xref: /linux/drivers/net/dsa/mt7530.c (revision 1a20a9a0ddef17c0bd67eece34a7439b02a7b0ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 static void
78 mt7530_mutex_lock(struct mt7530_priv *priv)
79 {
80 	if (priv->bus)
81 		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
82 }
83 
84 static void
85 mt7530_mutex_unlock(struct mt7530_priv *priv)
86 {
87 	if (priv->bus)
88 		mutex_unlock(&priv->bus->mdio_lock);
89 }
90 
91 static void
92 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
93 {
94 	struct mii_bus *bus = priv->bus;
95 	int ret;
96 
97 	mt7530_mutex_lock(priv);
98 
99 	/* Write the desired MMD Devad */
100 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
101 			 MII_MMD_CTRL, MDIO_MMD_VEND2);
102 	if (ret < 0)
103 		goto err;
104 
105 	/* Write the desired MMD register address */
106 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
107 			 MII_MMD_DATA, reg);
108 	if (ret < 0)
109 		goto err;
110 
111 	/* Select the Function : DATA with no post increment */
112 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
113 			 MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR);
114 	if (ret < 0)
115 		goto err;
116 
117 	/* Write the data into MMD's selected register */
118 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
119 			 MII_MMD_DATA, val);
120 err:
121 	if (ret < 0)
122 		dev_err(&bus->dev, "failed to write mmd register\n");
123 
124 	mt7530_mutex_unlock(priv);
125 }
126 
127 static void
128 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
129 {
130 	struct mii_bus *bus = priv->bus;
131 	u32 val;
132 	int ret;
133 
134 	mt7530_mutex_lock(priv);
135 
136 	/* Write the desired MMD Devad */
137 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
138 			 MII_MMD_CTRL, MDIO_MMD_VEND2);
139 	if (ret < 0)
140 		goto err;
141 
142 	/* Write the desired MMD register address */
143 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
144 			 MII_MMD_DATA, reg);
145 	if (ret < 0)
146 		goto err;
147 
148 	/* Select the Function : DATA with no post increment */
149 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
150 			 MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR);
151 	if (ret < 0)
152 		goto err;
153 
154 	/* Read the content of the MMD's selected register */
155 	val = bus->read(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
156 			MII_MMD_DATA);
157 	val &= ~mask;
158 	val |= set;
159 	/* Write the data into MMD's selected register */
160 	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
161 			 MII_MMD_DATA, val);
162 err:
163 	if (ret < 0)
164 		dev_err(&bus->dev, "failed to write mmd register\n");
165 
166 	mt7530_mutex_unlock(priv);
167 }
168 
169 static void
170 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
171 {
172 	core_rmw(priv, reg, 0, val);
173 }
174 
175 static void
176 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
177 {
178 	core_rmw(priv, reg, val, 0);
179 }
180 
181 static int
182 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
183 {
184 	int ret;
185 
186 	ret = regmap_write(priv->regmap, reg, val);
187 
188 	if (ret < 0)
189 		dev_err(priv->dev,
190 			"failed to write mt7530 register\n");
191 
192 	return ret;
193 }
194 
195 static u32
196 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
197 {
198 	int ret;
199 	u32 val;
200 
201 	ret = regmap_read(priv->regmap, reg, &val);
202 	if (ret) {
203 		WARN_ON_ONCE(1);
204 		dev_err(priv->dev,
205 			"failed to read mt7530 register\n");
206 		return 0;
207 	}
208 
209 	return val;
210 }
211 
212 static void
213 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
214 {
215 	mt7530_mutex_lock(priv);
216 
217 	mt7530_mii_write(priv, reg, val);
218 
219 	mt7530_mutex_unlock(priv);
220 }
221 
222 static u32
223 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
224 {
225 	return mt7530_mii_read(p->priv, p->reg);
226 }
227 
228 static u32
229 _mt7530_read(struct mt7530_dummy_poll *p)
230 {
231 	u32 val;
232 
233 	mt7530_mutex_lock(p->priv);
234 
235 	val = mt7530_mii_read(p->priv, p->reg);
236 
237 	mt7530_mutex_unlock(p->priv);
238 
239 	return val;
240 }
241 
242 static u32
243 mt7530_read(struct mt7530_priv *priv, u32 reg)
244 {
245 	struct mt7530_dummy_poll p;
246 
247 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
248 	return _mt7530_read(&p);
249 }
250 
251 static void
252 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
253 	   u32 mask, u32 set)
254 {
255 	mt7530_mutex_lock(priv);
256 
257 	regmap_update_bits(priv->regmap, reg, mask, set);
258 
259 	mt7530_mutex_unlock(priv);
260 }
261 
262 static void
263 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
264 {
265 	mt7530_rmw(priv, reg, val, val);
266 }
267 
268 static void
269 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
270 {
271 	mt7530_rmw(priv, reg, val, 0);
272 }
273 
274 static int
275 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
276 {
277 	u32 val;
278 	int ret;
279 	struct mt7530_dummy_poll p;
280 
281 	/* Set the command operating upon the MAC address entries */
282 	val = ATC_BUSY | ATC_MAT(0) | cmd;
283 	mt7530_write(priv, MT7530_ATC, val);
284 
285 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
286 	ret = readx_poll_timeout(_mt7530_read, &p, val,
287 				 !(val & ATC_BUSY), 20, 20000);
288 	if (ret < 0) {
289 		dev_err(priv->dev, "reset timeout\n");
290 		return ret;
291 	}
292 
293 	/* Additional sanity for read command if the specified
294 	 * entry is invalid
295 	 */
296 	val = mt7530_read(priv, MT7530_ATC);
297 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
298 		return -EINVAL;
299 
300 	if (rsp)
301 		*rsp = val;
302 
303 	return 0;
304 }
305 
306 static void
307 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
308 {
309 	u32 reg[3];
310 	int i;
311 
312 	/* Read from ARL table into an array */
313 	for (i = 0; i < 3; i++) {
314 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
315 
316 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
317 			__func__, __LINE__, i, reg[i]);
318 	}
319 
320 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
321 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
322 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
323 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
324 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
325 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
326 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
327 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
328 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
329 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
330 }
331 
332 static void
333 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
334 		 u8 port_mask, const u8 *mac,
335 		 u8 aging, u8 type)
336 {
337 	u32 reg[3] = { 0 };
338 	int i;
339 
340 	reg[1] |= vid & CVID_MASK;
341 	reg[1] |= ATA2_IVL;
342 	reg[1] |= ATA2_FID(FID_BRIDGED);
343 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
344 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
345 	/* STATIC_ENT indicate that entry is static wouldn't
346 	 * be aged out and STATIC_EMP specified as erasing an
347 	 * entry
348 	 */
349 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
350 	reg[1] |= mac[5] << MAC_BYTE_5;
351 	reg[1] |= mac[4] << MAC_BYTE_4;
352 	reg[0] |= mac[3] << MAC_BYTE_3;
353 	reg[0] |= mac[2] << MAC_BYTE_2;
354 	reg[0] |= mac[1] << MAC_BYTE_1;
355 	reg[0] |= mac[0] << MAC_BYTE_0;
356 
357 	/* Write array into the ARL table */
358 	for (i = 0; i < 3; i++)
359 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
360 }
361 
362 /* Set up switch core clock for MT7530 */
363 static void mt7530_pll_setup(struct mt7530_priv *priv)
364 {
365 	/* Disable core clock */
366 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
367 
368 	/* Disable PLL */
369 	core_write(priv, CORE_GSWPLL_GRP1, 0);
370 
371 	/* Set core clock into 500Mhz */
372 	core_write(priv, CORE_GSWPLL_GRP2,
373 		   RG_GSWPLL_POSDIV_500M(1) |
374 		   RG_GSWPLL_FBKDIV_500M(25));
375 
376 	/* Enable PLL */
377 	core_write(priv, CORE_GSWPLL_GRP1,
378 		   RG_GSWPLL_EN_PRE |
379 		   RG_GSWPLL_POSDIV_200M(2) |
380 		   RG_GSWPLL_FBKDIV_200M(32));
381 
382 	udelay(20);
383 
384 	/* Enable core clock */
385 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
386 }
387 
388 /* If port 6 is available as a CPU port, always prefer that as the default,
389  * otherwise don't care.
390  */
391 static struct dsa_port *
392 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
393 {
394 	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
395 
396 	if (dsa_port_is_cpu(cpu_dp))
397 		return cpu_dp;
398 
399 	return NULL;
400 }
401 
402 /* Setup port 6 interface mode and TRGMII TX circuit */
403 static void
404 mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface)
405 {
406 	struct mt7530_priv *priv = ds->priv;
407 	u32 ncpo1, ssc_delta, xtal;
408 
409 	/* Disable the MT7530 TRGMII clocks */
410 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
411 
412 	if (interface == PHY_INTERFACE_MODE_RGMII) {
413 		mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
414 			   P6_INTF_MODE(0));
415 		return;
416 	}
417 
418 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1));
419 
420 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
421 
422 	if (xtal == HWTRAP_XTAL_25MHZ)
423 		ssc_delta = 0x57;
424 	else
425 		ssc_delta = 0x87;
426 
427 	if (priv->id == ID_MT7621) {
428 		/* PLL frequency: 125MHz: 1.0GBit */
429 		if (xtal == HWTRAP_XTAL_40MHZ)
430 			ncpo1 = 0x0640;
431 		if (xtal == HWTRAP_XTAL_25MHZ)
432 			ncpo1 = 0x0a00;
433 	} else { /* PLL frequency: 250MHz: 2.0Gbit */
434 		if (xtal == HWTRAP_XTAL_40MHZ)
435 			ncpo1 = 0x0c80;
436 		if (xtal == HWTRAP_XTAL_25MHZ)
437 			ncpo1 = 0x1400;
438 	}
439 
440 	/* Setup the MT7530 TRGMII Tx Clock */
441 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
442 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
443 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
444 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
445 	core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
446 		   RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
447 	core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL |
448 		   RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1));
449 	core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG |
450 		   RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
451 
452 	/* Enable the MT7530 TRGMII clocks */
453 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
454 }
455 
456 static void
457 mt7531_pll_setup(struct mt7530_priv *priv)
458 {
459 	u32 top_sig;
460 	u32 hwstrap;
461 	u32 xtal;
462 	u32 val;
463 
464 	val = mt7530_read(priv, MT7531_CREV);
465 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
466 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
467 	if ((val & CHIP_REV_M) > 0)
468 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
469 						    HWTRAP_XTAL_FSEL_25MHZ;
470 	else
471 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
472 
473 	/* Step 1 : Disable MT7531 COREPLL */
474 	val = mt7530_read(priv, MT7531_PLLGP_EN);
475 	val &= ~EN_COREPLL;
476 	mt7530_write(priv, MT7531_PLLGP_EN, val);
477 
478 	/* Step 2: switch to XTAL output */
479 	val = mt7530_read(priv, MT7531_PLLGP_EN);
480 	val |= SW_CLKSW;
481 	mt7530_write(priv, MT7531_PLLGP_EN, val);
482 
483 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
484 	val &= ~RG_COREPLL_EN;
485 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
486 
487 	/* Step 3: disable PLLGP and enable program PLLGP */
488 	val = mt7530_read(priv, MT7531_PLLGP_EN);
489 	val |= SW_PLLGP;
490 	mt7530_write(priv, MT7531_PLLGP_EN, val);
491 
492 	/* Step 4: program COREPLL output frequency to 500MHz */
493 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
494 	val &= ~RG_COREPLL_POSDIV_M;
495 	val |= 2 << RG_COREPLL_POSDIV_S;
496 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
497 	usleep_range(25, 35);
498 
499 	switch (xtal) {
500 	case HWTRAP_XTAL_FSEL_25MHZ:
501 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
502 		val &= ~RG_COREPLL_SDM_PCW_M;
503 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
504 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
505 		break;
506 	case HWTRAP_XTAL_FSEL_40MHZ:
507 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
508 		val &= ~RG_COREPLL_SDM_PCW_M;
509 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
510 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
511 		break;
512 	}
513 
514 	/* Set feedback divide ratio update signal to high */
515 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
516 	val |= RG_COREPLL_SDM_PCW_CHG;
517 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
518 	/* Wait for at least 16 XTAL clocks */
519 	usleep_range(10, 20);
520 
521 	/* Step 5: set feedback divide ratio update signal to low */
522 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
523 	val &= ~RG_COREPLL_SDM_PCW_CHG;
524 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
525 
526 	/* Enable 325M clock for SGMII */
527 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
528 
529 	/* Enable 250SSC clock for RGMII */
530 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
531 
532 	/* Step 6: Enable MT7531 PLL */
533 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
534 	val |= RG_COREPLL_EN;
535 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
536 
537 	val = mt7530_read(priv, MT7531_PLLGP_EN);
538 	val |= EN_COREPLL;
539 	mt7530_write(priv, MT7531_PLLGP_EN, val);
540 	usleep_range(25, 35);
541 }
542 
543 static void
544 mt7530_mib_reset(struct dsa_switch *ds)
545 {
546 	struct mt7530_priv *priv = ds->priv;
547 
548 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
549 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
550 }
551 
552 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
553 {
554 	return mdiobus_read_nested(priv->bus, port, regnum);
