1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Mediatek MT7530 DSA Switch driver 4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com> 5 */ 6 #include <linux/etherdevice.h> 7 #include <linux/if_bridge.h> 8 #include <linux/iopoll.h> 9 #include <linux/mdio.h> 10 #include <linux/mfd/syscon.h> 11 #include <linux/module.h> 12 #include <linux/netdevice.h> 13 #include <linux/of_irq.h> 14 #include <linux/of_mdio.h> 15 #include <linux/of_net.h> 16 #include <linux/of_platform.h> 17 #include <linux/phylink.h> 18 #include <linux/regmap.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/reset.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/gpio/driver.h> 23 #include <net/dsa.h> 24 25 #include "mt7530.h" 26 27 /* String, offset, and register size in bytes if different from 4 bytes */ 28 static const struct mt7530_mib_desc mt7530_mib[] = { 29 MIB_DESC(1, 0x00, "TxDrop"), 30 MIB_DESC(1, 0x04, "TxCrcErr"), 31 MIB_DESC(1, 0x08, "TxUnicast"), 32 MIB_DESC(1, 0x0c, "TxMulticast"), 33 MIB_DESC(1, 0x10, "TxBroadcast"), 34 MIB_DESC(1, 0x14, "TxCollision"), 35 MIB_DESC(1, 0x18, "TxSingleCollision"), 36 MIB_DESC(1, 0x1c, "TxMultipleCollision"), 37 MIB_DESC(1, 0x20, "TxDeferred"), 38 MIB_DESC(1, 0x24, "TxLateCollision"), 39 MIB_DESC(1, 0x28, "TxExcessiveCollistion"), 40 MIB_DESC(1, 0x2c, "TxPause"), 41 MIB_DESC(1, 0x30, "TxPktSz64"), 42 MIB_DESC(1, 0x34, "TxPktSz65To127"), 43 MIB_DESC(1, 0x38, "TxPktSz128To255"), 44 MIB_DESC(1, 0x3c, "TxPktSz256To511"), 45 MIB_DESC(1, 0x40, "TxPktSz512To1023"), 46 MIB_DESC(1, 0x44, "Tx1024ToMax"), 47 MIB_DESC(2, 0x48, "TxBytes"), 48 MIB_DESC(1, 0x60, "RxDrop"), 49 MIB_DESC(1, 0x64, "RxFiltering"), 50 MIB_DESC(1, 0x68, "RxUnicast"), 51 MIB_DESC(1, 0x6c, "RxMulticast"), 52 MIB_DESC(1, 0x70, "RxBroadcast"), 53 MIB_DESC(1, 0x74, "RxAlignErr"), 54 MIB_DESC(1, 0x78, "RxCrcErr"), 55 MIB_DESC(1, 0x7c, "RxUnderSizeErr"), 56 MIB_DESC(1, 0x80, "RxFragErr"), 57 MIB_DESC(1, 0x84, "RxOverSzErr"), 58 MIB_DESC(1, 0x88, "RxJabberErr"), 59 MIB_DESC(1, 0x8c, "RxPause"), 60 MIB_DESC(1, 0x90, "RxPktSz64"), 61 MIB_DESC(1, 0x94, "RxPktSz65To127"), 62 MIB_DESC(1, 0x98, "RxPktSz128To255"), 63 MIB_DESC(1, 0x9c, "RxPktSz256To511"), 64 MIB_DESC(1, 0xa0, "RxPktSz512To1023"), 65 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"), 66 MIB_DESC(2, 0xa8, "RxBytes"), 67 MIB_DESC(1, 0xb0, "RxCtrlDrop"), 68 MIB_DESC(1, 0xb4, "RxIngressDrop"), 69 MIB_DESC(1, 0xb8, "RxArlDrop"), 70 }; 71 72 /* Since phy_device has not yet been created and 73 * phy_{read,write}_mmd_indirect is not available, we provide our own 74 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers 75 * to complete this function. 76 */ 77 static int 78 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad) 79 { 80 struct mii_bus *bus = priv->bus; 81 int value, ret; 82 83 /* Write the desired MMD Devad */ 84 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 85 if (ret < 0) 86 goto err; 87 88 /* Write the desired MMD register address */ 89 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 90 if (ret < 0) 91 goto err; 92 93 /* Select the Function : DATA with no post increment */ 94 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 95 if (ret < 0) 96 goto err; 97 98 /* Read the content of the MMD's selected register */ 99 value = bus->read(bus, 0, MII_MMD_DATA); 100 101 return value; 102 err: 103 dev_err(&bus->dev, "failed to read mmd register\n"); 104 105 return ret; 106 } 107 108 static int 109 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad, 110 int devad, u32 data) 111 { 112 struct mii_bus *bus = priv->bus; 113 int ret; 114 115 /* Write the desired MMD Devad */ 116 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 117 if (ret < 0) 118 goto err; 119 120 /* Write the desired MMD register address */ 121 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 122 if (ret < 0) 123 goto err; 124 125 /* Select the Function : DATA with no post increment */ 126 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 127 if (ret < 0) 128 goto err; 129 130 /* Write the data into MMD's selected register */ 131 ret = bus->write(bus, 0, MII_MMD_DATA, data); 132 err: 133 if (ret < 0) 134 dev_err(&bus->dev, 135 "failed to write mmd register\n"); 136 return ret; 137 } 138 139 static void 140 core_write(struct mt7530_priv *priv, u32 reg, u32 val) 141 { 142 struct mii_bus *bus = priv->bus; 143 144 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 145 146 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 147 148 mutex_unlock(&bus->mdio_lock); 149 } 150 151 static void 152 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) 153 { 154 struct mii_bus *bus = priv->bus; 155 u32 val; 156 157 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 158 159 val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2); 160 val &= ~mask; 161 val |= set; 162 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 163 164 mutex_unlock(&bus->mdio_lock); 165 } 166 167 static void 168 core_set(struct mt7530_priv *priv, u32 reg, u32 val) 169 { 170 core_rmw(priv, reg, 0, val); 171 } 172 173 static void 174 core_clear(struct mt7530_priv *priv, u32 reg, u32 val) 175 { 176 core_rmw(priv, reg, val, 0); 177 } 178 179 static int 180 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val) 181 { 182 struct mii_bus *bus = priv->bus; 183 u16 page, r, lo, hi; 184 int ret; 185 186 page = (reg >> 6) & 0x3ff; 187 r = (reg >> 2) & 0xf; 188 lo = val & 0xffff; 189 hi = val >> 16; 190 191 /* MT7530 uses 31 as the pseudo port */ 192 ret = bus->write(bus, 0x1f, 0x1f, page); 193 if (ret < 0) 194 goto err; 195 196 ret = bus->write(bus, 0x1f, r, lo); 197 if (ret < 0) 198 goto err; 199 200 ret = bus->write(bus, 0x1f, 0x10, hi); 201 err: 202 if (ret < 0) 203 dev_err(&bus->dev, 204 "failed to write mt7530 register\n"); 205 return ret; 206 } 207 208 static u32 209 mt7530_mii_read(struct mt7530_priv *priv, u32 reg) 210 { 211 struct mii_bus *bus = priv->bus; 212 u16 page, r, lo, hi; 213 int ret; 214 215 page = (reg >> 6) & 0x3ff; 216 r = (reg >> 2) & 0xf; 217 218 /* MT7530 uses 31 as the pseudo port */ 219 ret = bus->write(bus, 0x1f, 0x1f, page); 220 if (ret < 0) { 221 dev_err(&bus->dev, 222 "failed to read mt7530 register\n"); 223 return ret; 224 } 225 226 lo = bus->read(bus, 0x1f, r); 227 hi = bus->read(bus, 0x1f, 0x10); 228 229 return (hi << 16) | (lo & 0xffff); 230 } 231 232 static void 233 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val) 234 { 235 struct mii_bus *bus = priv->bus; 236 237 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 238 239 mt7530_mii_write(priv, reg, val); 240 241 mutex_unlock(&bus->mdio_lock); 242 } 243 244 static u32 245 _mt7530_unlocked_read(struct mt7530_dummy_poll *p) 246 { 247 return mt7530_mii_read(p->priv, p->reg); 248 } 249 250 static u32 251 _mt7530_read(struct mt7530_dummy_poll *p) 252 { 253 struct mii_bus *bus = p->priv->bus; 254 u32 val; 255 256 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 257 258 val = mt7530_mii_read(p->priv, p->reg); 259 260 mutex_unlock(&bus->mdio_lock); 261 262 return val; 263 } 264 265 static u32 266 mt7530_read(struct mt7530_priv *priv, u32 reg) 267 { 268 struct mt7530_dummy_poll p; 269 270 INIT_MT7530_DUMMY_POLL(&p, priv, reg); 271 return _mt7530_read(&p); 272 } 273 274 static void 275 mt7530_rmw(struct mt7530_priv *priv, u32 reg, 276 u32 mask, u32 set) 277 { 278 struct mii_bus *bus = priv->bus; 279 u32 val; 280 281 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 282 283 val = mt7530_mii_read(priv, reg); 284 val &= ~mask; 285 val |= set; 286 mt7530_mii_write(priv, reg, val); 287 288 mutex_unlock(&bus->mdio_lock); 289 } 290 291 static void 292 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val) 293 { 294 mt7530_rmw(priv, reg, 0, val); 295 } 296 297 static void 298 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val) 299 { 300 mt7530_rmw(priv, reg, val, 0); 301 } 302 303 static int 304 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp) 305 { 306 u32 val; 307 int ret; 308 struct mt7530_dummy_poll p; 309 310 /* Set the command operating upon the MAC address entries */ 311 val = ATC_BUSY | ATC_MAT(0) | cmd; 312 mt7530_write(priv, MT7530_ATC, val); 313 314 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC); 315 ret = readx_poll_timeout(_mt7530_read, &p, val, 316 !(val & ATC_BUSY), 20, 20000); 317 if (ret < 0) { 318 dev_err(priv->dev, "reset timeout\n"); 319 return ret; 320 } 321 322 /* Additional sanity for read command if the specified 323 * entry is invalid 324 */ 325 val = mt7530_read(priv, MT7530_ATC); 326 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID)) 327 return -EINVAL; 328 329 if (rsp) 330 *rsp = val; 331 332 return 0; 333 } 334 335 static void 336 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb) 337 { 338 u32 reg[3]; 339 int i; 340 341 /* Read from ARL table into an array */ 342 for (i = 0; i < 3; i++) { 343 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4)); 344 345 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n", 346 __func__, __LINE__, i, reg[i]); 347 } 348 349 fdb->vid = (reg[1] >> CVID) & CVID_MASK; 350 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK; 351 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK; 352 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK; 353 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK; 354 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK; 355 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK; 356 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK; 357 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK; 358 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT; 359 } 360 361 static void 362 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid, 363 u8 port_mask, const u8 *mac, 364 u8 aging, u8 type) 365 { 366 u32 reg[3] = { 0 }; 367 int i; 368 369 reg[1] |= vid & CVID_MASK; 370 reg[1] |= ATA2_IVL; 371 reg[1] |= ATA2_FID(FID_BRIDGED); 372 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER; 373 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP; 374 /* STATIC_ENT indicate that entry is static wouldn't 375 * be aged out and STATIC_EMP specified as erasing an 376 * entry 377 */ 378 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS; 379 reg[1] |= mac[5] << MAC_BYTE_5; 380 reg[1] |= mac[4] << MAC_BYTE_4; 381 reg[0] |= mac[3] << MAC_BYTE_3; 382 reg[0] |= mac[2] << MAC_BYTE_2; 383 reg[0] |= mac[1] << MAC_BYTE_1; 384 reg[0] |= mac[0] << MAC_BYTE_0; 385 386 /* Write array into the ARL table */ 387 for (i = 0; i < 3; i++) 388 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]); 389 } 390 391 /* Setup TX circuit including relevant PAD and driving */ 392 static int 393 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface) 394 { 395 struct mt7530_priv *priv = ds->priv; 396 u32 ncpo1, ssc_delta, trgint, i, xtal; 397 398 xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK; 399 400 if (xtal == HWTRAP_XTAL_20MHZ) { 401 dev_err(priv->dev, 402 "%s: MT7530 with a 20MHz XTAL is not supported!