xref: /linux/drivers/net/dsa/mt7530.c (revision 7681a4f58fb9c338d6dfe1181607f84c793d77de)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
146 {
147 	struct mii_bus *bus = priv->bus;
148 
149 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
150 
151 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
152 
153 	mutex_unlock(&bus->mdio_lock);
154 }
155 
156 static void
157 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
158 {
159 	struct mii_bus *bus = priv->bus;
160 	u32 val;
161 
162 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
163 
164 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
165 	val &= ~mask;
166 	val |= set;
167 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
168 
169 	mutex_unlock(&bus->mdio_lock);
170 }
171 
172 static void
173 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
174 {
175 	core_rmw(priv, reg, 0, val);
176 }
177 
178 static void
179 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
180 {
181 	core_rmw(priv, reg, val, 0);
182 }
183 
184 static int
185 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
186 {
187 	struct mii_bus *bus = priv->bus;
188 	u16 page, r, lo, hi;
189 	int ret;
190 
191 	page = (reg >> 6) & 0x3ff;
192 	r  = (reg >> 2) & 0xf;
193 	lo = val & 0xffff;
194 	hi = val >> 16;
195 
196 	/* MT7530 uses 31 as the pseudo port */
197 	ret = bus->write(bus, 0x1f, 0x1f, page);
198 	if (ret < 0)
199 		goto err;
200 
201 	ret = bus->write(bus, 0x1f, r,  lo);
202 	if (ret < 0)
203 		goto err;
204 
205 	ret = bus->write(bus, 0x1f, 0x10, hi);
206 err:
207 	if (ret < 0)
208 		dev_err(&bus->dev,
209 			"failed to write mt7530 register\n");
210 	return ret;
211 }
212 
213 static u32
214 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
215 {
216 	struct mii_bus *bus = priv->bus;
217 	u16 page, r, lo, hi;
218 	int ret;
219 
220 	page = (reg >> 6) & 0x3ff;
221 	r = (reg >> 2) & 0xf;
222 
223 	/* MT7530 uses 31 as the pseudo port */
224 	ret = bus->write(bus, 0x1f, 0x1f, page);
225 	if (ret < 0) {
226 		dev_err(&bus->dev,
227 			"failed to read mt7530 register\n");
228 		return ret;
229 	}
230 
231 	lo = bus->read(bus, 0x1f, r);
232 	hi = bus->read(bus, 0x1f, 0x10);
233 
234 	return (hi << 16) | (lo & 0xffff);
235 }
236 
237 static void
238 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
239 {
240 	struct mii_bus *bus = priv->bus;
241 
242 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
243 
244 	mt7530_mii_write(priv, reg, val);
245 
246 	mutex_unlock(&bus->mdio_lock);
247 }
248 
249 static u32
250 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
251 {
252 	return mt7530_mii_read(p->priv, p->reg);
253 }
254 
255 static u32
256 _mt7530_read(struct mt7530_dummy_poll *p)
257 {
258 	struct mii_bus		*bus = p->priv->bus;
259 	u32 val;
260 
261 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
262 
263 	val = mt7530_mii_read(p->priv, p->reg);
264 
265 	mutex_unlock(&bus->mdio_lock);
266 
267 	return val;
268 }
269 
270 static u32
271 mt7530_read(struct mt7530_priv *priv, u32 reg)
272 {
273 	struct mt7530_dummy_poll p;
274 
275 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
276 	return _mt7530_read(&p);
277 }
278 
279 static void
280 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
281 	   u32 mask, u32 set)
282 {
283 	struct mii_bus *bus = priv->bus;
284 	u32 val;
285 
286 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
287 
288 	val = mt7530_mii_read(priv, reg);
289 	val &= ~mask;
290 	val |= set;
291 	mt7530_mii_write(priv, reg, val);
292 
293 	mutex_unlock(&bus->mdio_lock);
294 }
295 
296 static void
297 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
298 {
299 	mt7530_rmw(priv, reg, 0, val);
300 }
301 
302 static void
303 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
304 {
305 	mt7530_rmw(priv, reg, val, 0);
306 }
307 
308 static int
309 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
310 {
311 	u32 val;
312 	int ret;
313 	struct mt7530_dummy_poll p;
314 
315 	/* Set the command operating upon the MAC address entries */
316 	val = ATC_BUSY | ATC_MAT(0) | cmd;
317 	mt7530_write(priv, MT7530_ATC, val);
318 
319 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
320 	ret = readx_poll_timeout(_mt7530_read, &p, val,
321 				 !(val & ATC_BUSY), 20, 20000);
322 	if (ret < 0) {
323 		dev_err(priv->dev, "reset timeout\n");
324 		return ret;
325 	}
326 
327 	/* Additional sanity for read command if the specified
328 	 * entry is invalid
329 	 */
330 	val = mt7530_read(priv, MT7530_ATC);
331 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
332 		return -EINVAL;
333 
334 	if (rsp)
335 		*rsp = val;
336 
337 	return 0;
338 }
339 
340 static void
341 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
342 {
343 	u32 reg[3];
344 	int i;
345 
346 	/* Read from ARL table into an array */
347 	for (i = 0; i < 3; i++) {
348 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
349 
350 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
351 			__func__, __LINE__, i, reg[i]);
352 	}
353 
354 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
355 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
356 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
357 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
358 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
359 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
360 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
361 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
362 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
363 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
364 }
365 
366 static void
367 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
368 		 u8 port_mask, const u8 *mac,
369 		 u8 aging, u8 type)
370 {
371 	u32 reg[3] = { 0 };
372 	int i;
373 
374 	reg[1] |= vid & CVID_MASK;
375 	reg[1] |= ATA2_IVL;
376 	reg[1] |= ATA2_FID(FID_BRIDGED);
377 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
378 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
379 	/* STATIC_ENT indicate that entry is static wouldn't
380 	 * be aged out and STATIC_EMP specified as erasing an
381 	 * entry
382 	 */
383 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
384 	reg[1] |= mac[5] << MAC_BYTE_5;
385 	reg[1] |= mac[4] << MAC_BYTE_4;
386 	reg[0] |= mac[3] << MAC_BYTE_3;
387 	reg[0] |= mac[2] << MAC_BYTE_2;
388 	reg[0] |= mac[1] << MAC_BYTE_1;
389 	reg[0] |= mac[0] << MAC_BYTE_0;
390 
391 	/* Write array into the ARL table */
392 	for (i = 0; i < 3; i++)
393 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
394 }
395 
396 /* Setup TX circuit including relevant PAD and driving */
397 static int
398 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
399 {
400 	struct mt7530_priv *priv = ds->priv;
401 	u32 ncpo1, ssc_delta, trgint, i, xtal;
402 
403 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
404 
405 	if (xtal == HWTRAP_XTAL_20MHZ) {
406 		dev_err(priv->dev,
407 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
408 			__func__);
409 		return -EINVAL;
410 	}
411 
412 	switch (interface) {
413 	case PHY_INTERFACE_MODE_RGMII:
414 		trgint = 0;
415 		/* PLL frequency: 125MHz */
416 		ncpo1 = 0x0c80;
417 		break;
418 	case PHY_INTERFACE_MODE_TRGMII:
419 		trgint = 1;
420 		if (priv->id == ID_MT7621) {
421 			/* PLL frequency: 150MHz: 1.2GBit */
422 			if (xtal == HWTRAP_XTAL_40MHZ)
423 				ncpo1 = 0x0780;
424 			if (xtal == HWTRAP_XTAL_25MHZ)
425 				ncpo1 = 0x0a00;
426 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
427 			if (xtal == HWTRAP_XTAL_40MHZ)
428 				ncpo1 = 0x0c80;
429 			if (xtal == HWTRAP_XTAL_25MHZ)
430 				ncpo1 = 0x1400;
431 		}
432 		break;
433 	default:
434 		dev_err(priv->dev, "xMII interface %d not supported\n",
435 			interface);
436 		return -EINVAL;
437 	}
438 
439 	if (xtal == HWTRAP_XTAL_25MHZ)
440 		ssc_delta = 0x57;
441 	else
442 		ssc_delta = 0x87;
443 
444 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
445 		   P6_INTF_MODE(trgint));
446 
447 	/* Lower Tx Driving for TRGMII path */
448 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
449 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
450 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
451 
452 	/* Disable MT7530 core and TRGMII Tx clocks */
453 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
454 		   REG_GSWCK_EN | REG_TRGMIICK_EN);
455 
456 	/* Setup core clock for MT7530 */
457 	/* Disable PLL */
458 	core_write(priv, CORE_GSWPLL_GRP1, 0);
459 
460 	/* Set core clock into 500Mhz */
461 	core_write(priv, CORE_GSWPLL_GRP2,
462 		   RG_GSWPLL_POSDIV_500M(1) |
463 		   RG_GSWPLL_FBKDIV_500M(25));
464 
465 	/* Enable PLL */
466 	core_write(priv, CORE_GSWPLL_GRP1,
467 		   RG_GSWPLL_EN_PRE |
468 		   RG_GSWPLL_POSDIV_200M(2) |
469 		   RG_GSWPLL_FBKDIV_200M(32));
470 
471 	/* Setup the MT7530 TRGMII Tx Clock */
472 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
473 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
474 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
475 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
476 	core_write(priv, CORE_PLL_GROUP4,
477 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
478 		   RG_SYSPLL_BIAS_LPF_EN);
479 	core_write(priv, CORE_PLL_GROUP2,
480 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
481 		   RG_SYSPLL_POSDIV(1));
482 	core_write(priv, CORE_PLL_GROUP7,
483 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
484 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
485 
486 	/* Enable MT7530 core and TRGMII Tx clocks */
487 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
488 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
489 
490 	if (!trgint)
491 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
492 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
493 				   RD_TAP_MASK, RD_TAP(16));
494 	return 0;
495 }
496 
497 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
498 {
499 	u32 val;
500 
501 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
502 
503 	return (val & PAD_DUAL_SGMII_EN) != 0;
504 }
505 
506 static int
507 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
508 {
509 	return 0;
510 }
511 
512 static void
513 mt7531_pll_setup(struct mt7530_priv *priv)
514 {
515 	u32 top_sig;
516 	u32 hwstrap;
517 	u32 xtal;
518 	u32 val;
519 
520 	if (mt7531_dual_sgmii_supported(priv))
521 		return;
522 
523 	val = mt7530_read(priv, MT7531_CREV);
524 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
525 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
526 	if ((val & CHIP_REV_M) > 0)
527 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
528 						    HWTRAP_XTAL_FSEL_25MHZ;
529 	else
530 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
531 
532 	/* Step 1 : Disable MT7531 COREPLL */
533 	val = mt7530_read(priv, MT7531_PLLGP_EN);
534 	val &= ~EN_COREPLL;
535 	mt7530_write(priv, MT7531_PLLGP_EN, val);
536 
537 	/* Step 2: switch to XTAL output */
538 	val = mt7530_read(priv, MT7531_PLLGP_EN);
539 	val |= SW_CLKSW;
540 	mt7530_write(priv, MT7531_PLLGP_EN, val);
541 
542 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
543 	val &= ~RG_COREPLL_EN;
544 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
545 
546 	/* Step 3: disable PLLGP and enable program PLLGP */
547 	val = mt7530_read(priv, MT7531_PLLGP_EN);
548 	val |= SW_PLLGP;
549 	mt7530_write(priv, MT7531_PLLGP_EN, val);
550 
551 	/* Step 4: program COREPLL output frequency to 500MHz */
552 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
553 	val &= ~RG_COREPLL_POSDIV_M;
554 	val |= 2 << RG_COREPLL_POSDIV_S;
555 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
556 	usleep_range(25, 35);
557 
558 	switch (xtal) {
559 	case HWTRAP_XTAL_FSEL_25MHZ:
560 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
561 		val &= ~RG_COREPLL_SDM_PCW_M;
562 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
563 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
564 		break;
565 	case HWTRAP_XTAL_FSEL_40MHZ:
566 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
567 		val &= ~RG_COREPLL_SDM_PCW_M;
568 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
569 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
570 		break;
571 	}
572 
573 	/* Set feedback divide ratio update signal to high */
574 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
575 	val |= RG_COREPLL_SDM_PCW_CHG;
576 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
577 	/* Wait for at least 16 XTAL clocks */
578 	usleep_range(10, 20);
579 
580 	/* Step 5: set feedback divide ratio update signal to low */
581 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
582 	val &= ~RG_COREPLL_SDM_PCW_CHG;
583 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
584 
585 	/* Enable 325M clock for SGMII */
586 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
587 
588 	/* Enable 250SSC clock for RGMII */
