xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2024 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/ieee8021q.h>
28 #include <net/pkt_cls.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_common.h"
32 #include "ksz_dcb.h"
33 #include "ksz_ptp.h"
34 #include "ksz8.h"
35 #include "ksz9477.h"
36 #include "lan937x.h"
37 
38 #define MIB_COUNTER_NUM 0x20
39 
40 struct ksz_stats_raw {
41 	u64 rx_hi;
42 	u64 rx_undersize;
43 	u64 rx_fragments;
44 	u64 rx_oversize;
45 	u64 rx_jabbers;
46 	u64 rx_symbol_err;
47 	u64 rx_crc_err;
48 	u64 rx_align_err;
49 	u64 rx_mac_ctrl;
50 	u64 rx_pause;
51 	u64 rx_bcast;
52 	u64 rx_mcast;
53 	u64 rx_ucast;
54 	u64 rx_64_or_less;
55 	u64 rx_65_127;
56 	u64 rx_128_255;
57 	u64 rx_256_511;
58 	u64 rx_512_1023;
59 	u64 rx_1024_1522;
60 	u64 rx_1523_2000;
61 	u64 rx_2001;
62 	u64 tx_hi;
63 	u64 tx_late_col;
64 	u64 tx_pause;
65 	u64 tx_bcast;
66 	u64 tx_mcast;
67 	u64 tx_ucast;
68 	u64 tx_deferred;
69 	u64 tx_total_col;
70 	u64 tx_exc_col;
71 	u64 tx_single_col;
72 	u64 tx_mult_col;
73 	u64 rx_total;
74 	u64 tx_total;
75 	u64 rx_discards;
76 	u64 tx_discards;
77 };
78 
79 struct ksz88xx_stats_raw {
80 	u64 rx;
81 	u64 rx_hi;
82 	u64 rx_undersize;
83 	u64 rx_fragments;
84 	u64 rx_oversize;
85 	u64 rx_jabbers;
86 	u64 rx_symbol_err;
87 	u64 rx_crc_err;
88 	u64 rx_align_err;
89 	u64 rx_mac_ctrl;
90 	u64 rx_pause;
91 	u64 rx_bcast;
92 	u64 rx_mcast;
93 	u64 rx_ucast;
94 	u64 rx_64_or_less;
95 	u64 rx_65_127;
96 	u64 rx_128_255;
97 	u64 rx_256_511;
98 	u64 rx_512_1023;
99 	u64 rx_1024_1522;
100 	u64 tx;
101 	u64 tx_hi;
102 	u64 tx_late_col;
103 	u64 tx_pause;
104 	u64 tx_bcast;
105 	u64 tx_mcast;
106 	u64 tx_ucast;
107 	u64 tx_deferred;
108 	u64 tx_total_col;
109 	u64 tx_exc_col;
110 	u64 tx_single_col;
111 	u64 tx_mult_col;
112 	u64 rx_discards;
113 	u64 tx_discards;
114 };
115 
116 static const struct ksz_mib_names ksz88xx_mib_names[] = {
117 	{ 0x00, "rx" },
118 	{ 0x01, "rx_hi" },
119 	{ 0x02, "rx_undersize" },
120 	{ 0x03, "rx_fragments" },
121 	{ 0x04, "rx_oversize" },
122 	{ 0x05, "rx_jabbers" },
123 	{ 0x06, "rx_symbol_err" },
124 	{ 0x07, "rx_crc_err" },
125 	{ 0x08, "rx_align_err" },
126 	{ 0x09, "rx_mac_ctrl" },
127 	{ 0x0a, "rx_pause" },
128 	{ 0x0b, "rx_bcast" },
129 	{ 0x0c, "rx_mcast" },
130 	{ 0x0d, "rx_ucast" },
131 	{ 0x0e, "rx_64_or_less" },
132 	{ 0x0f, "rx_65_127" },
133 	{ 0x10, "rx_128_255" },
134 	{ 0x11, "rx_256_511" },
135 	{ 0x12, "rx_512_1023" },
136 	{ 0x13, "rx_1024_1522" },
137 	{ 0x14, "tx" },
138 	{ 0x15, "tx_hi" },
139 	{ 0x16, "tx_late_col" },
140 	{ 0x17, "tx_pause" },
141 	{ 0x18, "tx_bcast" },
142 	{ 0x19, "tx_mcast" },
143 	{ 0x1a, "tx_ucast" },
144 	{ 0x1b, "tx_deferred" },
145 	{ 0x1c, "tx_total_col" },
146 	{ 0x1d, "tx_exc_col" },
147 	{ 0x1e, "tx_single_col" },
148 	{ 0x1f, "tx_mult_col" },
149 	{ 0x100, "rx_discards" },
150 	{ 0x101, "tx_discards" },
151 };
152 
153 static const struct ksz_mib_names ksz9477_mib_names[] = {
154 	{ 0x00, "rx_hi" },
155 	{ 0x01, "rx_undersize" },
156 	{ 0x02, "rx_fragments" },
157 	{ 0x03, "rx_oversize" },
158 	{ 0x04, "rx_jabbers" },
159 	{ 0x05, "rx_symbol_err" },
