xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2024 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/ieee8021q.h>
28 #include <net/pkt_cls.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_common.h"
32 #include "ksz_dcb.h"
33 #include "ksz_ptp.h"
34 #include "ksz8.h"
35 #include "ksz9477.h"
36 #include "lan937x.h"
37 
38 #define MIB_COUNTER_NUM 0x20
39 
40 struct ksz_stats_raw {
41 	u64 rx_hi;
42 	u64 rx_undersize;
43 	u64 rx_fragments;
44 	u64 rx_oversize;
45 	u64 rx_jabbers;
46 	u64 rx_symbol_err;
47 	u64 rx_crc_err;
48 	u64 rx_align_err;
49 	u64 rx_mac_ctrl;
50 	u64 rx_pause;
51 	u64 rx_bcast;
52 	u64 rx_mcast;
53 	u64 rx_ucast;
54 	u64 rx_64_or_less;
55 	u64 rx_65_127;
56 	u64 rx_128_255;
57 	u64 rx_256_511;
58 	u64 rx_512_1023;
59 	u64 rx_1024_1522;
60 	u64 rx_1523_2000;
61 	u64 rx_2001;
62 	u64 tx_hi;
63 	u64 tx_late_col;
64 	u64 tx_pause;
65 	u64 tx_bcast;
66 	u64 tx_mcast;
67 	u64 tx_ucast;
68 	u64 tx_deferred;
69 	u64 tx_total_col;
70 	u64 tx_exc_col;
71 	u64 tx_single_col;
72 	u64 tx_mult_col;
73 	u64 rx_total;
74 	u64 tx_total;
75 	u64 rx_discards;
76 	u64 tx_discards;
77 };
78 
79 struct ksz88xx_stats_raw {
80 	u64 rx;
81 	u64 rx_hi;
82 	u64 rx_undersize;
83 	u64 rx_fragments;
84 	u64 rx_oversize;
85 	u64 rx_jabbers;
86 	u64 rx_symbol_err;
87 	u64 rx_crc_err;
88 	u64 rx_align_err;
89 	u64 rx_mac_ctrl;
90 	u64 rx_pause;
91 	u64 rx_bcast;
92 	u64 rx_mcast;
93 	u64 rx_ucast;
94 	u64 rx_64_or_less;
95 	u64 rx_65_127;
96 	u64 rx_128_255;
97 	u64 rx_256_511;
98 	u64 rx_512_1023;
99 	u64 rx_1024_1522;
100 	u64 tx;
101 	u64 tx_hi;
102 	u64 tx_late_col;
103 	u64 tx_pause;
104 	u64 tx_bcast;
105 	u64 tx_mcast;
106 	u64 tx_ucast;
107 	u64 tx_deferred;
108 	u64 tx_total_col;
109 	u64 tx_exc_col;
110 	u64 tx_single_col;
111 	u64 tx_mult_col;
112 	u64 rx_discards;
113 	u64 tx_discards;
114 };
115 
116 static const struct ksz_mib_names ksz88xx_mib_names[] = {
117 	{ 0x00, "rx" },
118 	{ 0x01, "rx_hi" },
119 	{ 0x02, "rx_undersize" },
120 	{ 0x03, "rx_fragments" },
121 	{ 0x04, "rx_oversize" },
122 	{ 0x05, "rx_jabbers" },
123 	{ 0x06, "rx_symbol_err" },
124 	{ 0x07, "rx_crc_err" },
125 	{ 0x08, "rx_align_err" },
126 	{ 0x09, "rx_mac_ctrl" },
127 	{ 0x0a, "rx_pause" },
128 	{ 0x0b, "rx_bcast" },
129 	{ 0x0c, "rx_mcast" },
130 	{ 0x0d, "rx_ucast" },
131 	{ 0x0e, "rx_64_or_less" },
132 	{ 0x0f, "rx_65_127" },
133 	{ 0x10, "rx_128_255" },
134 	{ 0x11, "rx_256_511" },
135 	{ 0x12, "rx_512_1023" },
136 	{ 0x13, "rx_1024_1522" },
137 	{ 0x14, "tx" },
138 	{ 0x15, "tx_hi" },
139 	{ 0x16, "tx_late_col" },
140 	{ 0x17, "tx_pause" },
141 	{ 0x18, "tx_bcast" },
142 	{ 0x19, "tx_mcast" },
143 	{ 0x1a, "tx_ucast" },
144 	{ 0x1b, "tx_deferred" },
145 	{ 0x1c, "tx_total_col" },
146 	{ 0x1d, "tx_exc_col" },
147 	{ 0x1e, "tx_single_col" },
148 	{ 0x1f, "tx_mult_col" },
149 	{ 0x100, "rx_discards" },
150 	{ 0x101, "tx_discards" },
151 };
152 
153 static const struct ksz_mib_names ksz9477_mib_names[] = {
154 	{ 0x00, "rx_hi" },
155 	{ 0x01, "rx_undersize" },
156 	{ 0x02, "rx_fragments" },
157 	{ 0x03, "rx_oversize" },
158 	{ 0x04, "rx_jabbers" },
159 	{ 0x05, "rx_symbol_err" },
160 	{ 0x06, "rx_crc_err" },
161 	{ 0x07, "rx_align_err" },
162 	{ 0x08, "rx_mac_ctrl" },
163 	{ 0x09, "rx_pause" },
164 	{ 0x0A, "rx_bcast" },
165 	{ 0x0B, "rx_mcast" },
166 	{ 0x0C, "rx_ucast" },
167 	{ 0x0D, "rx_64_or_less" },
168 	{ 0x0E, "rx_65_127" },
169 	{ 0x0F, "rx_128_255" },
170 	{ 0x10, "rx_256_511" },
171 	{ 0x11, "rx_512_1023" },
172 	{ 0x12, "rx_1024_1522" },
173 	{ 0x13, "rx_1523_2000" },
174 	{ 0x14, "rx_2001" },
175 	{ 0x15, "tx_hi" },
176 	{ 0x16, "tx_late_col" },
177 	{ 0x17, "tx_pause" },
178 	{ 0x18, "tx_bcast" },
179 	{ 0x19, "tx_mcast" },
180 	{ 0x1A, "tx_ucast" },
181 	{ 0x1B, "tx_deferred" },
182 	{ 0x1C, "tx_total_col" },
183 	{ 0x1D, "tx_exc_col" },
184 	{ 0x1E, "tx_single_col" },
185 	{ 0x1F, "tx_mult_col" },
186 	{ 0x80, "rx_total" },
187 	{ 0x81, "tx_total" },
188 	{ 0x82, "rx_discards" },
189 	{ 0x83, "tx_discards" },
190 };
191 
192 struct ksz_driver_strength_prop {
193 	const char *name;
194 	int offset;
195 	int value;
196 };
197 
198 enum ksz_driver_strength_type {
199 	KSZ_DRIVER_STRENGTH_HI,
200 	KSZ_DRIVER_STRENGTH_LO,
201 	KSZ_DRIVER_STRENGTH_IO,
202 };
203 
204 /**
205  * struct ksz_drive_strength - drive strength mapping
206  * @reg_val:	register value
207  * @microamp:	microamp value
208  */
209 struct ksz_drive_strength {
210 	u32 reg_val;
211 	u32 microamp;
212 };
213 
214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
215  *
216  * This values are not documented in KSZ9477 variants but confirmed by
217  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
218  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
219  *
220  * Documentation in KSZ8795CLX provides more information with some
221  * recommendations:
222  * - for high speed signals
223  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
224  *      2.5V or 3.3V VDDIO.
225  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
226  *      using 1.8V VDDIO.
227  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
228  *      or 3.3V VDDIO.
229  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
230  *   5. In same interface, the heavy loading should use higher one of the
231  *      drive current strength.
232  * - for low speed signals
233  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
234  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
235  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
236  *   4. If it is heavy loading, can use higher drive current strength.
237  */
238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
239 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
240 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
241 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
242 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
243 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
244 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
245 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
246 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
247 };
248 
249 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, ..
250  *			     variants.
251  * This values are documented in KSZ8873 and KSZ8863 datasheets.
252  */
253 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = {
254 	{ 0,  8000 },
255 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
256 };
257 
258 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
259 				       unsigned int mode,
260 				       const struct phylink_link_state *state);
261 static void ksz_phylink_mac_config(struct phylink_config *config,
262 				   unsigned int mode,
263 				   const struct phylink_link_state *state);
264 static void ksz_phylink_mac_link_down(struct phylink_config *config,
265 				      unsigned int mode,
266 				      phy_interface_t interface);
267 
268 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = {
269 	.mac_config	= ksz88x3_phylink_mac_config,
270 	.mac_link_down	= ksz_phylink_mac_link_down,
271 	.mac_link_up	= ksz8_phylink_mac_link_up,
272 };
273 
274 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
275 	.mac_config	= ksz_phylink_mac_config,
276 	.mac_link_down	= ksz_phylink_mac_link_down,
277 	.mac_link_up	= ksz8_phylink_mac_link_up,
278 };
279 
280 static const struct ksz_dev_ops ksz88xx_dev_ops = {
281 	.setup = ksz8_setup,
282 	.get_port_addr = ksz8_get_port_addr,
283 	.cfg_port_member = ksz8_cfg_port_member,
284 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
285 	.port_setup = ksz8_port_setup,
286 	.r_phy = ksz8_r_phy,
287 	.w_phy = ksz8_w_phy,
288 	.r_mib_cnt = ksz8_r_mib_cnt,
289 	.r_mib_pkt = ksz8_r_mib_pkt,
290 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
291 	.freeze_mib = ksz8_freeze_mib,
292 	.port_init_cnt = ksz8_port_init_cnt,
293 	.fdb_dump = ksz8_fdb_dump,
294 	.fdb_add = ksz8_fdb_add,
295 	.fdb_del = ksz8_fdb_del,
296 	.mdb_add = ksz8_mdb_add,
297 	.mdb_del = ksz8_mdb_del,
298 	.vlan_filtering = ksz8_port_vlan_filtering,
299 	.vlan_add = ksz8_port_vlan_add,
300 	.vlan_del = ksz8_port_vlan_del,
301 	.mirror_add = ksz8_port_mirror_add,
302 	.mirror_del = ksz8_port_mirror_del,
303 	.get_caps = ksz8_get_caps,
304 	.config_cpu_port = ksz8_config_cpu_port,
305 	.enable_stp_addr = ksz8_enable_stp_addr,
306 	.reset = ksz8_reset_switch,
307 	.init = ksz8_switch_init,
308 	.exit = ksz8_switch_exit,
309 	.change_mtu = ksz8_change_mtu,
310 	.pme_write8 = ksz8_pme_write8,
311 	.pme_pread8 = ksz8_pme_pread8,
312 	.pme_pwrite8 = ksz8_pme_pwrite8,
313 };
314 
315 static const struct ksz_dev_ops ksz87xx_dev_ops = {
316 	.setup = ksz8_setup,
317 	.get_port_addr = ksz8_get_port_addr,
318 	.cfg_port_member = ksz8_cfg_port_member,
319 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
320 	.port_setup = ksz8_port_setup,
321 	.r_phy = ksz8_r_phy,
322 	.w_phy = ksz8_w_phy,
323 	.r_mib_cnt = ksz8_r_mib_cnt,
324 	.r_mib_pkt = ksz8_r_mib_pkt,
325 	.r_mib_stat64 = ksz_r_mib_stats64,
326 	.freeze_mib = ksz8_freeze_mib,
327 	.port_init_cnt = ksz8_port_init_cnt,
328 	.fdb_dump = ksz8_fdb_dump,
329 	.fdb_add = ksz8_fdb_add,
330 	.fdb_del = ksz8_fdb_del,
331 	.mdb_add = ksz8_mdb_add,
332 	.mdb_del = ksz8_mdb_del,
333 	.vlan_filtering = ksz8_port_vlan_filtering,
334 	.vlan_add = ksz8_port_vlan_add,
335 	.vlan_del = ksz8_port_vlan_del,
336 	.mirror_add = ksz8_port_mirror_add,
337 	.mirror_del = ksz8_port_mirror_del,
338 	.get_caps = ksz8_get_caps,
339 	.config_cpu_port = ksz8_config_cpu_port,
340 	.enable_stp_addr = ksz8_enable_stp_addr,
341 	.reset = ksz8_reset_switch,
342 	.init = ksz8_switch_init,
343 	.exit = ksz8_switch_exit,
344 	.change_mtu = ksz8_change_mtu,
345 	.pme_write8 = ksz8_pme_write8,
346 	.pme_pread8 = ksz8_pme_pread8,
347 	.pme_pwrite8 = ksz8_pme_pwrite8,
348 };
349 
350 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
351 					struct phy_device *phydev,
352 					unsigned int mode,
353 					phy_interface_t interface,
354 					int speed, int duplex, bool tx_pause,
355 					bool rx_pause);
356 
357 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
358 	.mac_config	= ksz_phylink_mac_config,
359 	.mac_link_down	= ksz_phylink_mac_link_down,
360 	.mac_link_up	= ksz9477_phylink_mac_link_up,
361 };
362 
363 static const struct ksz_dev_ops ksz9477_dev_ops = {
364 	.setup = ksz9477_setup,
365 	.get_port_addr = ksz9477_get_port_addr,
366 	.cfg_port_member = ksz9477_cfg_port_member,
367 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
368 	.port_setup = ksz9477_port_setup,
369 	.set_ageing_time = ksz9477_set_ageing_time,
370 	.r_phy = ksz9477_r_phy,
371 	.w_phy = ksz9477_w_phy,
372 	.r_mib_cnt = ksz9477_r_mib_cnt,
373 	.r_mib_pkt = ksz9477_r_mib_pkt,
374 	.r_mib_stat64 = ksz_r_mib_stats64,
375 	.freeze_mib = ksz9477_freeze_mib,
376 	.port_init_cnt = ksz9477_port_init_cnt,
377 	.vlan_filtering = ksz9477_port_vlan_filtering,
378 	.vlan_add = ksz9477_port_vlan_add,
379 	.vlan_del = ksz9477_port_vlan_del,
380 	.mirror_add = ksz9477_port_mirror_add,
381 	.mirror_del = ksz9477_port_mirror_del,
382 	.get_caps = ksz9477_get_caps,
383 	.fdb_dump = ksz9477_fdb_dump,
384 	.fdb_add = ksz9477_fdb_add,
385 	.fdb_del = ksz9477_fdb_del,
386 	.mdb_add = ksz9477_mdb_add,
387 	.mdb_del = ksz9477_mdb_del,
388 	.change_mtu = ksz9477_change_mtu,
389 	.pme_write8 = ksz_write8,
390 	.pme_pread8 = ksz_pread8,
391 	.pme_pwrite8 = ksz_pwrite8,
392 	.config_cpu_port = ksz9477_config_cpu_port,
393 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
394 	.enable_stp_addr = ksz9477_enable_stp_addr,
395 	.reset = ksz9477_reset_switch,
396 	.init = ksz9477_switch_init,
397 	.exit = ksz9477_switch_exit,
398 };
399 
400 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
401 	.mac_config	= ksz_phylink_mac_config,
402 	.mac_link_down	= ksz_phylink_mac_link_down,
403 	.mac_link_up	= ksz9477_phylink_mac_link_up,
404 };
405 
406 static const struct ksz_dev_ops lan937x_dev_ops = {
407 	.setup = lan937x_setup,
408 	.teardown = lan937x_teardown,
409 	.get_port_addr = ksz9477_get_port_addr,
410 	.cfg_port_member = ksz9477_cfg_port_member,
411 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
412 	.port_setup = lan937x_port_setup,
413 	.set_ageing_time = lan937x_set_ageing_time,
414 	.mdio_bus_preinit = lan937x_mdio_bus_preinit,
415 	.create_phy_addr_map = lan937x_create_phy_addr_map,
416 	.r_phy = lan937x_r_phy,
417 	.w_phy = lan937x_w_phy,
418 	.r_mib_cnt = ksz9477_r_mib_cnt,
419 	.r_mib_pkt = ksz9477_r_mib_pkt,
420 	.r_mib_stat64 = ksz_r_mib_stats64,
421 	.freeze_mib = ksz9477_freeze_mib,
422 	.port_init_cnt = ksz9477_port_init_cnt,
423 	.vlan_filtering = ksz9477_port_vlan_filtering,
424 	.vlan_add = ksz9477_port_vlan_add,
425 	.vlan_del = ksz9477_port_vlan_del,
426 	.mirror_add = ksz9477_port_mirror_add,
427 	.mirror_del = ksz9477_port_mirror_del,
428 	.get_caps = lan937x_phylink_get_caps,
429 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
430 	.fdb_dump = ksz9477_fdb_dump,
431 	.fdb_add = ksz9477_fdb_add,
432 	.fdb_del = ksz9477_fdb_del,
433 	.mdb_add = ksz9477_mdb_add,
434 	.mdb_del = ksz9477_mdb_del,
435 	.change_mtu = lan937x_change_mtu,
436 	.config_cpu_port = lan937x_config_cpu_port,
437 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
438 	.enable_stp_addr = ksz9477_enable_stp_addr,
439 	.reset = lan937x_reset_switch,
440 	.init = lan937x_switch_init,
441 	.exit = lan937x_switch_exit,
442 };
443 
444 static const u16 ksz8795_regs[] = {
445 	[REG_SW_MAC_ADDR]		= 0x68,
446 	[REG_IND_CTRL_0]		= 0x6E,
447 	[REG_IND_DATA_8]		= 0x70,
448 	[REG_IND_DATA_CHECK]		= 0x72,
449 	[REG_IND_DATA_HI]		= 0x71,
450 	[REG_IND_DATA_LO]		= 0x75,
451 	[REG_IND_MIB_CHECK]		= 0x74,
452 	[REG_IND_BYTE]			= 0xA0,
453 	[P_FORCE_CTRL]			= 0x0C,
454 	[P_LINK_STATUS]			= 0x0E,
455 	[P_LOCAL_CTRL]			= 0x07,
456 	[P_NEG_RESTART_CTRL]		= 0x0D,
457 	[P_REMOTE_STATUS]		= 0x08,
458 	[P_SPEED_STATUS]		= 0x09,
459 	[S_TAIL_TAG_CTRL]		= 0x0C,
460 	[P_STP_CTRL]			= 0x02,
461 	[S_START_CTRL]			= 0x01,
462 	[S_BROADCAST_CTRL]		= 0x06,
463 	[S_MULTICAST_CTRL]		= 0x04,
464 	[P_XMII_CTRL_0]			= 0x06,
465 	[P_XMII_CTRL_1]			= 0x06,
466 	[REG_SW_PME_CTRL]		= 0x8003,
467 	[REG_PORT_PME_STATUS]		= 0x8003,
468 	[REG_PORT_PME_CTRL]		= 0x8007,
469 };
470 
471 static const u32 ksz8795_masks[] = {
472 	[PORT_802_1P_REMAPPING]		= BIT(7),
473 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
474 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
475 	[MIB_COUNTER_VALID]		= BIT(5),
476 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
477 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
478 	[VLAN_TABLE_VALID]		= BIT(12),
479 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
480 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
481 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
482 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
483 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
484 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
485 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
486 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
487 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
488 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
489 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
490 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
491 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
492 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
493 };
494 
495 static const u8 ksz8795_xmii_ctrl0[] = {
496 	[P_MII_100MBIT]			= 0,
497 	[P_MII_10MBIT]			= 1,
498 	[P_MII_FULL_DUPLEX]		= 0,
499 	[P_MII_HALF_DUPLEX]		= 1,
500 };
501 
502 static const u8 ksz8795_xmii_ctrl1[] = {
503 	[P_RGMII_SEL]			= 3,
504 	[P_GMII_SEL]			= 2,
505 	[P_RMII_SEL]			= 1,
506 	[P_MII_SEL]			= 0,
507 	[P_GMII_1GBIT]			= 1,
508 	[P_GMII_NOT_1GBIT]		= 0,
509 };
510 
511 static const u8 ksz8795_shifts[] = {
512 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
513 	[VLAN_TABLE]			= 16,
514 	[STATIC_MAC_FWD_PORTS]		= 16,
515 	[STATIC_MAC_FID]		= 24,
516 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
517 	[DYNAMIC_MAC_ENTRIES]		= 29,
518 	[DYNAMIC_MAC_FID]		= 16,
519 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
520 	[DYNAMIC_MAC_SRC_PORT]		= 24,
521 };
522 
523 static const u16 ksz8863_regs[] = {
524 	[REG_SW_MAC_ADDR]		= 0x70,
525 	[REG_IND_CTRL_0]		= 0x79,
526 	[REG_IND_DATA_8]		= 0x7B,
527 	[REG_IND_DATA_CHECK]		= 0x7B,
528 	[REG_IND_DATA_HI]		= 0x7C,
529 	[REG_IND_DATA_LO]		= 0x80,
530 	[REG_IND_MIB_CHECK]		= 0x80,
531 	[P_FORCE_CTRL]			= 0x0C,
532 	[P_LINK_STATUS]			= 0x0E,
533 	[P_LOCAL_CTRL]			= 0x0C,
534 	[P_NEG_RESTART_CTRL]		= 0x0D,
535 	[P_REMOTE_STATUS]		= 0x0E,
536 	[P_SPEED_STATUS]		= 0x0F,
537 	[S_TAIL_TAG_CTRL]		= 0x03,
538 	[P_STP_CTRL]			= 0x02,
539 	[S_START_CTRL]			= 0x01,
540 	[S_BROADCAST_CTRL]		= 0x06,
541 	[S_MULTICAST_CTRL]		= 0x04,
542 };
543 
544 static const u32 ksz8863_masks[] = {
545 	[PORT_802_1P_REMAPPING]		= BIT(3),
546 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
547 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
548 	[MIB_COUNTER_VALID]		= BIT(6),
549 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
550 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
