xref: /linux/drivers/net/dsa/mt7530.c (revision 385ef48f468696d6d172eb367656a3466fa0408d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 mt7530_mutex_lock(struct mt7530_priv *priv)
146 {
147 	if (priv->bus)
148 		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149 }
150 
151 static void
152 mt7530_mutex_unlock(struct mt7530_priv *priv)
153 {
154 	if (priv->bus)
155 		mutex_unlock(&priv->bus->mdio_lock);
156 }
157 
158 static void
159 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160 {
161 	mt7530_mutex_lock(priv);
162 
163 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164 
165 	mt7530_mutex_unlock(priv);
166 }
167 
168 static void
169 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170 {
171 	u32 val;
172 
173 	mt7530_mutex_lock(priv);
174 
175 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176 	val &= ~mask;
177 	val |= set;
178 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179 
180 	mt7530_mutex_unlock(priv);
181 }
182 
183 static void
184 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 	core_rmw(priv, reg, 0, val);
187 }
188 
189 static void
190 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191 {
192 	core_rmw(priv, reg, val, 0);
193 }
194 
195 static int
196 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197 {
198 	int ret;
199 
200 	ret = regmap_write(priv->regmap, reg, val);
201 
202 	if (ret < 0)
203 		dev_err(priv->dev,
204 			"failed to write mt7530 register\n");
205 
206 	return ret;
207 }
208 
209 static u32
210 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211 {
212 	int ret;
213 	u32 val;
214 
215 	ret = regmap_read(priv->regmap, reg, &val);
216 	if (ret) {
217 		WARN_ON_ONCE(1);
218 		dev_err(priv->dev,
219 			"failed to read mt7530 register\n");
220 		return 0;
221 	}
222 
223 	return val;
224 }
225 
226 static void
227 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 	mt7530_mutex_lock(priv);
230 
231 	mt7530_mii_write(priv, reg, val);
232 
233 	mt7530_mutex_unlock(priv);
234 }
235 
236 static u32
237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 	return mt7530_mii_read(p->priv, p->reg);
240 }
241 
242 static u32
243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 	u32 val;
246 
247 	mt7530_mutex_lock(p->priv);
248 
249 	val = mt7530_mii_read(p->priv, p->reg);
250 
251 	mt7530_mutex_unlock(p->priv);
252 
253 	return val;
254 }
255 
256 static u32
257 mt7530_read(struct mt7530_priv *priv, u32 reg)
258 {
259 	struct mt7530_dummy_poll p;
260 
261 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262 	return _mt7530_read(&p);
263 }
264 
265 static void
266 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 	   u32 mask, u32 set)
268 {
269 	mt7530_mutex_lock(priv);
270 
271 	regmap_update_bits(priv->regmap, reg, mask, set);
272 
273 	mt7530_mutex_unlock(priv);
274 }
275 
276 static void
277 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 	mt7530_rmw(priv, reg, val, val);
280 }
281 
282 static void
283 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284 {
285 	mt7530_rmw(priv, reg, val, 0);
286 }
287 
288 static int
289 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290 {
291 	u32 val;
292 	int ret;
293 	struct mt7530_dummy_poll p;
294 
295 	/* Set the command operating upon the MAC address entries */
296 	val = ATC_BUSY | ATC_MAT(0) | cmd;
297 	mt7530_write(priv, MT7530_ATC, val);
298 
299 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300 	ret = readx_poll_timeout(_mt7530_read, &p, val,
301 				 !(val & ATC_BUSY), 20, 20000);
302 	if (ret < 0) {
303 		dev_err(priv->dev, "reset timeout\n");
304 		return ret;
305 	}
306 
307 	/* Additional sanity for read command if the specified
308 	 * entry is invalid
309 	 */
310 	val = mt7530_read(priv, MT7530_ATC);
311 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 		return -EINVAL;
313 
314 	if (rsp)
315 		*rsp = val;
316 
317 	return 0;
318 }
319 
320 static void
321 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322 {
323 	u32 reg[3];
324 	int i;
325 
326 	/* Read from ARL table into an array */
327 	for (i = 0; i < 3; i++) {
328 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329 
330 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 			__func__, __LINE__, i, reg[i]);
332 	}
333 
334 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344 }
345 
346 static void
347 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 		 u8 port_mask, const u8 *mac,
349 		 u8 aging, u8 type)
350 {
351 	u32 reg[3] = { 0 };
352 	int i;
353 
354 	reg[1] |= vid & CVID_MASK;
355 	reg[1] |= ATA2_IVL;
356 	reg[1] |= ATA2_FID(FID_BRIDGED);
357 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 	/* STATIC_ENT indicate that entry is static wouldn't
360 	 * be aged out and STATIC_EMP specified as erasing an
361 	 * entry
362 	 */
363 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 	reg[1] |= mac[5] << MAC_BYTE_5;
365 	reg[1] |= mac[4] << MAC_BYTE_4;
366 	reg[0] |= mac[3] << MAC_BYTE_3;
367 	reg[0] |= mac[2] << MAC_BYTE_2;
368 	reg[0] |= mac[1] << MAC_BYTE_1;
369 	reg[0] |= mac[0] << MAC_BYTE_0;
370 
371 	/* Write array into the ARL table */
372 	for (i = 0; i < 3; i++)
373 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374 }
375 
376 /* Set up switch core clock for MT7530 */
377 static void mt7530_pll_setup(struct mt7530_priv *priv)
378 {
379 	/* Disable core clock */
380 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381 
382 	/* Disable PLL */
383 	core_write(priv, CORE_GSWPLL_GRP1, 0);
384 
385 	/* Set core clock into 500Mhz */
386 	core_write(priv, CORE_GSWPLL_GRP2,
387 		   RG_GSWPLL_POSDIV_500M(1) |
388 		   RG_GSWPLL_FBKDIV_500M(25));
389 
390 	/* Enable PLL */
391 	core_write(priv, CORE_GSWPLL_GRP1,
392 		   RG_GSWPLL_EN_PRE |
393 		   RG_GSWPLL_POSDIV_200M(2) |
394 		   RG_GSWPLL_FBKDIV_200M(32));
395 
396 	udelay(20);
397 
398 	/* Enable core clock */
399 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400 }
401 
402 /* If port 6 is available as a CPU port, always prefer that as the default,
403  * otherwise don't care.
404  */
405 static struct dsa_port *
406 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407 {
408 	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409 
410 	if (dsa_port_is_cpu(cpu_dp))
411 		return cpu_dp;
412 
413 	return NULL;
414 }
415 
416 /* Setup port 6 interface mode and TRGMII TX circuit */
417 static void
418 mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface)
419 {
420 	struct mt7530_priv *priv = ds->priv;
421 	u32 ncpo1, ssc_delta, xtal;
422 
423 	/* Disable the MT7530 TRGMII clocks */
424 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
425 
426 	if (interface == PHY_INTERFACE_MODE_RGMII) {
427 		mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
428 			   P6_INTF_MODE(0));
429 		return;
430 	}
431 
432 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1));
433 
434 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
435 
436 	if (xtal == HWTRAP_XTAL_25MHZ)
437 		ssc_delta = 0x57;
438 	else
439 		ssc_delta = 0x87;
440 
441 	if (priv->id == ID_MT7621) {
442 		/* PLL frequency: 125MHz: 1.0GBit */
443 		if (xtal == HWTRAP_XTAL_40MHZ)
444 			ncpo1 = 0x0640;
445 		if (xtal == HWTRAP_XTAL_25MHZ)
446 			ncpo1 = 0x0a00;
447 	} else { /* PLL frequency: 250MHz: 2.0Gbit */
448 		if (xtal == HWTRAP_XTAL_40MHZ)
449 			ncpo1 = 0x0c80;
450 		if (xtal == HWTRAP_XTAL_25MHZ)
451 			ncpo1 = 0x1400;
452 	}
453 
454 	/* Setup the MT7530 TRGMII Tx Clock */
455 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
456 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
457 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
458 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
459 	core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
460 		   RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
461 	core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL |
462 		   RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1));
463 	core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG |
464 		   RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
465 
466 	/* Enable the MT7530 TRGMII clocks */
467 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
468 }
469 
470 static void
471 mt7531_pll_setup(struct mt7530_priv *priv)
472 {
473 	u32 top_sig;
474 	u32 hwstrap;
475 	u32 xtal;
476 	u32 val;
477 
478 	val = mt7530_read(priv, MT7531_CREV);
479 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
480 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
481 	if ((val & CHIP_REV_M) > 0)
482 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
483 						    HWTRAP_XTAL_FSEL_25MHZ;
484 	else
485 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
486 
487 	/* Step 1 : Disable MT7531 COREPLL */
488 	val = mt7530_read(priv, MT7531_PLLGP_EN);
489 	val &= ~EN_COREPLL;
490 	mt7530_write(priv, MT7531_PLLGP_EN, val);
491 
492 	/* Step 2: switch to XTAL output */
493 	val = mt7530_read(priv, MT7531_PLLGP_EN);
494 	val |= SW_CLKSW;
495 	mt7530_write(priv, MT7531_PLLGP_EN, val);
496 
497 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
498 	val &= ~RG_COREPLL_EN;
499 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
500 
501 	/* Step 3: disable PLLGP and enable program PLLGP */
502 	val = mt7530_read(priv, MT7531_PLLGP_EN);
503 	val |= SW_PLLGP;
504 	mt7530_write(priv, MT7531_PLLGP_EN, val);
505 
506 	/* Step 4: program COREPLL output frequency to 500MHz */
507 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
508 	val &= ~RG_COREPLL_POSDIV_M;
509 	val |= 2 << RG_COREPLL_POSDIV_S;
510 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
511 	usleep_range(25, 35);
512 
513 	switch (xtal) {
514 	case HWTRAP_XTAL_FSEL_25MHZ:
515 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
516 		val &= ~RG_COREPLL_SDM_PCW_M;
517 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
518 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
519 		break;
520 	case HWTRAP_XTAL_FSEL_40MHZ:
521 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
522 		val &= ~RG_COREPLL_SDM_PCW_M;
523 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
524 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
525 		break;
526 	}
527 
528 	/* Set feedback divide ratio update signal to high */
529 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
530 	val |= RG_COREPLL_SDM_PCW_CHG;
531 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
532 	/* Wait for at least 16 XTAL clocks */
533 	usleep_range(10, 20);
534 
535 	/* Step 5: set feedback divide ratio update signal to low */
536 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
537 	val &= ~RG_COREPLL_SDM_PCW_CHG;
538 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
539 
540 	/* Enable 325M clock for SGMII */
541 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
542 
543 	/* Enable 250SSC clock for RGMII */
544 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
545 
546 	/* Step 6: Enable MT7531 PLL */
547 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
548 	val |= RG_COREPLL_EN;
549 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
550 
551 	val = mt7530_read(priv, MT7531_PLLGP_EN);
552 	val |= EN_COREPLL;
553 	mt7530_write(priv, MT7531_PLLGP_EN, val);
554 	usleep_range(25, 35);
555 }
556 
557 static void
558 mt7530_mib_reset(struct dsa_switch *ds)
559 {
560 	struct mt7530_priv *priv = ds->priv;
561 
562 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
563 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
564 }
565 
566 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
567 {
568 	return mdiobus_read_nested(priv->bus, port, regnum);
569 }
570 
571 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
572 				u16 val)
573 {
574 	return mdiobus_write_nested(priv->bus, port, regnum, val);
575 }
576 
577 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
578 			       int devad, int regnum)
579 {
580 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
581 }
582 
583 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
584 				int regnum, u16 val)
585 {
586 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
587 }
588 
589 static int