160 	{ 0x06, "rx_crc_err" },
161 	{ 0x07, "rx_align_err" },
162 	{ 0x08, "rx_mac_ctrl" },
163 	{ 0x09, "rx_pause" },
164 	{ 0x0A, "rx_bcast" },
165 	{ 0x0B, "rx_mcast" },
166 	{ 0x0C, "rx_ucast" },
167 	{ 0x0D, "rx_64_or_less" },
168 	{ 0x0E, "rx_65_127" },
169 	{ 0x0F, "rx_128_255" },
170 	{ 0x10, "rx_256_511" },
171 	{ 0x11, "rx_512_1023" },
172 	{ 0x12, "rx_1024_1522" },
173 	{ 0x13, "rx_1523_2000" },
174 	{ 0x14, "rx_2001" },
175 	{ 0x15, "tx_hi" },
176 	{ 0x16, "tx_late_col" },
177 	{ 0x17, "tx_pause" },
178 	{ 0x18, "tx_bcast" },
179 	{ 0x19, "tx_mcast" },
180 	{ 0x1A, "tx_ucast" },
181 	{ 0x1B, "tx_deferred" },
182 	{ 0x1C, "tx_total_col" },
183 	{ 0x1D, "tx_exc_col" },
184 	{ 0x1E, "tx_single_col" },
185 	{ 0x1F, "tx_mult_col" },
186 	{ 0x80, "rx_total" },
187 	{ 0x81, "tx_total" },
188 	{ 0x82, "rx_discards" },
189 	{ 0x83, "tx_discards" },
190 };
191 
192 struct ksz_driver_strength_prop {
193 	const char *name;
194 	int offset;
195 	int value;
196 };
197 
198 enum ksz_driver_strength_type {
199 	KSZ_DRIVER_STRENGTH_HI,
200 	KSZ_DRIVER_STRENGTH_LO,
201 	KSZ_DRIVER_STRENGTH_IO,
202 };
203 
204 /**
205  * struct ksz_drive_strength - drive strength mapping
206  * @reg_val:	register value
207  * @microamp:	microamp value
208  */
209 struct ksz_drive_strength {
210 	u32 reg_val;
211 	u32 microamp;
212 };
213 
214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
215  *
216  * This values are not documented in KSZ9477 variants but confirmed by
217  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
218  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
219  *
220  * Documentation in KSZ8795CLX provides more information with some
221  * recommendations:
222  * - for high speed signals
223  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
224  *      2.5V or 3.3V VDDIO.
225  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
226  *      using 1.8V VDDIO.
227  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
228  *      or 3.3V VDDIO.
229  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
230  *   5. In same interface, the heavy loading should use higher one of the
231  *      drive current strength.
232  * - for low speed signals
233  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
234  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
235  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
236  *   4. If it is heavy loading, can use higher drive current strength.
237  */
238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
239 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
240 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
241 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
242 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
243 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
244 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
245 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
246 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
247 };
248 
249 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, ..
250  *			     variants.
251  * This values are documented in KSZ8873 and KSZ8863 datasheets.