555 }
556 
557 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
558 				u16 val)
559 {
560 	return mdiobus_write_nested(priv->bus, port, regnum, val);
561 }
562 
563 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
564 			       int devad, int regnum)
565 {
566 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
567 }
568 
569 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
570 				int regnum, u16 val)
571 {
572 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
573 }
574 
575 static int
576 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
577 			int regnum)
578 {
579 	struct mt7530_dummy_poll p;
580 	u32 reg, val;
581 	int ret;
582 
583 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
584 
585 	mt7530_mutex_lock(priv);
586 
587 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
588 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
589 	if (ret < 0) {
590 		dev_err(priv->dev, "poll timeout\n");
591 		goto out;
592 	}
593 
594 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
595 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
596 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
597 
598 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
599 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
600 	if (ret < 0) {
601 		dev_err(priv->dev, "poll timeout\n");
602 		goto out;
603 	}
604 
605 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
606 	      MT7531_MDIO_DEV_ADDR(devad);
607 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
608 
609 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
610 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
611 	if (ret < 0) {
612 		dev_err(priv->dev, "poll timeout\n");
613 		goto out;
614 	}
615 
616 	ret = val & MT7531_MDIO_RW_DATA_MASK;
617 out:
618 	mt7530_mutex_unlock(priv);
619 
620 	return ret;
621 }
622 
623 static int
624 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
625 			 int regnum, u16 data)
626 {
627 	struct mt7530_dummy_poll p;
628 	u32 val, reg;
629 	int ret;
630 
631 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
632 
633 	mt7530_mutex_lock(priv);
634 
635 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
636 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
637 	if (ret < 0) {
638 		dev_err(priv->dev, "poll timeout\n");
639 		goto out;
640 	}
641 
642 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
643 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
644 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
645 
646 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
647 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
648 	if (ret < 0) {
649 		dev_err(priv->dev, "poll timeout\n");
650 		goto out;
651 	}
652 
653 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
654 	      MT7531_MDIO_DEV_ADDR(devad) | data;
655 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
656 
657 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
658 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
659 	if (ret < 0) {
660 		dev_err(priv->dev, "poll timeout\n");
661 		goto out;
662 	}
663 
664 out:
665 	mt7530_mutex_unlock(priv);
666 
667 	return ret;
668 }
669 
670 static int
671 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
672 {
673 	struct mt7530_dummy_poll p;
674 	int ret;
675 	u32 val;
676 
677 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
678 
679 	mt7530_mutex_lock(priv);
680 
681 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
682 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
683 	if (ret < 0) {
684 		dev_err(priv->dev, "poll timeout\n");
685 		goto out;
686 	}
687 
688 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
689 	      MT7531_MDIO_REG_ADDR(regnum);
690 
691 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
692 
693 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
694 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
695 	if (ret < 0) {
696 		dev_err(priv->dev, "poll timeout\n");
697 		goto out;
698 	}
699 
700 	ret = val & MT7531_MDIO_RW_DATA_MASK;
701 out:
702 	mt7530_mutex_unlock(priv);
703 
704 	return ret;
705 }
706 
707 static int
708 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
709 			 u16 data)
710 {
711 	struct mt7530_dummy_poll p;
712 	int ret;
713 	u32 reg;
714 
715 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
716 
717 	mt7530_mutex_lock(priv);
718 
719 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
720 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
721 	if (ret < 0) {
722 		dev_err(priv->dev, "poll timeout\n");
723 		goto out;
724 	}
725 
726 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
727 	      MT7531_MDIO_REG_ADDR(regnum) | data;
728 
729 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
730 
731 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
732 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
733 	if (ret < 0) {
734 		dev_err(priv->dev, "poll timeout\n");
735 		goto out;
736 	}
737 
738 out:
739 	mt7530_mutex_unlock(priv);
740 
741 	return ret;
742 }
743 
744 static int
745 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
746 {
747 	struct mt7530_priv *priv = bus->priv;
748 
749 	return priv->info->phy_read_c22(priv, port, regnum);
750 }
751 
752 static int
753 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
754 {
755 	struct mt7530_priv *priv = bus->priv;
756 
757 	return priv->info->phy_read_c45(priv, port, devad, regnum);
758 }
759 
760 static int
761 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
762 {
763 	struct mt7530_priv *priv = bus->priv;
764 
765 	return priv->info->phy_write_c22(priv, port, regnum, val);
766 }
767 
768 static int
769 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
770 		     u16 val)
771 {
772 	struct mt7530_priv *priv = bus->priv;
773 
774 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
775 }
776 
777 static void
778 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
779 		   uint8_t *data)
780 {
781 	int i;
782 
783 	if (stringset != ETH_SS_STATS)
784 		return;
785 
786 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
787 		ethtool_puts(&data, mt7530_mib[i].name);
788 }
789 
790 static void
791 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
792 			 uint64_t *data)
793 {
794 	struct mt7530_priv *priv = ds->priv;
795 	const struct mt7530_mib_desc *mib;
796 	u32 reg, i;
797 	u64 hi;
798 
799 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
800 		mib = &mt7530_mib[i];
801 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
802 
803 		data[i] = mt7530_read(priv, reg);
804 		if (mib->size == 2) {
805 			hi = mt7530_read(priv, reg + 4);
806 			data[i] |= hi << 32;
807 		}
808 	}
809 }
810 
811 static int
812 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
813 {
814 	if (sset != ETH_SS_STATS)
815 		return 0;
816 
817 	return ARRAY_SIZE(mt7530_mib);
818 }
819 
820 static int
821 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
822 {
823 	struct mt7530_priv *priv = ds->priv;
824 	unsigned int secs = msecs / 1000;
825 	unsigned int tmp_age_count;
826 	unsigned int error = -1;
827 	unsigned int age_count;
828 	unsigned int age_unit;
829 
830 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
831 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
832 		return -ERANGE;
833 
834 	/* iterate through all possible age_count to find the closest pair */
835 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
836 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
837 
838 		if (tmp_age_unit <= AGE_UNIT_MAX) {
839 			unsigned int tmp_error = secs -
840 				(tmp_age_count + 1) * (tmp_age_unit + 1);
841 
842 			/* found a closer pair */
843 			if (error > tmp_error) {
844 				error = tmp_error;
845 				age_count = tmp_age_count;
846 				age_unit = tmp_age_unit;
847 			}
848 
849 			/* found the exact match, so break the loop */
850 			if (!error)
851 				break;
852 		}
853 	}
854 
855 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
856 
857 	return 0;
858 }
859 
860 static const char *p5_intf_modes(unsigned int p5_interface)
861 {
862 	switch (p5_interface) {
863 	case P5_DISABLED:
864 		return "DISABLED";
865 	case P5_INTF_SEL_PHY_P0:
866 		return "PHY P0";
867 	case P5_INTF_SEL_PHY_P4:
868 		return "PHY P4";
869 	case P5_INTF_SEL_GMAC5:
870 		return "GMAC5";
871 	default:
872 		return "unknown";
873 	}
874 }
875 
876 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
877 {
878 	struct mt7530_priv *priv = ds->priv;
879 	u8 tx_delay = 0;
880 	int val;
881 
882 	mutex_lock(&priv->reg_mutex);
883 
884 	val = mt7530_read(priv, MT7530_MHWTRAP);
885 
886 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
887 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
888 
889 	switch (priv->p5_intf_sel) {
890 	case P5_INTF_SEL_PHY_P0:
891 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
892 		val |= MHWTRAP_PHY0_SEL;
893 		fallthrough;
894 	case P5_INTF_SEL_PHY_P4:
895 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
896 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
897 
898 		/* Setup the MAC by default for the cpu port */
899 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
900 		break;
901 	case P5_INTF_SEL_GMAC5:
902 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
903 		val &= ~MHWTRAP_P5_DIS;
904 		break;
905 	default:
906 		break;
907 	}
908 
909 	/* Setup RGMII settings */
910 	if (phy_interface_mode_is_rgmii(interface)) {
911 		val |= MHWTRAP_P5_RGMII_MODE;
912 
913 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
914 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
915 
916 		/* Don't set delay in DSA mode */
917 		if (!dsa_is_dsa_port(priv->ds, 5) &&
918 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
919 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
920 			tx_delay = 4; /* n * 0.5 ns */
921 
922 		/* P5 RGMII TX Clock Control: delay x */
923 		mt7530_write(priv, MT7530_P5RGMIITXCR,
924 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
925 
926 		/* reduce P5 RGMII Tx driving, 8mA */
927 		mt7530_write(priv, MT7530_IO_DRV_CR,
928 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
929 	}
930 
931 	mt7530_write(priv, MT7530_MHWTRAP, val);
932 
933 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
934 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
935 
936 	mutex_unlock(&priv->reg_mutex);
937 }
938 
939 /* In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer (DLL)
940  * of the Open Systems Interconnection basic reference model (OSI/RM) are
941  * described; the medium access control (MAC) and logical link control (LLC)
942  * sublayers. The MAC sublayer is the one facing the physical layer.
943  *
944  * In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A
945  * Bridge component comprises a MAC Relay Entity for interconnecting the Ports
946  * of the Bridge, at least two Ports, and higher layer entities with at least a
947  * Spanning Tree Protocol Entity included.
948  *
949  * Each Bridge Port also functions as an end station and shall provide the MAC
950  * Service to an LLC Entity. Each instance of the MAC Service is provided to a
951  * distinct LLC Entity that supports protocol identification, multiplexing, and
952  * demultiplexing, for protocol data unit (PDU) transmission and reception by
953  * one or more higher layer entities.
954  *
955  * It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC
956  * Entity associated with each Bridge Port is modeled as being directly
957  * connected to the attached Local Area Network (LAN).
958  *
959  * On the switch with CPU port architecture, CPU port functions as Management
960  * Port, and the Management Port functionality is provided by software which
961  * functions as an end station. Software is connected to an IEEE 802 LAN that is
962  * wholly contained within the system that incorporates the Bridge. Software
963  * provides access to the LLC Entity associated with each Bridge Port by the
964  * value of the source port field on the special tag on the frame received by
965  * software.
966  *
967  * We call frames that carry control information to determine the active
968  * topology and current extent of each Virtual Local Area Network (VLAN), i.e.,
969  * spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN Registration
970  * Protocol Data Units (MVRPDUs), and frames from other link constrained
971  * protocols, such as Extensible Authentication Protocol over LAN (EAPOL) and
972  * Link Layer Discovery Protocol (LLDP), link-local frames. They are not
973  * forwarded by a Bridge. Permanently configured entries in the filtering
974  * database (FDB) ensure that such frames are discarded by the Forwarding
975  * Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in detail:
976  *
977  * Each of the reserved MAC addresses specified in Table 8-1
978  * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be
979  * permanently configured in the FDB in C-VLAN components and ERs.
980  *
981  * Each of the reserved MAC addresses specified in Table 8-2
982  * (01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently
983  * configured in the FDB in S-VLAN components.
984  *
985  * Each of the reserved MAC addresses specified in Table 8-3
986  * (01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB in
987  * TPMR components.
988  *
989  * The FDB entries for reserved MAC addresses shall specify filtering for all
990  * Bridge Ports and all VIDs. Management shall not provide the capability to
991  * modify or remove entries for reserved MAC addresses.
992  *
993  * The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of
994  * propagation of PDUs within a Bridged Network, as follows:
995  *
996  *   The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that no
997  *   conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN)
998  *   component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward.
