xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision e958da0ddbe831197a0023251880a4a09d5ba268)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/pkt_cls.h>
28 #include <net/switchdev.h>
29 
30 #include "ksz_common.h"
31 #include "ksz_ptp.h"
32 #include "ksz8.h"
33 #include "ksz9477.h"
34 #include "lan937x.h"
35 
36 #define MIB_COUNTER_NUM 0x20
37 
38 struct ksz_stats_raw {
39 	u64 rx_hi;
40 	u64 rx_undersize;
41 	u64 rx_fragments;
42 	u64 rx_oversize;
43 	u64 rx_jabbers;
44 	u64 rx_symbol_err;
45 	u64 rx_crc_err;
46 	u64 rx_align_err;
47 	u64 rx_mac_ctrl;
48 	u64 rx_pause;
49 	u64 rx_bcast;
50 	u64 rx_mcast;
51 	u64 rx_ucast;
52 	u64 rx_64_or_less;
53 	u64 rx_65_127;
54 	u64 rx_128_255;
55 	u64 rx_256_511;
56 	u64 rx_512_1023;
57 	u64 rx_1024_1522;
58 	u64 rx_1523_2000;
59 	u64 rx_2001;
60 	u64 tx_hi;
61 	u64 tx_late_col;
62 	u64 tx_pause;
63 	u64 tx_bcast;
64 	u64 tx_mcast;
65 	u64 tx_ucast;
66 	u64 tx_deferred;
67 	u64 tx_total_col;
68 	u64 tx_exc_col;
69 	u64 tx_single_col;
70 	u64 tx_mult_col;
71 	u64 rx_total;
72 	u64 tx_total;
73 	u64 rx_discards;
74 	u64 tx_discards;
75 };
76 
77 struct ksz88xx_stats_raw {
78 	u64 rx;
79 	u64 rx_hi;
80 	u64 rx_undersize;
81 	u64 rx_fragments;
82 	u64 rx_oversize;
83 	u64 rx_jabbers;
84 	u64 rx_symbol_err;
85 	u64 rx_crc_err;
86 	u64 rx_align_err;
87 	u64 rx_mac_ctrl;
88 	u64 rx_pause;
89 	u64 rx_bcast;
90 	u64 rx_mcast;
91 	u64 rx_ucast;
92 	u64 rx_64_or_less;
93 	u64 rx_65_127;
94 	u64 rx_128_255;
95 	u64 rx_256_511;
96 	u64 rx_512_1023;
97 	u64 rx_1024_1522;
98 	u64 tx;
99 	u64 tx_hi;
100 	u64 tx_late_col;
101 	u64 tx_pause;
102 	u64 tx_bcast;
103 	u64 tx_mcast;
104 	u64 tx_ucast;
105 	u64 tx_deferred;
106 	u64 tx_total_col;
107 	u64 tx_exc_col;
108 	u64 tx_single_col;
109 	u64 tx_mult_col;
110 	u64 rx_discards;
111 	u64 tx_discards;
112 };
113 
114 static const struct ksz_mib_names ksz88xx_mib_names[] = {
115 	{ 0x00, "rx" },
116 	{ 0x01, "rx_hi" },
117 	{ 0x02, "rx_undersize" },
118 	{ 0x03, "rx_fragments" },
119 	{ 0x04, "rx_oversize" },
120 	{ 0x05, "rx_jabbers" },
121 	{ 0x06, "rx_symbol_err" },
122 	{ 0x07, "rx_crc_err" },
123 	{ 0x08, "rx_align_err" },
124 	{ 0x09, "rx_mac_ctrl" },
125 	{ 0x0a, "rx_pause" },
126 	{ 0x0b, "rx_bcast" },
127 	{ 0x0c, "rx_mcast" },
128 	{ 0x0d, "rx_ucast" },
129 	{ 0x0e, "rx_64_or_less" },
130 	{ 0x0f, "rx_65_127" },
131 	{ 0x10, "rx_128_255" },
132 	{ 0x11, "rx_256_511" },
133 	{ 0x12, "rx_512_1023" },
134 	{ 0x13, "rx_1024_1522" },
135 	{ 0x14, "tx" },
136 	{ 0x15, "tx_hi" },
137 	{ 0x16, "tx_late_col" },
138 	{ 0x17, "tx_pause" },
139 	{ 0x18, "tx_bcast" },
140 	{ 0x19, "tx_mcast" },
141 	{ 0x1a, "tx_ucast" },
142 	{ 0x1b, "tx_deferred" },
143 	{ 0x1c, "tx_total_col" },
144 	{ 0x1d, "tx_exc_col" },
145 	{ 0x1e, "tx_single_col" },
146 	{ 0x1f, "tx_mult_col" },
147 	{ 0x100, "rx_discards" },
148 	{ 0x101, "tx_discards" },
149 };
150 
151 static const struct ksz_mib_names ksz9477_mib_names[] = {
152 	{ 0x00, "rx_hi" },
153 	{ 0x01, "rx_undersize" },
154 	{ 0x02, "rx_fragments" },
155 	{ 0x03, "rx_oversize" },
156 	{ 0x04, "rx_jabbers" },
157 	{ 0x05, "rx_symbol_err" },
158 	{ 0x06, "rx_crc_err" },
159 	{ 0x07, "rx_align_err" },
160 	{ 0x08, "rx_mac_ctrl" },
161 	{ 0x09, "rx_pause" },
162 	{ 0x0A, "rx_bcast" },
163 	{ 0x0B, "rx_mcast" },
164 	{ 0x0C, "rx_ucast" },
165 	{ 0x0D, "rx_64_or_less" },
166 	{ 0x0E, "rx_65_127" },
167 	{ 0x0F, "rx_128_255" },
168 	{ 0x10, "rx_256_511" },
169 	{ 0x11, "rx_512_1023" },
170 	{ 0x12, "rx_1024_1522" },
171 	{ 0x13, "rx_1523_2000" },
172 	{ 0x14, "rx_2001" },
173 	{ 0x15, "tx_hi" },
174 	{ 0x16, "tx_late_col" },
175 	{ 0x17, "tx_pause" },
176 	{ 0x18, "tx_bcast" },
177 	{ 0x19, "tx_mcast" },
178 	{ 0x1A, "tx_ucast" },
179 	{ 0x1B, "tx_deferred" },
180 	{ 0x1C, "tx_total_col" },
181 	{ 0x1D, "tx_exc_col" },
182 	{ 0x1E, "tx_single_col" },
183 	{ 0x1F, "tx_mult_col" },
184 	{ 0x80, "rx_total" },
185 	{ 0x81, "tx_total" },
186 	{ 0x82, "rx_discards" },
187 	{ 0x83, "tx_discards" },
188 };
189 
190 struct ksz_driver_strength_prop {
191 	const char *name;
192 	int offset;
193 	int value;
194 };
195 
196 enum ksz_driver_strength_type {
197 	KSZ_DRIVER_STRENGTH_HI,
198 	KSZ_DRIVER_STRENGTH_LO,
199 	KSZ_DRIVER_STRENGTH_IO,
200 };
201 
202 /**
203  * struct ksz_drive_strength - drive strength mapping
204  * @reg_val:	register value
205  * @microamp:	microamp value
206  */
207 struct ksz_drive_strength {
208 	u32 reg_val;
209 	u32 microamp;
210 };
211 
212 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
213  *
214  * This values are not documented in KSZ9477 variants but confirmed by
215  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
216  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
217  *
218  * Documentation in KSZ8795CLX provides more information with some
219  * recommendations:
220  * - for high speed signals
221  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
222  *      2.5V or 3.3V VDDIO.
223  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
224  *      using 1.8V VDDIO.
225  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
226  *      or 3.3V VDDIO.
227  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
228  *   5. In same interface, the heavy loading should use higher one of the
229  *      drive current strength.
230  * - for low speed signals
231  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
232  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
233  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
234  *   4. If it is heavy loading, can use higher drive current strength.
235  */
236 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
237 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
238 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
239 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
240 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
241 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
242 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
243 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
244 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
245 };
246 
247 /* ksz8830_drive_strengths - Drive strength mapping for KSZ8830, KSZ8873, ..
248  *			     variants.
249  * This values are documented in KSZ8873 and KSZ8863 datasheets.
250  */
251 static const struct ksz_drive_strength ksz8830_drive_strengths[] = {
252 	{ 0,  8000 },
253 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
254 };
255 
256 static void ksz8830_phylink_mac_config(struct phylink_config *config,
257 				       unsigned int mode,
258 				       const struct phylink_link_state *state);
259 static void ksz_phylink_mac_config(struct phylink_config *config,
260 				   unsigned int mode,
261 				   const struct phylink_link_state *state);
262 static void ksz_phylink_mac_link_down(struct phylink_config *config,
263 				      unsigned int mode,
264 				      phy_interface_t interface);
265 
266 static const struct phylink_mac_ops ksz8830_phylink_mac_ops = {
267 	.mac_config	= ksz8830_phylink_mac_config,
268 	.mac_link_down	= ksz_phylink_mac_link_down,
269 	.mac_link_up	= ksz8_phylink_mac_link_up,
270 };
271 
272 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
273 	.mac_config	= ksz_phylink_mac_config,
274 	.mac_link_down	= ksz_phylink_mac_link_down,
275 	.mac_link_up	= ksz8_phylink_mac_link_up,
276 };
277 
278 static const struct ksz_dev_ops ksz8_dev_ops = {
279 	.setup = ksz8_setup,
280 	.get_port_addr = ksz8_get_port_addr,
281 	.cfg_port_member = ksz8_cfg_port_member,
282 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
283 	.port_setup = ksz8_port_setup,
284 	.r_phy = ksz8_r_phy,
285 	.w_phy = ksz8_w_phy,
286 	.r_mib_cnt = ksz8_r_mib_cnt,
287 	.r_mib_pkt = ksz8_r_mib_pkt,
288 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
289 	.freeze_mib = ksz8_freeze_mib,
290 	.port_init_cnt = ksz8_port_init_cnt,
291 	.fdb_dump = ksz8_fdb_dump,
292 	.fdb_add = ksz8_fdb_add,
293 	.fdb_del = ksz8_fdb_del,
294 	.mdb_add = ksz8_mdb_add,
295 	.mdb_del = ksz8_mdb_del,
296 	.vlan_filtering = ksz8_port_vlan_filtering,
297 	.vlan_add = ksz8_port_vlan_add,
298 	.vlan_del = ksz8_port_vlan_del,
299 	.mirror_add = ksz8_port_mirror_add,
300 	.mirror_del = ksz8_port_mirror_del,
301 	.get_caps = ksz8_get_caps,
302 	.config_cpu_port = ksz8_config_cpu_port,
303 	.enable_stp_addr = ksz8_enable_stp_addr,
304 	.reset = ksz8_reset_switch,
305 	.init = ksz8_switch_init,
306 	.exit = ksz8_switch_exit,
307 	.change_mtu = ksz8_change_mtu,
308 };
309 
310 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
311 					struct phy_device *phydev,
312 					unsigned int mode,
313 					phy_interface_t interface,
314 					int speed, int duplex, bool tx_pause,
315 					bool rx_pause);
316 
317 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
318 	.mac_config	= ksz_phylink_mac_config,
319 	.mac_link_down	= ksz_phylink_mac_link_down,
320 	.mac_link_up	= ksz9477_phylink_mac_link_up,
321 };
322 
323 static const struct ksz_dev_ops ksz9477_dev_ops = {
324 	.setup = ksz9477_setup,
325 	.get_port_addr = ksz9477_get_port_addr,
326 	.cfg_port_member = ksz9477_cfg_port_member,
327 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
328 	.port_setup = ksz9477_port_setup,
329 	.set_ageing_time = ksz9477_set_ageing_time,
330 	.r_phy = ksz9477_r_phy,
331 	.w_phy = ksz9477_w_phy,
332 	.r_mib_cnt = ksz9477_r_mib_cnt,
333 	.r_mib_pkt = ksz9477_r_mib_pkt,
334 	.r_mib_stat64 = ksz_r_mib_stats64,
335 	.freeze_mib = ksz9477_freeze_mib,
336 	.port_init_cnt = ksz9477_port_init_cnt,
337 	.vlan_filtering = ksz9477_port_vlan_filtering,
338 	.vlan_add = ksz9477_port_vlan_add,
339 	.vlan_del = ksz9477_port_vlan_del,
340 	.mirror_add = ksz9477_port_mirror_add,
341 	.mirror_del = ksz9477_port_mirror_del,
342 	.get_caps = ksz9477_get_caps,
343 	.fdb_dump = ksz9477_fdb_dump,
344 	.fdb_add = ksz9477_fdb_add,
345 	.fdb_del = ksz9477_fdb_del,
346 	.mdb_add = ksz9477_mdb_add,
347 	.mdb_del = ksz9477_mdb_del,
348 	.change_mtu = ksz9477_change_mtu,
349 	.get_wol = ksz9477_get_wol,
350 	.set_wol = ksz9477_set_wol,
351 	.wol_pre_shutdown = ksz9477_wol_pre_shutdown,
352 	.config_cpu_port = ksz9477_config_cpu_port,
353 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
354 	.enable_stp_addr = ksz9477_enable_stp_addr,
355 	.reset = ksz9477_reset_switch,
356 	.init = ksz9477_switch_init,
357 	.exit = ksz9477_switch_exit,
358 };
359 
360 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
361 	.mac_config	= ksz_phylink_mac_config,
362 	.mac_link_down	= ksz_phylink_mac_link_down,
363 	.mac_link_up	= ksz9477_phylink_mac_link_up,
364 };
365 
366 static const struct ksz_dev_ops lan937x_dev_ops = {
367 	.setup = lan937x_setup,
368 	.teardown = lan937x_teardown,
369 	.get_port_addr = ksz9477_get_port_addr,
370 	.cfg_port_member = ksz9477_cfg_port_member,
371 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
372 	.port_setup = lan937x_port_setup,
373 	.set_ageing_time = lan937x_set_ageing_time,
374 	.r_phy = lan937x_r_phy,
375 	.w_phy = lan937x_w_phy,
376 	.r_mib_cnt = ksz9477_r_mib_cnt,
377 	.r_mib_pkt = ksz9477_r_mib_pkt,
378 	.r_mib_stat64 = ksz_r_mib_stats64,
379 	.freeze_mib = ksz9477_freeze_mib,
380 	.port_init_cnt = ksz9477_port_init_cnt,
381 	.vlan_filtering = ksz9477_port_vlan_filtering,
382 	.vlan_add = ksz9477_port_vlan_add,
383 	.vlan_del = ksz9477_port_vlan_del,
384 	.mirror_add = ksz9477_port_mirror_add,
385 	.mirror_del = ksz9477_port_mirror_del,
386 	.get_caps = lan937x_phylink_get_caps,
387 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
388 	.fdb_dump = ksz9477_fdb_dump,
389 	.fdb_add = ksz9477_fdb_add,
390 	.fdb_del = ksz9477_fdb_del,
391 	.mdb_add = ksz9477_mdb_add,
392 	.mdb_del = ksz9477_mdb_del,
393 	.change_mtu = lan937x_change_mtu,
394 	.config_cpu_port = lan937x_config_cpu_port,
395 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
396 	.enable_stp_addr = ksz9477_enable_stp_addr,
397 	.reset = lan937x_reset_switch,
398 	.init = lan937x_switch_init,
399 	.exit = lan937x_switch_exit,
400 };
401 
402 static const u16 ksz8795_regs[] = {
403 	[REG_SW_MAC_ADDR]		= 0x68,
404 	[REG_IND_CTRL_0]		= 0x6E,
405 	[REG_IND_DATA_8]		= 0x70,
406 	[REG_IND_DATA_CHECK]		= 0x72,
407 	[REG_IND_DATA_HI]		= 0x71,
408 	[REG_IND_DATA_LO]		= 0x75,
409 	[REG_IND_MIB_CHECK]		= 0x74,
410 	[REG_IND_BYTE]			= 0xA0,
411 	[P_FORCE_CTRL]			= 0x0C,
412 	[P_LINK_STATUS]			= 0x0E,
413 	[P_LOCAL_CTRL]			= 0x07,
414 	[P_NEG_RESTART_CTRL]		= 0x0D,
415 	[P_REMOTE_STATUS]		= 0x08,
416 	[P_SPEED_STATUS]		= 0x09,
417 	[S_TAIL_TAG_CTRL]		= 0x0C,
418 	[P_STP_CTRL]			= 0x02,
419 	[S_START_CTRL]			= 0x01,
420 	[S_BROADCAST_CTRL]		= 0x06,
421 	[S_MULTICAST_CTRL]		= 0x04,
422 	[P_XMII_CTRL_0]			= 0x06,
423 	[P_XMII_CTRL_1]			= 0x06,
424 };
425 
426 static const u32 ksz8795_masks[] = {
427 	[PORT_802_1P_REMAPPING]		= BIT(7),
428 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
429 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
430 	[MIB_COUNTER_VALID]		= BIT(5),
431 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
432 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
433 	[VLAN_TABLE_VALID]		= BIT(12),
434 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
435 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
436 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
437 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
438 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
439 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
440 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
441 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
442 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
443 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
444 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
445 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
446 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
447 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
448 };
449 
450 static const u8 ksz8795_xmii_ctrl0[] = {
451 	[P_MII_100MBIT]			= 0,
452 	[P_MII_10MBIT]			= 1,
453 	[P_MII_FULL_DUPLEX]		= 0,
454 	[P_MII_HALF_DUPLEX]		= 1,
455 };
456 
457 static const u8 ksz8795_xmii_ctrl1[] = {
458 	[P_RGMII_SEL]			= 3,
459 	[P_GMII_SEL]			= 2,
460 	[P_RMII_SEL]			= 1,
461 	[P_MII_SEL]			= 0,
462 	[P_GMII_1GBIT]			= 1,
463 	[P_GMII_NOT_1GBIT]		= 0,
464 };
465 
466 static const u8 ksz8795_shifts[] = {
467 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
468 	[VLAN_TABLE]			= 16,
469 	[STATIC_MAC_FWD_PORTS]		= 16,
470 	[STATIC_MAC_FID]		= 24,
471 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
472 	[DYNAMIC_MAC_ENTRIES]		= 29,
473 	[DYNAMIC_MAC_FID]		= 16,
474 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
475 	[DYNAMIC_MAC_SRC_PORT]		= 24,
476 };
477 
478 static const u16 ksz8863_regs[] = {
479 	[REG_SW_MAC_ADDR]		= 0x70,
480 	[REG_IND_CTRL_0]		= 0x79,