\n", 403 __func__); 404 return -EINVAL; 405 } 406 407 switch (interface) { 408 case PHY_INTERFACE_MODE_RGMII: 409 trgint = 0; 410 /* PLL frequency: 125MHz */ 411 ncpo1 = 0x0c80; 412 break; 413 case PHY_INTERFACE_MODE_TRGMII: 414 trgint = 1; 415 if (priv->id == ID_MT7621) { 416 /* PLL frequency: 150MHz: 1.2GBit */ 417 if (xtal == HWTRAP_XTAL_40MHZ) 418 ncpo1 = 0x0780; 419 if (xtal == HWTRAP_XTAL_25MHZ) 420 ncpo1 = 0x0a00; 421 } else { /* PLL frequency: 250MHz: 2.0Gbit */ 422 if (xtal == HWTRAP_XTAL_40MHZ) 423 ncpo1 = 0x0c80; 424 if (xtal == HWTRAP_XTAL_25MHZ) 425 ncpo1 = 0x1400; 426 } 427 break; 428 default: 429 dev_err(priv->dev, "xMII interface %d not supported\n", 430 interface); 431 return -EINVAL; 432 } 433 434 if (xtal == HWTRAP_XTAL_25MHZ) 435 ssc_delta = 0x57; 436 else 437 ssc_delta = 0x87; 438 439 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, 440 P6_INTF_MODE(trgint)); 441 442 /* Lower Tx Driving for TRGMII path */ 443 for (i = 0 ; i < NUM_TRGMII_CTRL ; i++) 444 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i), 445 TD_DM_DRVP(8) | TD_DM_DRVN(8)); 446 447 /* Disable MT7530 core and TRGMII Tx clocks */ 448 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, 449 REG_GSWCK_EN | REG_TRGMIICK_EN); 450 451 /* Setup core clock for MT7530 */ 452 /* Disable PLL */ 453 core_write(priv, CORE_GSWPLL_GRP1, 0); 454 455 /* Set core clock into 500Mhz */ 456 core_write(priv, CORE_GSWPLL_GRP2, 457 RG_GSWPLL_POSDIV_500M(1) | 458 RG_GSWPLL_FBKDIV_500M(25)); 459 460 /* Enable PLL */ 461 core_write(priv, CORE_GSWPLL_GRP1, 462 RG_GSWPLL_EN_PRE | 463 RG_GSWPLL_POSDIV_200M(2) | 464 RG_GSWPLL_FBKDIV_200M(32)); 465 466 /* Setup the MT7530 TRGMII Tx Clock */ 467 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1)); 468 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0)); 469 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta)); 470 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta)); 471 core_write(priv, CORE_PLL_GROUP4, 472 RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN | 473 RG_SYSPLL_BIAS_LPF_EN); 474 core_write(priv, CORE_PLL_GROUP2, 475 RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN | 476 RG_SYSPLL_POSDIV(1)); 477 core_write(priv, CORE_PLL_GROUP7, 478 RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) | 479 RG_LCDDS_PWDB | RG_LCDDS_ISO_EN); 480 481 /* Enable MT7530 core and TRGMII Tx clocks */ 482 core_set(priv, CORE_TRGMII_GSW_CLK_CG, 483 REG_GSWCK_EN | REG_TRGMIICK_EN); 484 485 if (!trgint) 486 for (i = 0 ; i < NUM_TRGMII_CTRL; i++) 487 mt7530_rmw(priv, MT7530_TRGMII_RD(i), 488 RD_TAP_MASK, RD_TAP(16)); 489 return 0; 490 } 491 492 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv) 493 { 494 u32 val; 495 496 val = mt7530_read(priv, MT7531_TOP_SIG_SR); 497 498 return (val & PAD_DUAL_SGMII_EN) != 0; 499 } 500 501 static int 502 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface) 503 { 504 struct mt7530_priv *priv = ds->priv; 505 u32 top_sig; 506 u32 hwstrap; 507 u32 xtal; 508 u32 val; 509 510 if (mt7531_dual_sgmii_supported(priv)) 511 return 0; 512 513 val = mt7530_read(priv, MT7531_CREV); 514 top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR); 515 hwstrap = mt7530_read(priv, MT7531_HWTRAP); 516 if ((val & CHIP_REV_M) > 0) 517 xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ : 518 HWTRAP_XTAL_FSEL_25MHZ; 519 else 520 xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK; 521 522 /* Step 1 : Disable MT7531 COREPLL */ 523 val = mt7530_read(priv, MT7531_PLLGP_EN); 524 val &= ~EN_COREPLL; 525 mt7530_write(priv, MT7531_PLLGP_EN, val); 526 527 /* Step 2: switch to XTAL output */ 528 val = mt7530_read(priv, MT7531_PLLGP_EN); 529 val |= SW_CLKSW; 530 mt7530_write(priv, MT7531_PLLGP_EN, val); 531 532 val = mt7530_read(priv, MT7531_PLLGP_CR0); 533 val &= ~RG_COREPLL_EN; 534 mt7530_write(priv, MT7531_PLLGP_CR0, val); 535 536 /* Step 3: disable PLLGP and enable program PLLGP */ 537 val = mt7530_read(priv, MT7531_PLLGP_EN); 538 val |= SW_PLLGP; 539 mt7530_write(priv, MT7531_PLLGP_EN, val); 540 541 /* Step 4: program COREPLL output frequency to 500MHz */ 542 val = mt7530_read(priv, MT7531_PLLGP_CR0); 543 val &= ~RG_COREPLL_POSDIV_M; 544 val |= 2 << RG_COREPLL_POSDIV_S; 545 mt7530_write(priv, MT7531_PLLGP_CR0, val); 546 usleep_range(25, 35); 547 548 switch (xtal) { 549 case HWTRAP_XTAL_FSEL_25MHZ: 550 val = mt7530_read(priv, MT7531_PLLGP_CR0); 551 val &= ~RG_COREPLL_SDM_PCW_M; 552 val |= 0x140000 << RG_COREPLL_SDM_PCW_S; 553 mt7530_write(priv, MT7531_PLLGP_CR0, val); 554 break; 555 case HWTRAP_XTAL_FSEL_40MHZ: 556 val = mt7530_read(priv, MT7531_PLLGP_CR0); 557 val &= ~RG_COREPLL_SDM_PCW_M; 558 val |= 0x190000 << RG_COREPLL_SDM_PCW_S; 559 mt7530_write(priv, MT7531_PLLGP_CR0, val); 560 break; 561 } 562 563 /* Set feedback divide ratio update signal to high */ 564 val = mt7530_read(priv, MT7531_PLLGP_CR0); 565 val |= RG_COREPLL_SDM_PCW_CHG; 566 mt7530_write(priv, MT7531_PLLGP_CR0, val); 567 /* Wait for at least 16 XTAL clocks */ 568 usleep_range(10, 20); 569 570 /* Step 5: set feedback divide ratio update signal to low */ 571 val = mt7530_read(priv, MT7531_PLLGP_CR0); 572 val &= ~RG_COREPLL_SDM_PCW_CHG; 573 mt7530_write(priv, MT7531_PLLGP_CR0, val); 574 575 /* Enable 325M clock for SGMII */ 576 mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000); 577 578 /* Enable 250SSC clock for RGMII */ 579 mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000); 580 581 /* Step 6: Enable MT7531 PLL */ 582 val = mt7530_read(priv, MT7531_PLLGP_CR0); 583 val |= RG_COREPLL_EN; 584 mt7530_write(priv, MT7531_PLLGP_CR0, val); 585 586 val = mt7530_read(priv, MT7531_PLLGP_EN); 587 val |= EN_COREPLL; 588 mt7530_write(priv, MT7531_PLLGP_EN, val); 589 usleep_range(25, 35); 590 591 return 0; 592 } 593 594 static void 595 mt7530_mib_reset(struct dsa_switch *ds) 596 { 597 struct mt7530_priv *priv = ds->priv; 598 599 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH); 600 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE); 601 } 602 603 static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum) 604 { 605 return mdiobus_read_nested(priv->bus, port, regnum); 606 } 607 608 static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum, 609 u16 val) 610 { 611 return mdiobus_write_nested(priv->bus, port, regnum, val); 612 } 613 614 static int 615 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad, 616 int regnum) 617 { 618 struct mii_bus *bus = priv->bus; 619 struct mt7530_dummy_poll p; 620 u32 reg, val; 621 int ret; 622 623 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 624 625 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 626 627 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 628 !(val & MT7531_PHY_ACS_ST), 20, 100000); 629 if (ret < 0) { 630 dev_err(priv->dev, "poll timeout\n"); 631 goto out; 632 } 633 634 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | 635 MT7531_MDIO_DEV_ADDR(devad) | regnum; 636 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 637 638 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 639 !(val & MT7531_PHY_ACS_ST), 20, 100000); 640 if (ret < 0) { 641 dev_err(priv->dev, "poll timeout\n"); 642 goto out; 643 } 644 645 reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) | 646 MT7531_MDIO_DEV_ADDR(devad); 647 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 648 649 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 650 !(val & MT7531_PHY_ACS_ST), 20, 100000); 651 if (ret < 0) { 652 dev_err(priv->dev, "poll timeout\n"); 653 goto out; 654 } 655 656 ret = val & MT7531_MDIO_RW_DATA_MASK; 657 out: 658 mutex_unlock(&bus->mdio_lock); 659 660 return ret; 661 } 662 663 static int 664 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad, 665 int regnum, u32 data) 666 { 667 struct mii_bus *bus = priv->bus; 668 struct mt7530_dummy_poll p; 669 u32 val, reg; 670 int ret; 671 672 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 673 674 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 675 676 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 677 !(val & MT7531_PHY_ACS_ST), 20, 100000); 678 if (ret < 0) { 679 dev_err(priv->dev, "poll timeout\n"); 680 goto out; 681 } 682 683 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | 684 MT7531_MDIO_DEV_ADDR(devad) | regnum; 685 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 686 687 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 688 !(val & MT7531_PHY_ACS_ST), 20, 100000); 689 if (ret < 0) { 690 dev_err(priv->dev, "poll timeout\n"); 691 goto out; 692 } 693 694 reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) | 695 MT7531_MDIO_DEV_ADDR(devad) | data; 696 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 697 698 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 699 !(val & MT7531_PHY_ACS_ST), 20, 100000); 700 if (ret < 0) { 701 dev_err(priv->dev, "poll timeout\n"); 702 goto out; 703 } 704 705 out: 706 mutex_unlock(&bus->mdio_lock); 707 708 return ret; 709 } 710 711 static int 712 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum) 713 { 714 struct mii_bus *bus = priv->bus; 715 struct mt7530_dummy_poll p; 716 int ret; 717 u32 val; 718 719 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 720 721 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 722 723 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 724 !(val & MT7531_PHY_ACS_ST), 20, 100000); 725 if (ret < 0) { 726 dev_err(priv->dev, "poll timeout\n"); 727 goto out; 728 } 729 730 val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) | 731 MT7531_MDIO_REG_ADDR(regnum); 732 733 mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST); 734 735 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 736 !(val & MT7531_PHY_ACS_ST), 20, 100000); 737 if (ret < 0) { 738 dev_err(priv->dev, "poll timeout\n"); 739 goto out; 740 } 741 742 ret = val & MT7531_MDIO_RW_DATA_MASK; 743 out: 744 mutex_unlock(&bus->mdio_lock); 745 746 return ret; 747 } 748 749 static int 750 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum, 751 u16 data) 752 { 753 struct mii_bus *bus = priv->bus; 754 struct mt7530_dummy_poll p; 755 int ret; 756 u32 reg; 757 758 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 759 760 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 761 762 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, 763 !(reg & MT7531_PHY_ACS_ST), 20, 100000); 764 if (ret < 0) { 765 dev_err(priv->dev, "poll timeout\n"); 766 goto out; 767 } 768 769 reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) | 770 MT7531_MDIO_REG_ADDR(regnum) | data; 771 772 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 773 774 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, 775 !(reg & MT7531_PHY_ACS_ST), 20, 100000); 776 if (ret < 0) { 777 dev_err(priv->dev, "poll timeout\n"); 778 goto out; 779 } 780 781 out: 782 mutex_unlock(&bus->mdio_lock); 783 784 return ret; 785 } 786 787 static int 788 mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum) 789 { 790 int devad; 791 int ret; 792 793 if (regnum & MII_ADDR_C45) { 794 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f; 795 ret = mt7531_ind_c45_phy_read(priv, port, devad, 796 regnum & MII_REGADDR_C45_MASK); 797 } else { 798 ret = mt7531_ind_c22_phy_read(priv, port, regnum); 799 } 800 801 return ret; 802 } 803 804 static int 805 mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum, 806 u16 data) 807 { 808 int devad; 809 int ret; 810 811 if (regnum & MII_ADDR_C45) { 812 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f; 813 ret = mt7531_ind_c45_phy_write(priv, port, devad, 814 regnum & MII_REGADDR_C45_MASK, 815 data); 816 } else { 817 ret = mt7531_ind_c22_phy_write(priv, port, regnum, data); 818 } 819 820 return ret; 821 } 822 823 static int 824 mt753x_phy_read(struct mii_bus *bus, int port, int regnum) 825 { 826 struct mt7530_priv *priv = bus->priv; 827 828 return priv->info->phy_read(priv, port, regnum); 829 } 830 831 static int 832 mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val) 833 { 834 struct mt7530_priv *priv = bus->priv; 835 836 return priv->info->phy_write(priv, port, regnum, val); 837 } 838 839 static void 840 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset, 841 uint8_t *data) 842 { 843 int i; 844 845 if (stringset != ETH_SS_STATS) 846 return; 847 848 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) 849 strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name, 850 ETH_GSTRING_LEN); 851 } 852 853 static void 854 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port, 855 uint64_t *data) 856 { 857 struct mt7530_priv *priv = ds->priv; 858 const struct mt7530_mib_desc *mib; 859 u32 reg, i; 860 u64 hi; 861 862 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) { 863 mib = &mt7530_mib[i]; 864 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset; 