999  *   PDUs transmitted using this destination address, or any other addresses
1000  *   that appear in Table 8-1, Table 8-2, and Table 8-3
1001  *   (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can
1002  *   therefore travel no further than those stations that can be reached via a
1003  *   single individual LAN from the originating station.
1004  *
1005  *   The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an
1006  *   address that no conformant S-VLAN component, C-VLAN component, or MAC
1007  *   Bridge can forward; however, this address is relayed by a TPMR component.
1008  *   PDUs using this destination address, or any of the other addresses that
1009  *   appear in both Table 8-1 and Table 8-2 but not in Table 8-3
1010  *   (01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed by
1011  *   any TPMRs but will propagate no further than the nearest S-VLAN component,
1012  *   C-VLAN component, or MAC Bridge.
1013  *
1014  *   The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an address
1015  *   that no conformant C-VLAN component, MAC Bridge can forward; however, it is
1016  *   relayed by TPMR components and S-VLAN components. PDUs using this
1017  *   destination address, or any of the other addresses that appear in Table 8-1
1018  *   but not in either Table 8-2 or Table 8-3 (01-80-C2-00-00-[00,0B,0C,0D,0F]),
1019  *   will be relayed by TPMR components and S-VLAN components but will propagate
1020  *   no further than the nearest C-VLAN component or MAC Bridge.
1021  *
1022  * Because the LLC Entity associated with each Bridge Port is provided via CPU
1023  * port, we must not filter these frames but forward them to CPU port.
1024  *
1025  * In a Bridge, the transmission Port is majorly decided by ingress and egress
1026  * rules, FDB, and spanning tree Port State functions of the Forwarding Process.
1027  * For link-local frames, only CPU port should be designated as destination port
1028  * in the FDB, and the other functions of the Forwarding Process must not
1029  * interfere with the decision of the transmission Port. We call this process
1030  * trapping frames to CPU port.
1031  *
1032  * Therefore, on the switch with CPU port architecture, link-local frames must
1033  * be trapped to CPU port, and certain link-local frames received by a Port of a
1034  * Bridge comprising a TPMR component or an S-VLAN component must be excluded
1035  * from it.
1036  *
1037  * A Bridge of the switch with CPU port architecture cannot comprise a Two-Port
1038  * MAC Relay (TPMR) component as a TPMR component supports only a subset of the
1039  * functionality of a MAC Bridge. A Bridge comprising two Ports (Management Port
1040  * doesn't count) of this architecture will either function as a standard MAC
1041  * Bridge or a standard VLAN Bridge.
1042  *
1043  * Therefore, a Bridge of this architecture can only comprise S-VLAN components,
1044  * C-VLAN components, or MAC Bridge components. Since there's no TPMR component,
1045  * we don't need to relay PDUs using the destination addresses specified on the
1046  * Nearest non-TPMR section, and the proportion of the Nearest Customer Bridge
1047  * section where they must be relayed by TPMR components.
1048  *
1049  * One option to trap link-local frames to CPU port is to add static FDB entries
1050  * with CPU port designated as destination port. However, because that
1051  * Independent VLAN Learning (IVL) is being used on every VID, each entry only
1052  * applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC
1053  * Bridge component or a C-VLAN component, there would have to be 16 times 4096
1054  * entries. This switch intellectual property can only hold a maximum of 2048
1055  * entries. Using this option, there also isn't a mechanism to prevent
1056  * link-local frames from being discarded when the spanning tree Port State of
1057  * the reception Port is discarding.
1058  *
1059  * The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4
1060  * registers. Whilst this applies to every VID, it doesn't contain all of the
1061  * reserved MAC addresses without affecting the remaining Standard Group MAC
1062  * Addresses. The REV_UN frame tag utilised using the RGAC4 register covers the
1063  * remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination
1064  * addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF
1065  * destination addresses which may be relayed by MAC Bridges or VLAN Bridges.
1066  * The latter option provides better but not complete conformance.
1067  *
1068  * This switch intellectual property also does not provide a mechanism to trap
1069  * link-local frames with specific destination addresses to CPU port by Bridge,
1070  * to conform to the filtering rules for the distinct Bridge components.
1071  *
1072  * Therefore, regardless of the type of the Bridge component, link-local frames
1073  * with these destination addresses will be trapped to CPU port:
1074  *
1075  * 01-80-C2-00-00-[00,01,02,03,0E]
1076  *
1077  * In a Bridge comprising a MAC Bridge component or a C-VLAN component:
1078  *
1079  *   Link-local frames with these destination addresses won't be trapped to CPU
1080  *   port which won't conform to IEEE Std 802.1Q-2022:
1081  *
1082  *   01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F]
1083  *
1084  * In a Bridge comprising an S-VLAN component:
1085  *
1086  *   Link-local frames with these destination addresses will be trapped to CPU
1087  *   port which won't conform to IEEE Std 802.1Q-2022:
1088  *
1089  *   01-80-C2-00-00-00
1090  *
1091  *   Link-local frames with these destination addresses won't be trapped to CPU
1092  *   port which won't conform to IEEE Std 802.1Q-2022:
1093  *
1094  *   01-80-C2-00-00-[04,05,06,07,08,09,0A]
1095  *
1096  * To trap link-local frames to CPU port as conformant as this switch
1097  * intellectual property can allow, link-local frames are made to be regarded as
1098  * Bridge Protocol Data Units (BPDUs). This is because this switch intellectual
1099  * property only lets the frames regarded as BPDUs bypass the spanning tree Port
1100  * State function of the Forwarding Process.
1101  *
1102  * The only remaining interference is the ingress rules. When the reception Port
1103  * has no PVID assigned on software, VLAN-untagged frames won't be allowed in.
1104  * There doesn't seem to be a mechanism on the switch intellectual property to
1105  * have link-local frames bypass this function of the Forwarding Process.
1106  */
1107 static void
1108 mt753x_trap_frames(struct mt7530_priv *priv)
1109 {
1110 	/* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
1111 	 * VLAN-untagged.
1112 	 */
1113 	mt7530_rmw(priv, MT753X_BPC,
1114 		   MT753X_PAE_BPDU_FR | MT753X_PAE_EG_TAG_MASK |
1115 			   MT753X_PAE_PORT_FW_MASK | MT753X_BPDU_EG_TAG_MASK |
1116 			   MT753X_BPDU_PORT_FW_MASK,
1117 		   MT753X_PAE_BPDU_FR |
1118 			   MT753X_PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1119 			   MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1120 			   MT753X_BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1121 			   MT753X_BPDU_CPU_ONLY);
1122 
1123 	/* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
1124 	 * them VLAN-untagged.
1125 	 */
1126 	mt7530_rmw(priv, MT753X_RGAC1,
1127 		   MT753X_R02_BPDU_FR | MT753X_R02_EG_TAG_MASK |
1128 			   MT753X_R02_PORT_FW_MASK | MT753X_R01_BPDU_FR |
1129 			   MT753X_R01_EG_TAG_MASK | MT753X_R01_PORT_FW_MASK,
1130 		   MT753X_R02_BPDU_FR |
1131 			   MT753X_R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1132 			   MT753X_R02_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1133 			   MT753X_R01_BPDU_FR |
1134 			   MT753X_R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1135 			   MT753X_BPDU_CPU_ONLY);
1136 
1137 	/* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
1138 	 * them VLAN-untagged.
1139 	 */
1140 	mt7530_rmw(priv, MT753X_RGAC2,
1141 		   MT753X_R0E_BPDU_FR | MT753X_R0E_EG_TAG_MASK |
1142 			   MT753X_R0E_PORT_FW_MASK | MT753X_R03_BPDU_FR |
1143 			   MT753X_R03_EG_TAG_MASK | MT753X_R03_PORT_FW_MASK,
1144 		   MT753X_R0E_BPDU_FR |
1145 			   MT753X_R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1146 			   MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1147 			   MT753X_R03_BPDU_FR |
1148 			   MT753X_R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1149 			   MT753X_BPDU_CPU_ONLY);
1150 }
1151 
1152 static void
1153 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1154 {
1155 	struct mt7530_priv *priv = ds->priv;
1156 
1157 	/* Enable Mediatek header mode on the cpu port */
1158 	mt7530_write(priv, MT7530_PVC_P(port),
1159 		     PORT_SPEC_TAG);
1160 
1161 	/* Enable flooding on the CPU port */
1162 	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1163 		   UNU_FFP(BIT(port)));
1164 
1165 	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1166 	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1167 	 * is affine to the inbound user port.
1168 	 */
1169 	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1170 		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1171 
1172 	/* CPU port gets connected to all user ports of
1173 	 * the switch.
1174 	 */
1175 	mt7530_write(priv, MT7530_PCR_P(port),
1176 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1177 
1178 	/* Set to fallback mode for independent VLAN learning */
1179 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1180 		   MT7530_PORT_FALLBACK_MODE);
1181 }
1182 
1183 static int
1184 mt7530_port_enable(struct dsa_switch *ds, int port,
1185 		   struct phy_device *phy)
1186 {
1187 	struct dsa_port *dp = dsa_to_port(ds, port);
1188 	struct mt7530_priv *priv = ds->priv;
1189 
1190 	mutex_lock(&priv->reg_mutex);
1191 
1192 	/* Allow the user port gets connected to the cpu port and also
1193 	 * restore the port matrix if the port is the member of a certain
1194 	 * bridge.
1195 	 */
1196 	if (dsa_port_is_user(dp)) {
1197 		struct dsa_port *cpu_dp = dp->cpu_dp;
1198 
1199 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1200 	}
1201 	priv->ports[port].enable = true;
1202 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1203 		   priv->ports[port].pm);
1204 
1205 	mutex_unlock(&priv->reg_mutex);
1206 
1207 	return 0;
1208 }
1209 
1210 static void
1211 mt7530_port_disable(struct dsa_switch *ds, int port)
1212 {
1213 	struct mt7530_priv *priv = ds->priv;
1214 
1215 	mutex_lock(&priv->reg_mutex);
1216 
1217 	/* Clear up all port matrix which could be restored in the next
1218 	 * enablement for the port.
1219 	 */
1220 	priv->ports[port].enable = false;
1221 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1222 		   PCR_MATRIX_CLR);
1223 
1224 	mutex_unlock(&priv->reg_mutex);
1225 }
1226 
1227 static int
1228 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1229 {
1230 	struct mt7530_priv *priv = ds->priv;
1231 	int length;
1232 	u32 val;
1233 
1234 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1235 	 * largest MTU of the user ports. Because the switch only has a global
1236 	 * RX length register, only allowing CPU port here is enough.
1237 	 */
1238 	if (!dsa_is_cpu_port(ds, port))
1239 		return 0;
1240 
1241 	mt7530_mutex_lock(priv);
1242 
1243 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1244 	val &= ~MAX_RX_PKT_LEN_MASK;
1245 
1246 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1247 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1248 	if (length <= 1522) {
1249 		val |= MAX_RX_PKT_LEN_1522;
1250 	} else if (length <= 1536) {
1251 		val |= MAX_RX_PKT_LEN_1536;
1252 	} else if (length <= 1552) {
1253 		val |= MAX_RX_PKT_LEN_1552;
1254 	} else {
1255 		val &= ~MAX_RX_JUMBO_MASK;
1256 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1257 		val |= MAX_RX_PKT_LEN_JUMBO;
1258 	}
1259 
1260 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1261 
1262 	mt7530_mutex_unlock(priv);
1263 
1264 	return 0;
1265 }
1266 
1267 static int
1268 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1269 {
1270 	return MT7530_MAX_MTU;
1271 }
1272 
1273 static void
1274 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1275 {
1276 	struct mt7530_priv *priv = ds->priv;
1277 	u32 stp_state;
1278 
1279 	switch (state) {
1280 	case BR_STATE_DISABLED:
1281 		stp_state = MT7530_STP_DISABLED;
1282 		break;
1283 	case BR_STATE_BLOCKING:
1284 		stp_state = MT7530_STP_BLOCKING;
1285 		break;
1286 	case BR_STATE_LISTENING:
1287 		stp_state = MT7530_STP_LISTENING;
1288 		break;
1289 	case BR_STATE_LEARNING:
1290 		stp_state = MT7530_STP_LEARNING;
1291 		break;
1292 	case BR_STATE_FORWARDING:
1293 	default:
1294 		stp_state = MT7530_STP_FORWARDING;
1295 		break;
1296 	}
1297 
1298 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1299 		   FID_PST(FID_BRIDGED, stp_state));
1300 }
1301 
1302 static int
1303 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1304 			     struct switchdev_brport_flags flags,
1305 			     struct netlink_ext_ack *extack)
1306 {
1307 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1308 			   BR_BCAST_FLOOD))
1309 		return -EINVAL;
1310 
1311 	return 0;
1312 }
1313 
1314 static int
1315 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1316 			 struct switchdev_brport_flags flags,
1317 			 struct netlink_ext_ack *extack)
1318 {
1319 	struct mt7530_priv *priv = ds->priv;
1320 
1321 	if (flags.mask & BR_LEARNING)
1322 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1323 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1324 
1325 	if (flags.mask & BR_FLOOD)
1326 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1327 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1328 
1329 	if (flags.mask & BR_MCAST_FLOOD)
1330 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1331 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1332 
1333 	if (flags.mask & BR_BCAST_FLOOD)
1334 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1335 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1336 
1337 	return 0;
1338 }
1339 
1340 static int
1341 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1342 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1343 			struct netlink_ext_ack *extack)
1344 {
1345 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1346 	struct dsa_port *cpu_dp = dp->cpu_dp;
1347 	u32 port_bitmap = BIT(cpu_dp->index);
1348 	struct mt7530_priv *priv = ds->priv;
1349 
1350 	mutex_lock(&priv->reg_mutex);
1351 
1352 	dsa_switch_for_each_user_port(other_dp, ds) {
1353 		int other_port = other_dp->index;
1354 
1355 		if (dp == other_dp)
1356 			continue;
1357 
1358 		/* Add this port to the port matrix of the other ports in the
1359 		 * same bridge. If the port is disabled, port matrix is kept
1360 		 * and not being setup until the port becomes enabled.