252  */
253 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = {
254 	{ 0,  8000 },
255 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
256 };
257 
258 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
259 				       unsigned int mode,
260 				       const struct phylink_link_state *state);
261 static void ksz_phylink_mac_config(struct phylink_config *config,
262 				   unsigned int mode,
263 				   const struct phylink_link_state *state);
264 static void ksz_phylink_mac_link_down(struct phylink_config *config,
265 				      unsigned int mode,
266 				      phy_interface_t interface);
267 
268 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = {
269 	.mac_config	= ksz88x3_phylink_mac_config,
270 	.mac_link_down	= ksz_phylink_mac_link_down,
271 	.mac_link_up	= ksz8_phylink_mac_link_up,
272 };
273 
274 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
275 	.mac_config	= ksz_phylink_mac_config,
276 	.mac_link_down	= ksz_phylink_mac_link_down,
277 	.mac_link_up	= ksz8_phylink_mac_link_up,
278 };
279 
280 static const struct ksz_dev_ops ksz88xx_dev_ops = {
281 	.setup = ksz8_setup,
282 	.get_port_addr = ksz8_get_port_addr,
283 	.cfg_port_member = ksz8_cfg_port_member,
284 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
285 	.port_setup = ksz8_port_setup,
286 	.r_phy = ksz8_r_phy,
287 	.w_phy = ksz8_w_phy,
288 	.r_mib_cnt = ksz8_r_mib_cnt,
289 	.r_mib_pkt = ksz8_r_mib_pkt,
290 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
291 	.freeze_mib = ksz8_freeze_mib,
292 	.port_init_cnt = ksz8_port_init_cnt,
293 	.fdb_dump = ksz8_fdb_dump,
294 	.fdb_add = ksz8_fdb_add,
295 	.fdb_del = ksz8_fdb_del,
296 	.mdb_add = ksz8_mdb_add,
297 	.mdb_del = ksz8_mdb_del,
298 	.vlan_filtering = ksz8_port_vlan_filtering,
299 	.vlan_add = ksz8_port_vlan_add,
300 	.vlan_del = ksz8_port_vlan_del,
301 	.mirror_add = ksz8_port_mirror_add,
302 	.mirror_del = ksz8_port_mirror_del,
303 	.get_caps = ksz8_get_caps,
304 	.config_cpu_port = ksz8_config_cpu_port,
305 	.enable_stp_addr = ksz8_enable_stp_addr,
306 	.reset = ksz8_reset_switch,
307 	.init = ksz8_switch_init,
308 	.exit = ksz8_switch_exit,
309 	.change_mtu = ksz8_change_mtu,
310 	.pme_write8 = ksz8_pme_write8,
311 	.pme_pread8 = ksz8_pme_pread8,
312 	.pme_pwrite8 = ksz8_pme_pwrite8,
313 };
314 
315 static const struct ksz_dev_ops ksz87xx_dev_ops = {
316 	.setup = ksz8_setup,
317 	.get_port_addr = ksz8_get_port_addr,
318 	.cfg_port_member = ksz8_cfg_port_member,
319 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
320 	.port_setup = ksz8_port_setup,
321 	.r_phy = ksz8_r_phy,
322 	.w_phy = ksz8_w_phy,
323 	.r_mib_cnt = ksz8_r_mib_cnt,
324 	.r_mib_pkt = ksz8_r_mib_pkt,
325 	.r_mib_stat64 = ksz_r_mib_stats64,
326 	.freeze_mib = ksz8_freeze_mib,
327 	.port_init_cnt = ksz8_port_init_cnt,
328 	.fdb_dump = ksz8_fdb_dump,
329 	.fdb_add = ksz8_fdb_add,
330 	.fdb_del = ksz8_fdb_del,
331 	.mdb_add = ksz8_mdb_add,
332 	.mdb_del = ksz8_mdb_del,
333 	.vlan_filtering = ksz8_port_vlan_filtering,
334 	.vlan_add = ksz8_port_vlan_add,
335 	.vlan_del = ksz8_port_vlan_del,
336 	.mirror_add = ksz8_port_mirror_add,
337 	.mirror_del = ksz8_port_mirror_del,
338 	.get_caps = ksz8_get_caps,
339 	.config_cpu_port = ksz8_config_cpu_port,
340 	.enable_stp_addr = ksz8_enable_stp_addr,
341 	.reset = ksz8_reset_switch,
342 	.init = ksz8_switch_init,
343 	.exit = ksz8_switch_exit,
344 	.change_mtu = ksz8_change_mtu,
345 	.pme_write8 = ksz8_pme_write8,
346 	.pme_pread8 = ksz8_pme_pread8,
347 	.pme_pwrite8 = ksz8_pme_pwrite8,
348 };
349 
350 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