589 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
590 
591 	/* Step 6: Enable MT7531 PLL */
592 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
593 	val |= RG_COREPLL_EN;
594 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
595 
596 	val = mt7530_read(priv, MT7531_PLLGP_EN);
597 	val |= EN_COREPLL;
598 	mt7530_write(priv, MT7531_PLLGP_EN, val);
599 	usleep_range(25, 35);
600 }
601 
602 static void
603 mt7530_mib_reset(struct dsa_switch *ds)
604 {
605 	struct mt7530_priv *priv = ds->priv;
606 
607 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
608 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
609 }
610 
611 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
612 {
613 	return mdiobus_read_nested(priv->bus, port, regnum);
614 }
615 
616 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
617 				u16 val)
618 {
619 	return mdiobus_write_nested(priv->bus, port, regnum, val);
620 }
621 
622 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
623 			       int devad, int regnum)
624 {
625 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
626 }
627 
628 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
629 				int regnum, u16 val)
630 {
631 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
632 }
633 
634 static int
635 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
636 			int regnum)
637 {
638 	struct mii_bus *bus = priv->bus;
639 	struct mt7530_dummy_poll p;
640 	u32 reg, val;
641 	int ret;
642 
643 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
644 
645 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
646 
647 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
648 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
649 	if (ret < 0) {
650 		dev_err(priv->dev, "poll timeout\n");
651 		goto out;
652 	}
653 
654 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
655 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
656 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
657 
658 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
659 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
660 	if (ret < 0) {
661 		dev_err(priv->dev, "poll timeout\n");
662 		goto out;
663 	}
664 
665 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
666 	      MT7531_MDIO_DEV_ADDR(devad);
667 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
668 
669 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
670 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
671 	if (ret < 0) {
672 		dev_err(priv->dev, "poll timeout\n");
673 		goto out;
674 	}
675 
676 	ret = val & MT7531_MDIO_RW_DATA_MASK;
677 out:
678 	mutex_unlock(&bus->mdio_lock);
679 
680 	return ret;
681 }
682 
683 static int
684 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
685 			 int regnum, u16 data)
686 {
687 	struct mii_bus *bus = priv->bus;
688 	struct mt7530_dummy_poll p;
689 	u32 val, reg;
690 	int ret;
691 
692 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
693 
694 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
695 
696 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
697 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
698 	if (ret < 0) {
699 		dev_err(priv->dev, "poll timeout\n");
700 		goto out;
701 	}
702 
703 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
704 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
705 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
706 
707 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
708 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
709 	if (ret < 0) {
710 		dev_err(priv->dev, "poll timeout\n");
711 		goto out;
712 	}
713 
714 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
715 	      MT7531_MDIO_DEV_ADDR(devad) | data;
716 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
717 
718 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
719 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
720 	if (ret < 0) {
721 		dev_err(priv->dev, "poll timeout\n");
722 		goto out;
723 	}
724 
725 out:
726 	mutex_unlock(&bus->mdio_lock);
727 
728 	return ret;
729 }
730 
731 static int
732 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
733 {
734 	struct mii_bus *bus = priv->bus;
735 	struct mt7530_dummy_poll p;
736 	int ret;
737 	u32 val;
738 
739 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
740 
741 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
742 
743 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
744 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
745 	if (ret < 0) {
746 		dev_err(priv->dev, "poll timeout\n");
747 		goto out;
748 	}
749 
750 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
751 	      MT7531_MDIO_REG_ADDR(regnum);
752 
753 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
754 
755 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
756 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
757 	if (ret < 0) {
758 		dev_err(priv->dev, "poll timeout\n");
759 		goto out;
760 	}
761 
762 	ret = val & MT7531_MDIO_RW_DATA_MASK;
763 out:
764 	mutex_unlock(&bus->mdio_lock);
765 
766 	return ret;
767 }
768 
769 static int
770 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
771 			 u16 data)
772 {
773 	struct mii_bus *bus = priv->bus;
774 	struct mt7530_dummy_poll p;
775 	int ret;
776 	u32 reg;
777 
778 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
779 
780 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
781 
782 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
783 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
784 	if (ret < 0) {
785 		dev_err(priv->dev, "poll timeout\n");
786 		goto out;
787 	}
788 
789 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
790 	      MT7531_MDIO_REG_ADDR(regnum) | data;
791 
792 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
793 
794 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
795 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
796 	if (ret < 0) {
797 		dev_err(priv->dev, "poll timeout\n");
798 		goto out;
799 	}
800 
801 out:
802 	mutex_unlock(&bus->mdio_lock);
803 
804 	return ret;
805 }
806 
807 static int
808 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
809 {
810 	struct mt7530_priv *priv = bus->priv;
811 
812 	return priv->info->phy_read_c22(priv, port, regnum);
813 }
814 
815 static int
816 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
817 {
818 	struct mt7530_priv *priv = bus->priv;
819 
820 	return priv->info->phy_read_c45(priv, port, devad, regnum);
821 }
822 
823 static int
824 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
825 {
826 	struct mt7530_priv *priv = bus->priv;
827 
828 	return priv->info->phy_write_c22(priv, port, regnum, val);
829 }
830 
831 static int
832 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
833 		     u16 val)
834 {
835 	struct mt7530_priv *priv = bus->priv;
836 
837 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
838 }
839 
840 static void
841 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
842 		   uint8_t *data)
843 {
844 	int i;
845 
846 	if (stringset != ETH_SS_STATS)
847 		return;
848 
849 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
850 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
851 			ETH_GSTRING_LEN);
852 }
853 
854 static void
855 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
856 			 uint64_t *data)
857 {
858 	struct mt7530_priv *priv = ds->priv;
859 	const struct mt7530_mib_desc *mib;
860 	u32 reg, i;
861 	u64 hi;
862 
863 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
864 		mib = &mt7530_mib[i];
865 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
866 
867 		data[i] = mt7530_read(priv, reg);
868 		if (mib->size == 2) {
869 			hi = mt7530_read(priv, reg + 4);
870 			data[i] |= hi << 32;
871 		}
872 	}
873 }
874 
875 static int
876 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
877 {
878 	if (sset != ETH_SS_STATS)
879 		return 0;
880 
881 	return ARRAY_SIZE(mt7530_mib);
882 }
883 
884 static int
885 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
886 {
887 	struct mt7530_priv *priv = ds->priv;
888 	unsigned int secs = msecs / 1000;
889 	unsigned int tmp_age_count;
890 	unsigned int error = -1;
891 	unsigned int age_count;
892 	unsigned int age_unit;
893 
894 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
895 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
896 		return -ERANGE;
897 
898 	/* iterate through all possible age_count to find the closest pair */
899 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
900 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
901 
902 		if (tmp_age_unit <= AGE_UNIT_MAX) {
903 			unsigned int tmp_error = secs -
904 				(tmp_age_count + 1) * (tmp_age_unit + 1);
905 
906 			/* found a closer pair */
907 			if (error > tmp_error) {
908 				error = tmp_error;
909 				age_count = tmp_age_count;
910 				age_unit = tmp_age_unit;
911 			}
912 
913 			/* found the exact match, so break the loop */
914 			if (!error)
915 				break;
916 		}
917 	}
918 
919 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
920 
921 	return 0;
922 }
923 
924 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
925 {
926 	struct mt7530_priv *priv = ds->priv;
927 	u8 tx_delay = 0;
928 	int val;
929 
930 	mutex_lock(&priv->reg_mutex);
931 
932 	val = mt7530_read(priv, MT7530_MHWTRAP);
933 
934 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
935 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
936 
937 	switch (priv->p5_intf_sel) {
938 	case P5_INTF_SEL_PHY_P0:
939 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
940 		val |= MHWTRAP_PHY0_SEL;
941 		fallthrough;
942 	case P5_INTF_SEL_PHY_P4:
943 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
944 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
945 
946 		/* Setup the MAC by default for the cpu port */
947 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
948 		break;
949 	case P5_INTF_SEL_GMAC5:
950 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
951 		val &= ~MHWTRAP_P5_DIS;
952 		break;
953 	case P5_DISABLED:
954 		interface = PHY_INTERFACE_MODE_NA;
955 		break;
956 	default:
957 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
958 			priv->p5_intf_sel);
959 		goto unlock_exit;
960 	}
961 
962 	/* Setup RGMII settings */
963 	if (phy_interface_mode_is_rgmii(interface)) {
964 		val |= MHWTRAP_P5_RGMII_MODE;
965 
966 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
967 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
968 
969 		/* Don't set delay in DSA mode */
970 		if (!dsa_is_dsa_port(priv->ds, 5) &&
971 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
972 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
973 			tx_delay = 4; /* n * 0.5 ns */
974 
975 		/* P5 RGMII TX Clock Control: delay x */
976 		mt7530_write(priv, MT7530_P5RGMIITXCR,
977 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
978 
979 		/* reduce P5 RGMII Tx driving, 8mA */
980 		mt7530_write(priv, MT7530_IO_DRV_CR,
981 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
982 	}
983 
984 	mt7530_write(priv, MT7530_MHWTRAP, val);
985 
986 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
987 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
988 
989 	priv->p5_interface = interface;
990 
991 unlock_exit:
992 	mutex_unlock(&priv->reg_mutex);
993 }
994 
995 static int
996 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
997 {
998 	struct mt7530_priv *priv = ds->priv;
999 	int ret;
1000 
1001 	/* Setup max capability of CPU port at first */
1002 	if (priv->info->cpu_port_config) {
1003 		ret = priv->info->cpu_port_config(ds, port);
1004 		if (ret)
1005 			return ret;
1006 	}
1007 
1008 	/* Enable Mediatek header mode on the cpu port */
1009 	mt7530_write(priv, MT7530_PVC_P(port),
1010 		     PORT_SPEC_TAG);
1011 
1012 	/* Disable flooding by default */
1013 	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1014 		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1015 
1016 	/* Set CPU port number */
1017 	if (priv->id == ID_MT7621)
1018 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1019 
1020 	/* CPU port gets connected to all user ports of
1021 	 * the switch.
1022 	 */
1023 	mt7530_write(priv, MT7530_PCR_P(port),
1024 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1025 
1026 	/* Set to fallback mode for independent VLAN learning */
1027 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1028 		   MT7530_PORT_FALLBACK_MODE);
1029 
1030 	return 0;
1031 }
1032 
1033 static int
1034 mt7530_port_enable(struct dsa_switch *ds, int port,
1035 		   struct phy_device *phy)
1036 {
1037 	struct dsa_port *dp = dsa_to_port(ds, port);
1038 	struct mt7530_priv *priv = ds->priv;
1039 
1040 	mutex_lock(&priv->reg_mutex);
1041 
1042 	/* Allow the user port gets connected to the cpu port and also
1043 	 * restore the port matrix if the port is the member of a certain
1044 	 * bridge.
