xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/pkt_cls.h>
28 #include <net/switchdev.h>
29 
30 #include "ksz_common.h"
31 #include "ksz_ptp.h"
32 #include "ksz8.h"
33 #include "ksz9477.h"
34 #include "lan937x.h"
35 
36 #define MIB_COUNTER_NUM 0x20
37 
38 struct ksz_stats_raw {
39 	u64 rx_hi;
40 	u64 rx_undersize;
41 	u64 rx_fragments;
42 	u64 rx_oversize;
43 	u64 rx_jabbers;
44 	u64 rx_symbol_err;
45 	u64 rx_crc_err;
46 	u64 rx_align_err;
47 	u64 rx_mac_ctrl;
48 	u64 rx_pause;
49 	u64 rx_bcast;
50 	u64 rx_mcast;
51 	u64 rx_ucast;
52 	u64 rx_64_or_less;
53 	u64 rx_65_127;
54 	u64 rx_128_255;
55 	u64 rx_256_511;
56 	u64 rx_512_1023;
57 	u64 rx_1024_1522;
58 	u64 rx_1523_2000;
59 	u64 rx_2001;
60 	u64 tx_hi;
61 	u64 tx_late_col;
62 	u64 tx_pause;
63 	u64 tx_bcast;
64 	u64 tx_mcast;
65 	u64 tx_ucast;
66 	u64 tx_deferred;
67 	u64 tx_total_col;
68 	u64 tx_exc_col;
69 	u64 tx_single_col;
70 	u64 tx_mult_col;
71 	u64 rx_total;
72 	u64 tx_total;
73 	u64 rx_discards;
74 	u64 tx_discards;
75 };
76 
77 struct ksz88xx_stats_raw {
78 	u64 rx;
79 	u64 rx_hi;
80 	u64 rx_undersize;
81 	u64 rx_fragments;
82 	u64 rx_oversize;
83 	u64 rx_jabbers;
84 	u64 rx_symbol_err;
85 	u64 rx_crc_err;
86 	u64 rx_align_err;
87 	u64 rx_mac_ctrl;
88 	u64 rx_pause;
89 	u64 rx_bcast;
90 	u64 rx_mcast;
91 	u64 rx_ucast;
92 	u64 rx_64_or_less;
93 	u64 rx_65_127;
94 	u64 rx_128_255;
95 	u64 rx_256_511;
96 	u64 rx_512_1023;
97 	u64 rx_1024_1522;
98 	u64 tx;
99 	u64 tx_hi;
100 	u64 tx_late_col;
101 	u64 tx_pause;
102 	u64 tx_bcast;
103 	u64 tx_mcast;
104 	u64 tx_ucast;
105 	u64 tx_deferred;
106 	u64 tx_total_col;
107 	u64 tx_exc_col;
108 	u64 tx_single_col;
109 	u64 tx_mult_col;
110 	u64 rx_discards;
111 	u64 tx_discards;
112 };
113 
114 static const struct ksz_mib_names ksz88xx_mib_names[] = {
115 	{ 0x00, "rx" },
116 	{ 0x01, "rx_hi" },
117 	{ 0x02, "rx_undersize" },
118 	{ 0x03, "rx_fragments" },
119 	{ 0x04, "rx_oversize" },
120 	{ 0x05, "rx_jabbers" },
121 	{ 0x06, "rx_symbol_err" },
122 	{ 0x07, "rx_crc_err" },
123 	{ 0x08, "rx_align_err" },
124 	{ 0x09, "rx_mac_ctrl" },
125 	{ 0x0a, "rx_pause" },
126 	{ 0x0b, "rx_bcast" },
127 	{ 0x0c, "rx_mcast" },
128 	{ 0x0d, "rx_ucast" },
129 	{ 0x0e, "rx_64_or_less" },
130 	{ 0x0f, "rx_65_127" },
131 	{ 0x10, "rx_128_255" },
132 	{ 0x11, "rx_256_511" },
133 	{ 0x12, "rx_512_1023" },
134 	{ 0x13, "rx_1024_1522" },
135 	{ 0x14, "tx" },
136 	{ 0x15, "tx_hi" },
137 	{ 0x16, "tx_late_col" },
138 	{ 0x17, "tx_pause" },
139 	{ 0x18, "tx_bcast" },
140 	{ 0x19, "tx_mcast" },
141 	{ 0x1a, "tx_ucast" },
142 	{ 0x1b, "tx_deferred" },
143 	{ 0x1c, "tx_total_col" },
144 	{ 0x1d, "tx_exc_col" },
145 	{ 0x1e, "tx_single_col" },
146 	{ 0x1f, "tx_mult_col" },
147 	{ 0x100, "rx_discards" },
148 	{ 0x101, "tx_discards" },
149 };
150 
151 static const struct ksz_mib_names ksz9477_mib_names[] = {
152 	{ 0x00, "rx_hi" },
153 	{ 0x01, "rx_undersize" },
154 	{ 0x02, "rx_fragments" },
155 	{ 0x03, "rx_oversize" },
156 	{ 0x04, "rx_jabbers" },
157 	{ 0x05, "rx_symbol_err" },
158 	{ 0x06, "rx_crc_err" },
159 	{ 0x07, "rx_align_err" },
160 	{ 0x08, "rx_mac_ctrl" },
161 	{ 0x09, "rx_pause" },
162 	{ 0x0A, "rx_bcast" },
163 	{ 0x0B, "rx_mcast" },
164 	{ 0x0C, "rx_ucast" },
165 	{ 0x0D, "rx_64_or_less" },
166 	{ 0x0E, "rx_65_127" },
167 	{ 0x0F, "rx_128_255" },
168 	{ 0x10, "rx_256_511" },
169 	{ 0x11, "rx_512_1023" },
170 	{ 0x12, "rx_1024_1522" },
171 	{ 0x13, "rx_1523_2000" },
172 	{ 0x14, "rx_2001" },
173 	{ 0x15, "tx_hi" },
174 	{ 0x16, "tx_late_col" },
175 	{ 0x17, "tx_pause" },
176 	{ 0x18, "tx_bcast" },
177 	{ 0x19, "tx_mcast" },
178 	{ 0x1A, "tx_ucast" },
179 	{ 0x1B, "tx_deferred" },
180 	{ 0x1C, "tx_total_col" },
181 	{ 0x1D, "tx_exc_col" },
182 	{ 0x1E, "tx_single_col" },
183 	{ 0x1F, "tx_mult_col" },
184 	{ 0x80, "rx_total" },
185 	{ 0x81, "tx_total" },
186 	{ 0x82, "rx_discards" },
187 	{ 0x83, "tx_discards" },
188 };
189 
190 struct ksz_driver_strength_prop {
191 	const char *name;
192 	int offset;
193 	int value;
194 };
195 
196 enum ksz_driver_strength_type {
197 	KSZ_DRIVER_STRENGTH_HI,
198 	KSZ_DRIVER_STRENGTH_LO,
199 	KSZ_DRIVER_STRENGTH_IO,
200 };
201 
202 /**
203  * struct ksz_drive_strength - drive strength mapping
204  * @reg_val:	register value
205  * @microamp:	microamp value
206  */
207 struct ksz_drive_strength {
208 	u32 reg_val;
209 	u32 microamp;
210 };
211 
212 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
213  *
214  * This values are not documented in KSZ9477 variants but confirmed by
215  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
216  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
217  *
218  * Documentation in KSZ8795CLX provides more information with some
219  * recommendations:
220  * - for high speed signals
221  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
222  *      2.5V or 3.3V VDDIO.
223  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
224  *      using 1.8V VDDIO.
225  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
226  *      or 3.3V VDDIO.
227  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
228  *   5. In same interface, the heavy loading should use higher one of the
229  *      drive current strength.
230  * - for low speed signals
231  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
232  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
233  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
234  *   4. If it is heavy loading, can use higher drive current strength.
235  */
236 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
237 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
238 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
239 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
240 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
241 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
242 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
243 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
244 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
245 };
246 
247 /* ksz8830_drive_strengths - Drive strength mapping for KSZ8830, KSZ8873, ..
248  *			     variants.
249  * This values are documented in KSZ8873 and KSZ8863 datasheets.
250  */
251 static const struct ksz_drive_strength ksz8830_drive_strengths[] = {
252 	{ 0,  8000 },
253 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
254 };
255 
256 static const struct ksz_dev_ops ksz8_dev_ops = {
257 	.setup = ksz8_setup,
258 	.get_port_addr = ksz8_get_port_addr,
259 	.cfg_port_member = ksz8_cfg_port_member,
260 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
261 	.port_setup = ksz8_port_setup,
262 	.r_phy = ksz8_r_phy,
263 	.w_phy = ksz8_w_phy,
264 	.r_mib_cnt = ksz8_r_mib_cnt,
265 	.r_mib_pkt = ksz8_r_mib_pkt,
266 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
267 	.freeze_mib = ksz8_freeze_mib,
268 	.port_init_cnt = ksz8_port_init_cnt,
269 	.fdb_dump = ksz8_fdb_dump,
270 	.fdb_add = ksz8_fdb_add,
271 	.fdb_del = ksz8_fdb_del,
272 	.mdb_add = ksz8_mdb_add,
273 	.mdb_del = ksz8_mdb_del,
274 	.vlan_filtering = ksz8_port_vlan_filtering,
275 	.vlan_add = ksz8_port_vlan_add,
276 	.vlan_del = ksz8_port_vlan_del,
277 	.mirror_add = ksz8_port_mirror_add,
278 	.mirror_del = ksz8_port_mirror_del,
279 	.get_caps = ksz8_get_caps,
280 	.phylink_mac_link_up = ksz8_phylink_mac_link_up,
281 	.config_cpu_port = ksz8_config_cpu_port,
282 	.enable_stp_addr = ksz8_enable_stp_addr,
283 	.reset = ksz8_reset_switch,
284 	.init = ksz8_switch_init,
285 	.exit = ksz8_switch_exit,
286 	.change_mtu = ksz8_change_mtu,
287 };
288 
289 static void ksz9477_phylink_mac_link_up(struct ksz_device *dev, int port,
290 					unsigned int mode,
291 					phy_interface_t interface,
292 					struct phy_device *phydev, int speed,
293 					int duplex, bool tx_pause,
294 					bool rx_pause);
295 
296 static const struct ksz_dev_ops ksz9477_dev_ops = {
297 	.setup = ksz9477_setup,
298 	.get_port_addr = ksz9477_get_port_addr,
299 	.cfg_port_member = ksz9477_cfg_port_member,
300 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
301 	.port_setup = ksz9477_port_setup,
302 	.set_ageing_time = ksz9477_set_ageing_time,
303 	.r_phy = ksz9477_r_phy,
304 	.w_phy = ksz9477_w_phy,
305 	.r_mib_cnt = ksz9477_r_mib_cnt,
306 	.r_mib_pkt = ksz9477_r_mib_pkt,
307 	.r_mib_stat64 = ksz_r_mib_stats64,
308 	.freeze_mib = ksz9477_freeze_mib,
309 	.port_init_cnt = ksz9477_port_init_cnt,
310 	.vlan_filtering = ksz9477_port_vlan_filtering,
311 	.vlan_add = ksz9477_port_vlan_add,
312 	.vlan_del = ksz9477_port_vlan_del,
313 	.mirror_add = ksz9477_port_mirror_add,
314 	.mirror_del = ksz9477_port_mirror_del,
315 	.get_caps = ksz9477_get_caps,
316 	.fdb_dump = ksz9477_fdb_dump,
317 	.fdb_add = ksz9477_fdb_add,
318 	.fdb_del = ksz9477_fdb_del,
319 	.mdb_add = ksz9477_mdb_add,
320 	.mdb_del = ksz9477_mdb_del,
321 	.change_mtu = ksz9477_change_mtu,
322 	.phylink_mac_link_up = ksz9477_phylink_mac_link_up,
323 	.get_wol = ksz9477_get_wol,
324 	.set_wol = ksz9477_set_wol,
325 	.wol_pre_shutdown = ksz9477_wol_pre_shutdown,
326 	.config_cpu_port = ksz9477_config_cpu_port,
327 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
328 	.enable_stp_addr = ksz9477_enable_stp_addr,
329 	.reset = ksz9477_reset_switch,
330 	.init = ksz9477_switch_init,
331 	.exit = ksz9477_switch_exit,
332 };
333 
334 static const struct ksz_dev_ops lan937x_dev_ops = {
335 	.setup = lan937x_setup,
336 	.teardown = lan937x_teardown,
337 	.get_port_addr = ksz9477_get_port_addr,
338 	.cfg_port_member = ksz9477_cfg_port_member,
339 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
340 	.port_setup = lan937x_port_setup,
341 	.set_ageing_time = lan937x_set_ageing_time,
342 	.r_phy = lan937x_r_phy,
343 	.w_phy = lan937x_w_phy,
344 	.r_mib_cnt = ksz9477_r_mib_cnt,
345 	.r_mib_pkt = ksz9477_r_mib_pkt,
346 	.r_mib_stat64 = ksz_r_mib_stats64,
347 	.freeze_mib = ksz9477_freeze_mib,
348 	.port_init_cnt = ksz9477_port_init_cnt,
349 	.vlan_filtering = ksz9477_port_vlan_filtering,
350 	.vlan_add = ksz9477_port_vlan_add,
351 	.vlan_del = ksz9477_port_vlan_del,
352 	.mirror_add = ksz9477_port_mirror_add,
353 	.mirror_del = ksz9477_port_mirror_del,
354 	.get_caps = lan937x_phylink_get_caps,
355 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
356 	.fdb_dump = ksz9477_fdb_dump,
357 	.fdb_add = ksz9477_fdb_add,
358 	.fdb_del = ksz9477_fdb_del,
359 	.mdb_add = ksz9477_mdb_add,
360 	.mdb_del = ksz9477_mdb_del,
361 	.change_mtu = lan937x_change_mtu,
362 	.phylink_mac_link_up = ksz9477_phylink_mac_link_up,
363 	.config_cpu_port = lan937x_config_cpu_port,
364 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
365 	.enable_stp_addr = ksz9477_enable_stp_addr,
366 	.reset = lan937x_reset_switch,
367 	.init = lan937x_switch_init,
368 	.exit = lan937x_switch_exit,
369 };
370 
371 static const u16 ksz8795_regs[] = {
372 	[REG_SW_MAC_ADDR]		= 0x68,
373 	[REG_IND_CTRL_0]		= 0x6E,
374 	[REG_IND_DATA_8]		= 0x70,
375 	[REG_IND_DATA_CHECK]		= 0x72,
376 	[REG_IND_DATA_HI]		= 0x71,
377 	[REG_IND_DATA_LO]		= 0x75,
378 	[REG_IND_MIB_CHECK]		= 0x74,
379 	[REG_IND_BYTE]			= 0xA0,
380 	[P_FORCE_CTRL]			= 0x0C,
381 	[P_LINK_STATUS]			= 0x0E,
382 	[P_LOCAL_CTRL]			= 0x07,
383 	[P_NEG_RESTART_CTRL]		= 0x0D,
384 	[P_REMOTE_STATUS]		= 0x08,
385 	[P_SPEED_STATUS]		= 0x09,
386 	[S_TAIL_TAG_CTRL]		= 0x0C,
387 	[P_STP_CTRL]			= 0x02,
388 	[S_START_CTRL]			= 0x01,
389 	[S_BROADCAST_CTRL]		= 0x06,
390 	[S_MULTICAST_CTRL]		= 0x04,
391 	[P_XMII_CTRL_0]			= 0x06,
392 	[P_XMII_CTRL_1]			= 0x06,
393 };
394 
395 static const u32 ksz8795_masks[] = {
396 	[PORT_802_1P_REMAPPING]		= BIT(7),
397 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
398 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
399 	[MIB_COUNTER_VALID]		= BIT(5),
400 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
401 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
402 	[VLAN_TABLE_VALID]		= BIT(12),
403 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
404 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
405 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
406 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
407 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
408 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
409 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
410 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
411 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
412 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
413 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
414 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
415 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
416 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
417 };
418 
419 static const u8 ksz8795_xmii_ctrl0[] = {
420 	[P_MII_100MBIT]			= 0,
421 	[P_MII_10MBIT]			= 1,
422 	[P_MII_FULL_DUPLEX]		= 0,
423 	[P_MII_HALF_DUPLEX]		= 1,
424 };
425 
426 static const u8 ksz8795_xmii_ctrl1[] = {
427 	[P_RGMII_SEL]			= 3,
428 	[P_GMII_SEL]			= 2,
429 	[P_RMII_SEL]			= 1,
430 	[P_MII_SEL]			= 0,
431 	[P_GMII_1GBIT]			= 1,
432 	[P_GMII_NOT_1GBIT]		= 0,
433 };
434 
435 static const u8 ksz8795_shifts[] = {
436 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
437 	[VLAN_TABLE]			= 16,
438 	[STATIC_MAC_FWD_PORTS]		= 16,
439 	[STATIC_MAC_FID]		= 24,
440 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
441 	[DYNAMIC_MAC_ENTRIES]		= 29,
442 	[DYNAMIC_MAC_FID]		= 16,
443 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
444 	[DYNAMIC_MAC_SRC_PORT]		= 24,
445 };
446 
447 static const u16 ksz8863_regs[] = {
448 	[REG_SW_MAC_ADDR]		= 0x70,
449 	[REG_IND_CTRL_0]		= 0x79,
450 	[REG_IND_DATA_8]		= 0x7B,
451 	[REG_IND_DATA_CHECK]		= 0x7B,
452 	[REG_IND_DATA_HI]		= 0x7C,
453 	[REG_IND_DATA_LO]		= 0x80,
454 	[REG_IND_MIB_CHECK]		= 0x80,
455 	[P_FORCE_CTRL]			= 0x0C,
456 	[P_LINK_STATUS]			= 0x0E,
457 	[P_LOCAL_CTRL]			= 0x0C,
458 	[P_NEG_RESTART_CTRL]		= 0x0D,
459 	[P_REMOTE_STATUS]		= 0x0E,
460 	[P_SPEED_STATUS]		= 0x0F,
461 	[S_TAIL_TAG_CTRL]		= 0x03,
462 	[P_STP_CTRL]			= 0x02,
463 	[S_START_CTRL]			= 0x01,
464 	[S_BROADCAST_CTRL]		= 0x06,
465 	[S_MULTICAST_CTRL]		= 0x04,
466 };
467 
468 static const u32 ksz8863_masks[] = {
469 	[PORT_802_1P_REMAPPING]		= BIT(3),
470 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
471 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
472 	[MIB_COUNTER_VALID]		= BIT(6),