351 					struct phy_device *phydev,
352 					unsigned int mode,
353 					phy_interface_t interface,
354 					int speed, int duplex, bool tx_pause,
355 					bool rx_pause);
356 
357 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
358 	.mac_config	= ksz_phylink_mac_config,
359 	.mac_link_down	= ksz_phylink_mac_link_down,
360 	.mac_link_up	= ksz9477_phylink_mac_link_up,
361 };
362 
363 static const struct ksz_dev_ops ksz9477_dev_ops = {
364 	.setup = ksz9477_setup,
365 	.get_port_addr = ksz9477_get_port_addr,
366 	.cfg_port_member = ksz9477_cfg_port_member,
367 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
368 	.port_setup = ksz9477_port_setup,
369 	.set_ageing_time = ksz9477_set_ageing_time,
370 	.r_phy = ksz9477_r_phy,
371 	.w_phy = ksz9477_w_phy,
372 	.r_mib_cnt = ksz9477_r_mib_cnt,
373 	.r_mib_pkt = ksz9477_r_mib_pkt,
374 	.r_mib_stat64 = ksz_r_mib_stats64,
375 	.freeze_mib = ksz9477_freeze_mib,
376 	.port_init_cnt = ksz9477_port_init_cnt,
377 	.vlan_filtering = ksz9477_port_vlan_filtering,
378 	.vlan_add = ksz9477_port_vlan_add,
379 	.vlan_del = ksz9477_port_vlan_del,
380 	.mirror_add = ksz9477_port_mirror_add,
381 	.mirror_del = ksz9477_port_mirror_del,
382 	.get_caps = ksz9477_get_caps,
383 	.fdb_dump = ksz9477_fdb_dump,
384 	.fdb_add = ksz9477_fdb_add,
385 	.fdb_del = ksz9477_fdb_del,
386 	.mdb_add = ksz9477_mdb_add,
387 	.mdb_del = ksz9477_mdb_del,
388 	.change_mtu = ksz9477_change_mtu,
389 	.pme_write8 = ksz_write8,
390 	.pme_pread8 = ksz_pread8,
391 	.pme_pwrite8 = ksz_pwrite8,
392 	.config_cpu_port = ksz9477_config_cpu_port,
393 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
394 	.enable_stp_addr = ksz9477_enable_stp_addr,
395 	.reset = ksz9477_reset_switch,
396 	.init = ksz9477_switch_init,
397 	.exit = ksz9477_switch_exit,
398 };
399 
400 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
401 	.mac_config	= ksz_phylink_mac_config,
402 	.mac_link_down	= ksz_phylink_mac_link_down,
403 	.mac_link_up	= ksz9477_phylink_mac_link_up,
404 };
405 
406 static const struct ksz_dev_ops lan937x_dev_ops = {
407 	.setup = lan937x_setup,
408 	.teardown = lan937x_teardown,
409 	.get_port_addr = ksz9477_get_port_addr,
410 	.cfg_port_member = ksz9477_cfg_port_member,
411 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
412 	.port_setup = lan937x_port_setup,
413 	.set_ageing_time = lan937x_set_ageing_time,
414 	.r_phy = lan937x_r_phy,
415 	.w_phy = lan937x_w_phy,
416 	.r_mib_cnt = ksz9477_r_mib_cnt,
417 	.r_mib_pkt = ksz9477_r_mib_pkt,
418 	.r_mib_stat64 = ksz_r_mib_stats64,
419 	.freeze_mib = ksz9477_freeze_mib,
420 	.port_init_cnt = ksz9477_port_init_cnt,
421 	.vlan_filtering = ksz9477_port_vlan_filtering,
422 	.vlan_add = ksz9477_port_vlan_add,
423 	.vlan_del = ksz9477_port_vlan_del,
424 	.mirror_add = ksz9477_port_mirror_add,
425 	.mirror_del = ksz9477_port_mirror_del,
426 	.get_caps = lan937x_phylink_get_caps,
427 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
428 	.fdb_dump = ksz9477_fdb_dump,
429 	.fdb_add = ksz9477_fdb_add,
430 	.fdb_del = ksz9477_fdb_del,
431 	.mdb_add = ksz9477_mdb_add,
432 	.mdb_del = ksz9477_mdb_del,
433 	.change_mtu = lan937x_change_mtu,
434 	.config_cpu_port = lan937x_config_cpu_port,
435 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
436 	.enable_stp_addr = ksz9477_enable_stp_addr,
437 	.reset = lan937x_reset_switch,
438 	.init = lan937x_switch_init,
439 	.exit = lan937x_switch_exit,
440 };
441 
442 static const u16 ksz8795_regs[] = {
443 	[REG_SW_MAC_ADDR]		= 0x68,
444 	[REG_IND_CTRL_0]		= 0x6E,
445 	[REG_IND_DATA_8]		= 0x70,
