, 10baseT_Full);
2916 		phylink_set(mask, 100baseT_Half);
2917 		phylink_set(mask, 100baseT_Full);
2918 		phylink_set(mask, Autoneg);
2919 	}
2920 
2921 	/* This switch only supports 1G full-duplex. */
2922 	if (state->interface != PHY_INTERFACE_MODE_MII)
2923 		phylink_set(mask, 1000baseT_Full);
2924 
2925 	priv->info->mac_port_validate(ds, port, mask);
2926 
2927 	phylink_set(mask, Pause);
2928 	phylink_set(mask, Asym_Pause);
2929 
2930 	linkmode_and(supported, supported, mask);
2931 	linkmode_and(state->advertising, state->advertising, mask);
2932 
2933 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
2934 	 * to advertise both, only report advertising at 2500BaseX.
2935 	 */
2936 	phylink_helper_basex_speed(state);
2937 }
2938 
2939 static int
2940 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
2941 			      struct phylink_link_state *state)
2942 {
2943 	struct mt7530_priv *priv = ds->priv;
2944 	u32 pmsr;
2945 
2946 	if (port < 0 || port >= MT7530_NUM_PORTS)
2947 		return -EINVAL;
2948 
2949 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2950 
2951 	state->link = (pmsr & PMSR_LINK);
2952 	state->an_complete = state->link;
2953 	state->duplex = !!(pmsr & PMSR_DPX);
2954 
2955 	switch (pmsr & PMSR_SPEED_MASK) {
2956 	case PMSR_SPEED_10:
2957 		state->speed = SPEED_10;
2958 		break;
2959 	case PMSR_SPEED_100:
2960 		state->speed = SPEED_100;
2961 		break;
2962 	case PMSR_SPEED_1000:
2963 		state->speed = SPEED_1000;
2964 		break;
2965 	default:
2966 		state->speed = SPEED_UNKNOWN;
2967 		break;
2968 	}
2969 
2970 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2971 	if (pmsr & PMSR_RX_FC)
2972 		state->pause |= MLO_PAUSE_RX;
2973 	if (pmsr & PMSR_TX_FC)
2974 		state->pause |= MLO_PAUSE_TX;
2975 
2976 	return 1;
2977 }
2978 
2979 static int
2980 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2981 			      struct phylink_link_state *state)
2982 {
2983 	u32 status, val;
2984 	u16 config_reg;
2985 
2986 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2987 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2988 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
2989 	    (status & MT7531_SGMII_AN_ENABLE)) {
2990 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
2991 		config_reg = val >> 16;
2992 
2993 		switch (config_reg & LPA_SGMII_SPD_MASK) {
2994 		case LPA_SGMII_1000:
2995 			state->speed = SPEED_1000;
2996 			break;
2997 		case LPA_SGMII_100:
2998 			state->speed = SPEED_100;
2999 			break;
3000 		case LPA_SGMII_10:
3001 			state->speed = SPEED_10;
3002 			break;
3003 		default:
3004 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
3005 			state->link = false;
3006 			return -EINVAL;
3007 		}
3008 
3009 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
3010 			state->duplex = DUPLEX_FULL;
3011 		else
3012 			state->duplex = DUPLEX_HALF;
3013 	}
3014 
3015 	return 0;
3016 }
3017 
3018 static int
3019 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port,
3020 			      struct phylink_link_state *state)
3021 {
3022 	struct mt7530_priv *priv = ds->priv;
3023 
3024 	if (state->interface == PHY_INTERFACE_MODE_SGMII)
3025 		return mt7531_sgmii_pcs_get_state_an(priv, port, state);
3026 
3027 	return -EOPNOTSUPP;
3028 }
3029 
3030 static int
3031 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port,
3032 			      struct phylink_link_state *state)
3033 {
3034 	struct mt7530_priv *priv = ds->priv;
3035 
3036 	return priv->info->mac_port_get_state(ds, port, state);
3037 }
3038 
3039 static int
3040 mt753x_setup(struct dsa_switch *ds)
3041 {
3042 	struct mt7530_priv *priv = ds->priv;
3043 	int ret = priv->info->sw_setup(ds);
3044 
3045 	if (ret)
3046 		return ret;
3047 
3048 	ret = mt7530_setup_irq(priv);
3049 	if (ret)
3050 		return ret;
3051 
3052 	ret = mt7530_setup_mdio(priv);
3053 	if (ret && priv->irq)
3054 		mt7530_free_irq_common(priv);
3055 
3056 	return ret;
3057 }
3058 
3059 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3060 			      struct ethtool_eee *e)
3061 {
3062 	struct mt7530_priv *priv = ds->priv;
3063 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3064 
3065 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3066 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3067 
3068 	return 0;
3069 }
3070 
3071 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3072 			      struct ethtool_eee *e)
3073 {
3074 	struct mt7530_priv *priv = ds->priv;
3075 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3076 