1045 	 */
1046 	if (dsa_port_is_user(dp)) {
1047 		struct dsa_port *cpu_dp = dp->cpu_dp;
1048 
1049 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1050 	}
1051 	priv->ports[port].enable = true;
1052 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1053 		   priv->ports[port].pm);
1054 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1055 
1056 	mutex_unlock(&priv->reg_mutex);
1057 
1058 	return 0;
1059 }
1060 
1061 static void
1062 mt7530_port_disable(struct dsa_switch *ds, int port)
1063 {
1064 	struct mt7530_priv *priv = ds->priv;
1065 
1066 	mutex_lock(&priv->reg_mutex);
1067 
1068 	/* Clear up all port matrix which could be restored in the next
1069 	 * enablement for the port.
1070 	 */
1071 	priv->ports[port].enable = false;
1072 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1073 		   PCR_MATRIX_CLR);
1074 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1075 
1076 	mutex_unlock(&priv->reg_mutex);
1077 }
1078 
1079 static int
1080 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1081 {
1082 	struct mt7530_priv *priv = ds->priv;
1083 	struct mii_bus *bus = priv->bus;
1084 	int length;
1085 	u32 val;
1086 
1087 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1088 	 * largest MTU of the slave ports. Because the switch only has a global
1089 	 * RX length register, only allowing CPU port here is enough.
1090 	 */
1091 	if (!dsa_is_cpu_port(ds, port))
1092 		return 0;
1093 
1094 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1095 
1096 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1097 	val &= ~MAX_RX_PKT_LEN_MASK;
1098 
1099 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1100 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1101 	if (length <= 1522) {
1102 		val |= MAX_RX_PKT_LEN_1522;
1103 	} else if (length <= 1536) {
1104 		val |= MAX_RX_PKT_LEN_1536;
1105 	} else if (length <= 1552) {
1106 		val |= MAX_RX_PKT_LEN_1552;
1107 	} else {
1108 		val &= ~MAX_RX_JUMBO_MASK;
1109 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1110 		val |= MAX_RX_PKT_LEN_JUMBO;
1111 	}
1112 
1113 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1114 
1115 	mutex_unlock(&bus->mdio_lock);
1116 
1117 	return 0;
1118 }
1119 
1120 static int
1121 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1122 {
1123 	return MT7530_MAX_MTU;
1124 }
1125 
1126 static void
1127 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1128 {
1129 	struct mt7530_priv *priv = ds->priv;
1130 	u32 stp_state;
1131 
1132 	switch (state) {
1133 	case BR_STATE_DISABLED:
1134 		stp_state = MT7530_STP_DISABLED;
1135 		break;
1136 	case BR_STATE_BLOCKING:
1137 		stp_state = MT7530_STP_BLOCKING;
1138 		break;
1139 	case BR_STATE_LISTENING:
1140 		stp_state = MT7530_STP_LISTENING;
1141 		break;
1142 	case BR_STATE_LEARNING:
1143 		stp_state = MT7530_STP_LEARNING;
1144 		break;
1145 	case BR_STATE_FORWARDING:
1146 	default:
1147 		stp_state = MT7530_STP_FORWARDING;
1148 		break;
1149 	}
1150 
1151 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1152 		   FID_PST(FID_BRIDGED, stp_state));
1153 }
1154 
1155 static int
1156 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1157 			     struct switchdev_brport_flags flags,
1158 			     struct netlink_ext_ack *extack)
1159 {
1160 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1161 			   BR_BCAST_FLOOD))
1162 		return -EINVAL;
1163 
1164 	return 0;
1165 }
1166 
1167 static int
1168 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1169 			 struct switchdev_brport_flags flags,
1170 			 struct netlink_ext_ack *extack)
1171 {
1172 	struct mt7530_priv *priv = ds->priv;
1173 
1174 	if (flags.mask & BR_LEARNING)
1175 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1176 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1177 
1178 	if (flags.mask & BR_FLOOD)
1179 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1180 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1181 
1182 	if (flags.mask & BR_MCAST_FLOOD)
1183 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1184 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1185 
1186 	if (flags.mask & BR_BCAST_FLOOD)
1187 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1188 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1189 
1190 	return 0;
1191 }
1192 
1193 static int
1194 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1195 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1196 			struct netlink_ext_ack *extack)
1197 {
1198 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1199 	struct dsa_port *cpu_dp = dp->cpu_dp;
1200 	u32 port_bitmap = BIT(cpu_dp->index);
1201 	struct mt7530_priv *priv = ds->priv;
1202 
1203 	mutex_lock(&priv->reg_mutex);
1204 
1205 	dsa_switch_for_each_user_port(other_dp, ds) {
1206 		int other_port = other_dp->index;
1207 
1208 		if (dp == other_dp)
1209 			continue;
1210 
1211 		/* Add this port to the port matrix of the other ports in the
1212 		 * same bridge. If the port is disabled, port matrix is kept
1213 		 * and not being setup until the port becomes enabled.
1214 		 */
1215 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1216 			continue;
1217 
1218 		if (priv->ports[other_port].enable)
1219 			mt7530_set(priv, MT7530_PCR_P(other_port),
1220 				   PCR_MATRIX(BIT(port)));
1221 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1222 
1223 		port_bitmap |= BIT(other_port);
1224 	}
1225 
1226 	/* Add the all other ports to this port matrix. */
1227 	if (priv->ports[port].enable)
1228 		mt7530_rmw(priv, MT7530_PCR_P(port),
1229 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1230 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1231 
1232 	/* Set to fallback mode for independent VLAN learning */
1233 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1234 		   MT7530_PORT_FALLBACK_MODE);
1235 
1236 	mutex_unlock(&priv->reg_mutex);
1237 
1238 	return 0;
1239 }
1240 
1241 static void
1242 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1243 {
1244 	struct mt7530_priv *priv = ds->priv;
1245 	bool all_user_ports_removed = true;
1246 	int i;
1247 
1248 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1249 	 * bridge. Don't set standalone ports to fallback mode.
1250 	 */
1251 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1252 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1253 			   MT7530_PORT_FALLBACK_MODE);
1254 
1255 	mt7530_rmw(priv, MT7530_PVC_P(port),
1256 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1257 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1258 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1259 		   MT7530_VLAN_ACC_ALL);
1260 
1261 	/* Set PVID to 0 */
1262 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1263 		   G0_PORT_VID_DEF);
1264 
1265 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1266 		if (dsa_is_user_port(ds, i) &&
1267 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1268 			all_user_ports_removed = false;
1269 			break;
1270 		}
1271 	}
1272 
1273 	/* CPU port also does the same thing until all user ports belonging to
1274 	 * the CPU port get out of VLAN filtering mode.
1275 	 */
1276 	if (all_user_ports_removed) {
1277 		struct dsa_port *dp = dsa_to_port(ds, port);
1278 		struct dsa_port *cpu_dp = dp->cpu_dp;
1279 
1280 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1281 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1282 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1283 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1284 	}
1285 }
1286 
1287 static void
1288 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1289 {
1290 	struct mt7530_priv *priv = ds->priv;
1291 
1292 	/* Trapped into security mode allows packet forwarding through VLAN
1293 	 * table lookup.
1294 	 */
1295 	if (dsa_is_user_port(ds, port)) {
1296 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1297 			   MT7530_PORT_SECURITY_MODE);
1298 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1299 			   G0_PORT_VID(priv->ports[port].pvid));
1300 
1301 		/* Only accept tagged frames if PVID is not set */
1302 		if (!priv->ports[port].pvid)
1303 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1304 				   MT7530_VLAN_ACC_TAGGED);
1305 	}
1306 
1307 	/* Set the port as a user port which is to be able to recognize VID
1308 	 * from incoming packets before fetching entry within the VLAN table.
1309 	 */
1310 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1311 		   VLAN_ATTR(MT7530_VLAN_USER) |
1312 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1313 }
1314 
1315 static void
1316 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1317 			 struct dsa_bridge bridge)
1318 {
1319 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1320 	struct dsa_port *cpu_dp = dp->cpu_dp;
1321 	struct mt7530_priv *priv = ds->priv;
1322 
1323 	mutex_lock(&priv->reg_mutex);
1324 
1325 	dsa_switch_for_each_user_port(other_dp, ds) {
1326 		int other_port = other_dp->index;
1327 
1328 		if (dp == other_dp)
1329 			continue;
1330 
1331 		/* Remove this port from the port matrix of the other ports
1332 		 * in the same bridge. If the port is disabled, port matrix
1333 		 * is kept and not being setup until the port becomes enabled.
1334 		 */
1335 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1336 			continue;
1337 
1338 		if (priv->ports[other_port].enable)
1339 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1340 				     PCR_MATRIX(BIT(port)));
1341 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1342 	}
1343 
1344 	/* Set the cpu port to be the only one in the port matrix of
1345 	 * this port.
1346 	 */
1347 	if (priv->ports[port].enable)
1348 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1349 			   PCR_MATRIX(BIT(cpu_dp->index)));
1350 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1351 
1352 	/* When a port is removed from the bridge, the port would be set up
1353 	 * back to the default as is at initial boot which is a VLAN-unaware
1354 	 * port.