473 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
474 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
475 	[VLAN_TABLE_VALID]		= BIT(19),
476 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
477 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
478 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
479 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
480 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
481 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
482 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
483 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
484 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
485 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
486 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
487 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
488 };
489 
490 static u8 ksz8863_shifts[] = {
491 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
492 	[STATIC_MAC_FWD_PORTS]		= 16,
493 	[STATIC_MAC_FID]		= 22,
494 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
495 	[DYNAMIC_MAC_ENTRIES]		= 24,
496 	[DYNAMIC_MAC_FID]		= 16,
497 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
498 	[DYNAMIC_MAC_SRC_PORT]		= 20,
499 };
500 
501 static const u16 ksz9477_regs[] = {
502 	[REG_SW_MAC_ADDR]		= 0x0302,
503 	[P_STP_CTRL]			= 0x0B04,
504 	[S_START_CTRL]			= 0x0300,
505 	[S_BROADCAST_CTRL]		= 0x0332,
506 	[S_MULTICAST_CTRL]		= 0x0331,
507 	[P_XMII_CTRL_0]			= 0x0300,
508 	[P_XMII_CTRL_1]			= 0x0301,
509 };
510 
511 static const u32 ksz9477_masks[] = {
512 	[ALU_STAT_WRITE]		= 0,
513 	[ALU_STAT_READ]			= 1,
514 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
515 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
516 };
517 
518 static const u8 ksz9477_shifts[] = {
519 	[ALU_STAT_INDEX]		= 16,
520 };
521 
522 static const u8 ksz9477_xmii_ctrl0[] = {
523 	[P_MII_100MBIT]			= 1,
524 	[P_MII_10MBIT]			= 0,
525 	[P_MII_FULL_DUPLEX]		= 1,
526 	[P_MII_HALF_DUPLEX]		= 0,
527 };
528 
529 static const u8 ksz9477_xmii_ctrl1[] = {
530 	[P_RGMII_SEL]			= 0,
531 	[P_RMII_SEL]			= 1,
532 	[P_GMII_SEL]			= 2,
533 	[P_MII_SEL]			= 3,
534 	[P_GMII_1GBIT]			= 0,
535 	[P_GMII_NOT_1GBIT]		= 1,
536 };
537 
538 static const u32 lan937x_masks[] = {
539 	[ALU_STAT_WRITE]		= 1,
540 	[ALU_STAT_READ]			= 2,
541 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
542 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
543 };
544 
545 static const u8 lan937x_shifts[] = {
546 	[ALU_STAT_INDEX]		= 8,
547 };
548 
549 static const struct regmap_range ksz8563_valid_regs[] = {
550 	regmap_reg_range(0x0000, 0x0003),
551 	regmap_reg_range(0x0006, 0x0006),
552 	regmap_reg_range(0x000f, 0x001f),
553 	regmap_reg_range(0x0100, 0x0100),
554 	regmap_reg_range(0x0104, 0x0107),
555 	regmap_reg_range(0x010d, 0x010d),
556 	regmap_reg_range(0x0110, 0x0113),
557 	regmap_reg_range(0x0120, 0x012b),
558 	regmap_reg_range(0x0201, 0x0201),
559 	regmap_reg_range(0x0210, 0x0213),
560 	regmap_reg_range(0x0300, 0x0300),
561 	regmap_reg_range(0x0302, 0x031b),
562 	regmap_reg_range(0x0320, 0x032b),
563 	regmap_reg_range(0x0330, 0x0336),
564 	regmap_reg_range(0x0338, 0x033e),
565 	regmap_reg_range(0x0340, 0x035f),
566 	regmap_reg_range(0x0370, 0x0370),
567 	regmap_reg_range(0x0378, 0x0378),
568 	regmap_reg_range(0x037c, 0x037d),
569 	regmap_reg_range(0x0390, 0x0393),
570 	regmap_reg_range(0x0400, 0x040e),
571 	regmap_reg_range(0x0410, 0x042f),
572 	regmap_reg_range(0x0500, 0x0519),
573 	regmap_reg_range(0x0520, 0x054b),
574 	regmap_reg_range(0x0550, 0x05b3),
575 
576 	/* port 1 */
577 	regmap_reg_range(0x1000, 0x1001),
578 	regmap_reg_range(0x1004, 0x100b),
579 	regmap_reg_range(0x1013, 0x1013),
580 	regmap_reg_range(0x1017, 0x1017),
581 	regmap_reg_range(0x101b, 0x101b),
582 	regmap_reg_range(0x101f, 0x1021),
583 	regmap_reg_range(0x1030, 0x1030),
584 	regmap_reg_range(0x1100, 0x1111),
585 	regmap_reg_range(0x111a, 0x111d),
586 	regmap_reg_range(0x1122, 0x1127),
587 	regmap_reg_range(0x112a, 0x112b),
588 	regmap_reg_range(0x1136, 0x1139),
589 	regmap_reg_range(0x113e, 0x113f),
590 	regmap_reg_range(0x1400, 0x1401),
591 	regmap_reg_range(0x1403, 0x1403),
592 	regmap_reg_range(0x1410, 0x1417),
593 	regmap_reg_range(0x1420, 0x1423),
594 	regmap_reg_range(0x1500, 0x1507),
595 	regmap_reg_range(0x1600, 0x1612),
596 	regmap_reg_range(0x1800, 0x180f),
597 	regmap_reg_range(0x1900, 0x1907),
598 	regmap_reg_range(0x1914, 0x191b),
599 	regmap_reg_range(0x1a00, 0x1a03),
600 	regmap_reg_range(0x1a04, 0x1a08),
601 	regmap_reg_range(0x1b00, 0x1b01),
602 	regmap_reg_range(0x1b04, 0x1b04),
603 	regmap_reg_range(0x1c00, 0x1c05),
604 	regmap_reg_range(0x1c08, 0x1c1b),
605 
606 	/* port 2 */
607 	regmap_reg_range(0x2000, 0x2001),
608 	regmap_reg_range(0x2004, 0x200b),
609 	regmap_reg_range(0x2013, 0x2013),
610 	regmap_reg_range(0x2017, 0x2017),
611 	regmap_reg_range(0x201b, 0x201b),
612 	regmap_reg_range(0x201f, 0x2021),
613 	regmap_reg_range(0x2030, 0x2030),
614 	regmap_reg_range(0x2100, 0x2111),
615 	regmap_reg_range(0x211a, 0x211d),
616 	regmap_reg_range(0x2122, 0x2127),
617 	regmap_reg_range(0x212a, 0x212b),
618 	regmap_reg_range(0x2136, 0x2139),
619 	regmap_reg_range(0x213e, 0x213f),
620 	regmap_reg_range(0x2400, 0x2401),
621 	regmap_reg_range(0x2403, 0x2403),
622 	regmap_reg_range(0x2410, 0x2417),
623 	regmap_reg_range(0x2420, 0x2423),
624 	regmap_reg_range(0x2500, 0x2507),
625 	regmap_reg_range(0x2600, 0x2612),
626 	regmap_reg_range(0x2800, 0x280f),
627 	regmap_reg_range(0x2900, 0x2907),
628 	regmap_reg_range(0x2914, 0x291b),
629 	regmap_reg_range(0x2a00, 0x2a03),
630 	regmap_reg_range(0x2a04, 0x2a08),
631 	regmap_reg_range(0x2b00, 0x2b01),
632 	regmap_reg_range(0x2b04, 0x2b04),
633 	regmap_reg_range(0x2c00, 0x2c05),
634 	regmap_reg_range(0x2c08, 0x2c1b),
635 
636 	/* port 3 */
637 	regmap_reg_range(0x3000, 0x3001),
638 	regmap_reg_range(0x3004, 0x300b),
639 	regmap_reg_range(0x3013, 0x3013),
640 	regmap_reg_range(0x3017, 0x3017),
641 	regmap_reg_range(0x301b, 0x301b),
642 	regmap_reg_range(0x301f, 0x3021),
643 	regmap_reg_range(0x3030, 0x3030),
644 	regmap_reg_range(0x3300, 0x3301),
645 	regmap_reg_range(0x3303, 0x3303),
646 	regmap_reg_range(0x3400, 0x3401),
647 	regmap_reg_range(0x3403, 0x3403),
648 	regmap_reg_range(0x3410, 0x3417),
649 	regmap_reg_range(0x3420, 0x3423),
650 	regmap_reg_range(0x3500, 0x3507),
651 	regmap_reg_range(0x3600, 0x3612),
652 	regmap_reg_range(0x3800, 0x380f),
653 	regmap_reg_range(0x3900, 0x3907),
654 	regmap_reg_range(0x3914, 0x391b),
655 	regmap_reg_range(0x3a00, 0x3a03),
656 	regmap_reg_range(0x3a04, 0x3a08),
657 	regmap_reg_range(0x3b00, 0x3b01),
658 	regmap_reg_range(0x3b04, 0x3b04),
659 	regmap_reg_range(0x3c00, 0x3c05),
660 	regmap_reg_range(0x3c08, 0x3c1b),
661 };
662 
663 static const struct regmap_access_table ksz8563_register_set = {
664 	.yes_ranges = ksz8563_valid_regs,
665 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
666 };
667 
668 static const struct regmap_range ksz9477_valid_regs[] = {
669 	regmap_reg_range(0x0000, 0x0003),
670 	regmap_reg_range(0x0006, 0x0006),
671 	regmap_reg_range(0x0010, 0x001f),
672 	regmap_reg_range(0x0100, 0x0100),
673 	regmap_reg_range(0x0103, 0x0107),
674 	regmap_reg_range(0x010d, 0x010d),
675 	regmap_reg_range(0x0110, 0x0113),
676 	regmap_reg_range(0x0120, 0x012b),
677 	regmap_reg_range(0x0201, 0x0201),
678 	regmap_reg_range(0x0210, 0x0213),
679 	regmap_reg_range(0x0300, 0x0300),
680 	regmap_reg_range(0x0302, 0x031b),
681 	regmap_reg_range(0x0320, 0x032b),
682 	regmap_reg_range(0x0330, 0x0336),
683 	regmap_reg_range(0x0338, 0x033b),
684 	regmap_reg_range(0x033e, 0x033e),
685 	regmap_reg_range(0x0340, 0x035f),
686 	regmap_reg_range(0x0370, 0x0370),
687 	regmap_reg_range(0x0378, 0x0378),
688 	regmap_reg_range(0x037c, 0x037d),
689 	regmap_reg_range(0x0390, 0x0393),
690 	regmap_reg_range(0x0400, 0x040e),
691 	regmap_reg_range(0x0410, 0x042f),
692 	regmap_reg_range(0x0444, 0x044b),
693 	regmap_reg_range(0x0450, 0x046f),
694 	regmap_reg_range(0x0500, 0x0519),
695 	regmap_reg_range(0x0520, 0x054b),
696 	regmap_reg_range(0x0550, 0x05b3),
697 	regmap_reg_range(0x0604, 0x060b),
698 	regmap_reg_range(0x0610, 0x0612),
699 	regmap_reg_range(0x0614, 0x062c),
700 	regmap_reg_range(0x0640, 0x0645),
701 	regmap_reg_range(0x0648, 0x064d),
702 
703 	/* port 1 */
704 	regmap_reg_range(0x1000, 0x1001),
705 	regmap_reg_range(0x1013, 0x1013),
706 	regmap_reg_range(0x1017, 0x1017),
707 	regmap_reg_range(0x101b, 0x101b),
708 	regmap_reg_range(0x101f, 0x1020),
709 	regmap_reg_range(0x1030, 0x1030),
710 	regmap_reg_range(0x1100, 0x1115),
711 	regmap_reg_range(0x111a, 0x111f),
712 	regmap_reg_range(0x1120, 0x112b),
713 	regmap_reg_range(0x1134, 0x113b),
714 	regmap_reg_range(0x113c, 0x113f),
715 	regmap_reg_range(0x1400, 0x1401),
716 	regmap_reg_range(0x1403, 0x1403),
717 	regmap_reg_range(0x1410, 0x1417),
718 	regmap_reg_range(0x1420, 0x1423),
719 	regmap_reg_range(0x1500, 0x1507),
720 	regmap_reg_range(0x1600, 0x1613),
721 	regmap_reg_range(0x1800, 0x180f),
722 	regmap_reg_range(0x1820, 0x1827),
723 	regmap_reg_range(0x1830, 0x1837),
724 	regmap_reg_range(0x1840, 0x184b),
725 	regmap_reg_range(0x1900, 0x1907),
726 	regmap_reg_range(0x1914, 0x191b),
727 	regmap_reg_range(0x1920, 0x1920),
728 	regmap_reg_range(0x1923, 0x1927),
729 	regmap_reg_range(0x1a00, 0x1a03),
730 	regmap_reg_range(0x1a04, 0x1a07),
731 	regmap_reg_range(0x1b00, 0x1b01),
732 	regmap_reg_range(0x1b04, 0x1b04),
733 	regmap_reg_range(0x1c00, 0x1c05),
734 	regmap_reg_range(0x1c08, 0x1c1b),
735 
736 	/* port 2 */
737 	regmap_reg_range(0x2000, 0x2001),
738 	regmap_reg_range(0x2013, 0x2013),
739 	regmap_reg_range(0x2017, 0x2017),
740 	regmap_reg_range(0x201b, 0x201b),
741 	regmap_reg_range(0x201f, 0x2020),
742 	regmap_reg_range(0x2030, 0x2030),
743 	regmap_reg_range(0x2100, 0x2115),
744 	regmap_reg_range(0x211a, 0x211f),
745 	regmap_reg_range(0x2120, 0x212b),
746 	regmap_reg_range(0x2134, 0x213b),
747 	regmap_reg_range(0x213c, 0x213f),
748 	regmap_reg_range(0x2400, 0x2401),
749 	regmap_reg_range(0x2403, 0x2403),
750 	regmap_reg_range(0x2410, 0x2417),
751 	regmap_reg_range(0x2420, 0x2423),
752 	regmap_reg_range(0x2500, 0x2507),
753 	regmap_reg_range(0x2600, 0x2613),
754 	regmap_reg_range(0x2800, 0x280f),
755 	regmap_reg_range(0x2820, 0x2827),
756 	regmap_reg_range(0x2830, 0x2837),
757 	regmap_reg_range(0x2840, 0x284b),
758 	regmap_reg_range(0x2900, 0x2907),
759 	regmap_reg_range(0x2914, 0x291b),
760 	regmap_reg_range(0x2920, 0x2920),
761 	regmap_reg_range(0x2923, 0x2927),
762 	regmap_reg_range(0x2a00, 0x2a03),
763 	regmap_reg_range(0x2a04, 0x2a07),
764 	regmap_reg_range(0x2b00, 0x2b01),
765 	regmap_reg_range(0x2b04, 0x2b04),
766 	regmap_reg_range(0x2c00, 0x2c05),
767 	regmap_reg_range(0x2c08, 0x2c1b),
768 
769 	/* port 3 */
770 	regmap_reg_range(0x3000, 0x3001),
771 	regmap_reg_range(0x3013, 0x3013),
772 	regmap_reg_range(0x3017, 0x3017),
773 	regmap_reg_range(0x301b, 0x301b),
774 	regmap_reg_range(0x301f, 0x3020),
775 	regmap_reg_range(0x3030, 0x3030),
776 	regmap_reg_range(0x3100, 0x3115),
777 	regmap_reg_range(0x311a, 0x311f),
778 	regmap_reg_range(0x3120, 0x312b),
779 	regmap_reg_range(0x3134, 0x313b),
780 	regmap_reg_range(0x313c, 0x313f),
781 	regmap_reg_range(0x3400, 0x3401),
782 	regmap_reg_range(0x3403, 0x3403),
783 	regmap_reg_range(0x3410, 0x3417),
784 	regmap_reg_range(0x3420, 0x3423),
785 	regmap_reg_range(0x3500, 0x3507),
786 	regmap_reg_range(0x3600, 0x3613),
787 	regmap_reg_range(0x3800, 0x380f),
788 	regmap_reg_range(0x3820, 0x3827),
789 	regmap_reg_range(0x3830, 0x3837),
790 	regmap_reg_range(0x3840, 0x384b),
791 	regmap_reg_range(0x3900, 0x3907),
792 	regmap_reg_range(0x3914, 0x391b),
793 	regmap_reg_range(0x3920, 0x3920),
794 	regmap_reg_range(0x3923, 0x3927),
795 	regmap_reg_range(0x3a00, 0x3a03),
796 	regmap_reg_range(0x3a04, 0x3a07),
797 	regmap_reg_range(0x3b00, 0x3b01),
798 	regmap_reg_range(0x3b04, 0x3b04),
799 	regmap_reg_range(0x3c00, 0x3c05),
800 	regmap_reg_range(0x3c08, 0x3c1b),
801 
802 	/* port 4 */
803 	regmap_reg_range(0x4000, 0x4001),
804 	regmap_reg_range(0x4013, 0x4013),
805 	regmap_reg_range(0x4017, 0x4017),
806 	regmap_reg_range(0x401b, 0x401b),
807 	regmap_reg_range(0x401f, 0x4020),
808 	regmap_reg_range(0x4030, 0x4030),
809 	regmap_reg_range(0x4100, 0x4115),
810 	regmap_reg_range(0x411a, 0x411f),
811 	regmap_reg_range(0x4120, 0x412b),
812 	regmap_reg_range(0x4134, 0x413b),
813 	regmap_reg_range(0x413c, 0x413f),
814 	regmap_reg_range(0x4400, 0x4401),
815 	regmap_reg_range(0x4403, 0x4403),
816 	regmap_reg_range(0x4410, 0x4417),
817 	regmap_reg_range(0x4420, 0x4423),
818 	regmap_reg_range(0x4500, 0x4507),
819 	regmap_reg_range(0x4600, 0x4613),
820 	regmap_reg_range(0x4800, 0x480f),
821 	regmap_reg_range(0x4820, 0x4827),
822 	regmap_reg_range(0x4830, 0x4837),
823 	regmap_reg_range(0x4840, 0x484b),
824 	regmap_reg_range(0x4900, 0x4907),
825 	regmap_reg_range(0x4914, 0x491b),
826 	regmap_reg_range(0x4920, 0x4920),
827 	regmap_reg_range(0x4923, 0x4927),
828 	regmap_reg_range(0x4a00, 0x4a03),
829 	regmap_reg_range(0x4a04, 0x4a07),
830 	regmap_reg_range(0x4b00, 0x4b01),
831 	regmap_reg_range(0x4b04, 0x4b04),
832 	regmap_reg_range(0x4c00, 0x4c05),
833 	regmap_reg_range(0x4c08, 0x4c1b),
834 
835 	/* port 5 */
836 	regmap_reg_range(0x5000, 0x5001),
837 	regmap_reg_range(0x5013, 0x5013),
838 	regmap_reg_range(0x5017, 0x5017),
839 	regmap_reg_range(0x501b, 0x501b),
840 	regmap_reg_range(0x501f, 0x5020),
841 	regmap_reg_range(0x5030, 0x5030),
842 	regmap_reg_range(0x5100, 0x5115),
843 	regmap_reg_range(0x511a, 0x511f),
844 	regmap_reg_range(0x5120, 0x512b),
845 	regmap_reg_range(0x5134, 0x513b),
846 	regmap_reg_range(0x513c, 0x513f),
847 	regmap_reg_range(0x5400, 0x5401),
848 	regmap_reg_range(0x5403, 0x5403),
849 	regmap_reg_range(0x5410, 0x5417),
850 	regmap_reg_range(0x5420, 0x5423),
851 	regmap_reg_range(0x5500, 0x5507),
852 	regmap_reg_range(0x5600, 0x5613),
853 	regmap_reg_range(0x5800, 0x580f),
854 	regmap_reg_range(0x5820, 0x5827),
855 	regmap_reg_range(0x5830, 0x5837),
856 	regmap_reg_range(0x5840, 0x584b),
857 	regmap_reg_range(0x5900, 0x5907),
858 	regmap_reg_range(0x5914, 0x591b),
859 	regmap_reg_range(0x5920, 0x5920),
860 	regmap_reg_range(0x5923, 0x5927),
861 	regmap_reg_range(0x5a00, 0x5a03),
862 	regmap_reg_range(0x5a04, 0x5a07),
863 	regmap_reg_range(0x5b00, 0x5b01),
864 	regmap_reg_range(0x5b04, 0x5b04),