446 	[REG_IND_DATA_CHECK]		= 0x72,
447 	[REG_IND_DATA_HI]		= 0x71,
448 	[REG_IND_DATA_LO]		= 0x75,
449 	[REG_IND_MIB_CHECK]		= 0x74,
450 	[REG_IND_BYTE]			= 0xA0,
451 	[P_FORCE_CTRL]			= 0x0C,
452 	[P_LINK_STATUS]			= 0x0E,
453 	[P_LOCAL_CTRL]			= 0x07,
454 	[P_NEG_RESTART_CTRL]		= 0x0D,
455 	[P_REMOTE_STATUS]		= 0x08,
456 	[P_SPEED_STATUS]		= 0x09,
457 	[S_TAIL_TAG_CTRL]		= 0x0C,
458 	[P_STP_CTRL]			= 0x02,
459 	[S_START_CTRL]			= 0x01,
460 	[S_BROADCAST_CTRL]		= 0x06,
461 	[S_MULTICAST_CTRL]		= 0x04,
462 	[P_XMII_CTRL_0]			= 0x06,
463 	[P_XMII_CTRL_1]			= 0x06,
464 	[REG_SW_PME_CTRL]		= 0x8003,
465 	[REG_PORT_PME_STATUS]		= 0x8003,
466 	[REG_PORT_PME_CTRL]		= 0x8007,
467 };
468 
469 static const u32 ksz8795_masks[] = {
470 	[PORT_802_1P_REMAPPING]		= BIT(7),
471 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
472 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
473 	[MIB_COUNTER_VALID]		= BIT(5),
474 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
475 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
476 	[VLAN_TABLE_VALID]		= BIT(12),
477 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
478 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
479 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
480 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
481 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
482 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
483 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
484 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
485 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
486 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
487 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
488 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
489 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
490 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
491 };
492 
493 static const u8 ksz8795_xmii_ctrl0[] = {
494 	[P_MII_100MBIT]			= 0,
495 	[P_MII_10MBIT]			= 1,
496 	[P_MII_FULL_DUPLEX]		= 0,
497 	[P_MII_HALF_DUPLEX]		= 1,
498 };
499 
500 static const u8 ksz8795_xmii_ctrl1[] = {
501 	[P_RGMII_SEL]			= 3,
502 	[P_GMII_SEL]			= 2,
503 	[P_RMII_SEL]			= 1,
504 	[P_MII_SEL]			= 0,
505 	[P_GMII_1GBIT]			= 1,
506 	[P_GMII_NOT_1GBIT]		= 0,
507 };
508 
509 static const u8 ksz8795_shifts[] = {
510 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
511 	[VLAN_TABLE]			= 16,
512 	[STATIC_MAC_FWD_PORTS]		= 16,
513 	[STATIC_MAC_FID]		= 24,
514 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
515 	[DYNAMIC_MAC_ENTRIES]		= 29,
516 	[DYNAMIC_MAC_FID]		= 16,
517 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
518 	[DYNAMIC_MAC_SRC_PORT]		= 24,
519 };
520 
521 static const u16 ksz8863_regs[] = {
522 	[REG_SW_MAC_ADDR]		= 0x70,
523 	[REG_IND_CTRL_0]		= 0x79,
524 	[REG_IND_DATA_8]		= 0x7B,
525 	[REG_IND_DATA_CHECK]		= 0x7B,
526 	[REG_IND_DATA_HI]		= 0x7C,
527 	[REG_IND_DATA_LO]		= 0x80,
528 	[REG_IND_MIB_CHECK]		= 0x80,
529 	[P_FORCE_CTRL]			= 0x0C,
530 	[P_LINK_STATUS]			= 0x0E,
531 	[P_LOCAL_CTRL]			= 0x0C,
532 	[P_NEG_RESTART_CTRL]		= 0x0D,
533 	[P_REMOTE_STATUS]		= 0x0E,
534 	[P_SPEED_STATUS]		= 0x0F,
535 	[S_TAIL_TAG_CTRL]		= 0x03,
536 	[P_STP_CTRL]			= 0x02,
537 	[S_START_CTRL]			= 0x01,
538 	[S_BROADCAST_CTRL]		= 0x06,
539 	[S_MULTICAST_CTRL]		= 0x04,
540 };
541 
542 static const u32 ksz8863_masks[] = {
543 	[PORT_802_1P_REMAPPING]		= BIT(3),
544 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
545 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
546 	[MIB_COUNTER_VALID]		= BIT(6),
