xref: /linux/drivers/net/dsa/mt7530.c (revision 4c0c5bbc89cda1c57ce0fb36d917693396b8b065)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
146 {
147 	struct mii_bus *bus = priv->bus;
148 
149 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
150 
151 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
152 
153 	mutex_unlock(&bus->mdio_lock);
154 }
155 
156 static void
157 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
158 {
159 	struct mii_bus *bus = priv->bus;
160 	u32 val;
161 
162 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
163 
164 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
165 	val &= ~mask;
166 	val |= set;
167 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
168 
169 	mutex_unlock(&bus->mdio_lock);
170 }
171 
172 static void
173 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
174 {
175 	core_rmw(priv, reg, 0, val);
176 }
177 
178 static void
179 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
180 {
181 	core_rmw(priv, reg, val, 0);
182 }
183 
184 static int
185 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
186 {
187 	struct mii_bus *bus = priv->bus;
188 	u16 page, r, lo, hi;
189 	int ret;
190 
191 	page = (reg >> 6) & 0x3ff;
192 	r  = (reg >> 2) & 0xf;
193 	lo = val & 0xffff;
194 	hi = val >> 16;
195 
196 	/* MT7530 uses 31 as the pseudo port */
197 	ret = bus->write(bus, 0x1f, 0x1f, page);
198 	if (ret < 0)
199 		goto err;
200 
201 	ret = bus->write(bus, 0x1f, r,  lo);
202 	if (ret < 0)
203 		goto err;
204 
205 	ret = bus->write(bus, 0x1f, 0x10, hi);
206 err:
207 	if (ret < 0)
208 		dev_err(&bus->dev,
209 			"failed to write mt7530 register\n");
210 	return ret;
211 }
212 
213 static u32
214 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
215 {
216 	struct mii_bus *bus = priv->bus;
217 	u16 page, r, lo, hi;
218 	int ret;
219 
220 	page = (reg >> 6) & 0x3ff;
221 	r = (reg >> 2) & 0xf;
222 
223 	/* MT7530 uses 31 as the pseudo port */
224 	ret = bus->write(bus, 0x1f, 0x1f, page);
225 	if (ret < 0) {
226 		dev_err(&bus->dev,
227 			"failed to read mt7530 register\n");
228 		return ret;
229 	}
230 
231 	lo = bus->read(bus, 0x1f, r);
232 	hi = bus->read(bus, 0x1f, 0x10);
233 
234 	return (hi << 16) | (lo & 0xffff);
235 }
236 
237 static void
238 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
239 {
240 	struct mii_bus *bus = priv->bus;
241 
242 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
243 
244 	mt7530_mii_write(priv, reg, val);
245 
246 	mutex_unlock(&bus->mdio_lock);
247 }
248 
249 static u32
250 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
251 {
252 	return mt7530_mii_read(p->priv, p->reg);
253 }
254 
255 static u32
256 _mt7530_read(struct mt7530_dummy_poll *p)
257 {
258 	struct mii_bus		*bus = p->priv->bus;
259 	u32 val;
260 
261 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
262 
263 	val = mt7530_mii_read(p->priv, p->reg);
264 
265 	mutex_unlock(&bus->mdio_lock);
266 
267 	return val;
268 }
269 
270 static u32
271 mt7530_read(struct mt7530_priv *priv, u32 reg)
272 {
273 	struct mt7530_dummy_poll p;
274 
275 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
276 	return _mt7530_read(&p);
277 }
278 
279 static void
280 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
281 	   u32 mask, u32 set)
282 {
283 	struct mii_bus *bus = priv->bus;
284 	u32 val;
285 
286 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
287 
288 	val = mt7530_mii_read(priv, reg);
289 	val &= ~mask;
290 	val |= set;
291 	mt7530_mii_write(priv, reg, val);
292 
293 	mutex_unlock(&bus->mdio_lock);
294 }
295 
296 static void
297 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
298 {
299 	mt7530_rmw(priv, reg, 0, val);
300 }
301 
302 static void
303 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
304 {
305 	mt7530_rmw(priv, reg, val, 0);
306 }
307 
308 static int
309 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
310 {
311 	u32 val;
312 	int ret;
313 	struct mt7530_dummy_poll p;
314 
315 	/* Set the command operating upon the MAC address entries */
316 	val = ATC_BUSY | ATC_MAT(0) | cmd;
317 	mt7530_write(priv, MT7530_ATC, val);
318 
319 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
320 	ret = readx_poll_timeout(_mt7530_read, &p, val,
321 				 !(val & ATC_BUSY), 20, 20000);
322 	if (ret < 0) {
323 		dev_err(priv->dev, "reset timeout\n");
324 		return ret;
325 	}
326 
327 	/* Additional sanity for read command if the specified
328 	 * entry is invalid
329 	 */
330 	val = mt7530_read(priv, MT7530_ATC);
331 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
332 		return -EINVAL;
333 
334 	if (rsp)
335 		*rsp = val;
336 
337 	return 0;
338 }
339 
340 static void
341 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
342 {
343 	u32 reg[3];
344 	int i;
345 
346 	/* Read from ARL table into an array */
347 	for (i = 0; i < 3; i++) {
348 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
349 
350 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
351 			__func__, __LINE__, i, reg[i]);
352 	}
353 
354 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
355 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
356 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
357 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
358 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
359 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
360 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
361 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
362 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
363 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
364 }
365 
366 static void
367 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
368 		 u8 port_mask, const u8 *mac,
369 		 u8 aging, u8 type)
370 {
371 	u32 reg[3] = { 0 };
372 	int i;
373 
374 	reg[1] |= vid & CVID_MASK;
375 	reg[1] |= ATA2_IVL;
376 	reg[1] |= ATA2_FID(FID_BRIDGED);
377 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
378 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
379 	/* STATIC_ENT indicate that entry is static wouldn't
380 	 * be aged out and STATIC_EMP specified as erasing an
381 	 * entry
382 	 */
383 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
384 	reg[1] |= mac[5] << MAC_BYTE_5;
385 	reg[1] |= mac[4] << MAC_BYTE_4;
386 	reg[0] |= mac[3] << MAC_BYTE_3;
387 	reg[0] |= mac[2] << MAC_BYTE_2;
388 	reg[0] |= mac[1] << MAC_BYTE_1;
389 	reg[0] |= mac[0] << MAC_BYTE_0;
390 
391 	/* Write array into the ARL table */
392 	for (i = 0; i < 3; i++)
393 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
394 }
395 
396 /* Setup TX circuit including relevant PAD and driving */
397 static int
398 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
399 {
400 	struct mt7530_priv *priv = ds->priv;
401 	u32 ncpo1, ssc_delta, trgint, i, xtal;
402 
403 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
404 
405 	if (xtal == HWTRAP_XTAL_20MHZ) {
406 		dev_err(priv->dev,
407 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
408 			__func__);
409 		return -EINVAL;
410 	}
411 
412 	switch (interface) {
413 	case PHY_INTERFACE_MODE_RGMII:
414 		trgint = 0;
415 		/* PLL frequency: 125MHz */
416 		ncpo1 = 0x0c80;
417 		break;
418 	case PHY_INTERFACE_MODE_TRGMII:
419 		trgint = 1;
420 		if (priv->id == ID_MT7621) {
421 			/* PLL frequency: 150MHz: 1.2GBit */
422 			if (xtal == HWTRAP_XTAL_40MHZ)
423 				ncpo1 = 0x0780;
424 			if (xtal == HWTRAP_XTAL_25MHZ)
425 				ncpo1 = 0x0a00;
426 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
427 			if (xtal == HWTRAP_XTAL_40MHZ)
428 				ncpo1 = 0x0c80;
429 			if (xtal == HWTRAP_XTAL_25MHZ)
430 				ncpo1 = 0x1400;
431 		}
432 		break;
433 	default:
434 		dev_err(priv->dev, "xMII interface %d not supported\n",
435 			interface);
436 		return -EINVAL;
437 	}
438 
439 	if (xtal == HWTRAP_XTAL_25MHZ)
440 		ssc_delta = 0x57;
441 	else
442 		ssc_delta = 0x87;
443 
444 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
445 		   P6_INTF_MODE(trgint));
446 
447 	/* Lower Tx Driving for TRGMII path */
448 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
449 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
450 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
451 
452 	/* Disable MT7530 core and TRGMII Tx clocks */
453 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
454 		   REG_GSWCK_EN | REG_TRGMIICK_EN);
455 
456 	/* Setup core clock for MT7530 */
457 	/* Disable PLL */
458 	core_write(priv, CORE_GSWPLL_GRP1, 0);
459 
460 	/* Set core clock into 500Mhz */
461 	core_write(priv, CORE_GSWPLL_GRP2,
462 		   RG_GSWPLL_POSDIV_500M(1) |
463 		   RG_GSWPLL_FBKDIV_500M(25));
464 
465 	/* Enable PLL */
466 	core_write(priv, CORE_GSWPLL_GRP1,
467 		   RG_GSWPLL_EN_PRE |
468 		   RG_GSWPLL_POSDIV_200M(2) |
469 		   RG_GSWPLL_FBKDIV_200M(32));
470 
471 	/* Setup the MT7530 TRGMII Tx Clock */
472 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
473 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
474 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
475 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
476 	core_write(priv, CORE_PLL_GROUP4,
477 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
478 		   RG_SYSPLL_BIAS_LPF_EN);
479 	core_write(priv, CORE_PLL_GROUP2,
480 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
481 		   RG_SYSPLL_POSDIV(1));
482 	core_write(priv, CORE_PLL_GROUP7,
483 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
484 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
485 
486 	/* Enable MT7530 core and TRGMII Tx clocks */
487 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
488 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
489 
490 	if (!trgint)
491 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
492 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
493 				   RD_TAP_MASK, RD_TAP(16));
494 	return 0;
495 }
496 
497 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
498 {
499 	u32 val;
500 
501 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
502 
503 	return (val & PAD_DUAL_SGMII_EN) != 0;
504 }
505 
506 static int
507 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
508 {
509 	return 0;
510 }
511 
512 static void
513 mt7531_pll_setup(struct mt7530_priv *priv)
514 {
515 	u32 top_sig;
516 	u32 hwstrap;
517 	u32 xtal;
518 	u32 val;
519 
520 	if (mt7531_dual_sgmii_supported(priv))
521 		return;
522 
523 	val = mt7530_read(priv, MT7531_CREV);
524 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
525 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
526 	if ((val & CHIP_REV_M) > 0)
527 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
528 						    HWTRAP_XTAL_FSEL_25MHZ;
529 	else
530 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
531 
532 	/* Step 1 : Disable MT7531 COREPLL */
533 	val = mt7530_read(priv, MT7531_PLLGP_EN);
534 	val &= ~EN_COREPLL;
535 	mt7530_write(priv, MT7531_PLLGP_EN, val);
536 
537 	/* Step 2: switch to XTAL output */
538 	val = mt7530_read(priv, MT7531_PLLGP_EN);
539 	val |= SW_CLKSW;
540 	mt7530_write(priv, MT7531_PLLGP_EN, val);
541 
542 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
543 	val &= ~RG_COREPLL_EN;
544 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
545 
546 	/* Step 3: disable PLLGP and enable program PLLGP */
547 	val = mt7530_read(priv, MT7531_PLLGP_EN);
548 	val |= SW_PLLGP;
549 	mt7530_write(priv, MT7531_PLLGP_EN, val);
550 
551 	/* Step 4: program COREPLL output frequency to 500MHz */
552 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
553 	val &= ~RG_COREPLL_POSDIV_M;
554 	val |= 2 << RG_COREPLL_POSDIV_S;
555 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
556 	usleep_range(25, 35);
557 
558 	switch (xtal) {
559 	case HWTRAP_XTAL_FSEL_25MHZ:
560 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
561 		val &= ~RG_COREPLL_SDM_PCW_M;
562 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
563 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
564 		break;
565 	case HWTRAP_XTAL_FSEL_40MHZ:
566 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
567 		val &= ~RG_COREPLL_SDM_PCW_M;
568 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
569 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
570 		break;
571 	}
572 
573 	/* Set feedback divide ratio update signal to high */
574 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
575 	val |= RG_COREPLL_SDM_PCW_CHG;
576 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
577 	/* Wait for at least 16 XTAL clocks */
578 	usleep_range(10, 20);
579 
580 	/* Step 5: set feedback divide ratio update signal to low */