551 	[VLAN_TABLE_VALID]		= BIT(19),
552 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
553 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
554 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
555 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
556 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
557 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
558 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
559 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
560 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
561 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
562 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
563 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
564 };
565 
566 static u8 ksz8863_shifts[] = {
567 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
568 	[STATIC_MAC_FWD_PORTS]		= 16,
569 	[STATIC_MAC_FID]		= 22,
570 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
571 	[DYNAMIC_MAC_ENTRIES]		= 24,
572 	[DYNAMIC_MAC_FID]		= 16,
573 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
574 	[DYNAMIC_MAC_SRC_PORT]		= 20,
575 };
576 
577 static const u16 ksz8895_regs[] = {
578 	[REG_SW_MAC_ADDR]		= 0x68,
579 	[REG_IND_CTRL_0]		= 0x6E,
580 	[REG_IND_DATA_8]		= 0x70,
581 	[REG_IND_DATA_CHECK]		= 0x72,
582 	[REG_IND_DATA_HI]		= 0x71,
583 	[REG_IND_DATA_LO]		= 0x75,
584 	[REG_IND_MIB_CHECK]		= 0x75,
585 	[P_FORCE_CTRL]			= 0x0C,
586 	[P_LINK_STATUS]			= 0x0E,
587 	[P_LOCAL_CTRL]			= 0x0C,
588 	[P_NEG_RESTART_CTRL]		= 0x0D,
589 	[P_REMOTE_STATUS]		= 0x0E,
590 	[P_SPEED_STATUS]		= 0x09,
591 	[S_TAIL_TAG_CTRL]		= 0x0C,
592 	[P_STP_CTRL]			= 0x02,
593 	[S_START_CTRL]			= 0x01,
594 	[S_BROADCAST_CTRL]		= 0x06,
595 	[S_MULTICAST_CTRL]		= 0x04,
596 };
597 
598 static const u32 ksz8895_masks[] = {
599 	[PORT_802_1P_REMAPPING]		= BIT(7),
600 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
601 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
602 	[MIB_COUNTER_VALID]		= BIT(6),
603 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
604 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
605 	[VLAN_TABLE_VALID]		= BIT(12),
606 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
607 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
608 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
609 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
610 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
611 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
612 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
613 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
614 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
615 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
616 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
617 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
618 };
619 
620 static const u8 ksz8895_shifts[] = {
621 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
622 	[VLAN_TABLE]			= 13,
623 	[STATIC_MAC_FWD_PORTS]		= 16,
624 	[STATIC_MAC_FID]		= 24,
625 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
626 	[DYNAMIC_MAC_ENTRIES]		= 29,
627 	[DYNAMIC_MAC_FID]		= 16,
628 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
629 	[DYNAMIC_MAC_SRC_PORT]		= 24,
630 };
631 
632 static const u16 ksz9477_regs[] = {
633 	[REG_SW_MAC_ADDR]		= 0x0302,
634 	[P_STP_CTRL]			= 0x0B04,
635 	[S_START_CTRL]			= 0x0300,
636 	[S_BROADCAST_CTRL]		= 0x0332,
637 	[S_MULTICAST_CTRL]		= 0x0331,
638 	[P_XMII_CTRL_0]			= 0x0300,
639 	[P_XMII_CTRL_1]			= 0x0301,
640 	[REG_SW_PME_CTRL]		= 0x0006,
641 	[REG_PORT_PME_STATUS]		= 0x0013,
642 	[REG_PORT_PME_CTRL]		= 0x0017,
643 };
644 
645 static const u32 ksz9477_masks[] = {
646 	[ALU_STAT_WRITE]		= 0,
647 	[ALU_STAT_READ]			= 1,
648 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
649 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
650 };
651 
652 static const u8 ksz9477_shifts[] = {
653 	[ALU_STAT_INDEX]		= 16,
654 };
655 
656 static const u8 ksz9477_xmii_ctrl0[] = {
657 	[P_MII_100MBIT]			= 1,
658 	[P_MII_10MBIT]			= 0,
659 	[P_MII_FULL_DUPLEX]		= 1,
660 	[P_MII_HALF_DUPLEX]		= 0,
661 };
662 
663 static const u8 ksz9477_xmii_ctrl1[] = {
664 	[P_RGMII_SEL]			= 0,
665 	[P_RMII_SEL]			= 1,
666 	[P_GMII_SEL]			= 2,
667 	[P_MII_SEL]			= 3,
668 	[P_GMII_1GBIT]			= 0,
669 	[P_GMII_NOT_1GBIT]		= 1,
670 };
671 
672 static const u32 lan937x_masks[] = {
673 	[ALU_STAT_WRITE]		= 1,
674 	[ALU_STAT_READ]			= 2,
675 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
676 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
677 };
678 
679 static const u8 lan937x_shifts[] = {
680 	[ALU_STAT_INDEX]		= 8,
681 };
682 
683 static const struct regmap_range ksz8563_valid_regs[] = {
684 	regmap_reg_range(0x0000, 0x0003),
685 	regmap_reg_range(0x0006, 0x0006),
686 	regmap_reg_range(0x000f, 0x001f),
687 	regmap_reg_range(0x0100, 0x0100),
688 	regmap_reg_range(0x0104, 0x0107),
689 	regmap_reg_range(0x010d, 0x010d),
690 	regmap_reg_range(0x0110, 0x0113),
691 	regmap_reg_range(0x0120, 0x012b),
692 	regmap_reg_range(0x0201, 0x0201),
693 	regmap_reg_range(0x0210, 0x0213),
694 	regmap_reg_range(0x0300, 0x0300),
695 	regmap_reg_range(0x0302, 0x031b),
696 	regmap_reg_range(0x0320, 0x032b),
697 	regmap_reg_range(0x0330, 0x0336),
698 	regmap_reg_range(0x0338, 0x033e),
699 	regmap_reg_range(0x0340, 0x035f),
700 	regmap_reg_range(0x0370, 0x0370),
701 	regmap_reg_range(0x0378, 0x0378),
702 	regmap_reg_range(0x037c, 0x037d),
703 	regmap_reg_range(0x0390, 0x0393),
704 	regmap_reg_range(0x0400, 0x040e),
705 	regmap_reg_range(0x0410, 0x042f),
706 	regmap_reg_range(0x0500, 0x0519),
707 	regmap_reg_range(0x0520, 0x054b),
708 	regmap_reg_range(0x0550, 0x05b3),
709 
710 	/* port 1 */
711 	regmap_reg_range(0x1000, 0x1001),
712 	regmap_reg_range(0x1004, 0x100b),
713 	regmap_reg_range(0x1013, 0x1013),
714 	regmap_reg_range(0x1017, 0x1017),
715 	regmap_reg_range(0x101b, 0x101b),
716 	regmap_reg_range(0x101f, 0x1021),
717 	regmap_reg_range(0x1030, 0x1030),
718 	regmap_reg_range(0x1100, 0x1111),
719 	regmap_reg_range(0x111a, 0x111d),
720 	regmap_reg_range(0x1122, 0x1127),
721 	regmap_reg_range(0x112a, 0x112b),
722 	regmap_reg_range(0x1136, 0x1139),
723 	regmap_reg_range(0x113e, 0x113f),
724 	regmap_reg_range(0x1400, 0x1401),
725 	regmap_reg_range(0x1403, 0x1403),
726 	regmap_reg_range(0x1410, 0x1417),
727 	regmap_reg_range(0x1420, 0x1423),
728 	regmap_reg_range(0x1500, 0x1507),
729 	regmap_reg_range(0x1600, 0x1612),
730 	regmap_reg_range(0x1800, 0x180f),
731 	regmap_reg_range(0x1900, 0x1907),
732 	regmap_reg_range(0x1914, 0x191b),
733 	regmap_reg_range(0x1a00, 0x1a03),
734 	regmap_reg_range(0x1a04, 0x1a08),
735 	regmap_reg_range(0x1b00, 0x1b01),
736 	regmap_reg_range(0x1b04, 0x1b04),
737 	regmap_reg_range(0x1c00, 0x1c05),
738 	regmap_reg_range(0x1c08, 0x1c1b),
739 
740 	/* port 2 */
741 	regmap_reg_range(0x2000, 0x2001),
742 	regmap_reg_range(0x2004, 0x200b),
743 	regmap_reg_range(0x2013, 0x2013),
744 	regmap_reg_range(0x2017, 0x2017),
745 	regmap_reg_range(0x201b, 0x201b),
746 	regmap_reg_range(0x201f, 0x2021),
747 	regmap_reg_range(0x2030, 0x2030),
748 	regmap_reg_range(0x2100, 0x2111),
749 	regmap_reg_range(0x211a, 0x211d),
750 	regmap_reg_range(0x2122, 0x2127),
751 	regmap_reg_range(0x212a, 0x212b),
752 	regmap_reg_range(0x2136, 0x2139),
753 	regmap_reg_range(0x213e, 0x213f),
754 	regmap_reg_range(0x2400, 0x2401),
755 	regmap_reg_range(0x2403, 0x2403),
756 	regmap_reg_range(0x2410, 0x2417),
757 	regmap_reg_range(0x2420, 0x2423),
758 	regmap_reg_range(0x2500, 0x2507),
759 	regmap_reg_range(0x2600, 0x2612),
760 	regmap_reg_range(0x2800, 0x280f),
761 	regmap_reg_range(0x2900, 0x2907),
762 	regmap_reg_range(0x2914, 0x291b),
763 	regmap_reg_range(0x2a00, 0x2a03),
764 	regmap_reg_range(0x2a04, 0x2a08),
765 	regmap_reg_range(0x2b00, 0x2b01),
766 	regmap_reg_range(0x2b04, 0x2b04),
767 	regmap_reg_range(0x2c00, 0x2c05),
768 	regmap_reg_range(0x2c08, 0x2c1b),
769 
770 	/* port 3 */
771 	regmap_reg_range(0x3000, 0x3001),
772 	regmap_reg_range(0x3004, 0x300b),
773 	regmap_reg_range(0x3013, 0x3013),
774 	regmap_reg_range(0x3017, 0x3017),
775 	regmap_reg_range(0x301b, 0x301b),
776 	regmap_reg_range(0x301f, 0x3021),
777 	regmap_reg_range(0x3030, 0x3030),
778 	regmap_reg_range(0x3300, 0x3301),
779 	regmap_reg_range(0x3303, 0x3303),
780 	regmap_reg_range(0x3400, 0x3401),
781 	regmap_reg_range(0x3403, 0x3403),
782 	regmap_reg_range(0x3410, 0x3417),
783 	regmap_reg_range(0x3420, 0x3423),
784 	regmap_reg_range(0x3500, 0x3507),
785 	regmap_reg_range(0x3600, 0x3612),
786 	regmap_reg_range(0x3800, 0x380f),
787 	regmap_reg_range(0x3900, 0x3907),
788 	regmap_reg_range(0x3914, 0x391b),
789 	regmap_reg_range(0x3a00, 0x3a03),
790 	regmap_reg_range(0x3a04, 0x3a08),
791 	regmap_reg_range(0x3b00, 0x3b01),
792 	regmap_reg_range(0x3b04, 0x3b04),
793 	regmap_reg_range(0x3c00, 0x3c05),
794 	regmap_reg_range(0x3c08, 0x3c1b),
795 };
796 
797 static const struct regmap_access_table ksz8563_register_set = {
798 	.yes_ranges = ksz8563_valid_regs,
799 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
800 };
801 
802 static const struct regmap_range ksz9477_valid_regs[] = {
803 	regmap_reg_range(0x0000, 0x0003),
804 	regmap_reg_range(0x0006, 0x0006),
805 	regmap_reg_range(0x0010, 0x001f),
806 	regmap_reg_range(0x0100, 0x0100),
807 	regmap_reg_range(0x0103, 0x0107),
808 	regmap_reg_range(0x010d, 0x010d),
809 	regmap_reg_range(0x0110, 0x0113),
810 	regmap_reg_range(0x0120, 0x012b),
811 	regmap_reg_range(0x0201, 0x0201),
812 	regmap_reg_range(0x0210, 0x0213),
813 	regmap_reg_range(0x0300, 0x0300),
814 	regmap_reg_range(0x0302, 0x031b),
815 	regmap_reg_range(0x0320, 0x032b),
816 	regmap_reg_range(0x0330, 0x0336),
817 	regmap_reg_range(0x0338, 0x033b),
818 	regmap_reg_range(0x033e, 0x033e),
819 	regmap_reg_range(0x0340, 0x035f),
820 	regmap_reg_range(0x0370, 0x0370),
821 	regmap_reg_range(0x0378, 0x0378),
822 	regmap_reg_range(0x037c, 0x037d),
823 	regmap_reg_range(0x0390, 0x0393),
824 	regmap_reg_range(0x0400, 0x040e),
825 	regmap_reg_range(0x0410, 0x042f),
826 	regmap_reg_range(0x0444, 0x044b),
827 	regmap_reg_range(0x0450, 0x046f),
828 	regmap_reg_range(0x0500, 0x0519),
829 	regmap_reg_range(0x0520, 0x054b),
830 	regmap_reg_range(0x0550, 0x05b3),
831 	regmap_reg_range(0x0604, 0x060b),
832 	regmap_reg_range(0x0610, 0x0612),
833 	regmap_reg_range(0x0614, 0x062c),
834 	regmap_reg_range(0x0640, 0x0645),
835 	regmap_reg_range(0x0648, 0x064d),
836 
837 	/* port 1 */
838 	regmap_reg_range(0x1000, 0x1001),
839 	regmap_reg_range(0x1013, 0x1013),
840 	regmap_reg_range(0x1017, 0x1017),
841 	regmap_reg_range(0x101b, 0x101b),
842 	regmap_reg_range(0x101f, 0x1020),
843 	regmap_reg_range(0x1030, 0x1030),
844 	regmap_reg_range(0x1100, 0x1115),
845 	regmap_reg_range(0x111a, 0x111f),
846 	regmap_reg_range(0x1120, 0x112b),
847 	regmap_reg_range(0x1134, 0x113b),
848 	regmap_reg_range(0x113c, 0x113f),
849 	regmap_reg_range(0x1400, 0x1401),
850 	regmap_reg_range(0x1403, 0x1403),
851 	regmap_reg_range(0x1410, 0x1417),
852 	regmap_reg_range(0x1420, 0x1423),
853 	regmap_reg_range(0x1500, 0x1507),
854 	regmap_reg_range(0x1600, 0x1613),
855 	regmap_reg_range(0x1800, 0x180f),
856 	regmap_reg_range(0x1820, 0x1827),
857 	regmap_reg_range(0x1830, 0x1837),
858 	regmap_reg_range(0x1840, 0x184b),
859 	regmap_reg_range(0x1900, 0x1907),
860 	regmap_reg_range(0x1914, 0x191b),
861 	regmap_reg_range(0x1920, 0x1920),
862 	regmap_reg_range(0x1923, 0x1927),
863 	regmap_reg_range(0x1a00, 0x1a03),
864 	regmap_reg_range(0x1a04, 0x1a07),
865 	regmap_reg_range(0x1b00, 0x1b01),
866 	regmap_reg_range(0x1b04, 0x1b04),
867 	regmap_reg_range(0x1c00, 0x1c05),
868 	regmap_reg_range(0x1c08, 0x1c1b),
869 
870 	/* port 2 */
871 	regmap_reg_range(0x2000, 0x2001),
872 	regmap_reg_range(0x2013, 0x2013),
873 	regmap_reg_range(0x2017, 0x2017),
874 	regmap_reg_range(0x201b, 0x201b),
875 	regmap_reg_range(0x201f, 0x2020),
876 	regmap_reg_range(0x2030, 0x2030),
877 	regmap_reg_range(0x2100, 0x2115),
878 	regmap_reg_range(0x211a, 0x211f),
879 	regmap_reg_range(0x2120, 0x212b),
880 	regmap_reg_range(0x2134, 0x213b),
881 	regmap_reg_range(0x213c, 0x213f),
882 	regmap_reg_range(0x2400, 0x2401),
883 	regmap_reg_range(0x2403, 0x2403),
884 	regmap_reg_range(0x2410, 0x2417),
885 	regmap_reg_range(0x2420, 0x2423),
886 	regmap_reg_range(0x2500, 0x2507),
887 	regmap_reg_range(0x2600, 0x2613),
888 	regmap_reg_range(0x2800, 0x280f),
889 	regmap_reg_range(0x2820, 0x2827),
890 	regmap_reg_range(0x2830, 0x2837),
891 	regmap_reg_range(0x2840, 0x284b),
892 	regmap_reg_range(0x2900, 0x2907),
893 	regmap_reg_range(0x2914, 0x291b),
894 	regmap_reg_range(0x2920, 0x2920),
895 	regmap_reg_range(0x2923, 0x2927),
896 	regmap_reg_range(0x2a00, 0x2a03),
897 	regmap_reg_range(0x2a04, 0x2a07),
898 	regmap_reg_range(0x2b00, 0x2b01),
899 	regmap_reg_range(0x2b04, 0x2b04),
900 	regmap_reg_range(0x2c00, 0x2c05),
901 	regmap_reg_range(0x2c08, 0x2c1b),
902 
903 	/* port 3 */
904 	regmap_reg_range(0x3000, 0x3001),
905 	regmap_reg_range(0x3013, 0x3013),
906 	regmap_reg_range(0x3017, 0x3017),
907 	regmap_reg_range(0x301b, 0x301b),
908 	regmap_reg_range(0x301f, 0x3020),
909 	regmap_reg_range(0x3030, 0x3030),
910 	regmap_reg_range(0x3100, 0x3115),
911 	regmap_reg_range(0x311a, 0x311f),
912 	regmap_reg_range(0x3120, 0x312b),
913 	regmap_reg_range(0x3134, 0x313b),
914 	regmap_reg_range(0x313c, 0x313f),
915 	regmap_reg_range(0x3400, 0x3401),
916 	regmap_reg_range(0x3403, 0x3403),
917 	regmap_reg_range(0x3410, 0x3417),
918 	regmap_reg_range(0x3420, 0x3423),
919 	regmap_reg_range(0x3500, 0x3507),
920 	regmap_reg_range(0x3600, 0x3613),
921 	regmap_reg_range(0x3800, 0x380f),
922 	regmap_reg_range(0x3820, 0x3827),
923 	regmap_reg_range(0x3830, 0x3837),
924 	regmap_reg_range(0x3840, 0x384b),
925 	regmap_reg_range(0x3900, 0x3907),
926 	regmap_reg_range(0x3914, 0x391b),
927 	regmap_reg_range(0x3920, 0x3920),
928 	regmap_reg_range(0x3923, 0x3927),
929 	regmap_reg_range(0x3a00, 0x3a03),
930 	regmap_reg_range(0x3a04, 0x3a07),
931 	regmap_reg_range(0x3b00, 0x3b01),
932 	regmap_reg_range(0x3b04, 0x3b04),
933 	regmap_reg_range(0x3c00, 0x3c05),
934 	regmap_reg_range(0x3c08, 0x3c1b),
935 
936 	/* port 4 */
937 	regmap_reg_range(0x4000, 0x4001),
938 	regmap_reg_range(0x4013, 0x4013),
939 	regmap_reg_range(0x4017, 0x4017),
940 	regmap_reg_range(0x401b, 0x401b),
941 	regmap_reg_range(0x401f, 0x4020),
942 	regmap_reg_range(0x4030, 0x4030),
943 	regmap_reg_range(0x4100, 0x4115),
944 	regmap_reg_range(0x411a, 0x411f),
945 	regmap_reg_range(0x4120, 0x412b),
946 	regmap_reg_range(0x4134, 0x413b),
947 	regmap_reg_range(0x413c, 0x413f),
948 	regmap_reg_range(0x4400, 0x4401),
949 	regmap_reg_range(0x4403, 0x4403),
950 	regmap_reg_range(0x4410, 0x4417),
951 	regmap_reg_range(0x4420, 0x4423),
952 	regmap_reg_range(0x4500, 0x4507),
953 	regmap_reg_range(0x4600, 0x4613),
954 	regmap_reg_range(0x4800, 0x480f),
955 	regmap_reg_range(0x4820, 0x4827),
956 	regmap_reg_range(0x4830, 0x4837),
957 	regmap_reg_range(0x4840, 0x484b),
958 	regmap_reg_range(0x4900, 0x4907),
959 	regmap_reg_range(0x4914, 0x491b),
960 	regmap_reg_range(0x4920, 0x4920),
961 	regmap_reg_range(0x4923, 0x4927),
962 	regmap_reg_range(0x4a00, 0x4a03),
963 	regmap_reg_range(0x4a04, 0x4a07),
964 	regmap_reg_range(0x4b00, 0x4b01),
965 	regmap_reg_range(0x4b04, 0x4b04),
966 	regmap_reg_range(0x4c00, 0x4c05),
967 	regmap_reg_range(0x4c08, 0x4c1b),
968 
969 	/* port 5 */
970 	regmap_reg_range(0x5000, 0x5001),
971 	regmap_reg_range(0x5013, 0x5013),
972 	regmap_reg_range(0x5017, 0x5017),
973 	regmap_reg_range(0x501b, 0x501b),
974 	regmap_reg_range(0x501f, 0x5020),
975 	regmap_reg_range(0x5030, 0x5030),
976 	regmap_reg_range(0x5100, 0x5115),
977 	regmap_reg_range(0x511a, 0x511f),
978 	regmap_reg_range(0x5120, 0x512b),
979 	regmap_reg_range(0x5134, 0x513b),
980 	regmap_reg_range(0x513c, 0x513f),
981 	regmap_reg_range(0x5400, 0x5401),
982 	regmap_reg_range(0x5403, 0x5403),
983 	regmap_reg_range(0x5410, 0x5417),
984 	regmap_reg_range(0x5420, 0x5423),
985 	regmap_reg_range(0x5500, 0x5507),
986 	regmap_reg_range(0x5600, 0x5613),
987 	regmap_reg_range(0x5800, 0x580f),
988 	regmap_reg_range(0x5820, 0x5827),
989 	regmap_reg_range(0x5830, 0x5837),
990 	regmap_reg_range(0x5840, 0x584b),
991 	regmap_reg_range(0x5900, 0x5907),
992 	regmap_reg_range(0x5914, 0x591b),
993 	regmap_reg_range(0x5920, 0x5920),
994 	regmap_reg_range(0x5923, 0x5927),
995 	regmap_reg_range(0x5a00, 0x5a03),
996 	regmap_reg_range(0x5a04, 0x5a07),
997 	regmap_reg_range(0x5b00, 0x5b01),
998 	regmap_reg_range(0x5b04, 0x5b04),
999 	regmap_reg_range(0x5c00, 0x5c05),
1000 	regmap_reg_range(0x5c08, 0x5c1b),
1001 
1002 	/* port 6 */
1003 	regmap_reg_range(0x6000, 0x6001),
1004 	regmap_reg_range(0x6013, 0x6013),
1005 	regmap_reg_range(0x6017, 0x6017),
1006 	regmap_reg_range(0x601b, 0x601b),
1007 	regmap_reg_range(0x601f, 0x6020),
1008 	regmap_reg_range(0x6030, 0x6030),
1009 	regmap_reg_range(0x6300, 0x6301),
1010 	regmap_reg_range(0x6400, 0x6401),
1011 	regmap_reg_range(0x6403, 0x6403),
1012 	regmap_reg_range(0x6410, 0x6417),
1013 	regmap_reg_range(0x6420, 0x6423),
1014 	regmap_reg_range(0x6500, 0x6507),
1015 	regmap_reg_range(0x6600, 0x6613),
1016 	regmap_reg_range(0x6800, 0x680f),
1017 	regmap_reg_range(0x6820, 0x6827),