865 	regmap_reg_range(0x5c00, 0x5c05),
866 	regmap_reg_range(0x5c08, 0x5c1b),
867 
868 	/* port 6 */
869 	regmap_reg_range(0x6000, 0x6001),
870 	regmap_reg_range(0x6013, 0x6013),
871 	regmap_reg_range(0x6017, 0x6017),
872 	regmap_reg_range(0x601b, 0x601b),
873 	regmap_reg_range(0x601f, 0x6020),
874 	regmap_reg_range(0x6030, 0x6030),
875 	regmap_reg_range(0x6300, 0x6301),
876 	regmap_reg_range(0x6400, 0x6401),
877 	regmap_reg_range(0x6403, 0x6403),
878 	regmap_reg_range(0x6410, 0x6417),
879 	regmap_reg_range(0x6420, 0x6423),
880 	regmap_reg_range(0x6500, 0x6507),
881 	regmap_reg_range(0x6600, 0x6613),
882 	regmap_reg_range(0x6800, 0x680f),
883 	regmap_reg_range(0x6820, 0x6827),
884 	regmap_reg_range(0x6830, 0x6837),
885 	regmap_reg_range(0x6840, 0x684b),
886 	regmap_reg_range(0x6900, 0x6907),
887 	regmap_reg_range(0x6914, 0x691b),
888 	regmap_reg_range(0x6920, 0x6920),
889 	regmap_reg_range(0x6923, 0x6927),
890 	regmap_reg_range(0x6a00, 0x6a03),
891 	regmap_reg_range(0x6a04, 0x6a07),
892 	regmap_reg_range(0x6b00, 0x6b01),
893 	regmap_reg_range(0x6b04, 0x6b04),
894 	regmap_reg_range(0x6c00, 0x6c05),
895 	regmap_reg_range(0x6c08, 0x6c1b),
896 
897 	/* port 7 */
898 	regmap_reg_range(0x7000, 0x7001),
899 	regmap_reg_range(0x7013, 0x7013),
900 	regmap_reg_range(0x7017, 0x7017),
901 	regmap_reg_range(0x701b, 0x701b),
902 	regmap_reg_range(0x701f, 0x7020),
903 	regmap_reg_range(0x7030, 0x7030),
904 	regmap_reg_range(0x7200, 0x7203),
905 	regmap_reg_range(0x7206, 0x7207),
906 	regmap_reg_range(0x7300, 0x7301),
907 	regmap_reg_range(0x7400, 0x7401),
908 	regmap_reg_range(0x7403, 0x7403),
909 	regmap_reg_range(0x7410, 0x7417),
910 	regmap_reg_range(0x7420, 0x7423),
911 	regmap_reg_range(0x7500, 0x7507),
912 	regmap_reg_range(0x7600, 0x7613),
913 	regmap_reg_range(0x7800, 0x780f),
914 	regmap_reg_range(0x7820, 0x7827),
915 	regmap_reg_range(0x7830, 0x7837),
916 	regmap_reg_range(0x7840, 0x784b),
917 	regmap_reg_range(0x7900, 0x7907),
918 	regmap_reg_range(0x7914, 0x791b),
919 	regmap_reg_range(0x7920, 0x7920),
920 	regmap_reg_range(0x7923, 0x7927),
921 	regmap_reg_range(0x7a00, 0x7a03),
922 	regmap_reg_range(0x7a04, 0x7a07),
923 	regmap_reg_range(0x7b00, 0x7b01),
924 	regmap_reg_range(0x7b04, 0x7b04),
925 	regmap_reg_range(0x7c00, 0x7c05),
926 	regmap_reg_range(0x7c08, 0x7c1b),
927 };
928 
929 static const struct regmap_access_table ksz9477_register_set = {
930 	.yes_ranges = ksz9477_valid_regs,
931 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
932 };
933 
934 static const struct regmap_range ksz9896_valid_regs[] = {
935 	regmap_reg_range(0x0000, 0x0003),
936 	regmap_reg_range(0x0006, 0x0006),
937 	regmap_reg_range(0x0010, 0x001f),
938 	regmap_reg_range(0x0100, 0x0100),
939 	regmap_reg_range(0x0103, 0x0107),
940 	regmap_reg_range(0x010d, 0x010d),
941 	regmap_reg_range(0x0110, 0x0113),
942 	regmap_reg_range(0x0120, 0x0127),
943 	regmap_reg_range(0x0201, 0x0201),
944 	regmap_reg_range(0x0210, 0x0213),
945 	regmap_reg_range(0x0300, 0x0300),
946 	regmap_reg_range(0x0302, 0x030b),
947 	regmap_reg_range(0x0310, 0x031b),
948 	regmap_reg_range(0x0320, 0x032b),
949 	regmap_reg_range(0x0330, 0x0336),
950 	regmap_reg_range(0x0338, 0x033b),
951 	regmap_reg_range(0x033e, 0x033e),
952 	regmap_reg_range(0x0340, 0x035f),
953 	regmap_reg_range(0x0370, 0x0370),
954 	regmap_reg_range(0x0378, 0x0378),
955 	regmap_reg_range(0x037c, 0x037d),
956 	regmap_reg_range(0x0390, 0x0393),
957 	regmap_reg_range(0x0400, 0x040e),
958 	regmap_reg_range(0x0410, 0x042f),
959 
960 	/* port 1 */
961 	regmap_reg_range(0x1000, 0x1001),
962 	regmap_reg_range(0x1013, 0x1013),
963 	regmap_reg_range(0x1017, 0x1017),
964 	regmap_reg_range(0x101b, 0x101b),
965 	regmap_reg_range(0x101f, 0x1020),
966 	regmap_reg_range(0x1030, 0x1030),
967 	regmap_reg_range(0x1100, 0x1115),
968 	regmap_reg_range(0x111a, 0x111f),
969 	regmap_reg_range(0x1122, 0x1127),
970 	regmap_reg_range(0x112a, 0x112b),
971 	regmap_reg_range(0x1136, 0x1139),
972 	regmap_reg_range(0x113e, 0x113f),
973 	regmap_reg_range(0x1400, 0x1401),
974 	regmap_reg_range(0x1403, 0x1403),
975 	regmap_reg_range(0x1410, 0x1417),
976 	regmap_reg_range(0x1420, 0x1423),
977 	regmap_reg_range(0x1500, 0x1507),
978 	regmap_reg_range(0x1600, 0x1612),
979 	regmap_reg_range(0x1800, 0x180f),
980 	regmap_reg_range(0x1820, 0x1827),
981 	regmap_reg_range(0x1830, 0x1837),
982 	regmap_reg_range(0x1840, 0x184b),
983 	regmap_reg_range(0x1900, 0x1907),
984 	regmap_reg_range(0x1914, 0x1915),
985 	regmap_reg_range(0x1a00, 0x1a03),
986 	regmap_reg_range(0x1a04, 0x1a07),
987 	regmap_reg_range(0x1b00, 0x1b01),
988 	regmap_reg_range(0x1b04, 0x1b04),
989 
990 	/* port 2 */
991 	regmap_reg_range(0x2000, 0x2001),
992 	regmap_reg_range(0x2013, 0x2013),
993 	regmap_reg_range(0x2017, 0x2017),
994 	regmap_reg_range(0x201b, 0x201b),
995 	regmap_reg_range(0x201f, 0x2020),
996 	regmap_reg_range(0x2030, 0x2030),
997 	regmap_reg_range(0x2100, 0x2115),
998 	regmap_reg_range(0x211a, 0x211f),
999 	regmap_reg_range(0x2122, 0x2127),
1000 	regmap_reg_range(0x212a, 0x212b),
1001 	regmap_reg_range(0x2136, 0x2139),
1002 	regmap_reg_range(0x213e, 0x213f),
1003 	regmap_reg_range(0x2400, 0x2401),
1004 	regmap_reg_range(0x2403, 0x2403),
1005 	regmap_reg_range(0x2410, 0x2417),
1006 	regmap_reg_range(0x2420, 0x2423),
1007 	regmap_reg_range(0x2500, 0x2507),
1008 	regmap_reg_range(0x2600, 0x2612),
1009 	regmap_reg_range(0x2800, 0x280f),
1010 	regmap_reg_range(0x2820, 0x2827),
1011 	regmap_reg_range(0x2830, 0x2837),
1012 	regmap_reg_range(0x2840, 0x284b),
1013 	regmap_reg_range(0x2900, 0x2907),
1014 	regmap_reg_range(0x2914, 0x2915),
1015 	regmap_reg_range(0x2a00, 0x2a03),
1016 	regmap_reg_range(0x2a04, 0x2a07),
1017 	regmap_reg_range(0x2b00, 0x2b01),
1018 	regmap_reg_range(0x2b04, 0x2b04),
1019 
1020 	/* port 3 */
1021 	regmap_reg_range(0x3000, 0x3001),
1022 	regmap_reg_range(0x3013, 0x3013),
1023 	regmap_reg_range(0x3017, 0x3017),
1024 	regmap_reg_range(0x301b, 0x301b),
1025 	regmap_reg_range(0x301f, 0x3020),
1026 	regmap_reg_range(0x3030, 0x3030),
1027 	regmap_reg_range(0x3100, 0x3115),
1028 	regmap_reg_range(0x311a, 0x311f),
1029 	regmap_reg_range(0x3122, 0x3127),
1030 	regmap_reg_range(0x312a, 0x312b),
1031 	regmap_reg_range(0x3136, 0x3139),
1032 	regmap_reg_range(0x313e, 0x313f),
1033 	regmap_reg_range(0x3400, 0x3401),
1034 	regmap_reg_range(0x3403, 0x3403),
1035 	regmap_reg_range(0x3410, 0x3417),
1036 	regmap_reg_range(0x3420, 0x3423),
1037 	regmap_reg_range(0x3500, 0x3507),
1038 	regmap_reg_range(0x3600, 0x3612),
1039 	regmap_reg_range(0x3800, 0x380f),
1040 	regmap_reg_range(0x3820, 0x3827),
1041 	regmap_reg_range(0x3830, 0x3837),
1042 	regmap_reg_range(0x3840, 0x384b),
1043 	regmap_reg_range(0x3900, 0x3907),
1044 	regmap_reg_range(0x3914, 0x3915),
1045 	regmap_reg_range(0x3a00, 0x3a03),
1046 	regmap_reg_range(0x3a04, 0x3a07),
1047 	regmap_reg_range(0x3b00, 0x3b01),
1048 	regmap_reg_range(0x3b04, 0x3b04),
1049 
1050 	/* port 4 */
1051 	regmap_reg_range(0x4000, 0x4001),
1052 	regmap_reg_range(0x4013, 0x4013),
1053 	regmap_reg_range(0x4017, 0x4017),
1054 	regmap_reg_range(0x401b, 0x401b),
1055 	regmap_reg_range(0x401f, 0x4020),
1056 	regmap_reg_range(0x4030, 0x4030),
1057 	regmap_reg_range(0x4100, 0x4115),
1058 	regmap_reg_range(0x411a, 0x411f),
1059 	regmap_reg_range(0x4122, 0x4127),
1060 	regmap_reg_range(0x412a, 0x412b),
1061 	regmap_reg_range(0x4136, 0x4139),
1062 	regmap_reg_range(0x413e, 0x413f),
1063 	regmap_reg_range(0x4400, 0x4401),
1064 	regmap_reg_range(0x4403, 0x4403),
1065 	regmap_reg_range(0x4410, 0x4417),
1066 	regmap_reg_range(0x4420, 0x4423),
1067 	regmap_reg_range(0x4500, 0x4507),
1068 	regmap_reg_range(0x4600, 0x4612),
1069 	regmap_reg_range(0x4800, 0x480f),
1070 	regmap_reg_range(0x4820, 0x4827),
1071 	regmap_reg_range(0x4830, 0x4837),
1072 	regmap_reg_range(0x4840, 0x484b),
1073 	regmap_reg_range(0x4900, 0x4907),
1074 	regmap_reg_range(0x4914, 0x4915),
1075 	regmap_reg_range(0x4a00, 0x4a03),
1076 	regmap_reg_range(0x4a04, 0x4a07),
1077 	regmap_reg_range(0x4b00, 0x4b01),
1078 	regmap_reg_range(0x4b04, 0x4b04),
1079 
1080 	/* port 5 */
1081 	regmap_reg_range(0x5000, 0x5001),
1082 	regmap_reg_range(0x5013, 0x5013),
1083 	regmap_reg_range(0x5017, 0x5017),
1084 	regmap_reg_range(0x501b, 0x501b),
1085 	regmap_reg_range(0x501f, 0x5020),
1086 	regmap_reg_range(0x5030, 0x5030),
1087 	regmap_reg_range(0x5100, 0x5115),
1088 	regmap_reg_range(0x511a, 0x511f),
1089 	regmap_reg_range(0x5122, 0x5127),
1090 	regmap_reg_range(0x512a, 0x512b),
1091 	regmap_reg_range(0x5136, 0x5139),
1092 	regmap_reg_range(0x513e, 0x513f),
1093 	regmap_reg_range(0x5400, 0x5401),
1094 	regmap_reg_range(0x5403, 0x5403),
1095 	regmap_reg_range(0x5410, 0x5417),
1096 	regmap_reg_range(0x5420, 0x5423),
1097 	regmap_reg_range(0x5500, 0x5507),
1098 	regmap_reg_range(0x5600, 0x5612),
1099 	regmap_reg_range(0x5800, 0x580f),
1100 	regmap_reg_range(0x5820, 0x5827),
1101 	regmap_reg_range(0x5830, 0x5837),
1102 	regmap_reg_range(0x5840, 0x584b),
1103 	regmap_reg_range(0x5900, 0x5907),
1104 	regmap_reg_range(0x5914, 0x5915),
1105 	regmap_reg_range(0x5a00, 0x5a03),
1106 	regmap_reg_range(0x5a04, 0x5a07),
1107 	regmap_reg_range(0x5b00, 0x5b01),
1108 	regmap_reg_range(0x5b04, 0x5b04),
1109 
1110 	/* port 6 */
1111 	regmap_reg_range(0x6000, 0x6001),
1112 	regmap_reg_range(0x6013, 0x6013),
1113 	regmap_reg_range(0x6017, 0x6017),
1114 	regmap_reg_range(0x601b, 0x601b),
1115 	regmap_reg_range(0x601f, 0x6020),
1116 	regmap_reg_range(0x6030, 0x6030),
1117 	regmap_reg_range(0x6100, 0x6115),
1118 	regmap_reg_range(0x611a, 0x611f),
1119 	regmap_reg_range(0x6122, 0x6127),
1120 	regmap_reg_range(0x612a, 0x612b),
1121 	regmap_reg_range(0x6136, 0x6139),
1122 	regmap_reg_range(0x613e, 0x613f),
1123 	regmap_reg_range(0x6300, 0x6301),
1124 	regmap_reg_range(0x6400, 0x6401),
1125 	regmap_reg_range(0x6403, 0x6403),
1126 	regmap_reg_range(0x6410, 0x6417),
1127 	regmap_reg_range(0x6420, 0x6423),
1128 	regmap_reg_range(0x6500, 0x6507),
1129 	regmap_reg_range(0x6600, 0x6612),
1130 	regmap_reg_range(0x6800, 0x680f),
1131 	regmap_reg_range(0x6820, 0x6827),
1132 	regmap_reg_range(0x6830, 0x6837),
1133 	regmap_reg_range(0x6840, 0x684b),
1134 	regmap_reg_range(0x6900, 0x6907),
1135 	regmap_reg_range(0x6914, 0x6915),
1136 	regmap_reg_range(0x6a00, 0x6a03),
1137 	regmap_reg_range(0x6a04, 0x6a07),
1138 	regmap_reg_range(0x6b00, 0x6b01),
1139 	regmap_reg_range(0x6b04, 0x6b04),
1140 };
1141 
1142 static const struct regmap_access_table ksz9896_register_set = {
1143 	.yes_ranges = ksz9896_valid_regs,
1144 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1145 };
1146 
1147 static const struct regmap_range ksz8873_valid_regs[] = {
1148 	regmap_reg_range(0x00, 0x01),
1149 	/* global control register */
1150 	regmap_reg_range(0x02, 0x0f),
1151 
1152 	/* port registers */
1153 	regmap_reg_range(0x10, 0x1d),
1154 	regmap_reg_range(0x1e, 0x1f),
1155 	regmap_reg_range(0x20, 0x2d),
1156 	regmap_reg_range(0x2e, 0x2f),
1157 	regmap_reg_range(0x30, 0x39),
1158 	regmap_reg_range(0x3f, 0x3f),
1159 
1160 	/* advanced control registers */
1161 	regmap_reg_range(0x60, 0x6f),
1162 	regmap_reg_range(0x70, 0x75),
1163 	regmap_reg_range(0x76, 0x78),
1164 	regmap_reg_range(0x79, 0x7a),
1165 	regmap_reg_range(0x7b, 0x83),
1166 	regmap_reg_range(0x8e, 0x99),
1167 	regmap_reg_range(0x9a, 0xa5),
1168 	regmap_reg_range(0xa6, 0xa6),
1169 	regmap_reg_range(0xa7, 0xaa),
1170 	regmap_reg_range(0xab, 0xae),
1171 	regmap_reg_range(0xaf, 0xba),
1172 	regmap_reg_range(0xbb, 0xbc),
1173 	regmap_reg_range(0xbd, 0xbd),
1174 	regmap_reg_range(0xc0, 0xc0),
1175 	regmap_reg_range(0xc2, 0xc2),
1176 	regmap_reg_range(0xc3, 0xc3),
1177 	regmap_reg_range(0xc4, 0xc4),
1178 	regmap_reg_range(0xc6, 0xc6),
1179 };
1180 
1181 static const struct regmap_access_table ksz8873_register_set = {
1182 	.yes_ranges = ksz8873_valid_regs,
1183 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1184 };
1185 
1186 const struct ksz_chip_data ksz_switch_chips[] = {
1187 	[KSZ8563] = {
1188 		.chip_id = KSZ8563_CHIP_ID,
1189 		.dev_name = "KSZ8563",
1190 		.num_vlans = 4096,
1191 		.num_alus = 4096,
1192 		.num_statics = 16,
1193 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1194 		.port_cnt = 3,		/* total port count */
1195 		.port_nirqs = 3,
1196 		.num_tx_queues = 4,
1197 		.tc_cbs_supported = true,
1198 		.tc_ets_supported = true,
1199 		.ops = &ksz9477_dev_ops,
1200 		.mib_names = ksz9477_mib_names,
1201 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1202 		.reg_mib_cnt = MIB_COUNTER_NUM,
1203 		.regs = ksz9477_regs,
1204 		.masks = ksz9477_masks,
1205 		.shifts = ksz9477_shifts,
1206 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1207 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1208 		.supports_mii = {false, false, true},
1209 		.supports_rmii = {false, false, true},
1210 		.supports_rgmii = {false, false, true},
1211 		.internal_phy = {true, true, false},
1212 		.gbit_capable = {false, false, true},
1213 		.wr_table = &ksz8563_register_set,
1214 		.rd_table = &ksz8563_register_set,
1215 	},
1216 
1217 	[KSZ8795] = {
1218 		.chip_id = KSZ8795_CHIP_ID,
1219 		.dev_name = "KSZ8795",
1220 		.num_vlans = 4096,
1221 		.num_alus = 0,
1222 		.num_statics = 8,
1223 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1224 		.port_cnt = 5,		/* total cpu and user ports */
1225 		.num_tx_queues = 4,
1226 		.ops = &ksz8_dev_ops,
1227 		.ksz87xx_eee_link_erratum = true,
1228 		.mib_names = ksz9477_mib_names,
1229 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1230 		.reg_mib_cnt = MIB_COUNTER_NUM,
1231 		.regs = ksz8795_regs,
1232 		.masks = ksz8795_masks,
1233 		.shifts = ksz8795_shifts,
1234 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1235 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1236 		.supports_mii = {false, false, false, false, true},
1237 		.supports_rmii = {false, false, false, false, true},
1238 		.supports_rgmii = {false, false, false, false, true},
1239 		.internal_phy = {true, true, true, true, false},
1240 	},
1241 
1242 	[KSZ8794] = {
1243 		/* WARNING
1244 		 * =======
1245 		 * KSZ8794 is similar to KSZ8795, except the port map
1246 		 * contains a gap between external and CPU ports, the
1247 		 * port map is NOT continuous. The per-port register
1248 		 * map is shifted accordingly too, i.e. registers at
1249 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1250 		 * used on KSZ8795 for external port 3.