1355 	 */
1356 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1357 		   MT7530_PORT_MATRIX_MODE);
1358 
1359 	mutex_unlock(&priv->reg_mutex);
1360 }
1361 
1362 static int
1363 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1364 		    const unsigned char *addr, u16 vid,
1365 		    struct dsa_db db)
1366 {
1367 	struct mt7530_priv *priv = ds->priv;
1368 	int ret;
1369 	u8 port_mask = BIT(port);
1370 
1371 	mutex_lock(&priv->reg_mutex);
1372 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1373 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1374 	mutex_unlock(&priv->reg_mutex);
1375 
1376 	return ret;
1377 }
1378 
1379 static int
1380 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1381 		    const unsigned char *addr, u16 vid,
1382 		    struct dsa_db db)
1383 {
1384 	struct mt7530_priv *priv = ds->priv;
1385 	int ret;
1386 	u8 port_mask = BIT(port);
1387 
1388 	mutex_lock(&priv->reg_mutex);
1389 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1390 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1391 	mutex_unlock(&priv->reg_mutex);
1392 
1393 	return ret;
1394 }
1395 
1396 static int
1397 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1398 		     dsa_fdb_dump_cb_t *cb, void *data)
1399 {
1400 	struct mt7530_priv *priv = ds->priv;
1401 	struct mt7530_fdb _fdb = { 0 };
1402 	int cnt = MT7530_NUM_FDB_RECORDS;
1403 	int ret = 0;
1404 	u32 rsp = 0;
1405 
1406 	mutex_lock(&priv->reg_mutex);
1407 
1408 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1409 	if (ret < 0)
1410 		goto err;
1411 
1412 	do {
1413 		if (rsp & ATC_SRCH_HIT) {
1414 			mt7530_fdb_read(priv, &_fdb);
1415 			if (_fdb.port_mask & BIT(port)) {
1416 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1417 					 data);
1418 				if (ret < 0)
1419 					break;
1420 			}
1421 		}
1422 	} while (--cnt &&
1423 		 !(rsp & ATC_SRCH_END) &&
1424 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1425 err:
1426 	mutex_unlock(&priv->reg_mutex);
1427 
1428 	return 0;
1429 }
1430 
1431 static int
1432 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1433 		    const struct switchdev_obj_port_mdb *mdb,
1434 		    struct dsa_db db)
1435 {
1436 	struct mt7530_priv *priv = ds->priv;
1437 	const u8 *addr = mdb->addr;
1438 	u16 vid = mdb->vid;
1439 	u8 port_mask = 0;
1440 	int ret;
1441 
1442 	mutex_lock(&priv->reg_mutex);
1443 
1444 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1445 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1446 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1447 			    & PORT_MAP_MASK;
1448 
1449 	port_mask |= BIT(port);
1450 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1451 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1452 
1453 	mutex_unlock(&priv->reg_mutex);
1454 
1455 	return ret;
1456 }
1457 
1458 static int
1459 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1460 		    const struct switchdev_obj_port_mdb *mdb,
1461 		    struct dsa_db db)
1462 {
1463 	struct mt7530_priv *priv = ds->priv;
1464 	const u8 *addr = mdb->addr;
1465 	u16 vid = mdb->vid;
1466 	u8 port_mask = 0;
1467 	int ret;
1468 
1469 	mutex_lock(&priv->reg_mutex);
1470 
1471 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1472 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1473 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1474 			    & PORT_MAP_MASK;
1475 
1476 	port_mask &= ~BIT(port);
1477 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1478 			 port_mask ? STATIC_ENT : STATIC_EMP);
1479 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1480 
1481 	mutex_unlock(&priv->reg_mutex);
1482 
1483 	return ret;
1484 }
1485 
1486 static int
1487 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1488 {
1489 	struct mt7530_dummy_poll p;
1490 	u32 val;
1491 	int ret;
1492 
1493 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1494 	mt7530_write(priv, MT7530_VTCR, val);
1495 
1496 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1497 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1498 				 !(val & VTCR_BUSY), 20, 20000);
1499 	if (ret < 0) {
1500 		dev_err(priv->dev, "poll timeout\n");
1501 		return ret;
1502 	}
1503 
1504 	val = mt7530_read(priv, MT7530_VTCR);
1505 	if (val & VTCR_INVALID) {
1506 		dev_err(priv->dev, "read VTCR invalid\n");
1507 		return -EINVAL;
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 static int
1514 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1515 			   struct netlink_ext_ack *extack)
1516 {
1517 	struct dsa_port *dp = dsa_to_port(ds, port);
1518 	struct dsa_port *cpu_dp = dp->cpu_dp;
1519 
1520 	if (vlan_filtering) {
1521 		/* The port is being kept as VLAN-unaware port when bridge is
1522 		 * set up with vlan_filtering not being set, Otherwise, the
1523 		 * port and the corresponding CPU port is required the setup
1524 		 * for becoming a VLAN-aware port.
1525 		 */
1526 		mt7530_port_set_vlan_aware(ds, port);
1527 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1528 	} else {
1529 		mt7530_port_set_vlan_unaware(ds, port);
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 static void
1536 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1537 		   struct mt7530_hw_vlan_entry *entry)
1538 {
1539 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1540 	u8 new_members;
1541 	u32 val;
1542 
1543 	new_members = entry->old_members | BIT(entry->port);
1544 
1545 	/* Validate the entry with independent learning, create egress tag per
1546 	 * VLAN and joining the port as one of the port members.
1547 	 */
1548 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1549 	      VLAN_VALID;
1550 	mt7530_write(priv, MT7530_VAWD1, val);
1551 
1552 	/* Decide whether adding tag or not for those outgoing packets from the
1553 	 * port inside the VLAN.
1554 	 * CPU port is always taken as a tagged port for serving more than one
1555 	 * VLANs across and also being applied with egress type stack mode for
1556 	 * that VLAN tags would be appended after hardware special tag used as
1557 	 * DSA tag.
1558 	 */
1559 	if (dsa_port_is_cpu(dp))
1560 		val = MT7530_VLAN_EGRESS_STACK;
1561 	else if (entry->untagged)
1562 		val = MT7530_VLAN_EGRESS_UNTAG;
1563 	else
1564 		val = MT7530_VLAN_EGRESS_TAG;
1565 	mt7530_rmw(priv, MT7530_VAWD2,
1566 		   ETAG_CTRL_P_MASK(entry->port),
1567 		   ETAG_CTRL_P(entry->port, val));
1568 }
1569 
1570 static void
1571 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1572 		   struct mt7530_hw_vlan_entry *entry)
1573 {
1574 	u8 new_members;
1575 	u32 val;
1576 
1577 	new_members = entry->old_members & ~BIT(entry->port);
1578 
1579 	val = mt7530_read(priv, MT7530_VAWD1);
1580 	if (!(val & VLAN_VALID)) {
1581 		dev_err(priv->dev,
1582 			"Cannot be deleted due to invalid entry\n");
1583 		return;
1584 	}
1585 
1586 	if (new_members) {
1587 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1588 		      VLAN_VALID;
1589 		mt7530_write(priv, MT7530_VAWD1, val);
1590 	} else {
1591 		mt7530_write(priv, MT7530_VAWD1, 0);
1592 		mt7530_write(priv, MT7530_VAWD2, 0);
1593 	}
1594 }
1595 
1596 static void
1597 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1598 		      struct mt7530_hw_vlan_entry *entry,
1599 		      mt7530_vlan_op vlan_op)
1600 {
1601 	u32 val;
1602 
1603 	/* Fetch entry */
1604 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1605 
1606 	val = mt7530_read(priv, MT7530_VAWD1);
1607 
1608 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1609 
1610 	/* Manipulate entry */
1611 	vlan_op(priv, entry);
1612 
1613 	/* Flush result to hardware */
1614 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1615 }
1616 
1617 static int
1618 mt7530_setup_vlan0(struct mt7530_priv *priv)
1619 {
1620 	u32 val;
1621 
1622 	/* Validate the entry with independent learning, keep the original
1623 	 * ingress tag attribute.
1624 	 */
1625 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1626 	      VLAN_VALID;
1627 	mt7530_write(priv, MT7530_VAWD1, val);
1628 
1629 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1630 }
1631 
1632 static int
1633 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1634 		     const struct switchdev_obj_port_vlan *vlan,
1635 		     struct netlink_ext_ack *extack)
1636 {
1637 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1638 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1639 	struct mt7530_hw_vlan_entry new_entry;
1640 	struct mt7530_priv *priv = ds->priv;
1641 
1642 	mutex_lock(&priv->reg_mutex);
1643 
1644 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1645 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1646 
1647 	if (pvid) {
1648 		priv->ports[port].pvid = vlan->vid;
1649 
1650 		/* Accept all frames if PVID is set */
1651 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1652 			   MT7530_VLAN_ACC_ALL);
1653 
1654 		/* Only configure PVID if VLAN filtering is enabled */
1655 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1656 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1657 				   G0_PORT_VID_MASK,
1658 				   G0_PORT_VID(vlan->vid));
1659 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1660 		/* This VLAN is overwritten without PVID, so unset it */
1661 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1662 
1663 		/* Only accept tagged frames if the port is VLAN-aware */
1664 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1665 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1666 				   MT7530_VLAN_ACC_TAGGED);
1667 
1668 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1669 			   G0_PORT_VID_DEF);
1670 	}
1671 
1672 	mutex_unlock(&priv->reg_mutex);
1673 
1674 	return 0;
1675 }
1676 
1677 static int
1678 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1679 		     const struct switchdev_obj_port_vlan *vlan)
1680 {
1681 	struct mt7530_hw_vlan_entry target_entry;
1682 	struct mt7530_priv *priv = ds->priv;
1683 
1684 	mutex_lock(&priv->reg_mutex);
1685 
1686 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1687 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1688 			      mt7530_hw_vlan_del);
1689 
1690 	/* PVID is being restored to the default whenever the PVID port
1691 	 * is being removed from the VLAN.
1692 	 */
1693 	if (priv->ports[port].pvid == vlan->vid) {
1694 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1695 
1696 		/* Only accept tagged frames if the port is VLAN-aware */
1697 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1698 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1699 				   MT7530_VLAN_ACC_TAGGED);
1700 
1701 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1702 			   G0_PORT_VID_DEF);
1703 	}
1704 
1705 
1706 	mutex_unlock(&priv->reg_mutex);
1707 
1708 	return 0;
1709 }
1710 
1711 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1712 {
1713 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1714 				   MIRROR_PORT(val);
1715 }
1716 
1717 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1718 {
1719 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1720 				   MIRROR_PORT(val);
1721 }
1722 
1723 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1724 				  struct dsa_mall_mirror_tc_entry *mirror,
1725 				  bool ingress, struct netlink_ext_ack *extack)