481 	[REG_IND_DATA_8]		= 0x7B,
482 	[REG_IND_DATA_CHECK]		= 0x7B,
483 	[REG_IND_DATA_HI]		= 0x7C,
484 	[REG_IND_DATA_LO]		= 0x80,
485 	[REG_IND_MIB_CHECK]		= 0x80,
486 	[P_FORCE_CTRL]			= 0x0C,
487 	[P_LINK_STATUS]			= 0x0E,
488 	[P_LOCAL_CTRL]			= 0x0C,
489 	[P_NEG_RESTART_CTRL]		= 0x0D,
490 	[P_REMOTE_STATUS]		= 0x0E,
491 	[P_SPEED_STATUS]		= 0x0F,
492 	[S_TAIL_TAG_CTRL]		= 0x03,
493 	[P_STP_CTRL]			= 0x02,
494 	[S_START_CTRL]			= 0x01,
495 	[S_BROADCAST_CTRL]		= 0x06,
496 	[S_MULTICAST_CTRL]		= 0x04,
497 };
498 
499 static const u32 ksz8863_masks[] = {
500 	[PORT_802_1P_REMAPPING]		= BIT(3),
501 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
502 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
503 	[MIB_COUNTER_VALID]		= BIT(6),
504 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
505 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
506 	[VLAN_TABLE_VALID]		= BIT(19),
507 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
508 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
509 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
510 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
511 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
512 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
513 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
514 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
515 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
516 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
517 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
518 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
519 };
520 
521 static u8 ksz8863_shifts[] = {
522 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
523 	[STATIC_MAC_FWD_PORTS]		= 16,
524 	[STATIC_MAC_FID]		= 22,
525 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
526 	[DYNAMIC_MAC_ENTRIES]		= 24,
527 	[DYNAMIC_MAC_FID]		= 16,
528 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
529 	[DYNAMIC_MAC_SRC_PORT]		= 20,
530 };
531 
532 static const u16 ksz9477_regs[] = {
533 	[REG_SW_MAC_ADDR]		= 0x0302,
534 	[P_STP_CTRL]			= 0x0B04,
535 	[S_START_CTRL]			= 0x0300,
536 	[S_BROADCAST_CTRL]		= 0x0332,
537 	[S_MULTICAST_CTRL]		= 0x0331,
538 	[P_XMII_CTRL_0]			= 0x0300,
539 	[P_XMII_CTRL_1]			= 0x0301,
540 };
541 
542 static const u32 ksz9477_masks[] = {
543 	[ALU_STAT_WRITE]		= 0,
544 	[ALU_STAT_READ]			= 1,
545 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
546 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
547 };
548 
549 static const u8 ksz9477_shifts[] = {
550 	[ALU_STAT_INDEX]		= 16,
551 };
552 
553 static const u8 ksz9477_xmii_ctrl0[] = {
554 	[P_MII_100MBIT]			= 1,
555 	[P_MII_10MBIT]			= 0,
556 	[P_MII_FULL_DUPLEX]		= 1,
557 	[P_MII_HALF_DUPLEX]		= 0,
558 };
559 
560 static const u8 ksz9477_xmii_ctrl1[] = {
561 	[P_RGMII_SEL]			= 0,
562 	[P_RMII_SEL]			= 1,
563 	[P_GMII_SEL]			= 2,
564 	[P_MII_SEL]			= 3,
565 	[P_GMII_1GBIT]			= 0,
566 	[P_GMII_NOT_1GBIT]		= 1,
567 };
568 
569 static const u32 lan937x_masks[] = {
570 	[ALU_STAT_WRITE]		= 1,
571 	[ALU_STAT_READ]			= 2,
572 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
573 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
574 };
575 
576 static const u8 lan937x_shifts[] = {
577 	[ALU_STAT_INDEX]		= 8,
578 };
579 
580 static const struct regmap_range ksz8563_valid_regs[] = {
581 	regmap_reg_range(0x0000, 0x0003),
582 	regmap_reg_range(0x0006, 0x0006),
583 	regmap_reg_range(0x000f, 0x001f),
584 	regmap_reg_range(0x0100, 0x0100),
585 	regmap_reg_range(0x0104, 0x0107),
586 	regmap_reg_range(0x010d, 0x010d),
587 	regmap_reg_range(0x0110, 0x0113),
588 	regmap_reg_range(0x0120, 0x012b),
589 	regmap_reg_range(0x0201, 0x0201),
590 	regmap_reg_range(0x0210, 0x0213),
591 	regmap_reg_range(0x0300, 0x0300),
592 	regmap_reg_range(0x0302, 0x031b),
593 	regmap_reg_range(0x0320, 0x032b),
594 	regmap_reg_range(0x0330, 0x0336),
595 	regmap_reg_range(0x0338, 0x033e),
596 	regmap_reg_range(0x0340, 0x035f),
597 	regmap_reg_range(0x0370, 0x0370),
598 	regmap_reg_range(0x0378, 0x0378),
599 	regmap_reg_range(0x037c, 0x037d),
600 	regmap_reg_range(0x0390, 0x0393),
601 	regmap_reg_range(0x0400, 0x040e),
602 	regmap_reg_range(0x0410, 0x042f),
603 	regmap_reg_range(0x0500, 0x0519),
604 	regmap_reg_range(0x0520, 0x054b),
605 	regmap_reg_range(0x0550, 0x05b3),
606 
607 	/* port 1 */
608 	regmap_reg_range(0x1000, 0x1001),
609 	regmap_reg_range(0x1004, 0x100b),
610 	regmap_reg_range(0x1013, 0x1013),
611 	regmap_reg_range(0x1017, 0x1017),
612 	regmap_reg_range(0x101b, 0x101b),
613 	regmap_reg_range(0x101f, 0x1021),
614 	regmap_reg_range(0x1030, 0x1030),
615 	regmap_reg_range(0x1100, 0x1111),
616 	regmap_reg_range(0x111a, 0x111d),
617 	regmap_reg_range(0x1122, 0x1127),
618 	regmap_reg_range(0x112a, 0x112b),
619 	regmap_reg_range(0x1136, 0x1139),
620 	regmap_reg_range(0x113e, 0x113f),
621 	regmap_reg_range(0x1400, 0x1401),
622 	regmap_reg_range(0x1403, 0x1403),
623 	regmap_reg_range(0x1410, 0x1417),
624 	regmap_reg_range(0x1420, 0x1423),
625 	regmap_reg_range(0x1500, 0x1507),
626 	regmap_reg_range(0x1600, 0x1612),
627 	regmap_reg_range(0x1800, 0x180f),
628 	regmap_reg_range(0x1900, 0x1907),
629 	regmap_reg_range(0x1914, 0x191b),
630 	regmap_reg_range(0x1a00, 0x1a03),
631 	regmap_reg_range(0x1a04, 0x1a08),
632 	regmap_reg_range(0x1b00, 0x1b01),
633 	regmap_reg_range(0x1b04, 0x1b04),
634 	regmap_reg_range(0x1c00, 0x1c05),
635 	regmap_reg_range(0x1c08, 0x1c1b),
636 
637 	/* port 2 */
638 	regmap_reg_range(0x2000, 0x2001),
639 	regmap_reg_range(0x2004, 0x200b),
640 	regmap_reg_range(0x2013, 0x2013),
641 	regmap_reg_range(0x2017, 0x2017),
642 	regmap_reg_range(0x201b, 0x201b),
643 	regmap_reg_range(0x201f, 0x2021),
644 	regmap_reg_range(0x2030, 0x2030),
645 	regmap_reg_range(0x2100, 0x2111),
646 	regmap_reg_range(0x211a, 0x211d),
647 	regmap_reg_range(0x2122, 0x2127),
648 	regmap_reg_range(0x212a, 0x212b),
649 	regmap_reg_range(0x2136, 0x2139),
650 	regmap_reg_range(0x213e, 0x213f),
651 	regmap_reg_range(0x2400, 0x2401),
652 	regmap_reg_range(0x2403, 0x2403),
653 	regmap_reg_range(0x2410, 0x2417),
654 	regmap_reg_range(0x2420, 0x2423),
655 	regmap_reg_range(0x2500, 0x2507),
656 	regmap_reg_range(0x2600, 0x2612),
657 	regmap_reg_range(0x2800, 0x280f),
658 	regmap_reg_range(0x2900, 0x2907),
659 	regmap_reg_range(0x2914, 0x291b),
660 	regmap_reg_range(0x2a00, 0x2a03),
661 	regmap_reg_range(0x2a04, 0x2a08),
662 	regmap_reg_range(0x2b00, 0x2b01),
663 	regmap_reg_range(0x2b04, 0x2b04),
664 	regmap_reg_range(0x2c00, 0x2c05),
665 	regmap_reg_range(0x2c08, 0x2c1b),
666 
667 	/* port 3 */
668 	regmap_reg_range(0x3000, 0x3001),
669 	regmap_reg_range(0x3004, 0x300b),
670 	regmap_reg_range(0x3013, 0x3013),
671 	regmap_reg_range(0x3017, 0x3017),
672 	regmap_reg_range(0x301b, 0x301b),
673 	regmap_reg_range(0x301f, 0x3021),
674 	regmap_reg_range(0x3030, 0x3030),
675 	regmap_reg_range(0x3300, 0x3301),
676 	regmap_reg_range(0x3303, 0x3303),
677 	regmap_reg_range(0x3400, 0x3401),
678 	regmap_reg_range(0x3403, 0x3403),
679 	regmap_reg_range(0x3410, 0x3417),
680 	regmap_reg_range(0x3420, 0x3423),
681 	regmap_reg_range(0x3500, 0x3507),
682 	regmap_reg_range(0x3600, 0x3612),
683 	regmap_reg_range(0x3800, 0x380f),
684 	regmap_reg_range(0x3900, 0x3907),
685 	regmap_reg_range(0x3914, 0x391b),
686 	regmap_reg_range(0x3a00, 0x3a03),
687 	regmap_reg_range(0x3a04, 0x3a08),
688 	regmap_reg_range(0x3b00, 0x3b01),
689 	regmap_reg_range(0x3b04, 0x3b04),
690 	regmap_reg_range(0x3c00, 0x3c05),
691 	regmap_reg_range(0x3c08, 0x3c1b),
692 };
693 
694 static const struct regmap_access_table ksz8563_register_set = {
695 	.yes_ranges = ksz8563_valid_regs,
696 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
697 };
698 
699 static const struct regmap_range ksz9477_valid_regs[] = {
700 	regmap_reg_range(0x0000, 0x0003),
701 	regmap_reg_range(0x0006, 0x0006),
702 	regmap_reg_range(0x0010, 0x001f),
703 	regmap_reg_range(0x0100, 0x0100),
704 	regmap_reg_range(0x0103, 0x0107),
705 	regmap_reg_range(0x010d, 0x010d),
706 	regmap_reg_range(0x0110, 0x0113),
707 	regmap_reg_range(0x0120, 0x012b),
708 	regmap_reg_range(0x0201, 0x0201),
709 	regmap_reg_range(0x0210, 0x0213),
710 	regmap_reg_range(0x0300, 0x0300),
711 	regmap_reg_range(0x0302, 0x031b),
712 	regmap_reg_range(0x0320, 0x032b),
713 	regmap_reg_range(0x0330, 0x0336),
714 	regmap_reg_range(0x0338, 0x033b),
715 	regmap_reg_range(0x033e, 0x033e),
716 	regmap_reg_range(0x0340, 0x035f),
717 	regmap_reg_range(0x0370, 0x0370),
718 	regmap_reg_range(0x0378, 0x0378),
719 	regmap_reg_range(0x037c, 0x037d),
720 	regmap_reg_range(0x0390, 0x0393),
721 	regmap_reg_range(0x0400, 0x040e),
722 	regmap_reg_range(0x0410, 0x042f),
723 	regmap_reg_range(0x0444, 0x044b),
724 	regmap_reg_range(0x0450, 0x046f),
725 	regmap_reg_range(0x0500, 0x0519),
726 	regmap_reg_range(0x0520, 0x054b),
727 	regmap_reg_range(0x0550, 0x05b3),
728 	regmap_reg_range(0x0604, 0x060b),
729 	regmap_reg_range(0x0610, 0x0612),
730 	regmap_reg_range(0x0614, 0x062c),
731 	regmap_reg_range(0x0640, 0x0645),
732 	regmap_reg_range(0x0648, 0x064d),
733 
734 	/* port 1 */
735 	regmap_reg_range(0x1000, 0x1001),
736 	regmap_reg_range(0x1013, 0x1013),
737 	regmap_reg_range(0x1017, 0x1017),
738 	regmap_reg_range(0x101b, 0x101b),
739 	regmap_reg_range(0x101f, 0x1020),
740 	regmap_reg_range(0x1030, 0x1030),
741 	regmap_reg_range(0x1100, 0x1115),
742 	regmap_reg_range(0x111a, 0x111f),
743 	regmap_reg_range(0x1120, 0x112b),
744 	regmap_reg_range(0x1134, 0x113b),
745 	regmap_reg_range(0x113c, 0x113f),
746 	regmap_reg_range(0x1400, 0x1401),
747 	regmap_reg_range(0x1403, 0x1403),
748 	regmap_reg_range(0x1410, 0x1417),
749 	regmap_reg_range(0x1420, 0x1423),
750 	regmap_reg_range(0x1500, 0x1507),
751 	regmap_reg_range(0x1600, 0x1613),
752 	regmap_reg_range(0x1800, 0x180f),
753 	regmap_reg_range(0x1820, 0x1827),
754 	regmap_reg_range(0x1830, 0x1837),
755 	regmap_reg_range(0x1840, 0x184b),
756 	regmap_reg_range(0x1900, 0x1907),
757 	regmap_reg_range(0x1914, 0x191b),
758 	regmap_reg_range(0x1920, 0x1920),
759 	regmap_reg_range(0x1923, 0x1927),
760 	regmap_reg_range(0x1a00, 0x1a03),
761 	regmap_reg_range(0x1a04, 0x1a07),
762 	regmap_reg_range(0x1b00, 0x1b01),
763 	regmap_reg_range(0x1b04, 0x1b04),
764 	regmap_reg_range(0x1c00, 0x1c05),
765 	regmap_reg_range(0x1c08, 0x1c1b),
766 
767 	/* port 2 */
768 	regmap_reg_range(0x2000, 0x2001),
769 	regmap_reg_range(0x2013, 0x2013),
770 	regmap_reg_range(0x2017, 0x2017),
771 	regmap_reg_range(0x201b, 0x201b),
772 	regmap_reg_range(0x201f, 0x2020),
773 	regmap_reg_range(0x2030, 0x2030),
774 	regmap_reg_range(0x2100, 0x2115),
775 	regmap_reg_range(0x211a, 0x211f),
776 	regmap_reg_range(0x2120, 0x212b),
777 	regmap_reg_range(0x2134, 0x213b),
778 	regmap_reg_range(0x213c, 0x213f),
779 	regmap_reg_range(0x2400, 0x2401),
780 	regmap_reg_range(0x2403, 0x2403),
781 	regmap_reg_range(0x2410, 0x2417),
782 	regmap_reg_range(0x2420, 0x2423),
783 	regmap_reg_range(0x2500, 0x2507),
784 	regmap_reg_range(0x2600, 0x2613),
785 	regmap_reg_range(0x2800, 0x280f),
786 	regmap_reg_range(0x2820, 0x2827),
787 	regmap_reg_range(0x2830, 0x2837),
788 	regmap_reg_range(0x2840, 0x284b),
789 	regmap_reg_range(0x2900, 0x2907),
790 	regmap_reg_range(0x2914, 0x291b),
791 	regmap_reg_range(0x2920, 0x2920),
792 	regmap_reg_range(0x2923, 0x2927),
793 	regmap_reg_range(0x2a00, 0x2a03),
794 	regmap_reg_range(0x2a04, 0x2a07),
795 	regmap_reg_range(0x2b00, 0x2b01),
796 	regmap_reg_range(0x2b04, 0x2b04),
797 	regmap_reg_range(0x2c00, 0x2c05),
798 	regmap_reg_range(0x2c08, 0x2c1b),
799 
800 	/* port 3 */
801 	regmap_reg_range(0x3000, 0x3001),
802 	regmap_reg_range(0x3013, 0x3013),
803 	regmap_reg_range(0x3017, 0x3017),
804 	regmap_reg_range(0x301b, 0x301b),
805 	regmap_reg_range(0x301f, 0x3020),
806 	regmap_reg_range(0x3030, 0x3030),
807 	regmap_reg_range(0x3100, 0x3115),
808 	regmap_reg_range(0x311a, 0x311f),
809 	regmap_reg_range(0x3120, 0x312b),
810 	regmap_reg_range(0x3134, 0x313b),
811 	regmap_reg_range(0x313c, 0x313f),
812 	regmap_reg_range(0x3400, 0x3401),
813 	regmap_reg_range(0x3403, 0x3403),
814 	regmap_reg_range(0x3410, 0x3417),
815 	regmap_reg_range(0x3420, 0x3423),
816 	regmap_reg_range(0x3500, 0x3507),
817 	regmap_reg_range(0x3600, 0x3613),
818 	regmap_reg_range(0x3800, 0x380f),
819 	regmap_reg_range(0x3820, 0x3827),
820 	regmap_reg_range(0x3830, 0x3837),
821 	regmap_reg_range(0x3840, 0x384b),
822 	regmap_reg_range(0x3900, 0x3907),
823 	regmap_reg_range(0x3914, 0x391b),
824 	regmap_reg_range(0x3920, 0x3920),
825 	regmap_reg_range(0x3923, 0x3927),
826 	regmap_reg_range(0x3a00, 0x3a03),
827 	regmap_reg_range(0x3a04, 0x3a07),
828 	regmap_reg_range(0x3b00, 0x3b01),
829 	regmap_reg_range(0x3b04, 0x3b04),
830 	regmap_reg_range(0x3c00, 0x3c05),
831 	regmap_reg_range(0x3c08, 0x3c1b),
832 
833 	/* port 4 */
834 	regmap_reg_range(0x4000, 0x4001),
835 	regmap_reg_range(0x4013, 0x4013),
836 	regmap_reg_range(0x4017, 0x4017),
837 	regmap_reg_range(0x401b, 0x401b),
838 	regmap_reg_range(0x401f, 0x4020),
839 	regmap_reg_range(0x4030, 0x4030),
840 	regmap_reg_range(0x4100, 0x4115),
841 	regmap_reg_range(0x411a, 0x411f),
842 	regmap_reg_range(0x4120, 0x412b),
843 	regmap_reg_range(0x4134, 0x413b),
844 	regmap_reg_range(0x413c, 0x413f),
845 	regmap_reg_range(0x4400, 0x4401),
846 	regmap_reg_range(0x4403, 0x4403),
847 	regmap_reg_range(0x4410, 0x4417),
848 	regmap_reg_range(0x4420, 0x4423),
849 	regmap_reg_range(0x4500, 0x4507),
850 	regmap_reg_range(0x4600, 0x4613),
851 	regmap_reg_range(0x4800, 0x480f),
852 	regmap_reg_range(0x4820, 0x4827),
853 	regmap_reg_range(0x4830, 0x4837),
854 	regmap_reg_range(0x4840, 0x484b),
855 	regmap_reg_range(0x4900, 0x4907),
856 	regmap_reg_range(0x4914, 0x491b),
857 	regmap_reg_range(0x4920, 0x4920),
858 	regmap_reg_range(0x4923, 0x4927),
859 	regmap_reg_range(0x4a00, 0x4a03),
860 	regmap_reg_range(0x4a04, 0x4a07),
861 	regmap_reg_range(0x4b00, 0x4b01),
862 	regmap_reg_range(0x4b04, 0x4b04),
863 	regmap_reg_range(0x4c00, 0x4c05),
864 	regmap_reg_range(0x4c08, 0x4c1b),
865 
866 	/* port 5 */
867 	regmap_reg_range(0x5000, 0x5001),
868 	regmap_reg_range(0x5013, 0x5013),
869 	regmap_reg_range(0x5017, 0x5017),
870 	regmap_reg_range(0x501b, 0x501b),
871 	regmap_reg_range(0x501f, 0x5020),
872 	regmap_reg_range(0x5030, 0x5030),
873 	regmap_reg_range(0x5100, 0x5115),
874 	regmap_reg_range(0x511a, 0x511f),
875 	regmap_reg_range(0x5120, 0x512b),
876 	regmap_reg_range(0x5134, 0x513b),
877 	regmap_reg_range(0x513c, 0x513f),
878 	regmap_reg_range(0x5400, 0x5401),
879 	regmap_reg_range(0x5403, 0x5403),
880 	regmap_reg_range(0x5410, 0x5417),
881 	regmap_reg_range(0x5420, 0x5423),
882 	regmap_reg_range(0x5500, 0x5507),
883 	regmap_reg_range(0x5600, 0x5613),
884 	regmap_reg_range(0x5800, 0x580f),
885 	regmap_reg_range(0x5820, 0x5827),
886 	regmap_reg_range(0x5830, 0x5837),
887 	regmap_reg_range(0x5840, 0x584b),