581 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
582 	val &= ~RG_COREPLL_SDM_PCW_CHG;
583 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
584 
585 	/* Enable 325M clock for SGMII */
586 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
587 
588 	/* Enable 250SSC clock for RGMII */
589 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
590 
591 	/* Step 6: Enable MT7531 PLL */
592 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
593 	val |= RG_COREPLL_EN;
594 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
595 
596 	val = mt7530_read(priv, MT7531_PLLGP_EN);
597 	val |= EN_COREPLL;
598 	mt7530_write(priv, MT7531_PLLGP_EN, val);
599 	usleep_range(25, 35);
600 }
601 
602 static void
603 mt7530_mib_reset(struct dsa_switch *ds)
604 {
605 	struct mt7530_priv *priv = ds->priv;
606 
607 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
608 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
609 }
610 
611 static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
612 {
613 	return mdiobus_read_nested(priv->bus, port, regnum);
614 }
615 
616 static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
617 			    u16 val)
618 {
619 	return mdiobus_write_nested(priv->bus, port, regnum, val);
620 }
621 
622 static int
623 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
624 			int regnum)
625 {
626 	struct mii_bus *bus = priv->bus;
627 	struct mt7530_dummy_poll p;
628 	u32 reg, val;
629 	int ret;
630 
631 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
632 
633 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
634 
635 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
636 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
637 	if (ret < 0) {
638 		dev_err(priv->dev, "poll timeout\n");
639 		goto out;
640 	}
641 
642 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
643 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
644 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
645 
646 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
647 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
648 	if (ret < 0) {
649 		dev_err(priv->dev, "poll timeout\n");
650 		goto out;
651 	}
652 
653 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
654 	      MT7531_MDIO_DEV_ADDR(devad);
655 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
656 
657 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
658 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
659 	if (ret < 0) {
660 		dev_err(priv->dev, "poll timeout\n");
661 		goto out;
662 	}
663 
664 	ret = val & MT7531_MDIO_RW_DATA_MASK;
665 out:
666 	mutex_unlock(&bus->mdio_lock);
667 
668 	return ret;
669 }
670 
671 static int
672 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
673 			 int regnum, u32 data)
674 {
675 	struct mii_bus *bus = priv->bus;
676 	struct mt7530_dummy_poll p;
677 	u32 val, reg;
678 	int ret;
679 
680 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
681 
682 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
683 
684 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
685 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
686 	if (ret < 0) {
687 		dev_err(priv->dev, "poll timeout\n");
688 		goto out;
689 	}
690 
691 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
692 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
693 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
694 
695 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
696 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
697 	if (ret < 0) {
698 		dev_err(priv->dev, "poll timeout\n");
699 		goto out;
700 	}
701 
702 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
703 	      MT7531_MDIO_DEV_ADDR(devad) | data;
704 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
705 
706 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
707 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
708 	if (ret < 0) {
709 		dev_err(priv->dev, "poll timeout\n");
710 		goto out;
711 	}
712 
713 out:
714 	mutex_unlock(&bus->mdio_lock);
715 
716 	return ret;
717 }
718 
719 static int
720 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
721 {
722 	struct mii_bus *bus = priv->bus;
723 	struct mt7530_dummy_poll p;
724 	int ret;
725 	u32 val;
726 
727 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
728 
729 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
730 
731 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
732 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
733 	if (ret < 0) {
734 		dev_err(priv->dev, "poll timeout\n");
735 		goto out;
736 	}
737 
738 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
739 	      MT7531_MDIO_REG_ADDR(regnum);
740 
741 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
742 
743 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
744 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
745 	if (ret < 0) {
746 		dev_err(priv->dev, "poll timeout\n");
747 		goto out;
748 	}
749 
750 	ret = val & MT7531_MDIO_RW_DATA_MASK;
751 out:
752 	mutex_unlock(&bus->mdio_lock);
753 
754 	return ret;
755 }
756 
757 static int
758 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
759 			 u16 data)
760 {
761 	struct mii_bus *bus = priv->bus;
762 	struct mt7530_dummy_poll p;
763 	int ret;
764 	u32 reg;
765 
766 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
767 
768 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
769 
770 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
771 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
772 	if (ret < 0) {
773 		dev_err(priv->dev, "poll timeout\n");
774 		goto out;
775 	}
776 
777 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
778 	      MT7531_MDIO_REG_ADDR(regnum) | data;
779 
780 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
781 
782 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
783 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
784 	if (ret < 0) {
785 		dev_err(priv->dev, "poll timeout\n");
786 		goto out;
787 	}
788 
789 out:
790 	mutex_unlock(&bus->mdio_lock);
791 
792 	return ret;
793 }
794 
795 static int
796 mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
797 {
798 	int devad;
799 	int ret;
800 
801 	if (regnum & MII_ADDR_C45) {
802 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
803 		ret = mt7531_ind_c45_phy_read(priv, port, devad,
804 					      regnum & MII_REGADDR_C45_MASK);
805 	} else {
806 		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
807 	}
808 
809 	return ret;
810 }
811 
812 static int
813 mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
814 		     u16 data)
815 {
816 	int devad;
817 	int ret;
818 
819 	if (regnum & MII_ADDR_C45) {
820 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
821 		ret = mt7531_ind_c45_phy_write(priv, port, devad,
822 					       regnum & MII_REGADDR_C45_MASK,
823 					       data);
824 	} else {
825 		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
826 	}
827 
828 	return ret;
829 }
830 
831 static int
832 mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
833 {
834 	struct mt7530_priv *priv = bus->priv;
835 
836 	return priv->info->phy_read(priv, port, regnum);
837 }
838 
839 static int
840 mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
841 {
842 	struct mt7530_priv *priv = bus->priv;
843 
844 	return priv->info->phy_write(priv, port, regnum, val);
845 }
846 
847 static void
848 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
849 		   uint8_t *data)
850 {
851 	int i;
852 
853 	if (stringset != ETH_SS_STATS)
854 		return;
855 
856 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
857 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
858 			ETH_GSTRING_LEN);
859 }
860 
861 static void
862 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
863 			 uint64_t *data)
864 {
865 	struct mt7530_priv *priv = ds->priv;
866 	const struct mt7530_mib_desc *mib;
867 	u32 reg, i;
868 	u64 hi;
869 
870 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
871 		mib = &mt7530_mib[i];
872 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
873 
874 		data[i] = mt7530_read(priv, reg);
875 		if (mib->size == 2) {
876 			hi = mt7530_read(priv, reg + 4);
877 			data[i] |= hi << 32;
878 		}
879 	}
880 }
881 
882 static int
883 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
884 {
885 	if (sset != ETH_SS_STATS)
886 		return 0;
887 
888 	return ARRAY_SIZE(mt7530_mib);
889 }
890 
891 static int
892 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
893 {
894 	struct mt7530_priv *priv = ds->priv;
895 	unsigned int secs = msecs / 1000;
896 	unsigned int tmp_age_count;
897 	unsigned int error = -1;
898 	unsigned int age_count;
899 	unsigned int age_unit;
900 
901 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
902 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
903 		return -ERANGE;
904 
905 	/* iterate through all possible age_count to find the closest pair */
906 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
907 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
908 
909 		if (tmp_age_unit <= AGE_UNIT_MAX) {
910 			unsigned int tmp_error = secs -
911 				(tmp_age_count + 1) * (tmp_age_unit + 1);
912 
913 			/* found a closer pair */
914 			if (error > tmp_error) {
915 				error = tmp_error;
916 				age_count = tmp_age_count;
917 				age_unit = tmp_age_unit;
918 			}
919 
920 			/* found the exact match, so break the loop */
921 			if (!error)
922 				break;
923 		}
924 	}
925 
926 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
927 
928 	return 0;
929 }
930 
931 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
932 {
933 	struct mt7530_priv *priv = ds->priv;
934 	u8 tx_delay = 0;
935 	int val;
936 
937 	mutex_lock(&priv->reg_mutex);
938 
939 	val = mt7530_read(priv, MT7530_MHWTRAP);
940 
941 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
942 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
943 
944 	switch (priv->p5_intf_sel) {
945 	case P5_INTF_SEL_PHY_P0:
946 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
947 		val |= MHWTRAP_PHY0_SEL;
948 		fallthrough;
949 	case P5_INTF_SEL_PHY_P4:
950 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
951 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
952 
953 		/* Setup the MAC by default for the cpu port */
954 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
955 		break;
956 	case P5_INTF_SEL_GMAC5:
957 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
958 		val &= ~MHWTRAP_P5_DIS;
959 		break;
960 	case P5_DISABLED:
961 		interface = PHY_INTERFACE_MODE_NA;
962 		break;
963 	default:
964 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
965 			priv->p5_intf_sel);
966 		goto unlock_exit;
967 	}
968 
969 	/* Setup RGMII settings */
970 	if (phy_interface_mode_is_rgmii(interface)) {
971 		val |= MHWTRAP_P5_RGMII_MODE;
972 
973 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
974 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
975 
976 		/* Don't set delay in DSA mode */
977 		if (!dsa_is_dsa_port(priv->ds, 5) &&
978 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
979 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
980 			tx_delay = 4; /* n * 0.5 ns */
981 
982 		/* P5 RGMII TX Clock Control: delay x */
983 		mt7530_write(priv, MT7530_P5RGMIITXCR,
984 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
985 
986 		/* reduce P5 RGMII Tx driving, 8mA */
987 		mt7530_write(priv, MT7530_IO_DRV_CR,
988 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
989 	}
990 
991 	mt7530_write(priv, MT7530_MHWTRAP, val);
992 
993 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
994 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
995 
996 	priv->p5_interface = interface;
997 
998 unlock_exit:
999 	mutex_unlock(&priv->reg_mutex);
1000 }
1001 
1002 static int
1003 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1004 {
1005 	struct mt7530_priv *priv = ds->priv;
1006 	int ret;
1007 
1008 	/* Setup max capability of CPU port at first */
1009 	if (priv->info->cpu_port_config) {
1010 		ret = priv->info->cpu_port_config(ds, port);
1011 		if (ret)
1012 			return ret;
1013 	}
1014 
1015 	/* Enable Mediatek header mode on the cpu port */
1016 	mt7530_write(priv, MT7530_PVC_P(port),
1017 		     PORT_SPEC_TAG);
1018 
1019 	/* Disable flooding by default */
1020 	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1021 		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1022 
1023 	/* Set CPU port number */
1024 	if (priv->id == ID_MT7621)
1025 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1026 
1027 	/* CPU port gets connected to all user ports of
1028 	 * the switch.