1726 {
1727 	struct mt7530_priv *priv = ds->priv;
1728 	int monitor_port;
1729 	u32 val;
1730 
1731 	/* Check for existent entry */
1732 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1733 		return -EEXIST;
1734 
1735 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1736 
1737 	/* MT7530 only supports one monitor port */
1738 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1739 	if (val & MT753X_MIRROR_EN(priv->id) &&
1740 	    monitor_port != mirror->to_local_port)
1741 		return -EEXIST;
1742 
1743 	val |= MT753X_MIRROR_EN(priv->id);
1744 	val &= ~MT753X_MIRROR_MASK(priv->id);
1745 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1746 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1747 
1748 	val = mt7530_read(priv, MT7530_PCR_P(port));
1749 	if (ingress) {
1750 		val |= PORT_RX_MIR;
1751 		priv->mirror_rx |= BIT(port);
1752 	} else {
1753 		val |= PORT_TX_MIR;
1754 		priv->mirror_tx |= BIT(port);
1755 	}
1756 	mt7530_write(priv, MT7530_PCR_P(port), val);
1757 
1758 	return 0;
1759 }
1760 
1761 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1762 				   struct dsa_mall_mirror_tc_entry *mirror)
1763 {
1764 	struct mt7530_priv *priv = ds->priv;
1765 	u32 val;
1766 
1767 	val = mt7530_read(priv, MT7530_PCR_P(port));
1768 	if (mirror->ingress) {
1769 		val &= ~PORT_RX_MIR;
1770 		priv->mirror_rx &= ~BIT(port);
1771 	} else {
1772 		val &= ~PORT_TX_MIR;
1773 		priv->mirror_tx &= ~BIT(port);
1774 	}
1775 	mt7530_write(priv, MT7530_PCR_P(port), val);
1776 
1777 	if (!priv->mirror_rx && !priv->mirror_tx) {
1778 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1779 		val &= ~MT753X_MIRROR_EN(priv->id);
1780 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1781 	}
1782 }
1783 
1784 static enum dsa_tag_protocol
1785 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1786 		     enum dsa_tag_protocol mp)
1787 {
1788 	return DSA_TAG_PROTO_MTK;
1789 }
1790 
1791 #ifdef CONFIG_GPIOLIB
1792 static inline u32
1793 mt7530_gpio_to_bit(unsigned int offset)
1794 {
1795 	/* Map GPIO offset to register bit
1796 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1797 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1798 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1799 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1800 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1801 	 */
1802 	return BIT(offset + offset / 3);
1803 }
1804 
1805 static int
1806 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1807 {
1808 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1809 	u32 bit = mt7530_gpio_to_bit(offset);
1810 
1811 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1812 }
1813 
1814 static void
1815 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1816 {
1817 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1818 	u32 bit = mt7530_gpio_to_bit(offset);
1819 
1820 	if (value)
1821 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1822 	else
1823 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1824 }
1825 
1826 static int
1827 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1828 {
1829 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1830 	u32 bit = mt7530_gpio_to_bit(offset);
1831 
1832 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1833 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1834 }
1835 
1836 static int
1837 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1838 {
1839 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1840 	u32 bit = mt7530_gpio_to_bit(offset);
1841 
1842 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1843 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1844 
1845 	return 0;
1846 }
1847 
1848 static int
1849 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1850 {
1851 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1852 	u32 bit = mt7530_gpio_to_bit(offset);
1853 
1854 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1855 
1856 	if (value)
1857 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1858 	else
1859 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1860 
1861 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1862 
1863 	return 0;
1864 }
1865 
1866 static int
1867 mt7530_setup_gpio(struct mt7530_priv *priv)
1868 {
1869 	struct device *dev = priv->dev;
1870 	struct gpio_chip *gc;
1871 
1872 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1873 	if (!gc)
1874 		return -ENOMEM;
1875 
1876 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1877 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1878 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1879 
1880 	gc->label = "mt7530";
1881 	gc->parent = dev;
1882 	gc->owner = THIS_MODULE;
1883 	gc->get_direction = mt7530_gpio_get_direction;
1884 	gc->direction_input = mt7530_gpio_direction_input;
1885 	gc->direction_output = mt7530_gpio_direction_output;
1886 	gc->get = mt7530_gpio_get;
1887 	gc->set = mt7530_gpio_set;
1888 	gc->base = -1;
1889 	gc->ngpio = 15;
1890 	gc->can_sleep = true;
1891 
1892 	return devm_gpiochip_add_data(dev, gc, priv);
1893 }
1894 #endif /* CONFIG_GPIOLIB */
1895 
1896 static irqreturn_t
1897 mt7530_irq_thread_fn(int irq, void *dev_id)
1898 {
1899 	struct mt7530_priv *priv = dev_id;
1900 	bool handled = false;
1901 	u32 val;
1902 	int p;
1903 
1904 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1905 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1906 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1907 	mutex_unlock(&priv->bus->mdio_lock);
1908 
1909 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1910 		if (BIT(p) & val) {
1911 			unsigned int irq;
1912 
1913 			irq = irq_find_mapping(priv->irq_domain, p);
1914 			handle_nested_irq(irq);
1915 			handled = true;
1916 		}
1917 	}
1918 
1919 	return IRQ_RETVAL(handled);
1920 }
1921 
1922 static void
1923 mt7530_irq_mask(struct irq_data *d)
1924 {
1925 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1926 
1927 	priv->irq_enable &= ~BIT(d->hwirq);
1928 }
1929 
1930 static void
1931 mt7530_irq_unmask(struct irq_data *d)
1932 {
1933 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1934 
1935 	priv->irq_enable |= BIT(d->hwirq);
1936 }
1937 
1938 static void
1939 mt7530_irq_bus_lock(struct irq_data *d)
1940 {
1941 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1942 
1943 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1944 }
1945 
1946 static void
1947 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1948 {
1949 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1950 
1951 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1952 	mutex_unlock(&priv->bus->mdio_lock);
1953 }
1954 
1955 static struct irq_chip mt7530_irq_chip = {
1956 	.name = KBUILD_MODNAME,
1957 	.irq_mask = mt7530_irq_mask,
1958 	.irq_unmask = mt7530_irq_unmask,
1959 	.irq_bus_lock = mt7530_irq_bus_lock,
1960 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1961 };
1962 
1963 static int
1964 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1965 	       irq_hw_number_t hwirq)
1966 {
1967 	irq_set_chip_data(irq, domain->host_data);
1968 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1969 	irq_set_nested_thread(irq, true);
1970 	irq_set_noprobe(irq);
1971 
1972 	return 0;
1973 }
1974 
1975 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1976 	.map = mt7530_irq_map,
1977 	.xlate = irq_domain_xlate_onecell,
1978 };
1979 
1980 static void
1981 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1982 {
1983 	struct dsa_switch *ds = priv->ds;
1984 	int p;
1985 
1986 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1987 		if (BIT(p) & ds->phys_mii_mask) {
1988 			unsigned int irq;
1989 
1990 			irq = irq_create_mapping(priv->irq_domain, p);
1991 			ds->slave_mii_bus->irq[p] = irq;
1992 		}
1993 	}
1994 }
1995 
1996 static int
1997 mt7530_setup_irq(struct mt7530_priv *priv)
1998 {
1999 	struct device *dev = priv->dev;
2000 	struct device_node *np = dev->of_node;
2001 	int ret;
2002 
2003 	if (!of_property_read_bool(np, "interrupt-controller")) {
2004 		dev_info(dev, "no interrupt support\n");
2005 		return 0;
2006 	}
2007 
2008 	priv->irq = of_irq_get(np, 0);
2009 	if (priv->irq <= 0) {
2010 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2011 		return priv->irq ? : -EINVAL;
2012 	}
2013 
2014 	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2015 						 &mt7530_irq_domain_ops, priv);
2016 	if (!priv->irq_domain) {
2017 		dev_err(dev, "failed to create IRQ domain\n");
2018 		return -ENOMEM;
2019 	}
2020 
2021 	/* This register must be set for MT7530 to properly fire interrupts */
2022 	if (priv->id != ID_MT7531)
2023 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2024 
2025 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2026 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2027 	if (ret) {
2028 		irq_domain_remove(priv->irq_domain);
2029 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2030 		return ret;
2031 	}
2032 
2033 	return 0;
2034 }
2035 
2036 static void
2037 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2038 {
2039 	int p;
2040 
2041 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2042 		if (BIT(p) & priv->ds->phys_mii_mask) {
2043 			unsigned int irq;
2044 
2045 			irq = irq_find_mapping(priv->irq_domain, p);
2046 			irq_dispose_mapping(irq);
2047 		}
2048 	}
2049 }
2050 
2051 static void
2052 mt7530_free_irq_common(struct mt7530_priv *priv)
2053 {
2054 	free_irq(priv->irq, priv);
2055 	irq_domain_remove(priv->irq_domain);
2056 }
2057 
2058 static void
2059 mt7530_free_irq(struct mt7530_priv *priv)
2060 {
2061 	mt7530_free_mdio_irq(priv);
2062 	mt7530_free_irq_common(priv);
2063 }
2064 
2065 static int
2066 mt7530_setup_mdio(struct mt7530_priv *priv)
2067 {
2068 	struct dsa_switch *ds = priv->ds;
2069 	struct device *dev = priv->dev;
2070 	struct mii_bus *bus;
2071 	static int idx;
2072 	int ret;
2073 
2074 	bus = devm_mdiobus_alloc(dev);
2075 	if (!bus)
2076 		return -ENOMEM;
2077 
2078 	ds->slave_mii_bus = bus;
2079 	bus->priv = priv;
2080 	bus->name = KBUILD_MODNAME "-mii";
2081 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2082 	bus->read = mt753x_phy_read_c22;
2083 	bus->write = mt753x_phy_write_c22;
2084 	bus->read_c45 = mt753x_phy_read_c45;
2085 	bus->write_c45 = mt753x_phy_write_c45;
2086 	bus->parent = dev;
2087 	bus->phy_mask = ~ds->phys_mii_mask;
2088 
2089 	if (priv->irq)
2090 		mt7530_setup_mdio_irq(priv);
2091 
2092 	ret = devm_mdiobus_register(dev, bus);
2093 	if (ret) {
2094 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2095 		if (priv->irq)
2096 			mt7530_free_mdio_irq(priv);
2097 	}
2098 
2099 	return ret;
2100 }
2101 
2102 static int
2103 mt7530_setup(struct dsa_switch *ds)
2104 {
2105 	struct mt7530_priv *priv = ds->priv;
2106 	struct device_node *dn = NULL;
2107 	struct device_node *phy_node;
2108 	struct device_node *mac_np;
2109 	struct mt7530_dummy_poll p;
2110 	phy_interface_t interface;
2111 	struct dsa_port *cpu_dp;
2112 	u32 id, val;
2113 	int ret, i;
2114 
2115 	/* The parent node of master netdev which holds the common system
2116 	 * controller also is the container for two GMACs nodes representing
2117 	 * as two netdev instances.