888 	regmap_reg_range(0x5900, 0x5907),
889 	regmap_reg_range(0x5914, 0x591b),
890 	regmap_reg_range(0x5920, 0x5920),
891 	regmap_reg_range(0x5923, 0x5927),
892 	regmap_reg_range(0x5a00, 0x5a03),
893 	regmap_reg_range(0x5a04, 0x5a07),
894 	regmap_reg_range(0x5b00, 0x5b01),
895 	regmap_reg_range(0x5b04, 0x5b04),
896 	regmap_reg_range(0x5c00, 0x5c05),
897 	regmap_reg_range(0x5c08, 0x5c1b),
898 
899 	/* port 6 */
900 	regmap_reg_range(0x6000, 0x6001),
901 	regmap_reg_range(0x6013, 0x6013),
902 	regmap_reg_range(0x6017, 0x6017),
903 	regmap_reg_range(0x601b, 0x601b),
904 	regmap_reg_range(0x601f, 0x6020),
905 	regmap_reg_range(0x6030, 0x6030),
906 	regmap_reg_range(0x6300, 0x6301),
907 	regmap_reg_range(0x6400, 0x6401),
908 	regmap_reg_range(0x6403, 0x6403),
909 	regmap_reg_range(0x6410, 0x6417),
910 	regmap_reg_range(0x6420, 0x6423),
911 	regmap_reg_range(0x6500, 0x6507),
912 	regmap_reg_range(0x6600, 0x6613),
913 	regmap_reg_range(0x6800, 0x680f),
914 	regmap_reg_range(0x6820, 0x6827),
915 	regmap_reg_range(0x6830, 0x6837),
916 	regmap_reg_range(0x6840, 0x684b),
917 	regmap_reg_range(0x6900, 0x6907),
918 	regmap_reg_range(0x6914, 0x691b),
919 	regmap_reg_range(0x6920, 0x6920),
920 	regmap_reg_range(0x6923, 0x6927),
921 	regmap_reg_range(0x6a00, 0x6a03),
922 	regmap_reg_range(0x6a04, 0x6a07),
923 	regmap_reg_range(0x6b00, 0x6b01),
924 	regmap_reg_range(0x6b04, 0x6b04),
925 	regmap_reg_range(0x6c00, 0x6c05),
926 	regmap_reg_range(0x6c08, 0x6c1b),
927 
928 	/* port 7 */
929 	regmap_reg_range(0x7000, 0x7001),
930 	regmap_reg_range(0x7013, 0x7013),
931 	regmap_reg_range(0x7017, 0x7017),
932 	regmap_reg_range(0x701b, 0x701b),
933 	regmap_reg_range(0x701f, 0x7020),
934 	regmap_reg_range(0x7030, 0x7030),
935 	regmap_reg_range(0x7200, 0x7203),
936 	regmap_reg_range(0x7206, 0x7207),
937 	regmap_reg_range(0x7300, 0x7301),
938 	regmap_reg_range(0x7400, 0x7401),
939 	regmap_reg_range(0x7403, 0x7403),
940 	regmap_reg_range(0x7410, 0x7417),
941 	regmap_reg_range(0x7420, 0x7423),
942 	regmap_reg_range(0x7500, 0x7507),
943 	regmap_reg_range(0x7600, 0x7613),
944 	regmap_reg_range(0x7800, 0x780f),
945 	regmap_reg_range(0x7820, 0x7827),
946 	regmap_reg_range(0x7830, 0x7837),
947 	regmap_reg_range(0x7840, 0x784b),
948 	regmap_reg_range(0x7900, 0x7907),
949 	regmap_reg_range(0x7914, 0x791b),
950 	regmap_reg_range(0x7920, 0x7920),
951 	regmap_reg_range(0x7923, 0x7927),
952 	regmap_reg_range(0x7a00, 0x7a03),
953 	regmap_reg_range(0x7a04, 0x7a07),
954 	regmap_reg_range(0x7b00, 0x7b01),
955 	regmap_reg_range(0x7b04, 0x7b04),
956 	regmap_reg_range(0x7c00, 0x7c05),
957 	regmap_reg_range(0x7c08, 0x7c1b),
958 };
959 
960 static const struct regmap_access_table ksz9477_register_set = {
961 	.yes_ranges = ksz9477_valid_regs,
962 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
963 };
964 
965 static const struct regmap_range ksz9896_valid_regs[] = {
966 	regmap_reg_range(0x0000, 0x0003),
967 	regmap_reg_range(0x0006, 0x0006),
968 	regmap_reg_range(0x0010, 0x001f),
969 	regmap_reg_range(0x0100, 0x0100),
970 	regmap_reg_range(0x0103, 0x0107),
971 	regmap_reg_range(0x010d, 0x010d),
972 	regmap_reg_range(0x0110, 0x0113),
973 	regmap_reg_range(0x0120, 0x0127),
974 	regmap_reg_range(0x0201, 0x0201),
975 	regmap_reg_range(0x0210, 0x0213),
976 	regmap_reg_range(0x0300, 0x0300),
977 	regmap_reg_range(0x0302, 0x030b),
978 	regmap_reg_range(0x0310, 0x031b),
979 	regmap_reg_range(0x0320, 0x032b),
980 	regmap_reg_range(0x0330, 0x0336),
981 	regmap_reg_range(0x0338, 0x033b),
982 	regmap_reg_range(0x033e, 0x033e),
983 	regmap_reg_range(0x0340, 0x035f),
984 	regmap_reg_range(0x0370, 0x0370),
985 	regmap_reg_range(0x0378, 0x0378),
986 	regmap_reg_range(0x037c, 0x037d),
987 	regmap_reg_range(0x0390, 0x0393),
988 	regmap_reg_range(0x0400, 0x040e),
989 	regmap_reg_range(0x0410, 0x042f),
990 
991 	/* port 1 */
992 	regmap_reg_range(0x1000, 0x1001),
993 	regmap_reg_range(0x1013, 0x1013),
994 	regmap_reg_range(0x1017, 0x1017),
995 	regmap_reg_range(0x101b, 0x101b),
996 	regmap_reg_range(0x101f, 0x1020),
997 	regmap_reg_range(0x1030, 0x1030),
998 	regmap_reg_range(0x1100, 0x1115),
999 	regmap_reg_range(0x111a, 0x111f),
1000 	regmap_reg_range(0x1122, 0x1127),
1001 	regmap_reg_range(0x112a, 0x112b),
1002 	regmap_reg_range(0x1136, 0x1139),
1003 	regmap_reg_range(0x113e, 0x113f),
1004 	regmap_reg_range(0x1400, 0x1401),
1005 	regmap_reg_range(0x1403, 0x1403),
1006 	regmap_reg_range(0x1410, 0x1417),
1007 	regmap_reg_range(0x1420, 0x1423),
1008 	regmap_reg_range(0x1500, 0x1507),
1009 	regmap_reg_range(0x1600, 0x1612),
1010 	regmap_reg_range(0x1800, 0x180f),
1011 	regmap_reg_range(0x1820, 0x1827),
1012 	regmap_reg_range(0x1830, 0x1837),
1013 	regmap_reg_range(0x1840, 0x184b),
1014 	regmap_reg_range(0x1900, 0x1907),
1015 	regmap_reg_range(0x1914, 0x1915),
1016 	regmap_reg_range(0x1a00, 0x1a03),
1017 	regmap_reg_range(0x1a04, 0x1a07),
1018 	regmap_reg_range(0x1b00, 0x1b01),
1019 	regmap_reg_range(0x1b04, 0x1b04),
1020 
1021 	/* port 2 */
1022 	regmap_reg_range(0x2000, 0x2001),
1023 	regmap_reg_range(0x2013, 0x2013),
1024 	regmap_reg_range(0x2017, 0x2017),
1025 	regmap_reg_range(0x201b, 0x201b),
1026 	regmap_reg_range(0x201f, 0x2020),
1027 	regmap_reg_range(0x2030, 0x2030),
1028 	regmap_reg_range(0x2100, 0x2115),
1029 	regmap_reg_range(0x211a, 0x211f),
1030 	regmap_reg_range(0x2122, 0x2127),
1031 	regmap_reg_range(0x212a, 0x212b),
1032 	regmap_reg_range(0x2136, 0x2139),
1033 	regmap_reg_range(0x213e, 0x213f),
1034 	regmap_reg_range(0x2400, 0x2401),
1035 	regmap_reg_range(0x2403, 0x2403),
1036 	regmap_reg_range(0x2410, 0x2417),
1037 	regmap_reg_range(0x2420, 0x2423),
1038 	regmap_reg_range(0x2500, 0x2507),
1039 	regmap_reg_range(0x2600, 0x2612),
1040 	regmap_reg_range(0x2800, 0x280f),
1041 	regmap_reg_range(0x2820, 0x2827),
1042 	regmap_reg_range(0x2830, 0x2837),
1043 	regmap_reg_range(0x2840, 0x284b),
1044 	regmap_reg_range(0x2900, 0x2907),
1045 	regmap_reg_range(0x2914, 0x2915),
1046 	regmap_reg_range(0x2a00, 0x2a03),
1047 	regmap_reg_range(0x2a04, 0x2a07),
1048 	regmap_reg_range(0x2b00, 0x2b01),
1049 	regmap_reg_range(0x2b04, 0x2b04),
1050 
1051 	/* port 3 */
1052 	regmap_reg_range(0x3000, 0x3001),
1053 	regmap_reg_range(0x3013, 0x3013),
1054 	regmap_reg_range(0x3017, 0x3017),
1055 	regmap_reg_range(0x301b, 0x301b),
1056 	regmap_reg_range(0x301f, 0x3020),
1057 	regmap_reg_range(0x3030, 0x3030),
1058 	regmap_reg_range(0x3100, 0x3115),
1059 	regmap_reg_range(0x311a, 0x311f),
1060 	regmap_reg_range(0x3122, 0x3127),
1061 	regmap_reg_range(0x312a, 0x312b),
1062 	regmap_reg_range(0x3136, 0x3139),
1063 	regmap_reg_range(0x313e, 0x313f),
1064 	regmap_reg_range(0x3400, 0x3401),
1065 	regmap_reg_range(0x3403, 0x3403),
1066 	regmap_reg_range(0x3410, 0x3417),
1067 	regmap_reg_range(0x3420, 0x3423),
1068 	regmap_reg_range(0x3500, 0x3507),
1069 	regmap_reg_range(0x3600, 0x3612),
1070 	regmap_reg_range(0x3800, 0x380f),
1071 	regmap_reg_range(0x3820, 0x3827),
1072 	regmap_reg_range(0x3830, 0x3837),
1073 	regmap_reg_range(0x3840, 0x384b),
1074 	regmap_reg_range(0x3900, 0x3907),
1075 	regmap_reg_range(0x3914, 0x3915),
1076 	regmap_reg_range(0x3a00, 0x3a03),
1077 	regmap_reg_range(0x3a04, 0x3a07),
1078 	regmap_reg_range(0x3b00, 0x3b01),
1079 	regmap_reg_range(0x3b04, 0x3b04),
1080 
1081 	/* port 4 */
1082 	regmap_reg_range(0x4000, 0x4001),
1083 	regmap_reg_range(0x4013, 0x4013),
1084 	regmap_reg_range(0x4017, 0x4017),
1085 	regmap_reg_range(0x401b, 0x401b),
1086 	regmap_reg_range(0x401f, 0x4020),
1087 	regmap_reg_range(0x4030, 0x4030),
1088 	regmap_reg_range(0x4100, 0x4115),
1089 	regmap_reg_range(0x411a, 0x411f),
1090 	regmap_reg_range(0x4122, 0x4127),
1091 	regmap_reg_range(0x412a, 0x412b),
1092 	regmap_reg_range(0x4136, 0x4139),
1093 	regmap_reg_range(0x413e, 0x413f),
1094 	regmap_reg_range(0x4400, 0x4401),
1095 	regmap_reg_range(0x4403, 0x4403),
1096 	regmap_reg_range(0x4410, 0x4417),
1097 	regmap_reg_range(0x4420, 0x4423),
1098 	regmap_reg_range(0x4500, 0x4507),
1099 	regmap_reg_range(0x4600, 0x4612),
1100 	regmap_reg_range(0x4800, 0x480f),
1101 	regmap_reg_range(0x4820, 0x4827),
1102 	regmap_reg_range(0x4830, 0x4837),
1103 	regmap_reg_range(0x4840, 0x484b),
1104 	regmap_reg_range(0x4900, 0x4907),
1105 	regmap_reg_range(0x4914, 0x4915),
1106 	regmap_reg_range(0x4a00, 0x4a03),
1107 	regmap_reg_range(0x4a04, 0x4a07),
1108 	regmap_reg_range(0x4b00, 0x4b01),
1109 	regmap_reg_range(0x4b04, 0x4b04),
1110 
1111 	/* port 5 */
1112 	regmap_reg_range(0x5000, 0x5001),
1113 	regmap_reg_range(0x5013, 0x5013),
1114 	regmap_reg_range(0x5017, 0x5017),
1115 	regmap_reg_range(0x501b, 0x501b),
1116 	regmap_reg_range(0x501f, 0x5020),
1117 	regmap_reg_range(0x5030, 0x5030),
1118 	regmap_reg_range(0x5100, 0x5115),
1119 	regmap_reg_range(0x511a, 0x511f),
1120 	regmap_reg_range(0x5122, 0x5127),
1121 	regmap_reg_range(0x512a, 0x512b),
1122 	regmap_reg_range(0x5136, 0x5139),
1123 	regmap_reg_range(0x513e, 0x513f),
1124 	regmap_reg_range(0x5400, 0x5401),
1125 	regmap_reg_range(0x5403, 0x5403),
1126 	regmap_reg_range(0x5410, 0x5417),
1127 	regmap_reg_range(0x5420, 0x5423),
1128 	regmap_reg_range(0x5500, 0x5507),
1129 	regmap_reg_range(0x5600, 0x5612),
1130 	regmap_reg_range(0x5800, 0x580f),
1131 	regmap_reg_range(0x5820, 0x5827),
1132 	regmap_reg_range(0x5830, 0x5837),
1133 	regmap_reg_range(0x5840, 0x584b),
1134 	regmap_reg_range(0x5900, 0x5907),
1135 	regmap_reg_range(0x5914, 0x5915),
1136 	regmap_reg_range(0x5a00, 0x5a03),
1137 	regmap_reg_range(0x5a04, 0x5a07),
1138 	regmap_reg_range(0x5b00, 0x5b01),
1139 	regmap_reg_range(0x5b04, 0x5b04),
1140 
1141 	/* port 6 */
1142 	regmap_reg_range(0x6000, 0x6001),
1143 	regmap_reg_range(0x6013, 0x6013),
1144 	regmap_reg_range(0x6017, 0x6017),
1145 	regmap_reg_range(0x601b, 0x601b),
1146 	regmap_reg_range(0x601f, 0x6020),
1147 	regmap_reg_range(0x6030, 0x6030),
1148 	regmap_reg_range(0x6100, 0x6115),
1149 	regmap_reg_range(0x611a, 0x611f),
1150 	regmap_reg_range(0x6122, 0x6127),
1151 	regmap_reg_range(0x612a, 0x612b),
1152 	regmap_reg_range(0x6136, 0x6139),
1153 	regmap_reg_range(0x613e, 0x613f),
1154 	regmap_reg_range(0x6300, 0x6301),
1155 	regmap_reg_range(0x6400, 0x6401),
1156 	regmap_reg_range(0x6403, 0x6403),
1157 	regmap_reg_range(0x6410, 0x6417),
1158 	regmap_reg_range(0x6420, 0x6423),
1159 	regmap_reg_range(0x6500, 0x6507),
1160 	regmap_reg_range(0x6600, 0x6612),
1161 	regmap_reg_range(0x6800, 0x680f),
1162 	regmap_reg_range(0x6820, 0x6827),
1163 	regmap_reg_range(0x6830, 0x6837),
1164 	regmap_reg_range(0x6840, 0x684b),
1165 	regmap_reg_range(0x6900, 0x6907),
1166 	regmap_reg_range(0x6914, 0x6915),
1167 	regmap_reg_range(0x6a00, 0x6a03),
1168 	regmap_reg_range(0x6a04, 0x6a07),
1169 	regmap_reg_range(0x6b00, 0x6b01),
1170 	regmap_reg_range(0x6b04, 0x6b04),
1171 };
1172 
1173 static const struct regmap_access_table ksz9896_register_set = {
1174 	.yes_ranges = ksz9896_valid_regs,
1175 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1176 };
1177 
1178 static const struct regmap_range ksz8873_valid_regs[] = {
1179 	regmap_reg_range(0x00, 0x01),
1180 	/* global control register */
1181 	regmap_reg_range(0x02, 0x0f),
1182 
1183 	/* port registers */
1184 	regmap_reg_range(0x10, 0x1d),
1185 	regmap_reg_range(0x1e, 0x1f),
1186 	regmap_reg_range(0x20, 0x2d),
1187 	regmap_reg_range(0x2e, 0x2f),
1188 	regmap_reg_range(0x30, 0x39),
1189 	regmap_reg_range(0x3f, 0x3f),
1190 
1191 	/* advanced control registers */
1192 	regmap_reg_range(0x60, 0x6f),
1193 	regmap_reg_range(0x70, 0x75),
1194 	regmap_reg_range(0x76, 0x78),
1195 	regmap_reg_range(0x79, 0x7a),
1196 	regmap_reg_range(0x7b, 0x83),
1197 	regmap_reg_range(0x8e, 0x99),
1198 	regmap_reg_range(0x9a, 0xa5),
1199 	regmap_reg_range(0xa6, 0xa6),
1200 	regmap_reg_range(0xa7, 0xaa),
1201 	regmap_reg_range(0xab, 0xae),
1202 	regmap_reg_range(0xaf, 0xba),
1203 	regmap_reg_range(0xbb, 0xbc),
1204 	regmap_reg_range(0xbd, 0xbd),
1205 	regmap_reg_range(0xc0, 0xc0),
1206 	regmap_reg_range(0xc2, 0xc2),
1207 	regmap_reg_range(0xc3, 0xc3),
1208 	regmap_reg_range(0xc4, 0xc4),
1209 	regmap_reg_range(0xc6, 0xc6),
1210 };
1211 
1212 static const struct regmap_access_table ksz8873_register_set = {
1213 	.yes_ranges = ksz8873_valid_regs,
1214 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1215 };
1216 
1217 const struct ksz_chip_data ksz_switch_chips[] = {
1218 	[KSZ8563] = {
1219 		.chip_id = KSZ8563_CHIP_ID,
1220 		.dev_name = "KSZ8563",
1221 		.num_vlans = 4096,
1222 		.num_alus = 4096,
1223 		.num_statics = 16,
1224 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1225 		.port_cnt = 3,		/* total port count */
1226 		.port_nirqs = 3,
1227 		.num_tx_queues = 4,
1228 		.tc_cbs_supported = true,
1229 		.tc_ets_supported = true,
1230 		.ops = &ksz9477_dev_ops,
1231 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1232 		.mib_names = ksz9477_mib_names,
1233 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1234 		.reg_mib_cnt = MIB_COUNTER_NUM,
1235 		.regs = ksz9477_regs,
1236 		.masks = ksz9477_masks,
1237 		.shifts = ksz9477_shifts,
1238 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1239 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1240 		.supports_mii = {false, false, true},
1241 		.supports_rmii = {false, false, true},
1242 		.supports_rgmii = {false, false, true},
1243 		.internal_phy = {true, true, false},
1244 		.gbit_capable = {false, false, true},
1245 		.wr_table = &ksz8563_register_set,
1246 		.rd_table = &ksz8563_register_set,
1247 	},
1248 
1249 	[KSZ8795] = {
1250 		.chip_id = KSZ8795_CHIP_ID,
1251 		.dev_name = "KSZ8795",
1252 		.num_vlans = 4096,
1253 		.num_alus = 0,
1254 		.num_statics = 8,
1255 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1256 		.port_cnt = 5,		/* total cpu and user ports */
1257 		.num_tx_queues = 4,
1258 		.ops = &ksz8_dev_ops,
1259 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1260 		.ksz87xx_eee_link_erratum = true,
1261 		.mib_names = ksz9477_mib_names,
1262 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1263 		.reg_mib_cnt = MIB_COUNTER_NUM,
1264 		.regs = ksz8795_regs,
1265 		.masks = ksz8795_masks,
1266 		.shifts = ksz8795_shifts,
1267 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1268 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1269 		.supports_mii = {false, false, false, false, true},
1270 		.supports_rmii = {false, false, false, false, true},
1271 		.supports_rgmii = {false, false, false, false, true},
1272 		.internal_phy = {true, true, true, true, false},
1273 	},
1274 
1275 	[KSZ8794] = {
1276 		/* WARNING
1277 		 * =======
1278 		 * KSZ8794 is similar to KSZ8795, except the port map
1279 		 * contains a gap between external and CPU ports, the
1280 		 * port map is NOT continuous. The per-port register
1281 		 * map is shifted accordingly too, i.e. registers at
1282 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1283 		 * used on KSZ8795 for external port 3.