865 866 data[i] = mt7530_read(priv, reg); 867 if (mib->size == 2) { 868 hi = mt7530_read(priv, reg + 4); 869 data[i] |= hi << 32; 870 } 871 } 872 } 873 874 static int 875 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset) 876 { 877 if (sset != ETH_SS_STATS) 878 return 0; 879 880 return ARRAY_SIZE(mt7530_mib); 881 } 882 883 static int 884 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) 885 { 886 struct mt7530_priv *priv = ds->priv; 887 unsigned int secs = msecs / 1000; 888 unsigned int tmp_age_count; 889 unsigned int error = -1; 890 unsigned int age_count; 891 unsigned int age_unit; 892 893 /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */ 894 if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1)) 895 return -ERANGE; 896 897 /* iterate through all possible age_count to find the closest pair */ 898 for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) { 899 unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1; 900 901 if (tmp_age_unit <= AGE_UNIT_MAX) { 902 unsigned int tmp_error = secs - 903 (tmp_age_count + 1) * (tmp_age_unit + 1); 904 905 /* found a closer pair */ 906 if (error > tmp_error) { 907 error = tmp_error; 908 age_count = tmp_age_count; 909 age_unit = tmp_age_unit; 910 } 911 912 /* found the exact match, so break the loop */ 913 if (!error) 914 break; 915 } 916 } 917 918 mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit)); 919 920 return 0; 921 } 922 923 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface) 924 { 925 struct mt7530_priv *priv = ds->priv; 926 u8 tx_delay = 0; 927 int val; 928 929 mutex_lock(&priv->reg_mutex); 930 931 val = mt7530_read(priv, MT7530_MHWTRAP); 932 933 val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS; 934 val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL; 935 936 switch (priv->p5_intf_sel) { 937 case P5_INTF_SEL_PHY_P0: 938 /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */ 939 val |= MHWTRAP_PHY0_SEL; 940 fallthrough; 941 case P5_INTF_SEL_PHY_P4: 942 /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */ 943 val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS; 944 945 /* Setup the MAC by default for the cpu port */ 946 mt7530_write(priv, MT7530_PMCR_P(5), 0x56300); 947 break; 948 case P5_INTF_SEL_GMAC5: 949 /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */ 950 val &= ~MHWTRAP_P5_DIS; 951 break; 952 case P5_DISABLED: 953 interface = PHY_INTERFACE_MODE_NA; 954 break; 955 default: 956 dev_err(ds->dev, "Unsupported p5_intf_sel %d\n", 957 priv->p5_intf_sel); 958 goto unlock_exit; 959 } 960 961 /* Setup RGMII settings */ 962 if (phy_interface_mode_is_rgmii(interface)) { 963 val |= MHWTRAP_P5_RGMII_MODE; 964 965 /* P5 RGMII RX Clock Control: delay setting for 1000M */ 966 mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN); 967 968 /* Don't set delay in DSA mode */ 969 if (!dsa_is_dsa_port(priv->ds, 5) && 970 (interface == PHY_INTERFACE_MODE_RGMII_TXID || 971 interface == PHY_INTERFACE_MODE_RGMII_ID)) 972 tx_delay = 4; /* n * 0.5 ns */ 973 974 /* P5 RGMII TX Clock Control: delay x */ 975 mt7530_write(priv, MT7530_P5RGMIITXCR, 976 CSR_RGMII_TXC_CFG(0x10 + tx_delay)); 977 978 /* reduce P5 RGMII Tx driving, 8mA */ 979 mt7530_write(priv, MT7530_IO_DRV_CR, 980 P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1)); 981 } 982 983 mt7530_write(priv, MT7530_MHWTRAP, val); 984 985 dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n", 986 val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface)); 987 988 priv->p5_interface = interface; 989 990 unlock_exit: 991 mutex_unlock(&priv->reg_mutex); 992 } 993 994 static int 995 mt753x_cpu_port_enable(struct dsa_switch *ds, int port) 996 { 997 struct mt7530_priv *priv = ds->priv; 998 int ret; 999 1000 /* Setup max capability of CPU port at first */ 1001 if (priv->info->cpu_port_config) { 1002 ret = priv->info->cpu_port_config(ds, port); 1003 if (ret) 1004 return ret; 1005 } 1006 1007 /* Enable Mediatek header mode on the cpu port */ 1008 mt7530_write(priv, MT7530_PVC_P(port), 1009 PORT_SPEC_TAG); 1010 1011 /* Disable flooding by default */ 1012 mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK, 1013 BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port))); 1014 1015 /* Set CPU port number */ 1016 if (priv->id == ID_MT7621) 1017 mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port)); 1018 1019 /* CPU port gets connected to all user ports of 1020 * the switch. 1021 */ 1022 mt7530_write(priv, MT7530_PCR_P(port), 1023 PCR_MATRIX(dsa_user_ports(priv->ds))); 1024 1025 /* Set to fallback mode for independent VLAN learning */ 1026 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1027 MT7530_PORT_FALLBACK_MODE); 1028 1029 return 0; 1030 } 1031 1032 static int 1033 mt7530_port_enable(struct dsa_switch *ds, int port, 1034 struct phy_device *phy) 1035 { 1036 struct mt7530_priv *priv = ds->priv; 1037 1038 if (!dsa_is_user_port(ds, port)) 1039 return 0; 1040 1041 mutex_lock(&priv->reg_mutex); 1042 1043 /* Allow the user port gets connected to the cpu port and also 1044 * restore the port matrix if the port is the member of a certain 1045 * bridge. 1046 */ 1047 priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT)); 1048 priv->ports[port].enable = true; 1049 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1050 priv->ports[port].pm); 1051 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 1052 1053 mutex_unlock(&priv->reg_mutex); 1054 1055 return 0; 1056 } 1057 1058 static void 1059 mt7530_port_disable(struct dsa_switch *ds, int port) 1060 { 1061 struct mt7530_priv *priv = ds->priv; 1062 1063 if (!dsa_is_user_port(ds, port)) 1064 return; 1065 1066 mutex_lock(&priv->reg_mutex); 1067 1068 /* Clear up all port matrix which could be restored in the next 1069 * enablement for the port. 1070 */ 1071 priv->ports[port].enable = false; 1072 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1073 PCR_MATRIX_CLR); 1074 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 1075 1076 mutex_unlock(&priv->reg_mutex); 1077 } 1078 1079 static int 1080 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu) 1081 { 1082 struct mt7530_priv *priv = ds->priv; 1083 struct mii_bus *bus = priv->bus; 1084 int length; 1085 u32 val; 1086 1087 /* When a new MTU is set, DSA always set the CPU port's MTU to the 1088 * largest MTU of the slave ports. Because the switch only has a global 1089 * RX length register, only allowing CPU port here is enough. 1090 */ 1091 if (!dsa_is_cpu_port(ds, port)) 1092 return 0; 1093 1094 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 1095 1096 val = mt7530_mii_read(priv, MT7530_GMACCR); 1097 val &= ~MAX_RX_PKT_LEN_MASK; 1098 1099 /* RX length also includes Ethernet header, MTK tag, and FCS length */ 1100 length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN; 1101 if (length <= 1522) { 1102 val |= MAX_RX_PKT_LEN_1522; 1103 } else if (length <= 1536) { 1104 val |= MAX_RX_PKT_LEN_1536; 1105 } else if (length <= 1552) { 1106 val |= MAX_RX_PKT_LEN_1552; 1107 } else { 1108 val &= ~MAX_RX_JUMBO_MASK; 1109 val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024)); 1110 val |= MAX_RX_PKT_LEN_JUMBO; 1111 } 1112 1113 mt7530_mii_write(priv, MT7530_GMACCR, val); 1114 1115 mutex_unlock(&bus->mdio_lock); 1116 1117 return 0; 1118 } 1119 1120 static int 1121 mt7530_port_max_mtu(struct dsa_switch *ds, int port) 1122 { 1123 return MT7530_MAX_MTU; 1124 } 1125 1126 static void 1127 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state) 1128 { 1129 struct mt7530_priv *priv = ds->priv; 1130 u32 stp_state; 1131 1132 switch (state) { 1133 case BR_STATE_DISABLED: 1134 stp_state = MT7530_STP_DISABLED; 1135 break; 1136 case BR_STATE_BLOCKING: 1137 stp_state = MT7530_STP_BLOCKING; 1138 break; 1139 case BR_STATE_LISTENING: 1140 stp_state = MT7530_STP_LISTENING; 1141 break; 1142 case BR_STATE_LEARNING: 1143 stp_state = MT7530_STP_LEARNING; 1144 break; 1145 case BR_STATE_FORWARDING: 1146 default: 1147 stp_state = MT7530_STP_FORWARDING; 1148 break; 1149 } 1150 1151 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED), 1152 FID_PST(FID_BRIDGED, stp_state)); 1153 } 1154 1155 static int 1156 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port, 1157 struct switchdev_brport_flags flags, 1158 struct netlink_ext_ack *extack) 1159 { 1160 if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | 1161 BR_BCAST_FLOOD)) 1162 return -EINVAL; 1163 1164 return 0; 1165 } 1166 1167 static int 1168 mt7530_port_bridge_flags(struct dsa_switch *ds, int port, 1169 struct switchdev_brport_flags flags, 1170 struct netlink_ext_ack *extack) 1171 { 1172 struct mt7530_priv *priv = ds->priv; 1173 1174 if (flags.mask & BR_LEARNING) 1175 mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS, 1176 flags.val & BR_LEARNING ? 0 : SA_DIS); 1177 1178 if (flags.mask & BR_FLOOD) 1179 mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)), 1180 flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0); 1181 1182 if (flags.mask & BR_MCAST_FLOOD) 1183 mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)), 1184 flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0); 1185 1186 if (flags.mask & BR_BCAST_FLOOD) 1187 mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)), 1188 flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0); 1189 1190 return 0; 1191 } 1192 1193 static int 1194 mt7530_port_bridge_join(struct dsa_switch *ds, int port, 1195 struct net_device *bridge) 1196 { 1197 struct mt7530_priv *priv = ds->priv; 1198 u32 port_bitmap = BIT(MT7530_CPU_PORT); 1199 int i; 1200 1201 mutex_lock(&priv->reg_mutex); 1202 1203 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1204 /* Add this port to the port matrix of the other ports in the 1205 * same bridge. If the port is disabled, port matrix is kept 1206 * and not being setup until the port becomes enabled. 1207 */ 1208 if (dsa_is_user_port(ds, i) && i != port) { 1209 if (dsa_to_port(ds, i)->bridge_dev != bridge) 1210 continue; 1211 if (priv->ports[i].enable) 1212 mt7530_set(priv, MT7530_PCR_P(i), 1213 PCR_MATRIX(BIT(port))); 1214 priv->ports[i].pm |= PCR_MATRIX(BIT(port)); 1215 1216 port_bitmap |= BIT(i); 1217 } 1218 } 1219 1220 /* Add the all other ports to this port matrix. */ 1221 if (priv->ports[port].enable) 1222 mt7530_rmw(priv, MT7530_PCR_P(port), 1223 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap)); 1224 priv->ports[port].pm |= PCR_MATRIX(port_bitmap); 1225 1226 /* Set to fallback mode for independent VLAN learning */ 1227 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1228 MT7530_PORT_FALLBACK_MODE); 1229 1230 mutex_unlock(&priv->reg_mutex); 1231 1232 return 0; 1233 } 1234 1235 static void 1236 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port) 1237 { 1238 struct mt7530_priv *priv = ds->priv; 1239 bool all_user_ports_removed = true; 1240 int i; 1241 1242 /* This is called after .port_bridge_leave when leaving a VLAN-aware 1243 * bridge. Don't set standalone ports to fallback mode. 1244 */ 1245 if (dsa_to_port(ds, port)->bridge_dev) 1246 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1247 MT7530_PORT_FALLBACK_MODE); 1248 1249 mt7530_rmw(priv, MT7530_PVC_P(port), 1250 VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK, 1251 VLAN_ATTR(MT7530_VLAN_TRANSPARENT) | 1252 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) | 1253 MT7530_VLAN_ACC_ALL); 1254 1255 /* Set PVID to 0 */ 1256 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1257 G0_PORT_VID_DEF); 1258 1259 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1260 if (dsa_is_user_port(ds, i) && 1261 dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { 1262 all_user_ports_removed = false; 1263 break; 1264 } 1265 } 1266 1267 /* CPU port also does the same thing until all user ports belonging to 1268 * the CPU port get out of VLAN filtering mode. 1269 */ 1270 if (all_user_ports_removed) { 1271 mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT), 1272 PCR_MATRIX(dsa_user_ports(priv->ds))); 1273 mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG 1274 | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1275 } 1276 } 1277 1278 static void 1279 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port) 1280 { 1281 struct mt7530_priv *priv = ds->priv; 1282 1283 /* Trapped into security mode allows packet forwarding through VLAN 1284 * table lookup. 