2118 	 */
2119 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2120 		dn = cpu_dp->master->dev.of_node->parent;
2121 		/* It doesn't matter which CPU port is found first,
2122 		 * their masters should share the same parent OF node
2123 		 */
2124 		break;
2125 	}
2126 
2127 	if (!dn) {
2128 		dev_err(ds->dev, "parent OF node of DSA master not found");
2129 		return -EINVAL;
2130 	}
2131 
2132 	ds->assisted_learning_on_cpu_port = true;
2133 	ds->mtu_enforcement_ingress = true;
2134 
2135 	if (priv->id == ID_MT7530) {
2136 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2137 		ret = regulator_enable(priv->core_pwr);
2138 		if (ret < 0) {
2139 			dev_err(priv->dev,
2140 				"Failed to enable core power: %d\n", ret);
2141 			return ret;
2142 		}
2143 
2144 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2145 		ret = regulator_enable(priv->io_pwr);
2146 		if (ret < 0) {
2147 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2148 				ret);
2149 			return ret;
2150 		}
2151 	}
2152 
2153 	/* Reset whole chip through gpio pin or memory-mapped registers for
2154 	 * different type of hardware
2155 	 */
2156 	if (priv->mcm) {
2157 		reset_control_assert(priv->rstc);
2158 		usleep_range(1000, 1100);
2159 		reset_control_deassert(priv->rstc);
2160 	} else {
2161 		gpiod_set_value_cansleep(priv->reset, 0);
2162 		usleep_range(1000, 1100);
2163 		gpiod_set_value_cansleep(priv->reset, 1);
2164 	}
2165 
2166 	/* Waiting for MT7530 got to stable */
2167 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2168 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2169 				 20, 1000000);
2170 	if (ret < 0) {
2171 		dev_err(priv->dev, "reset timeout\n");
2172 		return ret;
2173 	}
2174 
2175 	id = mt7530_read(priv, MT7530_CREV);
2176 	id >>= CHIP_NAME_SHIFT;
2177 	if (id != MT7530_ID) {
2178 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2179 		return -ENODEV;
2180 	}
2181 
2182 	/* Reset the switch through internal reset */
2183 	mt7530_write(priv, MT7530_SYS_CTRL,
2184 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2185 		     SYS_CTRL_REG_RST);
2186 
2187 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
2188 	val = mt7530_read(priv, MT7530_MHWTRAP);
2189 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2190 	val |= MHWTRAP_MANUAL;
2191 	mt7530_write(priv, MT7530_MHWTRAP, val);
2192 
2193 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2194 
2195 	/* Enable and reset MIB counters */
2196 	mt7530_mib_reset(ds);
2197 
2198 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2199 		/* Disable forwarding by default on all ports */
2200 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2201 			   PCR_MATRIX_CLR);
2202 
2203 		/* Disable learning by default on all ports */
2204 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2205 
2206 		if (dsa_is_cpu_port(ds, i)) {
2207 			ret = mt753x_cpu_port_enable(ds, i);
2208 			if (ret)
2209 				return ret;
2210 		} else {
2211 			mt7530_port_disable(ds, i);
2212 
2213 			/* Set default PVID to 0 on all user ports */
2214 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2215 				   G0_PORT_VID_DEF);
2216 		}
2217 		/* Enable consistent egress tag */
2218 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2219 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2220 	}
2221 
2222 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2223 	ret = mt7530_setup_vlan0(priv);
2224 	if (ret)
2225 		return ret;
2226 
2227 	/* Setup port 5 */
2228 	priv->p5_intf_sel = P5_DISABLED;
2229 	interface = PHY_INTERFACE_MODE_NA;
2230 
2231 	if (!dsa_is_unused_port(ds, 5)) {
2232 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2233 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2234 		if (ret && ret != -ENODEV)
2235 			return ret;
2236 	} else {
2237 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2238 		for_each_child_of_node(dn, mac_np) {
2239 			if (!of_device_is_compatible(mac_np,
2240 						     "mediatek,eth-mac"))
2241 				continue;
2242 
2243 			ret = of_property_read_u32(mac_np, "reg", &id);
2244 			if (ret < 0 || id != 1)
2245 				continue;
2246 
2247 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2248 			if (!phy_node)
2249 				continue;
2250 
2251 			if (phy_node->parent == priv->dev->of_node->parent) {
2252 				ret = of_get_phy_mode(mac_np, &interface);
2253 				if (ret && ret != -ENODEV) {
2254 					of_node_put(mac_np);
2255 					of_node_put(phy_node);
2256 					return ret;
2257 				}
2258 				id = of_mdio_parse_addr(ds->dev, phy_node);
2259 				if (id == 0)
2260 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2261 				if (id == 4)
2262 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2263 			}
2264 			of_node_put(mac_np);
2265 			of_node_put(phy_node);
2266 			break;
2267 		}
2268 	}
2269 
2270 #ifdef CONFIG_GPIOLIB
2271 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2272 		ret = mt7530_setup_gpio(priv);
2273 		if (ret)
2274 			return ret;
2275 	}
2276 #endif /* CONFIG_GPIOLIB */
2277 
2278 	mt7530_setup_port5(ds, interface);
2279 
2280 	/* Flush the FDB table */
2281 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2282 	if (ret < 0)
2283 		return ret;
2284 
2285 	return 0;
2286 }
2287 
2288 static int
2289 mt7531_setup(struct dsa_switch *ds)
2290 {
2291 	struct mt7530_priv *priv = ds->priv;
2292 	struct mt7530_dummy_poll p;
2293 	struct dsa_port *cpu_dp;
2294 	u32 val, id;
2295 	int ret, i;
2296 
2297 	/* Reset whole chip through gpio pin or memory-mapped registers for
2298 	 * different type of hardware
2299 	 */
2300 	if (priv->mcm) {
2301 		reset_control_assert(priv->rstc);
2302 		usleep_range(1000, 1100);
2303 		reset_control_deassert(priv->rstc);
2304 	} else {
2305 		gpiod_set_value_cansleep(priv->reset, 0);
2306 		usleep_range(1000, 1100);
2307 		gpiod_set_value_cansleep(priv->reset, 1);
2308 	}
2309 
2310 	/* Waiting for MT7530 got to stable */
2311 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2312 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2313 				 20, 1000000);
2314 	if (ret < 0) {
2315 		dev_err(priv->dev, "reset timeout\n");
2316 		return ret;
2317 	}
2318 
2319 	id = mt7530_read(priv, MT7531_CREV);
2320 	id >>= CHIP_NAME_SHIFT;
2321 
2322 	if (id != MT7531_ID) {
2323 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2324 		return -ENODEV;
2325 	}
2326 
2327 	/* all MACs must be forced link-down before sw reset */
2328 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2329 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2330 
2331 	/* Reset the switch through internal reset */
2332 	mt7530_write(priv, MT7530_SYS_CTRL,
2333 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2334 		     SYS_CTRL_REG_RST);
2335 
2336 	mt7531_pll_setup(priv);
2337 
2338 	if (mt7531_dual_sgmii_supported(priv)) {
2339 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2340 
2341 		/* Let ds->slave_mii_bus be able to access external phy. */
2342 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2343 			   MT7531_EXT_P_MDC_11);
2344 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2345 			   MT7531_EXT_P_MDIO_12);
2346 	} else {
2347 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2348 	}
2349 	dev_dbg(ds->dev, "P5 support %s interface\n",
2350 		p5_intf_modes(priv->p5_intf_sel));
2351 
2352 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2353 		   MT7531_GPIO0_INTERRUPT);
2354 
2355 	/* Let phylink decide the interface later. */
2356 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2357 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2358 
2359 	/* Enable PHY core PLL, since phy_device has not yet been created
2360 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2361 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2362 	 * function.
2363 	 */
2364 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2365 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2366 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2367 	val &= ~MT7531_PHY_PLL_OFF;
2368 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2369 				 CORE_PLL_GROUP4, val);
2370 
2371 	/* BPDU to CPU port */
2372 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2373 		mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2374 			   BIT(cpu_dp->index));
2375 		break;
2376 	}
2377 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2378 		   MT753X_BPDU_CPU_ONLY);
2379 
2380 	/* Enable and reset MIB counters */
2381 	mt7530_mib_reset(ds);
2382 
2383 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2384 		/* Disable forwarding by default on all ports */
2385 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2386 			   PCR_MATRIX_CLR);
2387 
2388 		/* Disable learning by default on all ports */
2389 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2390 
2391 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2392 
2393 		if (dsa_is_cpu_port(ds, i)) {
2394 			ret = mt753x_cpu_port_enable(ds, i);
2395 			if (ret)
2396 				return ret;
2397 		} else {
2398 			mt7530_port_disable(ds, i);
2399 
2400 			/* Set default PVID to 0 on all user ports */
2401 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2402 				   G0_PORT_VID_DEF);
2403 		}
2404 
2405 		/* Enable consistent egress tag */
2406 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2407 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2408 	}
2409 
2410 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2411 	ret = mt7530_setup_vlan0(priv);
2412 	if (ret)
2413 		return ret;
2414 
2415 	ds->assisted_learning_on_cpu_port = true;
2416 	ds->mtu_enforcement_ingress = true;
2417 
2418 	/* Flush the FDB table */
2419 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2420 	if (ret < 0)
2421 		return ret;
2422 
2423 	return 0;
2424 }
2425 
2426 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2427 				     struct phylink_config *config)
2428 {
2429 	switch (port) {
2430 	case 0 ... 4: /* Internal phy */
2431 		__set_bit(PHY_INTERFACE_MODE_GMII,
2432 			  config->supported_interfaces);
2433 		break;
2434 
2435 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2436 		phy_interface_set_rgmii(config->supported_interfaces);
2437 		__set_bit(PHY_INTERFACE_MODE_MII,
2438 			  config->supported_interfaces);
2439 		__set_bit(PHY_INTERFACE_MODE_GMII,
2440 			  config->supported_interfaces);
2441 		break;
2442 
2443 	case 6: /* 1st cpu port */
2444 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2445 			  config->supported_interfaces);
2446 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2447 			  config->supported_interfaces);
2448 		break;
2449 	}
2450 }
2451 
2452 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2453 {
2454 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2455 }
2456 
2457 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2458 				     struct phylink_config *config)
2459 {
2460 	struct mt7530_priv *priv = ds->priv;
2461 
2462 	switch (port) {
2463 	case 0 ... 4: /* Internal phy */
2464 		__set_bit(PHY_INTERFACE_MODE_GMII,
2465 			  config->supported_interfaces);
2466 		break;
2467 
2468 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2469 		if (mt7531_is_rgmii_port(priv, port)) {
2470 			phy_interface_set_rgmii(config->supported_interfaces);
2471 			break;
2472 		}
2473 		fallthrough;
2474 
2475 	case 6: /* 1st cpu port supports sgmii/8023z only */
2476 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2477 			  config->supported_interfaces);
2478 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2479 			  config->supported_interfaces);
2480 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2481 			  config->supported_interfaces);
2482 
2483 		config->mac_capabilities |= MAC_2500FD;
2484 		break;
2485 	}
2486 }
2487 
2488 static int
2489 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2490 {
2491 	struct mt7530_priv *priv = ds->priv;
2492 
2493 	return priv->info->pad_setup(ds, state->interface);
2494 }
2495 
2496 static int
2497 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2498 		  phy_interface_t interface)
2499 {
2500 	struct mt7530_priv *priv = ds->priv;
2501 
2502 	/* Only need to setup port5. */
2503 	if (port != 5)
2504 		return 0;
2505 
2506 	mt7530_setup_port5(priv->ds, interface);
2507 
2508 	return 0;
2509 }
2510 
2511 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2512 			      phy_interface_t interface,
2513 			      struct phy_device *phydev)
2514 {
2515 	u32 val;
2516 
2517 	if (!mt7531_is_rgmii_port(priv, port)) {
2518 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2519 			port);
2520 		return -EINVAL;
2521 	}
2522 
2523 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2524 	val |= GP_CLK_EN;
2525 	val &= ~GP_MODE_MASK;
2526 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2527 	val &= ~CLK_SKEW_IN_MASK;
2528 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2529 	val &= ~CLK_SKEW_OUT_MASK;
2530 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2531 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2532 
2533 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2534 	if (!phydev || phy_driver_is_genphy(phydev)) {
2535 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2536 		switch (interface) {
2537 		case PHY_INTERFACE_MODE_RGMII:
2538 			val |= TXCLK_NO_REVERSE;
2539 			val |= RXCLK_NO_DELAY;
2540 			break;
2541 		case PHY_INTERFACE_MODE_RGMII_RXID:
2542 			val |= TXCLK_NO_REVERSE;
2543 			break;
2544 		case PHY_INTERFACE_MODE_RGMII_TXID:
2545 			val |= RXCLK_NO_DELAY;
2546 			break;
2547 		case PHY_INTERFACE_MODE_RGMII_ID:
2548 			break;
2549 		default:
2550 			return -EINVAL;
2551 		}
2552 	}
2553 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2554 
2555 	return 0;
2556 }
2557 
2558 static void mt7531_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
2559 			       phy_interface_t interface, int speed, int duplex)
2560 {
2561 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2562 	int port = pcs_to_mt753x_pcs(pcs)->port;
2563 	unsigned int val;
2564 
2565 	/* For adjusting speed and duplex of SGMII force mode. */
2566 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2567 	    phylink_autoneg_inband(mode))
2568 		return;
2569 
2570 	/* SGMII force mode setting */
2571 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2572 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2573 
2574 	switch (speed) {
2575 	case SPEED_10:
2576 		val |= MT7531_SGMII_FORCE_SPEED_10;
2577 		break;
2578 	case SPEED_100:
2579 		val |= MT7531_SGMII_FORCE_SPEED_100;
2580 		break;
2581 	case SPEED_1000:
2582 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2583 		break;
2584 	}
2585 
2586 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2587 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2588 	 *
2589 	 * The speed check is unnecessary as the MAC capabilities apply
2590 	 * this restriction. --rmk
2591 	 */
2592 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2593 	    duplex != DUPLEX_FULL)
2594 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2595 
2596 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2597 }
2598 
2599 static bool mt753x_is_mac_port(u32 port)
2600 {
2601 	return (port == 5 || port == 6);
2602 }
2603 
2604 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2605 					 phy_interface_t interface)
2606 {
2607 	u32 val;
2608 
2609 	if (!mt753x_is_mac_port(port))
2610 		return -EINVAL;
2611 
2612 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2613 		   MT7531_SGMII_PHYA_PWD);
2614 
2615 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2616 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2617 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2618 	 * encoding.