590 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
591 			int regnum)
592 {
593 	struct mt7530_dummy_poll p;
594 	u32 reg, val;
595 	int ret;
596 
597 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
598 
599 	mt7530_mutex_lock(priv);
600 
601 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
602 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
603 	if (ret < 0) {
604 		dev_err(priv->dev, "poll timeout\n");
605 		goto out;
606 	}
607 
608 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
609 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
610 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
611 
612 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
613 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
614 	if (ret < 0) {
615 		dev_err(priv->dev, "poll timeout\n");
616 		goto out;
617 	}
618 
619 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
620 	      MT7531_MDIO_DEV_ADDR(devad);
621 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
622 
623 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
624 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
625 	if (ret < 0) {
626 		dev_err(priv->dev, "poll timeout\n");
627 		goto out;
628 	}
629 
630 	ret = val & MT7531_MDIO_RW_DATA_MASK;
631 out:
632 	mt7530_mutex_unlock(priv);
633 
634 	return ret;
635 }
636 
637 static int
638 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
639 			 int regnum, u16 data)
640 {
641 	struct mt7530_dummy_poll p;
642 	u32 val, reg;
643 	int ret;
644 
645 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
646 
647 	mt7530_mutex_lock(priv);
648 
649 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
650 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
651 	if (ret < 0) {
652 		dev_err(priv->dev, "poll timeout\n");
653 		goto out;
654 	}
655 
656 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
657 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
658 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
659 
660 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
661 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
662 	if (ret < 0) {
663 		dev_err(priv->dev, "poll timeout\n");
664 		goto out;
665 	}
666 
667 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
668 	      MT7531_MDIO_DEV_ADDR(devad) | data;
669 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
670 
671 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
672 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
673 	if (ret < 0) {
674 		dev_err(priv->dev, "poll timeout\n");
675 		goto out;
676 	}
677 
678 out:
679 	mt7530_mutex_unlock(priv);
680 
681 	return ret;
682 }
683 
684 static int
685 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
686 {
687 	struct mt7530_dummy_poll p;
688 	int ret;
689 	u32 val;
690 
691 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
692 
693 	mt7530_mutex_lock(priv);
694 
695 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
696 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
697 	if (ret < 0) {
698 		dev_err(priv->dev, "poll timeout\n");
699 		goto out;
700 	}
701 
702 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
703 	      MT7531_MDIO_REG_ADDR(regnum);
704 
705 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
706 
707 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
708 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
709 	if (ret < 0) {
710 		dev_err(priv->dev, "poll timeout\n");
711 		goto out;
712 	}
713 
714 	ret = val & MT7531_MDIO_RW_DATA_MASK;
715 out:
716 	mt7530_mutex_unlock(priv);
717 
718 	return ret;
719 }
720 
721 static int
722 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
723 			 u16 data)
724 {
725 	struct mt7530_dummy_poll p;
726 	int ret;
727 	u32 reg;
728 
729 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
730 
731 	mt7530_mutex_lock(priv);
732 
733 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
734 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
735 	if (ret < 0) {
736 		dev_err(priv->dev, "poll timeout\n");
737 		goto out;
738 	}
739 
740 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
741 	      MT7531_MDIO_REG_ADDR(regnum) | data;
742 
743 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
744 
745 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
746 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
747 	if (ret < 0) {
748 		dev_err(priv->dev, "poll timeout\n");
749 		goto out;
750 	}
751 
752 out:
753 	mt7530_mutex_unlock(priv);
754 
755 	return ret;
756 }
757 
758 static int
759 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
760 {
761 	struct mt7530_priv *priv = bus->priv;
762 
763 	return priv->info->phy_read_c22(priv, port, regnum);
764 }
765 
766 static int
767 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
768 {
769 	struct mt7530_priv *priv = bus->priv;
770 
771 	return priv->info->phy_read_c45(priv, port, devad, regnum);
772 }
773 
774 static int
775 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
776 {
777 	struct mt7530_priv *priv = bus->priv;
778 
779 	return priv->info->phy_write_c22(priv, port, regnum, val);
780 }
781 
782 static int
783 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
784 		     u16 val)
785 {
786 	struct mt7530_priv *priv = bus->priv;
787 
788 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
789 }
790 
791 static void
792 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
793 		   uint8_t *data)
794 {
795 	int i;
796 
797 	if (stringset != ETH_SS_STATS)
798 		return;
799 
800 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
801 		ethtool_puts(&data, mt7530_mib[i].name);
802 }
803 
804 static void
805 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
806 			 uint64_t *data)
807 {
808 	struct mt7530_priv *priv = ds->priv;
809 	const struct mt7530_mib_desc *mib;
810 	u32 reg, i;
811 	u64 hi;
812 
813 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
814 		mib = &mt7530_mib[i];
815 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
816 
817 		data[i] = mt7530_read(priv, reg);
818 		if (mib->size == 2) {
819 			hi = mt7530_read(priv, reg + 4);
820 			data[i] |= hi << 32;
821 		}
822 	}
823 }
824 
825 static int
826 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
827 {
828 	if (sset != ETH_SS_STATS)
829 		return 0;
830 
831 	return ARRAY_SIZE(mt7530_mib);
832 }
833 
834 static int
835 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
836 {
837 	struct mt7530_priv *priv = ds->priv;
838 	unsigned int secs = msecs / 1000;
839 	unsigned int tmp_age_count;
840 	unsigned int error = -1;
841 	unsigned int age_count;
842 	unsigned int age_unit;
843 
844 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
845 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
846 		return -ERANGE;
847 
848 	/* iterate through all possible age_count to find the closest pair */
849 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
850 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
851 
852 		if (tmp_age_unit <= AGE_UNIT_MAX) {
853 			unsigned int tmp_error = secs -
854 				(tmp_age_count + 1) * (tmp_age_unit + 1);
855 
856 			/* found a closer pair */
857 			if (error > tmp_error) {
858 				error = tmp_error;
859 				age_count = tmp_age_count;
860 				age_unit = tmp_age_unit;
861 			}
862 
863 			/* found the exact match, so break the loop */
864 			if (!error)
865 				break;
866 		}
867 	}
868 
869 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
870 
871 	return 0;
872 }
873 
874 static const char *p5_intf_modes(unsigned int p5_interface)
875 {
876 	switch (p5_interface) {
877 	case P5_DISABLED:
878 		return "DISABLED";
879 	case P5_INTF_SEL_PHY_P0:
880 		return "PHY P0";
881 	case P5_INTF_SEL_PHY_P4:
882 		return "PHY P4";
883 	case P5_INTF_SEL_GMAC5:
884 		return "GMAC5";
885 	default:
886 		return "unknown";
887 	}
888 }
889 
890 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
891 {
892 	struct mt7530_priv *priv = ds->priv;
893 	u8 tx_delay = 0;
894 	int val;
895 
896 	mutex_lock(&priv->reg_mutex);
897 
898 	val = mt7530_read(priv, MT7530_MHWTRAP);
899 
900 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
901 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
902 
903 	switch (priv->p5_intf_sel) {
904 	case P5_INTF_SEL_PHY_P0:
905 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
906 		val |= MHWTRAP_PHY0_SEL;
907 		fallthrough;
908 	case P5_INTF_SEL_PHY_P4:
909 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
910 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
911 
912 		/* Setup the MAC by default for the cpu port */
913 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
914 		break;
915 	case P5_INTF_SEL_GMAC5:
916 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
917 		val &= ~MHWTRAP_P5_DIS;
918 		break;
919 	default:
920 		break;
921 	}
922 
923 	/* Setup RGMII settings */
924 	if (phy_interface_mode_is_rgmii(interface)) {
925 		val |= MHWTRAP_P5_RGMII_MODE;
926 
927 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
928 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
929 
930 		/* Don't set delay in DSA mode */
931 		if (!dsa_is_dsa_port(priv->ds, 5) &&
932 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
933 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
934 			tx_delay = 4; /* n * 0.5 ns */
935 
936 		/* P5 RGMII TX Clock Control: delay x */
937 		mt7530_write(priv, MT7530_P5RGMIITXCR,
938 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
939 
940 		/* reduce P5 RGMII Tx driving, 8mA */
941 		mt7530_write(priv, MT7530_IO_DRV_CR,
942 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
943 	}
944 
945 	mt7530_write(priv, MT7530_MHWTRAP, val);
946 
947 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
948 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
949 
950 	mutex_unlock(&priv->reg_mutex);
951 }
952 
953 static void
954 mt753x_trap_frames(struct mt7530_priv *priv)
955 {
956 	/* Trap BPDUs to the CPU port(s) */
957 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
958 		   MT753X_BPDU_CPU_ONLY);
959 
960 	/* Trap 802.1X PAE frames to the CPU port(s) */
961 	mt7530_rmw(priv, MT753X_BPC, MT753X_PAE_PORT_FW_MASK,
962 		   MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY));
963 
964 	/* Trap LLDP frames with :0E MAC DA to the CPU port(s) */
965 	mt7530_rmw(priv, MT753X_RGAC2, MT753X_R0E_PORT_FW_MASK,
966 		   MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY));
967 }
968 
969 static int
970 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
971 {
972 	struct mt7530_priv *priv = ds->priv;
973 	int ret;
974 
975 	/* Setup max capability of CPU port at first */
976 	if (priv->info->cpu_port_config) {
977 		ret = priv->info->cpu_port_config(ds, port);
978 		if (ret)
979 			return ret;
980 	}
981 
982 	/* Enable Mediatek header mode on the cpu port */
983 	mt7530_write(priv, MT7530_PVC_P(port),
984 		     PORT_SPEC_TAG);
985 
986 	/* Enable flooding on the CPU port */
987 	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
988 		   UNU_FFP(BIT(port)));
989 
990 	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
991 	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
992 	 * is affine to the inbound user port.
993 	 */
994 	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
995 		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
996 
997 	/* CPU port gets connected to all user ports of
998 	 * the switch.
999 	 */
1000 	mt7530_write(priv, MT7530_PCR_P(port),
1001 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1002 
1003 	/* Set to fallback mode for independent VLAN learning */
1004 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1005 		   MT7530_PORT_FALLBACK_MODE);
1006 
1007 	return 0;
1008 }
1009 
1010 static int
1011 mt7530_port_enable(struct dsa_switch *ds, int port,
1012 		   struct phy_device *phy)
1013 {
1014 	struct dsa_port *dp = dsa_to_port(ds, port);
1015 	struct mt7530_priv *priv = ds->priv;
1016 
1017 	mutex_lock(&priv->reg_mutex);
1018 
1019 	/* Allow the user port gets connected to the cpu port and also
1020 	 * restore the port matrix if the port is the member of a certain
1021 	 * bridge.