1285 */ 1286 if (dsa_is_user_port(ds, port)) { 1287 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1288 MT7530_PORT_SECURITY_MODE); 1289 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1290 G0_PORT_VID(priv->ports[port].pvid)); 1291 1292 /* Only accept tagged frames if PVID is not set */ 1293 if (!priv->ports[port].pvid) 1294 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, 1295 MT7530_VLAN_ACC_TAGGED); 1296 } 1297 1298 /* Set the port as a user port which is to be able to recognize VID 1299 * from incoming packets before fetching entry within the VLAN table. 1300 */ 1301 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, 1302 VLAN_ATTR(MT7530_VLAN_USER) | 1303 PVC_EG_TAG(MT7530_VLAN_EG_DISABLED)); 1304 } 1305 1306 static void 1307 mt7530_port_bridge_leave(struct dsa_switch *ds, int port, 1308 struct net_device *bridge) 1309 { 1310 struct mt7530_priv *priv = ds->priv; 1311 int i; 1312 1313 mutex_lock(&priv->reg_mutex); 1314 1315 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1316 /* Remove this port from the port matrix of the other ports 1317 * in the same bridge. If the port is disabled, port matrix 1318 * is kept and not being setup until the port becomes enabled. 1319 */ 1320 if (dsa_is_user_port(ds, i) && i != port) { 1321 if (dsa_to_port(ds, i)->bridge_dev != bridge) 1322 continue; 1323 if (priv->ports[i].enable) 1324 mt7530_clear(priv, MT7530_PCR_P(i), 1325 PCR_MATRIX(BIT(port))); 1326 priv->ports[i].pm &= ~PCR_MATRIX(BIT(port)); 1327 } 1328 } 1329 1330 /* Set the cpu port to be the only one in the port matrix of 1331 * this port. 1332 */ 1333 if (priv->ports[port].enable) 1334 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1335 PCR_MATRIX(BIT(MT7530_CPU_PORT))); 1336 priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT)); 1337 1338 /* When a port is removed from the bridge, the port would be set up 1339 * back to the default as is at initial boot which is a VLAN-unaware 1340 * port. 1341 */ 1342 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1343 MT7530_PORT_MATRIX_MODE); 1344 1345 mutex_unlock(&priv->reg_mutex); 1346 } 1347 1348 static int 1349 mt7530_port_fdb_add(struct dsa_switch *ds, int port, 1350 const unsigned char *addr, u16 vid) 1351 { 1352 struct mt7530_priv *priv = ds->priv; 1353 int ret; 1354 u8 port_mask = BIT(port); 1355 1356 mutex_lock(&priv->reg_mutex); 1357 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); 1358 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1359 mutex_unlock(&priv->reg_mutex); 1360 1361 return ret; 1362 } 1363 1364 static int 1365 mt7530_port_fdb_del(struct dsa_switch *ds, int port, 1366 const unsigned char *addr, u16 vid) 1367 { 1368 struct mt7530_priv *priv = ds->priv; 1369 int ret; 1370 u8 port_mask = BIT(port); 1371 1372 mutex_lock(&priv->reg_mutex); 1373 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP); 1374 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1375 mutex_unlock(&priv->reg_mutex); 1376 1377 return ret; 1378 } 1379 1380 static int 1381 mt7530_port_fdb_dump(struct dsa_switch *ds, int port, 1382 dsa_fdb_dump_cb_t *cb, void *data) 1383 { 1384 struct mt7530_priv *priv = ds->priv; 1385 struct mt7530_fdb _fdb = { 0 }; 1386 int cnt = MT7530_NUM_FDB_RECORDS; 1387 int ret = 0; 1388 u32 rsp = 0; 1389 1390 mutex_lock(&priv->reg_mutex); 1391 1392 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp); 1393 if (ret < 0) 1394 goto err; 1395 1396 do { 1397 if (rsp & ATC_SRCH_HIT) { 1398 mt7530_fdb_read(priv, &_fdb); 1399 if (_fdb.port_mask & BIT(port)) { 1400 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp, 1401 data); 1402 if (ret < 0) 1403 break; 1404 } 1405 } 1406 } while (--cnt && 1407 !(rsp & ATC_SRCH_END) && 1408 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp)); 1409 err: 1410 mutex_unlock(&priv->reg_mutex); 1411 1412 return 0; 1413 } 1414 1415 static int 1416 mt7530_port_mdb_add(struct dsa_switch *ds, int port, 1417 const struct switchdev_obj_port_mdb *mdb) 1418 { 1419 struct mt7530_priv *priv = ds->priv; 1420 const u8 *addr = mdb->addr; 1421 u16 vid = mdb->vid; 1422 u8 port_mask = 0; 1423 int ret; 1424 1425 mutex_lock(&priv->reg_mutex); 1426 1427 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP); 1428 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL)) 1429 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP) 1430 & PORT_MAP_MASK; 1431 1432 port_mask |= BIT(port); 1433 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); 1434 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1435 1436 mutex_unlock(&priv->reg_mutex); 1437 1438 return ret; 1439 } 1440 1441 static int 1442 mt7530_port_mdb_del(struct dsa_switch *ds, int port, 1443 const struct switchdev_obj_port_mdb *mdb) 1444 { 1445 struct mt7530_priv *priv = ds->priv; 1446 const u8 *addr = mdb->addr; 1447 u16 vid = mdb->vid; 1448 u8 port_mask = 0; 1449 int ret; 1450 1451 mutex_lock(&priv->reg_mutex); 1452 1453 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP); 1454 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL)) 1455 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP) 1456 & PORT_MAP_MASK; 1457 1458 port_mask &= ~BIT(port); 1459 mt7530_fdb_write(priv, vid, port_mask, addr, -1, 1460 port_mask ? STATIC_ENT : STATIC_EMP); 1461 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1462 1463 mutex_unlock(&priv->reg_mutex); 1464 1465 return ret; 1466 } 1467 1468 static int 1469 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid) 1470 { 1471 struct mt7530_dummy_poll p; 1472 u32 val; 1473 int ret; 1474 1475 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid; 1476 mt7530_write(priv, MT7530_VTCR, val); 1477 1478 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR); 1479 ret = readx_poll_timeout(_mt7530_read, &p, val, 1480 !(val & VTCR_BUSY), 20, 20000); 1481 if (ret < 0) { 1482 dev_err(priv->dev, "poll timeout\n"); 1483 return ret; 1484 } 1485 1486 val = mt7530_read(priv, MT7530_VTCR); 1487 if (val & VTCR_INVALID) { 1488 dev_err(priv->dev, "read VTCR invalid\n"); 1489 return -EINVAL; 1490 } 1491 1492 return 0; 1493 } 1494 1495 static int 1496 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering, 1497 struct netlink_ext_ack *extack) 1498 { 1499 if (vlan_filtering) { 1500 /* The port is being kept as VLAN-unaware port when bridge is 1501 * set up with vlan_filtering not being set, Otherwise, the 1502 * port and the corresponding CPU port is required the setup 1503 * for becoming a VLAN-aware port. 1504 */ 1505 mt7530_port_set_vlan_aware(ds, port); 1506 mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT); 1507 } else { 1508 mt7530_port_set_vlan_unaware(ds, port); 1509 } 1510 1511 return 0; 1512 } 1513 1514 static void 1515 mt7530_hw_vlan_add(struct mt7530_priv *priv, 1516 struct mt7530_hw_vlan_entry *entry) 1517 { 1518 u8 new_members; 1519 u32 val; 1520 1521 new_members = entry->old_members | BIT(entry->port) | 1522 BIT(MT7530_CPU_PORT); 1523 1524 /* Validate the entry with independent learning, create egress tag per 1525 * VLAN and joining the port as one of the port members. 1526 */ 1527 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) | 1528 VLAN_VALID; 1529 mt7530_write(priv, MT7530_VAWD1, val); 1530 1531 /* Decide whether adding tag or not for those outgoing packets from the 1532 * port inside the VLAN. 1533 */ 1534 val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG : 1535 MT7530_VLAN_EGRESS_TAG; 1536 mt7530_rmw(priv, MT7530_VAWD2, 1537 ETAG_CTRL_P_MASK(entry->port), 1538 ETAG_CTRL_P(entry->port, val)); 1539 1540 /* CPU port is always taken as a tagged port for serving more than one 1541 * VLANs across and also being applied with egress type stack mode for 1542 * that VLAN tags would be appended after hardware special tag used as 1543 * DSA tag. 1544 */ 1545 mt7530_rmw(priv, MT7530_VAWD2, 1546 ETAG_CTRL_P_MASK(MT7530_CPU_PORT), 1547 ETAG_CTRL_P(MT7530_CPU_PORT, 1548 MT7530_VLAN_EGRESS_STACK)); 1549 } 1550 1551 static void 1552 mt7530_hw_vlan_del(struct mt7530_priv *priv, 1553 struct mt7530_hw_vlan_entry *entry) 1554 { 1555 u8 new_members; 1556 u32 val; 1557 1558 new_members = entry->old_members & ~BIT(entry->port); 1559 1560 val = mt7530_read(priv, MT7530_VAWD1); 1561 if (!(val & VLAN_VALID)) { 1562 dev_err(priv->dev, 1563 "Cannot be deleted due to invalid entry\n"); 1564 return; 1565 } 1566 1567 /* If certain member apart from CPU port is still alive in the VLAN, 1568 * the entry would be kept valid. Otherwise, the entry is got to be 1569 * disabled. 1570 */ 1571 if (new_members && new_members != BIT(MT7530_CPU_PORT)) { 1572 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | 1573 VLAN_VALID; 1574 mt7530_write(priv, MT7530_VAWD1, val); 1575 } else { 1576 mt7530_write(priv, MT7530_VAWD1, 0); 1577 mt7530_write(priv, MT7530_VAWD2, 0); 1578 } 1579 } 1580 1581 static void 1582 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid, 1583 struct mt7530_hw_vlan_entry *entry, 1584 mt7530_vlan_op vlan_op) 1585 { 1586 u32 val; 1587 1588 /* Fetch entry */ 1589 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid); 1590 1591 val = mt7530_read(priv, MT7530_VAWD1); 1592 1593 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK; 1594 1595 /* Manipulate entry */ 1596 vlan_op(priv, entry); 1597 1598 /* Flush result to hardware */ 1599 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid); 1600 } 1601 1602 static int 1603 mt7530_port_vlan_add(struct dsa_switch *ds, int port, 1604 const struct switchdev_obj_port_vlan *vlan, 1605 struct netlink_ext_ack *extack) 1606 { 1607 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 1608 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; 1609 struct mt7530_hw_vlan_entry new_entry; 1610 struct mt7530_priv *priv = ds->priv; 1611 1612 mutex_lock(&priv->reg_mutex); 1613 1614 mt7530_hw_vlan_entry_init(&new_entry, port, untagged); 1615 mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add); 1616 1617 if (pvid) { 1618 priv->ports[port].pvid = vlan->vid; 1619 1620 /* Accept all frames if PVID is set */ 1621 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, 1622 MT7530_VLAN_ACC_ALL); 1623 1624 /* Only configure PVID if VLAN filtering is enabled */ 1625 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) 1626 mt7530_rmw(priv, MT7530_PPBV1_P(port), 1627 G0_PORT_VID_MASK, 1628 G0_PORT_VID(vlan->vid)); 1629 } else if (vlan->vid && priv->ports[port].pvid == vlan->vid) { 1630 /* This VLAN is overwritten without PVID, so unset it */ 1631 priv->ports[port].pvid = G0_PORT_VID_DEF; 1632 1633 /* Only accept tagged frames if the port is VLAN-aware */ 1634 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) 1635 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, 1636 MT7530_VLAN_ACC_TAGGED); 1637 1638 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1639 G0_PORT_VID_DEF); 1640 } 1641 1642 mutex_unlock(&priv->reg_mutex); 1643 1644 return 0; 1645 } 1646 1647 static int 1648 mt7530_port_vlan_del(struct dsa_switch *ds, int port, 1649 const struct switchdev_obj_port_vlan *vlan) 1650 { 1651 struct mt7530_hw_vlan_entry target_entry; 1652 struct mt7530_priv *priv = ds->priv; 1653 1654 mutex_lock(&priv->reg_mutex); 1655 1656 mt7530_hw_vlan_entry_init(&target_entry, port, 0); 1657 mt7530_hw_vlan_update(priv, vlan->vid, &target_entry, 1658 mt7530_hw_vlan_del); 1659 1660 /* PVID is being restored to the default whenever the PVID port 1661 * is being removed