1284 		 *           external  cpu
1285 		 * KSZ8794   0,1,2      4
1286 		 * KSZ8795   0,1,2,3    4
1287 		 * KSZ8765   0,1,2,3    4
1288 		 * port_cnt is configured as 5, even though it is 4
1289 		 */
1290 		.chip_id = KSZ8794_CHIP_ID,
1291 		.dev_name = "KSZ8794",
1292 		.num_vlans = 4096,
1293 		.num_alus = 0,
1294 		.num_statics = 8,
1295 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1296 		.port_cnt = 5,		/* total cpu and user ports */
1297 		.num_tx_queues = 4,
1298 		.ops = &ksz8_dev_ops,
1299 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1300 		.ksz87xx_eee_link_erratum = true,
1301 		.mib_names = ksz9477_mib_names,
1302 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1303 		.reg_mib_cnt = MIB_COUNTER_NUM,
1304 		.regs = ksz8795_regs,
1305 		.masks = ksz8795_masks,
1306 		.shifts = ksz8795_shifts,
1307 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1308 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1309 		.supports_mii = {false, false, false, false, true},
1310 		.supports_rmii = {false, false, false, false, true},
1311 		.supports_rgmii = {false, false, false, false, true},
1312 		.internal_phy = {true, true, true, false, false},
1313 	},
1314 
1315 	[KSZ8765] = {
1316 		.chip_id = KSZ8765_CHIP_ID,
1317 		.dev_name = "KSZ8765",
1318 		.num_vlans = 4096,
1319 		.num_alus = 0,
1320 		.num_statics = 8,
1321 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1322 		.port_cnt = 5,		/* total cpu and user ports */
1323 		.num_tx_queues = 4,
1324 		.ops = &ksz8_dev_ops,
1325 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1326 		.ksz87xx_eee_link_erratum = true,
1327 		.mib_names = ksz9477_mib_names,
1328 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1329 		.reg_mib_cnt = MIB_COUNTER_NUM,
1330 		.regs = ksz8795_regs,
1331 		.masks = ksz8795_masks,
1332 		.shifts = ksz8795_shifts,
1333 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1334 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1335 		.supports_mii = {false, false, false, false, true},
1336 		.supports_rmii = {false, false, false, false, true},
1337 		.supports_rgmii = {false, false, false, false, true},
1338 		.internal_phy = {true, true, true, true, false},
1339 	},
1340 
1341 	[KSZ8830] = {
1342 		.chip_id = KSZ8830_CHIP_ID,
1343 		.dev_name = "KSZ8863/KSZ8873",
1344 		.num_vlans = 16,
1345 		.num_alus = 0,
1346 		.num_statics = 8,
1347 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1348 		.port_cnt = 3,
1349 		.num_tx_queues = 4,
1350 		.ops = &ksz8_dev_ops,
1351 		.phylink_mac_ops = &ksz8830_phylink_mac_ops,
1352 		.mib_names = ksz88xx_mib_names,
1353 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1354 		.reg_mib_cnt = MIB_COUNTER_NUM,
1355 		.regs = ksz8863_regs,
1356 		.masks = ksz8863_masks,
1357 		.shifts = ksz8863_shifts,
1358 		.supports_mii = {false, false, true},
1359 		.supports_rmii = {false, false, true},
1360 		.internal_phy = {true, true, false},
1361 		.wr_table = &ksz8873_register_set,
1362 		.rd_table = &ksz8873_register_set,
1363 	},
1364 
1365 	[KSZ9477] = {
1366 		.chip_id = KSZ9477_CHIP_ID,
1367 		.dev_name = "KSZ9477",
1368 		.num_vlans = 4096,
1369 		.num_alus = 4096,
1370 		.num_statics = 16,
1371 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1372 		.port_cnt = 7,		/* total physical port count */
1373 		.port_nirqs = 4,
1374 		.num_tx_queues = 4,
1375 		.tc_cbs_supported = true,
1376 		.tc_ets_supported = true,
1377 		.ops = &ksz9477_dev_ops,
1378 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1379 		.mib_names = ksz9477_mib_names,
1380 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1381 		.reg_mib_cnt = MIB_COUNTER_NUM,
1382 		.regs = ksz9477_regs,
1383 		.masks = ksz9477_masks,
1384 		.shifts = ksz9477_shifts,
1385 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1386 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1387 		.supports_mii	= {false, false, false, false,
1388 				   false, true, false},
1389 		.supports_rmii	= {false, false, false, false,
1390 				   false, true, false},
1391 		.supports_rgmii = {false, false, false, false,
1392 				   false, true, false},
1393 		.internal_phy	= {true, true, true, true,
1394 				   true, false, false},
1395 		.gbit_capable	= {true, true, true, true, true, true, true},
1396 		.wr_table = &ksz9477_register_set,
1397 		.rd_table = &ksz9477_register_set,
1398 	},
1399 
1400 	[KSZ9896] = {
1401 		.chip_id = KSZ9896_CHIP_ID,
1402 		.dev_name = "KSZ9896",
1403 		.num_vlans = 4096,
1404 		.num_alus = 4096,
1405 		.num_statics = 16,
1406 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1407 		.port_cnt = 6,		/* total physical port count */
1408 		.port_nirqs = 2,
1409 		.num_tx_queues = 4,
1410 		.ops = &ksz9477_dev_ops,
1411 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1412 		.mib_names = ksz9477_mib_names,
1413 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1414 		.reg_mib_cnt = MIB_COUNTER_NUM,
1415 		.regs = ksz9477_regs,
1416 		.masks = ksz9477_masks,
1417 		.shifts = ksz9477_shifts,
1418 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1419 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1420 		.supports_mii	= {false, false, false, false,
1421 				   false, true},
1422 		.supports_rmii	= {false, false, false, false,
1423 				   false, true},
1424 		.supports_rgmii = {false, false, false, false,
1425 				   false, true},
1426 		.internal_phy	= {true, true, true, true,
1427 				   true, false},
1428 		.gbit_capable	= {true, true, true, true, true, true},
1429 		.wr_table = &ksz9896_register_set,
1430 		.rd_table = &ksz9896_register_set,
1431 	},
1432 
1433 	[KSZ9897] = {
1434 		.chip_id = KSZ9897_CHIP_ID,
1435 		.dev_name = "KSZ9897",
1436 		.num_vlans = 4096,
1437 		.num_alus = 4096,
1438 		.num_statics = 16,
1439 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1440 		.port_cnt = 7,		/* total physical port count */
1441 		.port_nirqs = 2,
1442 		.num_tx_queues = 4,
1443 		.ops = &ksz9477_dev_ops,
1444 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1445 		.mib_names = ksz9477_mib_names,
1446 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1447 		.reg_mib_cnt = MIB_COUNTER_NUM,
1448 		.regs = ksz9477_regs,
1449 		.masks = ksz9477_masks,
1450 		.shifts = ksz9477_shifts,
1451 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1452 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1453 		.supports_mii	= {false, false, false, false,
1454 				   false, true, true},
1455 		.supports_rmii	= {false, false, false, false,
1456 				   false, true, true},
1457 		.supports_rgmii = {false, false, false, false,
1458 				   false, true, true},
1459 		.internal_phy	= {true, true, true, true,
1460 				   true, false, false},
1461 		.gbit_capable	= {true, true, true, true, true, true, true},
1462 	},
1463 
1464 	[KSZ9893] = {
1465 		.chip_id = KSZ9893_CHIP_ID,
1466 		.dev_name = "KSZ9893",
1467 		.num_vlans = 4096,
1468 		.num_alus = 4096,
1469 		.num_statics = 16,
1470 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1471 		.port_cnt = 3,		/* total port count */
1472 		.port_nirqs = 2,
1473 		.num_tx_queues = 4,
1474 		.ops = &ksz9477_dev_ops,
1475 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1476 		.mib_names = ksz9477_mib_names,
1477 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1478 		.reg_mib_cnt = MIB_COUNTER_NUM,
1479 		.regs = ksz9477_regs,
1480 		.masks = ksz9477_masks,
1481 		.shifts = ksz9477_shifts,
1482 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1483 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1484 		.supports_mii = {false, false, true},
1485 		.supports_rmii = {false, false, true},
1486 		.supports_rgmii = {false, false, true},
1487 		.internal_phy = {true, true, false},
1488 		.gbit_capable = {true, true, true},
1489 	},
1490 
1491 	[KSZ9563] = {
1492 		.chip_id = KSZ9563_CHIP_ID,
1493 		.dev_name = "KSZ9563",
1494 		.num_vlans = 4096,
1495 		.num_alus = 4096,
1496 		.num_statics = 16,
1497 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1498 		.port_cnt = 3,		/* total port count */
1499 		.port_nirqs = 3,
1500 		.num_tx_queues = 4,
1501 		.tc_cbs_supported = true,
1502 		.tc_ets_supported = true,
1503 		.ops = &ksz9477_dev_ops,
1504 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1505 		.mib_names = ksz9477_mib_names,
1506 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1507 		.reg_mib_cnt = MIB_COUNTER_NUM,
1508 		.regs = ksz9477_regs,
1509 		.masks = ksz9477_masks,
1510 		.shifts = ksz9477_shifts,
1511 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1512 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1513 		.supports_mii = {false, false, true},
1514 		.supports_rmii = {false, false, true},
1515 		.supports_rgmii = {false, false, true},
1516 		.internal_phy = {true, true, false},
1517 		.gbit_capable = {true, true, true},
1518 	},
1519 
1520 	[KSZ8567] = {
1521 		.chip_id = KSZ8567_CHIP_ID,
1522 		.dev_name = "KSZ8567",
1523 		.num_vlans = 4096,
1524 		.num_alus = 4096,
1525 		.num_statics = 16,
1526 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1527 		.port_cnt = 7,		/* total port count */
1528 		.port_nirqs = 3,
1529 		.num_tx_queues = 4,
1530 		.tc_cbs_supported = true,
1531 		.tc_ets_supported = true,
1532 		.ops = &ksz9477_dev_ops,
1533 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1534 		.mib_names = ksz9477_mib_names,
1535 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1536 		.reg_mib_cnt = MIB_COUNTER_NUM,
1537 		.regs = ksz9477_regs,
1538 		.masks = ksz9477_masks,
1539 		.shifts = ksz9477_shifts,
1540 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1541 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1542 		.supports_mii	= {false, false, false, false,
1543 				   false, true, true},
1544 		.supports_rmii	= {false, false, false, false,
1545 				   false, true, true},
1546 		.supports_rgmii = {false, false, false, false,
1547 				   false, true, true},
1548 		.internal_phy	= {true, true, true, true,
1549 				   true, false, false},
1550 		.gbit_capable	= {false, false, false, false, false,
1551 				   true, true},
1552 	},
1553 
1554 	[KSZ9567] = {
1555 		.chip_id = KSZ9567_CHIP_ID,
1556 		.dev_name = "KSZ9567",
1557 		.num_vlans = 4096,
1558 		.num_alus = 4096,
1559 		.num_statics = 16,
1560 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1561 		.port_cnt = 7,		/* total physical port count */
1562 		.port_nirqs = 3,
1563 		.num_tx_queues = 4,
1564 		.tc_cbs_supported = true,
1565 		.tc_ets_supported = true,
1566 		.ops = &ksz9477_dev_ops,
1567 		.mib_names = ksz9477_mib_names,
1568 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1569 		.reg_mib_cnt = MIB_COUNTER_NUM,
1570 		.regs = ksz9477_regs,
1571 		.masks = ksz9477_masks,
1572 		.shifts = ksz9477_shifts,
1573 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1574 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1575 		.supports_mii	= {false, false, false, false,
1576 				   false, true, true},
1577 		.supports_rmii	= {false, false, false, false,
1578 				   false, true, true},
1579 		.supports_rgmii = {false, false, false, false,
1580 				   false, true, true},
1581 		.internal_phy	= {true, true, true, true,
1582 				   true, false, false},
1583 		.gbit_capable	= {true, true, true, true, true, true, true},
1584 	},
1585 
1586 	[LAN9370] = {
1587 		.chip_id = LAN9370_CHIP_ID,
1588 		.dev_name = "LAN9370",
1589 		.num_vlans = 4096,
1590 		.num_alus = 1024,
1591 		.num_statics = 256,
1592 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1593 		.port_cnt = 5,		/* total physical port count */
1594 		.port_nirqs = 6,
1595 		.num_tx_queues = 8,
1596 		.tc_cbs_supported = true,
1597 		.tc_ets_supported = true,
1598 		.ops = &lan937x_dev_ops,
1599 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1600 		.mib_names = ksz9477_mib_names,
1601 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1602 		.reg_mib_cnt = MIB_COUNTER_NUM,
1603 		.regs = ksz9477_regs,
1604 		.masks = lan937x_masks,
1605 		.shifts = lan937x_shifts,
1606 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1607 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1608 		.supports_mii = {false, false, false, false, true},
1609 		.supports_rmii = {false, false, false, false, true},
1610 		.supports_rgmii = {false, false, false, false, true},
1611 		.internal_phy = {true, true, true, true, false},
1612 	},
1613 
1614 	[LAN9371] = {
1615 		.chip_id = LAN9371_CHIP_ID,
1616 		.dev_name = "LAN9371",
1617 		.num_vlans = 4096,
1618 		.num_alus = 1024,
1619 		.num_statics = 256,
1620 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1621 		.port_cnt = 6,		/* total physical port count */
1622 		.port_nirqs = 6,
1623 		.num_tx_queues = 8,
1624 		.tc_cbs_supported = true,
1625 		.tc_ets_supported = true,
1626 		.ops = &lan937x_dev_ops,
1627 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1628 		.mib_names = ksz9477_mib_names,
1629 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1630 		.reg_mib_cnt = MIB_COUNTER_NUM,
1631 		.regs = ksz9477_regs,
1632 		.masks = lan937x_masks,
1633 		.shifts = lan937x_shifts,
1634 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1635 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1636 		.supports_mii = {false, false, false, false, true, true},
1637 		.supports_rmii = {false, false, false, false, true, true},
1638 		.supports_rgmii = {false, false, false, false, true, true},
1639 		.internal_phy = {true, true, true, true, false, false},
1640 	},
1641 
1642 	[LAN9372] = {
1643 		.chip_id = LAN9372_CHIP_ID,
1644 		.dev_name = "LAN9372",
1645 		.num_vlans = 4096,
1646 		.num_alus = 1024,
1647 		.num_statics = 256,
1648 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1649 		.port_cnt = 8,		/* total physical port count */
1650 		.port_nirqs = 6,
1651 		.num_tx_queues = 8,
1652 		.tc_cbs_supported = true,
1653 		.tc_ets_supported = true,
1654 		.ops = &lan937x_dev_ops,
1655 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1656 		.mib_names = ksz9477_mib_names,
1657 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1658 		.reg_mib_cnt = MIB_COUNTER_NUM,
1659 		.regs = ksz9477_regs,
1660 		.masks = lan937x_masks,
1661 		.shifts = lan937x_shifts,
1662 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1663 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1664 		.supports_mii	= {false, false, false, false,
1665 				   true, true, false, false},
1666 		.supports_rmii	= {false, false, false, false,
1667 				   true, true, false, false},
1668 		.supports_rgmii = {false, false, false, false,
1669 				   true, true, false, false},
1670 		.internal_phy	= {true, true, true, true,
1671 				   false, false, true, true},
1672 	},
1673 
1674 	[LAN9373] = {
1675 		.chip_id = LAN9373_CHIP_ID,
1676 		.dev_name = "LAN9373",
1677 		.num_vlans = 4096,
1678 		.num_alus = 1024,
1679 		.num_statics = 256,
1680 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1681 		.port_cnt = 5,		/* total physical port count */
1682 		.port_nirqs = 6,
1683 		.num_tx_queues = 8,
1684 		.tc_cbs_supported = true,
1685 		.tc_ets_supported = true,
1686 		.ops = &lan937x_dev_ops,
1687 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1688 		.mib_names = ksz9477_mib_names,
1689 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1690 		.reg_mib_cnt = MIB_COUNTER_NUM,
1691 		.regs = ksz9477_regs,
1692 		.masks = lan937x_masks,
1693 		.shifts = lan937x_shifts,
1694 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1695 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1696 		.supports_mii	= {false, false, false, false,
1697 				   true, true, false, false},
1698 		.supports_rmii	= {false, false, false, false,
1699 				   true, true, false, false},
1700 		.supports_rgmii = {false, false, false, false,
1701 				   true, true, false, false},
1702 		.internal_phy	= {true, true, true, false,
1703 				   false, false, true, true},
1704 	},
1705 
1706 	[LAN9374] = {
1707 		.chip_id = LAN9374_CHIP_ID,
1708 		.dev_name = "LAN9374",
1709 		.num_vlans = 4096,
1710 		.num_alus = 1024,
1711 		.num_statics = 256,
1712 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1713 		.port_cnt = 8,		/* total physical port count */
1714 		.port_nirqs = 6,
1715 		.num_tx_queues = 8,
1716 		.tc_cbs_supported = true,
1717 		.tc_ets_supported = true,
1718 		.ops = &lan937x_dev_ops,
1719 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1720 		.mib_names = ksz9477_mib_names,
1721 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1722 		.reg_mib_cnt = MIB_COUNTER_NUM,
1723 		.regs = ksz9477_regs,
1724 		.masks = lan937x_masks,
1725 		.shifts = lan937x_shifts,
1726 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1727 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1728 		.supports_mii	= {false, false, false, false,
1729 				   true, true, false, false},
1730 		.supports_rmii	= {false, false, false, false,
1731 				   true, true, false, false},
1732 		.supports_rgmii = {false, false, false, false,
1733 				   true, true, false, false},
1734 		.internal_phy	= {true, true, true, true,
1735 				   false, false, true, true},
1736 	},
1737 };
1738 EXPORT_SYMBOL_GPL(ksz_switch_chips);
1739 
1740 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1741 {
1742 	int i;
1743 
1744 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1745 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1746 
1747 		if (chip->chip_id == prod_num)
1748 			return chip;
1749 	}
1750 
1751 	return NULL;
1752 }
1753 
1754 static int ksz_check_device_id(struct ksz_device *dev)
1755 {
1756 	const struct ksz_chip_data *expected_chip_data;
1757 	u32 expected_chip_id;
1758 
1759 	if (dev->pdata) {
1760 		expected_chip_id = dev->pdata->chip_id;
1761 		expected_chip_data = ksz_lookup_info(expected_chip_id);
1762 		if (WARN_ON(!expected_chip_data))
1763 			return -ENODEV;
1764 	} else {
1765 		expected_chip_data = of_device_get_match_data(dev->dev);
1766 		expected_chip_id = expected_chip_data->chip_id;
1767 	}
1768 
1769 	if (expected_chip_id != dev->chip_id) {
1770 		dev_err(dev->dev,
1771 			"Device tree specifies chip %s but found %s, please fix it!\n",
1772 			expected_chip_data->dev_name, dev->info->dev_name);
1773 		return -ENODEV;
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1780 				 struct phylink_config *config)
1781 {
1782 	struct ksz_device *dev = ds->priv;
1783 
1784 	if (dev->info->supports_mii[port])
1785 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1786 
1787 	if (dev->info->supports_rmii[port])
1788 		__set_bit(PHY_INTERFACE_MODE_RMII,
1789 			  config->supported_interfaces);
1790 
1791 	if (dev->info->supports_rgmii[port])
1792 		phy_interface_set_rgmii(config->supported_interfaces);
1793 
1794 	if (dev->info->internal_phy[port]) {
1795 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1796 			  config->supported_interfaces);
1797 		/* Compatibility for phylib's default interface type when the
1798 		 * phy-mode property is absent
1799 		 */
1800 		__set_bit(PHY_INTERFACE_MODE_GMII,
1801 			  config->supported_interfaces);
1802 	}
1803 
1804 	if (dev->dev_ops->get_caps)
1805 		dev->dev_ops->get_caps(dev, port, config);
1806 }
1807 
1808 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
1809 {
1810 	struct ethtool_pause_stats *pstats;
1811 	struct rtnl_link_stats64 *stats;
1812 	struct ksz_stats_raw *raw;
1813 	struct ksz_port_mib *mib;
1814 
1815 	mib = &dev->ports[port].mib;
1816 	stats = &mib->stats64;
1817 	pstats = &mib->pause_stats;
1818 	raw = (struct ksz_stats_raw *)mib->counters;
1819 
1820 	spin_lock(&mib->stats64_lock);
1821 
1822 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1823 		raw->rx_pause;
1824 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1825 		raw->tx_pause;
1826 
1827 	/* HW counters are counting bytes + FCS which is not acceptable
1828 	 * for rtnl_link_stats64 interface
1829 	 */
1830 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
1831 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
1832 
1833 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1834 		raw->rx_oversize;
1835 
1836 	stats->rx_crc_errors = raw->rx_crc_err;
1837 	stats->rx_frame_errors = raw->rx_align_err;
1838 	stats->rx_dropped = raw->rx_discards;
1839 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1840 		stats->rx_frame_errors  + stats->rx_dropped;
1841 
1842 	stats->tx_window_errors = raw->tx_late_col;
1843 	stats->tx_fifo_errors = raw->tx_discards;
1844 	stats->tx_aborted_errors = raw->tx_exc_col;
1845 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1846 		stats->tx_aborted_errors;
1847 
1848 	stats->multicast = raw->rx_mcast;
1849 	stats->collisions = raw->tx_total_col;
1850 
1851 	pstats->tx_pause_frames = raw->tx_pause;
1852 	pstats->rx_pause_frames = raw->rx_pause;
1853 
1854 	spin_unlock(&mib->stats64_lock);
1855 }
1856 
1857 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
1858 {
1859 	struct ethtool_pause_stats *pstats;
1860 	struct rtnl_link_stats64 *stats;
1861 	struct ksz88xx_stats_raw *raw;
1862 	struct ksz_port_mib *mib;
1863 
1864 	mib = &dev->ports[port].mib;
1865 	stats = &mib->stats64;
1866 	pstats = &mib->pause_stats;
1867 	raw = (struct ksz88xx_stats_raw *)mib->counters;
1868 
1869 	spin_lock(&mib->stats64_lock);
1870 
1871 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1872 		raw->rx_pause;
1873 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1874 		raw->tx_pause;
1875 
1876 	/* HW counters are counting bytes + FCS which is not acceptable
1877 	 * for rtnl_link_stats64 interface
1878 	 */
1879 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
1880 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
1881 
1882 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1883 		raw->rx_oversize;
1884 
1885 	stats->rx_crc_errors = raw->rx_crc_err;
1886 	stats->rx_frame_errors = raw->rx_align_err;
1887 	stats->rx_dropped = raw->rx_discards;
1888 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1889 		stats->rx_frame_errors  + stats->rx_dropped;
1890 
1891 	stats->tx_window_errors = raw->tx_late_col;
1892 	stats->tx_fifo_errors = raw->tx_discards;
1893 	stats->tx_aborted_errors = raw->tx_exc_col;
1894 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1895 		stats->tx_aborted_errors;
1896 
1897 	stats->multicast = raw->rx_mcast;
1898 	stats->collisions = raw->tx_total_col;
1899 
1900 	pstats->tx_pause_frames = raw->tx_pause;
1901 	pstats->rx_pause_frames = raw->rx_pause;
1902 
1903 	spin_unlock(&mib->stats64_lock);
1904 }
1905 
1906 static void ksz_get_stats64(struct dsa_switch *ds, int port,
1907 			    struct rtnl_link_stats64 *s)
1908 {
1909 	struct ksz_device *dev = ds->priv;
1910 	struct ksz_port_mib *mib;
1911 
1912 	mib = &dev->ports[port].mib;
1913 
1914 	spin_lock(&mib->stats64_lock);
1915 	memcpy(s, &mib->stats64, sizeof(*s));
1916 	spin_unlock(&mib->stats64_lock);
1917 }
1918 
1919 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
1920 				struct ethtool_pause_stats *pause_stats)
1921 {
1922 	struct ksz_device *dev = ds->priv;
1923 	struct ksz_port_mib *mib;
1924 
1925 	mib = &dev->ports[port].mib;
1926 
1927 	spin_lock(&mib->stats64_lock);
1928 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
1929 	spin_unlock(&mib->stats64_lock);
1930 }
1931 
1932 static void ksz_get_strings(struct dsa_switch *ds, int port,
1933 			    u32 stringset, uint8_t *buf)
1934 {
1935 	struct ksz_device *dev = ds->priv;
1936 	int i;
1937 
1938 	if (stringset != ETH_SS_STATS)
1939 		return;
1940 
1941 	for (i = 0; i < dev->info->mib_cnt; i++) {
1942 		memcpy(buf + i * ETH_GSTRING_LEN,
1943 		       dev->info->mib_names[i].string, ETH_GSTRING_LEN);
1944 	}
1945 }
1946 
1947 /**
1948  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
1949  *			    isolation settings.