2619 	 */
2620 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2621 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2622 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2623 
2624 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2625 
2626 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2627 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2628 	 */
2629 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2630 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2631 		   MT7531_SGMII_FORCE_SPEED_1000);
2632 
2633 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2634 
2635 	return 0;
2636 }
2637 
2638 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2639 				      phy_interface_t interface)
2640 {
2641 	if (!mt753x_is_mac_port(port))
2642 		return -EINVAL;
2643 
2644 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2645 		   MT7531_SGMII_PHYA_PWD);
2646 
2647 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2648 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2649 
2650 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2651 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2652 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2653 
2654 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2655 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2656 
2657 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2658 
2659 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2660 
2661 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2662 
2663 	return 0;
2664 }
2665 
2666 static void mt7531_pcs_an_restart(struct phylink_pcs *pcs)
2667 {
2668 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2669 	int port = pcs_to_mt753x_pcs(pcs)->port;
2670 	u32 val;
2671 
2672 	/* Only restart AN when AN is enabled */
2673 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2674 	if (val & MT7531_SGMII_AN_ENABLE) {
2675 		val |= MT7531_SGMII_AN_RESTART;
2676 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2677 	}
2678 }
2679 
2680 static int
2681 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2682 		  phy_interface_t interface)
2683 {
2684 	struct mt7530_priv *priv = ds->priv;
2685 	struct phy_device *phydev;
2686 	struct dsa_port *dp;
2687 
2688 	if (!mt753x_is_mac_port(port)) {
2689 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2690 		return -EINVAL;
2691 	}
2692 
2693 	switch (interface) {
2694 	case PHY_INTERFACE_MODE_RGMII:
2695 	case PHY_INTERFACE_MODE_RGMII_ID:
2696 	case PHY_INTERFACE_MODE_RGMII_RXID:
2697 	case PHY_INTERFACE_MODE_RGMII_TXID:
2698 		dp = dsa_to_port(ds, port);
2699 		phydev = dp->slave->phydev;
2700 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2701 	case PHY_INTERFACE_MODE_SGMII:
2702 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2703 	case PHY_INTERFACE_MODE_NA:
2704 	case PHY_INTERFACE_MODE_1000BASEX:
2705 	case PHY_INTERFACE_MODE_2500BASEX:
2706 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2707 	default:
2708 		return -EINVAL;
2709 	}
2710 
2711 	return -EINVAL;
2712 }
2713 
2714 static int
2715 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2716 		  const struct phylink_link_state *state)
2717 {
2718 	struct mt7530_priv *priv = ds->priv;
2719 
2720 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2721 }
2722 
2723 static struct phylink_pcs *
2724 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2725 			      phy_interface_t interface)
2726 {
2727 	struct mt7530_priv *priv = ds->priv;
2728 
2729 	switch (interface) {
2730 	case PHY_INTERFACE_MODE_TRGMII:
2731 	case PHY_INTERFACE_MODE_SGMII:
2732 	case PHY_INTERFACE_MODE_1000BASEX:
2733 	case PHY_INTERFACE_MODE_2500BASEX:
2734 		return &priv->pcs[port].pcs;
2735 
2736 	default:
2737 		return NULL;
2738 	}
2739 }
2740 
2741 static void
2742 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2743 			  const struct phylink_link_state *state)
2744 {
2745 	struct mt7530_priv *priv = ds->priv;
2746 	u32 mcr_cur, mcr_new;
2747 
2748 	switch (port) {
2749 	case 0 ... 4: /* Internal phy */
2750 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2751 			goto unsupported;
2752 		break;
2753 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2754 		if (priv->p5_interface == state->interface)
2755 			break;
2756 
2757 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2758 			goto unsupported;
2759 
2760 		if (priv->p5_intf_sel != P5_DISABLED)
2761 			priv->p5_interface = state->interface;
2762 		break;
2763 	case 6: /* 1st cpu port */
2764 		if (priv->p6_interface == state->interface)
2765 			break;
2766 
2767 		mt753x_pad_setup(ds, state);
2768 
2769 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2770 			goto unsupported;
2771 
2772 		priv->p6_interface = state->interface;
2773 		break;
2774 	default:
2775 unsupported:
2776 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2777 			__func__, phy_modes(state->interface), port);
2778 		return;
2779 	}
2780 
2781 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2782 	mcr_new = mcr_cur;
2783 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2784 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2785 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2786 
2787 	/* Are we connected to external phy */
2788 	if (port == 5 && dsa_is_user_port(ds, 5))
2789 		mcr_new |= PMCR_EXT_PHY;
2790 
2791 	if (mcr_new != mcr_cur)
2792 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2793 }
2794 
2795 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2796 					 unsigned int mode,
2797 					 phy_interface_t interface)
2798 {
2799 	struct mt7530_priv *priv = ds->priv;
2800 
2801 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2802 }
2803 
2804 static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
2805 				       unsigned int mode,
2806 				       phy_interface_t interface,
2807 				       int speed, int duplex)
2808 {
2809 	if (pcs->ops->pcs_link_up)
2810 		pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
2811 }
2812 
2813 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2814 				       unsigned int mode,
2815 				       phy_interface_t interface,
2816 				       struct phy_device *phydev,
2817 				       int speed, int duplex,
2818 				       bool tx_pause, bool rx_pause)
2819 {
2820 	struct mt7530_priv *priv = ds->priv;
2821 	u32 mcr;
2822 
2823 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2824 
2825 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2826 	 * variants.
2827 	 */
2828 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2829 	    (phy_interface_mode_is_8023z(interface))) {
2830 		speed = SPEED_1000;
2831 		duplex = DUPLEX_FULL;
2832 	}
2833 
2834 	switch (speed) {
2835 	case SPEED_1000:
2836 		mcr |= PMCR_FORCE_SPEED_1000;
2837 		break;
2838 	case SPEED_100:
2839 		mcr |= PMCR_FORCE_SPEED_100;
2840 		break;
2841 	}
2842 	if (duplex == DUPLEX_FULL) {
2843 		mcr |= PMCR_FORCE_FDX;
2844 		if (tx_pause)
2845 			mcr |= PMCR_TX_FC_EN;
2846 		if (rx_pause)
2847 			mcr |= PMCR_RX_FC_EN;
2848 	}
2849 
2850 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2851 		switch (speed) {
2852 		case SPEED_1000:
2853 			mcr |= PMCR_FORCE_EEE1G;
2854 			break;
2855 		case SPEED_100:
2856 			mcr |= PMCR_FORCE_EEE100;
2857 			break;
2858 		}
2859 	}
2860 
2861 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2862 }
2863 
2864 static int
2865 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2866 {
2867 	struct mt7530_priv *priv = ds->priv;
2868 	phy_interface_t interface;
2869 	int speed;
2870 	int ret;
2871 
2872 	switch (port) {
2873 	case 5:
2874 		if (mt7531_is_rgmii_port(priv, port))
2875 			interface = PHY_INTERFACE_MODE_RGMII;
2876 		else
2877 			interface = PHY_INTERFACE_MODE_2500BASEX;
2878 
2879 		priv->p5_interface = interface;
2880 		break;
2881 	case 6:
2882 		interface = PHY_INTERFACE_MODE_2500BASEX;
2883 
2884 		priv->p6_interface = interface;
2885 		break;
2886 	default:
2887 		return -EINVAL;
2888 	}
2889 
2890 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2891 		speed = SPEED_2500;
2892 	else
2893 		speed = SPEED_1000;
2894 
2895 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2896 	if (ret)
2897 		return ret;
2898 	mt7530_write(priv, MT7530_PMCR_P(port),
2899 		     PMCR_CPU_PORT_SETTING(priv->id));
2900 	mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
2901 				   interface, speed, DUPLEX_FULL);
2902 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2903 				   speed, DUPLEX_FULL, true, true);
2904 
2905 	return 0;
2906 }
2907 
2908 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2909 				    struct phylink_config *config)
2910 {
2911 	struct mt7530_priv *priv = ds->priv;
2912 
2913 	/* This switch only supports full-duplex at 1Gbps */
2914 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2915 				   MAC_10 | MAC_100 | MAC_1000FD;
2916 
2917 	/* This driver does not make use of the speed, duplex, pause or the
2918 	 * advertisement in its mac_config, so it is safe to mark this driver
2919 	 * as non-legacy.