1361 		 */
1362 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1363 			continue;
1364 
1365 		if (priv->ports[other_port].enable)
1366 			mt7530_set(priv, MT7530_PCR_P(other_port),
1367 				   PCR_MATRIX(BIT(port)));
1368 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1369 
1370 		port_bitmap |= BIT(other_port);
1371 	}
1372 
1373 	/* Add the all other ports to this port matrix. */
1374 	if (priv->ports[port].enable)
1375 		mt7530_rmw(priv, MT7530_PCR_P(port),
1376 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1377 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1378 
1379 	/* Set to fallback mode for independent VLAN learning */
1380 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1381 		   MT7530_PORT_FALLBACK_MODE);
1382 
1383 	mutex_unlock(&priv->reg_mutex);
1384 
1385 	return 0;
1386 }
1387 
1388 static void
1389 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1390 {
1391 	struct mt7530_priv *priv = ds->priv;
1392 	bool all_user_ports_removed = true;
1393 	int i;
1394 
1395 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1396 	 * bridge. Don't set standalone ports to fallback mode.
1397 	 */
1398 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1399 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1400 			   MT7530_PORT_FALLBACK_MODE);
1401 
1402 	mt7530_rmw(priv, MT7530_PVC_P(port),
1403 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1404 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1405 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1406 		   MT7530_VLAN_ACC_ALL);
1407 
1408 	/* Set PVID to 0 */
1409 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1410 		   G0_PORT_VID_DEF);
1411 
1412 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1413 		if (dsa_is_user_port(ds, i) &&
1414 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1415 			all_user_ports_removed = false;
1416 			break;
1417 		}
1418 	}
1419 
1420 	/* CPU port also does the same thing until all user ports belonging to
1421 	 * the CPU port get out of VLAN filtering mode.
1422 	 */
1423 	if (all_user_ports_removed) {
1424 		struct dsa_port *dp = dsa_to_port(ds, port);
1425 		struct dsa_port *cpu_dp = dp->cpu_dp;
1426 
1427 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1428 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1429 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1430 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1431 	}
1432 }
1433 
1434 static void
1435 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1436 {
1437 	struct mt7530_priv *priv = ds->priv;
1438 
1439 	/* Trapped into security mode allows packet forwarding through VLAN
1440 	 * table lookup.
1441 	 */
1442 	if (dsa_is_user_port(ds, port)) {
1443 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1444 			   MT7530_PORT_SECURITY_MODE);
1445 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1446 			   G0_PORT_VID(priv->ports[port].pvid));
1447 
1448 		/* Only accept tagged frames if PVID is not set */
1449 		if (!priv->ports[port].pvid)
1450 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1451 				   MT7530_VLAN_ACC_TAGGED);
1452 
1453 		/* Set the port as a user port which is to be able to recognize
1454 		 * VID from incoming packets before fetching entry within the
1455 		 * VLAN table.
1456 		 */
1457 		mt7530_rmw(priv, MT7530_PVC_P(port),
1458 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1459 			   VLAN_ATTR(MT7530_VLAN_USER) |
1460 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1461 	} else {
1462 		/* Also set CPU ports to the "user" VLAN port attribute, to
1463 		 * allow VLAN classification, but keep the EG_TAG attribute as
1464 		 * "consistent" (i.o.w. don't change its value) for packets
1465 		 * received by the switch from the CPU, so that tagged packets
1466 		 * are forwarded to user ports as tagged, and untagged as
1467 		 * untagged.
1468 		 */
1469 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1470 			   VLAN_ATTR(MT7530_VLAN_USER));
1471 	}
1472 }
1473 
1474 static void
1475 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1476 			 struct dsa_bridge bridge)
1477 {
1478 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1479 	struct dsa_port *cpu_dp = dp->cpu_dp;
1480 	struct mt7530_priv *priv = ds->priv;
1481 
1482 	mutex_lock(&priv->reg_mutex);
1483 
1484 	dsa_switch_for_each_user_port(other_dp, ds) {
1485 		int other_port = other_dp->index;
1486 
1487 		if (dp == other_dp)
1488 			continue;
1489 
1490 		/* Remove this port from the port matrix of the other ports
1491 		 * in the same bridge. If the port is disabled, port matrix
1492 		 * is kept and not being setup until the port becomes enabled.
1493 		 */
1494 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1495 			continue;
1496 
1497 		if (priv->ports[other_port].enable)
1498 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1499 				     PCR_MATRIX(BIT(port)));
1500 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1501 	}
1502 
1503 	/* Set the cpu port to be the only one in the port matrix of
1504 	 * this port.
1505 	 */
1506 	if (priv->ports[port].enable)
1507 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1508 			   PCR_MATRIX(BIT(cpu_dp->index)));
1509 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1510 
1511 	/* When a port is removed from the bridge, the port would be set up
1512 	 * back to the default as is at initial boot which is a VLAN-unaware
1513 	 * port.
1514 	 */
1515 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1516 		   MT7530_PORT_MATRIX_MODE);
1517 
1518 	mutex_unlock(&priv->reg_mutex);
1519 }
1520 
1521 static int
1522 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1523 		    const unsigned char *addr, u16 vid,
1524 		    struct dsa_db db)
1525 {
1526 	struct mt7530_priv *priv = ds->priv;
1527 	int ret;
1528 	u8 port_mask = BIT(port);
1529 
1530 	mutex_lock(&priv->reg_mutex);
1531 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1532 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1533 	mutex_unlock(&priv->reg_mutex);
1534 
1535 	return ret;
1536 }
1537 
1538 static int
1539 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1540 		    const unsigned char *addr, u16 vid,
1541 		    struct dsa_db db)
1542 {
1543 	struct mt7530_priv *priv = ds->priv;
1544 	int ret;
1545 	u8 port_mask = BIT(port);
1546 
1547 	mutex_lock(&priv->reg_mutex);
1548 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1549 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1550 	mutex_unlock(&priv->reg_mutex);
1551 
1552 	return ret;
1553 }
1554 
1555 static int
1556 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1557 		     dsa_fdb_dump_cb_t *cb, void *data)
1558 {
1559 	struct mt7530_priv *priv = ds->priv;
1560 	struct mt7530_fdb _fdb = { 0 };
1561 	int cnt = MT7530_NUM_FDB_RECORDS;
1562 	int ret = 0;
1563 	u32 rsp = 0;
1564 
1565 	mutex_lock(&priv->reg_mutex);
1566 
1567 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1568 	if (ret < 0)
1569 		goto err;
1570 
1571 	do {
1572 		if (rsp & ATC_SRCH_HIT) {
1573 			mt7530_fdb_read(priv, &_fdb);
1574 			if (_fdb.port_mask & BIT(port)) {
1575 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1576 					 data);
1577 				if (ret < 0)
1578 					break;
1579 			}
1580 		}
1581 	} while (--cnt &&
1582 		 !(rsp & ATC_SRCH_END) &&
1583 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1584 err:
1585 	mutex_unlock(&priv->reg_mutex);
1586 
1587 	return 0;
1588 }
1589 
1590 static int
1591 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1592 		    const struct switchdev_obj_port_mdb *mdb,
1593 		    struct dsa_db db)
1594 {
1595 	struct mt7530_priv *priv = ds->priv;
1596 	const u8 *addr = mdb->addr;
1597 	u16 vid = mdb->vid;
1598 	u8 port_mask = 0;
1599 	int ret;
1600 
1601 	mutex_lock(&priv->reg_mutex);
1602 
1603 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1604 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1605 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1606 			    & PORT_MAP_MASK;
1607 
1608 	port_mask |= BIT(port);
1609 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1610 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1611 
1612 	mutex_unlock(&priv->reg_mutex);
1613 
1614 	return ret;
1615 }
1616 
1617 static int
1618 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1619 		    const struct switchdev_obj_port_mdb *mdb,
1620 		    struct dsa_db db)
1621 {
1622 	struct mt7530_priv *priv = ds->priv;
1623 	const u8 *addr = mdb->addr;
1624 	u16 vid = mdb->vid;
1625 	u8 port_mask = 0;
1626 	int ret;
1627 
1628 	mutex_lock(&priv->reg_mutex);
1629 
1630 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1631 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1632 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1633 			    & PORT_MAP_MASK;
1634 
1635 	port_mask &= ~BIT(port);
1636 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1637 			 port_mask ? STATIC_ENT : STATIC_EMP);
1638 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1639 
1640 	mutex_unlock(&priv->reg_mutex);
1641 
1642 	return ret;
1643 }
1644 
1645 static int
1646 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1647 {
1648 	struct mt7530_dummy_poll p;
1649 	u32 val;
1650 	int ret;
1651 
1652 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1653 	mt7530_write(priv, MT7530_VTCR, val);
1654 
1655 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1656 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1657 				 !(val & VTCR_BUSY), 20, 20000);
1658 	if (ret < 0) {
1659 		dev_err(priv->dev, "poll timeout\n");
1660 		return ret;
1661 	}
1662 
1663 	val = mt7530_read(priv, MT7530_VTCR);
1664 	if (val & VTCR_INVALID) {
1665 		dev_err(priv->dev, "read VTCR invalid\n");
1666 		return -EINVAL;
1667 	}
1668 
1669 	return 0;
1670 }
1671 
1672 static int
1673 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1674 			   struct netlink_ext_ack *extack)
1675 {
1676 	struct dsa_port *dp = dsa_to_port(ds, port);
1677 	struct dsa_port *cpu_dp = dp->cpu_dp;
1678 
1679 	if (vlan_filtering) {
1680 		/* The port is being kept as VLAN-unaware port when bridge is
1681 		 * set up with vlan_filtering not being set, Otherwise, the
1682 		 * port and the corresponding CPU port is required the setup
1683 		 * for becoming a VLAN-aware port.
1684 		 */
1685 		mt7530_port_set_vlan_aware(ds, port);
1686 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1687 	} else {
1688 		mt7530_port_set_vlan_unaware(ds, port);
1689 	}
1690 
1691 	return 0;
1692 }
1693 
1694 static void
1695 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1696 		   struct mt7530_hw_vlan_entry *entry)
1697 {
1698 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1699 	u8 new_members;
1700 	u32 val;
1701 
1702 	new_members = entry->old_members | BIT(entry->port);
1703 
1704 	/* Validate the entry with independent learning, create egress tag per
1705 	 * VLAN and joining the port as one of the port members.
1706 	 */
1707 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1708 	      VLAN_VALID;
1709 	mt7530_write(priv, MT7530_VAWD1, val);
1710 
1711 	/* Decide whether adding tag or not for those outgoing packets from the
1712 	 * port inside the VLAN.
1713 	 * CPU port is always taken as a tagged port for serving more than one
1714 	 * VLANs across and also being applied with egress type stack mode for
1715 	 * that VLAN tags would be appended after hardware special tag used as
1716 	 * DSA tag.