1029 	 */
1030 	mt7530_write(priv, MT7530_PCR_P(port),
1031 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1032 
1033 	/* Set to fallback mode for independent VLAN learning */
1034 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1035 		   MT7530_PORT_FALLBACK_MODE);
1036 
1037 	return 0;
1038 }
1039 
1040 static int
1041 mt7530_port_enable(struct dsa_switch *ds, int port,
1042 		   struct phy_device *phy)
1043 {
1044 	struct dsa_port *dp = dsa_to_port(ds, port);
1045 	struct mt7530_priv *priv = ds->priv;
1046 
1047 	mutex_lock(&priv->reg_mutex);
1048 
1049 	/* Allow the user port gets connected to the cpu port and also
1050 	 * restore the port matrix if the port is the member of a certain
1051 	 * bridge.
1052 	 */
1053 	if (dsa_port_is_user(dp)) {
1054 		struct dsa_port *cpu_dp = dp->cpu_dp;
1055 
1056 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1057 	}
1058 	priv->ports[port].enable = true;
1059 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1060 		   priv->ports[port].pm);
1061 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1062 
1063 	mutex_unlock(&priv->reg_mutex);
1064 
1065 	return 0;
1066 }
1067 
1068 static void
1069 mt7530_port_disable(struct dsa_switch *ds, int port)
1070 {
1071 	struct mt7530_priv *priv = ds->priv;
1072 
1073 	mutex_lock(&priv->reg_mutex);
1074 
1075 	/* Clear up all port matrix which could be restored in the next
1076 	 * enablement for the port.
1077 	 */
1078 	priv->ports[port].enable = false;
1079 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1080 		   PCR_MATRIX_CLR);
1081 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1082 
1083 	mutex_unlock(&priv->reg_mutex);
1084 }
1085 
1086 static int
1087 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1088 {
1089 	struct mt7530_priv *priv = ds->priv;
1090 	struct mii_bus *bus = priv->bus;
1091 	int length;
1092 	u32 val;
1093 
1094 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1095 	 * largest MTU of the slave ports. Because the switch only has a global
1096 	 * RX length register, only allowing CPU port here is enough.
1097 	 */
1098 	if (!dsa_is_cpu_port(ds, port))
1099 		return 0;
1100 
1101 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1102 
1103 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1104 	val &= ~MAX_RX_PKT_LEN_MASK;
1105 
1106 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1107 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1108 	if (length <= 1522) {
1109 		val |= MAX_RX_PKT_LEN_1522;
1110 	} else if (length <= 1536) {
1111 		val |= MAX_RX_PKT_LEN_1536;
1112 	} else if (length <= 1552) {
1113 		val |= MAX_RX_PKT_LEN_1552;
1114 	} else {
1115 		val &= ~MAX_RX_JUMBO_MASK;
1116 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1117 		val |= MAX_RX_PKT_LEN_JUMBO;
1118 	}
1119 
1120 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1121 
1122 	mutex_unlock(&bus->mdio_lock);
1123 
1124 	return 0;
1125 }
1126 
1127 static int
1128 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1129 {
1130 	return MT7530_MAX_MTU;
1131 }
1132 
1133 static void
1134 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1135 {
1136 	struct mt7530_priv *priv = ds->priv;
1137 	u32 stp_state;
1138 
1139 	switch (state) {
1140 	case BR_STATE_DISABLED:
1141 		stp_state = MT7530_STP_DISABLED;
1142 		break;
1143 	case BR_STATE_BLOCKING:
1144 		stp_state = MT7530_STP_BLOCKING;
1145 		break;
1146 	case BR_STATE_LISTENING:
1147 		stp_state = MT7530_STP_LISTENING;
1148 		break;
1149 	case BR_STATE_LEARNING:
1150 		stp_state = MT7530_STP_LEARNING;
1151 		break;
1152 	case BR_STATE_FORWARDING:
1153 	default:
1154 		stp_state = MT7530_STP_FORWARDING;
1155 		break;
1156 	}
1157 
1158 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1159 		   FID_PST(FID_BRIDGED, stp_state));
1160 }
1161 
1162 static int
1163 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1164 			     struct switchdev_brport_flags flags,
1165 			     struct netlink_ext_ack *extack)
1166 {
1167 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1168 			   BR_BCAST_FLOOD))
1169 		return -EINVAL;
1170 
1171 	return 0;
1172 }
1173 
1174 static int
1175 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1176 			 struct switchdev_brport_flags flags,
1177 			 struct netlink_ext_ack *extack)
1178 {
1179 	struct mt7530_priv *priv = ds->priv;
1180 
1181 	if (flags.mask & BR_LEARNING)
1182 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1183 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1184 
1185 	if (flags.mask & BR_FLOOD)
1186 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1187 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1188 
1189 	if (flags.mask & BR_MCAST_FLOOD)
1190 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1191 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1192 
1193 	if (flags.mask & BR_BCAST_FLOOD)
1194 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1195 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1196 
1197 	return 0;
1198 }
1199 
1200 static int
1201 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1202 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1203 			struct netlink_ext_ack *extack)
1204 {
1205 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1206 	struct dsa_port *cpu_dp = dp->cpu_dp;
1207 	u32 port_bitmap = BIT(cpu_dp->index);
1208 	struct mt7530_priv *priv = ds->priv;
1209 
1210 	mutex_lock(&priv->reg_mutex);
1211 
1212 	dsa_switch_for_each_user_port(other_dp, ds) {
1213 		int other_port = other_dp->index;
1214 
1215 		if (dp == other_dp)
1216 			continue;
1217 
1218 		/* Add this port to the port matrix of the other ports in the
1219 		 * same bridge. If the port is disabled, port matrix is kept
1220 		 * and not being setup until the port becomes enabled.
1221 		 */
1222 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1223 			continue;
1224 
1225 		if (priv->ports[other_port].enable)
1226 			mt7530_set(priv, MT7530_PCR_P(other_port),
1227 				   PCR_MATRIX(BIT(port)));
1228 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1229 
1230 		port_bitmap |= BIT(other_port);
1231 	}
1232 
1233 	/* Add the all other ports to this port matrix. */
1234 	if (priv->ports[port].enable)
1235 		mt7530_rmw(priv, MT7530_PCR_P(port),
1236 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1237 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1238 
1239 	/* Set to fallback mode for independent VLAN learning */
1240 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1241 		   MT7530_PORT_FALLBACK_MODE);
1242 
1243 	mutex_unlock(&priv->reg_mutex);
1244 
1245 	return 0;
1246 }
1247 
1248 static void
1249 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1250 {
1251 	struct mt7530_priv *priv = ds->priv;
1252 	bool all_user_ports_removed = true;
1253 	int i;
1254 
1255 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1256 	 * bridge. Don't set standalone ports to fallback mode.
1257 	 */
1258 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1259 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1260 			   MT7530_PORT_FALLBACK_MODE);
1261 
1262 	mt7530_rmw(priv, MT7530_PVC_P(port),
1263 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1264 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1265 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1266 		   MT7530_VLAN_ACC_ALL);
1267 
1268 	/* Set PVID to 0 */
1269 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1270 		   G0_PORT_VID_DEF);
1271 
1272 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1273 		if (dsa_is_user_port(ds, i) &&
1274 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1275 			all_user_ports_removed = false;
1276 			break;
1277 		}
1278 	}
1279 
1280 	/* CPU port also does the same thing until all user ports belonging to
1281 	 * the CPU port get out of VLAN filtering mode.
1282 	 */
1283 	if (all_user_ports_removed) {
1284 		struct dsa_port *dp = dsa_to_port(ds, port);
1285 		struct dsa_port *cpu_dp = dp->cpu_dp;
1286 
1287 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1288 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1289 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1290 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1291 	}
1292 }
1293 
1294 static void
1295 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1296 {
1297 	struct mt7530_priv *priv = ds->priv;
1298 
1299 	/* Trapped into security mode allows packet forwarding through VLAN
1300 	 * table lookup.
1301 	 */
1302 	if (dsa_is_user_port(ds, port)) {
1303 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1304 			   MT7530_PORT_SECURITY_MODE);
1305 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1306 			   G0_PORT_VID(priv->ports[port].pvid));
1307 
1308 		/* Only accept tagged frames if PVID is not set */
1309 		if (!priv->ports[port].pvid)
1310 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1311 				   MT7530_VLAN_ACC_TAGGED);
1312 	}
1313 
1314 	/* Set the port as a user port which is to be able to recognize VID
1315 	 * from incoming packets before fetching entry within the VLAN table.
1316 	 */
1317 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1318 		   VLAN_ATTR(MT7530_VLAN_USER) |
1319 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1320 }
1321 
1322 static void
1323 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1324 			 struct dsa_bridge bridge)
1325 {
1326 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1327 	struct dsa_port *cpu_dp = dp->cpu_dp;
1328 	struct mt7530_priv *priv = ds->priv;
1329 
1330 	mutex_lock(&priv->reg_mutex);
1331 
1332 	dsa_switch_for_each_user_port(other_dp, ds) {
1333 		int other_port = other_dp->index;
1334 
1335 		if (dp == other_dp)
1336 			continue;
1337 
1338 		/* Remove this port from the port matrix of the other ports
1339 		 * in the same bridge. If the port is disabled, port matrix
1340 		 * is kept and not being setup until the port becomes enabled.
1341 		 */
1342 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1343 			continue;
1344 
1345 		if (priv->ports[other_port].enable)
1346 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1347 				     PCR_MATRIX(BIT(port)));
1348 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1349 	}
1350 
1351 	/* Set the cpu port to be the only one in the port matrix of
1352 	 * this port.
1353 	 */
1354 	if (priv->ports[port].enable)
1355 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1356 			   PCR_MATRIX(BIT(cpu_dp->index)));
1357 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1358 
1359 	/* When a port is removed from the bridge, the port would be set up
1360 	 * back to the default as is at initial boot which is a VLAN-unaware
1361 	 * port.