1022 	 */
1023 	if (dsa_port_is_user(dp)) {
1024 		struct dsa_port *cpu_dp = dp->cpu_dp;
1025 
1026 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1027 	}
1028 	priv->ports[port].enable = true;
1029 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1030 		   priv->ports[port].pm);
1031 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1032 
1033 	mutex_unlock(&priv->reg_mutex);
1034 
1035 	return 0;
1036 }
1037 
1038 static void
1039 mt7530_port_disable(struct dsa_switch *ds, int port)
1040 {
1041 	struct mt7530_priv *priv = ds->priv;
1042 
1043 	mutex_lock(&priv->reg_mutex);
1044 
1045 	/* Clear up all port matrix which could be restored in the next
1046 	 * enablement for the port.
1047 	 */
1048 	priv->ports[port].enable = false;
1049 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1050 		   PCR_MATRIX_CLR);
1051 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1052 
1053 	mutex_unlock(&priv->reg_mutex);
1054 }
1055 
1056 static int
1057 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1058 {
1059 	struct mt7530_priv *priv = ds->priv;
1060 	int length;
1061 	u32 val;
1062 
1063 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1064 	 * largest MTU of the user ports. Because the switch only has a global
1065 	 * RX length register, only allowing CPU port here is enough.
1066 	 */
1067 	if (!dsa_is_cpu_port(ds, port))
1068 		return 0;
1069 
1070 	mt7530_mutex_lock(priv);
1071 
1072 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1073 	val &= ~MAX_RX_PKT_LEN_MASK;
1074 
1075 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1076 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1077 	if (length <= 1522) {
1078 		val |= MAX_RX_PKT_LEN_1522;
1079 	} else if (length <= 1536) {
1080 		val |= MAX_RX_PKT_LEN_1536;
1081 	} else if (length <= 1552) {
1082 		val |= MAX_RX_PKT_LEN_1552;
1083 	} else {
1084 		val &= ~MAX_RX_JUMBO_MASK;
1085 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1086 		val |= MAX_RX_PKT_LEN_JUMBO;
1087 	}
1088 
1089 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1090 
1091 	mt7530_mutex_unlock(priv);
1092 
1093 	return 0;
1094 }
1095 
1096 static int
1097 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1098 {
1099 	return MT7530_MAX_MTU;
1100 }
1101 
1102 static void
1103 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1104 {
1105 	struct mt7530_priv *priv = ds->priv;
1106 	u32 stp_state;
1107 
1108 	switch (state) {
1109 	case BR_STATE_DISABLED:
1110 		stp_state = MT7530_STP_DISABLED;
1111 		break;
1112 	case BR_STATE_BLOCKING:
1113 		stp_state = MT7530_STP_BLOCKING;
1114 		break;
1115 	case BR_STATE_LISTENING:
1116 		stp_state = MT7530_STP_LISTENING;
1117 		break;
1118 	case BR_STATE_LEARNING:
1119 		stp_state = MT7530_STP_LEARNING;
1120 		break;
1121 	case BR_STATE_FORWARDING:
1122 	default:
1123 		stp_state = MT7530_STP_FORWARDING;
1124 		break;
1125 	}
1126 
1127 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1128 		   FID_PST(FID_BRIDGED, stp_state));
1129 }
1130 
1131 static int
1132 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1133 			     struct switchdev_brport_flags flags,
1134 			     struct netlink_ext_ack *extack)
1135 {
1136 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1137 			   BR_BCAST_FLOOD))
1138 		return -EINVAL;
1139 
1140 	return 0;
1141 }
1142 
1143 static int
1144 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1145 			 struct switchdev_brport_flags flags,
1146 			 struct netlink_ext_ack *extack)
1147 {
1148 	struct mt7530_priv *priv = ds->priv;
1149 
1150 	if (flags.mask & BR_LEARNING)
1151 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1152 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1153 
1154 	if (flags.mask & BR_FLOOD)
1155 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1156 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1157 
1158 	if (flags.mask & BR_MCAST_FLOOD)
1159 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1160 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1161 
1162 	if (flags.mask & BR_BCAST_FLOOD)
1163 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1164 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1165 
1166 	return 0;
1167 }
1168 
1169 static int
1170 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1171 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1172 			struct netlink_ext_ack *extack)
1173 {
1174 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1175 	struct dsa_port *cpu_dp = dp->cpu_dp;
1176 	u32 port_bitmap = BIT(cpu_dp->index);
1177 	struct mt7530_priv *priv = ds->priv;
1178 
1179 	mutex_lock(&priv->reg_mutex);
1180 
1181 	dsa_switch_for_each_user_port(other_dp, ds) {
1182 		int other_port = other_dp->index;
1183 
1184 		if (dp == other_dp)
1185 			continue;
1186 
1187 		/* Add this port to the port matrix of the other ports in the
1188 		 * same bridge. If the port is disabled, port matrix is kept
1189 		 * and not being setup until the port becomes enabled.
1190 		 */
1191 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1192 			continue;
1193 
1194 		if (priv->ports[other_port].enable)
1195 			mt7530_set(priv, MT7530_PCR_P(other_port),
1196 				   PCR_MATRIX(BIT(port)));
1197 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1198 
1199 		port_bitmap |= BIT(other_port);
1200 	}
1201 
1202 	/* Add the all other ports to this port matrix. */
1203 	if (priv->ports[port].enable)
1204 		mt7530_rmw(priv, MT7530_PCR_P(port),
1205 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1206 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1207 
1208 	/* Set to fallback mode for independent VLAN learning */
1209 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1210 		   MT7530_PORT_FALLBACK_MODE);
1211 
1212 	mutex_unlock(&priv->reg_mutex);
1213 
1214 	return 0;
1215 }
1216 
1217 static void
1218 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1219 {
1220 	struct mt7530_priv *priv = ds->priv;
1221 	bool all_user_ports_removed = true;
1222 	int i;
1223 
1224 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1225 	 * bridge. Don't set standalone ports to fallback mode.
1226 	 */
1227 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1228 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1229 			   MT7530_PORT_FALLBACK_MODE);
1230 
1231 	mt7530_rmw(priv, MT7530_PVC_P(port),
1232 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1233 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1234 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1235 		   MT7530_VLAN_ACC_ALL);
1236 
1237 	/* Set PVID to 0 */
1238 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1239 		   G0_PORT_VID_DEF);
1240 
1241 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1242 		if (dsa_is_user_port(ds, i) &&
1243 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1244 			all_user_ports_removed = false;
1245 			break;
1246 		}
1247 	}
1248 
1249 	/* CPU port also does the same thing until all user ports belonging to
1250 	 * the CPU port get out of VLAN filtering mode.
1251 	 */
1252 	if (all_user_ports_removed) {
1253 		struct dsa_port *dp = dsa_to_port(ds, port);
1254 		struct dsa_port *cpu_dp = dp->cpu_dp;
1255 
1256 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1257 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1258 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1259 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1260 	}
1261 }
1262 
1263 static void
1264 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1265 {
1266 	struct mt7530_priv *priv = ds->priv;
1267 
1268 	/* Trapped into security mode allows packet forwarding through VLAN
1269 	 * table lookup.
1270 	 */
1271 	if (dsa_is_user_port(ds, port)) {
1272 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1273 			   MT7530_PORT_SECURITY_MODE);
1274 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1275 			   G0_PORT_VID(priv->ports[port].pvid));
1276 
1277 		/* Only accept tagged frames if PVID is not set */
1278 		if (!priv->ports[port].pvid)
1279 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1280 				   MT7530_VLAN_ACC_TAGGED);
1281 
1282 		/* Set the port as a user port which is to be able to recognize
1283 		 * VID from incoming packets before fetching entry within the
1284 		 * VLAN table.
1285 		 */
1286 		mt7530_rmw(priv, MT7530_PVC_P(port),
1287 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1288 			   VLAN_ATTR(MT7530_VLAN_USER) |
1289 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1290 	} else {
1291 		/* Also set CPU ports to the "user" VLAN port attribute, to
1292 		 * allow VLAN classification, but keep the EG_TAG attribute as
1293 		 * "consistent" (i.o.w. don't change its value) for packets
1294 		 * received by the switch from the CPU, so that tagged packets
1295 		 * are forwarded to user ports as tagged, and untagged as
1296 		 * untagged.
1297 		 */
1298 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1299 			   VLAN_ATTR(MT7530_VLAN_USER));
1300 	}
1301 }
1302 
1303 static void
1304 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1305 			 struct dsa_bridge bridge)
1306 {
1307 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1308 	struct dsa_port *cpu_dp = dp->cpu_dp;
1309 	struct mt7530_priv *priv = ds->priv;
1310 
1311 	mutex_lock(&priv->reg_mutex);
1312 
1313 	dsa_switch_for_each_user_port(other_dp, ds) {
1314 		int other_port = other_dp->index;
1315 
1316 		if (dp == other_dp)
1317 			continue;
1318 
1319 		/* Remove this port from the port matrix of the other ports
1320 		 * in the same bridge. If the port is disabled, port matrix
1321 		 * is kept and not being setup until the port becomes enabled.
1322 		 */
1323 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1324 			continue;
1325 
1326 		if (priv->ports[other_port].enable)
1327 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1328 				     PCR_MATRIX(BIT(port)));
1329 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1330 	}
1331 
1332 	/* Set the cpu port to be the only one in the port matrix of
1333 	 * this port.
1334 	 */
1335 	if (priv->ports[port].enable)
1336 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1337 			   PCR_MATRIX(BIT(cpu_dp->index)));
1338 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1339 
1340 	/* When a port is removed from the bridge, the port would be set up
1341 	 * back to the default as is at initial boot which is a VLAN-unaware
1342 	 * port.