1717 	 */
1718 	if (dsa_port_is_cpu(dp))
1719 		val = MT7530_VLAN_EGRESS_STACK;
1720 	else if (entry->untagged)
1721 		val = MT7530_VLAN_EGRESS_UNTAG;
1722 	else
1723 		val = MT7530_VLAN_EGRESS_TAG;
1724 	mt7530_rmw(priv, MT7530_VAWD2,
1725 		   ETAG_CTRL_P_MASK(entry->port),
1726 		   ETAG_CTRL_P(entry->port, val));
1727 }
1728 
1729 static void
1730 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1731 		   struct mt7530_hw_vlan_entry *entry)
1732 {
1733 	u8 new_members;
1734 	u32 val;
1735 
1736 	new_members = entry->old_members & ~BIT(entry->port);
1737 
1738 	val = mt7530_read(priv, MT7530_VAWD1);
1739 	if (!(val & VLAN_VALID)) {
1740 		dev_err(priv->dev,
1741 			"Cannot be deleted due to invalid entry\n");
1742 		return;
1743 	}
1744 
1745 	if (new_members) {
1746 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1747 		      VLAN_VALID;
1748 		mt7530_write(priv, MT7530_VAWD1, val);
1749 	} else {
1750 		mt7530_write(priv, MT7530_VAWD1, 0);
1751 		mt7530_write(priv, MT7530_VAWD2, 0);
1752 	}
1753 }
1754 
1755 static void
1756 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1757 		      struct mt7530_hw_vlan_entry *entry,
1758 		      mt7530_vlan_op vlan_op)
1759 {
1760 	u32 val;
1761 
1762 	/* Fetch entry */
1763 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1764 
1765 	val = mt7530_read(priv, MT7530_VAWD1);
1766 
1767 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1768 
1769 	/* Manipulate entry */
1770 	vlan_op(priv, entry);
1771 
1772 	/* Flush result to hardware */
1773 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1774 }
1775 
1776 static int
1777 mt7530_setup_vlan0(struct mt7530_priv *priv)
1778 {
1779 	u32 val;
1780 
1781 	/* Validate the entry with independent learning, keep the original
1782 	 * ingress tag attribute.
1783 	 */
1784 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1785 	      VLAN_VALID;
1786 	mt7530_write(priv, MT7530_VAWD1, val);
1787 
1788 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1789 }
1790 
1791 static int
1792 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1793 		     const struct switchdev_obj_port_vlan *vlan,
1794 		     struct netlink_ext_ack *extack)
1795 {
1796 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1797 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1798 	struct mt7530_hw_vlan_entry new_entry;
1799 	struct mt7530_priv *priv = ds->priv;
1800 
1801 	mutex_lock(&priv->reg_mutex);
1802 
1803 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1804 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1805 
1806 	if (pvid) {
1807 		priv->ports[port].pvid = vlan->vid;
1808 
1809 		/* Accept all frames if PVID is set */
1810 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1811 			   MT7530_VLAN_ACC_ALL);
1812 
1813 		/* Only configure PVID if VLAN filtering is enabled */
1814 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1815 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1816 				   G0_PORT_VID_MASK,
1817 				   G0_PORT_VID(vlan->vid));
1818 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1819 		/* This VLAN is overwritten without PVID, so unset it */
1820 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1821 
1822 		/* Only accept tagged frames if the port is VLAN-aware */
1823 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1824 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1825 				   MT7530_VLAN_ACC_TAGGED);
1826 
1827 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1828 			   G0_PORT_VID_DEF);
1829 	}
1830 
1831 	mutex_unlock(&priv->reg_mutex);
1832 
1833 	return 0;
1834 }
1835 
1836 static int
1837 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1838 		     const struct switchdev_obj_port_vlan *vlan)
1839 {
1840 	struct mt7530_hw_vlan_entry target_entry;
1841 	struct mt7530_priv *priv = ds->priv;
1842 
1843 	mutex_lock(&priv->reg_mutex);
1844 
1845 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1846 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1847 			      mt7530_hw_vlan_del);
1848 
1849 	/* PVID is being restored to the default whenever the PVID port
1850 	 * is being removed from the VLAN.
1851 	 */
1852 	if (priv->ports[port].pvid == vlan->vid) {
1853 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1854 
1855 		/* Only accept tagged frames if the port is VLAN-aware */
1856 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1857 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1858 				   MT7530_VLAN_ACC_TAGGED);
1859 
1860 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1861 			   G0_PORT_VID_DEF);
1862 	}
1863 
1864 
1865 	mutex_unlock(&priv->reg_mutex);
1866 
1867 	return 0;
1868 }
1869 
1870 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1871 {
1872 	return (id == ID_MT7531 || id == ID_MT7988) ?
1873 		       MT7531_MIRROR_PORT_GET(val) :
1874 		       MIRROR_PORT(val);
1875 }
1876 
1877 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1878 {
1879 	return (id == ID_MT7531 || id == ID_MT7988) ?
1880 		       MT7531_MIRROR_PORT_SET(val) :
1881 		       MIRROR_PORT(val);
1882 }
1883 
1884 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1885 				  struct dsa_mall_mirror_tc_entry *mirror,
1886 				  bool ingress, struct netlink_ext_ack *extack)
1887 {
1888 	struct mt7530_priv *priv = ds->priv;
1889 	int monitor_port;
1890 	u32 val;
1891 
1892 	/* Check for existent entry */
1893 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1894 		return -EEXIST;
1895 
1896 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1897 
1898 	/* MT7530 only supports one monitor port */
1899 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1900 	if (val & MT753X_MIRROR_EN(priv->id) &&
1901 	    monitor_port != mirror->to_local_port)
1902 		return -EEXIST;
1903 
1904 	val |= MT753X_MIRROR_EN(priv->id);
1905 	val &= ~MT753X_MIRROR_MASK(priv->id);
1906 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1907 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1908 
1909 	val = mt7530_read(priv, MT7530_PCR_P(port));
1910 	if (ingress) {
1911 		val |= PORT_RX_MIR;
1912 		priv->mirror_rx |= BIT(port);
1913 	} else {
1914 		val |= PORT_TX_MIR;
1915 		priv->mirror_tx |= BIT(port);
1916 	}
1917 	mt7530_write(priv, MT7530_PCR_P(port), val);
1918 
1919 	return 0;
1920 }
1921 
1922 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1923 				   struct dsa_mall_mirror_tc_entry *mirror)
1924 {
1925 	struct mt7530_priv *priv = ds->priv;
1926 	u32 val;
1927 
1928 	val = mt7530_read(priv, MT7530_PCR_P(port));
1929 	if (mirror->ingress) {
1930 		val &= ~PORT_RX_MIR;
1931 		priv->mirror_rx &= ~BIT(port);
1932 	} else {
1933 		val &= ~PORT_TX_MIR;
1934 		priv->mirror_tx &= ~BIT(port);
1935 	}
1936 	mt7530_write(priv, MT7530_PCR_P(port), val);
1937 
1938 	if (!priv->mirror_rx && !priv->mirror_tx) {
1939 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1940 		val &= ~MT753X_MIRROR_EN(priv->id);
1941 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1942 	}
1943 }
1944 
1945 static enum dsa_tag_protocol
1946 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1947 		     enum dsa_tag_protocol mp)
1948 {
1949 	return DSA_TAG_PROTO_MTK;
1950 }
1951 
1952 #ifdef CONFIG_GPIOLIB
1953 static inline u32
1954 mt7530_gpio_to_bit(unsigned int offset)
1955 {
1956 	/* Map GPIO offset to register bit
1957 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1958 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1959 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1960 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1961 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1962 	 */
1963 	return BIT(offset + offset / 3);
1964 }
1965 
1966 static int
1967 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1968 {
1969 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1970 	u32 bit = mt7530_gpio_to_bit(offset);
1971 
1972 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1973 }
1974 
1975 static void
1976 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1977 {
1978 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1979 	u32 bit = mt7530_gpio_to_bit(offset);
1980 
1981 	if (value)
1982 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1983 	else
1984 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1985 }
1986 
1987 static int
1988 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1989 {
1990 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1991 	u32 bit = mt7530_gpio_to_bit(offset);
1992 
1993 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1994 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1995 }
1996 
1997 static int
1998 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1999 {
2000 	struct mt7530_priv *priv = gpiochip_get_data(gc);
2001 	u32 bit = mt7530_gpio_to_bit(offset);
2002 
2003 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
2004 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
2005 
2006 	return 0;
2007 }
2008 
2009 static int
2010 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
2011 {
2012 	struct mt7530_priv *priv = gpiochip_get_data(gc);
2013 	u32 bit = mt7530_gpio_to_bit(offset);
2014 
2015 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
2016 
2017 	if (value)
2018 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
2019 	else
2020 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
2021 
2022 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
2023 
2024 	return 0;
2025 }
2026 
2027 static int
2028 mt7530_setup_gpio(struct mt7530_priv *priv)
2029 {
2030 	struct device *dev = priv->dev;
2031 	struct gpio_chip *gc;
2032 
2033 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
2034 	if (!gc)
2035 		return -ENOMEM;
2036 
2037 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
2038 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
2039 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
2040 
2041 	gc->label = "mt7530";
2042 	gc->parent = dev;
2043 	gc->owner = THIS_MODULE;
2044 	gc->get_direction = mt7530_gpio_get_direction;
2045 	gc->direction_input = mt7530_gpio_direction_input;
2046 	gc->direction_output = mt7530_gpio_direction_output;
2047 	gc->get = mt7530_gpio_get;
2048 	gc->set = mt7530_gpio_set;
2049 	gc->base = -1;
2050 	gc->ngpio = 15;
2051 	gc->can_sleep = true;
2052 
2053 	return devm_gpiochip_add_data(dev, gc, priv);
2054 }
2055 #endif /* CONFIG_GPIOLIB */
2056 
2057 static irqreturn_t
2058 mt7530_irq_thread_fn(int irq, void *dev_id)
2059 {
2060 	struct mt7530_priv *priv = dev_id;
2061 	bool handled = false;
2062 	u32 val;
2063 	int p;
2064 
2065 	mt7530_mutex_lock(priv);
2066 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
2067 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
2068 	mt7530_mutex_unlock(priv);
2069 
2070 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2071 		if (BIT(p) & val) {
2072 			unsigned int irq;
2073 
2074 			irq = irq_find_mapping(priv->irq_domain, p);
2075 			handle_nested_irq(irq);
2076 			handled = true;
2077 		}
2078 	}
2079 
2080 	return IRQ_RETVAL(handled);
2081 }
2082 
2083 static void
2084 mt7530_irq_mask(struct irq_data *d)
2085 {
2086 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2087 
2088 	priv->irq_enable &= ~BIT(d->hwirq);
2089 }
2090 
2091 static void
2092 mt7530_irq_unmask(struct irq_data *d)
2093 {
2094 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2095 
2096 	priv->irq_enable |= BIT(d->hwirq);
2097 }
2098 
2099 static void
2100 mt7530_irq_bus_lock(struct irq_data *d)
2101 {
2102 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2103 
2104 	mt7530_mutex_lock(priv);
2105 }
2106 
2107 static void
2108 mt7530_irq_bus_sync_unlock(struct irq_data *d)
2109 {
2110 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2111 
2112 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2113 	mt7530_mutex_unlock(priv);
2114 }
2115 
2116 static struct irq_chip mt7530_irq_chip = {
2117 	.name = KBUILD_MODNAME,
2118 	.irq_mask = mt7530_irq_mask,
2119 	.irq_unmask = mt7530_irq_unmask,
2120 	.irq_bus_lock = mt7530_irq_bus_lock,
2121 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2122 };
2123 
2124 static int
2125 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2126 	       irq_hw_number_t hwirq)
2127 {
2128 	irq_set_chip_data(irq, domain->host_data);
2129 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2130 	irq_set_nested_thread(irq, true);
2131 	irq_set_noprobe(irq);
2132 
2133 	return 0;
2134 }
2135 