1362 	 */
1363 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1364 		   MT7530_PORT_MATRIX_MODE);
1365 
1366 	mutex_unlock(&priv->reg_mutex);
1367 }
1368 
1369 static int
1370 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1371 		    const unsigned char *addr, u16 vid,
1372 		    struct dsa_db db)
1373 {
1374 	struct mt7530_priv *priv = ds->priv;
1375 	int ret;
1376 	u8 port_mask = BIT(port);
1377 
1378 	mutex_lock(&priv->reg_mutex);
1379 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1380 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1381 	mutex_unlock(&priv->reg_mutex);
1382 
1383 	return ret;
1384 }
1385 
1386 static int
1387 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1388 		    const unsigned char *addr, u16 vid,
1389 		    struct dsa_db db)
1390 {
1391 	struct mt7530_priv *priv = ds->priv;
1392 	int ret;
1393 	u8 port_mask = BIT(port);
1394 
1395 	mutex_lock(&priv->reg_mutex);
1396 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1397 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1398 	mutex_unlock(&priv->reg_mutex);
1399 
1400 	return ret;
1401 }
1402 
1403 static int
1404 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1405 		     dsa_fdb_dump_cb_t *cb, void *data)
1406 {
1407 	struct mt7530_priv *priv = ds->priv;
1408 	struct mt7530_fdb _fdb = { 0 };
1409 	int cnt = MT7530_NUM_FDB_RECORDS;
1410 	int ret = 0;
1411 	u32 rsp = 0;
1412 
1413 	mutex_lock(&priv->reg_mutex);
1414 
1415 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1416 	if (ret < 0)
1417 		goto err;
1418 
1419 	do {
1420 		if (rsp & ATC_SRCH_HIT) {
1421 			mt7530_fdb_read(priv, &_fdb);
1422 			if (_fdb.port_mask & BIT(port)) {
1423 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1424 					 data);
1425 				if (ret < 0)
1426 					break;
1427 			}
1428 		}
1429 	} while (--cnt &&
1430 		 !(rsp & ATC_SRCH_END) &&
1431 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1432 err:
1433 	mutex_unlock(&priv->reg_mutex);
1434 
1435 	return 0;
1436 }
1437 
1438 static int
1439 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1440 		    const struct switchdev_obj_port_mdb *mdb,
1441 		    struct dsa_db db)
1442 {
1443 	struct mt7530_priv *priv = ds->priv;
1444 	const u8 *addr = mdb->addr;
1445 	u16 vid = mdb->vid;
1446 	u8 port_mask = 0;
1447 	int ret;
1448 
1449 	mutex_lock(&priv->reg_mutex);
1450 
1451 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1452 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1453 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1454 			    & PORT_MAP_MASK;
1455 
1456 	port_mask |= BIT(port);
1457 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1458 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1459 
1460 	mutex_unlock(&priv->reg_mutex);
1461 
1462 	return ret;
1463 }
1464 
1465 static int
1466 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1467 		    const struct switchdev_obj_port_mdb *mdb,
1468 		    struct dsa_db db)
1469 {
1470 	struct mt7530_priv *priv = ds->priv;
1471 	const u8 *addr = mdb->addr;
1472 	u16 vid = mdb->vid;
1473 	u8 port_mask = 0;
1474 	int ret;
1475 
1476 	mutex_lock(&priv->reg_mutex);
1477 
1478 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1479 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1480 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1481 			    & PORT_MAP_MASK;
1482 
1483 	port_mask &= ~BIT(port);
1484 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1485 			 port_mask ? STATIC_ENT : STATIC_EMP);
1486 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1487 
1488 	mutex_unlock(&priv->reg_mutex);
1489 
1490 	return ret;
1491 }
1492 
1493 static int
1494 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1495 {
1496 	struct mt7530_dummy_poll p;
1497 	u32 val;
1498 	int ret;
1499 
1500 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1501 	mt7530_write(priv, MT7530_VTCR, val);
1502 
1503 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1504 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1505 				 !(val & VTCR_BUSY), 20, 20000);
1506 	if (ret < 0) {
1507 		dev_err(priv->dev, "poll timeout\n");
1508 		return ret;
1509 	}
1510 
1511 	val = mt7530_read(priv, MT7530_VTCR);
1512 	if (val & VTCR_INVALID) {
1513 		dev_err(priv->dev, "read VTCR invalid\n");
1514 		return -EINVAL;
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 static int
1521 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1522 			   struct netlink_ext_ack *extack)
1523 {
1524 	struct dsa_port *dp = dsa_to_port(ds, port);
1525 	struct dsa_port *cpu_dp = dp->cpu_dp;
1526 
1527 	if (vlan_filtering) {
1528 		/* The port is being kept as VLAN-unaware port when bridge is
1529 		 * set up with vlan_filtering not being set, Otherwise, the
1530 		 * port and the corresponding CPU port is required the setup
1531 		 * for becoming a VLAN-aware port.
1532 		 */
1533 		mt7530_port_set_vlan_aware(ds, port);
1534 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1535 	} else {
1536 		mt7530_port_set_vlan_unaware(ds, port);
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 static void
1543 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1544 		   struct mt7530_hw_vlan_entry *entry)
1545 {
1546 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1547 	u8 new_members;
1548 	u32 val;
1549 
1550 	new_members = entry->old_members | BIT(entry->port);
1551 
1552 	/* Validate the entry with independent learning, create egress tag per
1553 	 * VLAN and joining the port as one of the port members.
1554 	 */
1555 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1556 	      VLAN_VALID;
1557 	mt7530_write(priv, MT7530_VAWD1, val);
1558 
1559 	/* Decide whether adding tag or not for those outgoing packets from the
1560 	 * port inside the VLAN.
1561 	 * CPU port is always taken as a tagged port for serving more than one
1562 	 * VLANs across and also being applied with egress type stack mode for
1563 	 * that VLAN tags would be appended after hardware special tag used as
1564 	 * DSA tag.
1565 	 */
1566 	if (dsa_port_is_cpu(dp))
1567 		val = MT7530_VLAN_EGRESS_STACK;
1568 	else if (entry->untagged)
1569 		val = MT7530_VLAN_EGRESS_UNTAG;
1570 	else
1571 		val = MT7530_VLAN_EGRESS_TAG;
1572 	mt7530_rmw(priv, MT7530_VAWD2,
1573 		   ETAG_CTRL_P_MASK(entry->port),
1574 		   ETAG_CTRL_P(entry->port, val));
1575 }
1576 
1577 static void
1578 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1579 		   struct mt7530_hw_vlan_entry *entry)
1580 {
1581 	u8 new_members;
1582 	u32 val;
1583 
1584 	new_members = entry->old_members & ~BIT(entry->port);
1585 
1586 	val = mt7530_read(priv, MT7530_VAWD1);
1587 	if (!(val & VLAN_VALID)) {
1588 		dev_err(priv->dev,
1589 			"Cannot be deleted due to invalid entry\n");
1590 		return;
1591 	}
1592 
1593 	if (new_members) {
1594 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1595 		      VLAN_VALID;
1596 		mt7530_write(priv, MT7530_VAWD1, val);
1597 	} else {
1598 		mt7530_write(priv, MT7530_VAWD1, 0);
1599 		mt7530_write(priv, MT7530_VAWD2, 0);
1600 	}
1601 }
1602 
1603 static void
1604 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1605 		      struct mt7530_hw_vlan_entry *entry,
1606 		      mt7530_vlan_op vlan_op)
1607 {
1608 	u32 val;
1609 
1610 	/* Fetch entry */
1611 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1612 
1613 	val = mt7530_read(priv, MT7530_VAWD1);
1614 
1615 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1616 
1617 	/* Manipulate entry */
1618 	vlan_op(priv, entry);
1619 
1620 	/* Flush result to hardware */
1621 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1622 }
1623 
1624 static int
1625 mt7530_setup_vlan0(struct mt7530_priv *priv)
1626 {
1627 	u32 val;
1628 
1629 	/* Validate the entry with independent learning, keep the original
1630 	 * ingress tag attribute.
1631 	 */
1632 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1633 	      VLAN_VALID;
1634 	mt7530_write(priv, MT7530_VAWD1, val);
1635 
1636 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1637 }
1638 
1639 static int
1640 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1641 		     const struct switchdev_obj_port_vlan *vlan,
1642 		     struct netlink_ext_ack *extack)
1643 {
1644 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1645 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1646 	struct mt7530_hw_vlan_entry new_entry;
1647 	struct mt7530_priv *priv = ds->priv;
1648 
1649 	mutex_lock(&priv->reg_mutex);
1650 
1651 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1652 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1653 
1654 	if (pvid) {
1655 		priv->ports[port].pvid = vlan->vid;
1656 
1657 		/* Accept all frames if PVID is set */
1658 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1659 			   MT7530_VLAN_ACC_ALL);
1660 
1661 		/* Only configure PVID if VLAN filtering is enabled */
1662 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1663 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1664 				   G0_PORT_VID_MASK,
1665 				   G0_PORT_VID(vlan->vid));
1666 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1667 		/* This VLAN is overwritten without PVID, so unset it */
1668 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1669 
1670 		/* Only accept tagged frames if the port is VLAN-aware */
1671 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1672 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1673 				   MT7530_VLAN_ACC_TAGGED);
1674 
1675 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1676 			   G0_PORT_VID_DEF);
1677 	}
1678 
1679 	mutex_unlock(&priv->reg_mutex);
1680 
1681 	return 0;
1682 }
1683 
1684 static int
1685 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1686 		     const struct switchdev_obj_port_vlan *vlan)
1687 {
1688 	struct mt7530_hw_vlan_entry target_entry;
1689 	struct mt7530_priv *priv = ds->priv;
1690 
1691 	mutex_lock(&priv->reg_mutex);
1692 
1693 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1694 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1695 			      mt7530_hw_vlan_del);
1696 
1697 	/* PVID is being restored to the default whenever the PVID port
1698 	 * is being removed from the VLAN.