from the VLAN. 1662 */ 1663 if (priv->ports[port].pvid == vlan->vid) { 1664 priv->ports[port].pvid = G0_PORT_VID_DEF; 1665 1666 /* Only accept tagged frames if the port is VLAN-aware */ 1667 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) 1668 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, 1669 MT7530_VLAN_ACC_TAGGED); 1670 1671 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1672 G0_PORT_VID_DEF); 1673 } 1674 1675 1676 mutex_unlock(&priv->reg_mutex); 1677 1678 return 0; 1679 } 1680 1681 static int mt753x_mirror_port_get(unsigned int id, u32 val) 1682 { 1683 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) : 1684 MIRROR_PORT(val); 1685 } 1686 1687 static int mt753x_mirror_port_set(unsigned int id, u32 val) 1688 { 1689 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) : 1690 MIRROR_PORT(val); 1691 } 1692 1693 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port, 1694 struct dsa_mall_mirror_tc_entry *mirror, 1695 bool ingress) 1696 { 1697 struct mt7530_priv *priv = ds->priv; 1698 int monitor_port; 1699 u32 val; 1700 1701 /* Check for existent entry */ 1702 if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port)) 1703 return -EEXIST; 1704 1705 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); 1706 1707 /* MT7530 only supports one monitor port */ 1708 monitor_port = mt753x_mirror_port_get(priv->id, val); 1709 if (val & MT753X_MIRROR_EN(priv->id) && 1710 monitor_port != mirror->to_local_port) 1711 return -EEXIST; 1712 1713 val |= MT753X_MIRROR_EN(priv->id); 1714 val &= ~MT753X_MIRROR_MASK(priv->id); 1715 val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port); 1716 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); 1717 1718 val = mt7530_read(priv, MT7530_PCR_P(port)); 1719 if (ingress) { 1720 val |= PORT_RX_MIR; 1721 priv->mirror_rx |= BIT(port); 1722 } else { 1723 val |= PORT_TX_MIR; 1724 priv->mirror_tx |= BIT(port); 1725 } 1726 mt7530_write(priv, MT7530_PCR_P(port), val); 1727 1728 return 0; 1729 } 1730 1731 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port, 1732 struct dsa_mall_mirror_tc_entry *mirror) 1733 { 1734 struct mt7530_priv *priv = ds->priv; 1735 u32 val; 1736 1737 val = mt7530_read(priv, MT7530_PCR_P(port)); 1738 if (mirror->ingress) { 1739 val &= ~PORT_RX_MIR; 1740 priv->mirror_rx &= ~BIT(port); 1741 } else { 1742 val &= ~PORT_TX_MIR; 1743 priv->mirror_tx &= ~BIT(port); 1744 } 1745 mt7530_write(priv, MT7530_PCR_P(port), val); 1746 1747 if (!priv->mirror_rx && !priv->mirror_tx) { 1748 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); 1749 val &= ~MT753X_MIRROR_EN(priv->id); 1750 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); 1751 } 1752 } 1753 1754 static enum dsa_tag_protocol 1755 mtk_get_tag_protocol(struct dsa_switch *ds, int port, 1756 enum dsa_tag_protocol mp) 1757 { 1758 return DSA_TAG_PROTO_MTK; 1759 } 1760 1761 #ifdef CONFIG_GPIOLIB 1762 static inline u32 1763 mt7530_gpio_to_bit(unsigned int offset) 1764 { 1765 /* Map GPIO offset to register bit 1766 * [ 2: 0] port 0 LED 0..2 as GPIO 0..2 1767 * [ 6: 4] port 1 LED 0..2 as GPIO 3..5 1768 * [10: 8] port 2 LED 0..2 as GPIO 6..8 1769 * [14:12] port 3 LED 0..2 as GPIO 9..11 1770 * [18:16] port 4 LED 0..2 as GPIO 12..14 1771 */ 1772 return BIT(offset + offset / 3); 1773 } 1774 1775 static int 1776 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset) 1777 { 1778 struct mt7530_priv *priv = gpiochip_get_data(gc); 1779 u32 bit = mt7530_gpio_to_bit(offset); 1780 1781 return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit); 1782 } 1783 1784 static void 1785 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value) 1786 { 1787 struct mt7530_priv *priv = gpiochip_get_data(gc); 1788 u32 bit = mt7530_gpio_to_bit(offset); 1789 1790 if (value) 1791 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit); 1792 else 1793 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit); 1794 } 1795 1796 static int 1797 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset) 1798 { 1799 struct mt7530_priv *priv = gpiochip_get_data(gc); 1800 u32 bit = mt7530_gpio_to_bit(offset); 1801 1802 return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ? 1803 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; 1804 } 1805 1806 static int 1807 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset) 1808 { 1809 struct mt7530_priv *priv = gpiochip_get_data(gc); 1810 u32 bit = mt7530_gpio_to_bit(offset); 1811 1812 mt7530_clear(priv, MT7530_LED_GPIO_OE, bit); 1813 mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit); 1814 1815 return 0; 1816 } 1817 1818 static int 1819 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value) 1820 { 1821 struct mt7530_priv *priv = gpiochip_get_data(gc); 1822 u32 bit = mt7530_gpio_to_bit(offset); 1823 1824 mt7530_set(priv, MT7530_LED_GPIO_DIR, bit); 1825 1826 if (value) 1827 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit); 1828 else 1829 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit); 1830 1831 mt7530_set(priv, MT7530_LED_GPIO_OE, bit); 1832 1833 return 0; 1834 } 1835 1836 static int 1837 mt7530_setup_gpio(struct mt7530_priv *priv) 1838 { 1839 struct device *dev = priv->dev; 1840 struct gpio_chip *gc; 1841 1842 gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL); 1843 if (!gc) 1844 return -ENOMEM; 1845 1846 mt7530_write(priv, MT7530_LED_GPIO_OE, 0); 1847 mt7530_write(priv, MT7530_LED_GPIO_DIR, 0); 1848 mt7530_write(priv, MT7530_LED_IO_MODE, 0); 1849 1850 gc->label = "mt7530"; 1851 gc->parent = dev; 1852 gc->owner = THIS_MODULE; 1853 gc->get_direction = mt7530_gpio_get_direction; 1854 gc->direction_input = mt7530_gpio_direction_input; 1855 gc->direction_output = mt7530_gpio_direction_output; 1856 gc->get = mt7530_gpio_get; 1857 gc->set = mt7530_gpio_set; 1858 gc->base = -1; 1859 gc->ngpio = 15; 1860 gc->can_sleep = true; 1861 1862 return devm_gpiochip_add_data(dev, gc, priv); 1863 } 1864 #endif /* CONFIG_GPIOLIB */ 1865 1866 static irqreturn_t 1867 mt7530_irq_thread_fn(int irq, void *dev_id) 1868 { 1869 struct mt7530_priv *priv = dev_id; 1870 bool handled = false; 1871 u32 val; 1872 int p; 1873 1874 mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED); 1875 val = mt7530_mii_read(priv, MT7530_SYS_INT_STS); 1876 mt7530_mii_write(priv, MT7530_SYS_INT_STS, val); 1877 mutex_unlock(&priv->bus->mdio_lock); 1878 1879 for (p = 0; p < MT7530_NUM_PHYS; p++) { 1880 if (BIT(p) & val) { 1881 unsigned int irq; 1882 1883 irq = irq_find_mapping(priv->irq_domain, p); 1884 handle_nested_irq(irq); 1885 handled = true; 1886 } 1887 } 1888 1889 return IRQ_RETVAL(handled); 1890 } 1891 1892 static void 1893 mt7530_irq_mask(struct irq_data *d) 1894 { 1895 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); 1896 1897 priv->irq_enable &= ~BIT(d->hwirq); 1898 } 1899 1900 static void 1901 mt7530_irq_unmask(struct irq_data *d) 1902 { 1903 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); 1904 1905 priv->irq_enable |= BIT(d->hwirq); 1906 } 1907 1908 static void 1909 mt7530_irq_bus_lock(struct irq_data *d) 1910 { 1911 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); 1912 1913 mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED); 1914 } 1915 1916 static void 1917 mt7530_irq_bus_sync_unlock(struct irq_data *d) 1918 { 1919 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); 1920 1921 mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable); 1922 mutex_unlock(&priv->bus->mdio_lock); 1923 } 1924 1925 static struct irq_chip mt7530_irq_chip = { 1926 .name = KBUILD_MODNAME, 1927 .irq_mask = mt7530_irq_mask, 1928 .irq_unmask = mt7530_irq_unmask, 1929 .irq_bus_lock = mt7530_irq_bus_lock, 1930 .irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock, 1931 }; 1932 1933 static int 1934 mt7530_irq_map(struct irq_domain *domain, unsigned int irq, 1935 irq_hw_number_t hwirq) 1936 { 1937 irq_set_chip_data(irq, domain->host_data); 1938 irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq); 1939 irq_set_nested_thread(irq, true); 1940 irq_set_noprobe(irq); 1941 1942 return 0; 1943 } 1944 1945 static const struct irq_domain_ops mt7530_irq_domain_ops = { 1946 .map = mt7530_irq_map, 1947 .xlate = irq_domain_xlate_onecell, 1948 }; 1949 1950 static void 1951 mt7530_setup_mdio_irq(struct mt7530_priv *priv) 1952 { 1953 struct dsa_switch *ds = priv->ds; 1954 int p; 1955 1956 for (p = 0; p < MT7530_NUM_PHYS; p++) { 1957 if (BIT(p) & ds->phys_mii_mask) { 1958 unsigned int irq; 1959 1960 irq = irq_create_mapping(priv->irq_domain, p); 1961 ds->slave_mii_bus->irq[p] = irq; 1962 } 1963 } 1964 } 1965 1966 static int 1967 mt7530_setup_irq(struct mt7530_priv *priv) 1968 { 1969 struct device *dev = priv->dev; 1970 struct device_node *np = dev->of_node; 1971 int ret; 1972 1973 if (!of_property_read_bool(np, "interrupt-controller")) { 1974 dev_info(dev, "no interrupt support\n"); 1975 return 0; 1976 } 1977 1978 priv->irq = of_irq_get(np, 0); 1979 if (priv->irq <= 0) { 1980 dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq); 1981 return priv->irq ? : -EINVAL; 1982 } 1983 1984 priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS, 1985 &mt7530_irq_domain_ops, priv); 1986 if (!priv->irq_domain) { 1987 dev_err(dev, "failed to create IRQ domain\n"); 1988 return -ENOMEM; 1989 } 1990 1991 /* This register must be set for MT7530 to properly fire interrupts */ 1992 if (priv->id != ID_MT7531) 1993 mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL); 1994 1995 ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn, 1996 IRQF_ONESHOT, KBUILD_MODNAME, priv); 1997 if (ret) { 1998 irq_domain_remove(priv->irq_domain); 1999 dev_err(dev, "failed to request IRQ: %d\n", ret); 2000 return ret; 2001 } 2002 2003 return 0; 2004 } 2005 2006 static void 2007 mt7530_free_mdio_irq(struct mt7530_priv *priv) 2008 { 2009 int p; 2010 2011 for (p = 0; p < MT7530_NUM_PHYS; p++) { 2012 if (BIT(p) & priv->ds->phys_mii_mask) { 2013 unsigned int irq; 2014 2015 irq = irq_find_mapping(priv->irq_domain, p); 2016 irq_dispose_mapping(irq); 2017 } 2018 } 2019 } 2020 2021 static void 2022 mt7530_free_irq_common(struct mt7530_priv *priv) 2023 { 2024 free_irq(priv->irq, priv); 2025 irq_domain_remove(priv->irq_domain); 2026 } 2027 2028 static void 2029 mt7530_free_irq(struct mt7530_priv *priv) 2030 { 2031 mt7530_free_mdio_irq(priv); 2032 mt7530_free_irq_common(priv); 2033 } 2034 2035 static int 2036 mt7530_setup_mdio(struct mt7530_priv *priv) 2037 { 2038 struct dsa_switch *ds = priv->ds; 2039 struct device *dev = priv->dev; 2040 struct mii_bus *bus; 2041 static int idx; 2042 int ret; 2043 2044 bus = devm_mdiobus_alloc(dev); 2045 if (!bus) 2046 return -ENOMEM; 2047 2048 ds->slave_mii_bus = bus; 2049 bus->priv = priv; 2050 bus->name = KBUILD_MODNAME "-mii"; 2051 snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++); 2052 bus->read = mt753x_phy_read; 2053 bus->write = mt753x_phy_write; 2054 bus->parent = dev; 2055 bus->phy_mask = ~ds->phys_mii_mask; 2056 2057 if (priv->irq) 2058 mt7530_setup_mdio_irq(priv); 2059 2060 ret = mdiobus_register(bus); 2061 if (ret) { 2062 dev_err(dev, "failed to register MDIO bus: %d\n", ret); 2063 if (priv->irq) 2064 mt7530_free_mdio_irq(priv); 2065 } 2066 2067 return ret; 2068 } 2069 2070 static int 2071 mt7530_setup(struct dsa_switch *ds) 2072 { 2073 struct mt7530_priv *priv = ds->priv; 2074 struct device_node *phy_node; 2075 struct device_node *mac_np; 2076 struct mt7530_dummy_poll p; 2077 phy_interface_t interface; 2078 struct device_node *dn; 2079 u32 id, val; 2080 int ret, i; 2081 2082 /* The parent node of master netdev which holds the common system 2083 * controller also is the container for two GMACs nodes representing 2084 * as two netdev instances. 