1251 		 *           external  cpu
1252 		 * KSZ8794   0,1,2      4
1253 		 * KSZ8795   0,1,2,3    4
1254 		 * KSZ8765   0,1,2,3    4
1255 		 * port_cnt is configured as 5, even though it is 4
1256 		 */
1257 		.chip_id = KSZ8794_CHIP_ID,
1258 		.dev_name = "KSZ8794",
1259 		.num_vlans = 4096,
1260 		.num_alus = 0,
1261 		.num_statics = 8,
1262 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1263 		.port_cnt = 5,		/* total cpu and user ports */
1264 		.num_tx_queues = 4,
1265 		.ops = &ksz8_dev_ops,
1266 		.ksz87xx_eee_link_erratum = true,
1267 		.mib_names = ksz9477_mib_names,
1268 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1269 		.reg_mib_cnt = MIB_COUNTER_NUM,
1270 		.regs = ksz8795_regs,
1271 		.masks = ksz8795_masks,
1272 		.shifts = ksz8795_shifts,
1273 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1274 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1275 		.supports_mii = {false, false, false, false, true},
1276 		.supports_rmii = {false, false, false, false, true},
1277 		.supports_rgmii = {false, false, false, false, true},
1278 		.internal_phy = {true, true, true, false, false},
1279 	},
1280 
1281 	[KSZ8765] = {
1282 		.chip_id = KSZ8765_CHIP_ID,
1283 		.dev_name = "KSZ8765",
1284 		.num_vlans = 4096,
1285 		.num_alus = 0,
1286 		.num_statics = 8,
1287 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1288 		.port_cnt = 5,		/* total cpu and user ports */
1289 		.num_tx_queues = 4,
1290 		.ops = &ksz8_dev_ops,
1291 		.ksz87xx_eee_link_erratum = true,
1292 		.mib_names = ksz9477_mib_names,
1293 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1294 		.reg_mib_cnt = MIB_COUNTER_NUM,
1295 		.regs = ksz8795_regs,
1296 		.masks = ksz8795_masks,
1297 		.shifts = ksz8795_shifts,
1298 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1299 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1300 		.supports_mii = {false, false, false, false, true},
1301 		.supports_rmii = {false, false, false, false, true},
1302 		.supports_rgmii = {false, false, false, false, true},
1303 		.internal_phy = {true, true, true, true, false},
1304 	},
1305 
1306 	[KSZ8830] = {
1307 		.chip_id = KSZ8830_CHIP_ID,
1308 		.dev_name = "KSZ8863/KSZ8873",
1309 		.num_vlans = 16,
1310 		.num_alus = 0,
1311 		.num_statics = 8,
1312 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1313 		.port_cnt = 3,
1314 		.num_tx_queues = 4,
1315 		.ops = &ksz8_dev_ops,
1316 		.mib_names = ksz88xx_mib_names,
1317 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1318 		.reg_mib_cnt = MIB_COUNTER_NUM,
1319 		.regs = ksz8863_regs,
1320 		.masks = ksz8863_masks,
1321 		.shifts = ksz8863_shifts,
1322 		.supports_mii = {false, false, true},
1323 		.supports_rmii = {false, false, true},
1324 		.internal_phy = {true, true, false},
1325 		.wr_table = &ksz8873_register_set,
1326 		.rd_table = &ksz8873_register_set,
1327 	},
1328 
1329 	[KSZ9477] = {
1330 		.chip_id = KSZ9477_CHIP_ID,
1331 		.dev_name = "KSZ9477",
1332 		.num_vlans = 4096,
1333 		.num_alus = 4096,
1334 		.num_statics = 16,
1335 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1336 		.port_cnt = 7,		/* total physical port count */
1337 		.port_nirqs = 4,
1338 		.num_tx_queues = 4,
1339 		.tc_cbs_supported = true,
1340 		.tc_ets_supported = true,
1341 		.ops = &ksz9477_dev_ops,
1342 		.mib_names = ksz9477_mib_names,
1343 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1344 		.reg_mib_cnt = MIB_COUNTER_NUM,
1345 		.regs = ksz9477_regs,
1346 		.masks = ksz9477_masks,
1347 		.shifts = ksz9477_shifts,
1348 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1349 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1350 		.supports_mii	= {false, false, false, false,
1351 				   false, true, false},
1352 		.supports_rmii	= {false, false, false, false,
1353 				   false, true, false},
1354 		.supports_rgmii = {false, false, false, false,
1355 				   false, true, false},
1356 		.internal_phy	= {true, true, true, true,
1357 				   true, false, false},
1358 		.gbit_capable	= {true, true, true, true, true, true, true},
1359 		.wr_table = &ksz9477_register_set,
1360 		.rd_table = &ksz9477_register_set,
1361 	},
1362 
1363 	[KSZ9896] = {
1364 		.chip_id = KSZ9896_CHIP_ID,
1365 		.dev_name = "KSZ9896",
1366 		.num_vlans = 4096,
1367 		.num_alus = 4096,
1368 		.num_statics = 16,
1369 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1370 		.port_cnt = 6,		/* total physical port count */
1371 		.port_nirqs = 2,
1372 		.num_tx_queues = 4,
1373 		.ops = &ksz9477_dev_ops,
1374 		.mib_names = ksz9477_mib_names,
1375 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1376 		.reg_mib_cnt = MIB_COUNTER_NUM,
1377 		.regs = ksz9477_regs,
1378 		.masks = ksz9477_masks,
1379 		.shifts = ksz9477_shifts,
1380 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1381 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1382 		.supports_mii	= {false, false, false, false,
1383 				   false, true},
1384 		.supports_rmii	= {false, false, false, false,
1385 				   false, true},
1386 		.supports_rgmii = {false, false, false, false,
1387 				   false, true},
1388 		.internal_phy	= {true, true, true, true,
1389 				   true, false},
1390 		.gbit_capable	= {true, true, true, true, true, true},
1391 		.wr_table = &ksz9896_register_set,
1392 		.rd_table = &ksz9896_register_set,
1393 	},
1394 
1395 	[KSZ9897] = {
1396 		.chip_id = KSZ9897_CHIP_ID,
1397 		.dev_name = "KSZ9897",
1398 		.num_vlans = 4096,
1399 		.num_alus = 4096,
1400 		.num_statics = 16,
1401 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1402 		.port_cnt = 7,		/* total physical port count */
1403 		.port_nirqs = 2,
1404 		.num_tx_queues = 4,
1405 		.ops = &ksz9477_dev_ops,
1406 		.mib_names = ksz9477_mib_names,
1407 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1408 		.reg_mib_cnt = MIB_COUNTER_NUM,
1409 		.regs = ksz9477_regs,
1410 		.masks = ksz9477_masks,
1411 		.shifts = ksz9477_shifts,
1412 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1413 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1414 		.supports_mii	= {false, false, false, false,
1415 				   false, true, true},
1416 		.supports_rmii	= {false, false, false, false,
1417 				   false, true, true},
1418 		.supports_rgmii = {false, false, false, false,
1419 				   false, true, true},
1420 		.internal_phy	= {true, true, true, true,
1421 				   true, false, false},
1422 		.gbit_capable	= {true, true, true, true, true, true, true},
1423 	},
1424 
1425 	[KSZ9893] = {
1426 		.chip_id = KSZ9893_CHIP_ID,
1427 		.dev_name = "KSZ9893",
1428 		.num_vlans = 4096,
1429 		.num_alus = 4096,
1430 		.num_statics = 16,
1431 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1432 		.port_cnt = 3,		/* total port count */
1433 		.port_nirqs = 2,
1434 		.num_tx_queues = 4,
1435 		.ops = &ksz9477_dev_ops,
1436 		.mib_names = ksz9477_mib_names,
1437 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1438 		.reg_mib_cnt = MIB_COUNTER_NUM,
1439 		.regs = ksz9477_regs,
1440 		.masks = ksz9477_masks,
1441 		.shifts = ksz9477_shifts,
1442 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1443 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1444 		.supports_mii = {false, false, true},
1445 		.supports_rmii = {false, false, true},
1446 		.supports_rgmii = {false, false, true},
1447 		.internal_phy = {true, true, false},
1448 		.gbit_capable = {true, true, true},
1449 	},
1450 
1451 	[KSZ9563] = {
1452 		.chip_id = KSZ9563_CHIP_ID,
1453 		.dev_name = "KSZ9563",
1454 		.num_vlans = 4096,
1455 		.num_alus = 4096,
1456 		.num_statics = 16,
1457 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1458 		.port_cnt = 3,		/* total port count */
1459 		.port_nirqs = 3,
1460 		.num_tx_queues = 4,
1461 		.tc_cbs_supported = true,
1462 		.tc_ets_supported = true,
1463 		.ops = &ksz9477_dev_ops,
1464 		.mib_names = ksz9477_mib_names,
1465 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1466 		.reg_mib_cnt = MIB_COUNTER_NUM,
1467 		.regs = ksz9477_regs,
1468 		.masks = ksz9477_masks,
1469 		.shifts = ksz9477_shifts,
1470 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1471 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1472 		.supports_mii = {false, false, true},
1473 		.supports_rmii = {false, false, true},
1474 		.supports_rgmii = {false, false, true},
1475 		.internal_phy = {true, true, false},
1476 		.gbit_capable = {true, true, true},
1477 	},
1478 
1479 	[KSZ8567] = {
1480 		.chip_id = KSZ8567_CHIP_ID,
1481 		.dev_name = "KSZ8567",
1482 		.num_vlans = 4096,
1483 		.num_alus = 4096,
1484 		.num_statics = 16,
1485 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1486 		.port_cnt = 7,		/* total port count */
1487 		.port_nirqs = 3,
1488 		.num_tx_queues = 4,
1489 		.tc_cbs_supported = true,
1490 		.tc_ets_supported = true,
1491 		.ops = &ksz9477_dev_ops,
1492 		.mib_names = ksz9477_mib_names,
1493 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1494 		.reg_mib_cnt = MIB_COUNTER_NUM,
1495 		.regs = ksz9477_regs,
1496 		.masks = ksz9477_masks,
1497 		.shifts = ksz9477_shifts,
1498 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1499 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1500 		.supports_mii	= {false, false, false, false,
1501 				   false, true, true},
1502 		.supports_rmii	= {false, false, false, false,
1503 				   false, true, true},
1504 		.supports_rgmii = {false, false, false, false,
1505 				   false, true, true},
1506 		.internal_phy	= {true, true, true, true,
1507 				   true, false, false},
1508 		.gbit_capable	= {false, false, false, false, false,
1509 				   true, true},
1510 	},
1511 
1512 	[KSZ9567] = {
1513 		.chip_id = KSZ9567_CHIP_ID,
1514 		.dev_name = "KSZ9567",
1515 		.num_vlans = 4096,
1516 		.num_alus = 4096,
1517 		.num_statics = 16,
1518 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1519 		.port_cnt = 7,		/* total physical port count */
1520 		.port_nirqs = 3,
1521 		.num_tx_queues = 4,
1522 		.tc_cbs_supported = true,
1523 		.tc_ets_supported = true,
1524 		.ops = &ksz9477_dev_ops,
1525 		.mib_names = ksz9477_mib_names,
1526 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1527 		.reg_mib_cnt = MIB_COUNTER_NUM,
1528 		.regs = ksz9477_regs,
1529 		.masks = ksz9477_masks,
1530 		.shifts = ksz9477_shifts,
1531 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1532 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1533 		.supports_mii	= {false, false, false, false,
1534 				   false, true, true},
1535 		.supports_rmii	= {false, false, false, false,
1536 				   false, true, true},
1537 		.supports_rgmii = {false, false, false, false,
1538 				   false, true, true},
1539 		.internal_phy	= {true, true, true, true,
1540 				   true, false, false},
1541 		.gbit_capable	= {true, true, true, true, true, true, true},
1542 	},
1543 
1544 	[LAN9370] = {
1545 		.chip_id = LAN9370_CHIP_ID,
1546 		.dev_name = "LAN9370",
1547 		.num_vlans = 4096,
1548 		.num_alus = 1024,
1549 		.num_statics = 256,
1550 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1551 		.port_cnt = 5,		/* total physical port count */
1552 		.port_nirqs = 6,
1553 		.num_tx_queues = 8,
1554 		.tc_cbs_supported = true,
1555 		.tc_ets_supported = true,
1556 		.ops = &lan937x_dev_ops,
1557 		.mib_names = ksz9477_mib_names,
1558 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1559 		.reg_mib_cnt = MIB_COUNTER_NUM,
1560 		.regs = ksz9477_regs,
1561 		.masks = lan937x_masks,
1562 		.shifts = lan937x_shifts,
1563 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1564 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1565 		.supports_mii = {false, false, false, false, true},
1566 		.supports_rmii = {false, false, false, false, true},
1567 		.supports_rgmii = {false, false, false, false, true},
1568 		.internal_phy = {true, true, true, true, false},
1569 	},
1570 
1571 	[LAN9371] = {
1572 		.chip_id = LAN9371_CHIP_ID,
1573 		.dev_name = "LAN9371",
1574 		.num_vlans = 4096,
1575 		.num_alus = 1024,
1576 		.num_statics = 256,
1577 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1578 		.port_cnt = 6,		/* total physical port count */
1579 		.port_nirqs = 6,
1580 		.num_tx_queues = 8,
1581 		.tc_cbs_supported = true,
1582 		.tc_ets_supported = true,
1583 		.ops = &lan937x_dev_ops,
1584 		.mib_names = ksz9477_mib_names,
1585 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1586 		.reg_mib_cnt = MIB_COUNTER_NUM,
1587 		.regs = ksz9477_regs,
1588 		.masks = lan937x_masks,
1589 		.shifts = lan937x_shifts,
1590 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1591 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1592 		.supports_mii = {false, false, false, false, true, true},
1593 		.supports_rmii = {false, false, false, false, true, true},
1594 		.supports_rgmii = {false, false, false, false, true, true},
1595 		.internal_phy = {true, true, true, true, false, false},
1596 	},
1597 
1598 	[LAN9372] = {
1599 		.chip_id = LAN9372_CHIP_ID,
1600 		.dev_name = "LAN9372",
1601 		.num_vlans = 4096,
1602 		.num_alus = 1024,
1603 		.num_statics = 256,
1604 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1605 		.port_cnt = 8,		/* total physical port count */
1606 		.port_nirqs = 6,
1607 		.num_tx_queues = 8,
1608 		.tc_cbs_supported = true,
1609 		.tc_ets_supported = true,
1610 		.ops = &lan937x_dev_ops,
1611 		.mib_names = ksz9477_mib_names,
1612 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1613 		.reg_mib_cnt = MIB_COUNTER_NUM,
1614 		.regs = ksz9477_regs,
1615 		.masks = lan937x_masks,
1616 		.shifts = lan937x_shifts,
1617 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1618 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1619 		.supports_mii	= {false, false, false, false,
1620 				   true, true, false, false},
1621 		.supports_rmii	= {false, false, false, false,
1622 				   true, true, false, false},
1623 		.supports_rgmii = {false, false, false, false,
1624 				   true, true, false, false},
1625 		.internal_phy	= {true, true, true, true,
1626 				   false, false, true, true},
1627 	},
1628 
1629 	[LAN9373] = {
1630 		.chip_id = LAN9373_CHIP_ID,
1631 		.dev_name = "LAN9373",
1632 		.num_vlans = 4096,
1633 		.num_alus = 1024,
1634 		.num_statics = 256,
1635 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1636 		.port_cnt = 5,		/* total physical port count */
1637 		.port_nirqs = 6,
1638 		.num_tx_queues = 8,
1639 		.tc_cbs_supported = true,
1640 		.tc_ets_supported = true,
1641 		.ops = &lan937x_dev_ops,
1642 		.mib_names = ksz9477_mib_names,
1643 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1644 		.reg_mib_cnt = MIB_COUNTER_NUM,
1645 		.regs = ksz9477_regs,
1646 		.masks = lan937x_masks,
1647 		.shifts = lan937x_shifts,
1648 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1649 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1650 		.supports_mii	= {false, false, false, false,
1651 				   true, true, false, false},
1652 		.supports_rmii	= {false, false, false, false,
1653 				   true, true, false, false},
1654 		.supports_rgmii = {false, false, false, false,
1655 				   true, true, false, false},
1656 		.internal_phy	= {true, true, true, false,
1657 				   false, false, true, true},
1658 	},
1659 
1660 	[LAN9374] = {
1661 		.chip_id = LAN9374_CHIP_ID,
1662 		.dev_name = "LAN9374",
1663 		.num_vlans = 4096,
1664 		.num_alus = 1024,
1665 		.num_statics = 256,
1666 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1667 		.port_cnt = 8,		/* total physical port count */
1668 		.port_nirqs = 6,
1669 		.num_tx_queues = 8,
1670 		.tc_cbs_supported = true,
1671 		.tc_ets_supported = true,
1672 		.ops = &lan937x_dev_ops,
1673 		.mib_names = ksz9477_mib_names,
1674 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1675 		.reg_mib_cnt = MIB_COUNTER_NUM,
1676 		.regs = ksz9477_regs,
1677 		.masks = lan937x_masks,
1678 		.shifts = lan937x_shifts,
1679 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1680 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1681 		.supports_mii	= {false, false, false, false,
1682 				   true, true, false, false},
1683 		.supports_rmii	= {false, false, false, false,
1684 				   true, true, false, false},
1685 		.supports_rgmii = {false, false, false, false,
1686 				   true, true, false, false},
1687 		.internal_phy	= {true, true, true, true,
1688 				   false, false, true, true},
1689 	},
1690 };
1691 EXPORT_SYMBOL_GPL(ksz_switch_chips);
1692 
1693 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1694 {
1695 	int i;
1696 
1697 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1698 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1699 
1700 		if (chip->chip_id == prod_num)
1701 			return chip;
1702 	}
1703 
1704 	return NULL;
1705 }
1706 
1707 static int ksz_check_device_id(struct ksz_device *dev)
1708 {
1709 	const struct ksz_chip_data *expected_chip_data;
1710 	u32 expected_chip_id;
1711 
1712 	if (dev->pdata) {
1713 		expected_chip_id = dev->pdata->chip_id;
1714 		expected_chip_data = ksz_lookup_info(expected_chip_id);
1715 		if (WARN_ON(!expected_chip_data))
1716 			return -ENODEV;
1717 	} else {
1718 		expected_chip_data = of_device_get_match_data(dev->dev);
1719 		expected_chip_id = expected_chip_data->chip_id;
1720 	}
1721 
1722 	if (expected_chip_id != dev->chip_id) {
1723 		dev_err(dev->dev,
1724 			"Device tree specifies chip %s but found %s, please fix it!\n",
1725 			expected_chip_data->dev_name, dev->info->dev_name);
1726 		return -ENODEV;
1727 	}
1728 
1729 	return 0;
1730 }
1731 
1732 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1733 				 struct phylink_config *config)
1734 {
1735 	struct ksz_device *dev = ds->priv;
1736 
1737 	if (dev->info->supports_mii[port])
1738 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1739 
1740 	if (dev->info->supports_rmii[port])
1741 		__set_bit(PHY_INTERFACE_MODE_RMII,
1742 			  config->supported_interfaces);
1743 
1744 	if (dev->info->supports_rgmii[port])
1745 		phy_interface_set_rgmii(config->supported_interfaces);
1746 
1747 	if (dev->info->internal_phy[port]) {
1748 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1749 			  config->supported_interfaces);
1750 		/* Compatibility for phylib's default interface type when the
1751 		 * phy-mode property is absent
1752 		 */
1753 		__set_bit(PHY_INTERFACE_MODE_GMII,
1754 			  config->supported_interfaces);
1755 	}
1756 
1757 	if (dev->dev_ops->get_caps)
1758 		dev->dev_ops->get_caps(dev, port, config);
1759 }
1760 
1761 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
1762 {
1763 	struct ethtool_pause_stats *pstats;
1764 	struct rtnl_link_stats64 *stats;
1765 	struct ksz_stats_raw *raw;
1766 	struct ksz_port_mib *mib;
1767 
1768 	mib = &dev->ports[port].mib;
1769 	stats = &mib->stats64;
1770 	pstats = &mib->pause_stats;
1771 	raw = (struct ksz_stats_raw *)mib->counters;
1772 
1773 	spin_lock(&mib->stats64_lock);
1774 
1775 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1776 		raw->rx_pause;
1777 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1778 		raw->tx_pause;
1779 
1780 	/* HW counters are counting bytes + FCS which is not acceptable
1781 	 * for rtnl_link_stats64 interface
1782 	 */
1783 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
1784 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
1785 
1786 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1787 		raw->rx_oversize;
1788 
1789 	stats->rx_crc_errors = raw->rx_crc_err;
1790 	stats->rx_frame_errors = raw->rx_align_err;
1791 	stats->rx_dropped = raw->rx_discards;
1792 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1793 		stats->rx_frame_errors  + stats->rx_dropped;
1794 
1795 	stats->tx_window_errors = raw->tx_late_col;
1796 	stats->tx_fifo_errors = raw->tx_discards;
1797 	stats->tx_aborted_errors = raw->tx_exc_col;
1798 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1799 		stats->tx_aborted_errors;
1800 
1801 	stats->multicast = raw->rx_mcast;
1802 	stats->collisions = raw->tx_total_col;
1803 
1804 	pstats->tx_pause_frames = raw->tx_pause;
1805 	pstats->rx_pause_frames = raw->rx_pause;
1806 
1807 	spin_unlock(&mib->stats64_lock);
1808 }
1809 
1810 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
1811 {
1812 	struct ethtool_pause_stats *pstats;
1813 	struct rtnl_link_stats64 *stats;
1814 	struct ksz88xx_stats_raw *raw;
1815 	struct ksz_port_mib *mib;
1816 
1817 	mib = &dev->ports[port].mib;
1818 	stats = &mib->stats64;
1819 	pstats = &mib->pause_stats;
1820 	raw = (struct ksz88xx_stats_raw *)mib->counters;
1821 
1822 	spin_lock(&mib->stats64_lock);
1823 
1824 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1825 		raw->rx_pause;
1826 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1827 		raw->tx_pause;
1828 
1829 	/* HW counters are counting bytes + FCS which is not acceptable
1830 	 * for rtnl_link_stats64 interface
1831 	 */
1832 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
1833 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
1834 
1835 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1836 		raw->rx_oversize;
1837 
1838 	stats->rx_crc_errors = raw->rx_crc_err;
1839 	stats->rx_frame_errors = raw->rx_align_err;
1840 	stats->rx_dropped = raw->rx_discards;
1841 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1842 		stats->rx_frame_errors  + stats->rx_dropped;
1843 
1844 	stats->tx_window_errors = raw->tx_late_col;
1845 	stats->tx_fifo_errors = raw->tx_discards;
1846 	stats->tx_aborted_errors = raw->tx_exc_col;
1847 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1848 		stats->tx_aborted_errors;
1849 
1850 	stats->multicast = raw->rx_mcast;
1851 	stats->collisions = raw->tx_total_col;
1852 
1853 	pstats->tx_pause_frames = raw->tx_pause;
1854 	pstats->rx_pause_frames = raw->rx_pause;
1855 
1856 	spin_unlock(&mib->stats64_lock);
1857 }
1858 
1859 static void ksz_get_stats64(struct dsa_switch *ds, int port,
1860 			    struct rtnl_link_stats64 *s)
1861 {
1862 	struct ksz_device *dev = ds->priv;
1863 	struct ksz_port_mib *mib;
1864 
1865 	mib = &dev->ports[port].mib;
1866 
1867 	spin_lock(&mib->stats64_lock);
1868 	memcpy(s, &mib->stats64, sizeof(*s));
1869 	spin_unlock(&mib->stats64_lock);
1870 }
1871 
1872 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
1873 				struct ethtool_pause_stats *pause_stats)
1874 {
1875 	struct ksz_device *dev = ds->priv;
1876 	struct ksz_port_mib *mib;
1877 
1878 	mib = &dev->ports[port].mib;
1879 
1880 	spin_lock(&mib->stats64_lock);
1881 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
1882 	spin_unlock(&mib->stats64_lock);
1883 }
1884 
1885 static void ksz_get_strings(struct dsa_switch *ds, int port,
1886 			    u32 stringset, uint8_t *buf)
1887 {
1888 	struct ksz_device *dev = ds->priv;
1889 	int i;
1890 
1891 	if (stringset != ETH_SS_STATS)
1892 		return;
1893 
1894 	for (i = 0; i < dev->info->mib_cnt; i++) {
1895 		memcpy(buf + i * ETH_GSTRING_LEN,
1896 		       dev->info->mib_names[i].string, ETH_GSTRING_LEN);
1897 	}
1898 }
1899 
1900 /**
1901  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
1902  *			    isolation settings.