1343 	 */
1344 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1345 		   MT7530_PORT_MATRIX_MODE);
1346 
1347 	mutex_unlock(&priv->reg_mutex);
1348 }
1349 
1350 static int
1351 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1352 		    const unsigned char *addr, u16 vid,
1353 		    struct dsa_db db)
1354 {
1355 	struct mt7530_priv *priv = ds->priv;
1356 	int ret;
1357 	u8 port_mask = BIT(port);
1358 
1359 	mutex_lock(&priv->reg_mutex);
1360 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1361 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1362 	mutex_unlock(&priv->reg_mutex);
1363 
1364 	return ret;
1365 }
1366 
1367 static int
1368 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1369 		    const unsigned char *addr, u16 vid,
1370 		    struct dsa_db db)
1371 {
1372 	struct mt7530_priv *priv = ds->priv;
1373 	int ret;
1374 	u8 port_mask = BIT(port);
1375 
1376 	mutex_lock(&priv->reg_mutex);
1377 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1378 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1379 	mutex_unlock(&priv->reg_mutex);
1380 
1381 	return ret;
1382 }
1383 
1384 static int
1385 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1386 		     dsa_fdb_dump_cb_t *cb, void *data)
1387 {
1388 	struct mt7530_priv *priv = ds->priv;
1389 	struct mt7530_fdb _fdb = { 0 };
1390 	int cnt = MT7530_NUM_FDB_RECORDS;
1391 	int ret = 0;
1392 	u32 rsp = 0;
1393 
1394 	mutex_lock(&priv->reg_mutex);
1395 
1396 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1397 	if (ret < 0)
1398 		goto err;
1399 
1400 	do {
1401 		if (rsp & ATC_SRCH_HIT) {
1402 			mt7530_fdb_read(priv, &_fdb);
1403 			if (_fdb.port_mask & BIT(port)) {
1404 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1405 					 data);
1406 				if (ret < 0)
1407 					break;
1408 			}
1409 		}
1410 	} while (--cnt &&
1411 		 !(rsp & ATC_SRCH_END) &&
1412 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1413 err:
1414 	mutex_unlock(&priv->reg_mutex);
1415 
1416 	return 0;
1417 }
1418 
1419 static int
1420 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1421 		    const struct switchdev_obj_port_mdb *mdb,
1422 		    struct dsa_db db)
1423 {
1424 	struct mt7530_priv *priv = ds->priv;
1425 	const u8 *addr = mdb->addr;
1426 	u16 vid = mdb->vid;
1427 	u8 port_mask = 0;
1428 	int ret;
1429 
1430 	mutex_lock(&priv->reg_mutex);
1431 
1432 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1433 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1434 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1435 			    & PORT_MAP_MASK;
1436 
1437 	port_mask |= BIT(port);
1438 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1439 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1440 
1441 	mutex_unlock(&priv->reg_mutex);
1442 
1443 	return ret;
1444 }
1445 
1446 static int
1447 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1448 		    const struct switchdev_obj_port_mdb *mdb,
1449 		    struct dsa_db db)
1450 {
1451 	struct mt7530_priv *priv = ds->priv;
1452 	const u8 *addr = mdb->addr;
1453 	u16 vid = mdb->vid;
1454 	u8 port_mask = 0;
1455 	int ret;
1456 
1457 	mutex_lock(&priv->reg_mutex);
1458 
1459 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1460 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1461 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1462 			    & PORT_MAP_MASK;
1463 
1464 	port_mask &= ~BIT(port);
1465 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1466 			 port_mask ? STATIC_ENT : STATIC_EMP);
1467 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1468 
1469 	mutex_unlock(&priv->reg_mutex);
1470 
1471 	return ret;
1472 }
1473 
1474 static int
1475 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1476 {
1477 	struct mt7530_dummy_poll p;
1478 	u32 val;
1479 	int ret;
1480 
1481 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1482 	mt7530_write(priv, MT7530_VTCR, val);
1483 
1484 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1485 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1486 				 !(val & VTCR_BUSY), 20, 20000);
1487 	if (ret < 0) {
1488 		dev_err(priv->dev, "poll timeout\n");
1489 		return ret;
1490 	}
1491 
1492 	val = mt7530_read(priv, MT7530_VTCR);
1493 	if (val & VTCR_INVALID) {
1494 		dev_err(priv->dev, "read VTCR invalid\n");
1495 		return -EINVAL;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static int
1502 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1503 			   struct netlink_ext_ack *extack)
1504 {
1505 	struct dsa_port *dp = dsa_to_port(ds, port);
1506 	struct dsa_port *cpu_dp = dp->cpu_dp;
1507 
1508 	if (vlan_filtering) {
1509 		/* The port is being kept as VLAN-unaware port when bridge is
1510 		 * set up with vlan_filtering not being set, Otherwise, the
1511 		 * port and the corresponding CPU port is required the setup
1512 		 * for becoming a VLAN-aware port.
1513 		 */
1514 		mt7530_port_set_vlan_aware(ds, port);
1515 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1516 	} else {
1517 		mt7530_port_set_vlan_unaware(ds, port);
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 static void
1524 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1525 		   struct mt7530_hw_vlan_entry *entry)
1526 {
1527 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1528 	u8 new_members;
1529 	u32 val;
1530 
1531 	new_members = entry->old_members | BIT(entry->port);
1532 
1533 	/* Validate the entry with independent learning, create egress tag per
1534 	 * VLAN and joining the port as one of the port members.
1535 	 */
1536 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1537 	      VLAN_VALID;
1538 	mt7530_write(priv, MT7530_VAWD1, val);
1539 
1540 	/* Decide whether adding tag or not for those outgoing packets from the
1541 	 * port inside the VLAN.
1542 	 * CPU port is always taken as a tagged port for serving more than one
1543 	 * VLANs across and also being applied with egress type stack mode for
1544 	 * that VLAN tags would be appended after hardware special tag used as
1545 	 * DSA tag.
1546 	 */
1547 	if (dsa_port_is_cpu(dp))
1548 		val = MT7530_VLAN_EGRESS_STACK;
1549 	else if (entry->untagged)
1550 		val = MT7530_VLAN_EGRESS_UNTAG;
1551 	else
1552 		val = MT7530_VLAN_EGRESS_TAG;
1553 	mt7530_rmw(priv, MT7530_VAWD2,
1554 		   ETAG_CTRL_P_MASK(entry->port),
1555 		   ETAG_CTRL_P(entry->port, val));
1556 }
1557 
1558 static void
1559 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1560 		   struct mt7530_hw_vlan_entry *entry)
1561 {
1562 	u8 new_members;
1563 	u32 val;
1564 
1565 	new_members = entry->old_members & ~BIT(entry->port);
1566 
1567 	val = mt7530_read(priv, MT7530_VAWD1);
1568 	if (!(val & VLAN_VALID)) {
1569 		dev_err(priv->dev,
1570 			"Cannot be deleted due to invalid entry\n");
1571 		return;
1572 	}
1573 
1574 	if (new_members) {
1575 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1576 		      VLAN_VALID;
1577 		mt7530_write(priv, MT7530_VAWD1, val);
1578 	} else {
1579 		mt7530_write(priv, MT7530_VAWD1, 0);
1580 		mt7530_write(priv, MT7530_VAWD2, 0);
1581 	}
1582 }
1583 
1584 static void
1585 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1586 		      struct mt7530_hw_vlan_entry *entry,
1587 		      mt7530_vlan_op vlan_op)
1588 {
1589 	u32 val;
1590 
1591 	/* Fetch entry */
1592 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1593 
1594 	val = mt7530_read(priv, MT7530_VAWD1);
1595 
1596 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1597 
1598 	/* Manipulate entry */
1599 	vlan_op(priv, entry);
1600 
1601 	/* Flush result to hardware */
1602 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1603 }
1604 
1605 static int
1606 mt7530_setup_vlan0(struct mt7530_priv *priv)
1607 {
1608 	u32 val;
1609 
1610 	/* Validate the entry with independent learning, keep the original
1611 	 * ingress tag attribute.
1612 	 */
1613 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1614 	      VLAN_VALID;
1615 	mt7530_write(priv, MT7530_VAWD1, val);
1616 
1617 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1618 }
1619 
1620 static int
1621 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1622 		     const struct switchdev_obj_port_vlan *vlan,
1623 		     struct netlink_ext_ack *extack)
1624 {
1625 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1626 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1627 	struct mt7530_hw_vlan_entry new_entry;
1628 	struct mt7530_priv *priv = ds->priv;
1629 
1630 	mutex_lock(&priv->reg_mutex);
1631 
1632 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1633 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1634 
1635 	if (pvid) {
1636 		priv->ports[port].pvid = vlan->vid;
1637 
1638 		/* Accept all frames if PVID is set */
1639 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1640 			   MT7530_VLAN_ACC_ALL);
1641 
1642 		/* Only configure PVID if VLAN filtering is enabled */
1643 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1644 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1645 				   G0_PORT_VID_MASK,
1646 				   G0_PORT_VID(vlan->vid));
1647 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1648 		/* This VLAN is overwritten without PVID, so unset it */
1649 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1650 
1651 		/* Only accept tagged frames if the port is VLAN-aware */
1652 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1653 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1654 				   MT7530_VLAN_ACC_TAGGED);
1655 
1656 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1657 			   G0_PORT_VID_DEF);
1658 	}
1659 
1660 	mutex_unlock(&priv->reg_mutex);
1661 
1662 	return 0;
1663 }
1664 
1665 static int
1666 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1667 		     const struct switchdev_obj_port_vlan *vlan)
1668 {
1669 	struct mt7530_hw_vlan_entry target_entry;
1670 	struct mt7530_priv *priv = ds->priv;
1671 
1672 	mutex_lock(&priv->reg_mutex);
1673 
1674 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1675 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1676 			      mt7530_hw_vlan_del);
1677 
1678 	/* PVID is being restored to the default whenever the PVID port
1679 	 * is being removed from the VLAN.