2136 static const struct irq_domain_ops mt7530_irq_domain_ops = {
2137 	.map = mt7530_irq_map,
2138 	.xlate = irq_domain_xlate_onecell,
2139 };
2140 
2141 static void
2142 mt7988_irq_mask(struct irq_data *d)
2143 {
2144 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2145 
2146 	priv->irq_enable &= ~BIT(d->hwirq);
2147 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2148 }
2149 
2150 static void
2151 mt7988_irq_unmask(struct irq_data *d)
2152 {
2153 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2154 
2155 	priv->irq_enable |= BIT(d->hwirq);
2156 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2157 }
2158 
2159 static struct irq_chip mt7988_irq_chip = {
2160 	.name = KBUILD_MODNAME,
2161 	.irq_mask = mt7988_irq_mask,
2162 	.irq_unmask = mt7988_irq_unmask,
2163 };
2164 
2165 static int
2166 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2167 	       irq_hw_number_t hwirq)
2168 {
2169 	irq_set_chip_data(irq, domain->host_data);
2170 	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2171 	irq_set_nested_thread(irq, true);
2172 	irq_set_noprobe(irq);
2173 
2174 	return 0;
2175 }
2176 
2177 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2178 	.map = mt7988_irq_map,
2179 	.xlate = irq_domain_xlate_onecell,
2180 };
2181 
2182 static void
2183 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2184 {
2185 	struct dsa_switch *ds = priv->ds;
2186 	int p;
2187 
2188 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2189 		if (BIT(p) & ds->phys_mii_mask) {
2190 			unsigned int irq;
2191 
2192 			irq = irq_create_mapping(priv->irq_domain, p);
2193 			ds->user_mii_bus->irq[p] = irq;
2194 		}
2195 	}
2196 }
2197 
2198 static int
2199 mt7530_setup_irq(struct mt7530_priv *priv)
2200 {
2201 	struct device *dev = priv->dev;
2202 	struct device_node *np = dev->of_node;
2203 	int ret;
2204 
2205 	if (!of_property_read_bool(np, "interrupt-controller")) {
2206 		dev_info(dev, "no interrupt support\n");
2207 		return 0;
2208 	}
2209 
2210 	priv->irq = of_irq_get(np, 0);
2211 	if (priv->irq <= 0) {
2212 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2213 		return priv->irq ? : -EINVAL;
2214 	}
2215 
2216 	if (priv->id == ID_MT7988)
2217 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2218 							 &mt7988_irq_domain_ops,
2219 							 priv);
2220 	else
2221 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2222 							 &mt7530_irq_domain_ops,
2223 							 priv);
2224 
2225 	if (!priv->irq_domain) {
2226 		dev_err(dev, "failed to create IRQ domain\n");
2227 		return -ENOMEM;
2228 	}
2229 
2230 	/* This register must be set for MT7530 to properly fire interrupts */
2231 	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
2232 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2233 
2234 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2235 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2236 	if (ret) {
2237 		irq_domain_remove(priv->irq_domain);
2238 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2239 		return ret;
2240 	}
2241 
2242 	return 0;
2243 }
2244 
2245 static void
2246 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2247 {
2248 	int p;
2249 
2250 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2251 		if (BIT(p) & priv->ds->phys_mii_mask) {
2252 			unsigned int irq;
2253 
2254 			irq = irq_find_mapping(priv->irq_domain, p);
2255 			irq_dispose_mapping(irq);
2256 		}
2257 	}
2258 }
2259 
2260 static void
2261 mt7530_free_irq_common(struct mt7530_priv *priv)
2262 {
2263 	free_irq(priv->irq, priv);
2264 	irq_domain_remove(priv->irq_domain);
2265 }
2266 
2267 static void
2268 mt7530_free_irq(struct mt7530_priv *priv)
2269 {
2270 	struct device_node *mnp, *np = priv->dev->of_node;
2271 
2272 	mnp = of_get_child_by_name(np, "mdio");
2273 	if (!mnp)
2274 		mt7530_free_mdio_irq(priv);
2275 	of_node_put(mnp);
2276 
2277 	mt7530_free_irq_common(priv);
2278 }
2279 
2280 static int
2281 mt7530_setup_mdio(struct mt7530_priv *priv)
2282 {
2283 	struct device_node *mnp, *np = priv->dev->of_node;
2284 	struct dsa_switch *ds = priv->ds;
2285 	struct device *dev = priv->dev;
2286 	struct mii_bus *bus;
2287 	static int idx;
2288 	int ret = 0;
2289 
2290 	mnp = of_get_child_by_name(np, "mdio");
2291 
2292 	if (mnp && !of_device_is_available(mnp))
2293 		goto out;
2294 
2295 	bus = devm_mdiobus_alloc(dev);
2296 	if (!bus) {
2297 		ret = -ENOMEM;
2298 		goto out;
2299 	}
2300 
2301 	if (!mnp)
2302 		ds->user_mii_bus = bus;
2303 
2304 	bus->priv = priv;
2305 	bus->name = KBUILD_MODNAME "-mii";
2306 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2307 	bus->read = mt753x_phy_read_c22;
2308 	bus->write = mt753x_phy_write_c22;
2309 	bus->read_c45 = mt753x_phy_read_c45;
2310 	bus->write_c45 = mt753x_phy_write_c45;
2311 	bus->parent = dev;
2312 	bus->phy_mask = ~ds->phys_mii_mask;
2313 
2314 	if (priv->irq && !mnp)
2315 		mt7530_setup_mdio_irq(priv);
2316 
2317 	ret = devm_of_mdiobus_register(dev, bus, mnp);
2318 	if (ret) {
2319 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2320 		if (priv->irq && !mnp)
2321 			mt7530_free_mdio_irq(priv);
2322 	}
2323 
2324 out:
2325 	of_node_put(mnp);
2326 	return ret;
2327 }
2328 
2329 static int
2330 mt7530_setup(struct dsa_switch *ds)
2331 {
2332 	struct mt7530_priv *priv = ds->priv;
2333 	struct device_node *dn = NULL;
2334 	struct device_node *phy_node;
2335 	struct device_node *mac_np;
2336 	struct mt7530_dummy_poll p;
2337 	phy_interface_t interface;
2338 	struct dsa_port *cpu_dp;
2339 	u32 id, val;
2340 	int ret, i;
2341 
2342 	/* The parent node of conduit netdev which holds the common system
2343 	 * controller also is the container for two GMACs nodes representing
2344 	 * as two netdev instances.
2345 	 */
2346 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2347 		dn = cpu_dp->conduit->dev.of_node->parent;
2348 		/* It doesn't matter which CPU port is found first,
2349 		 * their conduits should share the same parent OF node
2350 		 */
2351 		break;
2352 	}
2353 
2354 	if (!dn) {
2355 		dev_err(ds->dev, "parent OF node of DSA conduit not found");
2356 		return -EINVAL;
2357 	}
2358 
2359 	ds->assisted_learning_on_cpu_port = true;
2360 	ds->mtu_enforcement_ingress = true;
2361 
2362 	if (priv->id == ID_MT7530) {
2363 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2364 		ret = regulator_enable(priv->core_pwr);
2365 		if (ret < 0) {
2366 			dev_err(priv->dev,
2367 				"Failed to enable core power: %d\n", ret);
2368 			return ret;
2369 		}
2370 
2371 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2372 		ret = regulator_enable(priv->io_pwr);
2373 		if (ret < 0) {
2374 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2375 				ret);
2376 			return ret;
2377 		}
2378 	}
2379 
2380 	/* Reset whole chip through gpio pin or memory-mapped registers for
2381 	 * different type of hardware
2382 	 */
2383 	if (priv->mcm) {
2384 		reset_control_assert(priv->rstc);
2385 		usleep_range(5000, 5100);
2386 		reset_control_deassert(priv->rstc);
2387 	} else {
2388 		gpiod_set_value_cansleep(priv->reset, 0);
2389 		usleep_range(5000, 5100);
2390 		gpiod_set_value_cansleep(priv->reset, 1);
2391 	}
2392 
2393 	/* Waiting for MT7530 got to stable */
2394 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2395 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2396 				 20, 1000000);
2397 	if (ret < 0) {
2398 		dev_err(priv->dev, "reset timeout\n");
2399 		return ret;
2400 	}
2401 
2402 	id = mt7530_read(priv, MT7530_CREV);
2403 	id >>= CHIP_NAME_SHIFT;
2404 	if (id != MT7530_ID) {
2405 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2406 		return -ENODEV;
2407 	}
2408 
2409 	if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_20MHZ) {
2410 		dev_err(priv->dev,
2411 			"MT7530 with a 20MHz XTAL is not supported!\n");
2412 		return -EINVAL;
2413 	}
2414 
2415 	/* Reset the switch through internal reset */
2416 	mt7530_write(priv, MT7530_SYS_CTRL,
2417 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2418 		     SYS_CTRL_REG_RST);
2419 
2420 	/* Lower Tx driving for TRGMII path */
2421 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2422 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2423 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2424 
2425 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2426 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2427 			   RD_TAP_MASK, RD_TAP(16));
2428 
2429 	/* Enable port 6 */
2430 	val = mt7530_read(priv, MT7530_MHWTRAP);
2431 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2432 	val |= MHWTRAP_MANUAL;
2433 	mt7530_write(priv, MT7530_MHWTRAP, val);
2434 
2435 	if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_40MHZ)
2436 		mt7530_pll_setup(priv);
2437 
2438 	mt753x_trap_frames(priv);
2439 
2440 	/* Enable and reset MIB counters */
2441 	mt7530_mib_reset(ds);
2442 
2443 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2444 		/* Clear link settings and enable force mode to force link down
2445 		 * on all ports until they're enabled later.
2446 		 */
2447 		mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2448 			   PMCR_FORCE_MODE, PMCR_FORCE_MODE);
2449 
2450 		/* Disable forwarding by default on all ports */
2451 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2452 			   PCR_MATRIX_CLR);
2453 
2454 		/* Disable learning by default on all ports */
2455 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2456 
2457 		if (dsa_is_cpu_port(ds, i)) {
2458 			mt753x_cpu_port_enable(ds, i);
2459 		} else {
2460 			mt7530_port_disable(ds, i);
2461 
2462 			/* Set default PVID to 0 on all user ports */
2463 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2464 				   G0_PORT_VID_DEF);
2465 		}
2466 		/* Enable consistent egress tag */
2467 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2468 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2469 	}
2470 
2471 	/* Allow mirroring frames received on the local port (monitor port). */
2472 	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2473 
2474 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2475 	ret = mt7530_setup_vlan0(priv);
2476 	if (ret)
2477 		return ret;
2478 
2479 	/* Setup port 5 */
2480 	if (!dsa_is_unused_port(ds, 5)) {
2481 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2482 	} else {
2483 		/* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
2484 		 * Set priv->p5_intf_sel to the appropriate value if PHY muxing
2485 		 * is detected.
2486 		 */
2487 		for_each_child_of_node(dn, mac_np) {
2488 			if (!of_device_is_compatible(mac_np,
2489 						     "mediatek,eth-mac"))
2490 				continue;
2491 
2492 			ret = of_property_read_u32(mac_np, "reg", &id);
2493 			if (ret < 0 || id != 1)
2494 				continue;
2495 
2496 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2497 			if (!phy_node)
2498 				continue;
2499 
2500 			if (phy_node->parent == priv->dev->of_node->parent) {
2501 				ret = of_get_phy_mode(mac_np, &interface);
2502 				if (ret && ret != -ENODEV) {
2503 					of_node_put(mac_np);
2504 					of_node_put(phy_node);
2505 					return ret;
2506 				}
2507 				id = of_mdio_parse_addr(ds->dev, phy_node);
2508 				if (id == 0)
2509 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2510 				if (id == 4)
2511 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2512 			}
2513 			of_node_put(mac_np);
2514 			of_node_put(phy_node);
2515 			break;
2516 		}
2517 
2518 		if (priv->p5_intf_sel == P5_INTF_SEL_PHY_P0 ||
2519 		    priv->p5_intf_sel == P5_INTF_SEL_PHY_P4)
2520 			mt7530_setup_port5(ds, interface);
2521 	}
2522 
2523 #ifdef CONFIG_GPIOLIB
2524 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2525 		ret = mt7530_setup_gpio(priv);
2526 		if (ret)
2527 			return ret;
2528 	}
2529 #endif /* CONFIG_GPIOLIB */
2530 
2531 	/* Flush the FDB table */
2532 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2533 	if (ret < 0)
2534 		return ret;
2535 
2536 	return 0;
2537 }
2538 
2539 static int
2540 mt7531_setup_common(struct dsa_switch *ds)
2541 {
2542 	struct mt7530_priv *priv = ds->priv;
2543 	int ret, i;
2544 
2545 	mt753x_trap_frames(priv);
2546 
2547 	/* Enable and reset MIB counters */
2548 	mt7530_mib_reset(ds);
2549 
2550 	/* Disable flooding on all ports */
2551 	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2552 		     UNU_FFP_MASK);
2553 
2554 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2555 		/* Clear link settings and enable force mode to force link down
2556 		 * on all ports until they're enabled later.