1950  * @dev: A pointer to the struct ksz_device representing the device.
1951  * @port: The port number to adjust.
1952  *
1953  * This function dynamically adjusts the port membership configuration for a
1954  * specified port and other device ports, based on Spanning Tree Protocol (STP)
1955  * states and port isolation settings. Each port, including the CPU port, has a
1956  * membership register, represented as a bitfield, where each bit corresponds
1957  * to a port number. A set bit indicates permission to forward frames to that
1958  * port. This function iterates over all ports, updating the membership register
1959  * to reflect current forwarding permissions:
1960  *
1961  * 1. Forwards frames only to ports that are part of the same bridge group and
1962  *    in the BR_STATE_FORWARDING state.
1963  * 2. Takes into account the isolation status of ports; ports in the
1964  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
1965  *    frames to each other, even if they are in the same bridge group.
1966  * 3. Ensures that the CPU port is included in the membership based on its
1967  *    upstream port configuration, allowing for management and control traffic
1968  *    to flow as required.
1969  */
1970 static void ksz_update_port_member(struct ksz_device *dev, int port)
1971 {
1972 	struct ksz_port *p = &dev->ports[port];
1973 	struct dsa_switch *ds = dev->ds;
1974 	u8 port_member = 0, cpu_port;
1975 	const struct dsa_port *dp;
1976 	int i, j;
1977 
1978 	if (!dsa_is_user_port(ds, port))
1979 		return;
1980 
1981 	dp = dsa_to_port(ds, port);
1982 	cpu_port = BIT(dsa_upstream_port(ds, port));
1983 
1984 	for (i = 0; i < ds->num_ports; i++) {
1985 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
1986 		struct ksz_port *other_p = &dev->ports[i];
1987 		u8 val = 0;
1988 
1989 		if (!dsa_is_user_port(ds, i))
1990 			continue;
1991 		if (port == i)
1992 			continue;
1993 		if (!dsa_port_bridge_same(dp, other_dp))
1994 			continue;
1995 		if (other_p->stp_state != BR_STATE_FORWARDING)
1996 			continue;
1997 
1998 		/* At this point we know that "port" and "other" port [i] are in
1999 		 * the same bridge group and that "other" port [i] is in
2000 		 * forwarding stp state. If "port" is also in forwarding stp
2001 		 * state, we can allow forwarding from port [port] to port [i].
2002 		 * Except if both ports are isolated.
2003 		 */
2004 		if (p->stp_state == BR_STATE_FORWARDING &&
2005 		    !(p->isolated && other_p->isolated)) {
2006 			val |= BIT(port);
2007 			port_member |= BIT(i);
2008 		}
2009 
2010 		/* Retain port [i]'s relationship to other ports than [port] */
2011 		for (j = 0; j < ds->num_ports; j++) {
2012 			const struct dsa_port *third_dp;
2013 			struct ksz_port *third_p;
2014 
2015 			if (j == i)
2016 				continue;
2017 			if (j == port)
2018 				continue;
2019 			if (!dsa_is_user_port(ds, j))
2020 				continue;
2021 			third_p = &dev->ports[j];
2022 			if (third_p->stp_state != BR_STATE_FORWARDING)
2023 				continue;
2024 
2025 			third_dp = dsa_to_port(ds, j);
2026 
2027 			/* Now we updating relation of the "other" port [i] to
2028 			 * the "third" port [j]. We already know that "other"
2029 			 * port [i] is in forwarding stp state and that "third"
2030 			 * port [j] is in forwarding stp state too.
2031 			 * We need to check if "other" port [i] and "third" port
2032 			 * [j] are in the same bridge group and not isolated
2033 			 * before allowing forwarding from port [i] to port [j].
2034 			 */
2035 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2036 			    !(other_p->isolated && third_p->isolated))
2037 				val |= BIT(j);
2038 		}
2039 
2040 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2041 	}
2042 
2043 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2044 }
2045 
2046 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2047 {
2048 	struct ksz_device *dev = bus->priv;
2049 	u16 val;
2050 	int ret;
2051 
2052 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2053 	if (ret < 0)
2054 		return ret;
2055 
2056 	return val;
2057 }
2058 
2059 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2060 			     u16 val)
2061 {
2062 	struct ksz_device *dev = bus->priv;
2063 
2064 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2065 }
2066 
2067 static int ksz_irq_phy_setup(struct ksz_device *dev)
2068 {
2069 	struct dsa_switch *ds = dev->ds;
2070 	int phy;
2071 	int irq;
2072 	int ret;
2073 
2074 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) {
2075 		if (BIT(phy) & ds->phys_mii_mask) {
2076 			irq = irq_find_mapping(dev->ports[phy].pirq.domain,
2077 					       PORT_SRC_PHY_INT);
2078 			if (irq < 0) {
2079 				ret = irq;
2080 				goto out;
2081 			}
2082 			ds->user_mii_bus->irq[phy] = irq;
2083 		}
2084 	}
2085 	return 0;
2086 out:
2087 	while (phy--)
2088 		if (BIT(phy) & ds->phys_mii_mask)
2089 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2090 
2091 	return ret;
2092 }
2093 
2094 static void ksz_irq_phy_free(struct ksz_device *dev)
2095 {
2096 	struct dsa_switch *ds = dev->ds;
2097 	int phy;
2098 
2099 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++)
2100 		if (BIT(phy) & ds->phys_mii_mask)
2101 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2102 }
2103 
2104 static int ksz_mdio_register(struct ksz_device *dev)
2105 {
2106 	struct dsa_switch *ds = dev->ds;
2107 	struct device_node *mdio_np;
2108 	struct mii_bus *bus;
2109 	int ret;
2110 
2111 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2112 	if (!mdio_np)
2113 		return 0;
2114 
2115 	bus = devm_mdiobus_alloc(ds->dev);
2116 	if (!bus) {
2117 		of_node_put(mdio_np);
2118 		return -ENOMEM;
2119 	}
2120 
2121 	bus->priv = dev;
2122 	bus->read = ksz_sw_mdio_read;
2123 	bus->write = ksz_sw_mdio_write;
2124 	bus->name = "ksz user smi";
2125 	snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2126 	bus->parent = ds->dev;
2127 	bus->phy_mask = ~ds->phys_mii_mask;
2128 
2129 	ds->user_mii_bus = bus;
2130 
2131 	if (dev->irq > 0) {
2132 		ret = ksz_irq_phy_setup(dev);
2133 		if (ret) {
2134 			of_node_put(mdio_np);
2135 			return ret;
2136 		}
2137 	}
2138 
2139 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2140 	if (ret) {
2141 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2142 			bus->id);
2143 		if (dev->irq > 0)
2144 			ksz_irq_phy_free(dev);
2145 	}
2146 
2147 	of_node_put(mdio_np);
2148 
2149 	return ret;
2150 }
2151 
2152 static void ksz_irq_mask(struct irq_data *d)
2153 {
2154 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2155 
2156 	kirq->masked |= BIT(d->hwirq);
2157 }
2158 
2159 static void ksz_irq_unmask(struct irq_data *d)
2160 {
2161 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2162 
2163 	kirq->masked &= ~BIT(d->hwirq);
2164 }
2165 
2166 static void ksz_irq_bus_lock(struct irq_data *d)
2167 {
2168 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2169 
2170 	mutex_lock(&kirq->dev->lock_irq);
2171 }
2172 
2173 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2174 {
2175 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2176 	struct ksz_device *dev = kirq->dev;
2177 	int ret;
2178 
2179 	ret = ksz_write32(dev, kirq->reg_mask, kirq->masked);
2180 	if (ret)
2181 		dev_err(dev->dev, "failed to change IRQ mask\n");
2182 
2183 	mutex_unlock(&dev->lock_irq);
2184 }
2185 
2186 static const struct irq_chip ksz_irq_chip = {
2187 	.name			= "ksz-irq",
2188 	.irq_mask		= ksz_irq_mask,
2189 	.irq_unmask		= ksz_irq_unmask,
2190 	.irq_bus_lock		= ksz_irq_bus_lock,
2191 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2192 };
2193 
2194 static int ksz_irq_domain_map(struct irq_domain *d,
2195 			      unsigned int irq, irq_hw_number_t hwirq)
2196 {
2197 	irq_set_chip_data(irq, d->host_data);
2198 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2199 	irq_set_noprobe(irq);
2200 
2201 	return 0;
2202 }
2203 
2204 static const struct irq_domain_ops ksz_irq_domain_ops = {
2205 	.map	= ksz_irq_domain_map,
2206 	.xlate	= irq_domain_xlate_twocell,
2207 };
2208 
2209 static void ksz_irq_free(struct ksz_irq *kirq)
2210 {
2211 	int irq, virq;
2212 
2213 	free_irq(kirq->irq_num, kirq);
2214 
2215 	for (irq = 0; irq < kirq->nirqs; irq++) {
2216 		virq = irq_find_mapping(kirq->domain, irq);
2217 		irq_dispose_mapping(virq);
2218 	}
2219 
2220 	irq_domain_remove(kirq->domain);
2221 }
2222 
2223 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2224 {
2225 	struct ksz_irq *kirq = dev_id;
2226 	unsigned int nhandled = 0;
2227 	struct ksz_device *dev;
2228 	unsigned int sub_irq;
2229 	u8 data;
2230 	int ret;
2231 	u8 n;
2232 
2233 	dev = kirq->dev;
2234 
2235 	/* Read interrupt status register */
2236 	ret = ksz_read8(dev, kirq->reg_status, &data);
2237 	if (ret)
2238 		goto out;
2239 
2240 	for (n = 0; n < kirq->nirqs; ++n) {
2241 		if (data & BIT(n)) {
2242 			sub_irq = irq_find_mapping(kirq->domain, n);
2243 			handle_nested_irq(sub_irq);
2244 			++nhandled;
2245 		}
2246 	}
2247 out:
2248 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2249 }
2250 
2251 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2252 {
2253 	int ret, n;
2254 
2255 	kirq->dev = dev;
2256 	kirq->masked = ~0;
2257 
2258 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2259 					     &ksz_irq_domain_ops, kirq);
2260 	if (!kirq->domain)
2261 		return -ENOMEM;
2262 
2263 	for (n = 0; n < kirq->nirqs; n++)
2264 		irq_create_mapping(kirq->domain, n);
2265 
2266 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2267 				   IRQF_ONESHOT, kirq->name, kirq);
2268 	if (ret)
2269 		goto out;
2270 
2271 	return 0;
2272 
2273 out:
2274 	ksz_irq_free(kirq);
2275 
2276 	return ret;
2277 }
2278 
2279 static int ksz_girq_setup(struct ksz_device *dev)
2280 {
2281 	struct ksz_irq *girq = &dev->girq;
2282 
2283 	girq->nirqs = dev->info->port_cnt;
2284 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2285 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2286 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2287 
2288 	girq->irq_num = dev->irq;
2289 
2290 	return ksz_irq_common_setup(dev, girq);
2291 }
2292 
2293 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2294 {
2295 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2296 
2297 	pirq->nirqs = dev->info->port_nirqs;
2298 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2299 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2300 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2301 
2302 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2303 	if (pirq->irq_num < 0)
2304 		return pirq->irq_num;
2305 
2306 	return ksz_irq_common_setup(dev, pirq);
2307 }
2308 
2309 static int ksz_parse_drive_strength(struct ksz_device *dev);
2310 
2311 static int ksz_setup(struct dsa_switch *ds)
2312 {
2313 	struct ksz_device *dev = ds->priv;
2314 	struct dsa_port *dp;
2315 	struct ksz_port *p;
2316 	const u16 *regs;
2317 	int ret;
2318 
2319 	regs = dev->info->regs;
2320 
2321 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2322 				       dev->info->num_vlans, GFP_KERNEL);
2323 	if (!dev->vlan_cache)
2324 		return -ENOMEM;
2325 
2326 	ret = dev->dev_ops->reset(dev);
2327 	if (ret) {
2328 		dev_err(ds->dev, "failed to reset switch\n");
2329 		return ret;
2330 	}
2331 
2332 	ret = ksz_parse_drive_strength(dev);
2333 	if (ret)
2334 		return ret;
2335 
2336 	/* set broadcast storm protection 10% rate */
2337 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2338 			   BROADCAST_STORM_RATE,
2339 			   (BROADCAST_STORM_VALUE *
2340 			   BROADCAST_STORM_PROT_RATE) / 100);
2341 
2342 	dev->dev_ops->config_cpu_port(ds);
2343 
2344 	dev->dev_ops->enable_stp_addr(dev);
2345 
2346 	ds->num_tx_queues = dev->info->num_tx_queues;
2347 
2348 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2349 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2350 
2351 	ksz_init_mib_timer(dev);
2352 
2353 	ds->configure_vlan_while_not_filtering = false;
2354 
2355 	if (dev->dev_ops->setup) {
2356 		ret = dev->dev_ops->setup(ds);
2357 		if (ret)
2358 			return ret;
2359 	}
2360 
2361 	/* Start with learning disabled on standalone user ports, and enabled
2362 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2363 	 * CPU port will avoid flooding bridge local addresses on the network
2364 	 * in some cases.
2365 	 */
2366 	p = &dev->ports[dev->cpu_port];
2367 	p->learning = true;
2368 
2369 	if (dev->irq > 0) {
2370 		ret = ksz_girq_setup(dev);
2371 		if (ret)
2372 			return ret;
2373 
2374 		dsa_switch_for_each_user_port(dp, dev->ds) {
2375 			ret = ksz_pirq_setup(dev, dp->index);
2376 			if (ret)
2377 				goto out_girq;
2378 
2379 			ret = ksz_ptp_irq_setup(ds, dp->index);
2380 			if (ret)
2381 				goto out_pirq;
2382 		}
2383 	}
2384 
2385 	ret = ksz_ptp_clock_register(ds);
2386 	if (ret) {
2387 		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2388 		goto out_ptpirq;
2389 	}
2390 
2391 	ret = ksz_mdio_register(dev);
2392 	if (ret < 0) {
2393 		dev_err(dev->dev, "failed to register the mdio");
2394 		goto out_ptp_clock_unregister;
2395 	}
2396 
2397 	/* start switch */
2398 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2399 			   SW_START, SW_START);
2400 
2401 	return 0;
2402 
2403 out_ptp_clock_unregister:
2404 	ksz_ptp_clock_unregister(ds);
2405 out_ptpirq:
2406 	if (dev->irq > 0)
2407 		dsa_switch_for_each_user_port(dp, dev->ds)
2408 			ksz_ptp_irq_free(ds, dp->index);
2409 out_pirq:
2410 	if (dev->irq > 0)
2411 		dsa_switch_for_each_user_port(dp, dev->ds)
2412 			ksz_irq_free(&dev->ports[dp->index].pirq);
2413 out_girq:
2414 	if (dev->irq > 0)
2415 		ksz_irq_free(&dev->girq);
2416 
2417 	return ret;
2418 }
2419 
2420 static void ksz_teardown(struct dsa_switch *ds)
2421 {
2422 	struct ksz_device *dev = ds->priv;
2423 	struct dsa_port *dp;
2424 
2425 	ksz_ptp_clock_unregister(ds);
2426 
2427 	if (dev->irq > 0) {
2428 		dsa_switch_for_each_user_port(dp, dev->ds) {
2429 			ksz_ptp_irq_free(ds, dp->index);
2430 
2431 			ksz_irq_free(&dev->ports[dp->index].pirq);
2432 		}
2433 
2434 		ksz_irq_free(&dev->girq);
2435 	}
2436 
2437 	if (dev->dev_ops->teardown)
2438 		dev->dev_ops->teardown(ds);
2439 }
2440 
2441 static void port_r_cnt(struct ksz_device *dev, int port)
2442 {
2443 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2444 	u64 *dropped;
2445 
2446 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2447 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2448 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2449 					&mib->counters[mib->cnt_ptr]);
2450 		++mib->cnt_ptr;
2451 	}
2452 
2453 	/* last one in storage */
2454 	dropped = &mib->counters[dev->info->mib_cnt];
2455 
2456 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2457 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2458 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2459 					dropped, &mib->counters[mib->cnt_ptr]);
2460 		++mib->cnt_ptr;
2461 	}
2462 	mib->cnt_ptr = 0;
2463 }
2464 
2465 static void ksz_mib_read_work(struct work_struct *work)
2466 {
2467 	struct ksz_device *dev = container_of(work, struct ksz_device,
2468 					      mib_read.work);
2469 	struct ksz_port_mib *mib;
2470 	struct ksz_port *p;
2471 	int i;
2472 
2473 	for (i = 0; i < dev->info->port_cnt; i++) {
2474 		if (dsa_is_unused_port(dev->ds, i))
2475 			continue;
2476 
2477 		p = &dev->ports[i];
2478 		mib = &p->mib;
2479 		mutex_lock(&mib->cnt_mutex);
2480 
2481 		/* Only read MIB counters when the port is told to do.
2482 		 * If not, read only dropped counters when link is not up.
2483 		 */
2484 		if (!p->read) {
2485 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2486 
2487 			if (!netif_carrier_ok(dp->user))
2488 				mib->cnt_ptr = dev->info->reg_mib_cnt;
2489 		}
2490 		port_r_cnt(dev, i);
2491 		p->read = false;
2492 
2493 		if (dev->dev_ops->r_mib_stat64)
2494 			dev->dev_ops->r_mib_stat64(dev, i);
2495 
2496 		mutex_unlock(&mib->cnt_mutex);
2497 	}
2498 
2499 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2500 }
2501 
2502 void ksz_init_mib_timer(struct ksz_device *dev)
2503 {
2504 	int i;
2505 
2506 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2507 
2508 	for (i = 0; i < dev->info->port_cnt; i++) {
2509 		struct ksz_port_mib *mib = &dev->ports[i].mib;
2510 
2511 		dev->dev_ops->port_init_cnt(dev, i);
2512 
2513 		mib->cnt_ptr = 0;
2514 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2515 	}
2516 }
2517 
2518 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2519 {
2520 	struct ksz_device *dev = ds->priv;
2521 	u16 val = 0xffff;
2522 	int ret;
2523 
2524 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2525 	if (ret)
2526 		return ret;
2527 
2528 	return val;
2529 }
2530 
2531 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2532 {
2533 	struct ksz_device *dev = ds->priv;
2534 	int ret;
2535 
2536 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2537 	if (ret)
2538 		return ret;
2539 
2540 	return 0;
2541 }
2542 
2543 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2544 {
2545 	struct ksz_device *dev = ds->priv;
2546 
2547 	switch (dev->chip_id) {
2548 	case KSZ8830_CHIP_ID:
2549 		/* Silicon Errata Sheet (DS80000830A):
2550 		 * Port 1 does not work with LinkMD Cable-Testing.