1018 	regmap_reg_range(0x6830, 0x6837),
1019 	regmap_reg_range(0x6840, 0x684b),
1020 	regmap_reg_range(0x6900, 0x6907),
1021 	regmap_reg_range(0x6914, 0x691b),
1022 	regmap_reg_range(0x6920, 0x6920),
1023 	regmap_reg_range(0x6923, 0x6927),
1024 	regmap_reg_range(0x6a00, 0x6a03),
1025 	regmap_reg_range(0x6a04, 0x6a07),
1026 	regmap_reg_range(0x6b00, 0x6b01),
1027 	regmap_reg_range(0x6b04, 0x6b04),
1028 	regmap_reg_range(0x6c00, 0x6c05),
1029 	regmap_reg_range(0x6c08, 0x6c1b),
1030 
1031 	/* port 7 */
1032 	regmap_reg_range(0x7000, 0x7001),
1033 	regmap_reg_range(0x7013, 0x7013),
1034 	regmap_reg_range(0x7017, 0x7017),
1035 	regmap_reg_range(0x701b, 0x701b),
1036 	regmap_reg_range(0x701f, 0x7020),
1037 	regmap_reg_range(0x7030, 0x7030),
1038 	regmap_reg_range(0x7200, 0x7203),
1039 	regmap_reg_range(0x7206, 0x7207),
1040 	regmap_reg_range(0x7300, 0x7301),
1041 	regmap_reg_range(0x7400, 0x7401),
1042 	regmap_reg_range(0x7403, 0x7403),
1043 	regmap_reg_range(0x7410, 0x7417),
1044 	regmap_reg_range(0x7420, 0x7423),
1045 	regmap_reg_range(0x7500, 0x7507),
1046 	regmap_reg_range(0x7600, 0x7613),
1047 	regmap_reg_range(0x7800, 0x780f),
1048 	regmap_reg_range(0x7820, 0x7827),
1049 	regmap_reg_range(0x7830, 0x7837),
1050 	regmap_reg_range(0x7840, 0x784b),
1051 	regmap_reg_range(0x7900, 0x7907),
1052 	regmap_reg_range(0x7914, 0x791b),
1053 	regmap_reg_range(0x7920, 0x7920),
1054 	regmap_reg_range(0x7923, 0x7927),
1055 	regmap_reg_range(0x7a00, 0x7a03),
1056 	regmap_reg_range(0x7a04, 0x7a07),
1057 	regmap_reg_range(0x7b00, 0x7b01),
1058 	regmap_reg_range(0x7b04, 0x7b04),
1059 	regmap_reg_range(0x7c00, 0x7c05),
1060 	regmap_reg_range(0x7c08, 0x7c1b),
1061 };
1062 
1063 static const struct regmap_access_table ksz9477_register_set = {
1064 	.yes_ranges = ksz9477_valid_regs,
1065 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1066 };
1067 
1068 static const struct regmap_range ksz9896_valid_regs[] = {
1069 	regmap_reg_range(0x0000, 0x0003),
1070 	regmap_reg_range(0x0006, 0x0006),
1071 	regmap_reg_range(0x0010, 0x001f),
1072 	regmap_reg_range(0x0100, 0x0100),
1073 	regmap_reg_range(0x0103, 0x0107),
1074 	regmap_reg_range(0x010d, 0x010d),
1075 	regmap_reg_range(0x0110, 0x0113),
1076 	regmap_reg_range(0x0120, 0x0127),
1077 	regmap_reg_range(0x0201, 0x0201),
1078 	regmap_reg_range(0x0210, 0x0213),
1079 	regmap_reg_range(0x0300, 0x0300),
1080 	regmap_reg_range(0x0302, 0x030b),
1081 	regmap_reg_range(0x0310, 0x031b),
1082 	regmap_reg_range(0x0320, 0x032b),
1083 	regmap_reg_range(0x0330, 0x0336),
1084 	regmap_reg_range(0x0338, 0x033b),
1085 	regmap_reg_range(0x033e, 0x033e),
1086 	regmap_reg_range(0x0340, 0x035f),
1087 	regmap_reg_range(0x0370, 0x0370),
1088 	regmap_reg_range(0x0378, 0x0378),
1089 	regmap_reg_range(0x037c, 0x037d),
1090 	regmap_reg_range(0x0390, 0x0393),
1091 	regmap_reg_range(0x0400, 0x040e),
1092 	regmap_reg_range(0x0410, 0x042f),
1093 
1094 	/* port 1 */
1095 	regmap_reg_range(0x1000, 0x1001),
1096 	regmap_reg_range(0x1013, 0x1013),
1097 	regmap_reg_range(0x1017, 0x1017),
1098 	regmap_reg_range(0x101b, 0x101b),
1099 	regmap_reg_range(0x101f, 0x1020),
1100 	regmap_reg_range(0x1030, 0x1030),
1101 	regmap_reg_range(0x1100, 0x1115),
1102 	regmap_reg_range(0x111a, 0x111f),
1103 	regmap_reg_range(0x1122, 0x1127),
1104 	regmap_reg_range(0x112a, 0x112b),
1105 	regmap_reg_range(0x1136, 0x1139),
1106 	regmap_reg_range(0x113e, 0x113f),
1107 	regmap_reg_range(0x1400, 0x1401),
1108 	regmap_reg_range(0x1403, 0x1403),
1109 	regmap_reg_range(0x1410, 0x1417),
1110 	regmap_reg_range(0x1420, 0x1423),
1111 	regmap_reg_range(0x1500, 0x1507),
1112 	regmap_reg_range(0x1600, 0x1612),
1113 	regmap_reg_range(0x1800, 0x180f),
1114 	regmap_reg_range(0x1820, 0x1827),
1115 	regmap_reg_range(0x1830, 0x1837),
1116 	regmap_reg_range(0x1840, 0x184b),
1117 	regmap_reg_range(0x1900, 0x1907),
1118 	regmap_reg_range(0x1914, 0x1915),
1119 	regmap_reg_range(0x1a00, 0x1a03),
1120 	regmap_reg_range(0x1a04, 0x1a07),
1121 	regmap_reg_range(0x1b00, 0x1b01),
1122 	regmap_reg_range(0x1b04, 0x1b04),
1123 
1124 	/* port 2 */
1125 	regmap_reg_range(0x2000, 0x2001),
1126 	regmap_reg_range(0x2013, 0x2013),
1127 	regmap_reg_range(0x2017, 0x2017),
1128 	regmap_reg_range(0x201b, 0x201b),
1129 	regmap_reg_range(0x201f, 0x2020),
1130 	regmap_reg_range(0x2030, 0x2030),
1131 	regmap_reg_range(0x2100, 0x2115),
1132 	regmap_reg_range(0x211a, 0x211f),
1133 	regmap_reg_range(0x2122, 0x2127),
1134 	regmap_reg_range(0x212a, 0x212b),
1135 	regmap_reg_range(0x2136, 0x2139),
1136 	regmap_reg_range(0x213e, 0x213f),
1137 	regmap_reg_range(0x2400, 0x2401),
1138 	regmap_reg_range(0x2403, 0x2403),
1139 	regmap_reg_range(0x2410, 0x2417),
1140 	regmap_reg_range(0x2420, 0x2423),
1141 	regmap_reg_range(0x2500, 0x2507),
1142 	regmap_reg_range(0x2600, 0x2612),
1143 	regmap_reg_range(0x2800, 0x280f),
1144 	regmap_reg_range(0x2820, 0x2827),
1145 	regmap_reg_range(0x2830, 0x2837),
1146 	regmap_reg_range(0x2840, 0x284b),
1147 	regmap_reg_range(0x2900, 0x2907),
1148 	regmap_reg_range(0x2914, 0x2915),
1149 	regmap_reg_range(0x2a00, 0x2a03),
1150 	regmap_reg_range(0x2a04, 0x2a07),
1151 	regmap_reg_range(0x2b00, 0x2b01),
1152 	regmap_reg_range(0x2b04, 0x2b04),
1153 
1154 	/* port 3 */
1155 	regmap_reg_range(0x3000, 0x3001),
1156 	regmap_reg_range(0x3013, 0x3013),
1157 	regmap_reg_range(0x3017, 0x3017),
1158 	regmap_reg_range(0x301b, 0x301b),
1159 	regmap_reg_range(0x301f, 0x3020),
1160 	regmap_reg_range(0x3030, 0x3030),
1161 	regmap_reg_range(0x3100, 0x3115),
1162 	regmap_reg_range(0x311a, 0x311f),
1163 	regmap_reg_range(0x3122, 0x3127),
1164 	regmap_reg_range(0x312a, 0x312b),
1165 	regmap_reg_range(0x3136, 0x3139),
1166 	regmap_reg_range(0x313e, 0x313f),
1167 	regmap_reg_range(0x3400, 0x3401),
1168 	regmap_reg_range(0x3403, 0x3403),
1169 	regmap_reg_range(0x3410, 0x3417),
1170 	regmap_reg_range(0x3420, 0x3423),
1171 	regmap_reg_range(0x3500, 0x3507),
1172 	regmap_reg_range(0x3600, 0x3612),
1173 	regmap_reg_range(0x3800, 0x380f),
1174 	regmap_reg_range(0x3820, 0x3827),
1175 	regmap_reg_range(0x3830, 0x3837),
1176 	regmap_reg_range(0x3840, 0x384b),
1177 	regmap_reg_range(0x3900, 0x3907),
1178 	regmap_reg_range(0x3914, 0x3915),
1179 	regmap_reg_range(0x3a00, 0x3a03),
1180 	regmap_reg_range(0x3a04, 0x3a07),
1181 	regmap_reg_range(0x3b00, 0x3b01),
1182 	regmap_reg_range(0x3b04, 0x3b04),
1183 
1184 	/* port 4 */
1185 	regmap_reg_range(0x4000, 0x4001),
1186 	regmap_reg_range(0x4013, 0x4013),
1187 	regmap_reg_range(0x4017, 0x4017),
1188 	regmap_reg_range(0x401b, 0x401b),
1189 	regmap_reg_range(0x401f, 0x4020),
1190 	regmap_reg_range(0x4030, 0x4030),
1191 	regmap_reg_range(0x4100, 0x4115),
1192 	regmap_reg_range(0x411a, 0x411f),
1193 	regmap_reg_range(0x4122, 0x4127),
1194 	regmap_reg_range(0x412a, 0x412b),
1195 	regmap_reg_range(0x4136, 0x4139),
1196 	regmap_reg_range(0x413e, 0x413f),
1197 	regmap_reg_range(0x4400, 0x4401),
1198 	regmap_reg_range(0x4403, 0x4403),
1199 	regmap_reg_range(0x4410, 0x4417),
1200 	regmap_reg_range(0x4420, 0x4423),
1201 	regmap_reg_range(0x4500, 0x4507),
1202 	regmap_reg_range(0x4600, 0x4612),
1203 	regmap_reg_range(0x4800, 0x480f),
1204 	regmap_reg_range(0x4820, 0x4827),
1205 	regmap_reg_range(0x4830, 0x4837),
1206 	regmap_reg_range(0x4840, 0x484b),
1207 	regmap_reg_range(0x4900, 0x4907),
1208 	regmap_reg_range(0x4914, 0x4915),
1209 	regmap_reg_range(0x4a00, 0x4a03),
1210 	regmap_reg_range(0x4a04, 0x4a07),
1211 	regmap_reg_range(0x4b00, 0x4b01),
1212 	regmap_reg_range(0x4b04, 0x4b04),
1213 
1214 	/* port 5 */
1215 	regmap_reg_range(0x5000, 0x5001),
1216 	regmap_reg_range(0x5013, 0x5013),
1217 	regmap_reg_range(0x5017, 0x5017),
1218 	regmap_reg_range(0x501b, 0x501b),
1219 	regmap_reg_range(0x501f, 0x5020),
1220 	regmap_reg_range(0x5030, 0x5030),
1221 	regmap_reg_range(0x5100, 0x5115),
1222 	regmap_reg_range(0x511a, 0x511f),
1223 	regmap_reg_range(0x5122, 0x5127),
1224 	regmap_reg_range(0x512a, 0x512b),
1225 	regmap_reg_range(0x5136, 0x5139),
1226 	regmap_reg_range(0x513e, 0x513f),
1227 	regmap_reg_range(0x5400, 0x5401),
1228 	regmap_reg_range(0x5403, 0x5403),
1229 	regmap_reg_range(0x5410, 0x5417),
1230 	regmap_reg_range(0x5420, 0x5423),
1231 	regmap_reg_range(0x5500, 0x5507),
1232 	regmap_reg_range(0x5600, 0x5612),
1233 	regmap_reg_range(0x5800, 0x580f),
1234 	regmap_reg_range(0x5820, 0x5827),
1235 	regmap_reg_range(0x5830, 0x5837),
1236 	regmap_reg_range(0x5840, 0x584b),
1237 	regmap_reg_range(0x5900, 0x5907),
1238 	regmap_reg_range(0x5914, 0x5915),
1239 	regmap_reg_range(0x5a00, 0x5a03),
1240 	regmap_reg_range(0x5a04, 0x5a07),
1241 	regmap_reg_range(0x5b00, 0x5b01),
1242 	regmap_reg_range(0x5b04, 0x5b04),
1243 
1244 	/* port 6 */
1245 	regmap_reg_range(0x6000, 0x6001),
1246 	regmap_reg_range(0x6013, 0x6013),
1247 	regmap_reg_range(0x6017, 0x6017),
1248 	regmap_reg_range(0x601b, 0x601b),
1249 	regmap_reg_range(0x601f, 0x6020),
1250 	regmap_reg_range(0x6030, 0x6030),
1251 	regmap_reg_range(0x6100, 0x6115),
1252 	regmap_reg_range(0x611a, 0x611f),
1253 	regmap_reg_range(0x6122, 0x6127),
1254 	regmap_reg_range(0x612a, 0x612b),
1255 	regmap_reg_range(0x6136, 0x6139),
1256 	regmap_reg_range(0x613e, 0x613f),
1257 	regmap_reg_range(0x6300, 0x6301),
1258 	regmap_reg_range(0x6400, 0x6401),
1259 	regmap_reg_range(0x6403, 0x6403),
1260 	regmap_reg_range(0x6410, 0x6417),
1261 	regmap_reg_range(0x6420, 0x6423),
1262 	regmap_reg_range(0x6500, 0x6507),
1263 	regmap_reg_range(0x6600, 0x6612),
1264 	regmap_reg_range(0x6800, 0x680f),
1265 	regmap_reg_range(0x6820, 0x6827),
1266 	regmap_reg_range(0x6830, 0x6837),
1267 	regmap_reg_range(0x6840, 0x684b),
1268 	regmap_reg_range(0x6900, 0x6907),
1269 	regmap_reg_range(0x6914, 0x6915),
1270 	regmap_reg_range(0x6a00, 0x6a03),
1271 	regmap_reg_range(0x6a04, 0x6a07),
1272 	regmap_reg_range(0x6b00, 0x6b01),
1273 	regmap_reg_range(0x6b04, 0x6b04),
1274 };
1275 
1276 static const struct regmap_access_table ksz9896_register_set = {
1277 	.yes_ranges = ksz9896_valid_regs,
1278 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1279 };
1280 
1281 static const struct regmap_range ksz8873_valid_regs[] = {
1282 	regmap_reg_range(0x00, 0x01),
1283 	/* global control register */
1284 	regmap_reg_range(0x02, 0x0f),
1285 
1286 	/* port registers */
1287 	regmap_reg_range(0x10, 0x1d),
1288 	regmap_reg_range(0x1e, 0x1f),
1289 	regmap_reg_range(0x20, 0x2d),
1290 	regmap_reg_range(0x2e, 0x2f),
1291 	regmap_reg_range(0x30, 0x39),
1292 	regmap_reg_range(0x3f, 0x3f),
1293 
1294 	/* advanced control registers */
1295 	regmap_reg_range(0x60, 0x6f),
1296 	regmap_reg_range(0x70, 0x75),
1297 	regmap_reg_range(0x76, 0x78),
1298 	regmap_reg_range(0x79, 0x7a),
1299 	regmap_reg_range(0x7b, 0x83),
1300 	regmap_reg_range(0x8e, 0x99),
1301 	regmap_reg_range(0x9a, 0xa5),
1302 	regmap_reg_range(0xa6, 0xa6),
1303 	regmap_reg_range(0xa7, 0xaa),
1304 	regmap_reg_range(0xab, 0xae),
1305 	regmap_reg_range(0xaf, 0xba),
1306 	regmap_reg_range(0xbb, 0xbc),
1307 	regmap_reg_range(0xbd, 0xbd),
1308 	regmap_reg_range(0xc0, 0xc0),
1309 	regmap_reg_range(0xc2, 0xc2),
1310 	regmap_reg_range(0xc3, 0xc3),
1311 	regmap_reg_range(0xc4, 0xc4),
1312 	regmap_reg_range(0xc6, 0xc6),
1313 };
1314 
1315 static const struct regmap_access_table ksz8873_register_set = {
1316 	.yes_ranges = ksz8873_valid_regs,
1317 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1318 };
1319 
1320 const struct ksz_chip_data ksz_switch_chips[] = {
1321 	[KSZ8563] = {
1322 		.chip_id = KSZ8563_CHIP_ID,
1323 		.dev_name = "KSZ8563",
1324 		.num_vlans = 4096,
1325 		.num_alus = 4096,
1326 		.num_statics = 16,
1327 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1328 		.port_cnt = 3,		/* total port count */
1329 		.port_nirqs = 3,
1330 		.num_tx_queues = 4,
1331 		.num_ipms = 8,
1332 		.tc_cbs_supported = true,
1333 		.ops = &ksz9477_dev_ops,
1334 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1335 		.mib_names = ksz9477_mib_names,
1336 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1337 		.reg_mib_cnt = MIB_COUNTER_NUM,
1338 		.regs = ksz9477_regs,
1339 		.masks = ksz9477_masks,
1340 		.shifts = ksz9477_shifts,
1341 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1342 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1343 		.supports_mii = {false, false, true},
1344 		.supports_rmii = {false, false, true},
1345 		.supports_rgmii = {false, false, true},
1346 		.internal_phy = {true, true, false},
1347 		.gbit_capable = {false, false, true},
1348 		.wr_table = &ksz8563_register_set,
1349 		.rd_table = &ksz8563_register_set,
1350 	},
1351 
1352 	[KSZ8795] = {
1353 		.chip_id = KSZ8795_CHIP_ID,
1354 		.dev_name = "KSZ8795",
1355 		.num_vlans = 4096,
1356 		.num_alus = 0,
1357 		.num_statics = 32,
1358 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1359 		.port_cnt = 5,		/* total cpu and user ports */
1360 		.num_tx_queues = 4,
1361 		.num_ipms = 4,
1362 		.ops = &ksz87xx_dev_ops,
1363 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1364 		.ksz87xx_eee_link_erratum = true,
1365 		.mib_names = ksz9477_mib_names,
1366 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1367 		.reg_mib_cnt = MIB_COUNTER_NUM,
1368 		.regs = ksz8795_regs,
1369 		.masks = ksz8795_masks,
1370 		.shifts = ksz8795_shifts,
1371 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1372 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1373 		.supports_mii = {false, false, false, false, true},
1374 		.supports_rmii = {false, false, false, false, true},
1375 		.supports_rgmii = {false, false, false, false, true},
1376 		.internal_phy = {true, true, true, true, false},
1377 	},
1378 
1379 	[KSZ8794] = {
1380 		/* WARNING
1381 		 * =======
1382 		 * KSZ8794 is similar to KSZ8795, except the port map
1383 		 * contains a gap between external and CPU ports, the
1384 		 * port map is NOT continuous. The per-port register
1385 		 * map is shifted accordingly too, i.e. registers at
1386 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1387 		 * used on KSZ8795 for external port 3.
1388 		 *           external  cpu
1389 		 * KSZ8794   0,1,2      4
1390 		 * KSZ8795   0,1,2,3    4
1391 		 * KSZ8765   0,1,2,3    4
1392 		 * port_cnt is configured as 5, even though it is 4
1393 		 */
1394 		.chip_id = KSZ8794_CHIP_ID,
1395 		.dev_name = "KSZ8794",
1396 		.num_vlans = 4096,
1397 		.num_alus = 0,
1398 		.num_statics = 32,
1399 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1400 		.port_cnt = 5,		/* total cpu and user ports */
1401 		.num_tx_queues = 4,
1402 		.num_ipms = 4,
1403 		.ops = &ksz87xx_dev_ops,
1404 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1405 		.ksz87xx_eee_link_erratum = true,
1406 		.mib_names = ksz9477_mib_names,
1407 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1408 		.reg_mib_cnt = MIB_COUNTER_NUM,
1409 		.regs = ksz8795_regs,
1410 		.masks = ksz8795_masks,
1411 		.shifts = ksz8795_shifts,
1412 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1413 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1414 		.supports_mii = {false, false, false, false, true},
1415 		.supports_rmii = {false, false, false, false, true},
1416 		.supports_rgmii = {false, false, false, false, true},
1417 		.internal_phy = {true, true, true, false, false},
1418 	},
1419 
1420 	[KSZ8765] = {
1421 		.chip_id = KSZ8765_CHIP_ID,
1422 		.dev_name = "KSZ8765",
1423 		.num_vlans = 4096,
1424 		.num_alus = 0,
1425 		.num_statics = 32,
1426 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1427 		.port_cnt = 5,		/* total cpu and user ports */
1428 		.num_tx_queues = 4,
1429 		.num_ipms = 4,
1430 		.ops = &ksz87xx_dev_ops,
1431 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1432 		.ksz87xx_eee_link_erratum = true,
1433 		.mib_names = ksz9477_mib_names,
1434 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1435 		.reg_mib_cnt = MIB_COUNTER_NUM,
1436 		.regs = ksz8795_regs,
1437 		.masks = ksz8795_masks,
1438 		.shifts = ksz8795_shifts,
1439 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1440 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1441 		.supports_mii = {false, false, false, false, true},
1442 		.supports_rmii = {false, false, false, false, true},
1443 		.supports_rgmii = {false, false, false, false, true},
1444 		.internal_phy = {true, true, true, true, false},
1445 	},
1446 
1447 	[KSZ88X3] = {
1448 		.chip_id = KSZ88X3_CHIP_ID,
1449 		.dev_name = "KSZ8863/KSZ8873",
1450 		.num_vlans = 16,
1451 		.num_alus = 0,
1452 		.num_statics = 8,
1453 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1454 		.port_cnt = 3,
1455 		.num_tx_queues = 4,
1456 		.num_ipms = 4,
1457 		.ops = &ksz88xx_dev_ops,
1458 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1459 		.mib_names = ksz88xx_mib_names,
1460 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1461 		.reg_mib_cnt = MIB_COUNTER_NUM,
1462 		.regs = ksz8863_regs,
1463 		.masks = ksz8863_masks,
1464 		.shifts = ksz8863_shifts,
1465 		.supports_mii = {false, false, true},
1466 		.supports_rmii = {false, false, true},
1467 		.internal_phy = {true, true, false},
1468 		.wr_table = &ksz8873_register_set,
1469 		.rd_table = &ksz8873_register_set,
1470 	},
1471 
1472 	[KSZ8864] = {
1473 		/* WARNING
1474 		 * =======
1475 		 * KSZ8864 is similar to KSZ8895, except the first port
1476 		 * does not exist.