547 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
548 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
549 	[VLAN_TABLE_VALID]		= BIT(19),
550 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
551 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
552 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
553 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
554 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
555 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
556 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
557 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
558 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
559 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
560 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
561 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
562 };
563 
564 static u8 ksz8863_shifts[] = {
565 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
566 	[STATIC_MAC_FWD_PORTS]		= 16,
567 	[STATIC_MAC_FID]		= 22,
568 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
569 	[DYNAMIC_MAC_ENTRIES]		= 24,
570 	[DYNAMIC_MAC_FID]		= 16,
571 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
572 	[DYNAMIC_MAC_SRC_PORT]		= 20,
573 };
574 
575 static const u16 ksz8895_regs[] = {
576 	[REG_SW_MAC_ADDR]		= 0x68,
577 	[REG_IND_CTRL_0]		= 0x6E,
578 	[REG_IND_DATA_8]		= 0x70,
579 	[REG_IND_DATA_CHECK]		= 0x72,
580 	[REG_IND_DATA_HI]		= 0x71,
581 	[REG_IND_DATA_LO]		= 0x75,
582 	[REG_IND_MIB_CHECK]		= 0x75,
583 	[P_FORCE_CTRL]			= 0x0C,
584 	[P_LINK_STATUS]			= 0x0E,
585 	[P_LOCAL_CTRL]			= 0x0C,
586 	[P_NEG_RESTART_CTRL]		= 0x0D,
587 	[P_REMOTE_STATUS]		= 0x0E,
588 	[P_SPEED_STATUS]		= 0x09,
589 	[S_TAIL_TAG_CTRL]		= 0x0C,
590 	[P_STP_CTRL]			= 0x02,
591 	[S_START_CTRL]			= 0x01,
592 	[S_BROADCAST_CTRL]		= 0x06,
593 	[S_MULTICAST_CTRL]		= 0x04,
594 };
595 
596 static const u32 ksz8895_masks[] = {
597 	[PORT_802_1P_REMAPPING]		= BIT(7),
598 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
599 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
600 	[MIB_COUNTER_VALID]		= BIT(6),
601 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
602 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
603 	[VLAN_TABLE_VALID]		= BIT(12),
604 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
605 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
606 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
607 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
608 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
609 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
610 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
611 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
612 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
613 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
614 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
615 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
616 };
617 
618 static const u8 ksz8895_shifts[] = {
619 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
620 	[VLAN_TABLE]			= 13,
621 	[STATIC_MAC_FWD_PORTS]		= 16,
622 	[STATIC_MAC_FID]		= 24,
623 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
624 	[DYNAMIC_MAC_ENTRIES]		= 29,
625 	[DYNAMIC_MAC_FID]		= 16,
626 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
627 	[DYNAMIC_MAC_SRC_PORT]		= 24,
628 };
629 
630 static const u16 ksz9477_regs[] = {
631 	[REG_SW_MAC_ADDR]		= 0x0302,
632 	[P_STP_CTRL]			= 0x0B04,
633 	[S_START_CTRL]			= 0x0300,
634 	[S_BROADCAST_CTRL]		= 0x0332,
635 	[S_MULTICAST_CTRL]		= 0x0331,