2551 		 * Port 1 does not respond to received PAUSE control frames.
2552 		 */
2553 		if (!port)
2554 			return MICREL_KSZ8_P1_ERRATA;
2555 		break;
2556 	case KSZ9477_CHIP_ID:
2557 		/* KSZ9477 Errata DS80000754C
2558 		 *
2559 		 * Module 4: Energy Efficient Ethernet (EEE) feature select must
2560 		 * be manually disabled
2561 		 *   The EEE feature is enabled by default, but it is not fully
2562 		 *   operational. It must be manually disabled through register
2563 		 *   controls. If not disabled, the PHY ports can auto-negotiate
2564 		 *   to enable EEE, and this feature can cause link drops when
2565 		 *   linked to another device supporting EEE.
2566 		 */
2567 		return MICREL_NO_EEE;
2568 	}
2569 
2570 	return 0;
2571 }
2572 
2573 static void ksz_phylink_mac_link_down(struct phylink_config *config,
2574 				      unsigned int mode,
2575 				      phy_interface_t interface)
2576 {
2577 	struct dsa_port *dp = dsa_phylink_to_port(config);
2578 	struct ksz_device *dev = dp->ds->priv;
2579 
2580 	/* Read all MIB counters when the link is going down. */
2581 	dev->ports[dp->index].read = true;
2582 	/* timer started */
2583 	if (dev->mib_read_interval)
2584 		schedule_delayed_work(&dev->mib_read, 0);
2585 }
2586 
2587 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
2588 {
2589 	struct ksz_device *dev = ds->priv;
2590 
2591 	if (sset != ETH_SS_STATS)
2592 		return 0;
2593 
2594 	return dev->info->mib_cnt;
2595 }
2596 
2597 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
2598 				  uint64_t *buf)
2599 {
2600 	const struct dsa_port *dp = dsa_to_port(ds, port);
2601 	struct ksz_device *dev = ds->priv;
2602 	struct ksz_port_mib *mib;
2603 
2604 	mib = &dev->ports[port].mib;
2605 	mutex_lock(&mib->cnt_mutex);
2606 
2607 	/* Only read dropped counters if no link. */
2608 	if (!netif_carrier_ok(dp->user))
2609 		mib->cnt_ptr = dev->info->reg_mib_cnt;
2610 	port_r_cnt(dev, port);
2611 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
2612 	mutex_unlock(&mib->cnt_mutex);
2613 }
2614 
2615 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
2616 				struct dsa_bridge bridge,
2617 				bool *tx_fwd_offload,
2618 				struct netlink_ext_ack *extack)
2619 {
2620 	/* port_stp_state_set() will be called after to put the port in
2621 	 * appropriate state so there is no need to do anything.
2622 	 */
2623 
2624 	return 0;
2625 }
2626 
2627 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
2628 				  struct dsa_bridge bridge)
2629 {
2630 	/* port_stp_state_set() will be called after to put the port in
2631 	 * forwarding state so there is no need to do anything.
2632 	 */
2633 }
2634 
2635 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
2636 {
2637 	struct ksz_device *dev = ds->priv;
2638 
2639 	dev->dev_ops->flush_dyn_mac_table(dev, port);
2640 }
2641 
2642 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
2643 {
2644 	struct ksz_device *dev = ds->priv;
2645 
2646 	if (!dev->dev_ops->set_ageing_time)
2647 		return -EOPNOTSUPP;
2648 
2649 	return dev->dev_ops->set_ageing_time(dev, msecs);
2650 }
2651 
2652 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
2653 			    const unsigned char *addr, u16 vid,
2654 			    struct dsa_db db)
2655 {
2656 	struct ksz_device *dev = ds->priv;
2657 
2658 	if (!dev->dev_ops->fdb_add)
2659 		return -EOPNOTSUPP;
2660 
2661 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
2662 }
2663 
2664 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
2665 			    const unsigned char *addr,
2666 			    u16 vid, struct dsa_db db)
2667 {
2668 	struct ksz_device *dev = ds->priv;
2669 
2670 	if (!dev->dev_ops->fdb_del)
2671 		return -EOPNOTSUPP;
2672 
2673 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
2674 }
2675 
2676 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
2677 			     dsa_fdb_dump_cb_t *cb, void *data)
2678 {
2679 	struct ksz_device *dev = ds->priv;
2680 
2681 	if (!dev->dev_ops->fdb_dump)
2682 		return -EOPNOTSUPP;
2683 
2684 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
2685 }
2686 
2687 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
2688 			    const struct switchdev_obj_port_mdb *mdb,
2689 			    struct dsa_db db)
2690 {
2691 	struct ksz_device *dev = ds->priv;
2692 
2693 	if (!dev->dev_ops->mdb_add)
2694 		return -EOPNOTSUPP;
2695 
2696 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
2697 }
2698 
2699 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
2700 			    const struct switchdev_obj_port_mdb *mdb,
2701 			    struct dsa_db db)
2702 {
2703 	struct ksz_device *dev = ds->priv;
2704 
2705 	if (!dev->dev_ops->mdb_del)
2706 		return -EOPNOTSUPP;
2707 
2708 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
2709 }
2710 
2711 static int ksz_port_setup(struct dsa_switch *ds, int port)
2712 {
2713 	struct ksz_device *dev = ds->priv;
2714 
2715 	if (!dsa_is_user_port(ds, port))
2716 		return 0;
2717 
2718 	/* setup user port */
2719 	dev->dev_ops->port_setup(dev, port, false);
2720 
2721 	/* port_stp_state_set() will be called after to enable the port so
2722 	 * there is no need to do anything.
2723 	 */
2724 
2725 	return 0;
2726 }
2727 
2728 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
2729 {
2730 	struct ksz_device *dev = ds->priv;
2731 	struct ksz_port *p;
2732 	const u16 *regs;
2733 	u8 data;
2734 
2735 	regs = dev->info->regs;
2736 
2737 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
2738 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2739 
2740 	p = &dev->ports[port];
2741 
2742 	switch (state) {
2743 	case BR_STATE_DISABLED:
2744 		data |= PORT_LEARN_DISABLE;
2745 		break;
2746 	case BR_STATE_LISTENING:
2747 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2748 		break;
2749 	case BR_STATE_LEARNING:
2750 		data |= PORT_RX_ENABLE;
2751 		if (!p->learning)
2752 			data |= PORT_LEARN_DISABLE;
2753 		break;
2754 	case BR_STATE_FORWARDING:
2755 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2756 		if (!p->learning)
2757 			data |= PORT_LEARN_DISABLE;
2758 		break;
2759 	case BR_STATE_BLOCKING:
2760 		data |= PORT_LEARN_DISABLE;
2761 		break;
2762 	default:
2763 		dev_err(ds->dev, "invalid STP state: %d\n", state);
2764 		return;
2765 	}
2766 
2767 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
2768 
2769 	p->stp_state = state;
2770 
2771 	ksz_update_port_member(dev, port);
2772 }
2773 
2774 static void ksz_port_teardown(struct dsa_switch *ds, int port)
2775 {
2776 	struct ksz_device *dev = ds->priv;
2777 
2778 	switch (dev->chip_id) {
2779 	case KSZ8563_CHIP_ID:
2780 	case KSZ8567_CHIP_ID:
2781 	case KSZ9477_CHIP_ID:
2782 	case KSZ9563_CHIP_ID:
2783 	case KSZ9567_CHIP_ID:
2784 	case KSZ9893_CHIP_ID:
2785 	case KSZ9896_CHIP_ID:
2786 	case KSZ9897_CHIP_ID:
2787 		if (dsa_is_user_port(ds, port))
2788 			ksz9477_port_acl_free(dev, port);
2789 	}
2790 }
2791 
2792 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
2793 				     struct switchdev_brport_flags flags,
2794 				     struct netlink_ext_ack *extack)
2795 {
2796 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
2797 		return -EINVAL;
2798 
2799 	return 0;
2800 }
2801 
2802 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
2803 				 struct switchdev_brport_flags flags,
2804 				 struct netlink_ext_ack *extack)
2805 {
2806 	struct ksz_device *dev = ds->priv;
2807 	struct ksz_port *p = &dev->ports[port];
2808 
2809 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
2810 		if (flags.mask & BR_LEARNING)
2811 			p->learning = !!(flags.val & BR_LEARNING);
2812 
2813 		if (flags.mask & BR_ISOLATED)
2814 			p->isolated = !!(flags.val & BR_ISOLATED);
2815 
2816 		/* Make the change take effect immediately */
2817 		ksz_port_stp_state_set(ds, port, p->stp_state);
2818 	}
2819 
2820 	return 0;
2821 }
2822 
2823 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
2824 						  int port,
2825 						  enum dsa_tag_protocol mp)
2826 {
2827 	struct ksz_device *dev = ds->priv;
2828 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
2829 
2830 	if (dev->chip_id == KSZ8795_CHIP_ID ||
2831 	    dev->chip_id == KSZ8794_CHIP_ID ||
2832 	    dev->chip_id == KSZ8765_CHIP_ID)
2833 		proto = DSA_TAG_PROTO_KSZ8795;
2834 
2835 	if (dev->chip_id == KSZ8830_CHIP_ID ||
2836 	    dev->chip_id == KSZ8563_CHIP_ID ||
2837 	    dev->chip_id == KSZ9893_CHIP_ID ||
2838 	    dev->chip_id == KSZ9563_CHIP_ID)
2839 		proto = DSA_TAG_PROTO_KSZ9893;
2840 
2841 	if (dev->chip_id == KSZ8567_CHIP_ID ||
2842 	    dev->chip_id == KSZ9477_CHIP_ID ||
2843 	    dev->chip_id == KSZ9896_CHIP_ID ||
2844 	    dev->chip_id == KSZ9897_CHIP_ID ||
2845 	    dev->chip_id == KSZ9567_CHIP_ID)
2846 		proto = DSA_TAG_PROTO_KSZ9477;
2847 
2848 	if (is_lan937x(dev))
2849 		proto = DSA_TAG_PROTO_LAN937X;
2850 
2851 	return proto;
2852 }
2853 
2854 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
2855 				    enum dsa_tag_protocol proto)
2856 {
2857 	struct ksz_tagger_data *tagger_data;
2858 
2859 	switch (proto) {
2860 	case DSA_TAG_PROTO_KSZ8795:
2861 		return 0;
2862 	case DSA_TAG_PROTO_KSZ9893:
2863 	case DSA_TAG_PROTO_KSZ9477:
2864 	case DSA_TAG_PROTO_LAN937X:
2865 		tagger_data = ksz_tagger_data(ds);
2866 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
2867 		return 0;
2868 	default:
2869 		return -EPROTONOSUPPORT;
2870 	}
2871 }
2872 
2873 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
2874 				   bool flag, struct netlink_ext_ack *extack)
2875 {
2876 	struct ksz_device *dev = ds->priv;
2877 
2878 	if (!dev->dev_ops->vlan_filtering)
2879 		return -EOPNOTSUPP;
2880 
2881 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
2882 }
2883 
2884 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
2885 			     const struct switchdev_obj_port_vlan *vlan,
2886 			     struct netlink_ext_ack *extack)
2887 {
2888 	struct ksz_device *dev = ds->priv;
2889 
2890 	if (!dev->dev_ops->vlan_add)
2891 		return -EOPNOTSUPP;
2892 
2893 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
2894 }
2895 
2896 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
2897 			     const struct switchdev_obj_port_vlan *vlan)
2898 {
2899 	struct ksz_device *dev = ds->priv;
2900 
2901 	if (!dev->dev_ops->vlan_del)
2902 		return -EOPNOTSUPP;
2903 
2904 	return dev->dev_ops->vlan_del(dev, port, vlan);
2905 }
2906 
2907 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
2908 			       struct dsa_mall_mirror_tc_entry *mirror,
2909 			       bool ingress, struct netlink_ext_ack *extack)
2910 {
2911 	struct ksz_device *dev = ds->priv;
2912 
2913 	if (!dev->dev_ops->mirror_add)
2914 		return -EOPNOTSUPP;
2915 
2916 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
2917 }
2918 
2919 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
2920 				struct dsa_mall_mirror_tc_entry *mirror)
2921 {
2922 	struct ksz_device *dev = ds->priv;
2923 
2924 	if (dev->dev_ops->mirror_del)
2925 		dev->dev_ops->mirror_del(dev, port, mirror);
2926 }
2927 
2928 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
2929 {
2930 	struct ksz_device *dev = ds->priv;
2931 
2932 	if (!dev->dev_ops->change_mtu)
2933 		return -EOPNOTSUPP;
2934 
2935 	return dev->dev_ops->change_mtu(dev, port, mtu);
2936 }
2937 
2938 static int ksz_max_mtu(struct dsa_switch *ds, int port)
2939 {
2940 	struct ksz_device *dev = ds->priv;
2941 
2942 	switch (dev->chip_id) {
2943 	case KSZ8795_CHIP_ID:
2944 	case KSZ8794_CHIP_ID:
2945 	case KSZ8765_CHIP_ID:
2946 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2947 	case KSZ8830_CHIP_ID:
2948 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2949 	case KSZ8563_CHIP_ID:
2950 	case KSZ8567_CHIP_ID:
2951 	case KSZ9477_CHIP_ID:
2952 	case KSZ9563_CHIP_ID:
2953 	case KSZ9567_CHIP_ID:
2954 	case KSZ9893_CHIP_ID:
2955 	case KSZ9896_CHIP_ID:
2956 	case KSZ9897_CHIP_ID:
2957 	case LAN9370_CHIP_ID:
2958 	case LAN9371_CHIP_ID:
2959 	case LAN9372_CHIP_ID:
2960 	case LAN9373_CHIP_ID:
2961 	case LAN9374_CHIP_ID:
2962 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2963 	}
2964 
2965 	return -EOPNOTSUPP;
2966 }
2967 
2968 static int ksz_validate_eee(struct dsa_switch *ds, int port)
2969 {
2970 	struct ksz_device *dev = ds->priv;
2971 
2972 	if (!dev->info->internal_phy[port])
2973 		return -EOPNOTSUPP;
2974 
2975 	switch (dev->chip_id) {
2976 	case KSZ8563_CHIP_ID:
2977 	case KSZ8567_CHIP_ID:
2978 	case KSZ9477_CHIP_ID:
2979 	case KSZ9563_CHIP_ID:
2980 	case KSZ9567_CHIP_ID:
2981 	case KSZ9893_CHIP_ID:
2982 	case KSZ9896_CHIP_ID:
2983 	case KSZ9897_CHIP_ID:
2984 		return 0;
2985 	}
2986 
2987 	return -EOPNOTSUPP;
2988 }
2989 
2990 static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
2991 			   struct ethtool_keee *e)
2992 {
2993 	int ret;
2994 
2995 	ret = ksz_validate_eee(ds, port);
2996 	if (ret)
2997 		return ret;
2998 
2999 	/* There is no documented control of Tx LPI configuration. */
3000 	e->tx_lpi_enabled = true;
3001 
3002 	/* There is no documented control of Tx LPI timer. According to tests
3003 	 * Tx LPI timer seems to be set by default to minimal value.