1680 	 */
1681 	if (priv->ports[port].pvid == vlan->vid) {
1682 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1683 
1684 		/* Only accept tagged frames if the port is VLAN-aware */
1685 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1686 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1687 				   MT7530_VLAN_ACC_TAGGED);
1688 
1689 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1690 			   G0_PORT_VID_DEF);
1691 	}
1692 
1693 
1694 	mutex_unlock(&priv->reg_mutex);
1695 
1696 	return 0;
1697 }
1698 
1699 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1700 {
1701 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1702 				   MIRROR_PORT(val);
1703 }
1704 
1705 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1706 {
1707 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1708 				   MIRROR_PORT(val);
1709 }
1710 
1711 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1712 				  struct dsa_mall_mirror_tc_entry *mirror,
1713 				  bool ingress, struct netlink_ext_ack *extack)
1714 {
1715 	struct mt7530_priv *priv = ds->priv;
1716 	int monitor_port;
1717 	u32 val;
1718 
1719 	/* Check for existent entry */
1720 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1721 		return -EEXIST;
1722 
1723 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1724 
1725 	/* MT7530 only supports one monitor port */
1726 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1727 	if (val & MT753X_MIRROR_EN(priv->id) &&
1728 	    monitor_port != mirror->to_local_port)
1729 		return -EEXIST;
1730 
1731 	val |= MT753X_MIRROR_EN(priv->id);
1732 	val &= ~MT753X_MIRROR_MASK(priv->id);
1733 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1734 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1735 
1736 	val = mt7530_read(priv, MT7530_PCR_P(port));
1737 	if (ingress) {
1738 		val |= PORT_RX_MIR;
1739 		priv->mirror_rx |= BIT(port);
1740 	} else {
1741 		val |= PORT_TX_MIR;
1742 		priv->mirror_tx |= BIT(port);
1743 	}
1744 	mt7530_write(priv, MT7530_PCR_P(port), val);
1745 
1746 	return 0;
1747 }
1748 
1749 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1750 				   struct dsa_mall_mirror_tc_entry *mirror)
1751 {
1752 	struct mt7530_priv *priv = ds->priv;
1753 	u32 val;
1754 
1755 	val = mt7530_read(priv, MT7530_PCR_P(port));
1756 	if (mirror->ingress) {
1757 		val &= ~PORT_RX_MIR;
1758 		priv->mirror_rx &= ~BIT(port);
1759 	} else {
1760 		val &= ~PORT_TX_MIR;
1761 		priv->mirror_tx &= ~BIT(port);
1762 	}
1763 	mt7530_write(priv, MT7530_PCR_P(port), val);
1764 
1765 	if (!priv->mirror_rx && !priv->mirror_tx) {
1766 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1767 		val &= ~MT753X_MIRROR_EN(priv->id);
1768 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1769 	}
1770 }
1771 
1772 static enum dsa_tag_protocol
1773 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1774 		     enum dsa_tag_protocol mp)
1775 {
1776 	return DSA_TAG_PROTO_MTK;
1777 }
1778 
1779 #ifdef CONFIG_GPIOLIB
1780 static inline u32
1781 mt7530_gpio_to_bit(unsigned int offset)
1782 {
1783 	/* Map GPIO offset to register bit
1784 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1785 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1786 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1787 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1788 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1789 	 */
1790 	return BIT(offset + offset / 3);
1791 }
1792 
1793 static int
1794 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1795 {
1796 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1797 	u32 bit = mt7530_gpio_to_bit(offset);
1798 
1799 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1800 }
1801 
1802 static void
1803 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1804 {
1805 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1806 	u32 bit = mt7530_gpio_to_bit(offset);
1807 
1808 	if (value)
1809 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1810 	else
1811 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1812 }
1813 
1814 static int
1815 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1816 {
1817 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1818 	u32 bit = mt7530_gpio_to_bit(offset);
1819 
1820 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1821 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1822 }
1823 
1824 static int
1825 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1826 {
1827 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1828 	u32 bit = mt7530_gpio_to_bit(offset);
1829 
1830 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1831 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1832 
1833 	return 0;
1834 }
1835 
1836 static int
1837 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1838 {
1839 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1840 	u32 bit = mt7530_gpio_to_bit(offset);
1841 
1842 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1843 
1844 	if (value)
1845 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1846 	else
1847 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1848 
1849 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1850 
1851 	return 0;
1852 }
1853 
1854 static int
1855 mt7530_setup_gpio(struct mt7530_priv *priv)
1856 {
1857 	struct device *dev = priv->dev;
1858 	struct gpio_chip *gc;
1859 
1860 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1861 	if (!gc)
1862 		return -ENOMEM;
1863 
1864 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1865 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1866 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1867 
1868 	gc->label = "mt7530";
1869 	gc->parent = dev;
1870 	gc->owner = THIS_MODULE;
1871 	gc->get_direction = mt7530_gpio_get_direction;
1872 	gc->direction_input = mt7530_gpio_direction_input;
1873 	gc->direction_output = mt7530_gpio_direction_output;
1874 	gc->get = mt7530_gpio_get;
1875 	gc->set = mt7530_gpio_set;
1876 	gc->base = -1;
1877 	gc->ngpio = 15;
1878 	gc->can_sleep = true;
1879 
1880 	return devm_gpiochip_add_data(dev, gc, priv);
1881 }
1882 #endif /* CONFIG_GPIOLIB */
1883 
1884 static irqreturn_t
1885 mt7530_irq_thread_fn(int irq, void *dev_id)
1886 {
1887 	struct mt7530_priv *priv = dev_id;
1888 	bool handled = false;
1889 	u32 val;
1890 	int p;
1891 
1892 	mt7530_mutex_lock(priv);
1893 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1894 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1895 	mt7530_mutex_unlock(priv);
1896 
1897 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1898 		if (BIT(p) & val) {
1899 			unsigned int irq;
1900 
1901 			irq = irq_find_mapping(priv->irq_domain, p);
1902 			handle_nested_irq(irq);
1903 			handled = true;
1904 		}
1905 	}
1906 
1907 	return IRQ_RETVAL(handled);
1908 }
1909 
1910 static void
1911 mt7530_irq_mask(struct irq_data *d)
1912 {
1913 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1914 
1915 	priv->irq_enable &= ~BIT(d->hwirq);
1916 }
1917 
1918 static void
1919 mt7530_irq_unmask(struct irq_data *d)
1920 {
1921 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1922 
1923 	priv->irq_enable |= BIT(d->hwirq);
1924 }
1925 
1926 static void
1927 mt7530_irq_bus_lock(struct irq_data *d)
1928 {
1929 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1930 
1931 	mt7530_mutex_lock(priv);
1932 }
1933 
1934 static void
1935 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1936 {
1937 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1938 
1939 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1940 	mt7530_mutex_unlock(priv);
1941 }
1942 
1943 static struct irq_chip mt7530_irq_chip = {
1944 	.name = KBUILD_MODNAME,
1945 	.irq_mask = mt7530_irq_mask,
1946 	.irq_unmask = mt7530_irq_unmask,
1947 	.irq_bus_lock = mt7530_irq_bus_lock,
1948 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1949 };
1950 
1951 static int
1952 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1953 	       irq_hw_number_t hwirq)
1954 {
1955 	irq_set_chip_data(irq, domain->host_data);
1956 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1957 	irq_set_nested_thread(irq, true);
1958 	irq_set_noprobe(irq);
1959 
1960 	return 0;
1961 }
1962 
1963 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1964 	.map = mt7530_irq_map,
1965 	.xlate = irq_domain_xlate_onecell,
1966 };
1967 
1968 static void
1969 mt7988_irq_mask(struct irq_data *d)
1970 {
1971 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1972 
1973 	priv->irq_enable &= ~BIT(d->hwirq);
1974 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1975 }
1976 
1977 static void
1978 mt7988_irq_unmask(struct irq_data *d)
1979 {
1980 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1981 
1982 	priv->irq_enable |= BIT(d->hwirq);
1983 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1984 }
1985 
1986 static struct irq_chip mt7988_irq_chip = {
1987 	.name = KBUILD_MODNAME,
1988 	.irq_mask = mt7988_irq_mask,
1989 	.irq_unmask = mt7988_irq_unmask,
1990 };
1991 
1992 static int
1993 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
1994 	       irq_hw_number_t hwirq)
1995 {
1996 	irq_set_chip_data(irq, domain->host_data);
1997 	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
1998 	irq_set_nested_thread(irq, true);
1999 	irq_set_noprobe(irq);
2000 
2001 	return 0;
2002 }
2003 
2004 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2005 	.map = mt7988_irq_map,
2006 	.xlate = irq_domain_xlate_onecell,
2007 };
2008 
2009 static void
2010 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2011 {
2012 	struct dsa_switch *ds = priv->ds;
2013 	int p;
2014 
2015 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2016 		if (BIT(p) & ds->phys_mii_mask) {
2017 			unsigned int irq;
2018 
2019 			irq = irq_create_mapping(priv->irq_domain, p);
2020 			ds->user_mii_bus->irq[p] = irq;
2021 		}
2022 	}
2023 }
2024 
2025 static int
2026 mt7530_setup_irq(struct mt7530_priv *priv)
2027 {
2028 	struct device *dev = priv->dev;
2029 	struct device_node *np = dev->of_node;
2030 	int ret;
2031 
2032 	if (!of_property_read_bool(np, "interrupt-controller")) {
2033 		dev_info(dev, "no interrupt support\n");
2034 		return 0;
2035 	}
2036 
2037 	priv->irq = of_irq_get(np, 0);
2038 	if (priv->irq <= 0) {
2039 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2040 		return priv->irq ? : -EINVAL;
2041 	}
2042 
2043 	if (priv->id == ID_MT7988)
2044 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2045 							 &mt7988_irq_domain_ops,
2046 							 priv);
2047 	else
2048 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2049 							 &mt7530_irq_domain_ops,
2050 							 priv);
2051 
2052 	if (!priv->irq_domain) {
2053 		dev_err(dev, "failed to create IRQ domain\n");
2054 		return -ENOMEM;
2055 	}
2056 
2057 	/* This register must be set for MT7530 to properly fire interrupts */
2058 	if (priv->id != ID_MT7531)
2059 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2060 
2061 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2062 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2063 	if (ret) {
2064 		irq_domain_remove(priv->irq_domain);
2065 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2066 		return ret;
2067 	}
2068 
2069 	return 0;
2070 }
2071 
2072 static void
2073 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2074 {
2075 	int p;
2076 
2077 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2078 		if (BIT(p) & priv->ds->phys_mii_mask) {
2079 			unsigned int irq;
2080 
2081 			irq = irq_find_mapping(priv->irq_domain, p);
2082 			irq_dispose_mapping(irq);
2083 		}
2084 	}
2085 }
2086 
2087 static void
2088 mt7530_free_irq_common(struct mt7530_priv *priv)
2089 {
2090 	free_irq(priv->irq, priv);
2091 	irq_domain_remove(priv->irq_domain);
2092 }
2093 
2094 static void
2095 mt7530_free_irq(struct mt7530_priv *priv)
2096 {
2097 	struct device_node *mnp, *np = priv->dev->of_node;
2098 
2099 	mnp = of_get_child_by_name(np, "mdio");
2100 	if (!mnp)
2101 		mt7530_free_mdio_irq(priv);
2102 	of_node_put(mnp);
2103 
2104 	mt7530_free_irq_common(priv);
2105 }
2106 
2107 static int
2108 mt7530_setup_mdio(struct mt7530_priv *priv)
2109 {
2110 	struct device_node *mnp, *np = priv->dev->of_node;
2111 	struct dsa_switch *ds = priv->ds;
2112 	struct device *dev = priv->dev;
2113 	struct mii_bus *bus;
2114 	static int idx;
2115 	int ret = 0;
2116 
2117 	mnp = of_get_child_by_name(np, "mdio");
2118 
2119 	if (mnp && !of_device_is_available(mnp))
2120 		goto out;
2121 
2122 	bus = devm_mdiobus_alloc(dev);
2123 	if (!bus) {
2124 		ret = -ENOMEM;
2125 		goto out;
2126 	}
2127 
2128 	if (!mnp)
2129 		ds->user_mii_bus = bus;
2130 
2131 	bus->priv = priv;
2132 	bus->name = KBUILD_MODNAME "-mii";
2133 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2134 	bus->read = mt753x_phy_read_c22;
2135 	bus->write = mt753x_phy_write_c22;
2136 	bus->read_c45 = mt753x_phy_read_c45;
2137 	bus->write_c45 = mt753x_phy_write_c45;
2138 	bus->parent = dev;
2139 	bus->phy_mask = ~ds->phys_mii_mask;
2140 
2141 	if (priv->irq && !mnp)
2142 		mt7530_setup_mdio_irq(priv);
2143 
2144 	ret = devm_of_mdiobus_register(dev, bus, mnp);
2145 	if (ret) {
2146 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2147 		if (priv->irq && !mnp)
2148 			mt7530_free_mdio_irq(priv);
2149 	}
2150 
2151 out:
2152 	of_node_put(mnp);
2153 	return ret;
2154 }
2155 
2156 static int
2157 mt7530_setup(struct dsa_switch *ds)
2158 {
2159 	struct mt7530_priv *priv = ds->priv;
2160 	struct device_node *dn = NULL;
2161 	struct device_node *phy_node;
2162 	struct device_node *mac_np;
2163 	struct mt7530_dummy_poll p;
2164 	phy_interface_t interface;
2165 	struct dsa_port *cpu_dp;
2166 	u32 id, val;
2167 	int ret, i;
2168 
2169 	/* The parent node of conduit netdev which holds the common system
2170 	 * controller also is the container for two GMACs nodes representing
2171 	 * as two netdev instances.