1699 	 */
1700 	if (priv->ports[port].pvid == vlan->vid) {
1701 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1702 
1703 		/* Only accept tagged frames if the port is VLAN-aware */
1704 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1705 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1706 				   MT7530_VLAN_ACC_TAGGED);
1707 
1708 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1709 			   G0_PORT_VID_DEF);
1710 	}
1711 
1712 
1713 	mutex_unlock(&priv->reg_mutex);
1714 
1715 	return 0;
1716 }
1717 
1718 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1719 {
1720 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1721 				   MIRROR_PORT(val);
1722 }
1723 
1724 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1725 {
1726 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1727 				   MIRROR_PORT(val);
1728 }
1729 
1730 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1731 				  struct dsa_mall_mirror_tc_entry *mirror,
1732 				  bool ingress, struct netlink_ext_ack *extack)
1733 {
1734 	struct mt7530_priv *priv = ds->priv;
1735 	int monitor_port;
1736 	u32 val;
1737 
1738 	/* Check for existent entry */
1739 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1740 		return -EEXIST;
1741 
1742 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1743 
1744 	/* MT7530 only supports one monitor port */
1745 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1746 	if (val & MT753X_MIRROR_EN(priv->id) &&
1747 	    monitor_port != mirror->to_local_port)
1748 		return -EEXIST;
1749 
1750 	val |= MT753X_MIRROR_EN(priv->id);
1751 	val &= ~MT753X_MIRROR_MASK(priv->id);
1752 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1753 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1754 
1755 	val = mt7530_read(priv, MT7530_PCR_P(port));
1756 	if (ingress) {
1757 		val |= PORT_RX_MIR;
1758 		priv->mirror_rx |= BIT(port);
1759 	} else {
1760 		val |= PORT_TX_MIR;
1761 		priv->mirror_tx |= BIT(port);
1762 	}
1763 	mt7530_write(priv, MT7530_PCR_P(port), val);
1764 
1765 	return 0;
1766 }
1767 
1768 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1769 				   struct dsa_mall_mirror_tc_entry *mirror)
1770 {
1771 	struct mt7530_priv *priv = ds->priv;
1772 	u32 val;
1773 
1774 	val = mt7530_read(priv, MT7530_PCR_P(port));
1775 	if (mirror->ingress) {
1776 		val &= ~PORT_RX_MIR;
1777 		priv->mirror_rx &= ~BIT(port);
1778 	} else {
1779 		val &= ~PORT_TX_MIR;
1780 		priv->mirror_tx &= ~BIT(port);
1781 	}
1782 	mt7530_write(priv, MT7530_PCR_P(port), val);
1783 
1784 	if (!priv->mirror_rx && !priv->mirror_tx) {
1785 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1786 		val &= ~MT753X_MIRROR_EN(priv->id);
1787 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1788 	}
1789 }
1790 
1791 static enum dsa_tag_protocol
1792 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1793 		     enum dsa_tag_protocol mp)
1794 {
1795 	return DSA_TAG_PROTO_MTK;
1796 }
1797 
1798 #ifdef CONFIG_GPIOLIB
1799 static inline u32
1800 mt7530_gpio_to_bit(unsigned int offset)
1801 {
1802 	/* Map GPIO offset to register bit
1803 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1804 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1805 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1806 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1807 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1808 	 */
1809 	return BIT(offset + offset / 3);
1810 }
1811 
1812 static int
1813 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1814 {
1815 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1816 	u32 bit = mt7530_gpio_to_bit(offset);
1817 
1818 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1819 }
1820 
1821 static void
1822 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1823 {
1824 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1825 	u32 bit = mt7530_gpio_to_bit(offset);
1826 
1827 	if (value)
1828 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1829 	else
1830 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1831 }
1832 
1833 static int
1834 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1835 {
1836 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1837 	u32 bit = mt7530_gpio_to_bit(offset);
1838 
1839 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1840 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1841 }
1842 
1843 static int
1844 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1845 {
1846 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1847 	u32 bit = mt7530_gpio_to_bit(offset);
1848 
1849 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1850 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1851 
1852 	return 0;
1853 }
1854 
1855 static int
1856 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1857 {
1858 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1859 	u32 bit = mt7530_gpio_to_bit(offset);
1860 
1861 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1862 
1863 	if (value)
1864 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1865 	else
1866 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1867 
1868 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1869 
1870 	return 0;
1871 }
1872 
1873 static int
1874 mt7530_setup_gpio(struct mt7530_priv *priv)
1875 {
1876 	struct device *dev = priv->dev;
1877 	struct gpio_chip *gc;
1878 
1879 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1880 	if (!gc)
1881 		return -ENOMEM;
1882 
1883 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1884 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1885 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1886 
1887 	gc->label = "mt7530";
1888 	gc->parent = dev;
1889 	gc->owner = THIS_MODULE;
1890 	gc->get_direction = mt7530_gpio_get_direction;
1891 	gc->direction_input = mt7530_gpio_direction_input;
1892 	gc->direction_output = mt7530_gpio_direction_output;
1893 	gc->get = mt7530_gpio_get;
1894 	gc->set = mt7530_gpio_set;
1895 	gc->base = -1;
1896 	gc->ngpio = 15;
1897 	gc->can_sleep = true;
1898 
1899 	return devm_gpiochip_add_data(dev, gc, priv);
1900 }
1901 #endif /* CONFIG_GPIOLIB */
1902 
1903 static irqreturn_t
1904 mt7530_irq_thread_fn(int irq, void *dev_id)
1905 {
1906 	struct mt7530_priv *priv = dev_id;
1907 	bool handled = false;
1908 	u32 val;
1909 	int p;
1910 
1911 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1912 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1913 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1914 	mutex_unlock(&priv->bus->mdio_lock);
1915 
1916 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1917 		if (BIT(p) & val) {
1918 			unsigned int irq;
1919 
1920 			irq = irq_find_mapping(priv->irq_domain, p);
1921 			handle_nested_irq(irq);
1922 			handled = true;
1923 		}
1924 	}
1925 
1926 	return IRQ_RETVAL(handled);
1927 }
1928 
1929 static void
1930 mt7530_irq_mask(struct irq_data *d)
1931 {
1932 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1933 
1934 	priv->irq_enable &= ~BIT(d->hwirq);
1935 }
1936 
1937 static void
1938 mt7530_irq_unmask(struct irq_data *d)
1939 {
1940 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1941 
1942 	priv->irq_enable |= BIT(d->hwirq);
1943 }
1944 
1945 static void
1946 mt7530_irq_bus_lock(struct irq_data *d)
1947 {
1948 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1949 
1950 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1951 }
1952 
1953 static void
1954 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1955 {
1956 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1957 
1958 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1959 	mutex_unlock(&priv->bus->mdio_lock);
1960 }
1961 
1962 static struct irq_chip mt7530_irq_chip = {
1963 	.name = KBUILD_MODNAME,
1964 	.irq_mask = mt7530_irq_mask,
1965 	.irq_unmask = mt7530_irq_unmask,
1966 	.irq_bus_lock = mt7530_irq_bus_lock,
1967 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1968 };
1969 
1970 static int
1971 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1972 	       irq_hw_number_t hwirq)
1973 {
1974 	irq_set_chip_data(irq, domain->host_data);
1975 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1976 	irq_set_nested_thread(irq, true);
1977 	irq_set_noprobe(irq);
1978 
1979 	return 0;
1980 }
1981 
1982 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1983 	.map = mt7530_irq_map,
1984 	.xlate = irq_domain_xlate_onecell,
1985 };
1986 
1987 static void
1988 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1989 {
1990 	struct dsa_switch *ds = priv->ds;
1991 	int p;
1992 
1993 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1994 		if (BIT(p) & ds->phys_mii_mask) {
1995 			unsigned int irq;
1996 
1997 			irq = irq_create_mapping(priv->irq_domain, p);
1998 			ds->slave_mii_bus->irq[p] = irq;
1999 		}
2000 	}
2001 }
2002 
2003 static int
2004 mt7530_setup_irq(struct mt7530_priv *priv)
2005 {
2006 	struct device *dev = priv->dev;
2007 	struct device_node *np = dev->of_node;
2008 	int ret;
2009 
2010 	if (!of_property_read_bool(np, "interrupt-controller")) {
2011 		dev_info(dev, "no interrupt support\n");
2012 		return 0;
2013 	}
2014 
2015 	priv->irq = of_irq_get(np, 0);
2016 	if (priv->irq <= 0) {
2017 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2018 		return priv->irq ? : -EINVAL;
2019 	}
2020 
2021 	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2022 						 &mt7530_irq_domain_ops, priv);
2023 	if (!priv->irq_domain) {
2024 		dev_err(dev, "failed to create IRQ domain\n");
2025 		return -ENOMEM;
2026 	}
2027 
2028 	/* This register must be set for MT7530 to properly fire interrupts */
2029 	if (priv->id != ID_MT7531)
2030 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2031 
2032 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2033 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2034 	if (ret) {
2035 		irq_domain_remove(priv->irq_domain);
2036 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2037 		return ret;
2038 	}
2039 
2040 	return 0;
2041 }
2042 
2043 static void
2044 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2045 {
2046 	int p;
2047 
2048 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2049 		if (BIT(p) & priv->ds->phys_mii_mask) {
2050 			unsigned int irq;
2051 
2052 			irq = irq_find_mapping(priv->irq_domain, p);
2053 			irq_dispose_mapping(irq);
2054 		}
2055 	}
2056 }
2057 
2058 static void
2059 mt7530_free_irq_common(struct mt7530_priv *priv)
2060 {
2061 	free_irq(priv->irq, priv);
2062 	irq_domain_remove(priv->irq_domain);
2063 }
2064 
2065 static void
2066 mt7530_free_irq(struct mt7530_priv *priv)
2067 {
2068 	mt7530_free_mdio_irq(priv);
2069 	mt7530_free_irq_common(priv);
2070 }
2071 
2072 static int
2073 mt7530_setup_mdio(struct mt7530_priv *priv)
2074 {
2075 	struct dsa_switch *ds = priv->ds;
2076 	struct device *dev = priv->dev;
2077 	struct mii_bus *bus;
2078 	static int idx;
2079 	int ret;
2080 
2081 	bus = devm_mdiobus_alloc(dev);
2082 	if (!bus)
2083 		return -ENOMEM;
2084 
2085 	ds->slave_mii_bus = bus;
2086 	bus->priv = priv;
2087 	bus->name = KBUILD_MODNAME "-mii";
2088 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2089 	bus->read = mt753x_phy_read;
2090 	bus->write = mt753x_phy_write;
2091 	bus->parent = dev;
2092 	bus->phy_mask = ~ds->phys_mii_mask;
2093 
2094 	if (priv->irq)
2095 		mt7530_setup_mdio_irq(priv);
2096 
2097 	ret = devm_mdiobus_register(dev, bus);
2098 	if (ret) {
2099 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2100 		if (priv->irq)
2101 			mt7530_free_mdio_irq(priv);
2102 	}
2103 
2104 	return ret;
2105 }
2106 
2107 static int
2108 mt7530_setup(struct dsa_switch *ds)
2109 {
2110 	struct mt7530_priv *priv = ds->priv;
2111 	struct device_node *dn = NULL;
2112 	struct device_node *phy_node;
2113 	struct device_node *mac_np;
2114 	struct mt7530_dummy_poll p;
2115 	phy_interface_t interface;
2116 	struct dsa_port *cpu_dp;
2117 	u32 id, val;
2118 	int ret, i;
2119 
2120 	/* The parent node of master netdev which holds the common system
2121 	 * controller also is the container for two GMACs nodes representing
2122 	 * as two netdev instances.