2085 */ 2086 dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent; 2087 ds->assisted_learning_on_cpu_port = true; 2088 ds->mtu_enforcement_ingress = true; 2089 2090 if (priv->id == ID_MT7530) { 2091 regulator_set_voltage(priv->core_pwr, 1000000, 1000000); 2092 ret = regulator_enable(priv->core_pwr); 2093 if (ret < 0) { 2094 dev_err(priv->dev, 2095 "Failed to enable core power: %d\n", ret); 2096 return ret; 2097 } 2098 2099 regulator_set_voltage(priv->io_pwr, 3300000, 3300000); 2100 ret = regulator_enable(priv->io_pwr); 2101 if (ret < 0) { 2102 dev_err(priv->dev, "Failed to enable io pwr: %d\n", 2103 ret); 2104 return ret; 2105 } 2106 } 2107 2108 /* Reset whole chip through gpio pin or memory-mapped registers for 2109 * different type of hardware 2110 */ 2111 if (priv->mcm) { 2112 reset_control_assert(priv->rstc); 2113 usleep_range(1000, 1100); 2114 reset_control_deassert(priv->rstc); 2115 } else { 2116 gpiod_set_value_cansleep(priv->reset, 0); 2117 usleep_range(1000, 1100); 2118 gpiod_set_value_cansleep(priv->reset, 1); 2119 } 2120 2121 /* Waiting for MT7530 got to stable */ 2122 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); 2123 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 2124 20, 1000000); 2125 if (ret < 0) { 2126 dev_err(priv->dev, "reset timeout\n"); 2127 return ret; 2128 } 2129 2130 id = mt7530_read(priv, MT7530_CREV); 2131 id >>= CHIP_NAME_SHIFT; 2132 if (id != MT7530_ID) { 2133 dev_err(priv->dev, "chip %x can't be supported\n", id); 2134 return -ENODEV; 2135 } 2136 2137 /* Reset the switch through internal reset */ 2138 mt7530_write(priv, MT7530_SYS_CTRL, 2139 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | 2140 SYS_CTRL_REG_RST); 2141 2142 /* Enable Port 6 only; P5 as GMAC5 which currently is not supported */ 2143 val = mt7530_read(priv, MT7530_MHWTRAP); 2144 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS; 2145 val |= MHWTRAP_MANUAL; 2146 mt7530_write(priv, MT7530_MHWTRAP, val); 2147 2148 priv->p6_interface = PHY_INTERFACE_MODE_NA; 2149 2150 /* Enable and reset MIB counters */ 2151 mt7530_mib_reset(ds); 2152 2153 for (i = 0; i < MT7530_NUM_PORTS; i++) { 2154 /* Disable forwarding by default on all ports */ 2155 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, 2156 PCR_MATRIX_CLR); 2157 2158 /* Disable learning by default on all ports */ 2159 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS); 2160 2161 if (dsa_is_cpu_port(ds, i)) { 2162 ret = mt753x_cpu_port_enable(ds, i); 2163 if (ret) 2164 return ret; 2165 } else { 2166 mt7530_port_disable(ds, i); 2167 2168 /* Set default PVID to 0 on all user ports */ 2169 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK, 2170 G0_PORT_VID_DEF); 2171 } 2172 /* Enable consistent egress tag */ 2173 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, 2174 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 2175 } 2176 2177 /* Setup port 5 */ 2178 priv->p5_intf_sel = P5_DISABLED; 2179 interface = PHY_INTERFACE_MODE_NA; 2180 2181 if (!dsa_is_unused_port(ds, 5)) { 2182 priv->p5_intf_sel = P5_INTF_SEL_GMAC5; 2183 ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface); 2184 if (ret && ret != -ENODEV) 2185 return ret; 2186 } else { 2187 /* Scan the ethernet nodes. look for GMAC1, lookup used phy */ 2188 for_each_child_of_node(dn, mac_np) { 2189 if (!of_device_is_compatible(mac_np, 2190 "mediatek,eth-mac")) 2191 continue; 2192 2193 ret = of_property_read_u32(mac_np, "reg", &id); 2194 if (ret < 0 || id != 1) 2195 continue; 2196 2197 phy_node = of_parse_phandle(mac_np, "phy-handle", 0); 2198 if (!phy_node) 2199 continue; 2200 2201 if (phy_node->parent == priv->dev->of_node->parent) { 2202 ret = of_get_phy_mode(mac_np, &interface); 2203 if (ret && ret != -ENODEV) { 2204 of_node_put(mac_np); 2205 return ret; 2206 } 2207 id = of_mdio_parse_addr(ds->dev, phy_node); 2208 if (id == 0) 2209 priv->p5_intf_sel = P5_INTF_SEL_PHY_P0; 2210 if (id == 4) 2211 priv->p5_intf_sel = P5_INTF_SEL_PHY_P4; 2212 } 2213 of_node_put(mac_np); 2214 of_node_put(phy_node); 2215 break; 2216 } 2217 } 2218 2219 #ifdef CONFIG_GPIOLIB 2220 if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) { 2221 ret = mt7530_setup_gpio(priv); 2222 if (ret) 2223 return ret; 2224 } 2225 #endif /* CONFIG_GPIOLIB */ 2226 2227 mt7530_setup_port5(ds, interface); 2228 2229 /* Flush the FDB table */ 2230 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); 2231 if (ret < 0) 2232 return ret; 2233 2234 return 0; 2235 } 2236 2237 static int 2238 mt7531_setup(struct dsa_switch *ds) 2239 { 2240 struct mt7530_priv *priv = ds->priv; 2241 struct mt7530_dummy_poll p; 2242 u32 val, id; 2243 int ret, i; 2244 2245 /* Reset whole chip through gpio pin or memory-mapped registers for 2246 * different type of hardware 2247 */ 2248 if (priv->mcm) { 2249 reset_control_assert(priv->rstc); 2250 usleep_range(1000, 1100); 2251 reset_control_deassert(priv->rstc); 2252 } else { 2253 gpiod_set_value_cansleep(priv->reset, 0); 2254 usleep_range(1000, 1100); 2255 gpiod_set_value_cansleep(priv->reset, 1); 2256 } 2257 2258 /* Waiting for MT7530 got to stable */ 2259 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); 2260 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 2261 20, 1000000); 2262 if (ret < 0) { 2263 dev_err(priv->dev, "reset timeout\n"); 2264 return ret; 2265 } 2266 2267 id = mt7530_read(priv, MT7531_CREV); 2268 id >>= CHIP_NAME_SHIFT; 2269 2270 if (id != MT7531_ID) { 2271 dev_err(priv->dev, "chip %x can't be supported\n", id); 2272 return -ENODEV; 2273 } 2274 2275 /* Reset the switch through internal reset */ 2276 mt7530_write(priv, MT7530_SYS_CTRL, 2277 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | 2278 SYS_CTRL_REG_RST); 2279 2280 if (mt7531_dual_sgmii_supported(priv)) { 2281 priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII; 2282 2283 /* Let ds->slave_mii_bus be able to access external phy. */ 2284 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK, 2285 MT7531_EXT_P_MDC_11); 2286 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK, 2287 MT7531_EXT_P_MDIO_12); 2288 } else { 2289 priv->p5_intf_sel = P5_INTF_SEL_GMAC5; 2290 } 2291 dev_dbg(ds->dev, "P5 support %s interface\n", 2292 p5_intf_modes(priv->p5_intf_sel)); 2293 2294 mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK, 2295 MT7531_GPIO0_INTERRUPT); 2296 2297 /* Let phylink decide the interface later. */ 2298 priv->p5_interface = PHY_INTERFACE_MODE_NA; 2299 priv->p6_interface = PHY_INTERFACE_MODE_NA; 2300 2301 /* Enable PHY core PLL, since phy_device has not yet been created 2302 * provided for phy_[read,write]_mmd_indirect is called, we provide 2303 * our own mt7531_ind_mmd_phy_[read,write] to complete this 2304 * function. 2305 */ 2306 val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR, 2307 MDIO_MMD_VEND2, CORE_PLL_GROUP4); 2308 val |= MT7531_PHY_PLL_BYPASS_MODE; 2309 val &= ~MT7531_PHY_PLL_OFF; 2310 mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2, 2311 CORE_PLL_GROUP4, val); 2312 2313 /* BPDU to CPU port */ 2314 mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK, 2315 BIT(MT7530_CPU_PORT)); 2316 mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK, 2317 MT753X_BPDU_CPU_ONLY); 2318 2319 /* Enable and reset MIB counters */ 2320 mt7530_mib_reset(ds); 2321 2322 for (i = 0; i < MT7530_NUM_PORTS; i++) { 2323 /* Disable forwarding by default on all ports */ 2324 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, 2325 PCR_MATRIX_CLR); 2326 2327 /* Disable learning by default on all ports */ 2328 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS); 2329 2330 mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR); 2331 2332 if (dsa_is_cpu_port(ds, i)) { 2333 ret = mt753x_cpu_port_enable(ds, i); 2334 if (ret) 2335 return ret; 2336 } else { 2337 mt7530_port_disable(ds, i); 2338 2339 /* Set default PVID to 0 on all user ports */ 2340 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK, 2341 G0_PORT_VID_DEF); 2342 } 2343 2344 /* Enable consistent egress tag */ 2345 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, 2346 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 2347 } 2348 2349 ds->assisted_learning_on_cpu_port = true; 2350 ds->mtu_enforcement_ingress = true; 2351 2352 /* Flush the FDB table */ 2353 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); 2354 if (ret < 0) 2355 return ret; 2356 2357 return 0; 2358 } 2359 2360 static bool 2361 mt7530_phy_mode_supported(struct dsa_switch *ds, int port, 2362 const struct phylink_link_state *state) 2363 { 2364 struct mt7530_priv *priv = ds->priv; 2365 2366 switch (port) { 2367 case 0 ... 4: /* Internal phy */ 2368 if (state->interface != PHY_INTERFACE_MODE_GMII) 2369 return false; 2370 break; 2371 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ 2372 if (!phy_interface_mode_is_rgmii(state->interface) && 2373 state->interface != PHY_INTERFACE_MODE_MII && 2374 state->interface != PHY_INTERFACE_MODE_GMII) 2375 return false; 2376 break; 2377 case 6: /* 1st cpu port */ 2378 if (state->interface != PHY_INTERFACE_MODE_RGMII && 2379 state->interface != PHY_INTERFACE_MODE_TRGMII) 2380 return false; 2381 break; 2382 default: 2383 dev_err(priv->dev, "%s: unsupported port: %i\n", __func__, 2384 port); 2385 return false; 2386 } 2387 2388 return true; 2389 } 2390 2391 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port) 2392 { 2393 return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII); 2394 } 2395 2396 static bool 2397 mt7531_phy_mode_supported(struct dsa_switch *ds, int port, 2398 const struct phylink_link_state *state) 2399 { 2400 struct mt7530_priv *priv = ds->priv; 2401 2402 switch (port) { 2403 case 0 ... 4: /* Internal phy */ 2404 if (state->interface != PHY_INTERFACE_MODE_GMII) 2405 return false; 2406 break; 2407 case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */ 2408 if (mt7531_is_rgmii_port(priv, port)) 2409 return phy_interface_mode_is_rgmii(state->interface); 2410 fallthrough; 2411 case 6: /* 1st cpu port supports sgmii/8023z only */ 2412 if (state->interface != PHY_INTERFACE_MODE_SGMII && 2413 !phy_interface_mode_is_8023z(state->interface)) 2414 return false; 2415 break; 2416 default: 2417 dev_err(priv->dev, "%s: unsupported port: %i\n", __func__, 2418 port); 2419 return false; 2420 } 2421 2422 return true; 2423 } 2424 2425 static bool 2426 mt753x_phy_mode_supported(struct dsa_switch *ds, int port, 2427 const struct phylink_link_state *state) 2428 { 2429 struct mt7530_priv *priv = ds->priv; 2430 2431 return priv->info->phy_mode_supported(ds, port, state); 2432 } 2433 2434 static int 2435 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state) 2436 { 2437 struct mt7530_priv *priv = ds->priv; 2438 2439 return priv->info->pad_setup(ds, state->interface); 2440 } 2441 2442 static int 2443 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2444 phy_interface_t interface) 2445 { 2446 struct mt7530_priv *priv = ds->priv; 2447 2448 /* Only need to setup port5. */ 2449 if (port != 5) 2450 return 0; 2451 2452 mt7530_setup_port5(priv->ds, interface); 2453 2454 return 0; 2455 } 2456 2457 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port, 2458 phy_interface_t interface, 2459 struct phy_device *phydev) 2460 { 2461 u32 val; 2462 2463 if (!mt7531_is_rgmii_port(priv, port)) { 2464 dev_err(priv->dev, "RGMII mode is not available for port %d\n", 2465 port); 2466 return -EINVAL; 2467 } 2468 2469 val = mt7530_read(priv, MT7531_CLKGEN_CTRL); 2470 val |= GP_CLK_EN; 2471 val &= ~GP_MODE_MASK; 2472 val |= GP_MODE(MT7531_GP_MODE_RGMII); 2473 val &= ~CLK_SKEW_IN_MASK; 2474 val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG); 2475 val &= ~CLK_SKEW_OUT_MASK; 2476 val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG); 2477 val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY; 2478 2479 /* Do not adjust rgmii delay when vendor phy driver presents. */ 2480 if (!phydev || phy_driver_is_genphy(phydev)) { 2481 val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY); 2482 switch (interface) { 2483 case PHY_INTERFACE_MODE_RGMII: 2484 val |= TXCLK_NO_REVERSE; 2485 val |= RXCLK_NO_DELAY; 2486 break; 2487 case PHY_INTERFACE_MODE_RGMII_RXID: 2488 val |= TXCLK_NO_REVERSE; 2489 break; 2490 case PHY_INTERFACE_MODE_RGMII_TXID: 2491 val |= RXCLK_NO_DELAY; 2492 break; 2493 case PHY_INTERFACE_MODE_RGMII_ID: 2494 break; 2495 default: 2496 return -EINVAL; 2497 } 2498 } 2499 mt7530_write(priv, MT7531_CLKGEN_CTRL, val); 2500 2501 return 0; 2502 } 2503 2504 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port, 2505 unsigned long *supported) 2506 { 2507 /* Port5 supports ethier RGMII or SGMII. 