2172 	 */
2173 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2174 		dn = cpu_dp->conduit->dev.of_node->parent;
2175 		/* It doesn't matter which CPU port is found first,
2176 		 * their conduits should share the same parent OF node
2177 		 */
2178 		break;
2179 	}
2180 
2181 	if (!dn) {
2182 		dev_err(ds->dev, "parent OF node of DSA conduit not found");
2183 		return -EINVAL;
2184 	}
2185 
2186 	ds->assisted_learning_on_cpu_port = true;
2187 	ds->mtu_enforcement_ingress = true;
2188 
2189 	if (priv->id == ID_MT7530) {
2190 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2191 		ret = regulator_enable(priv->core_pwr);
2192 		if (ret < 0) {
2193 			dev_err(priv->dev,
2194 				"Failed to enable core power: %d\n", ret);
2195 			return ret;
2196 		}
2197 
2198 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2199 		ret = regulator_enable(priv->io_pwr);
2200 		if (ret < 0) {
2201 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2202 				ret);
2203 			return ret;
2204 		}
2205 	}
2206 
2207 	/* Reset whole chip through gpio pin or memory-mapped registers for
2208 	 * different type of hardware
2209 	 */
2210 	if (priv->mcm) {
2211 		reset_control_assert(priv->rstc);
2212 		usleep_range(1000, 1100);
2213 		reset_control_deassert(priv->rstc);
2214 	} else {
2215 		gpiod_set_value_cansleep(priv->reset, 0);
2216 		usleep_range(1000, 1100);
2217 		gpiod_set_value_cansleep(priv->reset, 1);
2218 	}
2219 
2220 	/* Waiting for MT7530 got to stable */
2221 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2222 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2223 				 20, 1000000);
2224 	if (ret < 0) {
2225 		dev_err(priv->dev, "reset timeout\n");
2226 		return ret;
2227 	}
2228 
2229 	id = mt7530_read(priv, MT7530_CREV);
2230 	id >>= CHIP_NAME_SHIFT;
2231 	if (id != MT7530_ID) {
2232 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2233 		return -ENODEV;
2234 	}
2235 
2236 	if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_20MHZ) {
2237 		dev_err(priv->dev,
2238 			"MT7530 with a 20MHz XTAL is not supported!\n");
2239 		return -EINVAL;
2240 	}
2241 
2242 	/* Reset the switch through internal reset */
2243 	mt7530_write(priv, MT7530_SYS_CTRL,
2244 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2245 		     SYS_CTRL_REG_RST);
2246 
2247 	mt7530_pll_setup(priv);
2248 
2249 	/* Lower Tx driving for TRGMII path */
2250 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2251 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2252 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2253 
2254 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2255 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2256 			   RD_TAP_MASK, RD_TAP(16));
2257 
2258 	/* Enable port 6 */
2259 	val = mt7530_read(priv, MT7530_MHWTRAP);
2260 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2261 	val |= MHWTRAP_MANUAL;
2262 	mt7530_write(priv, MT7530_MHWTRAP, val);
2263 
2264 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2265 
2266 	mt753x_trap_frames(priv);
2267 
2268 	/* Enable and reset MIB counters */
2269 	mt7530_mib_reset(ds);
2270 
2271 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2272 		/* Disable forwarding by default on all ports */
2273 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2274 			   PCR_MATRIX_CLR);
2275 
2276 		/* Disable learning by default on all ports */
2277 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2278 
2279 		if (dsa_is_cpu_port(ds, i)) {
2280 			ret = mt753x_cpu_port_enable(ds, i);
2281 			if (ret)
2282 				return ret;
2283 		} else {
2284 			mt7530_port_disable(ds, i);
2285 
2286 			/* Set default PVID to 0 on all user ports */
2287 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2288 				   G0_PORT_VID_DEF);
2289 		}
2290 		/* Enable consistent egress tag */
2291 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2292 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2293 	}
2294 
2295 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2296 	ret = mt7530_setup_vlan0(priv);
2297 	if (ret)
2298 		return ret;
2299 
2300 	/* Setup port 5 */
2301 	if (!dsa_is_unused_port(ds, 5)) {
2302 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2303 	} else {
2304 		/* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
2305 		 * Set priv->p5_intf_sel to the appropriate value if PHY muxing
2306 		 * is detected.
2307 		 */
2308 		for_each_child_of_node(dn, mac_np) {
2309 			if (!of_device_is_compatible(mac_np,
2310 						     "mediatek,eth-mac"))
2311 				continue;
2312 
2313 			ret = of_property_read_u32(mac_np, "reg", &id);
2314 			if (ret < 0 || id != 1)
2315 				continue;
2316 
2317 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2318 			if (!phy_node)
2319 				continue;
2320 
2321 			if (phy_node->parent == priv->dev->of_node->parent) {
2322 				ret = of_get_phy_mode(mac_np, &interface);
2323 				if (ret && ret != -ENODEV) {
2324 					of_node_put(mac_np);
2325 					of_node_put(phy_node);
2326 					return ret;
2327 				}
2328 				id = of_mdio_parse_addr(ds->dev, phy_node);
2329 				if (id == 0)
2330 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2331 				if (id == 4)
2332 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2333 			}
2334 			of_node_put(mac_np);
2335 			of_node_put(phy_node);
2336 			break;
2337 		}
2338 
2339 		if (priv->p5_intf_sel == P5_INTF_SEL_PHY_P0 ||
2340 		    priv->p5_intf_sel == P5_INTF_SEL_PHY_P4)
2341 			mt7530_setup_port5(ds, interface);
2342 	}
2343 
2344 #ifdef CONFIG_GPIOLIB
2345 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2346 		ret = mt7530_setup_gpio(priv);
2347 		if (ret)
2348 			return ret;
2349 	}
2350 #endif /* CONFIG_GPIOLIB */
2351 
2352 	/* Flush the FDB table */
2353 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2354 	if (ret < 0)
2355 		return ret;
2356 
2357 	return 0;
2358 }
2359 
2360 static int
2361 mt7531_setup_common(struct dsa_switch *ds)
2362 {
2363 	struct mt7530_priv *priv = ds->priv;
2364 	int ret, i;
2365 
2366 	mt753x_trap_frames(priv);
2367 
2368 	/* Enable and reset MIB counters */
2369 	mt7530_mib_reset(ds);
2370 
2371 	/* Disable flooding on all ports */
2372 	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2373 		     UNU_FFP_MASK);
2374 
2375 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2376 		/* Disable forwarding by default on all ports */
2377 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2378 			   PCR_MATRIX_CLR);
2379 
2380 		/* Disable learning by default on all ports */
2381 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2382 
2383 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2384 
2385 		if (dsa_is_cpu_port(ds, i)) {
2386 			ret = mt753x_cpu_port_enable(ds, i);
2387 			if (ret)
2388 				return ret;
2389 		} else {
2390 			mt7530_port_disable(ds, i);
2391 
2392 			/* Set default PVID to 0 on all user ports */
2393 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2394 				   G0_PORT_VID_DEF);
2395 		}
2396 
2397 		/* Enable consistent egress tag */
2398 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2399 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2400 	}
2401 
2402 	/* Flush the FDB table */
2403 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2404 	if (ret < 0)
2405 		return ret;
2406 
2407 	return 0;
2408 }
2409 
2410 static int
2411 mt7531_setup(struct dsa_switch *ds)
2412 {
2413 	struct mt7530_priv *priv = ds->priv;
2414 	struct mt7530_dummy_poll p;
2415 	u32 val, id;
2416 	int ret, i;
2417 
2418 	/* Reset whole chip through gpio pin or memory-mapped registers for
2419 	 * different type of hardware
2420 	 */
2421 	if (priv->mcm) {
2422 		reset_control_assert(priv->rstc);
2423 		usleep_range(1000, 1100);
2424 		reset_control_deassert(priv->rstc);
2425 	} else {
2426 		gpiod_set_value_cansleep(priv->reset, 0);
2427 		usleep_range(1000, 1100);
2428 		gpiod_set_value_cansleep(priv->reset, 1);
2429 	}
2430 
2431 	/* Waiting for MT7530 got to stable */
2432 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2433 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2434 				 20, 1000000);
2435 	if (ret < 0) {
2436 		dev_err(priv->dev, "reset timeout\n");
2437 		return ret;
2438 	}
2439 
2440 	id = mt7530_read(priv, MT7531_CREV);
2441 	id >>= CHIP_NAME_SHIFT;
2442 
2443 	if (id != MT7531_ID) {
2444 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2445 		return -ENODEV;
2446 	}
2447 
2448 	/* MT7531AE has got two SGMII units. One for port 5, one for port 6.
2449 	 * MT7531BE has got only one SGMII unit which is for port 6.
2450 	 */
2451 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
2452 	priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
2453 
2454 	/* all MACs must be forced link-down before sw reset */
2455 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2456 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2457 
2458 	/* Reset the switch through internal reset */
2459 	mt7530_write(priv, MT7530_SYS_CTRL,
2460 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2461 		     SYS_CTRL_REG_RST);
2462 
2463 	if (!priv->p5_sgmii) {
2464 		mt7531_pll_setup(priv);
2465 	} else {
2466 		/* Let ds->user_mii_bus be able to access external phy. */
2467 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2468 			   MT7531_EXT_P_MDC_11);
2469 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2470 			   MT7531_EXT_P_MDIO_12);
2471 	}
2472 
2473 	if (!dsa_is_unused_port(ds, 5))
2474 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2475 
2476 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2477 		   MT7531_GPIO0_INTERRUPT);
2478 
2479 	/* Let phylink decide the interface later. */
2480 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2481 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2482 
2483 	/* Enable PHY core PLL, since phy_device has not yet been created
2484 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2485 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2486 	 * function.
2487 	 */
2488 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2489 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2490 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2491 	val &= ~MT7531_PHY_PLL_OFF;
2492 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2493 				 CORE_PLL_GROUP4, val);
2494 
2495 	mt7531_setup_common(ds);
2496 
2497 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2498 	ret = mt7530_setup_vlan0(priv);
2499 	if (ret)
2500 		return ret;
2501 
2502 	ds->assisted_learning_on_cpu_port = true;
2503 	ds->mtu_enforcement_ingress = true;
2504 
2505 	return 0;
2506 }
2507 
2508 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2509 				     struct phylink_config *config)
2510 {
2511 	switch (port) {
2512 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2513 	case 0 ... 4:
2514 		__set_bit(PHY_INTERFACE_MODE_GMII,
2515 			  config->supported_interfaces);
2516 		break;
2517 
2518 	/* Port 5 supports rgmii with delays, mii, and gmii. */
2519 	case 5:
2520 		phy_interface_set_rgmii(config->supported_interfaces);
2521 		__set_bit(PHY_INTERFACE_MODE_MII,
2522 			  config->supported_interfaces);
2523 		__set_bit(PHY_INTERFACE_MODE_GMII,
2524 			  config->supported_interfaces);
2525 		break;
2526 
2527 	/* Port 6 supports rgmii and trgmii. */
2528 	case 6:
2529 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2530 			  config->supported_interfaces);
2531 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2532 			  config->supported_interfaces);
2533 		break;
2534 	}
2535 }
2536 
2537 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2538 				     struct phylink_config *config)
2539 {
2540 	struct mt7530_priv *priv = ds->priv;
2541 
2542 	switch (port) {
2543 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2544 	case 0 ... 4:
2545 		__set_bit(PHY_INTERFACE_MODE_GMII,
2546 			  config->supported_interfaces);
2547 		break;
2548 
2549 	/* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
2550 	 * MT7531AE.