1477 		 *           external  cpu
1478 		 * KSZ8864   1,2,3      4
1479 		 * KSZ8895   0,1,2,3    4
1480 		 * port_cnt is configured as 5, even though it is 4
1481 		 */
1482 		.chip_id = KSZ8864_CHIP_ID,
1483 		.dev_name = "KSZ8864",
1484 		.num_vlans = 4096,
1485 		.num_alus = 0,
1486 		.num_statics = 32,
1487 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1488 		.port_cnt = 5,		/* total cpu and user ports */
1489 		.num_tx_queues = 4,
1490 		.num_ipms = 4,
1491 		.ops = &ksz88xx_dev_ops,
1492 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1493 		.mib_names = ksz88xx_mib_names,
1494 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1495 		.reg_mib_cnt = MIB_COUNTER_NUM,
1496 		.regs = ksz8895_regs,
1497 		.masks = ksz8895_masks,
1498 		.shifts = ksz8895_shifts,
1499 		.supports_mii = {false, false, false, false, true},
1500 		.supports_rmii = {false, false, false, false, true},
1501 		.internal_phy = {false, true, true, true, false},
1502 	},
1503 
1504 	[KSZ8895] = {
1505 		.chip_id = KSZ8895_CHIP_ID,
1506 		.dev_name = "KSZ8895",
1507 		.num_vlans = 4096,
1508 		.num_alus = 0,
1509 		.num_statics = 32,
1510 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1511 		.port_cnt = 5,		/* total cpu and user ports */
1512 		.num_tx_queues = 4,
1513 		.num_ipms = 4,
1514 		.ops = &ksz88xx_dev_ops,
1515 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1516 		.mib_names = ksz88xx_mib_names,
1517 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1518 		.reg_mib_cnt = MIB_COUNTER_NUM,
1519 		.regs = ksz8895_regs,
1520 		.masks = ksz8895_masks,
1521 		.shifts = ksz8895_shifts,
1522 		.supports_mii = {false, false, false, false, true},
1523 		.supports_rmii = {false, false, false, false, true},
1524 		.internal_phy = {true, true, true, true, false},
1525 	},
1526 
1527 	[KSZ9477] = {
1528 		.chip_id = KSZ9477_CHIP_ID,
1529 		.dev_name = "KSZ9477",
1530 		.num_vlans = 4096,
1531 		.num_alus = 4096,
1532 		.num_statics = 16,
1533 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1534 		.port_cnt = 7,		/* total physical port count */
1535 		.port_nirqs = 4,
1536 		.num_tx_queues = 4,
1537 		.num_ipms = 8,
1538 		.tc_cbs_supported = true,
1539 		.ops = &ksz9477_dev_ops,
1540 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1541 		.phy_errata_9477 = true,
1542 		.mib_names = ksz9477_mib_names,
1543 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1544 		.reg_mib_cnt = MIB_COUNTER_NUM,
1545 		.regs = ksz9477_regs,
1546 		.masks = ksz9477_masks,
1547 		.shifts = ksz9477_shifts,
1548 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1549 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1550 		.supports_mii	= {false, false, false, false,
1551 				   false, true, false},
1552 		.supports_rmii	= {false, false, false, false,
1553 				   false, true, false},
1554 		.supports_rgmii = {false, false, false, false,
1555 				   false, true, false},
1556 		.internal_phy	= {true, true, true, true,
1557 				   true, false, false},
1558 		.gbit_capable	= {true, true, true, true, true, true, true},
1559 		.wr_table = &ksz9477_register_set,
1560 		.rd_table = &ksz9477_register_set,
1561 	},
1562 
1563 	[KSZ9896] = {
1564 		.chip_id = KSZ9896_CHIP_ID,
1565 		.dev_name = "KSZ9896",
1566 		.num_vlans = 4096,
1567 		.num_alus = 4096,
1568 		.num_statics = 16,
1569 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1570 		.port_cnt = 6,		/* total physical port count */
1571 		.port_nirqs = 2,
1572 		.num_tx_queues = 4,
1573 		.num_ipms = 8,
1574 		.ops = &ksz9477_dev_ops,
1575 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1576 		.phy_errata_9477 = true,
1577 		.mib_names = ksz9477_mib_names,
1578 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1579 		.reg_mib_cnt = MIB_COUNTER_NUM,
1580 		.regs = ksz9477_regs,
1581 		.masks = ksz9477_masks,
1582 		.shifts = ksz9477_shifts,
1583 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1584 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1585 		.supports_mii	= {false, false, false, false,
1586 				   false, true},
1587 		.supports_rmii	= {false, false, false, false,
1588 				   false, true},
1589 		.supports_rgmii = {false, false, false, false,
1590 				   false, true},
1591 		.internal_phy	= {true, true, true, true,
1592 				   true, false},
1593 		.gbit_capable	= {true, true, true, true, true, true},
1594 		.wr_table = &ksz9896_register_set,
1595 		.rd_table = &ksz9896_register_set,
1596 	},
1597 
1598 	[KSZ9897] = {
1599 		.chip_id = KSZ9897_CHIP_ID,
1600 		.dev_name = "KSZ9897",
1601 		.num_vlans = 4096,
1602 		.num_alus = 4096,
1603 		.num_statics = 16,
1604 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1605 		.port_cnt = 7,		/* total physical port count */
1606 		.port_nirqs = 2,
1607 		.num_tx_queues = 4,
1608 		.num_ipms = 8,
1609 		.ops = &ksz9477_dev_ops,
1610 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1611 		.phy_errata_9477 = true,
1612 		.mib_names = ksz9477_mib_names,
1613 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1614 		.reg_mib_cnt = MIB_COUNTER_NUM,
1615 		.regs = ksz9477_regs,
1616 		.masks = ksz9477_masks,
1617 		.shifts = ksz9477_shifts,
1618 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1619 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1620 		.supports_mii	= {false, false, false, false,
1621 				   false, true, true},
1622 		.supports_rmii	= {false, false, false, false,
1623 				   false, true, true},
1624 		.supports_rgmii = {false, false, false, false,
1625 				   false, true, true},
1626 		.internal_phy	= {true, true, true, true,
1627 				   true, false, false},
1628 		.gbit_capable	= {true, true, true, true, true, true, true},
1629 	},
1630 
1631 	[KSZ9893] = {
1632 		.chip_id = KSZ9893_CHIP_ID,
1633 		.dev_name = "KSZ9893",
1634 		.num_vlans = 4096,
1635 		.num_alus = 4096,
1636 		.num_statics = 16,
1637 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1638 		.port_cnt = 3,		/* total port count */
1639 		.port_nirqs = 2,
1640 		.num_tx_queues = 4,
1641 		.num_ipms = 8,
1642 		.ops = &ksz9477_dev_ops,
1643 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1644 		.mib_names = ksz9477_mib_names,
1645 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1646 		.reg_mib_cnt = MIB_COUNTER_NUM,
1647 		.regs = ksz9477_regs,
1648 		.masks = ksz9477_masks,
1649 		.shifts = ksz9477_shifts,
1650 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1651 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1652 		.supports_mii = {false, false, true},
1653 		.supports_rmii = {false, false, true},
1654 		.supports_rgmii = {false, false, true},
1655 		.internal_phy = {true, true, false},
1656 		.gbit_capable = {true, true, true},
1657 	},
1658 
1659 	[KSZ9563] = {
1660 		.chip_id = KSZ9563_CHIP_ID,
1661 		.dev_name = "KSZ9563",
1662 		.num_vlans = 4096,
1663 		.num_alus = 4096,
1664 		.num_statics = 16,
1665 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1666 		.port_cnt = 3,		/* total port count */
1667 		.port_nirqs = 3,
1668 		.num_tx_queues = 4,
1669 		.num_ipms = 8,
1670 		.tc_cbs_supported = true,
1671 		.ops = &ksz9477_dev_ops,
1672 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1673 		.mib_names = ksz9477_mib_names,
1674 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1675 		.reg_mib_cnt = MIB_COUNTER_NUM,
1676 		.regs = ksz9477_regs,
1677 		.masks = ksz9477_masks,
1678 		.shifts = ksz9477_shifts,
1679 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1680 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1681 		.supports_mii = {false, false, true},
1682 		.supports_rmii = {false, false, true},
1683 		.supports_rgmii = {false, false, true},
1684 		.internal_phy = {true, true, false},
1685 		.gbit_capable = {true, true, true},
1686 	},
1687 
1688 	[KSZ8567] = {
1689 		.chip_id = KSZ8567_CHIP_ID,
1690 		.dev_name = "KSZ8567",
1691 		.num_vlans = 4096,
1692 		.num_alus = 4096,
1693 		.num_statics = 16,
1694 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1695 		.port_cnt = 7,		/* total port count */
1696 		.port_nirqs = 3,
1697 		.num_tx_queues = 4,
1698 		.num_ipms = 8,
1699 		.tc_cbs_supported = true,
1700 		.ops = &ksz9477_dev_ops,
1701 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1702 		.phy_errata_9477 = true,
1703 		.mib_names = ksz9477_mib_names,
1704 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1705 		.reg_mib_cnt = MIB_COUNTER_NUM,
1706 		.regs = ksz9477_regs,
1707 		.masks = ksz9477_masks,
1708 		.shifts = ksz9477_shifts,
1709 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1710 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1711 		.supports_mii	= {false, false, false, false,
1712 				   false, true, true},
1713 		.supports_rmii	= {false, false, false, false,
1714 				   false, true, true},
1715 		.supports_rgmii = {false, false, false, false,
1716 				   false, true, true},
1717 		.internal_phy	= {true, true, true, true,
1718 				   true, false, false},
1719 		.gbit_capable	= {false, false, false, false, false,
1720 				   true, true},
1721 	},
1722 
1723 	[KSZ9567] = {
1724 		.chip_id = KSZ9567_CHIP_ID,
1725 		.dev_name = "KSZ9567",
1726 		.num_vlans = 4096,
1727 		.num_alus = 4096,
1728 		.num_statics = 16,
1729 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1730 		.port_cnt = 7,		/* total physical port count */
1731 		.port_nirqs = 3,
1732 		.num_tx_queues = 4,
1733 		.num_ipms = 8,
1734 		.tc_cbs_supported = true,
1735 		.ops = &ksz9477_dev_ops,
1736 		.mib_names = ksz9477_mib_names,
1737 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1738 		.reg_mib_cnt = MIB_COUNTER_NUM,
1739 		.regs = ksz9477_regs,
1740 		.masks = ksz9477_masks,
1741 		.shifts = ksz9477_shifts,
1742 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1743 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1744 		.supports_mii	= {false, false, false, false,
1745 				   false, true, true},
1746 		.supports_rmii	= {false, false, false, false,
1747 				   false, true, true},
1748 		.supports_rgmii = {false, false, false, false,
1749 				   false, true, true},
1750 		.internal_phy	= {true, true, true, true,
1751 				   true, false, false},
1752 		.gbit_capable	= {true, true, true, true, true, true, true},
1753 	},
1754 
1755 	[LAN9370] = {
1756 		.chip_id = LAN9370_CHIP_ID,
1757 		.dev_name = "LAN9370",
1758 		.num_vlans = 4096,
1759 		.num_alus = 1024,
1760 		.num_statics = 256,
1761 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1762 		.port_cnt = 5,		/* total physical port count */
1763 		.port_nirqs = 6,
1764 		.num_tx_queues = 8,
1765 		.num_ipms = 8,
1766 		.tc_cbs_supported = true,
1767 		.phy_side_mdio_supported = true,
1768 		.ops = &lan937x_dev_ops,
1769 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1770 		.mib_names = ksz9477_mib_names,
1771 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1772 		.reg_mib_cnt = MIB_COUNTER_NUM,
1773 		.regs = ksz9477_regs,
1774 		.masks = lan937x_masks,
1775 		.shifts = lan937x_shifts,
1776 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1777 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1778 		.supports_mii = {false, false, false, false, true},
1779 		.supports_rmii = {false, false, false, false, true},
1780 		.supports_rgmii = {false, false, false, false, true},
1781 		.internal_phy = {true, true, true, true, false},
1782 	},
1783 
1784 	[LAN9371] = {
1785 		.chip_id = LAN9371_CHIP_ID,
1786 		.dev_name = "LAN9371",
1787 		.num_vlans = 4096,
1788 		.num_alus = 1024,
1789 		.num_statics = 256,
1790 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1791 		.port_cnt = 6,		/* total physical port count */
1792 		.port_nirqs = 6,
1793 		.num_tx_queues = 8,
1794 		.num_ipms = 8,
1795 		.tc_cbs_supported = true,
1796 		.phy_side_mdio_supported = true,
1797 		.ops = &lan937x_dev_ops,
1798 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1799 		.mib_names = ksz9477_mib_names,
1800 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1801 		.reg_mib_cnt = MIB_COUNTER_NUM,
1802 		.regs = ksz9477_regs,
1803 		.masks = lan937x_masks,
1804 		.shifts = lan937x_shifts,
1805 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1806 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1807 		.supports_mii = {false, false, false, false, true, true},
1808 		.supports_rmii = {false, false, false, false, true, true},
1809 		.supports_rgmii = {false, false, false, false, true, true},
1810 		.internal_phy = {true, true, true, true, false, false},
1811 	},
1812 
1813 	[LAN9372] = {
1814 		.chip_id = LAN9372_CHIP_ID,
1815 		.dev_name = "LAN9372",
1816 		.num_vlans = 4096,
1817 		.num_alus = 1024,
1818 		.num_statics = 256,
1819 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1820 		.port_cnt = 8,		/* total physical port count */
1821 		.port_nirqs = 6,
1822 		.num_tx_queues = 8,
1823 		.num_ipms = 8,
1824 		.tc_cbs_supported = true,
1825 		.phy_side_mdio_supported = true,
1826 		.ops = &lan937x_dev_ops,
1827 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1828 		.mib_names = ksz9477_mib_names,
1829 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1830 		.reg_mib_cnt = MIB_COUNTER_NUM,
1831 		.regs = ksz9477_regs,
1832 		.masks = lan937x_masks,
1833 		.shifts = lan937x_shifts,
1834 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1835 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1836 		.supports_mii	= {false, false, false, false,
1837 				   true, true, false, false},
1838 		.supports_rmii	= {false, false, false, false,
1839 				   true, true, false, false},
1840 		.supports_rgmii = {false, false, false, false,
1841 				   true, true, false, false},
1842 		.internal_phy	= {true, true, true, true,
1843 				   false, false, true, true},
1844 	},
1845 
1846 	[LAN9373] = {
1847 		.chip_id = LAN9373_CHIP_ID,
1848 		.dev_name = "LAN9373",
1849 		.num_vlans = 4096,
1850 		.num_alus = 1024,
1851 		.num_statics = 256,
1852 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1853 		.port_cnt = 5,		/* total physical port count */
1854 		.port_nirqs = 6,
1855 		.num_tx_queues = 8,
1856 		.num_ipms = 8,
1857 		.tc_cbs_supported = true,
1858 		.phy_side_mdio_supported = true,
1859 		.ops = &lan937x_dev_ops,
1860 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1861 		.mib_names = ksz9477_mib_names,
1862 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1863 		.reg_mib_cnt = MIB_COUNTER_NUM,
1864 		.regs = ksz9477_regs,
1865 		.masks = lan937x_masks,
1866 		.shifts = lan937x_shifts,
1867 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1868 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1869 		.supports_mii	= {false, false, false, false,
1870 				   true, true, false, false},
1871 		.supports_rmii	= {false, false, false, false,
1872 				   true, true, false, false},
1873 		.supports_rgmii = {false, false, false, false,
1874 				   true, true, false, false},
1875 		.internal_phy	= {true, true, true, false,
1876 				   false, false, true, true},
1877 	},
1878 
1879 	[LAN9374] = {
1880 		.chip_id = LAN9374_CHIP_ID,
1881 		.dev_name = "LAN9374",
1882 		.num_vlans = 4096,
1883 		.num_alus = 1024,
1884 		.num_statics = 256,
1885 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1886 		.port_cnt = 8,		/* total physical port count */
1887 		.port_nirqs = 6,
1888 		.num_tx_queues = 8,
1889 		.num_ipms = 8,
1890 		.tc_cbs_supported = true,
1891 		.phy_side_mdio_supported = true,
1892 		.ops = &lan937x_dev_ops,
1893 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1894 		.mib_names = ksz9477_mib_names,
1895 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1896 		.reg_mib_cnt = MIB_COUNTER_NUM,
1897 		.regs = ksz9477_regs,
1898 		.masks = lan937x_masks,
1899 		.shifts = lan937x_shifts,
1900 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1901 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1902 		.supports_mii	= {false, false, false, false,
1903 				   true, true, false, false},
1904 		.supports_rmii	= {false, false, false, false,
1905 				   true, true, false, false},
1906 		.supports_rgmii = {false, false, false, false,
1907 				   true, true, false, false},
1908 		.internal_phy	= {true, true, true, true,
1909 				   false, false, true, true},
1910 	},
1911 
1912 	[LAN9646] = {
1913 		.chip_id = LAN9646_CHIP_ID,
1914 		.dev_name = "LAN9646",
1915 		.num_vlans = 4096,
1916 		.num_alus = 4096,
1917 		.num_statics = 16,
1918 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1919 		.port_cnt = 7,		/* total physical port count */
1920 		.port_nirqs = 4,
1921 		.num_tx_queues = 4,
1922 		.num_ipms = 8,
1923 		.ops = &ksz9477_dev_ops,
1924 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1925 		.phy_errata_9477 = true,
1926 		.mib_names = ksz9477_mib_names,
1927 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1928 		.reg_mib_cnt = MIB_COUNTER_NUM,
1929 		.regs = ksz9477_regs,
1930 		.masks = ksz9477_masks,
1931 		.shifts = ksz9477_shifts,
1932 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1933 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1934 		.supports_mii	= {false, false, false, false,
1935 				   false, true, true},
1936 		.supports_rmii	= {false, false, false, false,
1937 				   false, true, true},
1938 		.supports_rgmii = {false, false, false, false,
1939 				   false, true, true},
1940 		.internal_phy	= {true, true, true, true,
1941 				   true, false, false},
1942 		.gbit_capable	= {true, true, true, true, true, true, true},
1943 		.wr_table = &ksz9477_register_set,
1944 		.rd_table = &ksz9477_register_set,
1945 	},
1946 };
1947 EXPORT_SYMBOL_GPL(ksz_switch_chips);
1948 
1949 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1950 {
1951 	int i;
1952 
1953 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1954 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1955 
1956 		if (chip->chip_id == prod_num)
1957 			return chip;
1958 	}
1959 
1960 	return NULL;
1961 }
1962 
1963 static int ksz_check_device_id(struct ksz_device *dev)
1964 {
1965 	const struct ksz_chip_data *expected_chip_data;
1966 	u32 expected_chip_id;
1967 
1968 	if (dev->pdata) {
1969 		expected_chip_id = dev->pdata->chip_id;
1970 		expected_chip_data = ksz_lookup_info(expected_chip_id);
1971 		if (WARN_ON(!expected_chip_data))
1972 			return -ENODEV;
1973 	} else {
1974 		expected_chip_data = of_device_get_match_data(dev->dev);
1975 		expected_chip_id = expected_chip_data->chip_id;
1976 	}
1977 
1978 	if (expected_chip_id != dev->chip_id) {
1979 		dev_err(dev->dev,
1980 			"Device tree specifies chip %s but found %s, please fix it!\n",
1981 			expected_chip_data->dev_name, dev->info->dev_name);
1982 		return -ENODEV;
1983 	}
1984 
1985 	return 0;
1986 }
1987 
1988 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1989 				 struct phylink_config *config)
1990 {
1991 	struct ksz_device *dev = ds->priv;
1992 
1993 	if (dev->info->supports_mii[port])
1994 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1995 
1996 	if (dev->info->supports_rmii[port])
1997 		__set_bit(PHY_INTERFACE_MODE_RMII,
1998 			  config->supported_interfaces);
1999 
2000 	if (dev->info->supports_rgmii[port])
2001 		phy_interface_set_rgmii(config->supported_interfaces);
2002 
2003 	if (dev->info->internal_phy[port]) {
2004 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2005 			  config->supported_interfaces);
2006 		/* Compatibility for phylib's default interface type when the
2007 		 * phy-mode property is absent
2008 		 */
2009 		__set_bit(PHY_INTERFACE_MODE_GMII,
2010 			  config->supported_interfaces);
2011 	}
2012 
2013 	if (dev->dev_ops->get_caps)
2014 		dev->dev_ops->get_caps(dev, port, config);
2015 }
2016 
2017 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
2018 {
2019 	struct ethtool_pause_stats *pstats;
2020 	struct rtnl_link_stats64 *stats;
2021 	struct ksz_stats_raw *raw;
2022 	struct ksz_port_mib *mib;
2023 	int ret;
2024 
2025 	mib = &dev->ports[port].mib;
2026 	stats = &mib->stats64;
2027 	pstats = &mib->pause_stats;
2028 	raw = (struct ksz_stats_raw *)mib->counters;
2029 
2030 	spin_lock(&mib->stats64_lock);
2031 
2032 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2033 		raw->rx_pause;
2034 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2035 		raw->tx_pause;
2036 
2037 	/* HW counters are counting bytes + FCS which is not acceptable
2038 	 * for rtnl_link_stats64 interface
2039 	 */
2040 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
2041 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
2042 
2043 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2044 		raw->rx_oversize;
2045 
2046 	stats->rx_crc_errors = raw->rx_crc_err;
2047 	stats->rx_frame_errors = raw->rx_align_err;
2048 	stats->rx_dropped = raw->rx_discards;
2049 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2050 		stats->rx_frame_errors  + stats->rx_dropped;
2051 
2052 	stats->tx_window_errors = raw->tx_late_col;
2053 	stats->tx_fifo_errors = raw->tx_discards;
2054 	stats->tx_aborted_errors = raw->tx_exc_col;
2055 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2056 		stats->tx_aborted_errors;
2057 
2058 	stats->multicast = raw->rx_mcast;
2059 	stats->collisions = raw->tx_total_col;
2060 
2061 	pstats->tx_pause_frames = raw->tx_pause;
2062 	pstats->rx_pause_frames = raw->rx_pause;
2063 
2064 	spin_unlock(&mib->stats64_lock);
2065 
2066 	if (dev->info->phy_errata_9477) {
2067 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
2068 		if (ret)
2069 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
2070 	}
2071 }
2072 
2073 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
2074 {
2075 	struct ethtool_pause_stats *pstats;
2076 	struct rtnl_link_stats64 *stats;
2077 	struct ksz88xx_stats_raw *raw;
2078 	struct ksz_port_mib *mib;
2079 
2080 	mib = &dev->ports[port].mib;
2081 	stats = &mib->stats64;
2082 	pstats = &mib->pause_stats;
2083 	raw = (struct ksz88xx_stats_raw *)mib->counters;
2084 
2085 	spin_lock(&mib->stats64_lock);
2086 
2087 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2088 		raw->rx_pause;
2089 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2090 		raw->tx_pause;
2091 
2092 	/* HW counters are counting bytes + FCS which is not acceptable
2093 	 * for rtnl_link_stats64 interface
2094 	 */
2095 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
2096 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
2097 
2098 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2099 		raw->rx_oversize;
2100 
2101 	stats->rx_crc_errors = raw->rx_crc_err;
2102 	stats->rx_frame_errors = raw->rx_align_err;
2103 	stats->rx_dropped = raw->rx_discards;
2104 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2105 		stats->rx_frame_errors  + stats->rx_dropped;
2106 
2107 	stats->tx_window_errors = raw->tx_late_col;
2108 	stats->tx_fifo_errors = raw->tx_discards;
2109 	stats->tx_aborted_errors = raw->tx_exc_col;
2110 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2111 		stats->tx_aborted_errors;
2112 
2113 	stats->multicast = raw->rx_mcast;
2114 	stats->collisions = raw->tx_total_col;
2115 
2116 	pstats->tx_pause_frames = raw->tx_pause;
2117 	pstats->rx_pause_frames = raw->rx_pause;
2118 
2119 	spin_unlock(&mib->stats64_lock);
2120 }
2121 
2122 static void ksz_get_stats64(struct dsa_switch *ds, int port,
2123 			    struct rtnl_link_stats64 *s)
2124 {
2125 	struct ksz_device *dev = ds->priv;
2126 	struct ksz_port_mib *mib;
2127 
2128 	mib = &dev->ports[port].mib;
2129 
2130 	spin_lock(&mib->stats64_lock);
2131 	memcpy(s, &mib->stats64, sizeof(*s));
2132 	spin_unlock(&mib->stats64_lock);
2133 }
2134 
2135 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
2136 				struct ethtool_pause_stats *pause_stats)
2137 {
2138 	struct ksz_device *dev = ds->priv;
2139 	struct ksz_port_mib *mib;
2140 
2141 	mib = &dev->ports[port].mib;
2142 
2143 	spin_lock(&mib->stats64_lock);
2144 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
2145 	spin_unlock(&mib->stats64_lock);
2146 }
2147 
2148 static void ksz_get_strings(struct dsa_switch *ds, int port,
2149 			    u32 stringset, uint8_t *buf)
2150 {
2151 	struct ksz_device *dev = ds->priv;
2152 	int i;
2153 
2154 	if (stringset != ETH_SS_STATS)
2155 		return;
2156 
2157 	for (i = 0; i < dev->info->mib_cnt; i++)
2158 		ethtool_puts(&buf, dev->info->mib_names[i].string);
2159 }
2160 
2161 /**
2162  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2163  *			    isolation settings.
2164  * @dev: A pointer to the struct ksz_device representing the device.
2165  * @port: The port number to adjust.
2166  *
2167  * This function dynamically adjusts the port membership configuration for a
2168  * specified port and other device ports, based on Spanning Tree Protocol (STP)
2169  * states and port isolation settings. Each port, including the CPU port, has a
2170  * membership register, represented as a bitfield, where each bit corresponds
2171  * to a port number. A set bit indicates permission to forward frames to that
2172  * port. This function iterates over all ports, updating the membership register
2173  * to reflect current forwarding permissions:
2174  *
2175  * 1. Forwards frames only to ports that are part of the same bridge group and
2176  *    in the BR_STATE_FORWARDING state.
2177  * 2. Takes into account the isolation status of ports; ports in the
2178  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2179  *    frames to each other, even if they are in the same bridge group.
2180  * 3. Ensures that the CPU port is included in the membership based on its
2181  *    upstream port configuration, allowing for management and control traffic
2182  *    to flow as required.