2557 		 */
2558 		mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2559 			   MT7531_FORCE_MODE, MT7531_FORCE_MODE);
2560 
2561 		/* Disable forwarding by default on all ports */
2562 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2563 			   PCR_MATRIX_CLR);
2564 
2565 		/* Disable learning by default on all ports */
2566 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2567 
2568 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2569 
2570 		if (dsa_is_cpu_port(ds, i)) {
2571 			mt753x_cpu_port_enable(ds, i);
2572 		} else {
2573 			mt7530_port_disable(ds, i);
2574 
2575 			/* Set default PVID to 0 on all user ports */
2576 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2577 				   G0_PORT_VID_DEF);
2578 		}
2579 
2580 		/* Enable consistent egress tag */
2581 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2582 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2583 	}
2584 
2585 	/* Allow mirroring frames received on the local port (monitor port). */
2586 	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2587 
2588 	/* Flush the FDB table */
2589 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2590 	if (ret < 0)
2591 		return ret;
2592 
2593 	return 0;
2594 }
2595 
2596 static int
2597 mt7531_setup(struct dsa_switch *ds)
2598 {
2599 	struct mt7530_priv *priv = ds->priv;
2600 	struct mt7530_dummy_poll p;
2601 	u32 val, id;
2602 	int ret, i;
2603 
2604 	/* Reset whole chip through gpio pin or memory-mapped registers for
2605 	 * different type of hardware
2606 	 */
2607 	if (priv->mcm) {
2608 		reset_control_assert(priv->rstc);
2609 		usleep_range(5000, 5100);
2610 		reset_control_deassert(priv->rstc);
2611 	} else {
2612 		gpiod_set_value_cansleep(priv->reset, 0);
2613 		usleep_range(5000, 5100);
2614 		gpiod_set_value_cansleep(priv->reset, 1);
2615 	}
2616 
2617 	/* Waiting for MT7530 got to stable */
2618 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2619 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2620 				 20, 1000000);
2621 	if (ret < 0) {
2622 		dev_err(priv->dev, "reset timeout\n");
2623 		return ret;
2624 	}
2625 
2626 	id = mt7530_read(priv, MT7531_CREV);
2627 	id >>= CHIP_NAME_SHIFT;
2628 
2629 	if (id != MT7531_ID) {
2630 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2631 		return -ENODEV;
2632 	}
2633 
2634 	/* MT7531AE has got two SGMII units. One for port 5, one for port 6.
2635 	 * MT7531BE has got only one SGMII unit which is for port 6.
2636 	 */
2637 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
2638 	priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
2639 
2640 	/* Force link down on all ports before internal reset */
2641 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2642 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2643 
2644 	/* Reset the switch through internal reset */
2645 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST);
2646 
2647 	if (!priv->p5_sgmii) {
2648 		mt7531_pll_setup(priv);
2649 	} else {
2650 		/* Let ds->user_mii_bus be able to access external phy. */
2651 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2652 			   MT7531_EXT_P_MDC_11);
2653 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2654 			   MT7531_EXT_P_MDIO_12);
2655 	}
2656 
2657 	if (!dsa_is_unused_port(ds, 5))
2658 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2659 
2660 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2661 		   MT7531_GPIO0_INTERRUPT);
2662 
2663 	/* Enable Energy-Efficient Ethernet (EEE) and PHY core PLL, since
2664 	 * phy_device has not yet been created provided for
2665 	 * phy_[read,write]_mmd_indirect is called, we provide our own
2666 	 * mt7531_ind_mmd_phy_[read,write] to complete this function.
2667 	 */
2668 	val = mt7531_ind_c45_phy_read(priv,
2669 				      MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
2670 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2671 	val |= MT7531_RG_SYSPLL_DMY2 | MT7531_PHY_PLL_BYPASS_MODE;
2672 	val &= ~MT7531_PHY_PLL_OFF;
2673 	mt7531_ind_c45_phy_write(priv,
2674 				 MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
2675 				 MDIO_MMD_VEND2, CORE_PLL_GROUP4, val);
2676 
2677 	/* Disable EEE advertisement on the switch PHYs. */
2678 	for (i = MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr);
2679 	     i < MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr) + MT7530_NUM_PHYS;
2680 	     i++) {
2681 		mt7531_ind_c45_phy_write(priv, i, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2682 					 0);
2683 	}
2684 
2685 	mt7531_setup_common(ds);
2686 
2687 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2688 	ret = mt7530_setup_vlan0(priv);
2689 	if (ret)
2690 		return ret;
2691 
2692 	ds->assisted_learning_on_cpu_port = true;
2693 	ds->mtu_enforcement_ingress = true;
2694 
2695 	return 0;
2696 }
2697 
2698 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2699 				     struct phylink_config *config)
2700 {
2701 	switch (port) {
2702 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2703 	case 0 ... 4:
2704 		__set_bit(PHY_INTERFACE_MODE_GMII,
2705 			  config->supported_interfaces);
2706 		break;
2707 
2708 	/* Port 5 supports rgmii with delays, mii, and gmii. */
2709 	case 5:
2710 		phy_interface_set_rgmii(config->supported_interfaces);
2711 		__set_bit(PHY_INTERFACE_MODE_MII,
2712 			  config->supported_interfaces);
2713 		__set_bit(PHY_INTERFACE_MODE_GMII,
2714 			  config->supported_interfaces);
2715 		break;
2716 
2717 	/* Port 6 supports rgmii and trgmii. */
2718 	case 6:
2719 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2720 			  config->supported_interfaces);
2721 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2722 			  config->supported_interfaces);
2723 		break;
2724 	}
2725 }
2726 
2727 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2728 				     struct phylink_config *config)
2729 {
2730 	struct mt7530_priv *priv = ds->priv;
2731 
2732 	switch (port) {
2733 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2734 	case 0 ... 4:
2735 		__set_bit(PHY_INTERFACE_MODE_GMII,
2736 			  config->supported_interfaces);
2737 		break;
2738 
2739 	/* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
2740 	 * MT7531AE.
2741 	 */
2742 	case 5:
2743 		if (!priv->p5_sgmii) {
2744 			phy_interface_set_rgmii(config->supported_interfaces);
2745 			break;
2746 		}
2747 		fallthrough;
2748 
2749 	/* Port 6 supports sgmii/802.3z. */
2750 	case 6:
2751 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2752 			  config->supported_interfaces);
2753 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2754 			  config->supported_interfaces);
2755 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2756 			  config->supported_interfaces);
2757 
2758 		config->mac_capabilities |= MAC_2500FD;
2759 		break;
2760 	}
2761 }
2762 
2763 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2764 				     struct phylink_config *config)
2765 {
2766 	switch (port) {
2767 	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2768 	case 0 ... 3:
2769 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2770 			  config->supported_interfaces);
2771 		break;
2772 
2773 	/* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2774 	case 6:
2775 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2776 			  config->supported_interfaces);
2777 		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2778 					   MAC_10000FD;
2779 	}
2780 }
2781 
2782 static void
2783 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2784 		  phy_interface_t interface)
2785 {
2786 	struct mt7530_priv *priv = ds->priv;
2787 
2788 	if (port == 5)
2789 		mt7530_setup_port5(priv->ds, interface);
2790 	else if (port == 6)
2791 		mt7530_setup_port6(priv->ds, interface);
2792 }
2793 
2794 static void mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2795 			       phy_interface_t interface,
2796 			       struct phy_device *phydev)
2797 {
2798 	u32 val;
2799 
2800 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2801 	val |= GP_CLK_EN;
2802 	val &= ~GP_MODE_MASK;
2803 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2804 	val &= ~CLK_SKEW_IN_MASK;
2805 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2806 	val &= ~CLK_SKEW_OUT_MASK;
2807 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2808 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2809 
2810 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2811 	if (!phydev || phy_driver_is_genphy(phydev)) {
2812 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2813 		switch (interface) {
2814 		case PHY_INTERFACE_MODE_RGMII:
2815 			val |= TXCLK_NO_REVERSE;
2816 			val |= RXCLK_NO_DELAY;
2817 			break;
2818 		case PHY_INTERFACE_MODE_RGMII_RXID:
2819 			val |= TXCLK_NO_REVERSE;
2820 			break;
2821 		case PHY_INTERFACE_MODE_RGMII_TXID:
2822 			val |= RXCLK_NO_DELAY;
2823 			break;
2824 		case PHY_INTERFACE_MODE_RGMII_ID:
2825 			break;
2826 		default:
2827 			break;
2828 		}
2829 	}
2830 
2831 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2832 }
2833 
2834 static void
2835 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2836 		  phy_interface_t interface)
2837 {
2838 	struct mt7530_priv *priv = ds->priv;
2839 	struct phy_device *phydev;
2840 	struct dsa_port *dp;
2841 
2842 	if (phy_interface_mode_is_rgmii(interface)) {
2843 		dp = dsa_to_port(ds, port);
2844 		phydev = dp->user->phydev;
2845 		mt7531_rgmii_setup(priv, port, interface, phydev);
2846 	}
2847 }
2848 
2849 static struct phylink_pcs *
2850 mt753x_phylink_mac_select_pcs(struct phylink_config *config,
2851 			      phy_interface_t interface)
2852 {
2853 	struct dsa_port *dp = dsa_phylink_to_port(config);
2854 	struct mt7530_priv *priv = dp->ds->priv;
2855 
2856 	switch (interface) {
2857 	case PHY_INTERFACE_MODE_TRGMII:
2858 		return &priv->pcs[dp->index].pcs;
2859 	case PHY_INTERFACE_MODE_SGMII:
2860 	case PHY_INTERFACE_MODE_1000BASEX:
2861 	case PHY_INTERFACE_MODE_2500BASEX:
2862 		return priv->ports[dp->index].sgmii_pcs;
2863 	default:
2864 		return NULL;
2865 	}
2866 }
2867 
2868 static void
2869 mt753x_phylink_mac_config(struct phylink_config *config, unsigned int mode,
2870 			  const struct phylink_link_state *state)
2871 {
2872 	struct dsa_port *dp = dsa_phylink_to_port(config);
2873 	struct dsa_switch *ds = dp->ds;
2874 	struct mt7530_priv *priv;
2875 	int port = dp->index;
2876 
2877 	priv = ds->priv;
2878 
2879 	if ((port == 5 || port == 6) && priv->info->mac_port_config)
2880 		priv->info->mac_port_config(ds, port, mode, state->interface);
2881 
2882 	/* Are we connected to external phy */
2883 	if (port == 5 && dsa_is_user_port(ds, 5))
2884 		mt7530_set(priv, MT7530_PMCR_P(port), PMCR_EXT_PHY);
2885 }
2886 
2887 static void mt753x_phylink_mac_link_down(struct phylink_config *config,
2888 					 unsigned int mode,
2889 					 phy_interface_t interface)
2890 {
2891 	struct dsa_port *dp = dsa_phylink_to_port(config);
2892 	struct mt7530_priv *priv = dp->ds->priv;
2893 
2894 	mt7530_clear(priv, MT7530_PMCR_P(dp->index), PMCR_LINK_SETTINGS_MASK);
2895 }
2896 
2897 static void mt753x_phylink_mac_link_up(struct phylink_config *config,
2898 				       struct phy_device *phydev,
2899 				       unsigned int mode,
2900 				       phy_interface_t interface,
2901 				       int speed, int duplex,
2902 				       bool tx_pause, bool rx_pause)
2903 {
2904 	struct dsa_port *dp = dsa_phylink_to_port(config);
2905 	struct mt7530_priv *priv = dp->ds->priv;
2906 	u32 mcr;