2551 	 */
2552 	case 5:
2553 		if (!priv->p5_sgmii) {
2554 			phy_interface_set_rgmii(config->supported_interfaces);
2555 			break;
2556 		}
2557 		fallthrough;
2558 
2559 	/* Port 6 supports sgmii/802.3z. */
2560 	case 6:
2561 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2562 			  config->supported_interfaces);
2563 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2564 			  config->supported_interfaces);
2565 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2566 			  config->supported_interfaces);
2567 
2568 		config->mac_capabilities |= MAC_2500FD;
2569 		break;
2570 	}
2571 }
2572 
2573 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2574 				     struct phylink_config *config)
2575 {
2576 	switch (port) {
2577 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2578 	case 0 ... 3:
2579 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2580 			  config->supported_interfaces);
2581 		break;
2582 
2583 	/* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2584 	case 6:
2585 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2586 			  config->supported_interfaces);
2587 		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2588 					   MAC_10000FD;
2589 	}
2590 }
2591 
2592 static int
2593 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2594 		  phy_interface_t interface)
2595 {
2596 	struct mt7530_priv *priv = ds->priv;
2597 
2598 	if (port == 5)
2599 		mt7530_setup_port5(priv->ds, interface);
2600 	else if (port == 6)
2601 		mt7530_setup_port6(priv->ds, interface);
2602 
2603 	return 0;
2604 }
2605 
2606 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2607 			      phy_interface_t interface,
2608 			      struct phy_device *phydev)
2609 {
2610 	u32 val;
2611 
2612 	if (priv->p5_sgmii) {
2613 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2614 			port);
2615 		return -EINVAL;
2616 	}
2617 
2618 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2619 	val |= GP_CLK_EN;
2620 	val &= ~GP_MODE_MASK;
2621 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2622 	val &= ~CLK_SKEW_IN_MASK;
2623 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2624 	val &= ~CLK_SKEW_OUT_MASK;
2625 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2626 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2627 
2628 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2629 	if (!phydev || phy_driver_is_genphy(phydev)) {
2630 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2631 		switch (interface) {
2632 		case PHY_INTERFACE_MODE_RGMII:
2633 			val |= TXCLK_NO_REVERSE;
2634 			val |= RXCLK_NO_DELAY;
2635 			break;
2636 		case PHY_INTERFACE_MODE_RGMII_RXID:
2637 			val |= TXCLK_NO_REVERSE;
2638 			break;
2639 		case PHY_INTERFACE_MODE_RGMII_TXID:
2640 			val |= RXCLK_NO_DELAY;
2641 			break;
2642 		case PHY_INTERFACE_MODE_RGMII_ID:
2643 			break;
2644 		default:
2645 			return -EINVAL;
2646 		}
2647 	}
2648 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2649 
2650 	return 0;
2651 }
2652 
2653 static bool mt753x_is_mac_port(u32 port)
2654 {
2655 	return (port == 5 || port == 6);
2656 }
2657 
2658 static int
2659 mt7988_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2660 		  phy_interface_t interface)
2661 {
2662 	if (dsa_is_cpu_port(ds, port) &&
2663 	    interface == PHY_INTERFACE_MODE_INTERNAL)
2664 		return 0;
2665 
2666 	return -EINVAL;
2667 }
2668 
2669 static int
2670 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2671 		  phy_interface_t interface)
2672 {
2673 	struct mt7530_priv *priv = ds->priv;
2674 	struct phy_device *phydev;
2675 	struct dsa_port *dp;
2676 
2677 	if (!mt753x_is_mac_port(port)) {
2678 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2679 		return -EINVAL;
2680 	}
2681 
2682 	switch (interface) {
2683 	case PHY_INTERFACE_MODE_RGMII:
2684 	case PHY_INTERFACE_MODE_RGMII_ID:
2685 	case PHY_INTERFACE_MODE_RGMII_RXID:
2686 	case PHY_INTERFACE_MODE_RGMII_TXID:
2687 		dp = dsa_to_port(ds, port);
2688 		phydev = dp->user->phydev;
2689 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2690 	case PHY_INTERFACE_MODE_SGMII:
2691 	case PHY_INTERFACE_MODE_NA:
2692 	case PHY_INTERFACE_MODE_1000BASEX:
2693 	case PHY_INTERFACE_MODE_2500BASEX:
2694 		/* handled in SGMII PCS driver */
2695 		return 0;
2696 	default:
2697 		return -EINVAL;
2698 	}
2699 
2700 	return -EINVAL;
2701 }
2702 
2703 static int
2704 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2705 		  const struct phylink_link_state *state)
2706 {
2707 	struct mt7530_priv *priv = ds->priv;
2708 
2709 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2710 }
2711 
2712 static struct phylink_pcs *
2713 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2714 			      phy_interface_t interface)
2715 {
2716 	struct mt7530_priv *priv = ds->priv;
2717 
2718 	switch (interface) {
2719 	case PHY_INTERFACE_MODE_TRGMII:
2720 		return &priv->pcs[port].pcs;
2721 	case PHY_INTERFACE_MODE_SGMII:
2722 	case PHY_INTERFACE_MODE_1000BASEX:
2723 	case PHY_INTERFACE_MODE_2500BASEX:
2724 		return priv->ports[port].sgmii_pcs;
2725 	default:
2726 		return NULL;
2727 	}
2728 }
2729 
2730 static void
2731 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2732 			  const struct phylink_link_state *state)
2733 {
2734 	struct mt7530_priv *priv = ds->priv;
2735 	u32 mcr_cur, mcr_new;
2736 
2737 	switch (port) {
2738 	case 0 ... 4:
2739 		if (state->interface != PHY_INTERFACE_MODE_GMII &&
2740 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
2741 			goto unsupported;
2742 		break;
2743 	case 5:
2744 		if (priv->p5_interface == state->interface)
2745 			break;
2746 
2747 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2748 			goto unsupported;
2749 
2750 		if (priv->p5_intf_sel != P5_DISABLED)
2751 			priv->p5_interface = state->interface;
2752 		break;
2753 	case 6:
2754 		if (priv->p6_interface == state->interface)
2755 			break;
2756 
2757 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2758 			goto unsupported;
2759 
2760 		priv->p6_interface = state->interface;
2761 		break;
2762 	default:
2763 unsupported:
2764 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2765 			__func__, phy_modes(state->interface), port);
2766 		return;
2767 	}
2768 
2769 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2770 	mcr_new = mcr_cur;
2771 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2772 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2773 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2774 
2775 	/* Are we connected to external phy */
2776 	if (port == 5 && dsa_is_user_port(ds, 5))
2777 		mcr_new |= PMCR_EXT_PHY;
2778 
2779 	if (mcr_new != mcr_cur)
2780 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2781 }
2782 
2783 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2784 					 unsigned int mode,
2785 					 phy_interface_t interface)
2786 {
2787 	struct mt7530_priv *priv = ds->priv;
2788 
2789 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2790 }
2791 
2792 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2793 				       unsigned int mode,
2794 				       phy_interface_t interface,
2795 				       struct phy_device *phydev,
2796 				       int speed, int duplex,
2797 				       bool tx_pause, bool rx_pause)
2798 {
2799 	struct mt7530_priv *priv = ds->priv;
2800 	u32 mcr;
2801 
2802 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2803 
2804 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2805 	 * variants.
2806 	 */
2807 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2808 	    (phy_interface_mode_is_8023z(interface))) {
2809 		speed = SPEED_1000;
2810 		duplex = DUPLEX_FULL;
2811 	}
2812 
2813 	switch (speed) {
2814 	case SPEED_1000:
2815 		mcr |= PMCR_FORCE_SPEED_1000;
2816 		break;
2817 	case SPEED_100:
2818 		mcr |= PMCR_FORCE_SPEED_100;
2819 		break;
2820 	}
2821 	if (duplex == DUPLEX_FULL) {
2822 		mcr |= PMCR_FORCE_FDX;
2823 		if (tx_pause)
2824 			mcr |= PMCR_TX_FC_EN;
2825 		if (rx_pause)
2826 			mcr |= PMCR_RX_FC_EN;
2827 	}
2828 
2829 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2830 		switch (speed) {
2831 		case SPEED_1000:
2832 			mcr |= PMCR_FORCE_EEE1G;
2833 			break;
2834 		case SPEED_100:
2835 			mcr |= PMCR_FORCE_EEE100;
2836 			break;
2837 		}
2838 	}
2839 
2840 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2841 }
2842 
2843 static int
2844 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2845 {
2846 	struct mt7530_priv *priv = ds->priv;
2847 	phy_interface_t interface;
2848 	int speed;
2849 	int ret;
2850 
2851 	switch (port) {
2852 	case 5:
2853 		if (!priv->p5_sgmii)
2854 			interface = PHY_INTERFACE_MODE_RGMII;
2855 		else
2856 			interface = PHY_INTERFACE_MODE_2500BASEX;
2857 
2858 		priv->p5_interface = interface;
2859 		break;
2860 	case 6:
2861 		interface = PHY_INTERFACE_MODE_2500BASEX;
2862 
2863 		priv->p6_interface = interface;
2864 		break;
2865 	default:
2866 		return -EINVAL;
2867 	}
2868 
2869 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2870 		speed = SPEED_2500;
2871 	else
2872 		speed = SPEED_1000;
2873 
2874 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2875 	if (ret)
2876 		return ret;
2877 	mt7530_write(priv, MT7530_PMCR_P(port),
2878 		     PMCR_CPU_PORT_SETTING(priv->id));
2879 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2880 				   speed, DUPLEX_FULL, true, true);
2881 
2882 	return 0;
2883 }
2884 
2885 static int
2886 mt7988_cpu_port_config(struct dsa_switch *ds, int port)
2887 {
2888 	struct mt7530_priv *priv = ds->priv;
2889 
2890 	mt7530_write(priv, MT7530_PMCR_P(port),
2891 		     PMCR_CPU_PORT_SETTING(priv->id));
2892 
2893 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED,
2894 				   PHY_INTERFACE_MODE_INTERNAL, NULL,
2895 				   SPEED_10000, DUPLEX_FULL, true, true);
2896 
2897 	return 0;
2898 }
2899 
2900 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2901 				    struct phylink_config *config)
2902 {
2903 	struct mt7530_priv *priv = ds->priv;
2904 
2905 	/* This switch only supports full-duplex at 1Gbps */
2906 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2907 				   MAC_10 | MAC_100 | MAC_1000FD;
2908 
2909 	priv->info->mac_port_get_caps(ds, port, config);
2910 }
2911 
2912 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2913 			       unsigned long *supported,