2123 	 */
2124 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2125 		dn = cpu_dp->master->dev.of_node->parent;
2126 		/* It doesn't matter which CPU port is found first,
2127 		 * their masters should share the same parent OF node
2128 		 */
2129 		break;
2130 	}
2131 
2132 	if (!dn) {
2133 		dev_err(ds->dev, "parent OF node of DSA master not found");
2134 		return -EINVAL;
2135 	}
2136 
2137 	ds->assisted_learning_on_cpu_port = true;
2138 	ds->mtu_enforcement_ingress = true;
2139 
2140 	if (priv->id == ID_MT7530) {
2141 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2142 		ret = regulator_enable(priv->core_pwr);
2143 		if (ret < 0) {
2144 			dev_err(priv->dev,
2145 				"Failed to enable core power: %d\n", ret);
2146 			return ret;
2147 		}
2148 
2149 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2150 		ret = regulator_enable(priv->io_pwr);
2151 		if (ret < 0) {
2152 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2153 				ret);
2154 			return ret;
2155 		}
2156 	}
2157 
2158 	/* Reset whole chip through gpio pin or memory-mapped registers for
2159 	 * different type of hardware
2160 	 */
2161 	if (priv->mcm) {
2162 		reset_control_assert(priv->rstc);
2163 		usleep_range(1000, 1100);
2164 		reset_control_deassert(priv->rstc);
2165 	} else {
2166 		gpiod_set_value_cansleep(priv->reset, 0);
2167 		usleep_range(1000, 1100);
2168 		gpiod_set_value_cansleep(priv->reset, 1);
2169 	}
2170 
2171 	/* Waiting for MT7530 got to stable */
2172 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2173 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2174 				 20, 1000000);
2175 	if (ret < 0) {
2176 		dev_err(priv->dev, "reset timeout\n");
2177 		return ret;
2178 	}
2179 
2180 	id = mt7530_read(priv, MT7530_CREV);
2181 	id >>= CHIP_NAME_SHIFT;
2182 	if (id != MT7530_ID) {
2183 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2184 		return -ENODEV;
2185 	}
2186 
2187 	/* Reset the switch through internal reset */
2188 	mt7530_write(priv, MT7530_SYS_CTRL,
2189 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2190 		     SYS_CTRL_REG_RST);
2191 
2192 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
2193 	val = mt7530_read(priv, MT7530_MHWTRAP);
2194 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2195 	val |= MHWTRAP_MANUAL;
2196 	mt7530_write(priv, MT7530_MHWTRAP, val);
2197 
2198 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2199 
2200 	/* Enable and reset MIB counters */
2201 	mt7530_mib_reset(ds);
2202 
2203 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2204 		/* Disable forwarding by default on all ports */
2205 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2206 			   PCR_MATRIX_CLR);
2207 
2208 		/* Disable learning by default on all ports */
2209 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2210 
2211 		if (dsa_is_cpu_port(ds, i)) {
2212 			ret = mt753x_cpu_port_enable(ds, i);
2213 			if (ret)
2214 				return ret;
2215 		} else {
2216 			mt7530_port_disable(ds, i);
2217 
2218 			/* Set default PVID to 0 on all user ports */
2219 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2220 				   G0_PORT_VID_DEF);
2221 		}
2222 		/* Enable consistent egress tag */
2223 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2224 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2225 	}
2226 
2227 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2228 	ret = mt7530_setup_vlan0(priv);
2229 	if (ret)
2230 		return ret;
2231 
2232 	/* Setup port 5 */
2233 	priv->p5_intf_sel = P5_DISABLED;
2234 	interface = PHY_INTERFACE_MODE_NA;
2235 
2236 	if (!dsa_is_unused_port(ds, 5)) {
2237 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2238 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2239 		if (ret && ret != -ENODEV)
2240 			return ret;
2241 	} else {
2242 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2243 		for_each_child_of_node(dn, mac_np) {
2244 			if (!of_device_is_compatible(mac_np,
2245 						     "mediatek,eth-mac"))
2246 				continue;
2247 
2248 			ret = of_property_read_u32(mac_np, "reg", &id);
2249 			if (ret < 0 || id != 1)
2250 				continue;
2251 
2252 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2253 			if (!phy_node)
2254 				continue;
2255 
2256 			if (phy_node->parent == priv->dev->of_node->parent) {
2257 				ret = of_get_phy_mode(mac_np, &interface);
2258 				if (ret && ret != -ENODEV) {
2259 					of_node_put(mac_np);
2260 					of_node_put(phy_node);
2261 					return ret;
2262 				}
2263 				id = of_mdio_parse_addr(ds->dev, phy_node);
2264 				if (id == 0)
2265 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2266 				if (id == 4)
2267 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2268 			}
2269 			of_node_put(mac_np);
2270 			of_node_put(phy_node);
2271 			break;
2272 		}
2273 	}
2274 
2275 #ifdef CONFIG_GPIOLIB
2276 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2277 		ret = mt7530_setup_gpio(priv);
2278 		if (ret)
2279 			return ret;
2280 	}
2281 #endif /* CONFIG_GPIOLIB */
2282 
2283 	mt7530_setup_port5(ds, interface);
2284 
2285 	/* Flush the FDB table */
2286 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2287 	if (ret < 0)
2288 		return ret;
2289 
2290 	return 0;
2291 }
2292 
2293 static int
2294 mt7531_setup(struct dsa_switch *ds)
2295 {
2296 	struct mt7530_priv *priv = ds->priv;
2297 	struct mt7530_dummy_poll p;
2298 	struct dsa_port *cpu_dp;
2299 	u32 val, id;
2300 	int ret, i;
2301 
2302 	/* Reset whole chip through gpio pin or memory-mapped registers for
2303 	 * different type of hardware
2304 	 */
2305 	if (priv->mcm) {
2306 		reset_control_assert(priv->rstc);
2307 		usleep_range(1000, 1100);
2308 		reset_control_deassert(priv->rstc);
2309 	} else {
2310 		gpiod_set_value_cansleep(priv->reset, 0);
2311 		usleep_range(1000, 1100);
2312 		gpiod_set_value_cansleep(priv->reset, 1);
2313 	}
2314 
2315 	/* Waiting for MT7530 got to stable */
2316 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2317 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2318 				 20, 1000000);
2319 	if (ret < 0) {
2320 		dev_err(priv->dev, "reset timeout\n");
2321 		return ret;
2322 	}
2323 
2324 	id = mt7530_read(priv, MT7531_CREV);
2325 	id >>= CHIP_NAME_SHIFT;
2326 
2327 	if (id != MT7531_ID) {
2328 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2329 		return -ENODEV;
2330 	}
2331 
2332 	/* all MACs must be forced link-down before sw reset */
2333 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2334 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2335 
2336 	/* Reset the switch through internal reset */
2337 	mt7530_write(priv, MT7530_SYS_CTRL,
2338 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2339 		     SYS_CTRL_REG_RST);
2340 
2341 	mt7531_pll_setup(priv);
2342 
2343 	if (mt7531_dual_sgmii_supported(priv)) {
2344 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2345 
2346 		/* Let ds->slave_mii_bus be able to access external phy. */
2347 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2348 			   MT7531_EXT_P_MDC_11);
2349 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2350 			   MT7531_EXT_P_MDIO_12);
2351 	} else {
2352 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2353 	}
2354 	dev_dbg(ds->dev, "P5 support %s interface\n",
2355 		p5_intf_modes(priv->p5_intf_sel));
2356 
2357 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2358 		   MT7531_GPIO0_INTERRUPT);
2359 
2360 	/* Let phylink decide the interface later. */
2361 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2362 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2363 
2364 	/* Enable PHY core PLL, since phy_device has not yet been created
2365 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2366 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2367 	 * function.
2368 	 */
2369 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2370 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2371 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2372 	val &= ~MT7531_PHY_PLL_OFF;
2373 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2374 				 CORE_PLL_GROUP4, val);
2375 
2376 	/* BPDU to CPU port */
2377 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2378 		mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2379 			   BIT(cpu_dp->index));
2380 		break;
2381 	}
2382 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2383 		   MT753X_BPDU_CPU_ONLY);
2384 
2385 	/* Enable and reset MIB counters */
2386 	mt7530_mib_reset(ds);
2387 
2388 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2389 		/* Disable forwarding by default on all ports */
2390 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2391 			   PCR_MATRIX_CLR);
2392 
2393 		/* Disable learning by default on all ports */
2394 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2395 
2396 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2397 
2398 		if (dsa_is_cpu_port(ds, i)) {
2399 			ret = mt753x_cpu_port_enable(ds, i);
2400 			if (ret)
2401 				return ret;
2402 		} else {
2403 			mt7530_port_disable(ds, i);
2404 
2405 			/* Set default PVID to 0 on all user ports */
2406 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2407 				   G0_PORT_VID_DEF);
2408 		}
2409 
2410 		/* Enable consistent egress tag */
2411 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2412 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2413 	}
2414 
2415 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2416 	ret = mt7530_setup_vlan0(priv);
2417 	if (ret)
2418 		return ret;
2419 
2420 	ds->assisted_learning_on_cpu_port = true;
2421 	ds->mtu_enforcement_ingress = true;
2422 
2423 	/* Flush the FDB table */
2424 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2425 	if (ret < 0)
2426 		return ret;
2427 
2428 	return 0;
2429 }
2430 
2431 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2432 				     struct phylink_config *config)
2433 {
2434 	switch (port) {
2435 	case 0 ... 4: /* Internal phy */
2436 		__set_bit(PHY_INTERFACE_MODE_GMII,
2437 			  config->supported_interfaces);
2438 		break;
2439 
2440 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2441 		phy_interface_set_rgmii(config->supported_interfaces);
2442 		__set_bit(PHY_INTERFACE_MODE_MII,
2443 			  config->supported_interfaces);
2444 		__set_bit(PHY_INTERFACE_MODE_GMII,
2445 			  config->supported_interfaces);
2446 		break;
2447 
2448 	case 6: /* 1st cpu port */
2449 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2450 			  config->supported_interfaces);
2451 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2452 			  config->supported_interfaces);
2453 		break;
2454 	}
2455 }
2456 
2457 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2458 {
2459 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2460 }
2461 
2462 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2463 				     struct phylink_config *config)
2464 {
2465 	struct mt7530_priv *priv = ds->priv;
2466 
2467 	switch (port) {
2468 	case 0 ... 4: /* Internal phy */
2469 		__set_bit(PHY_INTERFACE_MODE_GMII,
2470 			  config->supported_interfaces);
2471 		break;
2472 
2473 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2474 		if (mt7531_is_rgmii_port(priv, port)) {
2475 			phy_interface_set_rgmii(config->supported_interfaces);
2476 			break;
2477 		}
2478 		fallthrough;
2479 
2480 	case 6: /* 1st cpu port supports sgmii/8023z only */
2481 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2482 			  config->supported_interfaces);
2483 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2484 			  config->supported_interfaces);
2485 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2486 			  config->supported_interfaces);
2487 
2488 		config->mac_capabilities |= MAC_2500FD;
2489 		break;
2490 	}
2491 }
2492 
2493 static int
2494 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2495 {
2496 	struct mt7530_priv *priv = ds->priv;
2497 
2498 	return priv->info->pad_setup(ds, state->interface);
2499 }
2500 
2501 static int
2502 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2503 		  phy_interface_t interface)
2504 {
2505 	struct mt7530_priv *priv = ds->priv;
2506 
2507 	/* Only need to setup port5. */
2508 	if (port != 5)
2509 		return 0;
2510 
2511 	mt7530_setup_port5(priv->ds, interface);
2512 
2513 	return 0;
2514 }
2515 
2516 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2517 			      phy_interface_t interface,
2518 			      struct phy_device *phydev)
2519 {
2520 	u32 val;
2521 
2522 	if (!mt7531_is_rgmii_port(priv, port)) {
2523 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2524 			port);
2525 		return -EINVAL;
2526 	}
2527 
2528 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2529 	val |= GP_CLK_EN;
2530 	val &= ~GP_MODE_MASK;
2531 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2532 	val &= ~CLK_SKEW_IN_MASK;
2533 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2534 	val &= ~CLK_SKEW_OUT_MASK;
2535 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2536 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2537 
2538 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2539 	if (!phydev || phy_driver_is_genphy(phydev)) {
2540 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2541 		switch (interface) {
2542 		case PHY_INTERFACE_MODE_RGMII:
2543 			val |= TXCLK_NO_REVERSE;
2544 			val |= RXCLK_NO_DELAY;
2545 			break;
2546 		case PHY_INTERFACE_MODE_RGMII_RXID:
2547 			val |= TXCLK_NO_REVERSE;
2548 			break;
2549 		case PHY_INTERFACE_MODE_RGMII_TXID:
2550 			val |= RXCLK_NO_DELAY;
2551 			break;
2552 		case PHY_INTERFACE_MODE_RGMII_ID:
2553 			break;
2554 		default:
2555 			return -EINVAL;
2556 		}
2557 	}
2558 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2559 
2560 	return 0;
2561 }
2562 
2563 static void mt7531_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
2564 			       phy_interface_t interface, int speed, int duplex)
2565 {
2566 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2567 	int port = pcs_to_mt753x_pcs(pcs)->port;
2568 	unsigned int val;
2569 
2570 	/* For adjusting speed and duplex of SGMII force mode. */
2571 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2572 	    phylink_autoneg_inband(mode))
2573 		return;
2574 
2575 	/* SGMII force mode setting */
2576 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2577 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2578 
2579 	switch (speed) {
2580 	case SPEED_10:
2581 		val |= MT7531_SGMII_FORCE_SPEED_10;
2582 		break;
2583 	case SPEED_100:
2584 		val |= MT7531_SGMII_FORCE_SPEED_100;
2585 		break;
2586 	case SPEED_1000:
2587 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2588 		break;
2589 	}
2590 
2591 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2592 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2593 	 *
2594 	 * The speed check is unnecessary as the MAC capabilities apply
2595 	 * this restriction. --rmk
2596 	 */
2597 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2598 	    duplex != DUPLEX_FULL)
2599 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2600 
2601 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2602 }
2603 
2604 static bool mt753x_is_mac_port(u32 port)
2605 {
2606 	return (port == 5 || port == 6);
2607 }
2608 
2609 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2610 					 phy_interface_t interface)
2611 {
2612 	u32 val;
2613 
2614 	if (!mt753x_is_mac_port(port))
2615 		return -EINVAL;
2616 
2617 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2618 		   MT7531_SGMII_PHYA_PWD);
2619 
2620 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2621 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2622 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2623 	 * encoding.