1903  * @dev: A pointer to the struct ksz_device representing the device.
1904  * @port: The port number to adjust.
1905  *
1906  * This function dynamically adjusts the port membership configuration for a
1907  * specified port and other device ports, based on Spanning Tree Protocol (STP)
1908  * states and port isolation settings. Each port, including the CPU port, has a
1909  * membership register, represented as a bitfield, where each bit corresponds
1910  * to a port number. A set bit indicates permission to forward frames to that
1911  * port. This function iterates over all ports, updating the membership register
1912  * to reflect current forwarding permissions:
1913  *
1914  * 1. Forwards frames only to ports that are part of the same bridge group and
1915  *    in the BR_STATE_FORWARDING state.
1916  * 2. Takes into account the isolation status of ports; ports in the
1917  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
1918  *    frames to each other, even if they are in the same bridge group.
1919  * 3. Ensures that the CPU port is included in the membership based on its
1920  *    upstream port configuration, allowing for management and control traffic
1921  *    to flow as required.
1922  */
1923 static void ksz_update_port_member(struct ksz_device *dev, int port)
1924 {
1925 	struct ksz_port *p = &dev->ports[port];
1926 	struct dsa_switch *ds = dev->ds;
1927 	u8 port_member = 0, cpu_port;
1928 	const struct dsa_port *dp;
1929 	int i, j;
1930 
1931 	if (!dsa_is_user_port(ds, port))
1932 		return;
1933 
1934 	dp = dsa_to_port(ds, port);
1935 	cpu_port = BIT(dsa_upstream_port(ds, port));
1936 
1937 	for (i = 0; i < ds->num_ports; i++) {
1938 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
1939 		struct ksz_port *other_p = &dev->ports[i];
1940 		u8 val = 0;
1941 
1942 		if (!dsa_is_user_port(ds, i))
1943 			continue;
1944 		if (port == i)
1945 			continue;
1946 		if (!dsa_port_bridge_same(dp, other_dp))
1947 			continue;
1948 		if (other_p->stp_state != BR_STATE_FORWARDING)
1949 			continue;
1950 
1951 		/* At this point we know that "port" and "other" port [i] are in
1952 		 * the same bridge group and that "other" port [i] is in
1953 		 * forwarding stp state. If "port" is also in forwarding stp
1954 		 * state, we can allow forwarding from port [port] to port [i].
1955 		 * Except if both ports are isolated.
1956 		 */
1957 		if (p->stp_state == BR_STATE_FORWARDING &&
1958 		    !(p->isolated && other_p->isolated)) {
1959 			val |= BIT(port);
1960 			port_member |= BIT(i);
1961 		}
1962 
1963 		/* Retain port [i]'s relationship to other ports than [port] */
1964 		for (j = 0; j < ds->num_ports; j++) {
1965 			const struct dsa_port *third_dp;
1966 			struct ksz_port *third_p;
1967 
1968 			if (j == i)
1969 				continue;
1970 			if (j == port)
1971 				continue;
1972 			if (!dsa_is_user_port(ds, j))
1973 				continue;
1974 			third_p = &dev->ports[j];
1975 			if (third_p->stp_state != BR_STATE_FORWARDING)
1976 				continue;
1977 
1978 			third_dp = dsa_to_port(ds, j);
1979 
1980 			/* Now we updating relation of the "other" port [i] to
1981 			 * the "third" port [j]. We already know that "other"
1982 			 * port [i] is in forwarding stp state and that "third"
1983 			 * port [j] is in forwarding stp state too.
1984 			 * We need to check if "other" port [i] and "third" port
1985 			 * [j] are in the same bridge group and not isolated
1986 			 * before allowing forwarding from port [i] to port [j].
1987 			 */
1988 			if (dsa_port_bridge_same(other_dp, third_dp) &&
1989 			    !(other_p->isolated && third_p->isolated))
1990 				val |= BIT(j);
1991 		}
1992 
1993 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
1994 	}
1995 
1996 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
1997 }
1998 
1999 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2000 {
2001 	struct ksz_device *dev = bus->priv;
2002 	u16 val;
2003 	int ret;
2004 
2005 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2006 	if (ret < 0)
2007 		return ret;
2008 
2009 	return val;
2010 }
2011 
2012 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2013 			     u16 val)
2014 {
2015 	struct ksz_device *dev = bus->priv;
2016 
2017 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2018 }
2019 
2020 static int ksz_irq_phy_setup(struct ksz_device *dev)
2021 {
2022 	struct dsa_switch *ds = dev->ds;
2023 	int phy;
2024 	int irq;
2025 	int ret;
2026 
2027 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) {
2028 		if (BIT(phy) & ds->phys_mii_mask) {
2029 			irq = irq_find_mapping(dev->ports[phy].pirq.domain,
2030 					       PORT_SRC_PHY_INT);
2031 			if (irq < 0) {
2032 				ret = irq;
2033 				goto out;
2034 			}
2035 			ds->user_mii_bus->irq[phy] = irq;
2036 		}
2037 	}
2038 	return 0;
2039 out:
2040 	while (phy--)
2041 		if (BIT(phy) & ds->phys_mii_mask)
2042 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2043 
2044 	return ret;
2045 }
2046 
2047 static void ksz_irq_phy_free(struct ksz_device *dev)
2048 {
2049 	struct dsa_switch *ds = dev->ds;
2050 	int phy;
2051 
2052 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++)
2053 		if (BIT(phy) & ds->phys_mii_mask)
2054 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2055 }
2056 
2057 static int ksz_mdio_register(struct ksz_device *dev)
2058 {
2059 	struct dsa_switch *ds = dev->ds;
2060 	struct device_node *mdio_np;
2061 	struct mii_bus *bus;
2062 	int ret;
2063 
2064 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2065 	if (!mdio_np)
2066 		return 0;
2067 
2068 	bus = devm_mdiobus_alloc(ds->dev);
2069 	if (!bus) {
2070 		of_node_put(mdio_np);
2071 		return -ENOMEM;
2072 	}
2073 
2074 	bus->priv = dev;
2075 	bus->read = ksz_sw_mdio_read;
2076 	bus->write = ksz_sw_mdio_write;
2077 	bus->name = "ksz user smi";
2078 	snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2079 	bus->parent = ds->dev;
2080 	bus->phy_mask = ~ds->phys_mii_mask;
2081 
2082 	ds->user_mii_bus = bus;
2083 
2084 	if (dev->irq > 0) {
2085 		ret = ksz_irq_phy_setup(dev);
2086 		if (ret) {
2087 			of_node_put(mdio_np);
2088 			return ret;
2089 		}
2090 	}
2091 
2092 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2093 	if (ret) {
2094 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2095 			bus->id);
2096 		if (dev->irq > 0)
2097 			ksz_irq_phy_free(dev);
2098 	}
2099 
2100 	of_node_put(mdio_np);
2101 
2102 	return ret;
2103 }
2104 
2105 static void ksz_irq_mask(struct irq_data *d)
2106 {
2107 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2108 
2109 	kirq->masked |= BIT(d->hwirq);
2110 }
2111 
2112 static void ksz_irq_unmask(struct irq_data *d)
2113 {
2114 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2115 
2116 	kirq->masked &= ~BIT(d->hwirq);
2117 }
2118 
2119 static void ksz_irq_bus_lock(struct irq_data *d)
2120 {
2121 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2122 
2123 	mutex_lock(&kirq->dev->lock_irq);
2124 }
2125 
2126 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2127 {
2128 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2129 	struct ksz_device *dev = kirq->dev;
2130 	int ret;
2131 
2132 	ret = ksz_write32(dev, kirq->reg_mask, kirq->masked);
2133 	if (ret)
2134 		dev_err(dev->dev, "failed to change IRQ mask\n");
2135 
2136 	mutex_unlock(&dev->lock_irq);
2137 }
2138 
2139 static const struct irq_chip ksz_irq_chip = {
2140 	.name			= "ksz-irq",
2141 	.irq_mask		= ksz_irq_mask,
2142 	.irq_unmask		= ksz_irq_unmask,
2143 	.irq_bus_lock		= ksz_irq_bus_lock,
2144 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2145 };
2146 
2147 static int ksz_irq_domain_map(struct irq_domain *d,
2148 			      unsigned int irq, irq_hw_number_t hwirq)
2149 {
2150 	irq_set_chip_data(irq, d->host_data);
2151 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2152 	irq_set_noprobe(irq);
2153 
2154 	return 0;
2155 }
2156 
2157 static const struct irq_domain_ops ksz_irq_domain_ops = {
2158 	.map	= ksz_irq_domain_map,
2159 	.xlate	= irq_domain_xlate_twocell,
2160 };
2161 
2162 static void ksz_irq_free(struct ksz_irq *kirq)
2163 {
2164 	int irq, virq;
2165 
2166 	free_irq(kirq->irq_num, kirq);
2167 
2168 	for (irq = 0; irq < kirq->nirqs; irq++) {
2169 		virq = irq_find_mapping(kirq->domain, irq);
2170 		irq_dispose_mapping(virq);
2171 	}
2172 
2173 	irq_domain_remove(kirq->domain);
2174 }
2175 
2176 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2177 {
2178 	struct ksz_irq *kirq = dev_id;
2179 	unsigned int nhandled = 0;
2180 	struct ksz_device *dev;
2181 	unsigned int sub_irq;
2182 	u8 data;
2183 	int ret;
2184 	u8 n;
2185 
2186 	dev = kirq->dev;
2187 
2188 	/* Read interrupt status register */
2189 	ret = ksz_read8(dev, kirq->reg_status, &data);
2190 	if (ret)
2191 		goto out;
2192 
2193 	for (n = 0; n < kirq->nirqs; ++n) {
2194 		if (data & BIT(n)) {
2195 			sub_irq = irq_find_mapping(kirq->domain, n);
2196 			handle_nested_irq(sub_irq);
2197 			++nhandled;
2198 		}
2199 	}
2200 out:
2201 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2202 }
2203 
2204 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2205 {
2206 	int ret, n;
2207 
2208 	kirq->dev = dev;
2209 	kirq->masked = ~0;
2210 
2211 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2212 					     &ksz_irq_domain_ops, kirq);
2213 	if (!kirq->domain)
2214 		return -ENOMEM;
2215 
2216 	for (n = 0; n < kirq->nirqs; n++)
2217 		irq_create_mapping(kirq->domain, n);
2218 
2219 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2220 				   IRQF_ONESHOT, kirq->name, kirq);
2221 	if (ret)
2222 		goto out;
2223 
2224 	return 0;
2225 
2226 out:
2227 	ksz_irq_free(kirq);
2228 
2229 	return ret;
2230 }
2231 
2232 static int ksz_girq_setup(struct ksz_device *dev)
2233 {
2234 	struct ksz_irq *girq = &dev->girq;
2235 
2236 	girq->nirqs = dev->info->port_cnt;
2237 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2238 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2239 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2240 
2241 	girq->irq_num = dev->irq;
2242 
2243 	return ksz_irq_common_setup(dev, girq);
2244 }
2245 
2246 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2247 {
2248 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2249 
2250 	pirq->nirqs = dev->info->port_nirqs;
2251 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2252 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2253 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2254 
2255 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2256 	if (pirq->irq_num < 0)
2257 		return pirq->irq_num;
2258 
2259 	return ksz_irq_common_setup(dev, pirq);
2260 }
2261 
2262 static int ksz_parse_drive_strength(struct ksz_device *dev);
2263 
2264 static int ksz_setup(struct dsa_switch *ds)
2265 {
2266 	struct ksz_device *dev = ds->priv;
2267 	struct dsa_port *dp;
2268 	struct ksz_port *p;
2269 	const u16 *regs;
2270 	int ret;
2271 
2272 	regs = dev->info->regs;
2273 
2274 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2275 				       dev->info->num_vlans, GFP_KERNEL);
2276 	if (!dev->vlan_cache)
2277 		return -ENOMEM;
2278 
2279 	ret = dev->dev_ops->reset(dev);
2280 	if (ret) {
2281 		dev_err(ds->dev, "failed to reset switch\n");
2282 		return ret;
2283 	}
2284 
2285 	ret = ksz_parse_drive_strength(dev);
2286 	if (ret)
2287 		return ret;
2288 
2289 	/* set broadcast storm protection 10% rate */
2290 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2291 			   BROADCAST_STORM_RATE,
2292 			   (BROADCAST_STORM_VALUE *
2293 			   BROADCAST_STORM_PROT_RATE) / 100);
2294 
2295 	dev->dev_ops->config_cpu_port(ds);
2296 
2297 	dev->dev_ops->enable_stp_addr(dev);
2298 
2299 	ds->num_tx_queues = dev->info->num_tx_queues;
2300 
2301 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2302 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2303 
2304 	ksz_init_mib_timer(dev);
2305 
2306 	ds->configure_vlan_while_not_filtering = false;
2307 
2308 	if (dev->dev_ops->setup) {
2309 		ret = dev->dev_ops->setup(ds);
2310 		if (ret)
2311 			return ret;
2312 	}
2313 
2314 	/* Start with learning disabled on standalone user ports, and enabled
2315 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2316 	 * CPU port will avoid flooding bridge local addresses on the network
2317 	 * in some cases.
2318 	 */
2319 	p = &dev->ports[dev->cpu_port];
2320 	p->learning = true;
2321 
2322 	if (dev->irq > 0) {
2323 		ret = ksz_girq_setup(dev);
2324 		if (ret)
2325 			return ret;
2326 
2327 		dsa_switch_for_each_user_port(dp, dev->ds) {
2328 			ret = ksz_pirq_setup(dev, dp->index);
2329 			if (ret)
2330 				goto out_girq;
2331 
2332 			ret = ksz_ptp_irq_setup(ds, dp->index);
2333 			if (ret)
2334 				goto out_pirq;
2335 		}
2336 	}
2337 
2338 	ret = ksz_ptp_clock_register(ds);
2339 	if (ret) {
2340 		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2341 		goto out_ptpirq;
2342 	}
2343 
2344 	ret = ksz_mdio_register(dev);
2345 	if (ret < 0) {
2346 		dev_err(dev->dev, "failed to register the mdio");
2347 		goto out_ptp_clock_unregister;
2348 	}
2349 
2350 	/* start switch */
2351 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2352 			   SW_START, SW_START);
2353 
2354 	return 0;
2355 
2356 out_ptp_clock_unregister:
2357 	ksz_ptp_clock_unregister(ds);
2358 out_ptpirq:
2359 	if (dev->irq > 0)
2360 		dsa_switch_for_each_user_port(dp, dev->ds)
2361 			ksz_ptp_irq_free(ds, dp->index);
2362 out_pirq:
2363 	if (dev->irq > 0)
2364 		dsa_switch_for_each_user_port(dp, dev->ds)
2365 			ksz_irq_free(&dev->ports[dp->index].pirq);
2366 out_girq:
2367 	if (dev->irq > 0)
2368 		ksz_irq_free(&dev->girq);
2369 
2370 	return ret;
2371 }
2372 
2373 static void ksz_teardown(struct dsa_switch *ds)
2374 {
2375 	struct ksz_device *dev = ds->priv;
2376 	struct dsa_port *dp;
2377 
2378 	ksz_ptp_clock_unregister(ds);
2379 
2380 	if (dev->irq > 0) {
2381 		dsa_switch_for_each_user_port(dp, dev->ds) {
2382 			ksz_ptp_irq_free(ds, dp->index);
2383 
2384 			ksz_irq_free(&dev->ports[dp->index].pirq);
2385 		}
2386 
2387 		ksz_irq_free(&dev->girq);
2388 	}
2389 
2390 	if (dev->dev_ops->teardown)
2391 		dev->dev_ops->teardown(ds);
2392 }
2393 
2394 static void port_r_cnt(struct ksz_device *dev, int port)
2395 {
2396 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2397 	u64 *dropped;
2398 
2399 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2400 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2401 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2402 					&mib->counters[mib->cnt_ptr]);
2403 		++mib->cnt_ptr;
2404 	}
2405 
2406 	/* last one in storage */
2407 	dropped = &mib->counters[dev->info->mib_cnt];
2408 
2409 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2410 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2411 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2412 					dropped, &mib->counters[mib->cnt_ptr]);
2413 		++mib->cnt_ptr;
2414 	}
2415 	mib->cnt_ptr = 0;
2416 }
2417 
2418 static void ksz_mib_read_work(struct work_struct *work)
2419 {
2420 	struct ksz_device *dev = container_of(work, struct ksz_device,
2421 					      mib_read.work);
2422 	struct ksz_port_mib *mib;
2423 	struct ksz_port *p;
2424 	int i;
2425 
2426 	for (i = 0; i < dev->info->port_cnt; i++) {
2427 		if (dsa_is_unused_port(dev->ds, i))
2428 			continue;
2429 
2430 		p = &dev->ports[i];
2431 		mib = &p->mib;
2432 		mutex_lock(&mib->cnt_mutex);
2433 
2434 		/* Only read MIB counters when the port is told to do.
2435 		 * If not, read only dropped counters when link is not up.
2436 		 */
2437 		if (!p->read) {
2438 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2439 
2440 			if (!netif_carrier_ok(dp->user))
2441 				mib->cnt_ptr = dev->info->reg_mib_cnt;
2442 		}
2443 		port_r_cnt(dev, i);
2444 		p->read = false;
2445 
2446 		if (dev->dev_ops->r_mib_stat64)
2447 			dev->dev_ops->r_mib_stat64(dev, i);
2448 
2449 		mutex_unlock(&mib->cnt_mutex);
2450 	}
2451 
2452 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2453 }
2454 
2455 void ksz_init_mib_timer(struct ksz_device *dev)
2456 {
2457 	int i;
2458 
2459 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2460 
2461 	for (i = 0; i < dev->info->port_cnt; i++) {
2462 		struct ksz_port_mib *mib = &dev->ports[i].mib;
2463 
2464 		dev->dev_ops->port_init_cnt(dev, i);
2465 
2466 		mib->cnt_ptr = 0;
2467 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2468 	}
2469 }
2470 
2471 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2472 {
2473 	struct ksz_device *dev = ds->priv;
2474 	u16 val = 0xffff;
2475 	int ret;
2476 
2477 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2478 	if (ret)
2479 		return ret;
2480 
2481 	return val;
2482 }
2483 
2484 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2485 {
2486 	struct ksz_device *dev = ds->priv;
2487 	int ret;
2488 
2489 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2490 	if (ret)
2491 		return ret;
2492 
2493 	return 0;
2494 }
2495 
2496 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2497 {
2498 	struct ksz_device *dev = ds->priv;
2499 
2500 	switch (dev->chip_id) {
2501 	case KSZ8830_CHIP_ID:
2502 		/* Silicon Errata Sheet (DS80000830A):
2503 		 * Port 1 does not work with LinkMD Cable-Testing.
2504 		 * Port 1 does not respond to received PAUSE control frames.
2505 		 */
2506 		if (!port)
2507 			return MICREL_KSZ8_P1_ERRATA;
2508 		break;
2509 	case KSZ9477_CHIP_ID:
2510 		/* KSZ9477 Errata DS80000754C
2511 		 *
2512 		 * Module 4: Energy Efficient Ethernet (EEE) feature select must
2513 		 * be manually disabled
2514 		 *   The EEE feature is enabled by default, but it is not fully
2515 		 *   operational. It must be manually disabled through register
2516 		 *   controls. If not disabled, the PHY ports can auto-negotiate
2517 		 *   to enable EEE, and this feature can cause link drops when
2518 		 *   linked to another device supporting EEE.