2183  */
2184 static void ksz_update_port_member(struct ksz_device *dev, int port)
2185 {
2186 	struct ksz_port *p = &dev->ports[port];
2187 	struct dsa_switch *ds = dev->ds;
2188 	u8 port_member = 0, cpu_port;
2189 	const struct dsa_port *dp;
2190 	int i, j;
2191 
2192 	if (!dsa_is_user_port(ds, port))
2193 		return;
2194 
2195 	dp = dsa_to_port(ds, port);
2196 	cpu_port = BIT(dsa_upstream_port(ds, port));
2197 
2198 	for (i = 0; i < ds->num_ports; i++) {
2199 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2200 		struct ksz_port *other_p = &dev->ports[i];
2201 		u8 val = 0;
2202 
2203 		if (!dsa_is_user_port(ds, i))
2204 			continue;
2205 		if (port == i)
2206 			continue;
2207 		if (!dsa_port_bridge_same(dp, other_dp))
2208 			continue;
2209 		if (other_p->stp_state != BR_STATE_FORWARDING)
2210 			continue;
2211 
2212 		/* At this point we know that "port" and "other" port [i] are in
2213 		 * the same bridge group and that "other" port [i] is in
2214 		 * forwarding stp state. If "port" is also in forwarding stp
2215 		 * state, we can allow forwarding from port [port] to port [i].
2216 		 * Except if both ports are isolated.
2217 		 */
2218 		if (p->stp_state == BR_STATE_FORWARDING &&
2219 		    !(p->isolated && other_p->isolated)) {
2220 			val |= BIT(port);
2221 			port_member |= BIT(i);
2222 		}
2223 
2224 		/* Retain port [i]'s relationship to other ports than [port] */
2225 		for (j = 0; j < ds->num_ports; j++) {
2226 			const struct dsa_port *third_dp;
2227 			struct ksz_port *third_p;
2228 
2229 			if (j == i)
2230 				continue;
2231 			if (j == port)
2232 				continue;
2233 			if (!dsa_is_user_port(ds, j))
2234 				continue;
2235 			third_p = &dev->ports[j];
2236 			if (third_p->stp_state != BR_STATE_FORWARDING)
2237 				continue;
2238 
2239 			third_dp = dsa_to_port(ds, j);
2240 
2241 			/* Now we updating relation of the "other" port [i] to
2242 			 * the "third" port [j]. We already know that "other"
2243 			 * port [i] is in forwarding stp state and that "third"
2244 			 * port [j] is in forwarding stp state too.
2245 			 * We need to check if "other" port [i] and "third" port
2246 			 * [j] are in the same bridge group and not isolated
2247 			 * before allowing forwarding from port [i] to port [j].
2248 			 */
2249 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2250 			    !(other_p->isolated && third_p->isolated))
2251 				val |= BIT(j);
2252 		}
2253 
2254 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2255 	}
2256 
2257 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2258 }
2259 
2260 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2261 {
2262 	struct ksz_device *dev = bus->priv;
2263 	u16 val;
2264 	int ret;
2265 
2266 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2267 	if (ret < 0)
2268 		return ret;
2269 
2270 	return val;
2271 }
2272 
2273 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2274 			     u16 val)
2275 {
2276 	struct ksz_device *dev = bus->priv;
2277 
2278 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2279 }
2280 
2281 /**
2282  * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus.
2283  * @bus: MDIO bus structure.
2284  * @addr: PHY address on the parent MDIO bus.
2285  * @regnum: Register number to read.
2286  *
2287  * This function provides a direct read operation on the parent MDIO bus for
2288  * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus
2289  * to retrieve data from the PHY registers at the specified address and register
2290  * number.
2291  *
2292  * Return: Value of the PHY register, or a negative error code on failure.
2293  */
2294 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum)
2295 {
2296 	struct ksz_device *dev = bus->priv;
2297 
2298 	return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum);
2299 }
2300 
2301 /**
2302  * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus.
2303  * @bus: MDIO bus structure.
2304  * @addr: PHY address on the parent MDIO bus.
2305  * @regnum: Register number to write to.
2306  * @val: Value to write to the PHY register.
2307  *
2308  * This function provides a direct write operation on the parent MDIO bus for
2309  * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus
2310  * to modify the PHY register values at the specified address.
2311  *
2312  * Return: 0 on success, or a negative error code on failure.
2313  */
2314 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum,
2315 				 u16 val)
2316 {
2317 	struct ksz_device *dev = bus->priv;
2318 
2319 	return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val);
2320 }
2321 
2322 /**
2323  * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port.
2324  * @dev: Pointer to device structure.
2325  * @addr: PHY address to map to a port.
2326  *
2327  * This function finds the corresponding switch port for a given PHY address by
2328  * iterating over all user ports on the device. It checks if a port's PHY
2329  * address in `phy_addr_map` matches the specified address and if the port
2330  * contains an internal PHY. If a match is found, the index of the port is
2331  * returned.
2332  *
2333  * Return: Port index on success, or -EINVAL if no matching port is found.
2334  */
2335 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr)
2336 {
2337 	struct dsa_switch *ds = dev->ds;
2338 	struct dsa_port *dp;
2339 
2340 	dsa_switch_for_each_user_port(dp, ds) {
2341 		if (dev->info->internal_phy[dp->index] &&
2342 		    dev->phy_addr_map[dp->index] == addr)
2343 			return dp->index;
2344 	}
2345 
2346 	return -EINVAL;
2347 }
2348 
2349 /**
2350  * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device.
2351  * @dev: Pointer to the KSZ device structure.
2352  *
2353  * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the
2354  * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in
2355  * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain.
2356  *
2357  * Return: 0 on success, or a negative error code on failure.
2358  */
2359 static int ksz_irq_phy_setup(struct ksz_device *dev)
2360 {
2361 	struct dsa_switch *ds = dev->ds;
2362 	int phy, port;
2363 	int irq;
2364 	int ret;
2365 
2366 	for (phy = 0; phy < PHY_MAX_ADDR; phy++) {
2367 		if (BIT(phy) & ds->phys_mii_mask) {
2368 			port = ksz_phy_addr_to_port(dev, phy);
2369 			if (port < 0) {
2370 				ret = port;
2371 				goto out;
2372 			}
2373 
2374 			irq = irq_find_mapping(dev->ports[port].pirq.domain,
2375 					       PORT_SRC_PHY_INT);
2376 			if (irq < 0) {
2377 				ret = irq;
2378 				goto out;
2379 			}
2380 			ds->user_mii_bus->irq[phy] = irq;
2381 		}
2382 	}
2383 	return 0;
2384 out:
2385 	while (phy--)
2386 		if (BIT(phy) & ds->phys_mii_mask)
2387 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2388 
2389 	return ret;
2390 }
2391 
2392 /**
2393  * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device.
2394  * @dev: Pointer to the KSZ device structure.
2395  *
2396  * Releases any IRQ mappings previously assigned to active PHYs in the KSZ
2397  * switch by disposing of each mapped IRQ in the `user_mii_bus` structure.
2398  */
2399 static void ksz_irq_phy_free(struct ksz_device *dev)
2400 {
2401 	struct dsa_switch *ds = dev->ds;
2402 	int phy;
2403 
2404 	for (phy = 0; phy < PHY_MAX_ADDR; phy++)
2405 		if (BIT(phy) & ds->phys_mii_mask)
2406 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2407 }
2408 
2409 /**
2410  * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT
2411  * @dev: pointer to the KSZ device structure
2412  * @bus: pointer to the MII bus structure
2413  * @mdio_np: pointer to the MDIO node in the device tree
2414  *
2415  * This function parses and validates PHY configurations for each user port
2416  * defined in the device tree for a KSZ switch device. It verifies that the
2417  * `phy-handle` properties are correctly set and that the internal PHYs match
2418  * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if
2419  * all validations pass. Logs error messages for any mismatches or missing data.
2420  *
2421  * Return: 0 on success, or a negative error code on failure.
2422  */
2423 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus,
2424 				   struct device_node *mdio_np)
2425 {
2426 	struct device_node *phy_node, *phy_parent_node;
2427 	bool phys_are_valid = true;
2428 	struct dsa_port *dp;
2429 	u32 phy_addr;
2430 	int ret;
2431 
2432 	dsa_switch_for_each_user_port(dp, dev->ds) {
2433 		if (!dev->info->internal_phy[dp->index])
2434 			continue;
2435 
2436 		phy_node = of_parse_phandle(dp->dn, "phy-handle", 0);
2437 		if (!phy_node) {
2438 			dev_err(dev->dev, "failed to parse phy-handle for port %d.\n",
2439 				dp->index);
2440 			phys_are_valid = false;
2441 			continue;
2442 		}
2443 
2444 		phy_parent_node = of_get_parent(phy_node);
2445 		if (!phy_parent_node) {
2446 			dev_err(dev->dev, "failed to get PHY-parent node for port %d\n",
2447 				dp->index);
2448 			phys_are_valid = false;
2449 		} else if (phy_parent_node != mdio_np) {
2450 			dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n",
2451 				dp->index, mdio_np, phy_parent_node);
2452 			phys_are_valid = false;
2453 		} else {
2454 			ret = of_property_read_u32(phy_node, "reg", &phy_addr);
2455 			if (ret < 0) {
2456 				dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n",
2457 					dp->index, ret);
2458 				phys_are_valid = false;
2459 			} else if (phy_addr != dev->phy_addr_map[dp->index]) {
2460 				dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n",
2461 					dp->index, dev->phy_addr_map[dp->index],
2462 					phy_addr);
2463 				phys_are_valid = false;
2464 			} else {
2465 				bus->phy_mask |= BIT(phy_addr);
2466 			}
2467 		}
2468 
2469 		of_node_put(phy_node);
2470 		of_node_put(phy_parent_node);
2471 	}
2472 
2473 	if (!phys_are_valid)
2474 		return -EINVAL;
2475 
2476 	return 0;
2477 }
2478 
2479 /**
2480  * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device.
2481  * @dev: Pointer to the KSZ device structure.
2482  *
2483  * This function sets up and registers an MDIO bus for the KSZ switch device,
2484  * allowing access to its internal PHYs. If the device supports side MDIO,
2485  * the function will configure the external MDIO controller specified by the
2486  * "mdio-parent-bus" device tree property to directly manage internal PHYs.
2487  * Otherwise, SPI or I2C access is set up for PHY access.
2488  *
2489  * Return: 0 on success, or a negative error code on failure.
2490  */
2491 static int ksz_mdio_register(struct ksz_device *dev)
2492 {
2493 	struct device_node *parent_bus_node;
2494 	struct mii_bus *parent_bus = NULL;
2495 	struct dsa_switch *ds = dev->ds;
2496 	struct device_node *mdio_np;
2497 	struct mii_bus *bus;
2498 	int ret, i;
2499 
2500 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2501 	if (!mdio_np)
2502 		return 0;
2503 
2504 	parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0);
2505 	if (parent_bus_node && !dev->info->phy_side_mdio_supported) {
2506 		dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n");
2507 		ret = -EINVAL;
2508 
2509 		goto put_mdio_node;
2510 	} else if (parent_bus_node) {
2511 		parent_bus = of_mdio_find_bus(parent_bus_node);
2512 		if (!parent_bus) {
2513 			ret = -EPROBE_DEFER;
2514 
2515 			goto put_mdio_node;
2516 		}
2517 
2518 		dev->parent_mdio_bus = parent_bus;
2519 	}
2520 
2521 	bus = devm_mdiobus_alloc(ds->dev);
2522 	if (!bus) {
2523 		ret = -ENOMEM;
2524 		goto put_mdio_node;
2525 	}
2526 
2527 	if (dev->dev_ops->mdio_bus_preinit) {
2528 		ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus);
2529 		if (ret)
2530 			goto put_mdio_node;
2531 	}
2532 
2533 	if (dev->dev_ops->create_phy_addr_map) {
2534 		ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus);
2535 		if (ret)
2536 			goto put_mdio_node;
2537 	} else {
2538 		for (i = 0; i < dev->info->port_cnt; i++)
2539 			dev->phy_addr_map[i] = i;
2540 	}
2541 
2542 	bus->priv = dev;
2543 	if (parent_bus) {
2544 		bus->read = ksz_parent_mdio_read;
2545 		bus->write = ksz_parent_mdio_write;
2546 		bus->name = "KSZ side MDIO";
2547 		snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d",
2548 			 ds->index);
2549 	} else {
2550 		bus->read = ksz_sw_mdio_read;
2551 		bus->write = ksz_sw_mdio_write;
2552 		bus->name = "ksz user smi";
2553 		snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2554 	}
2555 
2556 	ret = ksz_parse_dt_phy_config(dev, bus, mdio_np);
2557 	if (ret)
2558 		goto put_mdio_node;
2559 
2560 	ds->phys_mii_mask = bus->phy_mask;
2561 	bus->parent = ds->dev;
2562 
2563 	ds->user_mii_bus = bus;
2564 
2565 	if (dev->irq > 0) {
2566 		ret = ksz_irq_phy_setup(dev);
2567 		if (ret)
2568 			goto put_mdio_node;
2569 	}
2570 
2571 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2572 	if (ret) {
2573 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2574 			bus->id);
2575 		if (dev->irq > 0)
2576 			ksz_irq_phy_free(dev);
2577 	}
2578 
2579 put_mdio_node:
2580 	of_node_put(mdio_np);
2581 	of_node_put(parent_bus_node);
2582 
2583 	return ret;
2584 }
2585 
2586 static void ksz_irq_mask(struct irq_data *d)
2587 {
2588 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2589 
2590 	kirq->masked |= BIT(d->hwirq);
2591 }
2592 
2593 static void ksz_irq_unmask(struct irq_data *d)
2594 {
2595 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2596 
2597 	kirq->masked &= ~BIT(d->hwirq);
2598 }
2599 
2600 static void ksz_irq_bus_lock(struct irq_data *d)
2601 {
2602 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2603 
2604 	mutex_lock(&kirq->dev->lock_irq);
2605 }
2606 
2607 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2608 {
2609 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2610 	struct ksz_device *dev = kirq->dev;
2611 	int ret;
2612 
2613 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2614 	if (ret)
2615 		dev_err(dev->dev, "failed to change IRQ mask\n");
2616 
2617 	mutex_unlock(&dev->lock_irq);
2618 }
2619 
2620 static const struct irq_chip ksz_irq_chip = {
2621 	.name			= "ksz-irq",
2622 	.irq_mask		= ksz_irq_mask,
2623 	.irq_unmask		= ksz_irq_unmask,
2624 	.irq_bus_lock		= ksz_irq_bus_lock,
2625 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2626 };
2627 
2628 static int ksz_irq_domain_map(struct irq_domain *d,
2629 			      unsigned int irq, irq_hw_number_t hwirq)
2630 {
2631 	irq_set_chip_data(irq, d->host_data);
2632 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2633 	irq_set_noprobe(irq);
2634 
2635 	return 0;
2636 }
2637 
2638 static const struct irq_domain_ops ksz_irq_domain_ops = {
2639 	.map	= ksz_irq_domain_map,
2640 	.xlate	= irq_domain_xlate_twocell,
2641 };
2642 
2643 static void ksz_irq_free(struct ksz_irq *kirq)
2644 {
2645 	int irq, virq;
2646 
2647 	free_irq(kirq->irq_num, kirq);
2648 
2649 	for (irq = 0; irq < kirq->nirqs; irq++) {
2650 		virq = irq_find_mapping(kirq->domain, irq);
2651 		irq_dispose_mapping(virq);
2652 	}
2653 
2654 	irq_domain_remove(kirq->domain);
2655 }
2656 
2657 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2658 {
2659 	struct ksz_irq *kirq = dev_id;
2660 	unsigned int nhandled = 0;
2661 	struct ksz_device *dev;
2662 	unsigned int sub_irq;
2663 	u8 data;
2664 	int ret;
2665 	u8 n;
2666 
2667 	dev = kirq->dev;
2668 
2669 	/* Read interrupt status register */
2670 	ret = ksz_read8(dev, kirq->reg_status, &data);
2671 	if (ret)
2672 		goto out;
2673 
2674 	for (n = 0; n < kirq->nirqs; ++n) {
2675 		if (data & BIT(n)) {
2676 			sub_irq = irq_find_mapping(kirq->domain, n);
2677 			handle_nested_irq(sub_irq);
2678 			++nhandled;
2679 		}
2680 	}
2681 out:
2682 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2683 }
2684 
2685 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2686 {
2687 	int ret, n;
2688 
2689 	kirq->dev = dev;
2690 	kirq->masked = ~0;
2691 
2692 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2693 					     &ksz_irq_domain_ops, kirq);
2694 	if (!kirq->domain)
2695 		return -ENOMEM;
2696 
2697 	for (n = 0; n < kirq->nirqs; n++)
2698 		irq_create_mapping(kirq->domain, n);
2699 
2700 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2701 				   IRQF_ONESHOT, kirq->name, kirq);
2702 	if (ret)
2703 		goto out;
2704 
2705 	return 0;
2706 
2707 out:
2708 	ksz_irq_free(kirq);
2709 
2710 	return ret;
2711 }
2712 
2713 static int ksz_girq_setup(struct ksz_device *dev)
2714 {
2715 	struct ksz_irq *girq = &dev->girq;
2716 
2717 	girq->nirqs = dev->info->port_cnt;
2718 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2719 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2720 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2721 
2722 	girq->irq_num = dev->irq;
2723 
2724 	return ksz_irq_common_setup(dev, girq);
2725 }
2726 
2727 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2728 {
2729 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2730 
2731 	pirq->nirqs = dev->info->port_nirqs;
2732 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2733 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2734 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2735 
2736 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2737 	if (pirq->irq_num < 0)
2738 		return pirq->irq_num;
2739 
2740 	return ksz_irq_common_setup(dev, pirq);
2741 }
2742 
2743 static int ksz_parse_drive_strength(struct ksz_device *dev);
2744 
2745 static int ksz_setup(struct dsa_switch *ds)
2746 {
2747 	struct ksz_device *dev = ds->priv;
2748 	struct dsa_port *dp;
2749 	struct ksz_port *p;
2750 	const u16 *regs;
2751 	int ret;
2752 
2753 	regs = dev->info->regs;
2754 
2755 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2756 				       dev->info->num_vlans, GFP_KERNEL);
2757 	if (!dev->vlan_cache)
2758 		return -ENOMEM;
2759 
2760 	ret = dev->dev_ops->reset(dev);
2761 	if (ret) {
2762 		dev_err(ds->dev, "failed to reset switch\n");
2763 		return ret;
2764 	}
2765 
2766 	ret = ksz_parse_drive_strength(dev);
2767 	if (ret)
2768 		return ret;
2769 
2770 	/* set broadcast storm protection 10% rate */
2771 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2772 			   BROADCAST_STORM_RATE,
2773 			   (BROADCAST_STORM_VALUE *
2774 			   BROADCAST_STORM_PROT_RATE) / 100);
2775 
2776 	dev->dev_ops->config_cpu_port(ds);
2777 
2778 	dev->dev_ops->enable_stp_addr(dev);
2779 
2780 	ds->num_tx_queues = dev->info->num_tx_queues;
2781 
2782 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2783 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2784 
2785 	ksz_init_mib_timer(dev);
2786 
2787 	ds->configure_vlan_while_not_filtering = false;
2788 	ds->dscp_prio_mapping_is_global = true;
2789 
2790 	if (dev->dev_ops->setup) {
2791 		ret = dev->dev_ops->setup(ds);
2792 		if (ret)
2793 			return ret;
2794 	}
2795 
2796 	/* Start with learning disabled on standalone user ports, and enabled
2797 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2798 	 * CPU port will avoid flooding bridge local addresses on the network
2799 	 * in some cases.
2800 	 */
2801 	p = &dev->ports[dev->cpu_port];
2802 	p->learning = true;
2803 
2804 	if (dev->irq > 0) {
2805 		ret = ksz_girq_setup(dev);
2806 		if (ret)
2807 			return ret;
2808 
2809 		dsa_switch_for_each_user_port(dp, dev->ds) {
2810 			ret = ksz_pirq_setup(dev, dp->index);
2811 			if (ret)
2812 				goto out_girq;
2813 
2814 			ret = ksz_ptp_irq_setup(ds, dp->index);
2815 			if (ret)
2816 				goto out_pirq;
2817 		}
2818 	}
2819 
2820 	ret = ksz_ptp_clock_register(ds);
2821 	if (ret) {
2822 		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2823 		goto out_ptpirq;
2824 	}
2825 
2826 	ret = ksz_mdio_register(dev);
2827 	if (ret < 0) {
2828 		dev_err(dev->dev, "failed to register the mdio");
2829 		goto out_ptp_clock_unregister;
2830 	}
2831 
2832 	ret = ksz_dcb_init(dev);
2833 	if (ret)
2834 		goto out_ptp_clock_unregister;
2835 
2836 	/* start switch */
2837 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2838 			   SW_START, SW_START);
2839 
2840 	return 0;
2841 
2842 out_ptp_clock_unregister:
2843 	ksz_ptp_clock_unregister(ds);
2844 out_ptpirq:
2845 	if (dev->irq > 0)
2846 		dsa_switch_for_each_user_port(dp, dev->ds)
2847 			ksz_ptp_irq_free(ds, dp->index);
2848 out_pirq:
2849 	if (dev->irq > 0)
2850 		dsa_switch_for_each_user_port(dp, dev->ds)
2851 			ksz_irq_free(&dev->ports[dp->index].pirq);
2852 out_girq:
2853 	if (dev->irq > 0)
2854 		ksz_irq_free(&dev->girq);
2855 
2856 	return ret;
2857 }
2858 
2859 static void ksz_teardown(struct dsa_switch *ds)
2860 {
2861 	struct ksz_device *dev = ds->priv;
2862 	struct dsa_port *dp;
2863 
2864 	ksz_ptp_clock_unregister(ds);
2865 
2866 	if (dev->irq > 0) {
2867 		dsa_switch_for_each_user_port(dp, dev->ds) {
2868 			ksz_ptp_irq_free(ds, dp->index);
2869 
2870 			ksz_irq_free(&dev->ports[dp->index].pirq);
2871 		}
2872 
2873 		ksz_irq_free(&dev->girq);
2874 	}
2875 
2876 	if (dev->dev_ops->teardown)
2877 		dev->dev_ops->teardown(ds);
2878 }
2879 
2880 static void port_r_cnt(struct ksz_device *dev, int port)
2881 {
2882 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2883 	u64 *dropped;
2884 
2885 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2886 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2887 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2888 					&mib->counters[mib->cnt_ptr]);
2889 		++mib->cnt_ptr;
2890 	}
2891 
2892 	/* last one in storage */
2893 	dropped = &mib->counters[dev->info->mib_cnt];
2894 
2895 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2896 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2897 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2898 					dropped, &mib->counters[mib->cnt_ptr]);
2899 		++mib->cnt_ptr;
2900 	}
2901 	mib->cnt_ptr = 0;
2902 }
2903 
2904 static void ksz_mib_read_work(struct work_struct *work)
2905 {
2906 	struct ksz_device *dev = container_of(work, struct ksz_device,
2907 					      mib_read.work);
2908 	struct ksz_port_mib *mib;
2909 	struct ksz_port *p;
2910 	int i;
2911 
2912 	for (i = 0; i < dev->info->port_cnt; i++) {
2913 		if (dsa_is_unused_port(dev->ds, i))
2914 			continue;
2915 
2916 		p = &dev->ports[i];
2917 		mib = &p->mib;
2918 		mutex_lock(&mib->cnt_mutex);
2919 
2920 		/* Only read MIB counters when the port is told to do.
2921 		 * If not, read only dropped counters when link is not up.