3004 	 */
3005 	e->tx_lpi_timer = 0;
3006 
3007 	return 0;
3008 }
3009 
3010 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3011 			   struct ethtool_keee *e)
3012 {
3013 	struct ksz_device *dev = ds->priv;
3014 	int ret;
3015 
3016 	ret = ksz_validate_eee(ds, port);
3017 	if (ret)
3018 		return ret;
3019 
3020 	if (!e->tx_lpi_enabled) {
3021 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3022 		return -EINVAL;
3023 	}
3024 
3025 	if (e->tx_lpi_timer) {
3026 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3027 		return -EINVAL;
3028 	}
3029 
3030 	return 0;
3031 }
3032 
3033 static void ksz_set_xmii(struct ksz_device *dev, int port,
3034 			 phy_interface_t interface)
3035 {
3036 	const u8 *bitval = dev->info->xmii_ctrl1;
3037 	struct ksz_port *p = &dev->ports[port];
3038 	const u16 *regs = dev->info->regs;
3039 	u8 data8;
3040 
3041 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3042 
3043 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3044 		   P_RGMII_ID_EG_ENABLE);
3045 
3046 	switch (interface) {
3047 	case PHY_INTERFACE_MODE_MII:
3048 		data8 |= bitval[P_MII_SEL];
3049 		break;
3050 	case PHY_INTERFACE_MODE_RMII:
3051 		data8 |= bitval[P_RMII_SEL];
3052 		break;
3053 	case PHY_INTERFACE_MODE_GMII:
3054 		data8 |= bitval[P_GMII_SEL];
3055 		break;
3056 	case PHY_INTERFACE_MODE_RGMII:
3057 	case PHY_INTERFACE_MODE_RGMII_ID:
3058 	case PHY_INTERFACE_MODE_RGMII_TXID:
3059 	case PHY_INTERFACE_MODE_RGMII_RXID:
3060 		data8 |= bitval[P_RGMII_SEL];
3061 		/* On KSZ9893, disable RGMII in-band status support */
3062 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3063 		    dev->chip_id == KSZ8563_CHIP_ID ||
3064 		    dev->chip_id == KSZ9563_CHIP_ID)
3065 			data8 &= ~P_MII_MAC_MODE;
3066 		break;
3067 	default:
3068 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3069 			phy_modes(interface), port);
3070 		return;
3071 	}
3072 
3073 	if (p->rgmii_tx_val)
3074 		data8 |= P_RGMII_ID_EG_ENABLE;
3075 
3076 	if (p->rgmii_rx_val)
3077 		data8 |= P_RGMII_ID_IG_ENABLE;
3078 
3079 	/* Write the updated value */
3080 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3081 }
3082 
3083 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3084 {
3085 	const u8 *bitval = dev->info->xmii_ctrl1;
3086 	const u16 *regs = dev->info->regs;
3087 	phy_interface_t interface;
3088 	u8 data8;
3089 	u8 val;
3090 
3091 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3092 
3093 	val = FIELD_GET(P_MII_SEL_M, data8);
3094 
3095 	if (val == bitval[P_MII_SEL]) {
3096 		if (gbit)
3097 			interface = PHY_INTERFACE_MODE_GMII;
3098 		else
3099 			interface = PHY_INTERFACE_MODE_MII;
3100 	} else if (val == bitval[P_RMII_SEL]) {
3101 		interface = PHY_INTERFACE_MODE_RGMII;
3102 	} else {
3103 		interface = PHY_INTERFACE_MODE_RGMII;
3104 		if (data8 & P_RGMII_ID_EG_ENABLE)
3105 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3106 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3107 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3108 			if (data8 & P_RGMII_ID_EG_ENABLE)
3109 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3110 		}
3111 	}
3112 
3113 	return interface;
3114 }
3115 
3116 static void ksz8830_phylink_mac_config(struct phylink_config *config,
3117 				       unsigned int mode,
3118 				       const struct phylink_link_state *state)
3119 {
3120 	struct dsa_port *dp = dsa_phylink_to_port(config);
3121 	struct ksz_device *dev = dp->ds->priv;
3122 
3123 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3124 }
3125 
3126 static void ksz_phylink_mac_config(struct phylink_config *config,
3127 				   unsigned int mode,
3128 				   const struct phylink_link_state *state)
3129 {
3130 	struct dsa_port *dp = dsa_phylink_to_port(config);
3131 	struct ksz_device *dev = dp->ds->priv;
3132 	int port = dp->index;
3133 
3134 	/* Internal PHYs */
3135 	if (dev->info->internal_phy[port])
3136 		return;
3137 
3138 	if (phylink_autoneg_inband(mode)) {
3139 		dev_err(dev->dev, "In-band AN not supported!\n");
3140 		return;
3141 	}
3142 
3143 	ksz_set_xmii(dev, port, state->interface);
3144 
3145 	if (dev->dev_ops->setup_rgmii_delay)
3146 		dev->dev_ops->setup_rgmii_delay(dev, port);
3147 }
3148 
3149 bool ksz_get_gbit(struct ksz_device *dev, int port)
3150 {
3151 	const u8 *bitval = dev->info->xmii_ctrl1;
3152 	const u16 *regs = dev->info->regs;
3153 	bool gbit = false;
3154 	u8 data8;
3155 	bool val;
3156 
3157 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3158 
3159 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3160 
3161 	if (val == bitval[P_GMII_1GBIT])
3162 		gbit = true;
3163 
3164 	return gbit;
3165 }
3166 
3167 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3168 {
3169 	const u8 *bitval = dev->info->xmii_ctrl1;
3170 	const u16 *regs = dev->info->regs;
3171 	u8 data8;
3172 
3173 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3174 
3175 	data8 &= ~P_GMII_1GBIT_M;
3176 
3177 	if (gbit)
3178 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3179 	else
3180 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3181 
3182 	/* Write the updated value */
3183 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3184 }
3185 
3186 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3187 {
3188 	const u8 *bitval = dev->info->xmii_ctrl0;
3189 	const u16 *regs = dev->info->regs;
3190 	u8 data8;
3191 
3192 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3193 
3194 	data8 &= ~P_MII_100MBIT_M;
3195 
3196 	if (speed == SPEED_100)
3197 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3198 	else
3199 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3200 
3201 	/* Write the updated value */
3202 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3203 }
3204 
3205 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3206 {
3207 	if (speed == SPEED_1000)
3208 		ksz_set_gbit(dev, port, true);
3209 	else
3210 		ksz_set_gbit(dev, port, false);
3211 
3212 	if (speed == SPEED_100 || speed == SPEED_10)
3213 		ksz_set_100_10mbit(dev, port, speed);
3214 }
3215 
3216 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3217 				bool tx_pause, bool rx_pause)
3218 {
3219 	const u8 *bitval = dev->info->xmii_ctrl0;
3220 	const u32 *masks = dev->info->masks;
3221 	const u16 *regs = dev->info->regs;
3222 	u8 mask;
3223 	u8 val;
3224 
3225 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3226 	       masks[P_MII_RX_FLOW_CTRL];
3227 
3228 	if (duplex == DUPLEX_FULL)
3229 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3230 	else
3231 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3232 
3233 	if (tx_pause)
3234 		val |= masks[P_MII_TX_FLOW_CTRL];
3235 
3236 	if (rx_pause)
3237 		val |= masks[P_MII_RX_FLOW_CTRL];
3238 
3239 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3240 }
3241 
3242 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3243 					struct phy_device *phydev,
3244 					unsigned int mode,
3245 					phy_interface_t interface,
3246 					int speed, int duplex, bool tx_pause,
3247 					bool rx_pause)
3248 {
3249 	struct dsa_port *dp = dsa_phylink_to_port(config);
3250 	struct ksz_device *dev = dp->ds->priv;
3251 	int port = dp->index;
3252 	struct ksz_port *p;
3253 
3254 	p = &dev->ports[port];
3255 
3256 	/* Internal PHYs */
3257 	if (dev->info->internal_phy[port])
3258 		return;
3259 
3260 	p->phydev.speed = speed;
3261 
3262 	ksz_port_set_xmii_speed(dev, port, speed);
3263 
3264 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3265 }
3266 
3267 static int ksz_switch_detect(struct ksz_device *dev)
3268 {
3269 	u8 id1, id2, id4;
3270 	u16 id16;
3271 	u32 id32;
3272 	int ret;
3273 
3274 	/* read chip id */
3275 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3276 	if (ret)
3277 		return ret;
3278 
3279 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3280 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3281 
3282 	switch (id1) {
3283 	case KSZ87_FAMILY_ID:
3284 		if (id2 == KSZ87_CHIP_ID_95) {
3285 			u8 val;
3286 
3287 			dev->chip_id = KSZ8795_CHIP_ID;
3288 
3289 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3290 			if (val & KSZ8_PORT_FIBER_MODE)
3291 				dev->chip_id = KSZ8765_CHIP_ID;
3292 		} else if (id2 == KSZ87_CHIP_ID_94) {
3293 			dev->chip_id = KSZ8794_CHIP_ID;
3294 		} else {
3295 			return -ENODEV;
3296 		}
3297 		break;
3298 	case KSZ88_FAMILY_ID:
3299 		if (id2 == KSZ88_CHIP_ID_63)
3300 			dev->chip_id = KSZ8830_CHIP_ID;
3301 		else
3302 			return -ENODEV;
3303 		break;
3304 	default:
3305 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3306 		if (ret)
3307 			return ret;
3308 
3309 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3310 		id32 &= ~0xFF;
3311 
3312 		switch (id32) {
3313 		case KSZ9477_CHIP_ID:
3314 		case KSZ9896_CHIP_ID:
3315 		case KSZ9897_CHIP_ID:
3316 		case KSZ9567_CHIP_ID:
3317 		case KSZ8567_CHIP_ID:
3318 		case LAN9370_CHIP_ID:
3319 		case LAN9371_CHIP_ID:
3320 		case LAN9372_CHIP_ID:
3321 		case LAN9373_CHIP_ID:
3322 		case LAN9374_CHIP_ID:
3323 			dev->chip_id = id32;
3324 			break;
3325 		case KSZ9893_CHIP_ID:
3326 			ret = ksz_read8(dev, REG_CHIP_ID4,
3327 					&id4);
3328 			if (ret)
3329 				return ret;
3330 
3331 			if (id4 == SKU_ID_KSZ8563)
3332 				dev->chip_id = KSZ8563_CHIP_ID;
3333 			else if (id4 == SKU_ID_KSZ9563)
3334 				dev->chip_id = KSZ9563_CHIP_ID;
3335 			else
3336 				dev->chip_id = KSZ9893_CHIP_ID;
3337 
3338 			break;
3339 		default:
3340 			dev_err(dev->dev,
3341 				"unsupported switch detected %x)\n", id32);
3342 			return -ENODEV;
3343 		}
3344 	}
3345 	return 0;
3346 }
3347 
3348 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3349 			      struct flow_cls_offload *cls, bool ingress)
3350 {
3351 	struct ksz_device *dev = ds->priv;
3352 
3353 	switch (dev->chip_id) {
3354 	case KSZ8563_CHIP_ID:
3355 	case KSZ8567_CHIP_ID:
3356 	case KSZ9477_CHIP_ID:
3357 	case KSZ9563_CHIP_ID:
3358 	case KSZ9567_CHIP_ID:
3359 	case KSZ9893_CHIP_ID:
3360 	case KSZ9896_CHIP_ID:
3361 	case KSZ9897_CHIP_ID:
3362 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3363 	}
3364 
3365 	return -EOPNOTSUPP;
3366 }
3367 
3368 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3369 			      struct flow_cls_offload *cls, bool ingress)
3370 {
3371 	struct ksz_device *dev = ds->priv;
3372 
3373 	switch (dev->chip_id) {
3374 	case KSZ8563_CHIP_ID:
3375 	case KSZ8567_CHIP_ID:
3376 	case KSZ9477_CHIP_ID:
3377 	case KSZ9563_CHIP_ID:
3378 	case KSZ9567_CHIP_ID:
3379 	case KSZ9893_CHIP_ID:
3380 	case KSZ9896_CHIP_ID:
3381 	case KSZ9897_CHIP_ID:
3382 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3383 	}
3384 
3385 	return -EOPNOTSUPP;
3386 }
3387 
3388 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3389  * is converted to Hex-decimal using the successive multiplication method. On
3390  * every step, integer part is taken and decimal part is carry forwarded.
3391  */
3392 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3393 {
3394 	u32 cinc = 0;
3395 	u32 txrate;
3396 	u32 rate;
3397 	u8 temp;
3398 	u8 i;
3399 
3400 	txrate = idle_slope - send_slope;
3401 
3402 	if (!txrate)
3403 		return -EINVAL;
3404 
3405 	rate = idle_slope;
3406 
3407 	/* 24 bit register */
3408 	for (i = 0; i < 6; i++) {
3409 		rate = rate * 16;
3410 
3411 		temp = rate / txrate;
3412 
3413 		rate %= txrate;
3414 
3415 		cinc = ((cinc << 4) | temp);
3416 	}
3417 
3418 	*bw = cinc;
3419 
3420 	return 0;
3421 }
3422 
3423 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3424 			     u8 shaper)
3425 {
3426 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3427 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3428 			   FIELD_PREP(MTI_SHAPING_M, shaper));
3429 }
3430 
3431 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3432 			    struct tc_cbs_qopt_offload *qopt)
3433 {
3434 	struct ksz_device *dev = ds->priv;
3435 	int ret;
3436 	u32 bw;
3437 
3438 	if (!dev->info->tc_cbs_supported)
3439 		return -EOPNOTSUPP;
3440 
3441 	if (qopt->queue > dev->info->num_tx_queues)
3442 		return -EINVAL;
3443 
3444 	/* Queue Selection */
3445 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3446 	if (ret)
3447 		return ret;
3448 
3449 	if (!qopt->enable)
3450 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3451 					 MTI_SHAPING_OFF);
3452 
3453 	/* High Credit */
3454 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3455 			   qopt->hicredit);
3456 	if (ret)
3457 		return ret;
3458 
3459 	/* Low Credit */
3460 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3461 			   qopt->locredit);
3462 	if (ret)
3463 		return ret;
3464 
3465 	/* Credit Increment Register */
3466 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3467 	if (ret)
3468 		return ret;
3469 
3470 	if (dev->dev_ops->tc_cbs_set_cinc) {
3471 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3472 		if (ret)
3473 			return ret;
3474 	}
3475 
3476 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3477 				 MTI_SHAPING_SRP);
3478 }
3479 
3480 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3481 {
3482 	int queue, ret;
3483 
3484 	/* Configuration will not take effect until the last Port Queue X
3485 	 * Egress Limit Control Register is written.
3486 	 */
3487 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3488 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3489 				  KSZ9477_OUT_RATE_NO_LIMIT);
3490 		if (ret)
3491 			return ret;
3492 	}
3493 
3494 	return 0;
3495 }
3496 
3497 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
3498 				 int band)
3499 {
3500 	/* Compared to queues, bands prioritize packets differently. In strict
3501 	 * priority mode, the lowest priority is assigned to Queue 0 while the
3502 	 * highest priority is given to Band 0.
3503 	 */
3504 	return p->bands - 1 - band;
3505 }
3506 
3507 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
3508 {
3509 	int ret;
3510 
3511 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3512 	if (ret)
3513 		return ret;
3514 
3515 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3516 				 MTI_SHAPING_OFF);
3517 }
3518 
3519 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
3520 			     int weight)
3521 {
3522 	int ret;
3523 
3524 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3525 	if (ret)
3526 		return ret;
3527 
3528 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3529 				MTI_SHAPING_OFF);
3530 	if (ret)
3531 		return ret;
3532 
3533 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
3534 }
3535 
3536 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
3537 			  struct tc_ets_qopt_offload_replace_params *p)
3538 {
3539 	int ret, band, tc_prio;
3540 	u32 queue_map = 0;
3541 
3542 	/* In order to ensure proper prioritization, it is necessary to set the
3543 	 * rate limit for the related queue to zero. Otherwise strict priority
3544 	 * or WRR mode will not work. This is a hardware limitation.
3545 	 */
3546 	ret = ksz_disable_egress_rate_limit(dev, port);
3547 	if (ret)
3548 		return ret;
3549 
3550 	/* Configure queue scheduling mode for all bands. Currently only strict
3551 	 * prio mode is supported.
3552 	 */
3553 	for (band = 0; band < p->bands; band++) {
3554 		int queue = ksz_ets_band_to_queue(p, band);
3555 
3556 		ret = ksz_queue_set_strict(dev, port, queue);
3557 		if (ret)
3558 			return ret;
3559 	}
3560 
3561 	/* Configure the mapping between traffic classes and queues. Note:
3562 	 * priomap variable support 16 traffic classes, but the chip can handle
3563 	 * only 8 classes.
3564 	 */
3565 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
3566 		int queue;
3567 
3568 		if (tc_prio > KSZ9477_MAX_TC_PRIO)
3569 			break;
3570 
3571 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
3572 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3573 	}
3574 
3575 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3576 }
3577 
3578 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
3579 {
3580 	int ret, queue, tc_prio, s;
3581 	u32 queue_map = 0;
3582 
3583 	/* To restore the default chip configuration, set all queues to use the
3584 	 * WRR scheduler with a weight of 1.
3585 	 */
3586 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3587 		ret = ksz_queue_set_wrr(dev, port, queue,
3588 					KSZ9477_DEFAULT_WRR_WEIGHT);
3589 		if (ret)
3590 			return ret;
3591 	}
3592 
3593 	switch (dev->info->num_tx_queues) {
3594 	case 2:
3595 		s = 2;
3596 		break;
3597 	case 4:
3598 		s = 1;
3599 		break;
3600 	case 8:
3601 		s = 0;
3602 		break;
3603 	default:
3604 		return -EINVAL;
3605 	}
3606 
3607 	/* Revert the queue mapping for TC-priority to its default setting on
3608 	 * the chip.
3609 	 */
3610 	for (tc_prio = 0; tc_prio <= KSZ9477_MAX_TC_PRIO; tc_prio++) {
3611 		int queue;
3612 
3613 		queue = tc_prio >> s;
3614 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3615 	}
3616 
3617 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3618 }
3619 
3620 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
3621 			       struct tc_ets_qopt_offload_replace_params *p)
3622 {
3623 	int band;
3624 
3625 	/* Since it is not feasible to share one port among multiple qdisc,
3626 	 * the user must configure all available queues appropriately.
3627 	 */
3628 	if (p->bands != dev->info->num_tx_queues) {
3629 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
3630 			dev->info->num_tx_queues);
3631 		return -EOPNOTSUPP;
3632 	}
3633 
3634 	for (band = 0; band < p->bands; ++band) {
3635 		/* The KSZ switches utilize a weighted round robin configuration
3636 		 * where a certain number of packets can be transmitted from a
3637 		 * queue before the next queue is serviced. For more information
3638 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
3639 		 * documentation on the Port Transmit Queue Control 1 Register.
3640 		 * However, the current ETS Qdisc implementation (as of February
3641 		 * 2023) assigns a weight to each queue based on the number of
3642 		 * bytes or extrapolated bandwidth in percentages. Since this
3643 		 * differs from the KSZ switches' method and we don't want to
3644 		 * fake support by converting bytes to packets, it is better to
3645 		 * return an error instead.
3646 		 */
3647 		if (p->quanta[band]) {
3648 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
3649 			return -EOPNOTSUPP;
3650 		}
3651 	}
3652 
3653 	return 0;
3654 }
3655 
3656 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
3657 				  struct tc_ets_qopt_offload *qopt)
3658 {
3659 	struct ksz_device *dev = ds->priv;
3660 	int ret;
3661 
3662 	if (!dev->info->tc_ets_supported)
3663 		return -EOPNOTSUPP;
3664 
3665 	if (qopt->parent != TC_H_ROOT) {
3666 		dev_err(dev->dev, "Parent should be \"root\"\n");
3667 		return -EOPNOTSUPP;
3668 	}
3669 
3670 	switch (qopt->command) {
3671 	case TC_ETS_REPLACE:
3672 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
3673 		if (ret)
3674 			return ret;
3675 
3676 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
3677 	case TC_ETS_DESTROY:
3678 		return ksz_tc_ets_del(dev, port);
3679 	case TC_ETS_STATS:
3680 	case TC_ETS_GRAFT:
3681 		return -EOPNOTSUPP;
3682 	}
3683 
3684 	return -EOPNOTSUPP;
3685 }
3686 
3687 static int ksz_setup_tc(struct dsa_switch *ds, int port,
3688 			enum tc_setup_type type, void *type_data)
3689 {
3690 	switch (type) {
3691 	case TC_SETUP_QDISC_CBS:
3692 		return ksz_setup_tc_cbs(ds, port, type_data);
3693 	case TC_SETUP_QDISC_ETS:
3694 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
3695 	default:
3696 		return -EOPNOTSUPP;
3697 	}
3698 }
3699 
3700 static void ksz_get_wol(struct dsa_switch *ds, int port,
3701 			struct ethtool_wolinfo *wol)
3702 {
3703 	struct ksz_device *dev = ds->priv;
3704 
3705 	if (dev->dev_ops->get_wol)
3706 		dev->dev_ops->get_wol(dev, port, wol);
3707 }
3708 
3709 static int ksz_set_wol(struct dsa_switch *ds, int port,
3710 		       struct ethtool_wolinfo *wol)
3711 {
3712 	struct ksz_device *dev = ds->priv;
3713 
3714 	if (dev->dev_ops->set_wol)
3715 		return dev->dev_ops->set_wol(dev, port, wol);
3716 
3717 	return -EOPNOTSUPP;
3718 }
3719 
3720 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
3721 				    const unsigned char *addr)
3722 {
3723 	struct dsa_port *dp = dsa_to_port(ds, port);
3724 	struct ethtool_wolinfo wol;
3725 
3726 	if (dp->hsr_dev) {
3727 		dev_err(ds->dev,
3728 			"Cannot change MAC address on port %d with active HSR offload\n",
3729 			port);
3730 		return -EBUSY;
3731 	}
3732 
3733 	ksz_get_wol(ds, dp->index, &wol);
3734 	if (wol.wolopts & WAKE_MAGIC) {
3735 		dev_err(ds->dev,
3736 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
3737 			port);
3738 		return -EBUSY;
3739 	}
3740 
3741 	return 0;
3742 }
3743 
3744 /**
3745  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
3746  *                                 can be used as a global address.
3747  * @ds: Pointer to the DSA switch structure.
3748  * @port: The port number on which the MAC address is to be checked.
3749  *
3750  * This function examines the MAC address set on the specified port and
3751  * determines if it can be used as a global address for the switch.
3752  *
3753  * Return: true if the port's MAC address can be used as a global address, false
3754  * otherwise.
3755  */
3756 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
3757 {
3758 	struct net_device *user = dsa_to_port(ds, port)->user;
3759 	const unsigned char *addr = user->dev_addr;
3760 	struct ksz_switch_macaddr *switch_macaddr;
3761 	struct ksz_device *dev = ds->priv;
3762 
3763 	ASSERT_RTNL();
3764 
3765 	switch_macaddr = dev->switch_macaddr;
3766 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
3767 		return false;
3768 
3769 	return true;
3770 }
3771 
3772 /**
3773  * ksz_switch_macaddr_get - Program the switch's MAC address register.
3774  * @ds: DSA switch instance.
3775  * @port: Port number.
3776  * @extack: Netlink extended acknowledgment.
3777  *
3778  * This function programs the switch's MAC address register with the MAC address
3779  * of the requesting user port. This single address is used by the switch for
3780  * multiple features like HSR self-address filtering and WoL. Other user ports
3781  * can share ownership of this address as long as their MAC address is the same.
3782  * The MAC addresses of user ports must not change while they have ownership of
3783  * the switch MAC address.
3784  *
3785  * Return: 0 on success, or other error codes on failure.
3786  */
3787 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
3788 			   struct netlink_ext_ack *extack)
3789 {
3790 	struct net_device *user = dsa_to_port(ds, port)->user;
3791 	const unsigned char *addr = user->dev_addr;
3792 	struct ksz_switch_macaddr *switch_macaddr;
3793 	struct ksz_device *dev = ds->priv;
3794 	const u16 *regs = dev->info->regs;
3795 	int i, ret;
3796 
3797 	/* Make sure concurrent MAC address changes are blocked */
3798 	ASSERT_RTNL();
3799 
3800 	switch_macaddr = dev->switch_macaddr;
3801 	if (switch_macaddr) {
3802 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
3803 			NL_SET_ERR_MSG_FMT_MOD(extack,
3804 					       "Switch already configured for MAC address %pM",
3805 					       switch_macaddr->addr);
3806 			return -EBUSY;
3807 		}
3808 
3809 		refcount_inc(&switch_macaddr->refcount);
3810 		return 0;
3811 	}
3812 
3813 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
3814 	if (!switch_macaddr)
3815 		return -ENOMEM;
3816 
3817 	ether_addr_copy(switch_macaddr->addr, addr);
3818 	refcount_set(&switch_macaddr->refcount, 1);
3819 	dev->switch_macaddr = switch_macaddr;
3820 
3821 	/* Program the switch MAC address to hardware */
3822 	for (i = 0; i < ETH_ALEN; i++) {
3823 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
3824 		if (ret)
3825 			goto macaddr_drop;
3826 	}
3827 
3828 	return 0;
3829 
3830 macaddr_drop:
3831 	dev->switch_macaddr = NULL;
3832 	refcount_set(&switch_macaddr->refcount, 0);
3833 	kfree(switch_macaddr);
3834 
3835 	return ret;
3836 }
3837 
3838 void ksz_switch_macaddr_put(struct dsa_switch *ds)
3839 {
3840 	struct ksz_switch_macaddr *switch_macaddr;
3841 	struct ksz_device *dev = ds->priv;
3842 	const u16 *regs = dev->info->regs;
3843 	int i;
3844 
3845 	/* Make sure concurrent MAC address changes are blocked */
3846 	ASSERT_RTNL();
3847 
3848 	switch_macaddr = dev->switch_macaddr;
3849 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
3850 		return;
3851 
3852 	for (i = 0; i < ETH_ALEN; i++)
3853 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
3854 
3855 	dev->switch_macaddr = NULL;
3856 	kfree(switch_macaddr);
3857 }
3858 
3859 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
3860 			struct netlink_ext_ack *extack)
3861 {
3862 	struct ksz_device *dev = ds->priv;
3863 	enum hsr_version ver;
3864 	int ret;
3865 
3866 	ret = hsr_get_version(hsr, &ver);
3867 	if (ret)
3868 		return ret;
3869 
3870 	if (dev->chip_id != KSZ9477_CHIP_ID) {
3871 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
3872 		return -EOPNOTSUPP;
3873 	}
3874 
3875 	/* KSZ9477 can support HW offloading of only 1 HSR device */
3876 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
3877 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
3878 		return -EOPNOTSUPP;
3879 	}
3880 
3881 	/* KSZ9477 only supports HSR v0 and v1 */
3882 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
3883 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
3884 		return -EOPNOTSUPP;
3885 	}
3886 
3887 	/* Self MAC address filtering, to avoid frames traversing
3888 	 * the HSR ring more than once.