2508 * Port6 supports SGMII only. 2509 */ 2510 switch (port) { 2511 case 5: 2512 if (mt7531_is_rgmii_port(priv, port)) 2513 break; 2514 fallthrough; 2515 case 6: 2516 phylink_set(supported, 1000baseX_Full); 2517 phylink_set(supported, 2500baseX_Full); 2518 phylink_set(supported, 2500baseT_Full); 2519 } 2520 } 2521 2522 static void 2523 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port, 2524 unsigned int mode, phy_interface_t interface, 2525 int speed, int duplex) 2526 { 2527 struct mt7530_priv *priv = ds->priv; 2528 unsigned int val; 2529 2530 /* For adjusting speed and duplex of SGMII force mode. */ 2531 if (interface != PHY_INTERFACE_MODE_SGMII || 2532 phylink_autoneg_inband(mode)) 2533 return; 2534 2535 /* SGMII force mode setting */ 2536 val = mt7530_read(priv, MT7531_SGMII_MODE(port)); 2537 val &= ~MT7531_SGMII_IF_MODE_MASK; 2538 2539 switch (speed) { 2540 case SPEED_10: 2541 val |= MT7531_SGMII_FORCE_SPEED_10; 2542 break; 2543 case SPEED_100: 2544 val |= MT7531_SGMII_FORCE_SPEED_100; 2545 break; 2546 case SPEED_1000: 2547 val |= MT7531_SGMII_FORCE_SPEED_1000; 2548 break; 2549 } 2550 2551 /* MT7531 SGMII 1G force mode can only work in full duplex mode, 2552 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not. 2553 */ 2554 if ((speed == SPEED_10 || speed == SPEED_100) && 2555 duplex != DUPLEX_FULL) 2556 val |= MT7531_SGMII_FORCE_HALF_DUPLEX; 2557 2558 mt7530_write(priv, MT7531_SGMII_MODE(port), val); 2559 } 2560 2561 static bool mt753x_is_mac_port(u32 port) 2562 { 2563 return (port == 5 || port == 6); 2564 } 2565 2566 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port, 2567 phy_interface_t interface) 2568 { 2569 u32 val; 2570 2571 if (!mt753x_is_mac_port(port)) 2572 return -EINVAL; 2573 2574 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 2575 MT7531_SGMII_PHYA_PWD); 2576 2577 val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port)); 2578 val &= ~MT7531_RG_TPHY_SPEED_MASK; 2579 /* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B 2580 * encoding. 2581 */ 2582 val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ? 2583 MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G; 2584 mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val); 2585 2586 mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE); 2587 2588 /* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex 2589 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not. 2590 */ 2591 mt7530_rmw(priv, MT7531_SGMII_MODE(port), 2592 MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS, 2593 MT7531_SGMII_FORCE_SPEED_1000); 2594 2595 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0); 2596 2597 return 0; 2598 } 2599 2600 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port, 2601 phy_interface_t interface) 2602 { 2603 if (!mt753x_is_mac_port(port)) 2604 return -EINVAL; 2605 2606 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 2607 MT7531_SGMII_PHYA_PWD); 2608 2609 mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port), 2610 MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G); 2611 2612 mt7530_set(priv, MT7531_SGMII_MODE(port), 2613 MT7531_SGMII_REMOTE_FAULT_DIS | 2614 MT7531_SGMII_SPEED_DUPLEX_AN); 2615 2616 mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port), 2617 MT7531_SGMII_TX_CONFIG_MASK, 1); 2618 2619 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE); 2620 2621 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART); 2622 2623 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0); 2624 2625 return 0; 2626 } 2627 2628 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port) 2629 { 2630 struct mt7530_priv *priv = ds->priv; 2631 u32 val; 2632 2633 /* Only restart AN when AN is enabled */ 2634 val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); 2635 if (val & MT7531_SGMII_AN_ENABLE) { 2636 val |= MT7531_SGMII_AN_RESTART; 2637 mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val); 2638 } 2639 } 2640 2641 static int 2642 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2643 phy_interface_t interface) 2644 { 2645 struct mt7530_priv *priv = ds->priv; 2646 struct phy_device *phydev; 2647 struct dsa_port *dp; 2648 2649 if (!mt753x_is_mac_port(port)) { 2650 dev_err(priv->dev, "port %d is not a MAC port\n", port); 2651 return -EINVAL; 2652 } 2653 2654 switch (interface) { 2655 case PHY_INTERFACE_MODE_RGMII: 2656 case PHY_INTERFACE_MODE_RGMII_ID: 2657 case PHY_INTERFACE_MODE_RGMII_RXID: 2658 case PHY_INTERFACE_MODE_RGMII_TXID: 2659 dp = dsa_to_port(ds, port); 2660 phydev = dp->slave->phydev; 2661 return mt7531_rgmii_setup(priv, port, interface, phydev); 2662 case PHY_INTERFACE_MODE_SGMII: 2663 return mt7531_sgmii_setup_mode_an(priv, port, interface); 2664 case PHY_INTERFACE_MODE_NA: 2665 case PHY_INTERFACE_MODE_1000BASEX: 2666 case PHY_INTERFACE_MODE_2500BASEX: 2667 if (phylink_autoneg_inband(mode)) 2668 return -EINVAL; 2669 2670 return mt7531_sgmii_setup_mode_force(priv, port, interface); 2671 default: 2672 return -EINVAL; 2673 } 2674 2675 return -EINVAL; 2676 } 2677 2678 static int 2679 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2680 const struct phylink_link_state *state) 2681 { 2682 struct mt7530_priv *priv = ds->priv; 2683 2684 return priv->info->mac_port_config(ds, port, mode, state->interface); 2685 } 2686 2687 static void 2688 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2689 const struct phylink_link_state *state) 2690 { 2691 struct mt7530_priv *priv = ds->priv; 2692 u32 mcr_cur, mcr_new; 2693 2694 if (!mt753x_phy_mode_supported(ds, port, state)) 2695 goto unsupported; 2696 2697 switch (port) { 2698 case 0 ... 4: /* Internal phy */ 2699 if (state->interface != PHY_INTERFACE_MODE_GMII) 2700 goto unsupported; 2701 break; 2702 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ 2703 if (priv->p5_interface == state->interface) 2704 break; 2705 2706 if (mt753x_mac_config(ds, port, mode, state) < 0) 2707 goto unsupported; 2708 2709 if (priv->p5_intf_sel != P5_DISABLED) 2710 priv->p5_interface = state->interface; 2711 break; 2712 case 6: /* 1st cpu port */ 2713 if (priv->p6_interface == state->interface) 2714 break; 2715 2716 mt753x_pad_setup(ds, state); 2717 2718 if (mt753x_mac_config(ds, port, mode, state) < 0) 2719 goto unsupported; 2720 2721 priv->p6_interface = state->interface; 2722 break; 2723 default: 2724 unsupported: 2725 dev_err(ds->dev, "%s: unsupported %s port: %i\n", 2726 __func__, phy_modes(state->interface), port); 2727 return; 2728 } 2729 2730 if (phylink_autoneg_inband(mode) && 2731 state->interface != PHY_INTERFACE_MODE_SGMII) { 2732 dev_err(ds->dev, "%s: in-band negotiation unsupported\n", 2733 __func__); 2734 return; 2735 } 2736 2737 mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port)); 2738 mcr_new = mcr_cur; 2739 mcr_new &= ~PMCR_LINK_SETTINGS_MASK; 2740 mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN | 2741 PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id); 2742 2743 /* Are we connected to external phy */ 2744 if (port == 5 && dsa_is_user_port(ds, 5)) 2745 mcr_new |= PMCR_EXT_PHY; 2746 2747 if (mcr_new != mcr_cur) 2748 mt7530_write(priv, MT7530_PMCR_P(port), mcr_new); 2749 } 2750 2751 static void 2752 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port) 2753 { 2754 struct mt7530_priv *priv = ds->priv; 2755 2756 if (!priv->info->mac_pcs_an_restart) 2757 return; 2758 2759 priv->info->mac_pcs_an_restart(ds, port); 2760 } 2761 2762 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port, 2763 unsigned int mode, 2764 phy_interface_t interface) 2765 { 2766 struct mt7530_priv *priv = ds->priv; 2767 2768 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 2769 } 2770 2771 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port, 2772 unsigned int mode, phy_interface_t interface, 2773 int speed, int duplex) 2774 { 2775 struct mt7530_priv *priv = ds->priv; 2776 2777 if (!priv->info->mac_pcs_link_up) 2778 return; 2779 2780 priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex); 2781 } 2782 2783 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port, 2784 unsigned int mode, 2785 phy_interface_t interface, 2786 struct phy_device *phydev, 2787 int speed, int duplex, 2788 bool tx_pause, bool rx_pause) 2789 { 2790 struct mt7530_priv *priv = ds->priv; 2791 u32 mcr; 2792 2793 mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex); 2794 2795 mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK; 2796 2797 /* MT753x MAC works in 1G full duplex mode for all up-clocked 2798 * variants. 2799 */ 2800 if (interface == PHY_INTERFACE_MODE_TRGMII || 2801 (phy_interface_mode_is_8023z(interface))) { 2802 speed = SPEED_1000; 2803 duplex = DUPLEX_FULL; 2804 } 2805 2806 switch (speed) { 2807 case SPEED_1000: 2808 mcr |= PMCR_FORCE_SPEED_1000; 2809 break; 2810 case SPEED_100: 2811 mcr |= PMCR_FORCE_SPEED_100; 2812 break; 2813 } 2814 if (duplex == DUPLEX_FULL) { 2815 mcr |= PMCR_FORCE_FDX; 2816 if (tx_pause) 2817 mcr |= PMCR_TX_FC_EN; 2818 if (rx_pause) 2819 mcr |= PMCR_RX_FC_EN; 2820 } 2821 2822 if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, 0) >= 0) { 2823 switch (speed) { 2824 case SPEED_1000: 2825 mcr |= PMCR_FORCE_EEE1G; 2826 break; 2827 case SPEED_100: 2828 mcr |= PMCR_FORCE_EEE100; 2829 break; 2830 } 2831 } 2832 2833 mt7530_set(priv, MT7530_PMCR_P(port), mcr); 2834 } 2835 2836 static int 2837 mt7531_cpu_port_config(struct dsa_switch *ds, int port) 2838 { 2839 struct mt7530_priv *priv = ds->priv; 2840 phy_interface_t interface; 2841 int speed; 2842 int ret; 2843 2844 switch (port) { 2845 case 5: 2846 if (mt7531_is_rgmii_port(priv, port)) 2847 interface = PHY_INTERFACE_MODE_RGMII; 2848 else 2849 interface = PHY_INTERFACE_MODE_2500BASEX; 2850 2851 priv->p5_interface = interface; 2852 break; 2853 case 6: 2854 interface = PHY_INTERFACE_MODE_2500BASEX; 2855 2856 mt7531_pad_setup(ds, interface); 2857 2858 priv->p6_interface = interface; 2859 break; 2860 default: 2861 return -EINVAL; 2862 } 2863 2864 if (interface == PHY_INTERFACE_MODE_2500BASEX) 2865 speed = SPEED_2500; 2866 else 2867 speed = SPEED_1000; 2868 2869 ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface); 2870 if (ret) 2871 return ret; 2872 mt7530_write(priv, MT7530_PMCR_P(port), 2873 PMCR_CPU_PORT_SETTING(priv->id)); 2874 mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL, 2875 speed, DUPLEX_FULL, true, true); 2876 2877 return 0; 2878 } 2879 2880 static void 2881 mt7530_mac_port_validate(struct dsa_switch *ds, int port, 2882 unsigned long *supported) 2883 { 2884 if (port == 5) 2885 phylink_set(supported, 1000baseX_Full); 2886 } 2887 2888 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port, 2889 unsigned long *supported) 2890 { 2891 struct mt7530_priv *priv = ds->priv; 2892 2893 mt7531_sgmii_validate(priv, port, supported); 2894 } 2895 2896 static void 2897 mt753x_phylink_validate(struct dsa_switch *ds, int port, 2898 unsigned long *supported, 2899 struct phylink_link_state *state) 2900 { 2901 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 2902 struct mt7530_priv *priv = ds->priv; 2903 2904 if (state->interface != PHY_INTERFACE_MODE_NA && 2905 !mt753x_phy_mode_supported(ds, port, state)) { 2906 linkmode_zero(supported); 2907 return; 2908 } 2909 2910 phylink_set_port_modes(mask); 2911 2912 if (state->interface != PHY_INTERFACE_MODE_TRGMII || 2913 !phy_interface_mode_is_8023z(state->interface)) { 2914 phylink_set(mask, 10baseT_Half); 2915 phylink_set(mask, 10baseT_Full); 2916 phylink_set(mask, 100baseT_Half); 2917 phylink_set(mask, 100baseT_Full); 2918 phylink_set(mask, Autoneg); 2919 } 2920 2921 /* This switch only supports 1G full-duplex. */ 2922 if (state->interface != PHY_INTERFACE_MODE_MII) 2923 phylink_set(mask, 1000baseT_Full); 2924 2925 priv->info->mac_port_validate(ds, port, mask); 2926 2927 phylink_set(mask, Pause); 2928 phylink_set(mask, Asym_Pause); 2929 2930 linkmode_and(supported, supported, mask); 2931 linkmode_and(state->advertising, state->advertising, mask); 2932 2933 /* We can only operate at 2500BaseX or 1000BaseX. If requested 2934 * to advertise both, only report advertising at 2500BaseX. 