2519 		 */
2520 		return MICREL_NO_EEE;
2521 	}
2522 
2523 	return 0;
2524 }
2525 
2526 static void ksz_mac_link_down(struct dsa_switch *ds, int port,
2527 			      unsigned int mode, phy_interface_t interface)
2528 {
2529 	struct ksz_device *dev = ds->priv;
2530 	struct ksz_port *p = &dev->ports[port];
2531 
2532 	/* Read all MIB counters when the link is going down. */
2533 	p->read = true;
2534 	/* timer started */
2535 	if (dev->mib_read_interval)
2536 		schedule_delayed_work(&dev->mib_read, 0);
2537 }
2538 
2539 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
2540 {
2541 	struct ksz_device *dev = ds->priv;
2542 
2543 	if (sset != ETH_SS_STATS)
2544 		return 0;
2545 
2546 	return dev->info->mib_cnt;
2547 }
2548 
2549 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
2550 				  uint64_t *buf)
2551 {
2552 	const struct dsa_port *dp = dsa_to_port(ds, port);
2553 	struct ksz_device *dev = ds->priv;
2554 	struct ksz_port_mib *mib;
2555 
2556 	mib = &dev->ports[port].mib;
2557 	mutex_lock(&mib->cnt_mutex);
2558 
2559 	/* Only read dropped counters if no link. */
2560 	if (!netif_carrier_ok(dp->user))
2561 		mib->cnt_ptr = dev->info->reg_mib_cnt;
2562 	port_r_cnt(dev, port);
2563 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
2564 	mutex_unlock(&mib->cnt_mutex);
2565 }
2566 
2567 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
2568 				struct dsa_bridge bridge,
2569 				bool *tx_fwd_offload,
2570 				struct netlink_ext_ack *extack)
2571 {
2572 	/* port_stp_state_set() will be called after to put the port in
2573 	 * appropriate state so there is no need to do anything.
2574 	 */
2575 
2576 	return 0;
2577 }
2578 
2579 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
2580 				  struct dsa_bridge bridge)
2581 {
2582 	/* port_stp_state_set() will be called after to put the port in
2583 	 * forwarding state so there is no need to do anything.
2584 	 */
2585 }
2586 
2587 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
2588 {
2589 	struct ksz_device *dev = ds->priv;
2590 
2591 	dev->dev_ops->flush_dyn_mac_table(dev, port);
2592 }
2593 
2594 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
2595 {
2596 	struct ksz_device *dev = ds->priv;
2597 
2598 	if (!dev->dev_ops->set_ageing_time)
2599 		return -EOPNOTSUPP;
2600 
2601 	return dev->dev_ops->set_ageing_time(dev, msecs);
2602 }
2603 
2604 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
2605 			    const unsigned char *addr, u16 vid,
2606 			    struct dsa_db db)
2607 {
2608 	struct ksz_device *dev = ds->priv;
2609 
2610 	if (!dev->dev_ops->fdb_add)
2611 		return -EOPNOTSUPP;
2612 
2613 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
2614 }
2615 
2616 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
2617 			    const unsigned char *addr,
2618 			    u16 vid, struct dsa_db db)
2619 {
2620 	struct ksz_device *dev = ds->priv;
2621 
2622 	if (!dev->dev_ops->fdb_del)
2623 		return -EOPNOTSUPP;
2624 
2625 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
2626 }
2627 
2628 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
2629 			     dsa_fdb_dump_cb_t *cb, void *data)
2630 {
2631 	struct ksz_device *dev = ds->priv;
2632 
2633 	if (!dev->dev_ops->fdb_dump)
2634 		return -EOPNOTSUPP;
2635 
2636 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
2637 }
2638 
2639 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
2640 			    const struct switchdev_obj_port_mdb *mdb,
2641 			    struct dsa_db db)
2642 {
2643 	struct ksz_device *dev = ds->priv;
2644 
2645 	if (!dev->dev_ops->mdb_add)
2646 		return -EOPNOTSUPP;
2647 
2648 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
2649 }
2650 
2651 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
2652 			    const struct switchdev_obj_port_mdb *mdb,
2653 			    struct dsa_db db)
2654 {
2655 	struct ksz_device *dev = ds->priv;
2656 
2657 	if (!dev->dev_ops->mdb_del)
2658 		return -EOPNOTSUPP;
2659 
2660 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
2661 }
2662 
2663 static int ksz_port_setup(struct dsa_switch *ds, int port)
2664 {
2665 	struct ksz_device *dev = ds->priv;
2666 
2667 	if (!dsa_is_user_port(ds, port))
2668 		return 0;
2669 
2670 	/* setup user port */
2671 	dev->dev_ops->port_setup(dev, port, false);
2672 
2673 	/* port_stp_state_set() will be called after to enable the port so
2674 	 * there is no need to do anything.
2675 	 */
2676 
2677 	return 0;
2678 }
2679 
2680 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
2681 {
2682 	struct ksz_device *dev = ds->priv;
2683 	struct ksz_port *p;
2684 	const u16 *regs;
2685 	u8 data;
2686 
2687 	regs = dev->info->regs;
2688 
2689 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
2690 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2691 
2692 	p = &dev->ports[port];
2693 
2694 	switch (state) {
2695 	case BR_STATE_DISABLED:
2696 		data |= PORT_LEARN_DISABLE;
2697 		break;
2698 	case BR_STATE_LISTENING:
2699 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2700 		break;
2701 	case BR_STATE_LEARNING:
2702 		data |= PORT_RX_ENABLE;
2703 		if (!p->learning)
2704 			data |= PORT_LEARN_DISABLE;
2705 		break;
2706 	case BR_STATE_FORWARDING:
2707 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2708 		if (!p->learning)
2709 			data |= PORT_LEARN_DISABLE;
2710 		break;
2711 	case BR_STATE_BLOCKING:
2712 		data |= PORT_LEARN_DISABLE;
2713 		break;
2714 	default:
2715 		dev_err(ds->dev, "invalid STP state: %d\n", state);
2716 		return;
2717 	}
2718 
2719 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
2720 
2721 	p->stp_state = state;
2722 
2723 	ksz_update_port_member(dev, port);
2724 }
2725 
2726 static void ksz_port_teardown(struct dsa_switch *ds, int port)
2727 {
2728 	struct ksz_device *dev = ds->priv;
2729 
2730 	switch (dev->chip_id) {
2731 	case KSZ8563_CHIP_ID:
2732 	case KSZ8567_CHIP_ID:
2733 	case KSZ9477_CHIP_ID:
2734 	case KSZ9563_CHIP_ID:
2735 	case KSZ9567_CHIP_ID:
2736 	case KSZ9893_CHIP_ID:
2737 	case KSZ9896_CHIP_ID:
2738 	case KSZ9897_CHIP_ID:
2739 		if (dsa_is_user_port(ds, port))
2740 			ksz9477_port_acl_free(dev, port);
2741 	}
2742 }
2743 
2744 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
2745 				     struct switchdev_brport_flags flags,
2746 				     struct netlink_ext_ack *extack)
2747 {
2748 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
2749 		return -EINVAL;
2750 
2751 	return 0;
2752 }
2753 
2754 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
2755 				 struct switchdev_brport_flags flags,
2756 				 struct netlink_ext_ack *extack)
2757 {
2758 	struct ksz_device *dev = ds->priv;
2759 	struct ksz_port *p = &dev->ports[port];
2760 
2761 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
2762 		if (flags.mask & BR_LEARNING)
2763 			p->learning = !!(flags.val & BR_LEARNING);
2764 
2765 		if (flags.mask & BR_ISOLATED)
2766 			p->isolated = !!(flags.val & BR_ISOLATED);
2767 
2768 		/* Make the change take effect immediately */
2769 		ksz_port_stp_state_set(ds, port, p->stp_state);
2770 	}
2771 
2772 	return 0;
2773 }
2774 
2775 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
2776 						  int port,
2777 						  enum dsa_tag_protocol mp)
2778 {
2779 	struct ksz_device *dev = ds->priv;
2780 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
2781 
2782 	if (dev->chip_id == KSZ8795_CHIP_ID ||
2783 	    dev->chip_id == KSZ8794_CHIP_ID ||
2784 	    dev->chip_id == KSZ8765_CHIP_ID)
2785 		proto = DSA_TAG_PROTO_KSZ8795;
2786 
2787 	if (dev->chip_id == KSZ8830_CHIP_ID ||
2788 	    dev->chip_id == KSZ8563_CHIP_ID ||
2789 	    dev->chip_id == KSZ9893_CHIP_ID ||
2790 	    dev->chip_id == KSZ9563_CHIP_ID)
2791 		proto = DSA_TAG_PROTO_KSZ9893;
2792 
2793 	if (dev->chip_id == KSZ8567_CHIP_ID ||
2794 	    dev->chip_id == KSZ9477_CHIP_ID ||
2795 	    dev->chip_id == KSZ9896_CHIP_ID ||
2796 	    dev->chip_id == KSZ9897_CHIP_ID ||
2797 	    dev->chip_id == KSZ9567_CHIP_ID)
2798 		proto = DSA_TAG_PROTO_KSZ9477;
2799 
2800 	if (is_lan937x(dev))
2801 		proto = DSA_TAG_PROTO_LAN937X;
2802 
2803 	return proto;
2804 }
2805 
2806 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
2807 				    enum dsa_tag_protocol proto)
2808 {
2809 	struct ksz_tagger_data *tagger_data;
2810 
2811 	switch (proto) {
2812 	case DSA_TAG_PROTO_KSZ8795:
2813 		return 0;
2814 	case DSA_TAG_PROTO_KSZ9893:
2815 	case DSA_TAG_PROTO_KSZ9477:
2816 	case DSA_TAG_PROTO_LAN937X:
2817 		tagger_data = ksz_tagger_data(ds);
2818 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
2819 		return 0;
2820 	default:
2821 		return -EPROTONOSUPPORT;
2822 	}
2823 }
2824 
2825 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
2826 				   bool flag, struct netlink_ext_ack *extack)
2827 {
2828 	struct ksz_device *dev = ds->priv;
2829 
2830 	if (!dev->dev_ops->vlan_filtering)
2831 		return -EOPNOTSUPP;
2832 
2833 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
2834 }
2835 
2836 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
2837 			     const struct switchdev_obj_port_vlan *vlan,
2838 			     struct netlink_ext_ack *extack)
2839 {
2840 	struct ksz_device *dev = ds->priv;
2841 
2842 	if (!dev->dev_ops->vlan_add)
2843 		return -EOPNOTSUPP;
2844 
2845 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
2846 }
2847 
2848 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
2849 			     const struct switchdev_obj_port_vlan *vlan)
2850 {
2851 	struct ksz_device *dev = ds->priv;
2852 
2853 	if (!dev->dev_ops->vlan_del)
2854 		return -EOPNOTSUPP;
2855 
2856 	return dev->dev_ops->vlan_del(dev, port, vlan);
2857 }
2858 
2859 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
2860 			       struct dsa_mall_mirror_tc_entry *mirror,
2861 			       bool ingress, struct netlink_ext_ack *extack)
2862 {
2863 	struct ksz_device *dev = ds->priv;
2864 
2865 	if (!dev->dev_ops->mirror_add)
2866 		return -EOPNOTSUPP;
2867 
2868 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
2869 }
2870 
2871 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
2872 				struct dsa_mall_mirror_tc_entry *mirror)
2873 {
2874 	struct ksz_device *dev = ds->priv;
2875 
2876 	if (dev->dev_ops->mirror_del)
2877 		dev->dev_ops->mirror_del(dev, port, mirror);
2878 }
2879 
2880 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
2881 {
2882 	struct ksz_device *dev = ds->priv;
2883 
2884 	if (!dev->dev_ops->change_mtu)
2885 		return -EOPNOTSUPP;
2886 
2887 	return dev->dev_ops->change_mtu(dev, port, mtu);
2888 }
2889 
2890 static int ksz_max_mtu(struct dsa_switch *ds, int port)
2891 {
2892 	struct ksz_device *dev = ds->priv;
2893 
2894 	switch (dev->chip_id) {
2895 	case KSZ8795_CHIP_ID:
2896 	case KSZ8794_CHIP_ID:
2897 	case KSZ8765_CHIP_ID:
2898 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2899 	case KSZ8830_CHIP_ID:
2900 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2901 	case KSZ8563_CHIP_ID:
2902 	case KSZ8567_CHIP_ID:
2903 	case KSZ9477_CHIP_ID:
2904 	case KSZ9563_CHIP_ID:
2905 	case KSZ9567_CHIP_ID:
2906 	case KSZ9893_CHIP_ID:
2907 	case KSZ9896_CHIP_ID:
2908 	case KSZ9897_CHIP_ID:
2909 	case LAN9370_CHIP_ID:
2910 	case LAN9371_CHIP_ID:
2911 	case LAN9372_CHIP_ID:
2912 	case LAN9373_CHIP_ID:
2913 	case LAN9374_CHIP_ID:
2914 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2915 	}
2916 
2917 	return -EOPNOTSUPP;
2918 }
2919 
2920 static int ksz_validate_eee(struct dsa_switch *ds, int port)
2921 {
2922 	struct ksz_device *dev = ds->priv;
2923 
2924 	if (!dev->info->internal_phy[port])
2925 		return -EOPNOTSUPP;
2926 
2927 	switch (dev->chip_id) {
2928 	case KSZ8563_CHIP_ID:
2929 	case KSZ8567_CHIP_ID:
2930 	case KSZ9477_CHIP_ID:
2931 	case KSZ9563_CHIP_ID:
2932 	case KSZ9567_CHIP_ID:
2933 	case KSZ9893_CHIP_ID:
2934 	case KSZ9896_CHIP_ID:
2935 	case KSZ9897_CHIP_ID:
2936 		return 0;
2937 	}
2938 
2939 	return -EOPNOTSUPP;
2940 }
2941 
2942 static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
2943 			   struct ethtool_keee *e)
2944 {
2945 	int ret;
2946 
2947 	ret = ksz_validate_eee(ds, port);
2948 	if (ret)
2949 		return ret;
2950 
2951 	/* There is no documented control of Tx LPI configuration. */
2952 	e->tx_lpi_enabled = true;
2953 
2954 	/* There is no documented control of Tx LPI timer. According to tests
2955 	 * Tx LPI timer seems to be set by default to minimal value.