2914 			       const struct phylink_link_state *state)
2915 {
2916 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2917 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2918 	    phy_interface_mode_is_8023z(state->interface))
2919 		phylink_clear(supported, Autoneg);
2920 
2921 	return 0;
2922 }
2923 
2924 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2925 				 struct phylink_link_state *state)
2926 {
2927 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2928 	int port = pcs_to_mt753x_pcs(pcs)->port;
2929 	u32 pmsr;
2930 
2931 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2932 
2933 	state->link = (pmsr & PMSR_LINK);
2934 	state->an_complete = state->link;
2935 	state->duplex = !!(pmsr & PMSR_DPX);
2936 
2937 	switch (pmsr & PMSR_SPEED_MASK) {
2938 	case PMSR_SPEED_10:
2939 		state->speed = SPEED_10;
2940 		break;
2941 	case PMSR_SPEED_100:
2942 		state->speed = SPEED_100;
2943 		break;
2944 	case PMSR_SPEED_1000:
2945 		state->speed = SPEED_1000;
2946 		break;
2947 	default:
2948 		state->speed = SPEED_UNKNOWN;
2949 		break;
2950 	}
2951 
2952 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2953 	if (pmsr & PMSR_RX_FC)
2954 		state->pause |= MLO_PAUSE_RX;
2955 	if (pmsr & PMSR_TX_FC)
2956 		state->pause |= MLO_PAUSE_TX;
2957 }
2958 
2959 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
2960 			     phy_interface_t interface,
2961 			     const unsigned long *advertising,
2962 			     bool permit_pause_to_mac)
2963 {
2964 	return 0;
2965 }
2966 
2967 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
2968 {
2969 }
2970 
2971 static const struct phylink_pcs_ops mt7530_pcs_ops = {
2972 	.pcs_validate = mt753x_pcs_validate,
2973 	.pcs_get_state = mt7530_pcs_get_state,
2974 	.pcs_config = mt753x_pcs_config,
2975 	.pcs_an_restart = mt7530_pcs_an_restart,
2976 };
2977 
2978 static int
2979 mt753x_setup(struct dsa_switch *ds)
2980 {
2981 	struct mt7530_priv *priv = ds->priv;
2982 	int i, ret;
2983 
2984 	/* Initialise the PCS devices */
2985 	for (i = 0; i < priv->ds->num_ports; i++) {
2986 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
2987 		priv->pcs[i].pcs.neg_mode = true;
2988 		priv->pcs[i].priv = priv;
2989 		priv->pcs[i].port = i;
2990 	}
2991 
2992 	ret = priv->info->sw_setup(ds);
2993 	if (ret)
2994 		return ret;
2995 
2996 	ret = mt7530_setup_irq(priv);
2997 	if (ret)
2998 		return ret;
2999 
3000 	ret = mt7530_setup_mdio(priv);
3001 	if (ret && priv->irq)
3002 		mt7530_free_irq_common(priv);
3003 
3004 	if (priv->create_sgmii) {
3005 		ret = priv->create_sgmii(priv);
3006 		if (ret && priv->irq)
3007 			mt7530_free_irq(priv);
3008 	}
3009 
3010 	return ret;
3011 }
3012 
3013 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3014 			      struct ethtool_keee *e)
3015 {
3016 	struct mt7530_priv *priv = ds->priv;
3017 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3018 
3019 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3020 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3021 
3022 	return 0;
3023 }
3024 
3025 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3026 			      struct ethtool_keee *e)
3027 {
3028 	struct mt7530_priv *priv = ds->priv;
3029 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3030 
3031 	if (e->tx_lpi_timer > 0xFFF)
3032 		return -EINVAL;
3033 
3034 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3035 	if (!e->tx_lpi_enabled)
3036 		/* Force LPI Mode without a delay */
3037 		set |= LPI_MODE_EN;
3038 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3039 
3040 	return 0;
3041 }
3042 
3043 static void
3044 mt753x_conduit_state_change(struct dsa_switch *ds,
3045 			    const struct net_device *conduit,
3046 			    bool operational)
3047 {
3048 	struct dsa_port *cpu_dp = conduit->dsa_ptr;
3049 	struct mt7530_priv *priv = ds->priv;
3050 	int val = 0;
3051 	u8 mask;
3052 
3053 	/* Set the CPU port to trap frames to for MT7530. Trapped frames will be
3054 	 * forwarded to the numerically smallest CPU port whose conduit
3055 	 * interface is up.
3056 	 */
3057 	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
3058 		return;
3059 
3060 	mask = BIT(cpu_dp->index);
3061 
3062 	if (operational)
3063 		priv->active_cpu_ports |= mask;
3064 	else
3065 		priv->active_cpu_ports &= ~mask;
3066 
3067 	if (priv->active_cpu_ports)
3068 		val = CPU_EN | CPU_PORT(__ffs(priv->active_cpu_ports));
3069 
3070 	mt7530_rmw(priv, MT7530_MFC, CPU_EN | CPU_PORT_MASK, val);
3071 }
3072 
3073 static int mt7988_setup(struct dsa_switch *ds)
3074 {
3075 	struct mt7530_priv *priv = ds->priv;
3076 
3077 	/* Reset the switch */
3078 	reset_control_assert(priv->rstc);
3079 	usleep_range(20, 50);
3080 	reset_control_deassert(priv->rstc);
3081 	usleep_range(20, 50);
3082 
3083 	/* Reset the switch PHYs */
3084 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3085 
3086 	return mt7531_setup_common(ds);
3087 }
3088 
3089 const struct dsa_switch_ops mt7530_switch_ops = {
3090 	.get_tag_protocol	= mtk_get_tag_protocol,
3091 	.setup			= mt753x_setup,
3092 	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3093 	.get_strings		= mt7530_get_strings,
3094 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3095 	.get_sset_count		= mt7530_get_sset_count,
3096 	.set_ageing_time	= mt7530_set_ageing_time,
3097 	.port_enable		= mt7530_port_enable,
3098 	.port_disable		= mt7530_port_disable,
3099 	.port_change_mtu	= mt7530_port_change_mtu,
3100 	.port_max_mtu		= mt7530_port_max_mtu,
3101 	.port_stp_state_set	= mt7530_stp_state_set,
3102 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3103 	.port_bridge_flags	= mt7530_port_bridge_flags,
3104 	.port_bridge_join	= mt7530_port_bridge_join,
3105 	.port_bridge_leave	= mt7530_port_bridge_leave,
3106 	.port_fdb_add		= mt7530_port_fdb_add,
3107 	.port_fdb_del		= mt7530_port_fdb_del,
3108 	.port_fdb_dump		= mt7530_port_fdb_dump,
3109 	.port_mdb_add		= mt7530_port_mdb_add,
3110 	.port_mdb_del		= mt7530_port_mdb_del,
3111 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3112 	.port_vlan_add		= mt7530_port_vlan_add,
3113 	.port_vlan_del		= mt7530_port_vlan_del,
3114 	.port_mirror_add	= mt753x_port_mirror_add,
3115 	.port_mirror_del	= mt753x_port_mirror_del,
3116 	.phylink_get_caps	= mt753x_phylink_get_caps,
3117 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3118 	.phylink_mac_config	= mt753x_phylink_mac_config,
3119 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3120 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3121 	.get_mac_eee		= mt753x_get_mac_eee,
3122 	.set_mac_eee		= mt753x_set_mac_eee,
3123 	.conduit_state_change	= mt753x_conduit_state_change,
3124 };
3125 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3126 
3127 const struct mt753x_info mt753x_table[] = {
3128 	[ID_MT7621] = {
3129 		.id = ID_MT7621,
3130 		.pcs_ops = &mt7530_pcs_ops,
3131 		.sw_setup = mt7530_setup,
3132 		.phy_read_c22 = mt7530_phy_read_c22,
3133 		.phy_write_c22 = mt7530_phy_write_c22,
3134 		.phy_read_c45 = mt7530_phy_read_c45,
3135 		.phy_write_c45 = mt7530_phy_write_c45,
3136 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3137 		.mac_port_config = mt7530_mac_config,
3138 	},
3139 	[ID_MT7530] = {
3140 		.id = ID_MT7530,
3141 		.pcs_ops = &mt7530_pcs_ops,
3142 		.sw_setup = mt7530_setup,
3143 		.phy_read_c22 = mt7530_phy_read_c22,
3144 		.phy_write_c22 = mt7530_phy_write_c22,
3145 		.phy_read_c45 = mt7530_phy_read_c45,
3146 		.phy_write_c45 = mt7530_phy_write_c45,
3147 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3148 		.mac_port_config = mt7530_mac_config,
3149 	},
3150 	[ID_MT7531] = {
3151 		.id = ID_MT7531,
3152 		.pcs_ops = &mt7530_pcs_ops,
3153 		.sw_setup = mt7531_setup,
3154 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3155 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3156 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3157 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3158 		.cpu_port_config = mt7531_cpu_port_config,
3159 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3160 		.mac_port_config = mt7531_mac_config,
3161 	},
3162 	[ID_MT7988] = {
3163 		.id = ID_MT7988,
3164 		.pcs_ops = &mt7530_pcs_ops,
3165 		.sw_setup = mt7988_setup,
3166 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3167 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3168 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3169 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3170 		.cpu_port_config = mt7988_cpu_port_config,
3171 		.mac_port_get_caps = mt7988_mac_port_get_caps,
3172 		.mac_port_config = mt7988_mac_config,
3173 	},
3174 };
3175 EXPORT_SYMBOL_GPL(mt753x_table);
3176 
3177 int
3178 mt7530_probe_common(struct mt7530_priv *priv)
3179 {
3180 	struct device *dev = priv->dev;
3181 
3182 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3183 	if (!priv->ds)
3184 		return -ENOMEM;
3185 
3186 	priv->ds->dev = dev;
3187 	priv->ds->num_ports = MT7530_NUM_PORTS;
3188 
3189 	/* Get the hardware identifier from the devicetree node.
3190 	 * We will need it for some of the clock and regulator setup.
3191 	 */
3192 	priv->info = of_device_get_match_data(dev);
3193 	if (!priv->info)
3194 		return -EINVAL;
3195 
3196 	/* Sanity check if these required device operations are filled
3197 	 * properly.
3198 	 */
3199 	if (!priv->info->sw_setup || !priv->info->phy_read_c22 ||
3200 	    !priv->info->phy_write_c22 || !priv->info->mac_port_get_caps ||
3201 	    !priv->info->mac_port_config)
3202 		return -EINVAL;
3203 
3204 	priv->id = priv->info->id;
3205 	priv->dev = dev;
3206 	priv->ds->priv = priv;
3207 	priv->ds->ops = &mt7530_switch_ops;
3208 	mutex_init(&priv->reg_mutex);
3209 	dev_set_drvdata(dev, priv);
3210 
3211 	return 0;
3212 }
3213 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3214 
3215 void
3216 mt7530_remove_common(struct mt7530_priv *priv)
3217 {
3218 	if (priv->irq)
3219 		mt7530_free_irq(priv);
3220 
3221 	dsa_unregister_switch(priv->ds);
3222 
3223 	mutex_destroy(&priv->reg_mutex);
3224 }
3225 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3226 
3227 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3228 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3229 MODULE_LICENSE("GPL");
3230