3077 	if (e->tx_lpi_timer > 0xFFF)
3078 		return -EINVAL;
3079 
3080 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3081 	if (!e->tx_lpi_enabled)
3082 		/* Force LPI Mode without a delay */
3083 		set |= LPI_MODE_EN;
3084 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3085 
3086 	return 0;
3087 }
3088 
3089 static const struct dsa_switch_ops mt7530_switch_ops = {
3090 	.get_tag_protocol	= mtk_get_tag_protocol,
3091 	.setup			= mt753x_setup,
3092 	.get_strings		= mt7530_get_strings,
3093 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3094 	.get_sset_count		= mt7530_get_sset_count,
3095 	.set_ageing_time	= mt7530_set_ageing_time,
3096 	.port_enable		= mt7530_port_enable,
3097 	.port_disable		= mt7530_port_disable,
3098 	.port_change_mtu	= mt7530_port_change_mtu,
3099 	.port_max_mtu		= mt7530_port_max_mtu,
3100 	.port_stp_state_set	= mt7530_stp_state_set,
3101 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3102 	.port_bridge_flags	= mt7530_port_bridge_flags,
3103 	.port_bridge_join	= mt7530_port_bridge_join,
3104 	.port_bridge_leave	= mt7530_port_bridge_leave,
3105 	.port_fdb_add		= mt7530_port_fdb_add,
3106 	.port_fdb_del		= mt7530_port_fdb_del,
3107 	.port_fdb_dump		= mt7530_port_fdb_dump,
3108 	.port_mdb_add		= mt7530_port_mdb_add,
3109 	.port_mdb_del		= mt7530_port_mdb_del,
3110 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3111 	.port_vlan_add		= mt7530_port_vlan_add,
3112 	.port_vlan_del		= mt7530_port_vlan_del,
3113 	.port_mirror_add	= mt753x_port_mirror_add,
3114 	.port_mirror_del	= mt753x_port_mirror_del,
3115 	.phylink_validate	= mt753x_phylink_validate,
3116 	.phylink_mac_link_state	= mt753x_phylink_mac_link_state,
3117 	.phylink_mac_config	= mt753x_phylink_mac_config,
3118 	.phylink_mac_an_restart	= mt753x_phylink_mac_an_restart,
3119 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3120 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3121 	.get_mac_eee		= mt753x_get_mac_eee,
3122 	.set_mac_eee		= mt753x_set_mac_eee,
3123 };
3124 
3125 static const struct mt753x_info mt753x_table[] = {
3126 	[ID_MT7621] = {
3127 		.id = ID_MT7621,
3128 		.sw_setup = mt7530_setup,
3129 		.phy_read = mt7530_phy_read,
3130 		.phy_write = mt7530_phy_write,
3131 		.pad_setup = mt7530_pad_clk_setup,
3132 		.phy_mode_supported = mt7530_phy_mode_supported,
3133 		.mac_port_validate = mt7530_mac_port_validate,
3134 		.mac_port_get_state = mt7530_phylink_mac_link_state,
3135 		.mac_port_config = mt7530_mac_config,
3136 	},
3137 	[ID_MT7530] = {
3138 		.id = ID_MT7530,
3139 		.sw_setup = mt7530_setup,
3140 		.phy_read = mt7530_phy_read,
3141 		.phy_write = mt7530_phy_write,
3142 		.pad_setup = mt7530_pad_clk_setup,
3143 		.phy_mode_supported = mt7530_phy_mode_supported,
3144 		.mac_port_validate = mt7530_mac_port_validate,
3145 		.mac_port_get_state = mt7530_phylink_mac_link_state,
3146 		.mac_port_config = mt7530_mac_config,
3147 	},
3148 	[ID_MT7531] = {
3149 		.id = ID_MT7531,
3150 		.sw_setup = mt7531_setup,
3151 		.phy_read = mt7531_ind_phy_read,
3152 		.phy_write = mt7531_ind_phy_write,
3153 		.pad_setup = mt7531_pad_setup,
3154 		.cpu_port_config = mt7531_cpu_port_config,
3155 		.phy_mode_supported = mt7531_phy_mode_supported,
3156 		.mac_port_validate = mt7531_mac_port_validate,
3157 		.mac_port_get_state = mt7531_phylink_mac_link_state,
3158 		.mac_port_config = mt7531_mac_config,
3159 		.mac_pcs_an_restart = mt7531_sgmii_restart_an,
3160 		.mac_pcs_link_up = mt7531_sgmii_link_up_force,
3161 	},
3162 };
3163 
3164 static const struct of_device_id mt7530_of_match[] = {
3165 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3166 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3167 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3168 	{ /* sentinel */ },
3169 };
3170 MODULE_DEVICE_TABLE(of, mt7530_of_match);
3171 
3172 static int
3173 mt7530_probe(struct mdio_device *mdiodev)
3174 {
3175 	struct mt7530_priv *priv;
3176 	struct device_node *dn;
3177 
3178 	dn = mdiodev->dev.of_node;
3179 
3180 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3181 	if (!priv)
3182 		return -ENOMEM;
3183 
3184 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3185 	if (!priv->ds)
3186 		return -ENOMEM;
3187 
3188 	priv->ds->dev = &mdiodev->dev;
3189 	priv->ds->num_ports = DSA_MAX_PORTS;
3190 
3191 	/* Use medatek,mcm property to distinguish hardware type that would
3192 	 * casues a little bit differences on power-on sequence.