2956 	 */
2957 	e->tx_lpi_timer = 0;
2958 
2959 	return 0;
2960 }
2961 
2962 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
2963 			   struct ethtool_keee *e)
2964 {
2965 	struct ksz_device *dev = ds->priv;
2966 	int ret;
2967 
2968 	ret = ksz_validate_eee(ds, port);
2969 	if (ret)
2970 		return ret;
2971 
2972 	if (!e->tx_lpi_enabled) {
2973 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
2974 		return -EINVAL;
2975 	}
2976 
2977 	if (e->tx_lpi_timer) {
2978 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
2979 		return -EINVAL;
2980 	}
2981 
2982 	return 0;
2983 }
2984 
2985 static void ksz_set_xmii(struct ksz_device *dev, int port,
2986 			 phy_interface_t interface)
2987 {
2988 	const u8 *bitval = dev->info->xmii_ctrl1;
2989 	struct ksz_port *p = &dev->ports[port];
2990 	const u16 *regs = dev->info->regs;
2991 	u8 data8;
2992 
2993 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
2994 
2995 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
2996 		   P_RGMII_ID_EG_ENABLE);
2997 
2998 	switch (interface) {
2999 	case PHY_INTERFACE_MODE_MII:
3000 		data8 |= bitval[P_MII_SEL];
3001 		break;
3002 	case PHY_INTERFACE_MODE_RMII:
3003 		data8 |= bitval[P_RMII_SEL];
3004 		break;
3005 	case PHY_INTERFACE_MODE_GMII:
3006 		data8 |= bitval[P_GMII_SEL];
3007 		break;
3008 	case PHY_INTERFACE_MODE_RGMII:
3009 	case PHY_INTERFACE_MODE_RGMII_ID:
3010 	case PHY_INTERFACE_MODE_RGMII_TXID:
3011 	case PHY_INTERFACE_MODE_RGMII_RXID:
3012 		data8 |= bitval[P_RGMII_SEL];
3013 		/* On KSZ9893, disable RGMII in-band status support */
3014 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3015 		    dev->chip_id == KSZ8563_CHIP_ID ||
3016 		    dev->chip_id == KSZ9563_CHIP_ID)
3017 			data8 &= ~P_MII_MAC_MODE;
3018 		break;
3019 	default:
3020 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3021 			phy_modes(interface), port);
3022 		return;
3023 	}
3024 
3025 	if (p->rgmii_tx_val)
3026 		data8 |= P_RGMII_ID_EG_ENABLE;
3027 
3028 	if (p->rgmii_rx_val)
3029 		data8 |= P_RGMII_ID_IG_ENABLE;
3030 
3031 	/* Write the updated value */
3032 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3033 }
3034 
3035 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3036 {
3037 	const u8 *bitval = dev->info->xmii_ctrl1;
3038 	const u16 *regs = dev->info->regs;
3039 	phy_interface_t interface;
3040 	u8 data8;
3041 	u8 val;
3042 
3043 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3044 
3045 	val = FIELD_GET(P_MII_SEL_M, data8);
3046 
3047 	if (val == bitval[P_MII_SEL]) {
3048 		if (gbit)
3049 			interface = PHY_INTERFACE_MODE_GMII;
3050 		else
3051 			interface = PHY_INTERFACE_MODE_MII;
3052 	} else if (val == bitval[P_RMII_SEL]) {
3053 		interface = PHY_INTERFACE_MODE_RGMII;
3054 	} else {
3055 		interface = PHY_INTERFACE_MODE_RGMII;
3056 		if (data8 & P_RGMII_ID_EG_ENABLE)
3057 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3058 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3059 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3060 			if (data8 & P_RGMII_ID_EG_ENABLE)
3061 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3062 		}
3063 	}
3064 
3065 	return interface;
3066 }
3067 
3068 static void ksz_phylink_mac_config(struct dsa_switch *ds, int port,
3069 				   unsigned int mode,
3070 				   const struct phylink_link_state *state)
3071 {
3072 	struct ksz_device *dev = ds->priv;
3073 
3074 	if (ksz_is_ksz88x3(dev)) {
3075 		dev->ports[port].manual_flow = !(state->pause & MLO_PAUSE_AN);
3076 		return;
3077 	}
3078 
3079 	/* Internal PHYs */
3080 	if (dev->info->internal_phy[port])
3081 		return;
3082 
3083 	if (phylink_autoneg_inband(mode)) {
3084 		dev_err(dev->dev, "In-band AN not supported!\n");
3085 		return;
3086 	}
3087 
3088 	ksz_set_xmii(dev, port, state->interface);
3089 
3090 	if (dev->dev_ops->phylink_mac_config)
3091 		dev->dev_ops->phylink_mac_config(dev, port, mode, state);
3092 
3093 	if (dev->dev_ops->setup_rgmii_delay)
3094 		dev->dev_ops->setup_rgmii_delay(dev, port);
3095 }
3096 
3097 bool ksz_get_gbit(struct ksz_device *dev, int port)
3098 {
3099 	const u8 *bitval = dev->info->xmii_ctrl1;
3100 	const u16 *regs = dev->info->regs;
3101 	bool gbit = false;
3102 	u8 data8;
3103 	bool val;
3104 
3105 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3106 
3107 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3108 
3109 	if (val == bitval[P_GMII_1GBIT])
3110 		gbit = true;
3111 
3112 	return gbit;
3113 }
3114 
3115 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3116 {
3117 	const u8 *bitval = dev->info->xmii_ctrl1;
3118 	const u16 *regs = dev->info->regs;
3119 	u8 data8;
3120 
3121 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3122 
3123 	data8 &= ~P_GMII_1GBIT_M;
3124 
3125 	if (gbit)
3126 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3127 	else
3128 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3129 
3130 	/* Write the updated value */
3131 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3132 }
3133 
3134 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3135 {
3136 	const u8 *bitval = dev->info->xmii_ctrl0;
3137 	const u16 *regs = dev->info->regs;
3138 	u8 data8;
3139 
3140 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3141 
3142 	data8 &= ~P_MII_100MBIT_M;
3143 
3144 	if (speed == SPEED_100)
3145 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3146 	else
3147 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3148 
3149 	/* Write the updated value */
3150 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3151 }
3152 
3153 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3154 {
3155 	if (speed == SPEED_1000)
3156 		ksz_set_gbit(dev, port, true);
3157 	else
3158 		ksz_set_gbit(dev, port, false);
3159 
3160 	if (speed == SPEED_100 || speed == SPEED_10)
3161 		ksz_set_100_10mbit(dev, port, speed);
3162 }
3163 
3164 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3165 				bool tx_pause, bool rx_pause)
3166 {
3167 	const u8 *bitval = dev->info->xmii_ctrl0;
3168 	const u32 *masks = dev->info->masks;
3169 	const u16 *regs = dev->info->regs;
3170 	u8 mask;
3171 	u8 val;
3172 
3173 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3174 	       masks[P_MII_RX_FLOW_CTRL];
3175 
3176 	if (duplex == DUPLEX_FULL)
3177 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3178 	else
3179 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3180 
3181 	if (tx_pause)
3182 		val |= masks[P_MII_TX_FLOW_CTRL];
3183 
3184 	if (rx_pause)
3185 		val |= masks[P_MII_RX_FLOW_CTRL];
3186 
3187 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3188 }
3189 
3190 static void ksz9477_phylink_mac_link_up(struct ksz_device *dev, int port,
3191 					unsigned int mode,
3192 					phy_interface_t interface,
3193 					struct phy_device *phydev, int speed,
3194 					int duplex, bool tx_pause,
3195 					bool rx_pause)
3196 {
3197 	struct ksz_port *p;
3198 
3199 	p = &dev->ports[port];
3200 
3201 	/* Internal PHYs */
3202 	if (dev->info->internal_phy[port])
3203 		return;
3204 
3205 	p->phydev.speed = speed;
3206 
3207 	ksz_port_set_xmii_speed(dev, port, speed);
3208 
3209 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3210 }
3211 
3212 static void ksz_phylink_mac_link_up(struct dsa_switch *ds, int port,
3213 				    unsigned int mode,
3214 				    phy_interface_t interface,
3215 				    struct phy_device *phydev, int speed,
3216 				    int duplex, bool tx_pause, bool rx_pause)
3217 {
3218 	struct ksz_device *dev = ds->priv;
3219 
3220 	dev->dev_ops->phylink_mac_link_up(dev, port, mode, interface, phydev,
3221 					  speed, duplex, tx_pause, rx_pause);
3222 }
3223 
3224 static int ksz_switch_detect(struct ksz_device *dev)
3225 {
3226 	u8 id1, id2, id4;
3227 	u16 id16;
3228 	u32 id32;
3229 	int ret;
3230 
3231 	/* read chip id */
3232 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3233 	if (ret)
3234 		return ret;
3235 
3236 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3237 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3238 
3239 	switch (id1) {
3240 	case KSZ87_FAMILY_ID:
3241 		if (id2 == KSZ87_CHIP_ID_95) {
3242 			u8 val;
3243 
3244 			dev->chip_id = KSZ8795_CHIP_ID;
3245 
3246 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3247 			if (val & KSZ8_PORT_FIBER_MODE)
3248 				dev->chip_id = KSZ8765_CHIP_ID;
3249 		} else if (id2 == KSZ87_CHIP_ID_94) {
3250 			dev->chip_id = KSZ8794_CHIP_ID;
3251 		} else {
3252 			return -ENODEV;
3253 		}
3254 		break;
3255 	case KSZ88_FAMILY_ID:
3256 		if (id2 == KSZ88_CHIP_ID_63)
3257 			dev->chip_id = KSZ8830_CHIP_ID;
3258 		else
3259 			return -ENODEV;
3260 		break;
3261 	default:
3262 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3263 		if (ret)
3264 			return ret;
3265 
3266 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3267 		id32 &= ~0xFF;
3268 
3269 		switch (id32) {
3270 		case KSZ9477_CHIP_ID:
3271 		case KSZ9896_CHIP_ID:
3272 		case KSZ9897_CHIP_ID:
3273 		case KSZ9567_CHIP_ID:
3274 		case KSZ8567_CHIP_ID:
3275 		case LAN9370_CHIP_ID:
3276 		case LAN9371_CHIP_ID:
3277 		case LAN9372_CHIP_ID:
3278 		case LAN9373_CHIP_ID:
3279 		case LAN9374_CHIP_ID:
3280 			dev->chip_id = id32;
3281 			break;
3282 		case KSZ9893_CHIP_ID:
3283 			ret = ksz_read8(dev, REG_CHIP_ID4,
3284 					&id4);
3285 			if (ret)
3286 				return ret;
3287 
3288 			if (id4 == SKU_ID_KSZ8563)
3289 				dev->chip_id = KSZ8563_CHIP_ID;
3290 			else if (id4 == SKU_ID_KSZ9563)
3291 				dev->chip_id = KSZ9563_CHIP_ID;
3292 			else
3293 				dev->chip_id = KSZ9893_CHIP_ID;
3294 
3295 			break;
3296 		default:
3297 			dev_err(dev->dev,
3298 				"unsupported switch detected %x)\n", id32);
3299 			return -ENODEV;
3300 		}
3301 	}
3302 	return 0;
3303 }
3304 
3305 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3306 			      struct flow_cls_offload *cls, bool ingress)
3307 {
3308 	struct ksz_device *dev = ds->priv;
3309 
3310 	switch (dev->chip_id) {
3311 	case KSZ8563_CHIP_ID:
3312 	case KSZ8567_CHIP_ID:
3313 	case KSZ9477_CHIP_ID:
3314 	case KSZ9563_CHIP_ID:
3315 	case KSZ9567_CHIP_ID:
3316 	case KSZ9893_CHIP_ID:
3317 	case KSZ9896_CHIP_ID:
3318 	case KSZ9897_CHIP_ID:
3319 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3320 	}
3321 
3322 	return -EOPNOTSUPP;
3323 }
3324 
3325 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3326 			      struct flow_cls_offload *cls, bool ingress)
3327 {
3328 	struct ksz_device *dev = ds->priv;
3329 
3330 	switch (dev->chip_id) {
3331 	case KSZ8563_CHIP_ID:
3332 	case KSZ8567_CHIP_ID:
3333 	case KSZ9477_CHIP_ID:
3334 	case KSZ9563_CHIP_ID:
3335 	case KSZ9567_CHIP_ID:
3336 	case KSZ9893_CHIP_ID:
3337 	case KSZ9896_CHIP_ID:
3338 	case KSZ9897_CHIP_ID:
3339 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3340 	}
3341 
3342 	return -EOPNOTSUPP;
3343 }
3344 
3345 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3346  * is converted to Hex-decimal using the successive multiplication method. On
3347  * every step, integer part is taken and decimal part is carry forwarded.
3348  */
3349 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3350 {
3351 	u32 cinc = 0;
3352 	u32 txrate;
3353 	u32 rate;
3354 	u8 temp;
3355 	u8 i;
3356 
3357 	txrate = idle_slope - send_slope;
3358 
3359 	if (!txrate)
3360 		return -EINVAL;
3361 
3362 	rate = idle_slope;
3363 
3364 	/* 24 bit register */
3365 	for (i = 0; i < 6; i++) {
3366 		rate = rate * 16;
3367 
3368 		temp = rate / txrate;
3369 
3370 		rate %= txrate;
3371 
3372 		cinc = ((cinc << 4) | temp);
3373 	}
3374 
3375 	*bw = cinc;
3376 
3377 	return 0;
3378 }
3379 
3380 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3381 			     u8 shaper)
3382 {
3383 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3384 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3385 			   FIELD_PREP(MTI_SHAPING_M, shaper));
3386 }
3387 
3388 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3389 			    struct tc_cbs_qopt_offload *qopt)
3390 {
3391 	struct ksz_device *dev = ds->priv;
3392 	int ret;
3393 	u32 bw;
3394 
3395 	if (!dev->info->tc_cbs_supported)
3396 		return -EOPNOTSUPP;
3397 
3398 	if (qopt->queue > dev->info->num_tx_queues)
3399 		return -EINVAL;
3400 
3401 	/* Queue Selection */
3402 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3403 	if (ret)
3404 		return ret;
3405 
3406 	if (!qopt->enable)
3407 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3408 					 MTI_SHAPING_OFF);
3409 
3410 	/* High Credit */
3411 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3412 			   qopt->hicredit);
3413 	if (ret)
3414 		return ret;
3415 
3416 	/* Low Credit */
3417 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3418 			   qopt->locredit);
3419 	if (ret)
3420 		return ret;
3421 
3422 	/* Credit Increment Register */
3423 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3424 	if (ret)
3425 		return ret;
3426 
3427 	if (dev->dev_ops->tc_cbs_set_cinc) {
3428 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3429 		if (ret)
3430 			return ret;
3431 	}
3432 
3433 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3434 				 MTI_SHAPING_SRP);
3435 }
3436 
3437 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3438 {
3439 	int queue, ret;
3440 
3441 	/* Configuration will not take effect until the last Port Queue X
3442 	 * Egress Limit Control Register is written.
3443 	 */
3444 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3445 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3446 				  KSZ9477_OUT_RATE_NO_LIMIT);
3447 		if (ret)
3448 			return ret;
3449 	}
3450 
3451 	return 0;
3452 }
3453 
3454 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
3455 				 int band)
3456 {
3457 	/* Compared to queues, bands prioritize packets differently. In strict
3458 	 * priority mode, the lowest priority is assigned to Queue 0 while the
3459 	 * highest priority is given to Band 0.
3460 	 */
3461 	return p->bands - 1 - band;
3462 }
3463 
3464 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
3465 {
3466 	int ret;
3467 
3468 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3469 	if (ret)
3470 		return ret;
3471 
3472 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3473 				 MTI_SHAPING_OFF);
3474 }
3475 
3476 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
3477 			     int weight)
3478 {
3479 	int ret;
3480 
3481 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3482 	if (ret)
3483 		return ret;
3484 
3485 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3486 				MTI_SHAPING_OFF);
3487 	if (ret)
3488 		return ret;
3489 
3490 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
3491 }
3492 
3493 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
3494 			  struct tc_ets_qopt_offload_replace_params *p)
3495 {
3496 	int ret, band, tc_prio;
3497 	u32 queue_map = 0;
3498 
3499 	/* In order to ensure proper prioritization, it is necessary to set the
3500 	 * rate limit for the related queue to zero. Otherwise strict priority
3501 	 * or WRR mode will not work. This is a hardware limitation.
3502 	 */
3503 	ret = ksz_disable_egress_rate_limit(dev, port);
3504 	if (ret)
3505 		return ret;
3506 
3507 	/* Configure queue scheduling mode for all bands. Currently only strict
3508 	 * prio mode is supported.
3509 	 */
3510 	for (band = 0; band < p->bands; band++) {
3511 		int queue = ksz_ets_band_to_queue(p, band);
3512 
3513 		ret = ksz_queue_set_strict(dev, port, queue);
3514 		if (ret)
3515 			return ret;
3516 	}
3517 
3518 	/* Configure the mapping between traffic classes and queues. Note:
3519 	 * priomap variable support 16 traffic classes, but the chip can handle
3520 	 * only 8 classes.
3521 	 */
3522 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
3523 		int queue;
3524 
3525 		if (tc_prio > KSZ9477_MAX_TC_PRIO)
3526 			break;
3527 
3528 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
3529 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3530 	}
3531 
3532 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3533 }
3534 
3535 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
3536 {
3537 	int ret, queue, tc_prio, s;
3538 	u32 queue_map = 0;
3539 
3540 	/* To restore the default chip configuration, set all queues to use the
3541 	 * WRR scheduler with a weight of 1.
3542 	 */
3543 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3544 		ret = ksz_queue_set_wrr(dev, port, queue,
3545 					KSZ9477_DEFAULT_WRR_WEIGHT);
3546 		if (ret)
3547 			return ret;
3548 	}
3549 
3550 	switch (dev->info->num_tx_queues) {
3551 	case 2:
3552 		s = 2;
3553 		break;
3554 	case 4:
3555 		s = 1;
3556 		break;
3557 	case 8:
3558 		s = 0;
3559 		break;
3560 	default:
3561 		return -EINVAL;
3562 	}
3563 
3564 	/* Revert the queue mapping for TC-priority to its default setting on
3565 	 * the chip.
3566 	 */
3567 	for (tc_prio = 0; tc_prio <= KSZ9477_MAX_TC_PRIO; tc_prio++) {
3568 		int queue;
3569 
3570 		queue = tc_prio >> s;
3571 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3572 	}
3573 
3574 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3575 }
3576 
3577 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
3578 			       struct tc_ets_qopt_offload_replace_params *p)
3579 {
3580 	int band;
3581 
3582 	/* Since it is not feasible to share one port among multiple qdisc,
3583 	 * the user must configure all available queues appropriately.
3584 	 */
3585 	if (p->bands != dev->info->num_tx_queues) {
3586 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
3587 			dev->info->num_tx_queues);
3588 		return -EOPNOTSUPP;
3589 	}
3590 
3591 	for (band = 0; band < p->bands; ++band) {
3592 		/* The KSZ switches utilize a weighted round robin configuration
3593 		 * where a certain number of packets can be transmitted from a
3594 		 * queue before the next queue is serviced. For more information
3595 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
3596 		 * documentation on the Port Transmit Queue Control 1 Register.
3597 		 * However, the current ETS Qdisc implementation (as of February
3598 		 * 2023) assigns a weight to each queue based on the number of
3599 		 * bytes or extrapolated bandwidth in percentages. Since this
3600 		 * differs from the KSZ switches' method and we don't want to
3601 		 * fake support by converting bytes to packets, it is better to
3602 		 * return an error instead.
3603 		 */
3604 		if (p->quanta[band]) {
3605 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
3606 			return -EOPNOTSUPP;
3607 		}
3608 	}
3609 
3610 	return 0;
3611 }
3612 
3613 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
3614 				  struct tc_ets_qopt_offload *qopt)
3615 {
3616 	struct ksz_device *dev = ds->priv;
3617 	int ret;
3618 
3619 	if (!dev->info->tc_ets_supported)
3620 		return -EOPNOTSUPP;
3621 
3622 	if (qopt->parent != TC_H_ROOT) {
3623 		dev_err(dev->dev, "Parent should be \"root\"\n");
3624 		return -EOPNOTSUPP;
3625 	}
3626 
3627 	switch (qopt->command) {
3628 	case TC_ETS_REPLACE:
3629 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
3630 		if (ret)
3631 			return ret;
3632 
3633 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
3634 	case TC_ETS_DESTROY:
3635 		return ksz_tc_ets_del(dev, port);
3636 	case TC_ETS_STATS:
3637 	case TC_ETS_GRAFT:
3638 		return -EOPNOTSUPP;
3639 	}
3640 
3641 	return -EOPNOTSUPP;
3642 }
3643 
3644 static int ksz_setup_tc(struct dsa_switch *ds, int port,
3645 			enum tc_setup_type type, void *type_data)
3646 {
3647 	switch (type) {
3648 	case TC_SETUP_QDISC_CBS:
3649 		return ksz_setup_tc_cbs(ds, port, type_data);
3650 	case TC_SETUP_QDISC_ETS:
3651 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
3652 	default:
3653 		return -EOPNOTSUPP;
3654 	}
3655 }
3656 
3657 static void ksz_get_wol(struct dsa_switch *ds, int port,
3658 			struct ethtool_wolinfo *wol)
3659 {
3660 	struct ksz_device *dev = ds->priv;
3661 
3662 	if (dev->dev_ops->get_wol)
3663 		dev->dev_ops->get_wol(dev, port, wol);
3664 }
3665 
3666 static int ksz_set_wol(struct dsa_switch *ds, int port,
3667 		       struct ethtool_wolinfo *wol)
3668 {
3669 	struct ksz_device *dev = ds->priv;
3670 
3671 	if (dev->dev_ops->set_wol)
3672 		return dev->dev_ops->set_wol(dev, port, wol);
3673 
3674 	return -EOPNOTSUPP;
3675 }
3676 
3677 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
3678 				    const unsigned char *addr)
3679 {
3680 	struct dsa_port *dp = dsa_to_port(ds, port);
3681 	struct ethtool_wolinfo wol;
3682 
3683 	if (dp->hsr_dev) {
3684 		dev_err(ds->dev,
3685 			"Cannot change MAC address on port %d with active HSR offload\n",
3686 			port);
3687 		return -EBUSY;
3688 	}
3689 
3690 	ksz_get_wol(ds, dp->index, &wol);
3691 	if (wol.wolopts & WAKE_MAGIC) {
3692 		dev_err(ds->dev,
3693 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
3694 			port);
3695 		return -EBUSY;
3696 	}
3697 
3698 	return 0;
3699 }
3700 
3701 /**
3702  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
3703  *                                 can be used as a global address.
3704  * @ds: Pointer to the DSA switch structure.
3705  * @port: The port number on which the MAC address is to be checked.
3706  *
3707  * This function examines the MAC address set on the specified port and
3708  * determines if it can be used as a global address for the switch.
3709  *
3710  * Return: true if the port's MAC address can be used as a global address, false
3711  * otherwise.
3712  */
3713 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
3714 {
3715 	struct net_device *user = dsa_to_port(ds, port)->user;
3716 	const unsigned char *addr = user->dev_addr;
3717 	struct ksz_switch_macaddr *switch_macaddr;
3718 	struct ksz_device *dev = ds->priv;
3719 
3720 	ASSERT_RTNL();
3721 
3722 	switch_macaddr = dev->switch_macaddr;
3723 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
3724 		return false;
3725 
3726 	return true;
3727 }
3728 
3729 /**
3730  * ksz_switch_macaddr_get - Program the switch's MAC address register.
3731  * @ds: DSA switch instance.
3732  * @port: Port number.
3733  * @extack: Netlink extended acknowledgment.
3734  *
3735  * This function programs the switch's MAC address register with the MAC address
3736  * of the requesting user port. This single address is used by the switch for
3737  * multiple features like HSR self-address filtering and WoL. Other user ports
3738  * can share ownership of this address as long as their MAC address is the same.
3739  * The MAC addresses of user ports must not change while they have ownership of
3740  * the switch MAC address.
3741  *
3742  * Return: 0 on success, or other error codes on failure.
3743  */
3744 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
3745 			   struct netlink_ext_ack *extack)
3746 {
3747 	struct net_device *user = dsa_to_port(ds, port)->user;
3748 	const unsigned char *addr = user->dev_addr;
3749 	struct ksz_switch_macaddr *switch_macaddr;
3750 	struct ksz_device *dev = ds->priv;
3751 	const u16 *regs = dev->info->regs;
3752 	int i, ret;
3753 
3754 	/* Make sure concurrent MAC address changes are blocked */
3755 	ASSERT_RTNL();
3756 
3757 	switch_macaddr = dev->switch_macaddr;
3758 	if (switch_macaddr) {
3759 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
3760 			NL_SET_ERR_MSG_FMT_MOD(extack,
3761 					       "Switch already configured for MAC address %pM",
3762 					       switch_macaddr->addr);
3763 			return -EBUSY;
3764 		}
3765 
3766 		refcount_inc(&switch_macaddr->refcount);
3767 		return 0;
3768 	}
3769 
3770 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
3771 	if (!switch_macaddr)
3772 		return -ENOMEM;
3773 
3774 	ether_addr_copy(switch_macaddr->addr, addr);
3775 	refcount_set(&switch_macaddr->refcount, 1);
3776 	dev->switch_macaddr = switch_macaddr;
3777 
3778 	/* Program the switch MAC address to hardware */
3779 	for (i = 0; i < ETH_ALEN; i++) {
3780 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
3781 		if (ret)
3782 			goto macaddr_drop;
3783 	}
3784 
3785 	return 0;
3786 
3787 macaddr_drop:
3788 	dev->switch_macaddr = NULL;
3789 	refcount_set(&switch_macaddr->refcount, 0);
3790 	kfree(switch_macaddr);
3791 
3792 	return ret;
3793 }
3794 
3795 void ksz_switch_macaddr_put(struct dsa_switch *ds)
3796 {
3797 	struct ksz_switch_macaddr *switch_macaddr;
3798 	struct ksz_device *dev = ds->priv;
3799 	const u16 *regs = dev->info->regs;
3800 	int i;
3801 
3802 	/* Make sure concurrent MAC address changes are blocked */
3803 	ASSERT_RTNL();
3804 
3805 	switch_macaddr = dev->switch_macaddr;
3806 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
3807 		return;
3808 
3809 	for (i = 0; i < ETH_ALEN; i++)
3810 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
3811 
3812 	dev->switch_macaddr = NULL;
3813 	kfree(switch_macaddr);
3814 }
3815 
3816 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
3817 			struct netlink_ext_ack *extack)
3818 {
3819 	struct ksz_device *dev = ds->priv;
3820 	enum hsr_version ver;
3821 	int ret;
3822 
3823 	ret = hsr_get_version(hsr, &ver);
3824 	if (ret)
3825 		return ret;
3826 
3827 	if (dev->chip_id != KSZ9477_CHIP_ID) {
3828 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
3829 		return -EOPNOTSUPP;
3830 	}
3831 
3832 	/* KSZ9477 can support HW offloading of only 1 HSR device */
3833 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
3834 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
3835 		return -EOPNOTSUPP;
3836 	}
3837 
3838 	/* KSZ9477 only supports HSR v0 and v1 */
3839 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
3840 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
3841 		return -EOPNOTSUPP;
3842 	}
3843 
3844 	/* Self MAC address filtering, to avoid frames traversing
3845 	 * the HSR ring more than once.