2922 		 */
2923 		if (!p->read) {
2924 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2925 
2926 			if (!netif_carrier_ok(dp->user))
2927 				mib->cnt_ptr = dev->info->reg_mib_cnt;
2928 		}
2929 		port_r_cnt(dev, i);
2930 		p->read = false;
2931 
2932 		if (dev->dev_ops->r_mib_stat64)
2933 			dev->dev_ops->r_mib_stat64(dev, i);
2934 
2935 		mutex_unlock(&mib->cnt_mutex);
2936 	}
2937 
2938 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2939 }
2940 
2941 void ksz_init_mib_timer(struct ksz_device *dev)
2942 {
2943 	int i;
2944 
2945 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2946 
2947 	for (i = 0; i < dev->info->port_cnt; i++) {
2948 		struct ksz_port_mib *mib = &dev->ports[i].mib;
2949 
2950 		dev->dev_ops->port_init_cnt(dev, i);
2951 
2952 		mib->cnt_ptr = 0;
2953 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2954 	}
2955 }
2956 
2957 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2958 {
2959 	struct ksz_device *dev = ds->priv;
2960 	u16 val = 0xffff;
2961 	int ret;
2962 
2963 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2964 	if (ret)
2965 		return ret;
2966 
2967 	return val;
2968 }
2969 
2970 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2971 {
2972 	struct ksz_device *dev = ds->priv;
2973 	int ret;
2974 
2975 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2976 	if (ret)
2977 		return ret;
2978 
2979 	return 0;
2980 }
2981 
2982 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2983 {
2984 	struct ksz_device *dev = ds->priv;
2985 
2986 	switch (dev->chip_id) {
2987 	case KSZ88X3_CHIP_ID:
2988 		/* Silicon Errata Sheet (DS80000830A):
2989 		 * Port 1 does not work with LinkMD Cable-Testing.
2990 		 * Port 1 does not respond to received PAUSE control frames.
2991 		 */
2992 		if (!port)
2993 			return MICREL_KSZ8_P1_ERRATA;
2994 		break;
2995 	case KSZ8567_CHIP_ID:
2996 		/* KSZ8567R Errata DS80000752C Module 4 */
2997 	case KSZ8765_CHIP_ID:
2998 	case KSZ8794_CHIP_ID:
2999 	case KSZ8795_CHIP_ID:
3000 		/* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */
3001 	case KSZ9477_CHIP_ID:
3002 		/* KSZ9477S Errata DS80000754A Module 4 */
3003 	case KSZ9567_CHIP_ID:
3004 		/* KSZ9567S Errata DS80000756A Module 4 */
3005 	case KSZ9896_CHIP_ID:
3006 		/* KSZ9896C Errata DS80000757A Module 3 */
3007 	case KSZ9897_CHIP_ID:
3008 	case LAN9646_CHIP_ID:
3009 		/* KSZ9897R Errata DS80000758C Module 4 */
3010 		/* Energy Efficient Ethernet (EEE) feature select must be manually disabled
3011 		 *   The EEE feature is enabled by default, but it is not fully
3012 		 *   operational. It must be manually disabled through register
3013 		 *   controls. If not disabled, the PHY ports can auto-negotiate
3014 		 *   to enable EEE, and this feature can cause link drops when
3015 		 *   linked to another device supporting EEE.
3016 		 *
3017 		 * The same item appears in the errata for all switches above.
3018 		 */
3019 		return MICREL_NO_EEE;
3020 	}
3021 
3022 	return 0;
3023 }
3024 
3025 static void ksz_phylink_mac_link_down(struct phylink_config *config,
3026 				      unsigned int mode,
3027 				      phy_interface_t interface)
3028 {
3029 	struct dsa_port *dp = dsa_phylink_to_port(config);
3030 	struct ksz_device *dev = dp->ds->priv;
3031 
3032 	/* Read all MIB counters when the link is going down. */
3033 	dev->ports[dp->index].read = true;
3034 	/* timer started */
3035 	if (dev->mib_read_interval)
3036 		schedule_delayed_work(&dev->mib_read, 0);
3037 }
3038 
3039 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
3040 {
3041 	struct ksz_device *dev = ds->priv;
3042 
3043 	if (sset != ETH_SS_STATS)
3044 		return 0;
3045 
3046 	return dev->info->mib_cnt;
3047 }
3048 
3049 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
3050 				  uint64_t *buf)
3051 {
3052 	const struct dsa_port *dp = dsa_to_port(ds, port);
3053 	struct ksz_device *dev = ds->priv;
3054 	struct ksz_port_mib *mib;
3055 
3056 	mib = &dev->ports[port].mib;
3057 	mutex_lock(&mib->cnt_mutex);
3058 
3059 	/* Only read dropped counters if no link. */
3060 	if (!netif_carrier_ok(dp->user))
3061 		mib->cnt_ptr = dev->info->reg_mib_cnt;
3062 	port_r_cnt(dev, port);
3063 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
3064 	mutex_unlock(&mib->cnt_mutex);
3065 }
3066 
3067 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
3068 				struct dsa_bridge bridge,
3069 				bool *tx_fwd_offload,
3070 				struct netlink_ext_ack *extack)
3071 {
3072 	/* port_stp_state_set() will be called after to put the port in
3073 	 * appropriate state so there is no need to do anything.
3074 	 */
3075 
3076 	return 0;
3077 }
3078 
3079 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
3080 				  struct dsa_bridge bridge)
3081 {
3082 	/* port_stp_state_set() will be called after to put the port in
3083 	 * forwarding state so there is no need to do anything.
3084 	 */
3085 }
3086 
3087 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
3088 {
3089 	struct ksz_device *dev = ds->priv;
3090 
3091 	dev->dev_ops->flush_dyn_mac_table(dev, port);
3092 }
3093 
3094 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
3095 {
3096 	struct ksz_device *dev = ds->priv;
3097 
3098 	if (!dev->dev_ops->set_ageing_time)
3099 		return -EOPNOTSUPP;
3100 
3101 	return dev->dev_ops->set_ageing_time(dev, msecs);
3102 }
3103 
3104 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
3105 			    const unsigned char *addr, u16 vid,
3106 			    struct dsa_db db)
3107 {
3108 	struct ksz_device *dev = ds->priv;
3109 
3110 	if (!dev->dev_ops->fdb_add)
3111 		return -EOPNOTSUPP;
3112 
3113 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
3114 }
3115 
3116 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
3117 			    const unsigned char *addr,
3118 			    u16 vid, struct dsa_db db)
3119 {
3120 	struct ksz_device *dev = ds->priv;
3121 
3122 	if (!dev->dev_ops->fdb_del)
3123 		return -EOPNOTSUPP;
3124 
3125 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
3126 }
3127 
3128 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
3129 			     dsa_fdb_dump_cb_t *cb, void *data)
3130 {
3131 	struct ksz_device *dev = ds->priv;
3132 
3133 	if (!dev->dev_ops->fdb_dump)
3134 		return -EOPNOTSUPP;
3135 
3136 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
3137 }
3138 
3139 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
3140 			    const struct switchdev_obj_port_mdb *mdb,
3141 			    struct dsa_db db)
3142 {
3143 	struct ksz_device *dev = ds->priv;
3144 
3145 	if (!dev->dev_ops->mdb_add)
3146 		return -EOPNOTSUPP;
3147 
3148 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
3149 }
3150 
3151 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
3152 			    const struct switchdev_obj_port_mdb *mdb,
3153 			    struct dsa_db db)
3154 {
3155 	struct ksz_device *dev = ds->priv;
3156 
3157 	if (!dev->dev_ops->mdb_del)
3158 		return -EOPNOTSUPP;
3159 
3160 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
3161 }
3162 
3163 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
3164 						  int port)
3165 {
3166 	u32 queue_map = 0;
3167 	int ipm;
3168 
3169 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
3170 		int queue;
3171 
3172 		/* Traffic Type (TT) is corresponding to the Internal Priority
3173 		 * Map (IPM) in the switch. Traffic Class (TC) is
3174 		 * corresponding to the queue in the switch.
3175 		 */
3176 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
3177 		if (queue < 0)
3178 			return queue;
3179 
3180 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
3181 	}
3182 
3183 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3184 }
3185 
3186 static int ksz_port_setup(struct dsa_switch *ds, int port)
3187 {
3188 	struct ksz_device *dev = ds->priv;
3189 	int ret;
3190 
3191 	if (!dsa_is_user_port(ds, port))
3192 		return 0;
3193 
3194 	/* setup user port */
3195 	dev->dev_ops->port_setup(dev, port, false);
3196 
3197 	if (!is_ksz8(dev)) {
3198 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
3199 		if (ret)
3200 			return ret;
3201 	}
3202 
3203 	/* port_stp_state_set() will be called after to enable the port so
3204 	 * there is no need to do anything.
3205 	 */
3206 
3207 	return ksz_dcb_init_port(dev, port);
3208 }
3209 
3210 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
3211 {
3212 	struct ksz_device *dev = ds->priv;
3213 	struct ksz_port *p;
3214 	const u16 *regs;
3215 	u8 data;
3216 
3217 	regs = dev->info->regs;
3218 
3219 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
3220 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3221 
3222 	p = &dev->ports[port];
3223 
3224 	switch (state) {
3225 	case BR_STATE_DISABLED:
3226 		data |= PORT_LEARN_DISABLE;
3227 		break;
3228 	case BR_STATE_LISTENING:
3229 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3230 		break;
3231 	case BR_STATE_LEARNING:
3232 		data |= PORT_RX_ENABLE;
3233 		if (!p->learning)
3234 			data |= PORT_LEARN_DISABLE;
3235 		break;
3236 	case BR_STATE_FORWARDING:
3237 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
3238 		if (!p->learning)
3239 			data |= PORT_LEARN_DISABLE;
3240 		break;
3241 	case BR_STATE_BLOCKING:
3242 		data |= PORT_LEARN_DISABLE;
3243 		break;
3244 	default:
3245 		dev_err(ds->dev, "invalid STP state: %d\n", state);
3246 		return;
3247 	}
3248 
3249 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
3250 
3251 	p->stp_state = state;
3252 
3253 	ksz_update_port_member(dev, port);
3254 }
3255 
3256 static void ksz_port_teardown(struct dsa_switch *ds, int port)
3257 {
3258 	struct ksz_device *dev = ds->priv;
3259 
3260 	switch (dev->chip_id) {
3261 	case KSZ8563_CHIP_ID:
3262 	case KSZ8567_CHIP_ID:
3263 	case KSZ9477_CHIP_ID:
3264 	case KSZ9563_CHIP_ID:
3265 	case KSZ9567_CHIP_ID:
3266 	case KSZ9893_CHIP_ID:
3267 	case KSZ9896_CHIP_ID:
3268 	case KSZ9897_CHIP_ID:
3269 	case LAN9646_CHIP_ID:
3270 		if (dsa_is_user_port(ds, port))
3271 			ksz9477_port_acl_free(dev, port);
3272 	}
3273 }
3274 
3275 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3276 				     struct switchdev_brport_flags flags,
3277 				     struct netlink_ext_ack *extack)
3278 {
3279 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
3280 		return -EINVAL;
3281 
3282 	return 0;
3283 }
3284 
3285 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
3286 				 struct switchdev_brport_flags flags,
3287 				 struct netlink_ext_ack *extack)
3288 {
3289 	struct ksz_device *dev = ds->priv;
3290 	struct ksz_port *p = &dev->ports[port];
3291 
3292 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
3293 		if (flags.mask & BR_LEARNING)
3294 			p->learning = !!(flags.val & BR_LEARNING);
3295 
3296 		if (flags.mask & BR_ISOLATED)
3297 			p->isolated = !!(flags.val & BR_ISOLATED);
3298 
3299 		/* Make the change take effect immediately */
3300 		ksz_port_stp_state_set(ds, port, p->stp_state);
3301 	}
3302 
3303 	return 0;
3304 }
3305 
3306 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
3307 						  int port,
3308 						  enum dsa_tag_protocol mp)
3309 {
3310 	struct ksz_device *dev = ds->priv;
3311 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
3312 
3313 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
3314 		proto = DSA_TAG_PROTO_KSZ8795;
3315 
3316 	if (dev->chip_id == KSZ88X3_CHIP_ID ||
3317 	    dev->chip_id == KSZ8563_CHIP_ID ||
3318 	    dev->chip_id == KSZ9893_CHIP_ID ||
3319 	    dev->chip_id == KSZ9563_CHIP_ID)
3320 		proto = DSA_TAG_PROTO_KSZ9893;
3321 
3322 	if (dev->chip_id == KSZ8567_CHIP_ID ||
3323 	    dev->chip_id == KSZ9477_CHIP_ID ||
3324 	    dev->chip_id == KSZ9896_CHIP_ID ||
3325 	    dev->chip_id == KSZ9897_CHIP_ID ||
3326 	    dev->chip_id == KSZ9567_CHIP_ID ||
3327 	    dev->chip_id == LAN9646_CHIP_ID)
3328 		proto = DSA_TAG_PROTO_KSZ9477;
3329 
3330 	if (is_lan937x(dev))
3331 		proto = DSA_TAG_PROTO_LAN937X;
3332 
3333 	return proto;
3334 }
3335 
3336 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
3337 				    enum dsa_tag_protocol proto)
3338 {
3339 	struct ksz_tagger_data *tagger_data;
3340 
3341 	switch (proto) {
3342 	case DSA_TAG_PROTO_KSZ8795:
3343 		return 0;
3344 	case DSA_TAG_PROTO_KSZ9893:
3345 	case DSA_TAG_PROTO_KSZ9477:
3346 	case DSA_TAG_PROTO_LAN937X:
3347 		tagger_data = ksz_tagger_data(ds);
3348 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
3349 		return 0;
3350 	default:
3351 		return -EPROTONOSUPPORT;
3352 	}
3353 }
3354 
3355 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
3356 				   bool flag, struct netlink_ext_ack *extack)
3357 {
3358 	struct ksz_device *dev = ds->priv;
3359 
3360 	if (!dev->dev_ops->vlan_filtering)
3361 		return -EOPNOTSUPP;
3362 
3363 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
3364 }
3365 
3366 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
3367 			     const struct switchdev_obj_port_vlan *vlan,
3368 			     struct netlink_ext_ack *extack)
3369 {
3370 	struct ksz_device *dev = ds->priv;
3371 
3372 	if (!dev->dev_ops->vlan_add)
3373 		return -EOPNOTSUPP;
3374 
3375 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
3376 }
3377 
3378 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3379 			     const struct switchdev_obj_port_vlan *vlan)
3380 {
3381 	struct ksz_device *dev = ds->priv;
3382 
3383 	if (!dev->dev_ops->vlan_del)
3384 		return -EOPNOTSUPP;
3385 
3386 	return dev->dev_ops->vlan_del(dev, port, vlan);
3387 }
3388 
3389 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3390 			       struct dsa_mall_mirror_tc_entry *mirror,
3391 			       bool ingress, struct netlink_ext_ack *extack)
3392 {
3393 	struct ksz_device *dev = ds->priv;
3394 
3395 	if (!dev->dev_ops->mirror_add)
3396 		return -EOPNOTSUPP;
3397 
3398 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3399 }
3400 
3401 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3402 				struct dsa_mall_mirror_tc_entry *mirror)
3403 {
3404 	struct ksz_device *dev = ds->priv;
3405 
3406 	if (dev->dev_ops->mirror_del)
3407 		dev->dev_ops->mirror_del(dev, port, mirror);
3408 }
3409 
3410 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3411 {
3412 	struct ksz_device *dev = ds->priv;
3413 
3414 	if (!dev->dev_ops->change_mtu)
3415 		return -EOPNOTSUPP;
3416 
3417 	return dev->dev_ops->change_mtu(dev, port, mtu);
3418 }
3419 
3420 static int ksz_max_mtu(struct dsa_switch *ds, int port)
3421 {
3422 	struct ksz_device *dev = ds->priv;
3423 
3424 	switch (dev->chip_id) {
3425 	case KSZ8795_CHIP_ID:
3426 	case KSZ8794_CHIP_ID:
3427 	case KSZ8765_CHIP_ID:
3428 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3429 	case KSZ88X3_CHIP_ID:
3430 	case KSZ8864_CHIP_ID:
3431 	case KSZ8895_CHIP_ID:
3432 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3433 	case KSZ8563_CHIP_ID:
3434 	case KSZ8567_CHIP_ID:
3435 	case KSZ9477_CHIP_ID:
3436 	case KSZ9563_CHIP_ID:
3437 	case KSZ9567_CHIP_ID:
3438 	case KSZ9893_CHIP_ID:
3439 	case KSZ9896_CHIP_ID:
3440 	case KSZ9897_CHIP_ID:
3441 	case LAN9370_CHIP_ID:
3442 	case LAN9371_CHIP_ID:
3443 	case LAN9372_CHIP_ID:
3444 	case LAN9373_CHIP_ID:
3445 	case LAN9374_CHIP_ID:
3446 	case LAN9646_CHIP_ID:
3447 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3448 	}
3449 
3450 	return -EOPNOTSUPP;
3451 }
3452 
3453 static int ksz_validate_eee(struct dsa_switch *ds, int port)
3454 {
3455 	struct ksz_device *dev = ds->priv;
3456 
3457 	if (!dev->info->internal_phy[port])
3458 		return -EOPNOTSUPP;
3459 
3460 	switch (dev->chip_id) {
3461 	case KSZ8563_CHIP_ID:
3462 	case KSZ8567_CHIP_ID:
3463 	case KSZ9477_CHIP_ID:
3464 	case KSZ9563_CHIP_ID:
3465 	case KSZ9567_CHIP_ID:
3466 	case KSZ9893_CHIP_ID:
3467 	case KSZ9896_CHIP_ID:
3468 	case KSZ9897_CHIP_ID:
3469 	case LAN9646_CHIP_ID:
3470 		return 0;
3471 	}
3472 
3473 	return -EOPNOTSUPP;
3474 }
3475 
3476 static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
3477 			   struct ethtool_keee *e)
3478 {
3479 	int ret;
3480 
3481 	ret = ksz_validate_eee(ds, port);
3482 	if (ret)
3483 		return ret;
3484 
3485 	/* There is no documented control of Tx LPI configuration. */
3486 	e->tx_lpi_enabled = true;
3487 
3488 	/* There is no documented control of Tx LPI timer. According to tests
3489 	 * Tx LPI timer seems to be set by default to minimal value.