3193 	 */
3194 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3195 	if (priv->mcm) {
3196 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3197 
3198 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3199 		if (IS_ERR(priv->rstc)) {
3200 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3201 			return PTR_ERR(priv->rstc);
3202 		}
3203 	}
3204 
3205 	/* Get the hardware identifier from the devicetree node.
3206 	 * We will need it for some of the clock and regulator setup.
3207 	 */
3208 	priv->info = of_device_get_match_data(&mdiodev->dev);
3209 	if (!priv->info)
3210 		return -EINVAL;
3211 
3212 	/* Sanity check if these required device operations are filled
3213 	 * properly.
3214 	 */
3215 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3216 	    !priv->info->phy_read || !priv->info->phy_write ||
3217 	    !priv->info->phy_mode_supported ||
3218 	    !priv->info->mac_port_validate ||
3219 	    !priv->info->mac_port_get_state || !priv->info->mac_port_config)
3220 		return -EINVAL;
3221 
3222 	priv->id = priv->info->id;
3223 
3224 	if (priv->id == ID_MT7530) {
3225 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3226 		if (IS_ERR(priv->core_pwr))
3227 			return PTR_ERR(priv->core_pwr);
3228 
3229 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3230 		if (IS_ERR(priv->io_pwr))
3231 			return PTR_ERR(priv->io_pwr);
3232 	}
3233 
3234 	/* Not MCM that indicates switch works as the remote standalone
3235 	 * integrated circuit so the GPIO pin would be used to complete
3236 	 * the reset, otherwise memory-mapped register accessing used
3237 	 * through syscon provides in the case of MCM.
3238 	 */
3239 	if (!priv->mcm) {
3240 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3241 						      GPIOD_OUT_LOW);
3242 		if (IS_ERR(priv->reset)) {
3243 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3244 			return PTR_ERR(priv->reset);
3245 		}
3246 	}
3247 
3248 	priv->bus = mdiodev->bus;
3249 	priv->dev = &mdiodev->dev;
3250 	priv->ds->priv = priv;
3251 	priv->ds->ops = &mt7530_switch_ops;
3252 	mutex_init(&priv->reg_mutex);
3253 	dev_set_drvdata(&mdiodev->dev, priv);
3254 
3255 	return dsa_register_switch(priv->ds);
3256 }
3257 
3258 static void
3259 mt7530_remove(struct mdio_device *mdiodev)
3260 {
3261 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3262 	int ret = 0;
3263 
3264 	ret = regulator_disable(priv->core_pwr);
3265 	if (ret < 0)
3266 		dev_err(priv->dev,
3267 			"Failed to disable core power: %d\n", ret);
3268 
3269 	ret = regulator_disable(priv->io_pwr);
3270 	if (ret < 0)
3271 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3272 			ret);
3273 
3274 	if (priv->irq)
3275 		mt7530_free_irq(priv);
3276 
3277 	dsa_unregister_switch(priv->ds);
3278 	mutex_destroy(&priv->reg_mutex);
3279 }
3280 
3281 static struct mdio_driver mt7530_mdio_driver = {
3282 	.probe  = mt7530_probe,
3283 	.remove = mt7530_remove,
3284 	.mdiodrv.driver = {
3285 		.name = "mt7530",
3286 		.of_match_table = mt7530_of_match,
3287 	},
3288 };
3289 
3290 mdio_module_driver(mt7530_mdio_driver);
3291 
3292 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3293 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3294 MODULE_LICENSE("GPL");
3295