2624 	 */
2625 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2626 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2627 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2628 
2629 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2630 
2631 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2632 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2633 	 */
2634 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2635 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2636 		   MT7531_SGMII_FORCE_SPEED_1000);
2637 
2638 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2639 
2640 	return 0;
2641 }
2642 
2643 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2644 				      phy_interface_t interface)
2645 {
2646 	if (!mt753x_is_mac_port(port))
2647 		return -EINVAL;
2648 
2649 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2650 		   MT7531_SGMII_PHYA_PWD);
2651 
2652 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2653 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2654 
2655 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2656 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2657 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2658 
2659 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2660 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2661 
2662 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2663 
2664 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2665 
2666 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2667 
2668 	return 0;
2669 }
2670 
2671 static void mt7531_pcs_an_restart(struct phylink_pcs *pcs)
2672 {
2673 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2674 	int port = pcs_to_mt753x_pcs(pcs)->port;
2675 	u32 val;
2676 
2677 	/* Only restart AN when AN is enabled */
2678 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2679 	if (val & MT7531_SGMII_AN_ENABLE) {
2680 		val |= MT7531_SGMII_AN_RESTART;
2681 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2682 	}
2683 }
2684 
2685 static int
2686 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2687 		  phy_interface_t interface)
2688 {
2689 	struct mt7530_priv *priv = ds->priv;
2690 	struct phy_device *phydev;
2691 	struct dsa_port *dp;
2692 
2693 	if (!mt753x_is_mac_port(port)) {
2694 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2695 		return -EINVAL;
2696 	}
2697 
2698 	switch (interface) {
2699 	case PHY_INTERFACE_MODE_RGMII:
2700 	case PHY_INTERFACE_MODE_RGMII_ID:
2701 	case PHY_INTERFACE_MODE_RGMII_RXID:
2702 	case PHY_INTERFACE_MODE_RGMII_TXID:
2703 		dp = dsa_to_port(ds, port);
2704 		phydev = dp->slave->phydev;
2705 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2706 	case PHY_INTERFACE_MODE_SGMII:
2707 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2708 	case PHY_INTERFACE_MODE_NA:
2709 	case PHY_INTERFACE_MODE_1000BASEX:
2710 	case PHY_INTERFACE_MODE_2500BASEX:
2711 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2712 	default:
2713 		return -EINVAL;
2714 	}
2715 
2716 	return -EINVAL;
2717 }
2718 
2719 static int
2720 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2721 		  const struct phylink_link_state *state)
2722 {
2723 	struct mt7530_priv *priv = ds->priv;
2724 
2725 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2726 }
2727 
2728 static struct phylink_pcs *
2729 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2730 			      phy_interface_t interface)
2731 {
2732 	struct mt7530_priv *priv = ds->priv;
2733 
2734 	switch (interface) {
2735 	case PHY_INTERFACE_MODE_TRGMII:
2736 	case PHY_INTERFACE_MODE_SGMII:
2737 	case PHY_INTERFACE_MODE_1000BASEX:
2738 	case PHY_INTERFACE_MODE_2500BASEX:
2739 		return &priv->pcs[port].pcs;
2740 
2741 	default:
2742 		return NULL;
2743 	}
2744 }
2745 
2746 static void
2747 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2748 			  const struct phylink_link_state *state)
2749 {
2750 	struct mt7530_priv *priv = ds->priv;
2751 	u32 mcr_cur, mcr_new;
2752 
2753 	switch (port) {
2754 	case 0 ... 4: /* Internal phy */
2755 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2756 			goto unsupported;
2757 		break;
2758 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2759 		if (priv->p5_interface == state->interface)
2760 			break;
2761 
2762 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2763 			goto unsupported;
2764 
2765 		if (priv->p5_intf_sel != P5_DISABLED)
2766 			priv->p5_interface = state->interface;
2767 		break;
2768 	case 6: /* 1st cpu port */
2769 		if (priv->p6_interface == state->interface)
2770 			break;
2771 
2772 		mt753x_pad_setup(ds, state);
2773 
2774 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2775 			goto unsupported;
2776 
2777 		priv->p6_interface = state->interface;
2778 		break;
2779 	default:
2780 unsupported:
2781 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2782 			__func__, phy_modes(state->interface), port);
2783 		return;
2784 	}
2785 
2786 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2787 	mcr_new = mcr_cur;
2788 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2789 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2790 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2791 
2792 	/* Are we connected to external phy */
2793 	if (port == 5 && dsa_is_user_port(ds, 5))
2794 		mcr_new |= PMCR_EXT_PHY;
2795 
2796 	if (mcr_new != mcr_cur)
2797 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2798 }
2799 
2800 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2801 					 unsigned int mode,
2802 					 phy_interface_t interface)
2803 {
2804 	struct mt7530_priv *priv = ds->priv;
2805 
2806 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2807 }
2808 
2809 static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
2810 				       unsigned int mode,
2811 				       phy_interface_t interface,
2812 				       int speed, int duplex)
2813 {
2814 	if (pcs->ops->pcs_link_up)
2815 		pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
2816 }
2817 
2818 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2819 				       unsigned int mode,
2820 				       phy_interface_t interface,
2821 				       struct phy_device *phydev,
2822 				       int speed, int duplex,
2823 				       bool tx_pause, bool rx_pause)
2824 {
2825 	struct mt7530_priv *priv = ds->priv;
2826 	u32 mcr;
2827 
2828 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2829 
2830 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2831 	 * variants.
2832 	 */
2833 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2834 	    (phy_interface_mode_is_8023z(interface))) {
2835 		speed = SPEED_1000;
2836 		duplex = DUPLEX_FULL;
2837 	}
2838 
2839 	switch (speed) {
2840 	case SPEED_1000:
2841 		mcr |= PMCR_FORCE_SPEED_1000;
2842 		break;
2843 	case SPEED_100:
2844 		mcr |= PMCR_FORCE_SPEED_100;
2845 		break;
2846 	}
2847 	if (duplex == DUPLEX_FULL) {
2848 		mcr |= PMCR_FORCE_FDX;
2849 		if (tx_pause)
2850 			mcr |= PMCR_TX_FC_EN;
2851 		if (rx_pause)
2852 			mcr |= PMCR_RX_FC_EN;
2853 	}
2854 
2855 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2856 		switch (speed) {
2857 		case SPEED_1000:
2858 			mcr |= PMCR_FORCE_EEE1G;
2859 			break;
2860 		case SPEED_100:
2861 			mcr |= PMCR_FORCE_EEE100;
2862 			break;
2863 		}
2864 	}
2865 
2866 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2867 }
2868 
2869 static int
2870 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2871 {
2872 	struct mt7530_priv *priv = ds->priv;
2873 	phy_interface_t interface;
2874 	int speed;
2875 	int ret;
2876 
2877 	switch (port) {
2878 	case 5:
2879 		if (mt7531_is_rgmii_port(priv, port))
2880 			interface = PHY_INTERFACE_MODE_RGMII;
2881 		else
2882 			interface = PHY_INTERFACE_MODE_2500BASEX;
2883 
2884 		priv->p5_interface = interface;
2885 		break;
2886 	case 6:
2887 		interface = PHY_INTERFACE_MODE_2500BASEX;
2888 
2889 		priv->p6_interface = interface;
2890 		break;
2891 	default:
2892 		return -EINVAL;
2893 	}
2894 
2895 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2896 		speed = SPEED_2500;
2897 	else
2898 		speed = SPEED_1000;
2899 
2900 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2901 	if (ret)
2902 		return ret;
2903 	mt7530_write(priv, MT7530_PMCR_P(port),
2904 		     PMCR_CPU_PORT_SETTING(priv->id));
2905 	mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
2906 				   interface, speed, DUPLEX_FULL);
2907 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2908 				   speed, DUPLEX_FULL, true, true);
2909 
2910 	return 0;
2911 }
2912 
2913 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2914 				    struct phylink_config *config)
2915 {
2916 	struct mt7530_priv *priv = ds->priv;
2917 
2918 	/* This switch only supports full-duplex at 1Gbps */
2919 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2920 				   MAC_10 | MAC_100 | MAC_1000FD;
2921 
2922 	if ((priv->id == ID_MT7531) && mt753x_is_mac_port(port))
2923 		config->mac_capabilities |= MAC_2500FD;
2924 
2925 	/* This driver does not make use of the speed, duplex, pause or the
2926 	 * advertisement in its mac_config, so it is safe to mark this driver
2927 	 * as non-legacy.