2920 	 */
2921 	config->legacy_pre_march2020 = false;
2922 
2923 	priv->info->mac_port_get_caps(ds, port, config);
2924 }
2925 
2926 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2927 			       unsigned long *supported,
2928 			       const struct phylink_link_state *state)
2929 {
2930 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2931 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2932 	    phy_interface_mode_is_8023z(state->interface))
2933 		phylink_clear(supported, Autoneg);
2934 
2935 	return 0;
2936 }
2937 
2938 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2939 				 struct phylink_link_state *state)
2940 {
2941 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2942 	int port = pcs_to_mt753x_pcs(pcs)->port;
2943 	u32 pmsr;
2944 
2945 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2946 
2947 	state->link = (pmsr & PMSR_LINK);
2948 	state->an_complete = state->link;
2949 	state->duplex = !!(pmsr & PMSR_DPX);
2950 
2951 	switch (pmsr & PMSR_SPEED_MASK) {
2952 	case PMSR_SPEED_10:
2953 		state->speed = SPEED_10;
2954 		break;
2955 	case PMSR_SPEED_100:
2956 		state->speed = SPEED_100;
2957 		break;
2958 	case PMSR_SPEED_1000:
2959 		state->speed = SPEED_1000;
2960 		break;
2961 	default:
2962 		state->speed = SPEED_UNKNOWN;
2963 		break;
2964 	}
2965 
2966 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2967 	if (pmsr & PMSR_RX_FC)
2968 		state->pause |= MLO_PAUSE_RX;
2969 	if (pmsr & PMSR_TX_FC)
2970 		state->pause |= MLO_PAUSE_TX;
2971 }
2972 
2973 static int
2974 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2975 			      struct phylink_link_state *state)
2976 {
2977 	u32 status, val;
2978 	u16 config_reg;
2979 
2980 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2981 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2982 	state->an_complete = !!(status & MT7531_SGMII_AN_COMPLETE);
2983 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
2984 	    (status & MT7531_SGMII_AN_ENABLE)) {
2985 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
2986 		config_reg = val >> 16;
2987 
2988 		switch (config_reg & LPA_SGMII_SPD_MASK) {
2989 		case LPA_SGMII_1000:
2990 			state->speed = SPEED_1000;
2991 			break;
2992 		case LPA_SGMII_100:
2993 			state->speed = SPEED_100;
2994 			break;
2995 		case LPA_SGMII_10:
2996 			state->speed = SPEED_10;
2997 			break;
2998 		default:
2999 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
3000 			state->link = false;
3001 			return -EINVAL;
3002 		}
3003 
3004 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
3005 			state->duplex = DUPLEX_FULL;
3006 		else
3007 			state->duplex = DUPLEX_HALF;
3008 	}
3009 
3010 	return 0;
3011 }
3012 
3013 static void
3014 mt7531_sgmii_pcs_get_state_inband(struct mt7530_priv *priv, int port,
3015 				  struct phylink_link_state *state)
3016 {
3017 	unsigned int val;
3018 
3019 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
3020 	state->link = !!(val & MT7531_SGMII_LINK_STATUS);
3021 	if (!state->link)
3022 		return;
3023 
3024 	state->an_complete = state->link;
3025 
3026 	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
3027 		state->speed = SPEED_2500;
3028 	else
3029 		state->speed = SPEED_1000;
3030 
3031 	state->duplex = DUPLEX_FULL;
3032 	state->pause = MLO_PAUSE_NONE;
3033 }
3034 
3035 static void mt7531_pcs_get_state(struct phylink_pcs *pcs,
3036 				 struct phylink_link_state *state)
3037 {
3038 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
3039 	int port = pcs_to_mt753x_pcs(pcs)->port;
3040 
3041 	if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3042 		mt7531_sgmii_pcs_get_state_an(priv, port, state);
3043 		return;
3044 	} else if ((state->interface == PHY_INTERFACE_MODE_1000BASEX) ||
3045 		   (state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3046 		mt7531_sgmii_pcs_get_state_inband(priv, port, state);
3047 		return;
3048 	}
3049 
3050 	state->link = false;
3051 }
3052 
3053 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
3054 			     phy_interface_t interface,
3055 			     const unsigned long *advertising,
3056 			     bool permit_pause_to_mac)
3057 {
3058 	return 0;
3059 }
3060 
3061 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3062 {
3063 }
3064 
3065 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3066 	.pcs_validate = mt753x_pcs_validate,
3067 	.pcs_get_state = mt7530_pcs_get_state,
3068 	.pcs_config = mt753x_pcs_config,
3069 	.pcs_an_restart = mt7530_pcs_an_restart,
3070 };
3071 
3072 static const struct phylink_pcs_ops mt7531_pcs_ops = {
3073 	.pcs_validate = mt753x_pcs_validate,
3074 	.pcs_get_state = mt7531_pcs_get_state,
3075 	.pcs_config = mt753x_pcs_config,
3076 	.pcs_an_restart = mt7531_pcs_an_restart,
3077 	.pcs_link_up = mt7531_pcs_link_up,
3078 };
3079 
3080 static int
3081 mt753x_setup(struct dsa_switch *ds)
3082 {
3083 	struct mt7530_priv *priv = ds->priv;
3084 	int i, ret;
3085 
3086 	/* Initialise the PCS devices */
3087 	for (i = 0; i < priv->ds->num_ports; i++) {
3088 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3089 		priv->pcs[i].priv = priv;
3090 		priv->pcs[i].port = i;
3091 		if (mt753x_is_mac_port(i))
3092 			priv->pcs[i].pcs.poll = 1;
3093 	}
3094 
3095 	ret = priv->info->sw_setup(ds);
3096 	if (ret)
3097 		return ret;
3098 
3099 	ret = mt7530_setup_irq(priv);
3100 	if (ret)
3101 		return ret;
3102 
3103 	ret = mt7530_setup_mdio(priv);
3104 	if (ret && priv->irq)
3105 		mt7530_free_irq_common(priv);
3106 
3107 	return ret;
3108 }
3109 
3110 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3111 			      struct ethtool_eee *e)
3112 {
3113 	struct mt7530_priv *priv = ds->priv;
3114 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3115 
3116 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3117 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3118 
3119 	return 0;
3120 }
3121 
3122 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3123 			      struct ethtool_eee *e)
3124 {
3125 	struct mt7530_priv *priv = ds->priv;
3126 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3127 
3128 	if (e->tx_lpi_timer > 0xFFF)
3129 		return -EINVAL;
3130 
3131 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3132 	if (!e->tx_lpi_enabled)
3133 		/* Force LPI Mode without a delay */
3134 		set |= LPI_MODE_EN;
3135 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3136 
3137 	return 0;
3138 }
3139 
3140 static const struct dsa_switch_ops mt7530_switch_ops = {
3141 	.get_tag_protocol	= mtk_get_tag_protocol,
3142 	.setup			= mt753x_setup,
3143 	.get_strings		= mt7530_get_strings,
3144 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3145 	.get_sset_count		= mt7530_get_sset_count,
3146 	.set_ageing_time	= mt7530_set_ageing_time,
3147 	.port_enable		= mt7530_port_enable,
3148 	.port_disable		= mt7530_port_disable,
3149 	.port_change_mtu	= mt7530_port_change_mtu,
3150 	.port_max_mtu		= mt7530_port_max_mtu,
3151 	.port_stp_state_set	= mt7530_stp_state_set,
3152 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3153 	.port_bridge_flags	= mt7530_port_bridge_flags,
3154 	.port_bridge_join	= mt7530_port_bridge_join,
3155 	.port_bridge_leave	= mt7530_port_bridge_leave,
3156 	.port_fdb_add		= mt7530_port_fdb_add,
3157 	.port_fdb_del		= mt7530_port_fdb_del,
3158 	.port_fdb_dump		= mt7530_port_fdb_dump,
3159 	.port_mdb_add		= mt7530_port_mdb_add,
3160 	.port_mdb_del		= mt7530_port_mdb_del,
3161 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3162 	.port_vlan_add		= mt7530_port_vlan_add,
3163 	.port_vlan_del		= mt7530_port_vlan_del,
3164 	.port_mirror_add	= mt753x_port_mirror_add,
3165 	.port_mirror_del	= mt753x_port_mirror_del,
3166 	.phylink_get_caps	= mt753x_phylink_get_caps,
3167 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3168 	.phylink_mac_config	= mt753x_phylink_mac_config,
3169 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3170 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3171 	.get_mac_eee		= mt753x_get_mac_eee,
3172 	.set_mac_eee		= mt753x_set_mac_eee,
3173 };
3174 
3175 static const struct mt753x_info mt753x_table[] = {
3176 	[ID_MT7621] = {
3177 		.id = ID_MT7621,
3178 		.pcs_ops = &mt7530_pcs_ops,
3179 		.sw_setup = mt7530_setup,
3180 		.phy_read_c22 = mt7530_phy_read_c22,
3181 		.phy_write_c22 = mt7530_phy_write_c22,
3182 		.phy_read_c45 = mt7530_phy_read_c45,
3183 		.phy_write_c45 = mt7530_phy_write_c45,
3184 		.pad_setup = mt7530_pad_clk_setup,
3185 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3186 		.mac_port_config = mt7530_mac_config,
3187 	},
3188 	[ID_MT7530] = {
3189 		.id = ID_MT7530,
3190 		.pcs_ops = &mt7530_pcs_ops,
3191 		.sw_setup = mt7530_setup,
3192 		.phy_read_c22 = mt7530_phy_read_c22,
3193 		.phy_write_c22 = mt7530_phy_write_c22,
3194 		.phy_read_c45 = mt7530_phy_read_c45,
3195 		.phy_write_c45 = mt7530_phy_write_c45,
3196 		.pad_setup = mt7530_pad_clk_setup,
3197 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3198 		.mac_port_config = mt7530_mac_config,
3199 	},
3200 	[ID_MT7531] = {
3201 		.id = ID_MT7531,
3202 		.pcs_ops = &mt7531_pcs_ops,
3203 		.sw_setup = mt7531_setup,
3204 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3205 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3206 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3207 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3208 		.pad_setup = mt7531_pad_setup,
3209 		.cpu_port_config = mt7531_cpu_port_config,
3210 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3211 		.mac_port_config = mt7531_mac_config,
3212 	},
3213 };
3214 
3215 static const struct of_device_id mt7530_of_match[] = {
3216 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3217 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3218 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3219 	{ /* sentinel */ },
3220 };
3221 MODULE_DEVICE_TABLE(of, mt7530_of_match);
3222 
3223 static int
3224 mt7530_probe(struct mdio_device *mdiodev)
3225 {
3226 	struct mt7530_priv *priv;
3227 	struct device_node *dn;
3228 
3229 	dn = mdiodev->dev.of_node;
3230 
3231 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3232 	if (!priv)
3233 		return -ENOMEM;
3234 
3235 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3236 	if (!priv->ds)
3237 		return -ENOMEM;
3238 
3239 	priv->ds->dev = &mdiodev->dev;
3240 	priv->ds->num_ports = MT7530_NUM_PORTS;
3241 
3242 	/* Use medatek,mcm property to distinguish hardware type that would
3243 	 * casues a little bit differences on power-on sequence.
3244 	 */
3245 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3246 	if (priv->mcm) {
3247 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3248 
3249 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3250 		if (IS_ERR(priv->rstc)) {
3251 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3252 			return PTR_ERR(priv->rstc);
3253 		}
3254 	}
3255 
3256 	/* Get the hardware identifier from the devicetree node.
3257 	 * We will need it for some of the clock and regulator setup.
3258 	 */
3259 	priv->info = of_device_get_match_data(&mdiodev->dev);
3260 	if (!priv->info)
3261 		return -EINVAL;
3262 
3263 	/* Sanity check if these required device operations are filled
3264 	 * properly.
3265 	 */
3266 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3267 	    !priv->info->phy_read_c22 || !priv->info->phy_write_c22 ||
3268 	    !priv->info->mac_port_get_caps ||
3269 	    !priv->info->mac_port_config)
3270 		return -EINVAL;
3271 
3272 	priv->id = priv->info->id;
3273 
3274 	if (priv->id == ID_MT7530) {
3275 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3276 		if (IS_ERR(priv->core_pwr))
3277 			return PTR_ERR(priv->core_pwr);
3278 
3279 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3280 		if (IS_ERR(priv->io_pwr))
3281 			return PTR_ERR(priv->io_pwr);
3282 	}
3283 
3284 	/* Not MCM that indicates switch works as the remote standalone
3285 	 * integrated circuit so the GPIO pin would be used to complete
3286 	 * the reset, otherwise memory-mapped register accessing used
3287 	 * through syscon provides in the case of MCM.
3288 	 */
3289 	if (!priv->mcm) {
3290 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3291 						      GPIOD_OUT_LOW);
3292 		if (IS_ERR(priv->reset)) {
3293 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3294 			return PTR_ERR(priv->reset);
3295 		}
3296 	}
3297 
3298 	priv->bus = mdiodev->bus;
3299 	priv->dev = &mdiodev->dev;
3300 	priv->ds->priv = priv;
3301 	priv->ds->ops = &mt7530_switch_ops;
3302 	mutex_init(&priv->reg_mutex);
3303 	dev_set_drvdata(&mdiodev->dev, priv);
3304 
3305 	return dsa_register_switch(priv->ds);
3306 }
3307 
3308 static void
3309 mt7530_remove(struct mdio_device *mdiodev)
3310 {
3311 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3312 	int ret = 0;
3313 
3314 	if (!priv)
3315 		return;
3316 
3317 	ret = regulator_disable(priv->core_pwr);
3318 	if (ret < 0)
3319 		dev_err(priv->dev,
3320 			"Failed to disable core power: %d\n", ret);
3321 
3322 	ret = regulator_disable(priv->io_pwr);
3323 	if (ret < 0)
3324 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3325 			ret);
3326 
3327 	if (priv->irq)
3328 		mt7530_free_irq(priv);
3329 
3330 	dsa_unregister_switch(priv->ds);
3331 	mutex_destroy(&priv->reg_mutex);
3332 }
3333 
3334 static void mt7530_shutdown(struct mdio_device *mdiodev)
3335 {
3336 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3337 
3338 	if (!priv)
3339 		return;
3340 
3341 	dsa_switch_shutdown(priv->ds);
3342 
3343 	dev_set_drvdata(&mdiodev->dev, NULL);
3344 }
3345 
3346 static struct mdio_driver mt7530_mdio_driver = {
3347 	.probe  = mt7530_probe,
3348 	.remove = mt7530_remove,
3349 	.shutdown = mt7530_shutdown,
3350 	.mdiodrv.driver = {
3351 		.name = "mt7530",
3352 		.of_match_table = mt7530_of_match,
3353 	},
3354 };
3355 
3356 mdio_module_driver(mt7530_mdio_driver);
3357 
3358 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3359 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3360 MODULE_LICENSE("GPL");
3361