2935 */ 2936 phylink_helper_basex_speed(state); 2937 } 2938 2939 static int 2940 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port, 2941 struct phylink_link_state *state) 2942 { 2943 struct mt7530_priv *priv = ds->priv; 2944 u32 pmsr; 2945 2946 if (port < 0 || port >= MT7530_NUM_PORTS) 2947 return -EINVAL; 2948 2949 pmsr = mt7530_read(priv, MT7530_PMSR_P(port)); 2950 2951 state->link = (pmsr & PMSR_LINK); 2952 state->an_complete = state->link; 2953 state->duplex = !!(pmsr & PMSR_DPX); 2954 2955 switch (pmsr & PMSR_SPEED_MASK) { 2956 case PMSR_SPEED_10: 2957 state->speed = SPEED_10; 2958 break; 2959 case PMSR_SPEED_100: 2960 state->speed = SPEED_100; 2961 break; 2962 case PMSR_SPEED_1000: 2963 state->speed = SPEED_1000; 2964 break; 2965 default: 2966 state->speed = SPEED_UNKNOWN; 2967 break; 2968 } 2969 2970 state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX); 2971 if (pmsr & PMSR_RX_FC) 2972 state->pause |= MLO_PAUSE_RX; 2973 if (pmsr & PMSR_TX_FC) 2974 state->pause |= MLO_PAUSE_TX; 2975 2976 return 1; 2977 } 2978 2979 static int 2980 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port, 2981 struct phylink_link_state *state) 2982 { 2983 u32 status, val; 2984 u16 config_reg; 2985 2986 status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); 2987 state->link = !!(status & MT7531_SGMII_LINK_STATUS); 2988 if (state->interface == PHY_INTERFACE_MODE_SGMII && 2989 (status & MT7531_SGMII_AN_ENABLE)) { 2990 val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port)); 2991 config_reg = val >> 16; 2992 2993 switch (config_reg & LPA_SGMII_SPD_MASK) { 2994 case LPA_SGMII_1000: 2995 state->speed = SPEED_1000; 2996 break; 2997 case LPA_SGMII_100: 2998 state->speed = SPEED_100; 2999 break; 3000 case LPA_SGMII_10: 3001 state->speed = SPEED_10; 3002 break; 3003 default: 3004 dev_err(priv->dev, "invalid sgmii PHY speed\n"); 3005 state->link = false; 3006 return -EINVAL; 3007 } 3008 3009 if (config_reg & LPA_SGMII_FULL_DUPLEX) 3010 state->duplex = DUPLEX_FULL; 3011 else 3012 state->duplex = DUPLEX_HALF; 3013 } 3014 3015 return 0; 3016 } 3017 3018 static int 3019 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port, 3020 struct phylink_link_state *state) 3021 { 3022 struct mt7530_priv *priv = ds->priv; 3023 3024 if (state->interface == PHY_INTERFACE_MODE_SGMII) 3025 return mt7531_sgmii_pcs_get_state_an(priv, port, state); 3026 3027 return -EOPNOTSUPP; 3028 } 3029 3030 static int 3031 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port, 3032 struct phylink_link_state *state) 3033 { 3034 struct mt7530_priv *priv = ds->priv; 3035 3036 return priv->info->mac_port_get_state(ds, port, state); 3037 } 3038 3039 static int 3040 mt753x_setup(struct dsa_switch *ds) 3041 { 3042 struct mt7530_priv *priv = ds->priv; 3043 int ret = priv->info->sw_setup(ds); 3044 3045 if (ret) 3046 return ret; 3047 3048 ret = mt7530_setup_irq(priv); 3049 if (ret) 3050 return ret; 3051 3052 ret = mt7530_setup_mdio(priv); 3053 if (ret && priv->irq) 3054 mt7530_free_irq_common(priv); 3055 3056 return ret; 3057 } 3058 3059 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port, 3060 struct ethtool_eee *e) 3061 { 3062 struct mt7530_priv *priv = ds->priv; 3063 u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port)); 3064 3065 e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN); 3066 e->tx_lpi_timer = GET_LPI_THRESH(eeecr); 3067 3068 return 0; 3069 } 3070 3071 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port, 3072 struct ethtool_eee *e) 3073 { 3074 struct mt7530_priv *priv = ds->priv; 3075 u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN; 3076 3077 if (e->tx_lpi_timer > 0xFFF) 3078 return -EINVAL; 3079 3080 set = SET_LPI_THRESH(e->tx_lpi_timer); 3081 if (!e->tx_lpi_enabled) 3082 /* Force LPI Mode without a delay */ 3083 set |= LPI_MODE_EN; 3084 mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set); 3085 3086 return 0; 3087 } 3088 3089 static const struct dsa_switch_ops mt7530_switch_ops = { 3090 .get_tag_protocol = mtk_get_tag_protocol, 3091 .setup = mt753x_setup, 3092 .get_strings = mt7530_get_strings, 3093 .get_ethtool_stats = mt7530_get_ethtool_stats, 3094 .get_sset_count = mt7530_get_sset_count, 3095 .set_ageing_time = mt7530_set_ageing_time, 3096 .port_enable = mt7530_port_enable, 3097 .port_disable = mt7530_port_disable, 3098 .port_change_mtu = mt7530_port_change_mtu, 3099 .port_max_mtu = mt7530_port_max_mtu, 3100 .port_stp_state_set = mt7530_stp_state_set, 3101 .port_pre_bridge_flags = mt7530_port_pre_bridge_flags, 3102 .port_bridge_flags = mt7530_port_bridge_flags, 3103 .port_bridge_join = mt7530_port_bridge_join, 3104 .port_bridge_leave = mt7530_port_bridge_leave, 3105 .port_fdb_add = mt7530_port_fdb_add, 3106 .port_fdb_del = mt7530_port_fdb_del, 3107 .port_fdb_dump = mt7530_port_fdb_dump, 3108 .port_mdb_add = mt7530_port_mdb_add, 3109 .port_mdb_del = mt7530_port_mdb_del, 3110 .port_vlan_filtering = mt7530_port_vlan_filtering, 3111 .port_vlan_add = mt7530_port_vlan_add, 3112 .port_vlan_del = mt7530_port_vlan_del, 3113 .port_mirror_add = mt753x_port_mirror_add, 3114 .port_mirror_del = mt753x_port_mirror_del, 3115 .phylink_validate = mt753x_phylink_validate, 3116 .phylink_mac_link_state = mt753x_phylink_mac_link_state, 3117 .phylink_mac_config = mt753x_phylink_mac_config, 3118 .phylink_mac_an_restart = mt753x_phylink_mac_an_restart, 3119 .phylink_mac_link_down = mt753x_phylink_mac_link_down, 3120 .phylink_mac_link_up = mt753x_phylink_mac_link_up, 3121 .get_mac_eee = mt753x_get_mac_eee, 3122 .set_mac_eee = mt753x_set_mac_eee, 3123 }; 3124 3125 static const struct mt753x_info mt753x_table[] = { 3126 [ID_MT7621] = { 3127 .id = ID_MT7621, 3128 .sw_setup = mt7530_setup, 3129 .phy_read = mt7530_phy_read, 3130 .phy_write = mt7530_phy_write, 3131 .pad_setup = mt7530_pad_clk_setup, 3132 .phy_mode_supported = mt7530_phy_mode_supported, 3133 .mac_port_validate = mt7530_mac_port_validate, 3134 .mac_port_get_state = mt7530_phylink_mac_link_state, 3135 .mac_port_config = mt7530_mac_config, 3136 }, 3137 [ID_MT7530] = { 3138 .id = ID_MT7530, 3139 .sw_setup = mt7530_setup, 3140 .phy_read = mt7530_phy_read, 3141 .phy_write = mt7530_phy_write, 3142 .pad_setup = mt7530_pad_clk_setup, 3143 .phy_mode_supported = mt7530_phy_mode_supported, 3144 .mac_port_validate = mt7530_mac_port_validate, 3145 .mac_port_get_state = mt7530_phylink_mac_link_state, 3146 .mac_port_config = mt7530_mac_config, 3147 }, 3148 [ID_MT7531] = { 3149 .id = ID_MT7531, 3150 .sw_setup = mt7531_setup, 3151 .phy_read = mt7531_ind_phy_read, 3152 .phy_write = mt7531_ind_phy_write, 3153 .pad_setup = mt7531_pad_setup, 3154 .cpu_port_config = mt7531_cpu_port_config, 3155 .phy_mode_supported = mt7531_phy_mode_supported, 3156 .mac_port_validate = mt7531_mac_port_validate, 3157 .mac_port_get_state = mt7531_phylink_mac_link_state, 3158 .mac_port_config = mt7531_mac_config, 3159 .mac_pcs_an_restart = mt7531_sgmii_restart_an, 3160 .mac_pcs_link_up = mt7531_sgmii_link_up_force, 3161 }, 3162 }; 3163 3164 static const struct of_device_id mt7530_of_match[] = { 3165 { .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], }, 3166 { .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], }, 3167 { .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], }, 3168 { /* sentinel */ }, 3169 }; 3170 MODULE_DEVICE_TABLE(of, mt7530_of_match); 3171 3172 static int 3173 mt7530_probe(struct mdio_device *mdiodev) 3174 { 3175 struct mt7530_priv *priv; 3176 struct device_node *dn; 3177 3178 dn = mdiodev->dev.of_node; 3179 3180 priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL); 3181 if (!priv) 3182 return -ENOMEM; 3183 3184 priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL); 3185 if (!priv->ds) 3186 return -ENOMEM; 3187 3188 priv->ds->dev = &mdiodev->dev; 3189 priv->ds->num_ports = DSA_MAX_PORTS; 3190 3191 /* Use medatek,mcm property to distinguish hardware type that would 3192 * casues a little bit differences on power-on sequence. 3193 */ 3194 priv->mcm = of_property_read_bool(dn, "mediatek,mcm"); 3195 if (priv->mcm) { 3196 dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n"); 3197 3198 priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm"); 3199 if (IS_ERR(priv->rstc)) { 3200 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 3201 return PTR_ERR(priv->rstc); 3202 } 3203 } 3204 3205 /* Get the hardware identifier from the devicetree node. 3206 * We will need it for some of the clock and regulator setup. 3207 */ 3208 priv->info = of_device_get_match_data(&mdiodev->dev); 3209 if (!priv->info) 3210 return -EINVAL; 3211 3212 /* Sanity check if these required device operations are filled 3213 * properly. 3214 */ 3215 if (!priv->info->sw_setup || !priv->info->pad_setup || 3216 !priv->info->phy_read || !priv->info->phy_write || 3217 !priv->info->phy_mode_supported || 3218 !priv->info->mac_port_validate || 3219 !priv->info->mac_port_get_state || !priv->info->mac_port_config) 3220 return -EINVAL; 3221 3222 priv->id = priv->info->id; 3223 3224 if (priv->id == ID_MT7530) { 3225 priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core"); 3226 if (IS_ERR(priv->core_pwr)) 3227 return PTR_ERR(priv->core_pwr); 3228 3229 priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io"); 3230 if (IS_ERR(priv->io_pwr)) 3231 return PTR_ERR(priv->io_pwr); 3232 } 3233 3234 /* Not MCM that indicates switch works as the remote standalone 3235 * integrated circuit so the GPIO pin would be used to complete 3236 * the reset, otherwise memory-mapped register accessing used 3237 * through syscon provides in the case of MCM. 3238 */ 3239 if (!priv->mcm) { 3240 priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset", 3241 GPIOD_OUT_LOW); 3242 if (IS_ERR(priv->reset)) { 3243 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 3244 return PTR_ERR(priv->reset); 3245 } 3246 } 3247 3248 priv->bus = mdiodev->bus; 3249 priv->dev = &mdiodev->dev; 3250 priv->ds->priv = priv; 3251 priv->ds->ops = &mt7530_switch_ops; 3252 mutex_init(&priv->reg_mutex); 3253 dev_set_drvdata(&mdiodev->dev, priv); 3254 3255 return dsa_register_switch(priv->ds); 3256 } 3257 3258 static void 3259 mt7530_remove(struct mdio_device *mdiodev) 3260 { 3261 struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev); 3262 int ret = 0; 3263 3264 ret = regulator_disable(priv->core_pwr); 3265 if (ret < 0) 3266 dev_err(priv->dev, 3267 "Failed to disable core power: %d\n", ret); 3268 3269 ret = regulator_disable(priv->io_pwr); 3270 if (ret < 0) 3271 dev_err(priv->dev, "Failed to disable io pwr: %d\n", 3272 ret); 3273 3274 if (priv->irq) 3275 mt7530_free_irq(priv); 3276 3277 dsa_unregister_switch(priv->ds); 3278 mutex_destroy(&priv->reg_mutex); 3279 } 3280 3281 static struct mdio_driver mt7530_mdio_driver = { 3282 .probe = mt7530_probe, 3283 .remove = mt7530_remove, 3284 .mdiodrv.driver = { 3285 .name = "mt7530", 3286 .of_match_table = mt7530_of_match, 3287 }, 3288 }; 3289 3290 mdio_module_driver(mt7530_mdio_driver); 3291 3292 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>"); 3293 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch"); 3294 MODULE_LICENSE("GPL"); 3295