3889 	 */
3890 	ret = ksz_switch_macaddr_get(ds, port, extack);
3891 	if (ret)
3892 		return ret;
3893 
3894 	ksz9477_hsr_join(ds, port, hsr);
3895 	dev->hsr_dev = hsr;
3896 	dev->hsr_ports |= BIT(port);
3897 
3898 	return 0;
3899 }
3900 
3901 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
3902 			 struct net_device *hsr)
3903 {
3904 	struct ksz_device *dev = ds->priv;
3905 
3906 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
3907 
3908 	ksz9477_hsr_leave(ds, port, hsr);
3909 	dev->hsr_ports &= ~BIT(port);
3910 	if (!dev->hsr_ports)
3911 		dev->hsr_dev = NULL;
3912 
3913 	ksz_switch_macaddr_put(ds);
3914 
3915 	return 0;
3916 }
3917 
3918 static const struct dsa_switch_ops ksz_switch_ops = {
3919 	.get_tag_protocol	= ksz_get_tag_protocol,
3920 	.connect_tag_protocol   = ksz_connect_tag_protocol,
3921 	.get_phy_flags		= ksz_get_phy_flags,
3922 	.setup			= ksz_setup,
3923 	.teardown		= ksz_teardown,
3924 	.phy_read		= ksz_phy_read16,
3925 	.phy_write		= ksz_phy_write16,
3926 	.phylink_get_caps	= ksz_phylink_get_caps,
3927 	.port_setup		= ksz_port_setup,
3928 	.set_ageing_time	= ksz_set_ageing_time,
3929 	.get_strings		= ksz_get_strings,
3930 	.get_ethtool_stats	= ksz_get_ethtool_stats,
3931 	.get_sset_count		= ksz_sset_count,
3932 	.port_bridge_join	= ksz_port_bridge_join,
3933 	.port_bridge_leave	= ksz_port_bridge_leave,
3934 	.port_hsr_join		= ksz_hsr_join,
3935 	.port_hsr_leave		= ksz_hsr_leave,
3936 	.port_set_mac_address	= ksz_port_set_mac_address,
3937 	.port_stp_state_set	= ksz_port_stp_state_set,
3938 	.port_teardown		= ksz_port_teardown,
3939 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
3940 	.port_bridge_flags	= ksz_port_bridge_flags,
3941 	.port_fast_age		= ksz_port_fast_age,
3942 	.port_vlan_filtering	= ksz_port_vlan_filtering,
3943 	.port_vlan_add		= ksz_port_vlan_add,
3944 	.port_vlan_del		= ksz_port_vlan_del,
3945 	.port_fdb_dump		= ksz_port_fdb_dump,
3946 	.port_fdb_add		= ksz_port_fdb_add,
3947 	.port_fdb_del		= ksz_port_fdb_del,
3948 	.port_mdb_add           = ksz_port_mdb_add,
3949 	.port_mdb_del           = ksz_port_mdb_del,
3950 	.port_mirror_add	= ksz_port_mirror_add,
3951 	.port_mirror_del	= ksz_port_mirror_del,
3952 	.get_stats64		= ksz_get_stats64,
3953 	.get_pause_stats	= ksz_get_pause_stats,
3954 	.port_change_mtu	= ksz_change_mtu,
3955 	.port_max_mtu		= ksz_max_mtu,
3956 	.get_wol		= ksz_get_wol,
3957 	.set_wol		= ksz_set_wol,
3958 	.get_ts_info		= ksz_get_ts_info,
3959 	.port_hwtstamp_get	= ksz_hwtstamp_get,
3960 	.port_hwtstamp_set	= ksz_hwtstamp_set,
3961 	.port_txtstamp		= ksz_port_txtstamp,
3962 	.port_rxtstamp		= ksz_port_rxtstamp,
3963 	.cls_flower_add		= ksz_cls_flower_add,
3964 	.cls_flower_del		= ksz_cls_flower_del,
3965 	.port_setup_tc		= ksz_setup_tc,
3966 	.get_mac_eee		= ksz_get_mac_eee,
3967 	.set_mac_eee		= ksz_set_mac_eee,
3968 };
3969 
3970 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
3971 {
3972 	struct dsa_switch *ds;
3973 	struct ksz_device *swdev;
3974 
3975 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
3976 	if (!ds)
3977 		return NULL;
3978 
3979 	ds->dev = base;
3980 	ds->num_ports = DSA_MAX_PORTS;
3981 	ds->ops = &ksz_switch_ops;
3982 
3983 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
3984 	if (!swdev)
3985 		return NULL;
3986 
3987 	ds->priv = swdev;
3988 	swdev->dev = base;
3989 
3990 	swdev->ds = ds;
3991 	swdev->priv = priv;
3992 
3993 	return swdev;
3994 }
3995 EXPORT_SYMBOL(ksz_switch_alloc);
3996 
3997 /**
3998  * ksz_switch_shutdown - Shutdown routine for the switch device.
3999  * @dev: The switch device structure.
4000  *
4001  * This function is responsible for initiating a shutdown sequence for the
4002  * switch device. It invokes the reset operation defined in the device
4003  * operations, if available, to reset the switch. Subsequently, it calls the
4004  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
4005  * switch.
4006  */
4007 void ksz_switch_shutdown(struct ksz_device *dev)
4008 {
4009 	bool wol_enabled = false;
4010 
4011 	if (dev->dev_ops->wol_pre_shutdown)
4012 		dev->dev_ops->wol_pre_shutdown(dev, &wol_enabled);
4013 
4014 	if (dev->dev_ops->reset && !wol_enabled)
4015 		dev->dev_ops->reset(dev);
4016 
4017 	dsa_switch_shutdown(dev->ds);
4018 }
4019 EXPORT_SYMBOL(ksz_switch_shutdown);
4020 
4021 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
4022 				  struct device_node *port_dn)
4023 {
4024 	phy_interface_t phy_mode = dev->ports[port_num].interface;
4025 	int rx_delay = -1, tx_delay = -1;
4026 
4027 	if (!phy_interface_mode_is_rgmii(phy_mode))
4028 		return;
4029 
4030 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
4031 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
4032 
4033 	if (rx_delay == -1 && tx_delay == -1) {
4034 		dev_warn(dev->dev,
4035 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
4036 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
4037 			 "\"tx-internal-delay-ps\"",
4038 			 port_num);
4039 
4040 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4041 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4042 			rx_delay = 2000;
4043 
4044 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4045 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4046 			tx_delay = 2000;
4047 	}
4048 
4049 	if (rx_delay < 0)
4050 		rx_delay = 0;
4051 	if (tx_delay < 0)
4052 		tx_delay = 0;
4053 
4054 	dev->ports[port_num].rgmii_rx_val = rx_delay;
4055 	dev->ports[port_num].rgmii_tx_val = tx_delay;
4056 }
4057 
4058 /**
4059  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4060  *				 register value.
4061  * @array:	The array of drive strength values to search.
4062  * @array_size:	The size of the array.
4063  * @microamp:	The drive strength value in microamp to be converted.
4064  *
4065  * This function searches the array of drive strength values for the given
4066  * microamp value and returns the corresponding register value for that drive.
4067  *
4068  * Returns: If found, the corresponding register value for that drive strength
4069  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4070  */
4071 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4072 				     size_t array_size, int microamp)
4073 {
4074 	int i;
4075 
4076 	for (i = 0; i < array_size; i++) {
4077 		if (array[i].microamp == microamp)
4078 			return array[i].reg_val;
4079 	}
4080 
4081 	return -EINVAL;
4082 }
4083 
4084 /**
4085  * ksz_drive_strength_error() - Report invalid drive strength value
4086  * @dev:	ksz device
4087  * @array:	The array of drive strength values to search.
4088  * @array_size:	The size of the array.
4089  * @microamp:	Invalid drive strength value in microamp
4090  *
4091  * This function logs an error message when an unsupported drive strength value
4092  * is detected. It lists out all the supported drive strength values for
4093  * reference in the error message.
4094  */
4095 static void ksz_drive_strength_error(struct ksz_device *dev,
4096 				     const struct ksz_drive_strength *array,
4097 				     size_t array_size, int microamp)
4098 {
4099 	char supported_values[100];
4100 	size_t remaining_size;
4101 	int added_len;
4102 	char *ptr;
4103 	int i;
4104 
4105 	remaining_size = sizeof(supported_values);
4106 	ptr = supported_values;
4107 
4108 	for (i = 0; i < array_size; i++) {
4109 		added_len = snprintf(ptr, remaining_size,
4110 				     i == 0 ? "%d" : ", %d", array[i].microamp);
4111 
4112 		if (added_len >= remaining_size)
4113 			break;
4114 
4115 		ptr += added_len;
4116 		remaining_size -= added_len;
4117 	}
4118 
4119 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
4120 		microamp, supported_values);
4121 }
4122 
4123 /**
4124  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
4125  *				    chip variants.
4126  * @dev:       ksz device
4127  * @props:     Array of drive strength properties to be applied
4128  * @num_props: Number of properties in the array
4129  *
4130  * This function configures the drive strength for various KSZ9477 chip variants
4131  * based on the provided properties. It handles chip-specific nuances and
4132  * ensures only valid drive strengths are written to the respective chip.
4133  *
4134  * Return: 0 on successful configuration, a negative error code on failure.
4135  */
4136 static int ksz9477_drive_strength_write(struct ksz_device *dev,
4137 					struct ksz_driver_strength_prop *props,
4138 					int num_props)
4139 {
4140 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4141 	int i, ret, reg;
4142 	u8 mask = 0;
4143 	u8 val = 0;
4144 
4145 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4146 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4147 			 props[KSZ_DRIVER_STRENGTH_IO].name);
4148 
4149 	if (dev->chip_id == KSZ8795_CHIP_ID ||
4150 	    dev->chip_id == KSZ8794_CHIP_ID ||
4151 	    dev->chip_id == KSZ8765_CHIP_ID)
4152 		reg = KSZ8795_REG_SW_CTRL_20;
4153 	else
4154 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4155 
4156 	for (i = 0; i < num_props; i++) {
4157 		if (props[i].value == -1)
4158 			continue;
4159 
4160 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4161 						array_size, props[i].value);
4162 		if (ret < 0) {
4163 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4164 						 array_size, props[i].value);
4165 			return ret;
4166 		}
4167 
4168 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4169 		val |= ret << props[i].offset;
4170 	}
4171 
4172 	return ksz_rmw8(dev, reg, mask, val);
4173 }
4174 
4175 /**
4176  * ksz8830_drive_strength_write() - Set the drive strength configuration for
4177  *				    KSZ8830 compatible chip variants.
4178  * @dev:       ksz device
4179  * @props:     Array of drive strength properties to be set
4180  * @num_props: Number of properties in the array
4181  *
4182  * This function applies the specified drive strength settings to KSZ8830 chip
4183  * variants (KSZ8873, KSZ8863).
4184  * It ensures the configurations align with what the chip variant supports and
4185  * warns or errors out on unsupported settings.
4186  *
4187  * Return: 0 on success, error code otherwise
4188  */
4189 static int ksz8830_drive_strength_write(struct ksz_device *dev,
4190 					struct ksz_driver_strength_prop *props,
4191 					int num_props)
4192 {
4193 	size_t array_size = ARRAY_SIZE(ksz8830_drive_strengths);
4194 	int microamp;
4195 	int i, ret;
4196 
4197 	for (i = 0; i < num_props; i++) {
4198 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4199 			continue;
4200 
4201 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4202 			 props[i].name);
4203 	}
4204 
4205 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4206 	ret = ksz_drive_strength_to_reg(ksz8830_drive_strengths, array_size,
4207 					microamp);
4208 	if (ret < 0) {
4209 		ksz_drive_strength_error(dev, ksz8830_drive_strengths,
4210 					 array_size, microamp);
4211 		return ret;
4212 	}
4213 
4214 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4215 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4216 }
4217 
4218 /**
4219  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4220  *				from device tree properties.
4221  * @dev:	ksz device
4222  *
4223  * This function reads the specified drive strength properties from the
4224  * device tree, validates against the supported chip variants, and sets
4225  * them accordingly. An error should be critical here, as the drive strength
4226  * settings are crucial for EMI compliance.
4227  *
4228  * Return: 0 on success, error code otherwise
4229  */
4230 static int ksz_parse_drive_strength(struct ksz_device *dev)
4231 {
4232 	struct ksz_driver_strength_prop of_props[] = {
4233 		[KSZ_DRIVER_STRENGTH_HI] = {
4234 			.name = "microchip,hi-drive-strength-microamp",
4235 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4236 			.value = -1,
4237 		},
4238 		[KSZ_DRIVER_STRENGTH_LO] = {
4239 			.name = "microchip,lo-drive-strength-microamp",
4240 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4241 			.value = -1,
4242 		},
4243 		[KSZ_DRIVER_STRENGTH_IO] = {
4244 			.name = "microchip,io-drive-strength-microamp",
4245 			.offset = 0, /* don't care */
4246 			.value = -1,
4247 		},
4248 	};
4249 	struct device_node *np = dev->dev->of_node;
4250 	bool have_any_prop = false;
4251 	int i, ret;
4252 
4253 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4254 		ret = of_property_read_u32(np, of_props[i].name,
4255 					   &of_props[i].value);
4256 		if (ret && ret != -EINVAL)
4257 			dev_warn(dev->dev, "Failed to read %s\n",
4258 				 of_props[i].name);
4259 		if (ret)
4260 			continue;
4261 
4262 		have_any_prop = true;
4263 	}
4264 
4265 	if (!have_any_prop)
4266 		return 0;
4267 
4268 	switch (dev->chip_id) {
4269 	case KSZ8830_CHIP_ID:
4270 		return ksz8830_drive_strength_write(dev, of_props,
4271 						    ARRAY_SIZE(of_props));
4272 	case KSZ8795_CHIP_ID:
4273 	case KSZ8794_CHIP_ID:
4274 	case KSZ8765_CHIP_ID:
4275 	case KSZ8563_CHIP_ID:
4276 	case KSZ8567_CHIP_ID:
4277 	case KSZ9477_CHIP_ID:
4278 	case KSZ9563_CHIP_ID:
4279 	case KSZ9567_CHIP_ID:
4280 	case KSZ9893_CHIP_ID:
4281 	case KSZ9896_CHIP_ID:
4282 	case KSZ9897_CHIP_ID:
4283 		return ksz9477_drive_strength_write(dev, of_props,
4284 						    ARRAY_SIZE(of_props));
4285 	default:
4286 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4287 			if (of_props[i].value == -1)
4288 				continue;
4289 
4290 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4291 				 of_props[i].name);
4292 		}
4293 	}
4294 
4295 	return 0;
4296 }
4297 
4298 int ksz_switch_register(struct ksz_device *dev)
4299 {
4300 	const struct ksz_chip_data *info;
4301 	struct device_node *port, *ports;
4302 	phy_interface_t interface;
4303 	unsigned int port_num;
4304 	int ret;
4305 	int i;
4306 
4307 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4308 						  GPIOD_OUT_LOW);
4309 	if (IS_ERR(dev->reset_gpio))
4310 		return PTR_ERR(dev->reset_gpio);
4311 
4312 	if (dev->reset_gpio) {
4313 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4314 		usleep_range(10000, 12000);
4315 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
4316 		msleep(100);
4317 	}
4318 
4319 	mutex_init(&dev->dev_mutex);
4320 	mutex_init(&dev->regmap_mutex);
4321 	mutex_init(&dev->alu_mutex);
4322 	mutex_init(&dev->vlan_mutex);
4323 
4324 	ret = ksz_switch_detect(dev);
4325 	if (ret)
4326 		return ret;
4327 
4328 	info = ksz_lookup_info(dev->chip_id);
4329 	if (!info)
4330 		return -ENODEV;
4331 
4332 	/* Update the compatible info with the probed one */
4333 	dev->info = info;
4334 
4335 	dev_info(dev->dev, "found switch: %s, rev %i\n",
4336 		 dev->info->dev_name, dev->chip_rev);
4337 
4338 	ret = ksz_check_device_id(dev);
4339 	if (ret)
4340 		return ret;
4341 
4342 	dev->dev_ops = dev->info->ops;
4343 
4344 	ret = dev->dev_ops->init(dev);
4345 	if (ret)
4346 		return ret;
4347 
4348 	dev->ports = devm_kzalloc(dev->dev,
4349 				  dev->info->port_cnt * sizeof(struct ksz_port),
4350 				  GFP_KERNEL);
4351 	if (!dev->ports)
4352 		return -ENOMEM;
4353 
4354 	for (i = 0; i < dev->info->port_cnt; i++) {
4355 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
4356 		mutex_init(&dev->ports[i].mib.cnt_mutex);
4357 		dev->ports[i].mib.counters =
4358 			devm_kzalloc(dev->dev,
4359 				     sizeof(u64) * (dev->info->mib_cnt + 1),
4360 				     GFP_KERNEL);
4361 		if (!dev->ports[i].mib.counters)
4362 			return -ENOMEM;
4363 
4364 		dev->ports[i].ksz_dev = dev;
4365 		dev->ports[i].num = i;
4366 	}
4367 
4368 	/* set the real number of ports */
4369 	dev->ds->num_ports = dev->info->port_cnt;
4370 
4371 	/* set the phylink ops */
4372 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
4373 
4374 	/* Host port interface will be self detected, or specifically set in
4375 	 * device tree.
4376 	 */
4377 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
4378 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
4379 	if (dev->dev->of_node) {
4380 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
4381 		if (ret == 0)
4382 			dev->compat_interface = interface;
4383 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
4384 		if (!ports)
4385 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
4386 		if (ports) {
4387 			for_each_available_child_of_node(ports, port) {
4388 				if (of_property_read_u32(port, "reg",
4389 							 &port_num))
4390 					continue;
4391 				if (!(dev->port_mask & BIT(port_num))) {
4392 					of_node_put(port);
4393 					of_node_put(ports);
4394 					return -EINVAL;
4395 				}
4396 				of_get_phy_mode(port,
4397 						&dev->ports[port_num].interface);
4398 
4399 				ksz_parse_rgmii_delay(dev, port_num, port);
4400 			}
4401 			of_node_put(ports);
4402 		}
4403 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
4404 							 "microchip,synclko-125");
4405 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
4406 							     "microchip,synclko-disable");
4407 		if (dev->synclko_125 && dev->synclko_disable) {
4408 			dev_err(dev->dev, "inconsistent synclko settings\n");
4409 			return -EINVAL;
4410 		}
4411 
4412 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
4413 							   "wakeup-source");
4414 	}
4415 
4416 	ret = dsa_register_switch(dev->ds);
4417 	if (ret) {
4418 		dev->dev_ops->exit(dev);
4419 		return ret;
4420 	}
4421 
4422 	/* Read MIB counters every 30 seconds to avoid overflow. */
4423 	dev->mib_read_interval = msecs_to_jiffies(5000);
4424 
4425 	/* Start the MIB timer. */
4426 	schedule_delayed_work(&dev->mib_read, 0);
4427 
4428 	return ret;
4429 }
4430 EXPORT_SYMBOL(ksz_switch_register);
4431 
4432 void ksz_switch_remove(struct ksz_device *dev)
4433 {
4434 	/* timer started */
4435 	if (dev->mib_read_interval) {
4436 		dev->mib_read_interval = 0;
4437 		cancel_delayed_work_sync(&dev->mib_read);
4438 	}
4439 
4440 	dev->dev_ops->exit(dev);
4441 	dsa_unregister_switch(dev->ds);
4442 
4443 	if (dev->reset_gpio)
4444 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4445 
4446 }
4447 EXPORT_SYMBOL(ksz_switch_remove);
4448 
4449 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
4450 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
4451 MODULE_LICENSE("GPL");
4452