3490 	 */
3491 	e->tx_lpi_timer = 0;
3492 
3493 	return 0;
3494 }
3495 
3496 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3497 			   struct ethtool_keee *e)
3498 {
3499 	struct ksz_device *dev = ds->priv;
3500 	int ret;
3501 
3502 	ret = ksz_validate_eee(ds, port);
3503 	if (ret)
3504 		return ret;
3505 
3506 	if (!e->tx_lpi_enabled) {
3507 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3508 		return -EINVAL;
3509 	}
3510 
3511 	if (e->tx_lpi_timer) {
3512 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3513 		return -EINVAL;
3514 	}
3515 
3516 	return 0;
3517 }
3518 
3519 static void ksz_set_xmii(struct ksz_device *dev, int port,
3520 			 phy_interface_t interface)
3521 {
3522 	const u8 *bitval = dev->info->xmii_ctrl1;
3523 	struct ksz_port *p = &dev->ports[port];
3524 	const u16 *regs = dev->info->regs;
3525 	u8 data8;
3526 
3527 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3528 
3529 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3530 		   P_RGMII_ID_EG_ENABLE);
3531 
3532 	switch (interface) {
3533 	case PHY_INTERFACE_MODE_MII:
3534 		data8 |= bitval[P_MII_SEL];
3535 		break;
3536 	case PHY_INTERFACE_MODE_RMII:
3537 		data8 |= bitval[P_RMII_SEL];
3538 		break;
3539 	case PHY_INTERFACE_MODE_GMII:
3540 		data8 |= bitval[P_GMII_SEL];
3541 		break;
3542 	case PHY_INTERFACE_MODE_RGMII:
3543 	case PHY_INTERFACE_MODE_RGMII_ID:
3544 	case PHY_INTERFACE_MODE_RGMII_TXID:
3545 	case PHY_INTERFACE_MODE_RGMII_RXID:
3546 		data8 |= bitval[P_RGMII_SEL];
3547 		/* On KSZ9893, disable RGMII in-band status support */
3548 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3549 		    dev->chip_id == KSZ8563_CHIP_ID ||
3550 		    dev->chip_id == KSZ9563_CHIP_ID ||
3551 		    is_lan937x(dev))
3552 			data8 &= ~P_MII_MAC_MODE;
3553 		break;
3554 	default:
3555 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3556 			phy_modes(interface), port);
3557 		return;
3558 	}
3559 
3560 	if (p->rgmii_tx_val)
3561 		data8 |= P_RGMII_ID_EG_ENABLE;
3562 
3563 	if (p->rgmii_rx_val)
3564 		data8 |= P_RGMII_ID_IG_ENABLE;
3565 
3566 	/* Write the updated value */
3567 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3568 }
3569 
3570 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3571 {
3572 	const u8 *bitval = dev->info->xmii_ctrl1;
3573 	const u16 *regs = dev->info->regs;
3574 	phy_interface_t interface;
3575 	u8 data8;
3576 	u8 val;
3577 
3578 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3579 
3580 	val = FIELD_GET(P_MII_SEL_M, data8);
3581 
3582 	if (val == bitval[P_MII_SEL]) {
3583 		if (gbit)
3584 			interface = PHY_INTERFACE_MODE_GMII;
3585 		else
3586 			interface = PHY_INTERFACE_MODE_MII;
3587 	} else if (val == bitval[P_RMII_SEL]) {
3588 		interface = PHY_INTERFACE_MODE_RMII;
3589 	} else {
3590 		interface = PHY_INTERFACE_MODE_RGMII;
3591 		if (data8 & P_RGMII_ID_EG_ENABLE)
3592 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3593 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3594 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3595 			if (data8 & P_RGMII_ID_EG_ENABLE)
3596 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3597 		}
3598 	}
3599 
3600 	return interface;
3601 }
3602 
3603 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
3604 				       unsigned int mode,
3605 				       const struct phylink_link_state *state)
3606 {
3607 	struct dsa_port *dp = dsa_phylink_to_port(config);
3608 	struct ksz_device *dev = dp->ds->priv;
3609 
3610 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3611 }
3612 
3613 static void ksz_phylink_mac_config(struct phylink_config *config,
3614 				   unsigned int mode,
3615 				   const struct phylink_link_state *state)
3616 {
3617 	struct dsa_port *dp = dsa_phylink_to_port(config);
3618 	struct ksz_device *dev = dp->ds->priv;
3619 	int port = dp->index;
3620 
3621 	/* Internal PHYs */
3622 	if (dev->info->internal_phy[port])
3623 		return;
3624 
3625 	if (phylink_autoneg_inband(mode)) {
3626 		dev_err(dev->dev, "In-band AN not supported!\n");
3627 		return;
3628 	}
3629 
3630 	ksz_set_xmii(dev, port, state->interface);
3631 
3632 	if (dev->dev_ops->setup_rgmii_delay)
3633 		dev->dev_ops->setup_rgmii_delay(dev, port);
3634 }
3635 
3636 bool ksz_get_gbit(struct ksz_device *dev, int port)
3637 {
3638 	const u8 *bitval = dev->info->xmii_ctrl1;
3639 	const u16 *regs = dev->info->regs;
3640 	bool gbit = false;
3641 	u8 data8;
3642 	bool val;
3643 
3644 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3645 
3646 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3647 
3648 	if (val == bitval[P_GMII_1GBIT])
3649 		gbit = true;
3650 
3651 	return gbit;
3652 }
3653 
3654 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3655 {
3656 	const u8 *bitval = dev->info->xmii_ctrl1;
3657 	const u16 *regs = dev->info->regs;
3658 	u8 data8;
3659 
3660 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3661 
3662 	data8 &= ~P_GMII_1GBIT_M;
3663 
3664 	if (gbit)
3665 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3666 	else
3667 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3668 
3669 	/* Write the updated value */
3670 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3671 }
3672 
3673 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3674 {
3675 	const u8 *bitval = dev->info->xmii_ctrl0;
3676 	const u16 *regs = dev->info->regs;
3677 	u8 data8;
3678 
3679 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3680 
3681 	data8 &= ~P_MII_100MBIT_M;
3682 
3683 	if (speed == SPEED_100)
3684 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3685 	else
3686 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3687 
3688 	/* Write the updated value */
3689 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3690 }
3691 
3692 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3693 {
3694 	if (speed == SPEED_1000)
3695 		ksz_set_gbit(dev, port, true);
3696 	else
3697 		ksz_set_gbit(dev, port, false);
3698 
3699 	if (speed == SPEED_100 || speed == SPEED_10)
3700 		ksz_set_100_10mbit(dev, port, speed);
3701 }
3702 
3703 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3704 				bool tx_pause, bool rx_pause)
3705 {
3706 	const u8 *bitval = dev->info->xmii_ctrl0;
3707 	const u32 *masks = dev->info->masks;
3708 	const u16 *regs = dev->info->regs;
3709 	u8 mask;
3710 	u8 val;
3711 
3712 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3713 	       masks[P_MII_RX_FLOW_CTRL];
3714 
3715 	if (duplex == DUPLEX_FULL)
3716 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3717 	else
3718 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3719 
3720 	if (tx_pause)
3721 		val |= masks[P_MII_TX_FLOW_CTRL];
3722 
3723 	if (rx_pause)
3724 		val |= masks[P_MII_RX_FLOW_CTRL];
3725 
3726 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3727 }
3728 
3729 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3730 					struct phy_device *phydev,
3731 					unsigned int mode,
3732 					phy_interface_t interface,
3733 					int speed, int duplex, bool tx_pause,
3734 					bool rx_pause)
3735 {
3736 	struct dsa_port *dp = dsa_phylink_to_port(config);
3737 	struct ksz_device *dev = dp->ds->priv;
3738 	int port = dp->index;
3739 	struct ksz_port *p;
3740 
3741 	p = &dev->ports[port];
3742 
3743 	/* Internal PHYs */
3744 	if (dev->info->internal_phy[port])
3745 		return;
3746 
3747 	p->phydev.speed = speed;
3748 
3749 	ksz_port_set_xmii_speed(dev, port, speed);
3750 
3751 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3752 }
3753 
3754 static int ksz_switch_detect(struct ksz_device *dev)
3755 {
3756 	u8 id1, id2, id4;
3757 	u16 id16;
3758 	u32 id32;
3759 	int ret;
3760 
3761 	/* read chip id */
3762 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3763 	if (ret)
3764 		return ret;
3765 
3766 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3767 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3768 
3769 	switch (id1) {
3770 	case KSZ87_FAMILY_ID:
3771 		if (id2 == KSZ87_CHIP_ID_95) {
3772 			u8 val;
3773 
3774 			dev->chip_id = KSZ8795_CHIP_ID;
3775 
3776 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3777 			if (val & KSZ8_PORT_FIBER_MODE)
3778 				dev->chip_id = KSZ8765_CHIP_ID;
3779 		} else if (id2 == KSZ87_CHIP_ID_94) {
3780 			dev->chip_id = KSZ8794_CHIP_ID;
3781 		} else {
3782 			return -ENODEV;
3783 		}
3784 		break;
3785 	case KSZ88_FAMILY_ID:
3786 		if (id2 == KSZ88_CHIP_ID_63)
3787 			dev->chip_id = KSZ88X3_CHIP_ID;
3788 		else
3789 			return -ENODEV;
3790 		break;
3791 	case KSZ8895_FAMILY_ID:
3792 		if (id2 == KSZ8895_CHIP_ID_95 ||
3793 		    id2 == KSZ8895_CHIP_ID_95R)
3794 			dev->chip_id = KSZ8895_CHIP_ID;
3795 		else
3796 			return -ENODEV;
3797 		ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4);
3798 		if (ret)
3799 			return ret;
3800 		if (id4 & SW_KSZ8864)
3801 			dev->chip_id = KSZ8864_CHIP_ID;
3802 		break;
3803 	default:
3804 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3805 		if (ret)
3806 			return ret;
3807 
3808 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3809 		id32 &= ~0xFF;
3810 
3811 		switch (id32) {
3812 		case KSZ9477_CHIP_ID:
3813 		case KSZ9896_CHIP_ID:
3814 		case KSZ9897_CHIP_ID:
3815 		case KSZ9567_CHIP_ID:
3816 		case KSZ8567_CHIP_ID:
3817 		case LAN9370_CHIP_ID:
3818 		case LAN9371_CHIP_ID:
3819 		case LAN9372_CHIP_ID:
3820 		case LAN9373_CHIP_ID:
3821 		case LAN9374_CHIP_ID:
3822 
3823 			/* LAN9646 does not have its own chip id. */
3824 			if (dev->chip_id != LAN9646_CHIP_ID)
3825 				dev->chip_id = id32;
3826 			break;
3827 		case KSZ9893_CHIP_ID:
3828 			ret = ksz_read8(dev, REG_CHIP_ID4,
3829 					&id4);
3830 			if (ret)
3831 				return ret;
3832 
3833 			if (id4 == SKU_ID_KSZ8563)
3834 				dev->chip_id = KSZ8563_CHIP_ID;
3835 			else if (id4 == SKU_ID_KSZ9563)
3836 				dev->chip_id = KSZ9563_CHIP_ID;
3837 			else
3838 				dev->chip_id = KSZ9893_CHIP_ID;
3839 
3840 			break;
3841 		default:
3842 			dev_err(dev->dev,
3843 				"unsupported switch detected %x)\n", id32);
3844 			return -ENODEV;
3845 		}
3846 	}
3847 	return 0;
3848 }
3849 
3850 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3851 			      struct flow_cls_offload *cls, bool ingress)
3852 {
3853 	struct ksz_device *dev = ds->priv;
3854 
3855 	switch (dev->chip_id) {
3856 	case KSZ8563_CHIP_ID:
3857 	case KSZ8567_CHIP_ID:
3858 	case KSZ9477_CHIP_ID:
3859 	case KSZ9563_CHIP_ID:
3860 	case KSZ9567_CHIP_ID:
3861 	case KSZ9893_CHIP_ID:
3862 	case KSZ9896_CHIP_ID:
3863 	case KSZ9897_CHIP_ID:
3864 	case LAN9646_CHIP_ID:
3865 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3866 	}
3867 
3868 	return -EOPNOTSUPP;
3869 }
3870 
3871 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3872 			      struct flow_cls_offload *cls, bool ingress)
3873 {
3874 	struct ksz_device *dev = ds->priv;
3875 
3876 	switch (dev->chip_id) {
3877 	case KSZ8563_CHIP_ID:
3878 	case KSZ8567_CHIP_ID:
3879 	case KSZ9477_CHIP_ID:
3880 	case KSZ9563_CHIP_ID:
3881 	case KSZ9567_CHIP_ID:
3882 	case KSZ9893_CHIP_ID:
3883 	case KSZ9896_CHIP_ID:
3884 	case KSZ9897_CHIP_ID:
3885 	case LAN9646_CHIP_ID:
3886 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3887 	}
3888 
3889 	return -EOPNOTSUPP;
3890 }
3891 
3892 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3893  * is converted to Hex-decimal using the successive multiplication method. On
3894  * every step, integer part is taken and decimal part is carry forwarded.
3895  */
3896 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3897 {
3898 	u32 cinc = 0;
3899 	u32 txrate;
3900 	u32 rate;
3901 	u8 temp;
3902 	u8 i;
3903 
3904 	txrate = idle_slope - send_slope;
3905 
3906 	if (!txrate)
3907 		return -EINVAL;
3908 
3909 	rate = idle_slope;
3910 
3911 	/* 24 bit register */
3912 	for (i = 0; i < 6; i++) {
3913 		rate = rate * 16;
3914 
3915 		temp = rate / txrate;
3916 
3917 		rate %= txrate;
3918 
3919 		cinc = ((cinc << 4) | temp);
3920 	}
3921 
3922 	*bw = cinc;
3923 
3924 	return 0;
3925 }
3926 
3927 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3928 			     u8 shaper)
3929 {
3930 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3931 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3932 			   FIELD_PREP(MTI_SHAPING_M, shaper));
3933 }
3934 
3935 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3936 			    struct tc_cbs_qopt_offload *qopt)
3937 {
3938 	struct ksz_device *dev = ds->priv;
3939 	int ret;
3940 	u32 bw;
3941 
3942 	if (!dev->info->tc_cbs_supported)
3943 		return -EOPNOTSUPP;
3944 
3945 	if (qopt->queue > dev->info->num_tx_queues)
3946 		return -EINVAL;
3947 
3948 	/* Queue Selection */
3949 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3950 	if (ret)
3951 		return ret;
3952 
3953 	if (!qopt->enable)
3954 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3955 					 MTI_SHAPING_OFF);
3956 
3957 	/* High Credit */
3958 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3959 			   qopt->hicredit);
3960 	if (ret)
3961 		return ret;
3962 
3963 	/* Low Credit */
3964 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3965 			   qopt->locredit);
3966 	if (ret)
3967 		return ret;
3968 
3969 	/* Credit Increment Register */
3970 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3971 	if (ret)
3972 		return ret;
3973 
3974 	if (dev->dev_ops->tc_cbs_set_cinc) {
3975 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3976 		if (ret)
3977 			return ret;
3978 	}
3979 
3980 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3981 				 MTI_SHAPING_SRP);
3982 }
3983 
3984 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3985 {
3986 	int queue, ret;
3987 
3988 	/* Configuration will not take effect until the last Port Queue X
3989 	 * Egress Limit Control Register is written.
3990 	 */
3991 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3992 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3993 				  KSZ9477_OUT_RATE_NO_LIMIT);
3994 		if (ret)
3995 			return ret;
3996 	}
3997 
3998 	return 0;
3999 }
4000 
4001 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
4002 				 int band)
4003 {
4004 	/* Compared to queues, bands prioritize packets differently. In strict
4005 	 * priority mode, the lowest priority is assigned to Queue 0 while the
4006 	 * highest priority is given to Band 0.
4007 	 */
4008 	return p->bands - 1 - band;
4009 }
4010 
4011 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
4012 {
4013 	int ret;
4014 
4015 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4016 	if (ret)
4017 		return ret;
4018 
4019 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4020 				 MTI_SHAPING_OFF);
4021 }
4022 
4023 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
4024 			     int weight)
4025 {
4026 	int ret;
4027 
4028 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4029 	if (ret)
4030 		return ret;
4031 
4032 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4033 				MTI_SHAPING_OFF);
4034 	if (ret)
4035 		return ret;
4036 
4037 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
4038 }
4039 
4040 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
4041 			  struct tc_ets_qopt_offload_replace_params *p)
4042 {
4043 	int ret, band, tc_prio;
4044 	u32 queue_map = 0;
4045 
4046 	/* In order to ensure proper prioritization, it is necessary to set the
4047 	 * rate limit for the related queue to zero. Otherwise strict priority
4048 	 * or WRR mode will not work. This is a hardware limitation.
4049 	 */
4050 	ret = ksz_disable_egress_rate_limit(dev, port);
4051 	if (ret)
4052 		return ret;
4053 
4054 	/* Configure queue scheduling mode for all bands. Currently only strict
4055 	 * prio mode is supported.
4056 	 */
4057 	for (band = 0; band < p->bands; band++) {
4058 		int queue = ksz_ets_band_to_queue(p, band);
4059 
4060 		ret = ksz_queue_set_strict(dev, port, queue);
4061 		if (ret)
4062 			return ret;
4063 	}
4064 
4065 	/* Configure the mapping between traffic classes and queues. Note:
4066 	 * priomap variable support 16 traffic classes, but the chip can handle
4067 	 * only 8 classes.
4068 	 */
4069 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
4070 		int queue;
4071 
4072 		if (tc_prio >= dev->info->num_ipms)
4073 			break;
4074 
4075 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
4076 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
4077 	}
4078 
4079 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
4080 }
4081 
4082 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
4083 {
4084 	int ret, queue;
4085 
4086 	/* To restore the default chip configuration, set all queues to use the
4087 	 * WRR scheduler with a weight of 1.
4088 	 */
4089 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4090 		ret = ksz_queue_set_wrr(dev, port, queue,
4091 					KSZ9477_DEFAULT_WRR_WEIGHT);
4092 		if (ret)
4093 			return ret;
4094 	}
4095 
4096 	/* Revert the queue mapping for TC-priority to its default setting on
4097 	 * the chip.
4098 	 */
4099 	return ksz9477_set_default_prio_queue_mapping(dev, port);
4100 }
4101 
4102 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
4103 			       struct tc_ets_qopt_offload_replace_params *p)
4104 {
4105 	int band;
4106 
4107 	/* Since it is not feasible to share one port among multiple qdisc,
4108 	 * the user must configure all available queues appropriately.
4109 	 */
4110 	if (p->bands != dev->info->num_tx_queues) {
4111 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
4112 			dev->info->num_tx_queues);
4113 		return -EOPNOTSUPP;
4114 	}
4115 
4116 	for (band = 0; band < p->bands; ++band) {
4117 		/* The KSZ switches utilize a weighted round robin configuration
4118 		 * where a certain number of packets can be transmitted from a
4119 		 * queue before the next queue is serviced. For more information
4120 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
4121 		 * documentation on the Port Transmit Queue Control 1 Register.
4122 		 * However, the current ETS Qdisc implementation (as of February
4123 		 * 2023) assigns a weight to each queue based on the number of
4124 		 * bytes or extrapolated bandwidth in percentages. Since this
4125 		 * differs from the KSZ switches' method and we don't want to
4126 		 * fake support by converting bytes to packets, it is better to
4127 		 * return an error instead.
4128 		 */
4129 		if (p->quanta[band]) {
4130 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
4131 			return -EOPNOTSUPP;
4132 		}
4133 	}
4134 
4135 	return 0;
4136 }
4137 
4138 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
4139 				  struct tc_ets_qopt_offload *qopt)
4140 {
4141 	struct ksz_device *dev = ds->priv;
4142 	int ret;
4143 
4144 	if (is_ksz8(dev))
4145 		return -EOPNOTSUPP;
4146 
4147 	if (qopt->parent != TC_H_ROOT) {
4148 		dev_err(dev->dev, "Parent should be \"root\"\n");
4149 		return -EOPNOTSUPP;
4150 	}
4151 
4152 	switch (qopt->command) {
4153 	case TC_ETS_REPLACE:
4154 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
4155 		if (ret)
4156 			return ret;
4157 
4158 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
4159 	case TC_ETS_DESTROY:
4160 		return ksz_tc_ets_del(dev, port);
4161 	case TC_ETS_STATS:
4162 	case TC_ETS_GRAFT:
4163 		return -EOPNOTSUPP;
4164 	}
4165 
4166 	return -EOPNOTSUPP;
4167 }
4168 
4169 static int ksz_setup_tc(struct dsa_switch *ds, int port,
4170 			enum tc_setup_type type, void *type_data)
4171 {
4172 	switch (type) {
4173 	case TC_SETUP_QDISC_CBS:
4174 		return ksz_setup_tc_cbs(ds, port, type_data);
4175 	case TC_SETUP_QDISC_ETS:
4176 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
4177 	default:
4178 		return -EOPNOTSUPP;
4179 	}
4180 }
4181 
4182 /**
4183  * ksz_handle_wake_reason - Handle wake reason on a specified port.
4184  * @dev: The device structure.
4185  * @port: The port number.
4186  *
4187  * This function reads the PME (Power Management Event) status register of a
4188  * specified port to determine the wake reason. If there is no wake event, it
4189  * returns early. Otherwise, it logs the wake reason which could be due to a
4190  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
4191  * is then cleared to acknowledge the handling of the wake event.
4192  *
4193  * Return: 0 on success, or an error code on failure.
4194  */
4195 int ksz_handle_wake_reason(struct ksz_device *dev, int port)
4196 {
4197 	const struct ksz_dev_ops *ops = dev->dev_ops;
4198 	const u16 *regs = dev->info->regs;
4199 	u8 pme_status;
4200 	int ret;
4201 
4202 	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
4203 			      &pme_status);
4204 	if (ret)
4205 		return ret;
4206 
4207 	if (!pme_status)
4208 		return 0;
4209 
4210 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
4211 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
4212 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
4213 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
4214 
4215 	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
4216 				pme_status);
4217 }
4218 
4219 /**
4220  * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
4221  * @ds: The dsa_switch structure.
4222  * @port: The port number.
4223  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4224  *
4225  * This function checks the device PME wakeup_source flag and chip_id.
4226  * If enabled and supported, it sets the supported and active WoL
4227  * flags.
4228  */
4229 static void ksz_get_wol(struct dsa_switch *ds, int port,
4230 			struct ethtool_wolinfo *wol)
4231 {
4232 	struct ksz_device *dev = ds->priv;
4233 	const u16 *regs = dev->info->regs;
4234 	u8 pme_ctrl;
4235 	int ret;
4236 
4237 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4238 		return;
4239 
4240 	if (!dev->wakeup_source)
4241 		return;
4242 
4243 	wol->supported = WAKE_PHY;
4244 
4245 	/* Check if the current MAC address on this port can be set
4246 	 * as global for WAKE_MAGIC support. The result may vary
4247 	 * dynamically based on other ports configurations.
4248 	 */
4249 	if (ksz_is_port_mac_global_usable(dev->ds, port))
4250 		wol->supported |= WAKE_MAGIC;
4251 
4252 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4253 				       &pme_ctrl);
4254 	if (ret)
4255 		return;
4256 
4257 	if (pme_ctrl & PME_WOL_MAGICPKT)
4258 		wol->wolopts |= WAKE_MAGIC;
4259 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
4260 		wol->wolopts |= WAKE_PHY;
4261 }
4262 
4263 /**
4264  * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
4265  * @ds: The dsa_switch structure.
4266  * @port: The port number.
4267  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4268  *
4269  * This function configures Wake-on-LAN (WoL) settings for a specified
4270  * port. It validates the provided WoL options, checks if PME is
4271  * enabled and supported, clears any previous wake reasons, and sets
4272  * the Magic Packet flag in the port's PME control register if
4273  * specified.
4274  *
4275  * Return: 0 on success, or other error codes on failure.
4276  */
4277 static int ksz_set_wol(struct dsa_switch *ds, int port,
4278 		       struct ethtool_wolinfo *wol)
4279 {
4280 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
4281 	struct ksz_device *dev = ds->priv;
4282 	const u16 *regs = dev->info->regs;
4283 	bool magic_switched_off;
4284 	bool magic_switched_on;
4285 	int ret;
4286 
4287 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
4288 		return -EINVAL;
4289 
4290 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4291 		return -EOPNOTSUPP;
4292 
4293 	if (!dev->wakeup_source)
4294 		return -EOPNOTSUPP;
4295 
4296 	ret = ksz_handle_wake_reason(dev, port);
4297 	if (ret)
4298 		return ret;
4299 
4300 	if (wol->wolopts & WAKE_MAGIC)
4301 		pme_ctrl |= PME_WOL_MAGICPKT;
4302 	if (wol->wolopts & WAKE_PHY)
4303 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
4304 
4305 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4306 				       &pme_ctrl_old);
4307 	if (ret)
4308 		return ret;
4309 
4310 	if (pme_ctrl_old == pme_ctrl)
4311 		return 0;
4312 
4313 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
4314 			    !(pme_ctrl & PME_WOL_MAGICPKT);
4315 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
4316 			    (pme_ctrl & PME_WOL_MAGICPKT);
4317 
4318 	/* To keep reference count of MAC address, we should do this
4319 	 * operation only on change of WOL settings.
4320 	 */
4321 	if (magic_switched_on) {
4322 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
4323 		if (ret)
4324 			return ret;
4325 	} else if (magic_switched_off) {
4326 		ksz_switch_macaddr_put(dev->ds);
4327 	}
4328 
4329 	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
4330 					pme_ctrl);
4331 	if (ret) {
4332 		if (magic_switched_on)
4333 			ksz_switch_macaddr_put(dev->ds);
4334 		return ret;
4335 	}
4336 
4337 	return 0;
4338 }
4339 
4340 /**
4341  * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
4342  *                        considering Wake-on-LAN (WoL) settings.
4343  * @dev: The switch device structure.
4344  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
4345  *               enabled on any port.
4346  *
4347  * This function prepares the switch device for a safe shutdown while taking
4348  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
4349  * the wol_enabled flag accordingly to reflect whether WoL is active on any
4350  * port.
4351  */
4352 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
4353 {
4354 	const struct ksz_dev_ops *ops = dev->dev_ops;
4355 	const u16 *regs = dev->info->regs;
4356 	u8 pme_pin_en = PME_ENABLE;
4357 	struct dsa_port *dp;
4358 	int ret;
4359 
4360 	*wol_enabled = false;
4361 
4362 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4363 		return;
4364 
4365 	if (!dev->wakeup_source)
4366 		return;
4367 
4368 	dsa_switch_for_each_user_port(dp, dev->ds) {
4369 		u8 pme_ctrl = 0;
4370 
4371 		ret = ops->pme_pread8(dev, dp->index,
4372 				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
4373 		if (!ret && pme_ctrl)
4374 			*wol_enabled = true;
4375 
4376 		/* make sure there are no pending wake events which would
4377 		 * prevent the device from going to sleep/shutdown.
4378 		 */
4379 		ksz_handle_wake_reason(dev, dp->index);
4380 	}
4381 
4382 	/* Now we are save to enable PME pin. */
4383 	if (*wol_enabled) {
4384 		if (dev->pme_active_high)
4385 			pme_pin_en |= PME_POLARITY;
4386 		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
4387 		if (ksz_is_ksz87xx(dev))
4388 			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
4389 	}
4390 }
4391 
4392 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4393 				    const unsigned char *addr)
4394 {
4395 	struct dsa_port *dp = dsa_to_port(ds, port);
4396 	struct ethtool_wolinfo wol;
4397 
4398 	if (dp->hsr_dev) {
4399 		dev_err(ds->dev,
4400 			"Cannot change MAC address on port %d with active HSR offload\n",
4401 			port);
4402 		return -EBUSY;
4403 	}
4404 
4405 	/* Need to initialize variable as the code to fill in settings may
4406 	 * not be executed.
4407 	 */
4408 	wol.wolopts = 0;
4409 
4410 	ksz_get_wol(ds, dp->index, &wol);
4411 	if (wol.wolopts & WAKE_MAGIC) {
4412 		dev_err(ds->dev,
4413 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4414 			port);
4415 		return -EBUSY;
4416 	}
4417 
4418 	return 0;
4419 }
4420 
4421 /**
4422  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4423  *                                 can be used as a global address.
4424  * @ds: Pointer to the DSA switch structure.
4425  * @port: The port number on which the MAC address is to be checked.
4426  *
4427  * This function examines the MAC address set on the specified port and
4428  * determines if it can be used as a global address for the switch.
4429  *
4430  * Return: true if the port's MAC address can be used as a global address, false
4431  * otherwise.
4432  */
4433 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4434 {
4435 	struct net_device *user = dsa_to_port(ds, port)->user;
4436 	const unsigned char *addr = user->dev_addr;
4437 	struct ksz_switch_macaddr *switch_macaddr;
4438 	struct ksz_device *dev = ds->priv;
4439 
4440 	ASSERT_RTNL();
4441 
4442 	switch_macaddr = dev->switch_macaddr;
4443 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4444 		return false;
4445 
4446 	return true;
4447 }
4448 
4449 /**
4450  * ksz_switch_macaddr_get - Program the switch's MAC address register.
4451  * @ds: DSA switch instance.
4452  * @port: Port number.
4453  * @extack: Netlink extended acknowledgment.