3846 	 */
3847 	ret = ksz_switch_macaddr_get(ds, port, extack);
3848 	if (ret)
3849 		return ret;
3850 
3851 	ksz9477_hsr_join(ds, port, hsr);
3852 	dev->hsr_dev = hsr;
3853 	dev->hsr_ports |= BIT(port);
3854 
3855 	return 0;
3856 }
3857 
3858 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
3859 			 struct net_device *hsr)
3860 {
3861 	struct ksz_device *dev = ds->priv;
3862 
3863 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
3864 
3865 	ksz9477_hsr_leave(ds, port, hsr);
3866 	dev->hsr_ports &= ~BIT(port);
3867 	if (!dev->hsr_ports)
3868 		dev->hsr_dev = NULL;
3869 
3870 	ksz_switch_macaddr_put(ds);
3871 
3872 	return 0;
3873 }
3874 
3875 static const struct dsa_switch_ops ksz_switch_ops = {
3876 	.get_tag_protocol	= ksz_get_tag_protocol,
3877 	.connect_tag_protocol   = ksz_connect_tag_protocol,
3878 	.get_phy_flags		= ksz_get_phy_flags,
3879 	.setup			= ksz_setup,
3880 	.teardown		= ksz_teardown,
3881 	.phy_read		= ksz_phy_read16,
3882 	.phy_write		= ksz_phy_write16,
3883 	.phylink_get_caps	= ksz_phylink_get_caps,
3884 	.phylink_mac_config	= ksz_phylink_mac_config,
3885 	.phylink_mac_link_up	= ksz_phylink_mac_link_up,
3886 	.phylink_mac_link_down	= ksz_mac_link_down,
3887 	.port_setup		= ksz_port_setup,
3888 	.set_ageing_time	= ksz_set_ageing_time,
3889 	.get_strings		= ksz_get_strings,
3890 	.get_ethtool_stats	= ksz_get_ethtool_stats,
3891 	.get_sset_count		= ksz_sset_count,
3892 	.port_bridge_join	= ksz_port_bridge_join,
3893 	.port_bridge_leave	= ksz_port_bridge_leave,
3894 	.port_hsr_join		= ksz_hsr_join,
3895 	.port_hsr_leave		= ksz_hsr_leave,
3896 	.port_set_mac_address	= ksz_port_set_mac_address,
3897 	.port_stp_state_set	= ksz_port_stp_state_set,
3898 	.port_teardown		= ksz_port_teardown,
3899 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
3900 	.port_bridge_flags	= ksz_port_bridge_flags,
3901 	.port_fast_age		= ksz_port_fast_age,
3902 	.port_vlan_filtering	= ksz_port_vlan_filtering,
3903 	.port_vlan_add		= ksz_port_vlan_add,
3904 	.port_vlan_del		= ksz_port_vlan_del,
3905 	.port_fdb_dump		= ksz_port_fdb_dump,
3906 	.port_fdb_add		= ksz_port_fdb_add,
3907 	.port_fdb_del		= ksz_port_fdb_del,
3908 	.port_mdb_add           = ksz_port_mdb_add,
3909 	.port_mdb_del           = ksz_port_mdb_del,
3910 	.port_mirror_add	= ksz_port_mirror_add,
3911 	.port_mirror_del	= ksz_port_mirror_del,
3912 	.get_stats64		= ksz_get_stats64,
3913 	.get_pause_stats	= ksz_get_pause_stats,
3914 	.port_change_mtu	= ksz_change_mtu,
3915 	.port_max_mtu		= ksz_max_mtu,
3916 	.get_wol		= ksz_get_wol,
3917 	.set_wol		= ksz_set_wol,
3918 	.get_ts_info		= ksz_get_ts_info,
3919 	.port_hwtstamp_get	= ksz_hwtstamp_get,
3920 	.port_hwtstamp_set	= ksz_hwtstamp_set,
3921 	.port_txtstamp		= ksz_port_txtstamp,
3922 	.port_rxtstamp		= ksz_port_rxtstamp,
3923 	.cls_flower_add		= ksz_cls_flower_add,
3924 	.cls_flower_del		= ksz_cls_flower_del,
3925 	.port_setup_tc		= ksz_setup_tc,
3926 	.get_mac_eee		= ksz_get_mac_eee,
3927 	.set_mac_eee		= ksz_set_mac_eee,
3928 };
3929 
3930 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
3931 {
3932 	struct dsa_switch *ds;
3933 	struct ksz_device *swdev;
3934 
3935 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
3936 	if (!ds)
3937 		return NULL;
3938 
3939 	ds->dev = base;
3940 	ds->num_ports = DSA_MAX_PORTS;
3941 	ds->ops = &ksz_switch_ops;
3942 
3943 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
3944 	if (!swdev)
3945 		return NULL;
3946 
3947 	ds->priv = swdev;
3948 	swdev->dev = base;
3949 
3950 	swdev->ds = ds;
3951 	swdev->priv = priv;
3952 
3953 	return swdev;
3954 }
3955 EXPORT_SYMBOL(ksz_switch_alloc);
3956 
3957 /**
3958  * ksz_switch_shutdown - Shutdown routine for the switch device.
3959  * @dev: The switch device structure.
3960  *
3961  * This function is responsible for initiating a shutdown sequence for the
3962  * switch device. It invokes the reset operation defined in the device
3963  * operations, if available, to reset the switch. Subsequently, it calls the
3964  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
3965  * switch.
3966  */
3967 void ksz_switch_shutdown(struct ksz_device *dev)
3968 {
3969 	bool wol_enabled = false;
3970 
3971 	if (dev->dev_ops->wol_pre_shutdown)
3972 		dev->dev_ops->wol_pre_shutdown(dev, &wol_enabled);
3973 
3974 	if (dev->dev_ops->reset && !wol_enabled)
3975 		dev->dev_ops->reset(dev);
3976 
3977 	dsa_switch_shutdown(dev->ds);
3978 }
3979 EXPORT_SYMBOL(ksz_switch_shutdown);
3980 
3981 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
3982 				  struct device_node *port_dn)
3983 {
3984 	phy_interface_t phy_mode = dev->ports[port_num].interface;
3985 	int rx_delay = -1, tx_delay = -1;
3986 
3987 	if (!phy_interface_mode_is_rgmii(phy_mode))
3988 		return;
3989 
3990 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
3991 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
3992 
3993 	if (rx_delay == -1 && tx_delay == -1) {
3994 		dev_warn(dev->dev,
3995 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
3996 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
3997 			 "\"tx-internal-delay-ps\"",
3998 			 port_num);
3999 
4000 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4001 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4002 			rx_delay = 2000;
4003 
4004 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4005 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4006 			tx_delay = 2000;
4007 	}
4008 
4009 	if (rx_delay < 0)
4010 		rx_delay = 0;
4011 	if (tx_delay < 0)
4012 		tx_delay = 0;
4013 
4014 	dev->ports[port_num].rgmii_rx_val = rx_delay;
4015 	dev->ports[port_num].rgmii_tx_val = tx_delay;
4016 }
4017 
4018 /**
4019  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4020  *				 register value.
4021  * @array:	The array of drive strength values to search.
4022  * @array_size:	The size of the array.
4023  * @microamp:	The drive strength value in microamp to be converted.
4024  *
4025  * This function searches the array of drive strength values for the given
4026  * microamp value and returns the corresponding register value for that drive.
4027  *
4028  * Returns: If found, the corresponding register value for that drive strength
4029  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4030  */
4031 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4032 				     size_t array_size, int microamp)
4033 {
4034 	int i;
4035 
4036 	for (i = 0; i < array_size; i++) {
4037 		if (array[i].microamp == microamp)
4038 			return array[i].reg_val;
4039 	}
4040 
4041 	return -EINVAL;
4042 }
4043 
4044 /**
4045  * ksz_drive_strength_error() - Report invalid drive strength value
4046  * @dev:	ksz device
4047  * @array:	The array of drive strength values to search.
4048  * @array_size:	The size of the array.
4049  * @microamp:	Invalid drive strength value in microamp
4050  *
4051  * This function logs an error message when an unsupported drive strength value
4052  * is detected. It lists out all the supported drive strength values for
4053  * reference in the error message.
4054  */
4055 static void ksz_drive_strength_error(struct ksz_device *dev,
4056 				     const struct ksz_drive_strength *array,
4057 				     size_t array_size, int microamp)
4058 {
4059 	char supported_values[100];
4060 	size_t remaining_size;
4061 	int added_len;
4062 	char *ptr;
4063 	int i;
4064 
4065 	remaining_size = sizeof(supported_values);
4066 	ptr = supported_values;
4067 
4068 	for (i = 0; i < array_size; i++) {
4069 		added_len = snprintf(ptr, remaining_size,
4070 				     i == 0 ? "%d" : ", %d", array[i].microamp);
4071 
4072 		if (added_len >= remaining_size)
4073 			break;
4074 
4075 		ptr += added_len;
4076 		remaining_size -= added_len;
4077 	}
4078 
4079 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
4080 		microamp, supported_values);
4081 }
4082 
4083 /**
4084  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
4085  *				    chip variants.
4086  * @dev:       ksz device
4087  * @props:     Array of drive strength properties to be applied
4088  * @num_props: Number of properties in the array
4089  *
4090  * This function configures the drive strength for various KSZ9477 chip variants
4091  * based on the provided properties. It handles chip-specific nuances and
4092  * ensures only valid drive strengths are written to the respective chip.
4093  *
4094  * Return: 0 on successful configuration, a negative error code on failure.
4095  */
4096 static int ksz9477_drive_strength_write(struct ksz_device *dev,
4097 					struct ksz_driver_strength_prop *props,
4098 					int num_props)
4099 {
4100 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4101 	int i, ret, reg;
4102 	u8 mask = 0;
4103 	u8 val = 0;
4104 
4105 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4106 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4107 			 props[KSZ_DRIVER_STRENGTH_IO].name);
4108 
4109 	if (dev->chip_id == KSZ8795_CHIP_ID ||
4110 	    dev->chip_id == KSZ8794_CHIP_ID ||
4111 	    dev->chip_id == KSZ8765_CHIP_ID)
4112 		reg = KSZ8795_REG_SW_CTRL_20;
4113 	else
4114 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4115 
4116 	for (i = 0; i < num_props; i++) {
4117 		if (props[i].value == -1)
4118 			continue;
4119 
4120 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4121 						array_size, props[i].value);
4122 		if (ret < 0) {
4123 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4124 						 array_size, props[i].value);
4125 			return ret;
4126 		}
4127 
4128 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4129 		val |= ret << props[i].offset;
4130 	}
4131 
4132 	return ksz_rmw8(dev, reg, mask, val);
4133 }
4134 
4135 /**
4136  * ksz8830_drive_strength_write() - Set the drive strength configuration for
4137  *				    KSZ8830 compatible chip variants.
4138  * @dev:       ksz device
4139  * @props:     Array of drive strength properties to be set
4140  * @num_props: Number of properties in the array
4141  *
4142  * This function applies the specified drive strength settings to KSZ8830 chip
4143  * variants (KSZ8873, KSZ8863).
4144  * It ensures the configurations align with what the chip variant supports and
4145  * warns or errors out on unsupported settings.
4146  *
4147  * Return: 0 on success, error code otherwise
4148  */
4149 static int ksz8830_drive_strength_write(struct ksz_device *dev,
4150 					struct ksz_driver_strength_prop *props,
4151 					int num_props)
4152 {
4153 	size_t array_size = ARRAY_SIZE(ksz8830_drive_strengths);
4154 	int microamp;
4155 	int i, ret;
4156 
4157 	for (i = 0; i < num_props; i++) {
4158 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4159 			continue;
4160 
4161 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4162 			 props[i].name);
4163 	}
4164 
4165 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4166 	ret = ksz_drive_strength_to_reg(ksz8830_drive_strengths, array_size,
4167 					microamp);
4168 	if (ret < 0) {
4169 		ksz_drive_strength_error(dev, ksz8830_drive_strengths,
4170 					 array_size, microamp);
4171 		return ret;
4172 	}
4173 
4174 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4175 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4176 }
4177 
4178 /**
4179  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4180  *				from device tree properties.
4181  * @dev:	ksz device
4182  *
4183  * This function reads the specified drive strength properties from the
4184  * device tree, validates against the supported chip variants, and sets
4185  * them accordingly. An error should be critical here, as the drive strength
4186  * settings are crucial for EMI compliance.
4187  *
4188  * Return: 0 on success, error code otherwise
4189  */
4190 static int ksz_parse_drive_strength(struct ksz_device *dev)
4191 {
4192 	struct ksz_driver_strength_prop of_props[] = {
4193 		[KSZ_DRIVER_STRENGTH_HI] = {
4194 			.name = "microchip,hi-drive-strength-microamp",
4195 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4196 			.value = -1,
4197 		},
4198 		[KSZ_DRIVER_STRENGTH_LO] = {
4199 			.name = "microchip,lo-drive-strength-microamp",
4200 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4201 			.value = -1,
4202 		},
4203 		[KSZ_DRIVER_STRENGTH_IO] = {
4204 			.name = "microchip,io-drive-strength-microamp",
4205 			.offset = 0, /* don't care */
4206 			.value = -1,
4207 		},
4208 	};
4209 	struct device_node *np = dev->dev->of_node;
4210 	bool have_any_prop = false;
4211 	int i, ret;
4212 
4213 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4214 		ret = of_property_read_u32(np, of_props[i].name,
4215 					   &of_props[i].value);
4216 		if (ret && ret != -EINVAL)
4217 			dev_warn(dev->dev, "Failed to read %s\n",
4218 				 of_props[i].name);
4219 		if (ret)
4220 			continue;
4221 
4222 		have_any_prop = true;
4223 	}
4224 
4225 	if (!have_any_prop)
4226 		return 0;
4227 
4228 	switch (dev->chip_id) {
4229 	case KSZ8830_CHIP_ID:
4230 		return ksz8830_drive_strength_write(dev, of_props,
4231 						    ARRAY_SIZE(of_props));
4232 	case KSZ8795_CHIP_ID:
4233 	case KSZ8794_CHIP_ID:
4234 	case KSZ8765_CHIP_ID:
4235 	case KSZ8563_CHIP_ID:
4236 	case KSZ8567_CHIP_ID:
4237 	case KSZ9477_CHIP_ID:
4238 	case KSZ9563_CHIP_ID:
4239 	case KSZ9567_CHIP_ID:
4240 	case KSZ9893_CHIP_ID:
4241 	case KSZ9896_CHIP_ID:
4242 	case KSZ9897_CHIP_ID:
4243 		return ksz9477_drive_strength_write(dev, of_props,
4244 						    ARRAY_SIZE(of_props));
4245 	default:
4246 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4247 			if (of_props[i].value == -1)
4248 				continue;
4249 
4250 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4251 				 of_props[i].name);
4252 		}
4253 	}
4254 
4255 	return 0;
4256 }
4257 
4258 int ksz_switch_register(struct ksz_device *dev)
4259 {
4260 	const struct ksz_chip_data *info;
4261 	struct device_node *port, *ports;
4262 	phy_interface_t interface;
4263 	unsigned int port_num;
4264 	int ret;
4265 	int i;
4266 
4267 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4268 						  GPIOD_OUT_LOW);
4269 	if (IS_ERR(dev->reset_gpio))
4270 		return PTR_ERR(dev->reset_gpio);
4271 
4272 	if (dev->reset_gpio) {
4273 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4274 		usleep_range(10000, 12000);
4275 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
4276 		msleep(100);
4277 	}
4278 
4279 	mutex_init(&dev->dev_mutex);
4280 	mutex_init(&dev->regmap_mutex);
4281 	mutex_init(&dev->alu_mutex);
4282 	mutex_init(&dev->vlan_mutex);
4283 
4284 	ret = ksz_switch_detect(dev);
4285 	if (ret)
4286 		return ret;
4287 
4288 	info = ksz_lookup_info(dev->chip_id);
4289 	if (!info)
4290 		return -ENODEV;
4291 
4292 	/* Update the compatible info with the probed one */
4293 	dev->info = info;
4294 
4295 	dev_info(dev->dev, "found switch: %s, rev %i\n",
4296 		 dev->info->dev_name, dev->chip_rev);
4297 
4298 	ret = ksz_check_device_id(dev);
4299 	if (ret)
4300 		return ret;
4301 
4302 	dev->dev_ops = dev->info->ops;
4303 
4304 	ret = dev->dev_ops->init(dev);
4305 	if (ret)
4306 		return ret;
4307 
4308 	dev->ports = devm_kzalloc(dev->dev,
4309 				  dev->info->port_cnt * sizeof(struct ksz_port),
4310 				  GFP_KERNEL);
4311 	if (!dev->ports)
4312 		return -ENOMEM;
4313 
4314 	for (i = 0; i < dev->info->port_cnt; i++) {
4315 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
4316 		mutex_init(&dev->ports[i].mib.cnt_mutex);
4317 		dev->ports[i].mib.counters =
4318 			devm_kzalloc(dev->dev,
4319 				     sizeof(u64) * (dev->info->mib_cnt + 1),
4320 				     GFP_KERNEL);
4321 		if (!dev->ports[i].mib.counters)
4322 			return -ENOMEM;
4323 
4324 		dev->ports[i].ksz_dev = dev;
4325 		dev->ports[i].num = i;
4326 	}
4327 
4328 	/* set the real number of ports */
4329 	dev->ds->num_ports = dev->info->port_cnt;
4330 
4331 	/* Host port interface will be self detected, or specifically set in
4332 	 * device tree.
4333 	 */
4334 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
4335 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
4336 	if (dev->dev->of_node) {
4337 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
4338 		if (ret == 0)
4339 			dev->compat_interface = interface;
4340 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
4341 		if (!ports)
4342 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
4343 		if (ports) {
4344 			for_each_available_child_of_node(ports, port) {
4345 				if (of_property_read_u32(port, "reg",
4346 							 &port_num))
4347 					continue;
4348 				if (!(dev->port_mask & BIT(port_num))) {
4349 					of_node_put(port);
4350 					of_node_put(ports);
4351 					return -EINVAL;
4352 				}
4353 				of_get_phy_mode(port,
4354 						&dev->ports[port_num].interface);
4355 
4356 				ksz_parse_rgmii_delay(dev, port_num, port);
4357 			}
4358 			of_node_put(ports);
4359 		}
4360 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
4361 							 "microchip,synclko-125");
4362 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
4363 							     "microchip,synclko-disable");
4364 		if (dev->synclko_125 && dev->synclko_disable) {
4365 			dev_err(dev->dev, "inconsistent synclko settings\n");
4366 			return -EINVAL;
4367 		}
4368 
4369 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
4370 							   "wakeup-source");
4371 	}
4372 
4373 	ret = dsa_register_switch(dev->ds);
4374 	if (ret) {
4375 		dev->dev_ops->exit(dev);
4376 		return ret;
4377 	}
4378 
4379 	/* Read MIB counters every 30 seconds to avoid overflow. */
4380 	dev->mib_read_interval = msecs_to_jiffies(5000);
4381 
4382 	/* Start the MIB timer. */
4383 	schedule_delayed_work(&dev->mib_read, 0);
4384 
4385 	return ret;
4386 }
4387 EXPORT_SYMBOL(ksz_switch_register);
4388 
4389 void ksz_switch_remove(struct ksz_device *dev)
4390 {
4391 	/* timer started */
4392 	if (dev->mib_read_interval) {
4393 		dev->mib_read_interval = 0;
4394 		cancel_delayed_work_sync(&dev->mib_read);
4395 	}
4396 
4397 	dev->dev_ops->exit(dev);
4398 	dsa_unregister_switch(dev->ds);
4399 
4400 	if (dev->reset_gpio)
4401 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4402 
4403 }
4404 EXPORT_SYMBOL(ksz_switch_remove);
4405 
4406 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
4407 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
4408 MODULE_LICENSE("GPL");
4409