2928 	 */
2929 	config->legacy_pre_march2020 = false;
2930 
2931 	priv->info->mac_port_get_caps(ds, port, config);
2932 }
2933 
2934 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2935 			       unsigned long *supported,
2936 			       const struct phylink_link_state *state)
2937 {
2938 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2939 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2940 	    phy_interface_mode_is_8023z(state->interface))
2941 		phylink_clear(supported, Autoneg);
2942 
2943 	return 0;
2944 }
2945 
2946 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2947 				 struct phylink_link_state *state)
2948 {
2949 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2950 	int port = pcs_to_mt753x_pcs(pcs)->port;
2951 	u32 pmsr;
2952 
2953 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2954 
2955 	state->link = (pmsr & PMSR_LINK);
2956 	state->an_complete = state->link;
2957 	state->duplex = !!(pmsr & PMSR_DPX);
2958 
2959 	switch (pmsr & PMSR_SPEED_MASK) {
2960 	case PMSR_SPEED_10:
2961 		state->speed = SPEED_10;
2962 		break;
2963 	case PMSR_SPEED_100:
2964 		state->speed = SPEED_100;
2965 		break;
2966 	case PMSR_SPEED_1000:
2967 		state->speed = SPEED_1000;
2968 		break;
2969 	default:
2970 		state->speed = SPEED_UNKNOWN;
2971 		break;
2972 	}
2973 
2974 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2975 	if (pmsr & PMSR_RX_FC)
2976 		state->pause |= MLO_PAUSE_RX;
2977 	if (pmsr & PMSR_TX_FC)
2978 		state->pause |= MLO_PAUSE_TX;
2979 }
2980 
2981 static int
2982 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2983 			      struct phylink_link_state *state)
2984 {
2985 	u32 status, val;
2986 	u16 config_reg;
2987 
2988 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2989 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2990 	state->an_complete = !!(status & MT7531_SGMII_AN_COMPLETE);
2991 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
2992 	    (status & MT7531_SGMII_AN_ENABLE)) {
2993 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
2994 		config_reg = val >> 16;
2995 
2996 		switch (config_reg & LPA_SGMII_SPD_MASK) {
2997 		case LPA_SGMII_1000:
2998 			state->speed = SPEED_1000;
2999 			break;
3000 		case LPA_SGMII_100:
3001 			state->speed = SPEED_100;
3002 			break;
3003 		case LPA_SGMII_10:
3004 			state->speed = SPEED_10;
3005 			break;
3006 		default:
3007 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
3008 			state->link = false;
3009 			return -EINVAL;
3010 		}
3011 
3012 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
3013 			state->duplex = DUPLEX_FULL;
3014 		else
3015 			state->duplex = DUPLEX_HALF;
3016 	}
3017 
3018 	return 0;
3019 }
3020 
3021 static void
3022 mt7531_sgmii_pcs_get_state_inband(struct mt7530_priv *priv, int port,
3023 				  struct phylink_link_state *state)
3024 {
3025 	unsigned int val;
3026 
3027 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
3028 	state->link = !!(val & MT7531_SGMII_LINK_STATUS);
3029 	if (!state->link)
3030 		return;
3031 
3032 	state->an_complete = state->link;
3033 
3034 	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
3035 		state->speed = SPEED_2500;
3036 	else
3037 		state->speed = SPEED_1000;
3038 
3039 	state->duplex = DUPLEX_FULL;
3040 	state->pause = MLO_PAUSE_NONE;
3041 }
3042 
3043 static void mt7531_pcs_get_state(struct phylink_pcs *pcs,
3044 				 struct phylink_link_state *state)
3045 {
3046 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
3047 	int port = pcs_to_mt753x_pcs(pcs)->port;
3048 
3049 	if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3050 		mt7531_sgmii_pcs_get_state_an(priv, port, state);
3051 		return;
3052 	} else if ((state->interface == PHY_INTERFACE_MODE_1000BASEX) ||
3053 		   (state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3054 		mt7531_sgmii_pcs_get_state_inband(priv, port, state);
3055 		return;
3056 	}
3057 
3058 	state->link = false;
3059 }
3060 
3061 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
3062 			     phy_interface_t interface,
3063 			     const unsigned long *advertising,
3064 			     bool permit_pause_to_mac)
3065 {
3066 	return 0;
3067 }
3068 
3069 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3070 {
3071 }
3072 
3073 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3074 	.pcs_validate = mt753x_pcs_validate,
3075 	.pcs_get_state = mt7530_pcs_get_state,
3076 	.pcs_config = mt753x_pcs_config,
3077 	.pcs_an_restart = mt7530_pcs_an_restart,
3078 };
3079 
3080 static const struct phylink_pcs_ops mt7531_pcs_ops = {
3081 	.pcs_validate = mt753x_pcs_validate,
3082 	.pcs_get_state = mt7531_pcs_get_state,
3083 	.pcs_config = mt753x_pcs_config,
3084 	.pcs_an_restart = mt7531_pcs_an_restart,
3085 	.pcs_link_up = mt7531_pcs_link_up,
3086 };
3087 
3088 static int
3089 mt753x_setup(struct dsa_switch *ds)
3090 {
3091 	struct mt7530_priv *priv = ds->priv;
3092 	int i, ret;
3093 
3094 	/* Initialise the PCS devices */
3095 	for (i = 0; i < priv->ds->num_ports; i++) {
3096 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3097 		priv->pcs[i].priv = priv;
3098 		priv->pcs[i].port = i;
3099 		if (mt753x_is_mac_port(i))
3100 			priv->pcs[i].pcs.poll = 1;
3101 	}
3102 
3103 	ret = priv->info->sw_setup(ds);
3104 	if (ret)
3105 		return ret;
3106 
3107 	ret = mt7530_setup_irq(priv);
3108 	if (ret)
3109 		return ret;
3110 
3111 	ret = mt7530_setup_mdio(priv);
3112 	if (ret && priv->irq)
3113 		mt7530_free_irq_common(priv);
3114 
3115 	return ret;
3116 }
3117 
3118 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3119 			      struct ethtool_eee *e)
3120 {
3121 	struct mt7530_priv *priv = ds->priv;
3122 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3123 
3124 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3125 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3126 
3127 	return 0;
3128 }
3129 
3130 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3131 			      struct ethtool_eee *e)
3132 {
3133 	struct mt7530_priv *priv = ds->priv;
3134 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3135 
3136 	if (e->tx_lpi_timer > 0xFFF)
3137 		return -EINVAL;
3138 
3139 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3140 	if (!e->tx_lpi_enabled)
3141 		/* Force LPI Mode without a delay */
3142 		set |= LPI_MODE_EN;
3143 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3144 
3145 	return 0;
3146 }
3147 
3148 static const struct dsa_switch_ops mt7530_switch_ops = {
3149 	.get_tag_protocol	= mtk_get_tag_protocol,
3150 	.setup			= mt753x_setup,
3151 	.get_strings		= mt7530_get_strings,
3152 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3153 	.get_sset_count		= mt7530_get_sset_count,
3154 	.set_ageing_time	= mt7530_set_ageing_time,
3155 	.port_enable		= mt7530_port_enable,
3156 	.port_disable		= mt7530_port_disable,
3157 	.port_change_mtu	= mt7530_port_change_mtu,
3158 	.port_max_mtu		= mt7530_port_max_mtu,
3159 	.port_stp_state_set	= mt7530_stp_state_set,
3160 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3161 	.port_bridge_flags	= mt7530_port_bridge_flags,
3162 	.port_bridge_join	= mt7530_port_bridge_join,
3163 	.port_bridge_leave	= mt7530_port_bridge_leave,
3164 	.port_fdb_add		= mt7530_port_fdb_add,
3165 	.port_fdb_del		= mt7530_port_fdb_del,
3166 	.port_fdb_dump		= mt7530_port_fdb_dump,
3167 	.port_mdb_add		= mt7530_port_mdb_add,
3168 	.port_mdb_del		= mt7530_port_mdb_del,
3169 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3170 	.port_vlan_add		= mt7530_port_vlan_add,
3171 	.port_vlan_del		= mt7530_port_vlan_del,
3172 	.port_mirror_add	= mt753x_port_mirror_add,
3173 	.port_mirror_del	= mt753x_port_mirror_del,
3174 	.phylink_get_caps	= mt753x_phylink_get_caps,
3175 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3176 	.phylink_mac_config	= mt753x_phylink_mac_config,
3177 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3178 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3179 	.get_mac_eee		= mt753x_get_mac_eee,
3180 	.set_mac_eee		= mt753x_set_mac_eee,
3181 };
3182 
3183 static const struct mt753x_info mt753x_table[] = {
3184 	[ID_MT7621] = {
3185 		.id = ID_MT7621,
3186 		.pcs_ops = &mt7530_pcs_ops,
3187 		.sw_setup = mt7530_setup,
3188 		.phy_read = mt7530_phy_read,
3189 		.phy_write = mt7530_phy_write,
3190 		.pad_setup = mt7530_pad_clk_setup,
3191 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3192 		.mac_port_config = mt7530_mac_config,
3193 	},
3194 	[ID_MT7530] = {
3195 		.id = ID_MT7530,
3196 		.pcs_ops = &mt7530_pcs_ops,
3197 		.sw_setup = mt7530_setup,
3198 		.phy_read = mt7530_phy_read,
3199 		.phy_write = mt7530_phy_write,
3200 		.pad_setup = mt7530_pad_clk_setup,
3201 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3202 		.mac_port_config = mt7530_mac_config,
3203 	},
3204 	[ID_MT7531] = {
3205 		.id = ID_MT7531,
3206 		.pcs_ops = &mt7531_pcs_ops,
3207 		.sw_setup = mt7531_setup,
3208 		.phy_read = mt7531_ind_phy_read,
3209 		.phy_write = mt7531_ind_phy_write,
3210 		.pad_setup = mt7531_pad_setup,
3211 		.cpu_port_config = mt7531_cpu_port_config,
3212 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3213 		.mac_port_config = mt7531_mac_config,
3214 	},
3215 };
3216 
3217 static const struct of_device_id mt7530_of_match[] = {
3218 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3219 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3220 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3221 	{ /* sentinel */ },
3222 };
3223 MODULE_DEVICE_TABLE(of, mt7530_of_match);
3224 
3225 static int
3226 mt7530_probe(struct mdio_device *mdiodev)
3227 {
3228 	struct mt7530_priv *priv;
3229 	struct device_node *dn;
3230 
3231 	dn = mdiodev->dev.of_node;
3232 
3233 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3234 	if (!priv)
3235 		return -ENOMEM;
3236 
3237 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3238 	if (!priv->ds)
3239 		return -ENOMEM;
3240 
3241 	priv->ds->dev = &mdiodev->dev;
3242 	priv->ds->num_ports = MT7530_NUM_PORTS;
3243 
3244 	/* Use medatek,mcm property to distinguish hardware type that would
3245 	 * casues a little bit differences on power-on sequence.
3246 	 */
3247 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3248 	if (priv->mcm) {
3249 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3250 
3251 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3252 		if (IS_ERR(priv->rstc)) {
3253 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3254 			return PTR_ERR(priv->rstc);
3255 		}
3256 	}
3257 
3258 	/* Get the hardware identifier from the devicetree node.
3259 	 * We will need it for some of the clock and regulator setup.
3260 	 */
3261 	priv->info = of_device_get_match_data(&mdiodev->dev);
3262 	if (!priv->info)
3263 		return -EINVAL;
3264 
3265 	/* Sanity check if these required device operations are filled
3266 	 * properly.
3267 	 */
3268 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3269 	    !priv->info->phy_read || !priv->info->phy_write ||
3270 	    !priv->info->mac_port_get_caps ||
3271 	    !priv->info->mac_port_config)
3272 		return -EINVAL;
3273 
3274 	priv->id = priv->info->id;
3275 
3276 	if (priv->id == ID_MT7530) {
3277 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3278 		if (IS_ERR(priv->core_pwr))
3279 			return PTR_ERR(priv->core_pwr);
3280 
3281 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3282 		if (IS_ERR(priv->io_pwr))
3283 			return PTR_ERR(priv->io_pwr);
3284 	}
3285 
3286 	/* Not MCM that indicates switch works as the remote standalone
3287 	 * integrated circuit so the GPIO pin would be used to complete
3288 	 * the reset, otherwise memory-mapped register accessing used
3289 	 * through syscon provides in the case of MCM.
3290 	 */
3291 	if (!priv->mcm) {
3292 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3293 						      GPIOD_OUT_LOW);
3294 		if (IS_ERR(priv->reset)) {
3295 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3296 			return PTR_ERR(priv->reset);
3297 		}
3298 	}
3299 
3300 	priv->bus = mdiodev->bus;
3301 	priv->dev = &mdiodev->dev;
3302 	priv->ds->priv = priv;
3303 	priv->ds->ops = &mt7530_switch_ops;
3304 	mutex_init(&priv->reg_mutex);
3305 	dev_set_drvdata(&mdiodev->dev, priv);
3306 
3307 	return dsa_register_switch(priv->ds);
3308 }
3309 
3310 static void
3311 mt7530_remove(struct mdio_device *mdiodev)
3312 {
3313 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3314 	int ret = 0;
3315 
3316 	if (!priv)
3317 		return;
3318 
3319 	ret = regulator_disable(priv->core_pwr);
3320 	if (ret < 0)
3321 		dev_err(priv->dev,
3322 			"Failed to disable core power: %d\n", ret);
3323 
3324 	ret = regulator_disable(priv->io_pwr);
3325 	if (ret < 0)
3326 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3327 			ret);
3328 
3329 	if (priv->irq)
3330 		mt7530_free_irq(priv);
3331 
3332 	dsa_unregister_switch(priv->ds);
3333 	mutex_destroy(&priv->reg_mutex);
3334 }
3335 
3336 static void mt7530_shutdown(struct mdio_device *mdiodev)
3337 {
3338 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3339 
3340 	if (!priv)
3341 		return;
3342 
3343 	dsa_switch_shutdown(priv->ds);
3344 
3345 	dev_set_drvdata(&mdiodev->dev, NULL);
3346 }
3347 
3348 static struct mdio_driver mt7530_mdio_driver = {
3349 	.probe  = mt7530_probe,
3350 	.remove = mt7530_remove,
3351 	.shutdown = mt7530_shutdown,
3352 	.mdiodrv.driver = {
3353 		.name = "mt7530",
3354 		.of_match_table = mt7530_of_match,
3355 	},
3356 };
3357 
3358 mdio_module_driver(mt7530_mdio_driver);
3359 
3360 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3361 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3362 MODULE_LICENSE("GPL");
3363