4454  *
4455  * This function programs the switch's MAC address register with the MAC address
4456  * of the requesting user port. This single address is used by the switch for
4457  * multiple features like HSR self-address filtering and WoL. Other user ports
4458  * can share ownership of this address as long as their MAC address is the same.
4459  * The MAC addresses of user ports must not change while they have ownership of
4460  * the switch MAC address.
4461  *
4462  * Return: 0 on success, or other error codes on failure.
4463  */
4464 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4465 			   struct netlink_ext_ack *extack)
4466 {
4467 	struct net_device *user = dsa_to_port(ds, port)->user;
4468 	const unsigned char *addr = user->dev_addr;
4469 	struct ksz_switch_macaddr *switch_macaddr;
4470 	struct ksz_device *dev = ds->priv;
4471 	const u16 *regs = dev->info->regs;
4472 	int i, ret;
4473 
4474 	/* Make sure concurrent MAC address changes are blocked */
4475 	ASSERT_RTNL();
4476 
4477 	switch_macaddr = dev->switch_macaddr;
4478 	if (switch_macaddr) {
4479 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4480 			NL_SET_ERR_MSG_FMT_MOD(extack,
4481 					       "Switch already configured for MAC address %pM",
4482 					       switch_macaddr->addr);
4483 			return -EBUSY;
4484 		}
4485 
4486 		refcount_inc(&switch_macaddr->refcount);
4487 		return 0;
4488 	}
4489 
4490 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4491 	if (!switch_macaddr)
4492 		return -ENOMEM;
4493 
4494 	ether_addr_copy(switch_macaddr->addr, addr);
4495 	refcount_set(&switch_macaddr->refcount, 1);
4496 	dev->switch_macaddr = switch_macaddr;
4497 
4498 	/* Program the switch MAC address to hardware */
4499 	for (i = 0; i < ETH_ALEN; i++) {
4500 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
4501 		if (ret)
4502 			goto macaddr_drop;
4503 	}
4504 
4505 	return 0;
4506 
4507 macaddr_drop:
4508 	dev->switch_macaddr = NULL;
4509 	refcount_set(&switch_macaddr->refcount, 0);
4510 	kfree(switch_macaddr);
4511 
4512 	return ret;
4513 }
4514 
4515 void ksz_switch_macaddr_put(struct dsa_switch *ds)
4516 {
4517 	struct ksz_switch_macaddr *switch_macaddr;
4518 	struct ksz_device *dev = ds->priv;
4519 	const u16 *regs = dev->info->regs;
4520 	int i;
4521 
4522 	/* Make sure concurrent MAC address changes are blocked */
4523 	ASSERT_RTNL();
4524 
4525 	switch_macaddr = dev->switch_macaddr;
4526 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4527 		return;
4528 
4529 	for (i = 0; i < ETH_ALEN; i++)
4530 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4531 
4532 	dev->switch_macaddr = NULL;
4533 	kfree(switch_macaddr);
4534 }
4535 
4536 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4537 			struct netlink_ext_ack *extack)
4538 {
4539 	struct ksz_device *dev = ds->priv;
4540 	enum hsr_version ver;
4541 	int ret;
4542 
4543 	ret = hsr_get_version(hsr, &ver);
4544 	if (ret)
4545 		return ret;
4546 
4547 	if (dev->chip_id != KSZ9477_CHIP_ID) {
4548 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4549 		return -EOPNOTSUPP;
4550 	}
4551 
4552 	/* KSZ9477 can support HW offloading of only 1 HSR device */
4553 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4554 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4555 		return -EOPNOTSUPP;
4556 	}
4557 
4558 	/* KSZ9477 only supports HSR v0 and v1 */
4559 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4560 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4561 		return -EOPNOTSUPP;
4562 	}
4563 
4564 	/* KSZ9477 can only perform HSR offloading for up to two ports */
4565 	if (hweight8(dev->hsr_ports) >= 2) {
4566 		NL_SET_ERR_MSG_MOD(extack,
4567 				   "Cannot offload more than two ports - using software HSR");
4568 		return -EOPNOTSUPP;
4569 	}
4570 
4571 	/* Self MAC address filtering, to avoid frames traversing
4572 	 * the HSR ring more than once.
4573 	 */
4574 	ret = ksz_switch_macaddr_get(ds, port, extack);
4575 	if (ret)
4576 		return ret;
4577 
4578 	ksz9477_hsr_join(ds, port, hsr);
4579 	dev->hsr_dev = hsr;
4580 	dev->hsr_ports |= BIT(port);
4581 
4582 	return 0;
4583 }
4584 
4585 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4586 			 struct net_device *hsr)
4587 {
4588 	struct ksz_device *dev = ds->priv;
4589 
4590 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4591 
4592 	ksz9477_hsr_leave(ds, port, hsr);
4593 	dev->hsr_ports &= ~BIT(port);
4594 	if (!dev->hsr_ports)
4595 		dev->hsr_dev = NULL;
4596 
4597 	ksz_switch_macaddr_put(ds);
4598 
4599 	return 0;
4600 }
4601 
4602 static const struct dsa_switch_ops ksz_switch_ops = {
4603 	.get_tag_protocol	= ksz_get_tag_protocol,
4604 	.connect_tag_protocol   = ksz_connect_tag_protocol,
4605 	.get_phy_flags		= ksz_get_phy_flags,
4606 	.setup			= ksz_setup,
4607 	.teardown		= ksz_teardown,
4608 	.phy_read		= ksz_phy_read16,
4609 	.phy_write		= ksz_phy_write16,
4610 	.phylink_get_caps	= ksz_phylink_get_caps,
4611 	.port_setup		= ksz_port_setup,
4612 	.set_ageing_time	= ksz_set_ageing_time,
4613 	.get_strings		= ksz_get_strings,
4614 	.get_ethtool_stats	= ksz_get_ethtool_stats,
4615 	.get_sset_count		= ksz_sset_count,
4616 	.port_bridge_join	= ksz_port_bridge_join,
4617 	.port_bridge_leave	= ksz_port_bridge_leave,
4618 	.port_hsr_join		= ksz_hsr_join,
4619 	.port_hsr_leave		= ksz_hsr_leave,
4620 	.port_set_mac_address	= ksz_port_set_mac_address,
4621 	.port_stp_state_set	= ksz_port_stp_state_set,
4622 	.port_teardown		= ksz_port_teardown,
4623 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4624 	.port_bridge_flags	= ksz_port_bridge_flags,
4625 	.port_fast_age		= ksz_port_fast_age,
4626 	.port_vlan_filtering	= ksz_port_vlan_filtering,
4627 	.port_vlan_add		= ksz_port_vlan_add,
4628 	.port_vlan_del		= ksz_port_vlan_del,
4629 	.port_fdb_dump		= ksz_port_fdb_dump,
4630 	.port_fdb_add		= ksz_port_fdb_add,
4631 	.port_fdb_del		= ksz_port_fdb_del,
4632 	.port_mdb_add           = ksz_port_mdb_add,
4633 	.port_mdb_del           = ksz_port_mdb_del,
4634 	.port_mirror_add	= ksz_port_mirror_add,
4635 	.port_mirror_del	= ksz_port_mirror_del,
4636 	.get_stats64		= ksz_get_stats64,
4637 	.get_pause_stats	= ksz_get_pause_stats,
4638 	.port_change_mtu	= ksz_change_mtu,
4639 	.port_max_mtu		= ksz_max_mtu,
4640 	.get_wol		= ksz_get_wol,
4641 	.set_wol		= ksz_set_wol,
4642 	.get_ts_info		= ksz_get_ts_info,
4643 	.port_hwtstamp_get	= ksz_hwtstamp_get,
4644 	.port_hwtstamp_set	= ksz_hwtstamp_set,
4645 	.port_txtstamp		= ksz_port_txtstamp,
4646 	.port_rxtstamp		= ksz_port_rxtstamp,
4647 	.cls_flower_add		= ksz_cls_flower_add,
4648 	.cls_flower_del		= ksz_cls_flower_del,
4649 	.port_setup_tc		= ksz_setup_tc,
4650 	.get_mac_eee		= ksz_get_mac_eee,
4651 	.set_mac_eee		= ksz_set_mac_eee,
4652 	.port_get_default_prio	= ksz_port_get_default_prio,
4653 	.port_set_default_prio	= ksz_port_set_default_prio,
4654 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
4655 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
4656 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
4657 	.port_get_apptrust	= ksz_port_get_apptrust,
4658 	.port_set_apptrust	= ksz_port_set_apptrust,
4659 };
4660 
4661 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
4662 {
4663 	struct dsa_switch *ds;
4664 	struct ksz_device *swdev;
4665 
4666 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
4667 	if (!ds)
4668 		return NULL;
4669 
4670 	ds->dev = base;
4671 	ds->num_ports = DSA_MAX_PORTS;
4672 	ds->ops = &ksz_switch_ops;
4673 
4674 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
4675 	if (!swdev)
4676 		return NULL;
4677 
4678 	ds->priv = swdev;
4679 	swdev->dev = base;
4680 
4681 	swdev->ds = ds;
4682 	swdev->priv = priv;
4683 
4684 	return swdev;
4685 }
4686 EXPORT_SYMBOL(ksz_switch_alloc);
4687 
4688 /**
4689  * ksz_switch_shutdown - Shutdown routine for the switch device.
4690  * @dev: The switch device structure.
4691  *
4692  * This function is responsible for initiating a shutdown sequence for the
4693  * switch device. It invokes the reset operation defined in the device
4694  * operations, if available, to reset the switch. Subsequently, it calls the
4695  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
4696  * switch.
4697  */
4698 void ksz_switch_shutdown(struct ksz_device *dev)
4699 {
4700 	bool wol_enabled = false;
4701 
4702 	ksz_wol_pre_shutdown(dev, &wol_enabled);
4703 
4704 	if (dev->dev_ops->reset && !wol_enabled)
4705 		dev->dev_ops->reset(dev);
4706 
4707 	dsa_switch_shutdown(dev->ds);
4708 }
4709 EXPORT_SYMBOL(ksz_switch_shutdown);
4710 
4711 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
4712 				  struct device_node *port_dn)
4713 {
4714 	phy_interface_t phy_mode = dev->ports[port_num].interface;
4715 	int rx_delay = -1, tx_delay = -1;
4716 
4717 	if (!phy_interface_mode_is_rgmii(phy_mode))
4718 		return;
4719 
4720 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
4721 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
4722 
4723 	if (rx_delay == -1 && tx_delay == -1) {
4724 		dev_warn(dev->dev,
4725 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
4726 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
4727 			 "\"tx-internal-delay-ps\"",
4728 			 port_num);
4729 
4730 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4731 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4732 			rx_delay = 2000;
4733 
4734 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4735 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4736 			tx_delay = 2000;
4737 	}
4738 
4739 	if (rx_delay < 0)
4740 		rx_delay = 0;
4741 	if (tx_delay < 0)
4742 		tx_delay = 0;
4743 
4744 	dev->ports[port_num].rgmii_rx_val = rx_delay;
4745 	dev->ports[port_num].rgmii_tx_val = tx_delay;
4746 }
4747 
4748 /**
4749  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4750  *				 register value.
4751  * @array:	The array of drive strength values to search.
4752  * @array_size:	The size of the array.
4753  * @microamp:	The drive strength value in microamp to be converted.
4754  *
4755  * This function searches the array of drive strength values for the given
4756  * microamp value and returns the corresponding register value for that drive.
4757  *
4758  * Returns: If found, the corresponding register value for that drive strength
4759  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4760  */
4761 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4762 				     size_t array_size, int microamp)
4763 {
4764 	int i;
4765 
4766 	for (i = 0; i < array_size; i++) {
4767 		if (array[i].microamp == microamp)
4768 			return array[i].reg_val;
4769 	}
4770 
4771 	return -EINVAL;
4772 }
4773 
4774 /**
4775  * ksz_drive_strength_error() - Report invalid drive strength value
4776  * @dev:	ksz device
4777  * @array:	The array of drive strength values to search.
4778  * @array_size:	The size of the array.
4779  * @microamp:	Invalid drive strength value in microamp
4780  *
4781  * This function logs an error message when an unsupported drive strength value
4782  * is detected. It lists out all the supported drive strength values for
4783  * reference in the error message.
4784  */
4785 static void ksz_drive_strength_error(struct ksz_device *dev,
4786 				     const struct ksz_drive_strength *array,
4787 				     size_t array_size, int microamp)
4788 {
4789 	char supported_values[100];
4790 	size_t remaining_size;
4791 	int added_len;
4792 	char *ptr;
4793 	int i;
4794 
4795 	remaining_size = sizeof(supported_values);
4796 	ptr = supported_values;
4797 
4798 	for (i = 0; i < array_size; i++) {
4799 		added_len = snprintf(ptr, remaining_size,
4800 				     i == 0 ? "%d" : ", %d", array[i].microamp);
4801 
4802 		if (added_len >= remaining_size)
4803 			break;
4804 
4805 		ptr += added_len;
4806 		remaining_size -= added_len;
4807 	}
4808 
4809 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
4810 		microamp, supported_values);
4811 }
4812 
4813 /**
4814  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
4815  *				    chip variants.
4816  * @dev:       ksz device
4817  * @props:     Array of drive strength properties to be applied
4818  * @num_props: Number of properties in the array
4819  *
4820  * This function configures the drive strength for various KSZ9477 chip variants
4821  * based on the provided properties. It handles chip-specific nuances and
4822  * ensures only valid drive strengths are written to the respective chip.
4823  *
4824  * Return: 0 on successful configuration, a negative error code on failure.
4825  */
4826 static int ksz9477_drive_strength_write(struct ksz_device *dev,
4827 					struct ksz_driver_strength_prop *props,
4828 					int num_props)
4829 {
4830 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4831 	int i, ret, reg;
4832 	u8 mask = 0;
4833 	u8 val = 0;
4834 
4835 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4836 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4837 			 props[KSZ_DRIVER_STRENGTH_IO].name);
4838 
4839 	if (dev->chip_id == KSZ8795_CHIP_ID ||
4840 	    dev->chip_id == KSZ8794_CHIP_ID ||
4841 	    dev->chip_id == KSZ8765_CHIP_ID)
4842 		reg = KSZ8795_REG_SW_CTRL_20;
4843 	else
4844 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4845 
4846 	for (i = 0; i < num_props; i++) {
4847 		if (props[i].value == -1)
4848 			continue;
4849 
4850 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4851 						array_size, props[i].value);
4852 		if (ret < 0) {
4853 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4854 						 array_size, props[i].value);
4855 			return ret;
4856 		}
4857 
4858 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4859 		val |= ret << props[i].offset;
4860 	}
4861 
4862 	return ksz_rmw8(dev, reg, mask, val);
4863 }
4864 
4865 /**
4866  * ksz88x3_drive_strength_write() - Set the drive strength configuration for
4867  *				    KSZ8863 compatible chip variants.
4868  * @dev:       ksz device
4869  * @props:     Array of drive strength properties to be set
4870  * @num_props: Number of properties in the array
4871  *
4872  * This function applies the specified drive strength settings to KSZ88X3 chip
4873  * variants (KSZ8873, KSZ8863).
4874  * It ensures the configurations align with what the chip variant supports and
4875  * warns or errors out on unsupported settings.
4876  *
4877  * Return: 0 on success, error code otherwise
4878  */
4879 static int ksz88x3_drive_strength_write(struct ksz_device *dev,
4880 					struct ksz_driver_strength_prop *props,
4881 					int num_props)
4882 {
4883 	size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths);
4884 	int microamp;
4885 	int i, ret;
4886 
4887 	for (i = 0; i < num_props; i++) {
4888 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4889 			continue;
4890 
4891 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4892 			 props[i].name);
4893 	}
4894 
4895 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4896 	ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size,
4897 					microamp);
4898 	if (ret < 0) {
4899 		ksz_drive_strength_error(dev, ksz88x3_drive_strengths,
4900 					 array_size, microamp);
4901 		return ret;
4902 	}
4903 
4904 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4905 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4906 }
4907 
4908 /**
4909  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4910  *				from device tree properties.
4911  * @dev:	ksz device
4912  *
4913  * This function reads the specified drive strength properties from the
4914  * device tree, validates against the supported chip variants, and sets
4915  * them accordingly. An error should be critical here, as the drive strength
4916  * settings are crucial for EMI compliance.
4917  *
4918  * Return: 0 on success, error code otherwise
4919  */
4920 static int ksz_parse_drive_strength(struct ksz_device *dev)
4921 {
4922 	struct ksz_driver_strength_prop of_props[] = {
4923 		[KSZ_DRIVER_STRENGTH_HI] = {
4924 			.name = "microchip,hi-drive-strength-microamp",
4925 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4926 			.value = -1,
4927 		},
4928 		[KSZ_DRIVER_STRENGTH_LO] = {
4929 			.name = "microchip,lo-drive-strength-microamp",
4930 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4931 			.value = -1,
4932 		},
4933 		[KSZ_DRIVER_STRENGTH_IO] = {
4934 			.name = "microchip,io-drive-strength-microamp",
4935 			.offset = 0, /* don't care */
4936 			.value = -1,
4937 		},
4938 	};
4939 	struct device_node *np = dev->dev->of_node;
4940 	bool have_any_prop = false;
4941 	int i, ret;
4942 
4943 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4944 		ret = of_property_read_u32(np, of_props[i].name,
4945 					   &of_props[i].value);
4946 		if (ret && ret != -EINVAL)
4947 			dev_warn(dev->dev, "Failed to read %s\n",
4948 				 of_props[i].name);
4949 		if (ret)
4950 			continue;
4951 
4952 		have_any_prop = true;
4953 	}
4954 
4955 	if (!have_any_prop)
4956 		return 0;
4957 
4958 	switch (dev->chip_id) {
4959 	case KSZ88X3_CHIP_ID:
4960 		return ksz88x3_drive_strength_write(dev, of_props,
4961 						    ARRAY_SIZE(of_props));
4962 	case KSZ8795_CHIP_ID:
4963 	case KSZ8794_CHIP_ID:
4964 	case KSZ8765_CHIP_ID:
4965 	case KSZ8563_CHIP_ID:
4966 	case KSZ8567_CHIP_ID:
4967 	case KSZ9477_CHIP_ID:
4968 	case KSZ9563_CHIP_ID:
4969 	case KSZ9567_CHIP_ID:
4970 	case KSZ9893_CHIP_ID:
4971 	case KSZ9896_CHIP_ID:
4972 	case KSZ9897_CHIP_ID:
4973 	case LAN9646_CHIP_ID:
4974 		return ksz9477_drive_strength_write(dev, of_props,
4975 						    ARRAY_SIZE(of_props));
4976 	default:
4977 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4978 			if (of_props[i].value == -1)
4979 				continue;
4980 
4981 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4982 				 of_props[i].name);
4983 		}
4984 	}
4985 
4986 	return 0;
4987 }
4988 
4989 int ksz_switch_register(struct ksz_device *dev)
4990 {
4991 	const struct ksz_chip_data *info;
4992 	struct device_node *ports;
4993 	phy_interface_t interface;
4994 	unsigned int port_num;
4995 	int ret;
4996 	int i;
4997 
4998 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4999 						  GPIOD_OUT_LOW);
5000 	if (IS_ERR(dev->reset_gpio))
5001 		return PTR_ERR(dev->reset_gpio);
5002 
5003 	if (dev->reset_gpio) {
5004 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5005 		usleep_range(10000, 12000);
5006 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
5007 		msleep(100);
5008 	}
5009 
5010 	mutex_init(&dev->dev_mutex);
5011 	mutex_init(&dev->regmap_mutex);
5012 	mutex_init(&dev->alu_mutex);
5013 	mutex_init(&dev->vlan_mutex);
5014 
5015 	ret = ksz_switch_detect(dev);
5016 	if (ret)
5017 		return ret;
5018 
5019 	info = ksz_lookup_info(dev->chip_id);
5020 	if (!info)
5021 		return -ENODEV;
5022 
5023 	/* Update the compatible info with the probed one */
5024 	dev->info = info;
5025 
5026 	dev_info(dev->dev, "found switch: %s, rev %i\n",
5027 		 dev->info->dev_name, dev->chip_rev);
5028 
5029 	ret = ksz_check_device_id(dev);
5030 	if (ret)
5031 		return ret;
5032 
5033 	dev->dev_ops = dev->info->ops;
5034 
5035 	ret = dev->dev_ops->init(dev);
5036 	if (ret)
5037 		return ret;
5038 
5039 	dev->ports = devm_kzalloc(dev->dev,
5040 				  dev->info->port_cnt * sizeof(struct ksz_port),
5041 				  GFP_KERNEL);
5042 	if (!dev->ports)
5043 		return -ENOMEM;
5044 
5045 	for (i = 0; i < dev->info->port_cnt; i++) {
5046 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
5047 		mutex_init(&dev->ports[i].mib.cnt_mutex);
5048 		dev->ports[i].mib.counters =
5049 			devm_kzalloc(dev->dev,
5050 				     sizeof(u64) * (dev->info->mib_cnt + 1),
5051 				     GFP_KERNEL);
5052 		if (!dev->ports[i].mib.counters)
5053 			return -ENOMEM;
5054 
5055 		dev->ports[i].ksz_dev = dev;
5056 		dev->ports[i].num = i;
5057 	}
5058 
5059 	/* set the real number of ports */
5060 	dev->ds->num_ports = dev->info->port_cnt;
5061 
5062 	/* set the phylink ops */
5063 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
5064 
5065 	/* Host port interface will be self detected, or specifically set in
5066 	 * device tree.
5067 	 */
5068 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
5069 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
5070 	if (dev->dev->of_node) {
5071 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
5072 		if (ret == 0)
5073 			dev->compat_interface = interface;
5074 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
5075 		if (!ports)
5076 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
5077 		if (ports) {
5078 			for_each_available_child_of_node_scoped(ports, port) {
5079 				if (of_property_read_u32(port, "reg",
5080 							 &port_num))
5081 					continue;
5082 				if (!(dev->port_mask & BIT(port_num))) {
5083 					of_node_put(ports);
5084 					return -EINVAL;
5085 				}
5086 				of_get_phy_mode(port,
5087 						&dev->ports[port_num].interface);
5088 
5089 				ksz_parse_rgmii_delay(dev, port_num, port);
5090 			}
5091 			of_node_put(ports);
5092 		}
5093 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
5094 							 "microchip,synclko-125");
5095 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
5096 							     "microchip,synclko-disable");
5097 		if (dev->synclko_125 && dev->synclko_disable) {
5098 			dev_err(dev->dev, "inconsistent synclko settings\n");
5099 			return -EINVAL;
5100 		}
5101 
5102 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
5103 							   "wakeup-source");
5104 		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
5105 							     "microchip,pme-active-high");
5106 	}
5107 
5108 	ret = dsa_register_switch(dev->ds);
5109 	if (ret) {
5110 		dev->dev_ops->exit(dev);
5111 		return ret;
5112 	}
5113 
5114 	/* Read MIB counters every 30 seconds to avoid overflow. */
5115 	dev->mib_read_interval = msecs_to_jiffies(5000);
5116 
5117 	/* Start the MIB timer. */
5118 	schedule_delayed_work(&dev->mib_read, 0);
5119 
5120 	return ret;
5121 }
5122 EXPORT_SYMBOL(ksz_switch_register);
5123 
5124 void ksz_switch_remove(struct ksz_device *dev)
5125 {
5126 	/* timer started */
5127 	if (dev->mib_read_interval) {
5128 		dev->mib_read_interval = 0;
5129 		cancel_delayed_work_sync(&dev->mib_read);
5130 	}
5131 
5132 	dev->dev_ops->exit(dev);
5133 	dsa_unregister_switch(dev->ds);
5134 
5135 	if (dev->reset_gpio)
5136 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5137 
5138 }
5139 EXPORT_SYMBOL(ksz_switch_remove);
5140 
5141 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
5142 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
5143 MODULE_LICENSE("GPL");
5144