2907 
2908 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2909 
2910 	switch (speed) {
2911 	case SPEED_1000:
2912 	case SPEED_2500:
2913 	case SPEED_10000:
2914 		mcr |= PMCR_FORCE_SPEED_1000;
2915 		break;
2916 	case SPEED_100:
2917 		mcr |= PMCR_FORCE_SPEED_100;
2918 		break;
2919 	}
2920 	if (duplex == DUPLEX_FULL) {
2921 		mcr |= PMCR_FORCE_FDX;
2922 		if (tx_pause)
2923 			mcr |= PMCR_TX_FC_EN;
2924 		if (rx_pause)
2925 			mcr |= PMCR_RX_FC_EN;
2926 	}
2927 
2928 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2929 		switch (speed) {
2930 		case SPEED_1000:
2931 		case SPEED_2500:
2932 			mcr |= PMCR_FORCE_EEE1G;
2933 			break;
2934 		case SPEED_100:
2935 			mcr |= PMCR_FORCE_EEE100;
2936 			break;
2937 		}
2938 	}
2939 
2940 	mt7530_set(priv, MT7530_PMCR_P(dp->index), mcr);
2941 }
2942 
2943 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2944 				    struct phylink_config *config)
2945 {
2946 	struct mt7530_priv *priv = ds->priv;
2947 
2948 	/* This switch only supports full-duplex at 1Gbps */
2949 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2950 				   MAC_10 | MAC_100 | MAC_1000FD;
2951 
2952 	priv->info->mac_port_get_caps(ds, port, config);
2953 }
2954 
2955 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2956 			       unsigned long *supported,
2957 			       const struct phylink_link_state *state)
2958 {
2959 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2960 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2961 	    phy_interface_mode_is_8023z(state->interface))
2962 		phylink_clear(supported, Autoneg);
2963 
2964 	return 0;
2965 }
2966 
2967 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2968 				 struct phylink_link_state *state)
2969 {
2970 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2971 	int port = pcs_to_mt753x_pcs(pcs)->port;
2972 	u32 pmsr;
2973 
2974 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2975 
2976 	state->link = (pmsr & PMSR_LINK);
2977 	state->an_complete = state->link;
2978 	state->duplex = !!(pmsr & PMSR_DPX);
2979 
2980 	switch (pmsr & PMSR_SPEED_MASK) {
2981 	case PMSR_SPEED_10:
2982 		state->speed = SPEED_10;
2983 		break;
2984 	case PMSR_SPEED_100:
2985 		state->speed = SPEED_100;
2986 		break;
2987 	case PMSR_SPEED_1000:
2988 		state->speed = SPEED_1000;
2989 		break;
2990 	default:
2991 		state->speed = SPEED_UNKNOWN;
2992 		break;
2993 	}
2994 
2995 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2996 	if (pmsr & PMSR_RX_FC)
2997 		state->pause |= MLO_PAUSE_RX;
2998 	if (pmsr & PMSR_TX_FC)
2999 		state->pause |= MLO_PAUSE_TX;
3000 }
3001 
3002 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3003 			     phy_interface_t interface,
3004 			     const unsigned long *advertising,
3005 			     bool permit_pause_to_mac)
3006 {
3007 	return 0;
3008 }
3009 
3010 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3011 {
3012 }
3013 
3014 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3015 	.pcs_validate = mt753x_pcs_validate,
3016 	.pcs_get_state = mt7530_pcs_get_state,
3017 	.pcs_config = mt753x_pcs_config,
3018 	.pcs_an_restart = mt7530_pcs_an_restart,
3019 };
3020 
3021 static int
3022 mt753x_setup(struct dsa_switch *ds)
3023 {
3024 	struct mt7530_priv *priv = ds->priv;
3025 	int ret = priv->info->sw_setup(ds);
3026 	int i;
3027 
3028 	if (ret)
3029 		return ret;
3030 
3031 	ret = mt7530_setup_irq(priv);
3032 	if (ret)
3033 		return ret;
3034 
3035 	ret = mt7530_setup_mdio(priv);
3036 	if (ret && priv->irq)
3037 		mt7530_free_irq_common(priv);
3038 
3039 	/* Initialise the PCS devices */
3040 	for (i = 0; i < priv->ds->num_ports; i++) {
3041 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3042 		priv->pcs[i].pcs.neg_mode = true;
3043 		priv->pcs[i].priv = priv;
3044 		priv->pcs[i].port = i;
3045 	}
3046 
3047 	if (priv->create_sgmii) {
3048 		ret = priv->create_sgmii(priv);
3049 		if (ret && priv->irq)
3050 			mt7530_free_irq(priv);
3051 	}
3052 
3053 	return ret;
3054 }
3055 
3056 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3057 			      struct ethtool_keee *e)
3058 {
3059 	struct mt7530_priv *priv = ds->priv;
3060 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3061 
3062 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3063 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3064 
3065 	return 0;
3066 }
3067 
3068 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3069 			      struct ethtool_keee *e)
3070 {
3071 	struct mt7530_priv *priv = ds->priv;
3072 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3073 
3074 	if (e->tx_lpi_timer > 0xFFF)
3075 		return -EINVAL;
3076 
3077 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3078 	if (!e->tx_lpi_enabled)
3079 		/* Force LPI Mode without a delay */
3080 		set |= LPI_MODE_EN;
3081 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3082 
3083 	return 0;
3084 }
3085 
3086 static void
3087 mt753x_conduit_state_change(struct dsa_switch *ds,
3088 			    const struct net_device *conduit,
3089 			    bool operational)
3090 {
3091 	struct dsa_port *cpu_dp = conduit->dsa_ptr;
3092 	struct mt7530_priv *priv = ds->priv;
3093 	int val = 0;
3094 	u8 mask;
3095 
3096 	/* Set the CPU port to trap frames to for MT7530. Trapped frames will be
3097 	 * forwarded to the numerically smallest CPU port whose conduit
3098 	 * interface is up.
3099 	 */
3100 	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
3101 		return;
3102 
3103 	mask = BIT(cpu_dp->index);
3104 
3105 	if (operational)
3106 		priv->active_cpu_ports |= mask;
3107 	else
3108 		priv->active_cpu_ports &= ~mask;
3109 
3110 	if (priv->active_cpu_ports)
3111 		val = CPU_EN | CPU_PORT(__ffs(priv->active_cpu_ports));
3112 
3113 	mt7530_rmw(priv, MT7530_MFC, CPU_EN | CPU_PORT_MASK, val);
3114 }
3115 
3116 static int mt7988_setup(struct dsa_switch *ds)
3117 {
3118 	struct mt7530_priv *priv = ds->priv;
3119 
3120 	/* Reset the switch */
3121 	reset_control_assert(priv->rstc);
3122 	usleep_range(20, 50);
3123 	reset_control_deassert(priv->rstc);
3124 	usleep_range(20, 50);
3125 
3126 	/* Reset the switch PHYs */
3127 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3128 
3129 	return mt7531_setup_common(ds);
3130 }
3131 
3132 const struct dsa_switch_ops mt7530_switch_ops = {
3133 	.get_tag_protocol	= mtk_get_tag_protocol,
3134 	.setup			= mt753x_setup,
3135 	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3136 	.get_strings		= mt7530_get_strings,
3137 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3138 	.get_sset_count		= mt7530_get_sset_count,
3139 	.set_ageing_time	= mt7530_set_ageing_time,
3140 	.port_enable		= mt7530_port_enable,
3141 	.port_disable		= mt7530_port_disable,
3142 	.port_change_mtu	= mt7530_port_change_mtu,
3143 	.port_max_mtu		= mt7530_port_max_mtu,
3144 	.port_stp_state_set	= mt7530_stp_state_set,
3145 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3146 	.port_bridge_flags	= mt7530_port_bridge_flags,
3147 	.port_bridge_join	= mt7530_port_bridge_join,
3148 	.port_bridge_leave	= mt7530_port_bridge_leave,
3149 	.port_fdb_add		= mt7530_port_fdb_add,
3150 	.port_fdb_del		= mt7530_port_fdb_del,
3151 	.port_fdb_dump		= mt7530_port_fdb_dump,
3152 	.port_mdb_add		= mt7530_port_mdb_add,
3153 	.port_mdb_del		= mt7530_port_mdb_del,
3154 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3155 	.port_vlan_add		= mt7530_port_vlan_add,
3156 	.port_vlan_del		= mt7530_port_vlan_del,
3157 	.port_mirror_add	= mt753x_port_mirror_add,
3158 	.port_mirror_del	= mt753x_port_mirror_del,
3159 	.phylink_get_caps	= mt753x_phylink_get_caps,
3160 	.get_mac_eee		= mt753x_get_mac_eee,
3161 	.set_mac_eee		= mt753x_set_mac_eee,
3162 	.conduit_state_change	= mt753x_conduit_state_change,
3163 };
3164 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3165 
3166 static const struct phylink_mac_ops mt753x_phylink_mac_ops = {
3167 	.mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3168 	.mac_config	= mt753x_phylink_mac_config,
3169 	.mac_link_down	= mt753x_phylink_mac_link_down,
3170 	.mac_link_up	= mt753x_phylink_mac_link_up,
3171 };
3172 
3173 const struct mt753x_info mt753x_table[] = {
3174 	[ID_MT7621] = {
3175 		.id = ID_MT7621,
3176 		.pcs_ops = &mt7530_pcs_ops,
3177 		.sw_setup = mt7530_setup,
3178 		.phy_read_c22 = mt7530_phy_read_c22,
3179 		.phy_write_c22 = mt7530_phy_write_c22,
3180 		.phy_read_c45 = mt7530_phy_read_c45,
3181 		.phy_write_c45 = mt7530_phy_write_c45,
3182 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3183 		.mac_port_config = mt7530_mac_config,
3184 	},
3185 	[ID_MT7530] = {
3186 		.id = ID_MT7530,
3187 		.pcs_ops = &mt7530_pcs_ops,
3188 		.sw_setup = mt7530_setup,
3189 		.phy_read_c22 = mt7530_phy_read_c22,
3190 		.phy_write_c22 = mt7530_phy_write_c22,
3191 		.phy_read_c45 = mt7530_phy_read_c45,
3192 		.phy_write_c45 = mt7530_phy_write_c45,
3193 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3194 		.mac_port_config = mt7530_mac_config,
3195 	},
3196 	[ID_MT7531] = {
3197 		.id = ID_MT7531,
3198 		.pcs_ops = &mt7530_pcs_ops,
3199 		.sw_setup = mt7531_setup,
3200 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3201 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3202 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3203 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3204 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3205 		.mac_port_config = mt7531_mac_config,
3206 	},
3207 	[ID_MT7988] = {
3208 		.id = ID_MT7988,
3209 		.pcs_ops = &mt7530_pcs_ops,
3210 		.sw_setup = mt7988_setup,
3211 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3212 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3213 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3214 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3215 		.mac_port_get_caps = mt7988_mac_port_get_caps,
3216 	},
3217 };
3218 EXPORT_SYMBOL_GPL(mt753x_table);
3219 
3220 int
3221 mt7530_probe_common(struct mt7530_priv *priv)
3222 {
3223 	struct device *dev = priv->dev;
3224 
3225 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3226 	if (!priv->ds)
3227 		return -ENOMEM;
3228 
3229 	priv->ds->dev = dev;
3230 	priv->ds->num_ports = MT7530_NUM_PORTS;
3231 
3232 	/* Get the hardware identifier from the devicetree node.
3233 	 * We will need it for some of the clock and regulator setup.
3234 	 */
3235 	priv->info = of_device_get_match_data(dev);
3236 	if (!priv->info)
3237 		return -EINVAL;
3238 
3239 	/* Sanity check if these required device operations are filled
3240 	 * properly.
3241 	 */
3242 	if (!priv->info->sw_setup || !priv->info->phy_read_c22 ||
3243 	    !priv->info->phy_write_c22 || !priv->info->mac_port_get_caps)
3244 		return -EINVAL;
3245 
3246 	priv->id = priv->info->id;
3247 	priv->dev = dev;
3248 	priv->ds->priv = priv;
3249 	priv->ds->ops = &mt7530_switch_ops;
3250 	priv->ds->phylink_mac_ops = &mt753x_phylink_mac_ops;
3251 	mutex_init(&priv->reg_mutex);
3252 	dev_set_drvdata(dev, priv);
3253 
3254 	return 0;
3255 }
3256 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3257 
3258 void
3259 mt7530_remove_common(struct mt7530_priv *priv)
3260 {
3261 	if (priv->irq)
3262 		mt7530_free_irq(priv);
3263 
3264 	dsa_unregister_switch(priv->ds);
3265 
3266 	mutex_destroy(&priv->reg_mutex);
3267 }
3268 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3269 
3270 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3271 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3272 MODULE_LICENSE("GPL");
3273