636 	[P_XMII_CTRL_0]			= 0x0300,
637 	[P_XMII_CTRL_1]			= 0x0301,
638 	[REG_SW_PME_CTRL]		= 0x0006,
639 	[REG_PORT_PME_STATUS]		= 0x0013,
640 	[REG_PORT_PME_CTRL]		= 0x0017,
641 };
642 
643 static const u32 ksz9477_masks[] = {
644 	[ALU_STAT_WRITE]		= 0,
645 	[ALU_STAT_READ]			= 1,
646 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
647 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
648 };
649 
650 static const u8 ksz9477_shifts[] = {
651 	[ALU_STAT_INDEX]		= 16,
652 };
653 
654 static const u8 ksz9477_xmii_ctrl0[] = {
655 	[P_MII_100MBIT]			= 1,
656 	[P_MII_10MBIT]			= 0,
657 	[P_MII_FULL_DUPLEX]		= 1,
658 	[P_MII_HALF_DUPLEX]		= 0,
659 };
660 
661 static const u8 ksz9477_xmii_ctrl1[] = {
662 	[P_RGMII_SEL]			= 0,
663 	[P_RMII_SEL]			= 1,
664 	[P_GMII_SEL]			= 2,
665 	[P_MII_SEL]			= 3,
666 	[P_GMII_1GBIT]			= 0,
667 	[P_GMII_NOT_1GBIT]		= 1,
668 };
669 
670 static const u32 lan937x_masks[] = {
671 	[ALU_STAT_WRITE]		= 1,
672 	[ALU_STAT_READ]			= 2,
673 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
674 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
675 };
676 
677 static const u8 lan937x_shifts[] = {
678 	[ALU_STAT_INDEX]		= 8,
679 };
680 
681 static const struct regmap_range ksz8563_valid_regs[] = {
682 	regmap_reg_range(0x0000, 0x0003),
683 	regmap_reg_range(0x0006, 0x0006),
684 	regmap_reg_range(0x000f, 0x001f),
685 	regmap_reg_range(0x0100, 0x0100),
686 	regmap_reg_range(0x0104, 0x0107),
687 	regmap_reg_range(0x010d, 0x010d),
688 	regmap_reg_range(0x0110, 0x0113),
689 	regmap_reg_range(0x0120, 0x012b),
690 	regmap_reg_range(0x0201, 0x0201),
691 	regmap_reg_range(0x0210, 0x0213),
692 	regmap_reg_range(0x0300, 0x0300),
693 	regmap_reg_range(0x0302, 0x031b),
694 	regmap_reg_range(0x0320, 0x032b),
695 	regmap_reg_range(0x0330, 0x0336),
696 	regmap_reg_range(0x0338, 0x033e),
697 	regmap_reg_range(0x0340, 0x035f),
698 	regmap_reg_range(0x0370, 0x0370),
699 	regmap_reg_range(0x0378, 0x0378),
700 	regmap_reg_range(0x037c, 0x037d),
701 	regmap_reg_range(0x0390, 0x0393),
702 	regmap_reg_range(0x0400, 0x040e),
703 	regmap_reg_range(0x0410, 0x042f),
704 	regmap_reg_range(0x0500, 0x0519),
705 	regmap_reg_range(0x0520, 0x054b),
706 	regmap_reg_range(0x0550, 0x05b3),
707 
708 	/* port 1 */
709 	regmap_reg_range(0x1000, 0x1001),
710 	regmap_reg_range(0x1004, 0x100b),
711 	regmap_reg_range(0x1013, 0x1013),
712 	regmap_reg_range(0x1017, 0x1017),
713 	regmap_reg_range(0x101b, 0x101b),
714 	regmap_reg_range(0x101f, 0x1021),
715 	regmap_reg_range(0x1030, 0x1030),
716 	regmap_reg_range(0x1100, 0x1111),
717 	regmap_reg_range(0x111a, 0x111d),
718 	regmap_reg_range(0x1122, 0x1127),
719 	regmap_reg_range(0x112a, 0x112b),
720 	regmap_reg_range(0x1136, 0x1139),
721 	regmap_reg_range(0x113e, 0x113f),
722 	regmap_reg_range(0x1400, 0x1401),
723 	regmap_reg_range(0x1403, 0x1403),
724 	regmap_reg_range(0x1410, 0x1417),
725 	regmap_reg_range(0x1420, 0x1423),
726 	regmap_reg_range(0x1500, 0x1507),
727 	regmap_reg_range(0x1600, 0x1612),
728 	regmap_reg_range(0x1800, 0x180f),
729 	regmap_reg_range(0x1900, 0x1907),
730 	regmap_reg_range(0x1914, 0x191b),
731 	regmap_reg_range(0x1a00, 0x1a03),
732 	regmap_reg_range(0x1a04, 0x1a08),
733 	regmap_reg_range(0x1b00, 0x1b01),
734 	regmap_reg_range(0x1b04, 0x1b04),
735 	regmap_reg_range(0x1c00, 0x1c05),
736 	regmap_reg_range(0x1c08, 0x1c1b),
737 
738 	/* port 2 */
739 	regmap_reg_range(0x2000, 0x2001),
740 	regmap_reg_range(0x2004, 0x200b),
741 	regmap_reg_range(0x2013, 0x2013),
742 	regmap_reg_range(0x2017, 0x2017),
743 	regmap_reg_range(0x201b, 0x201b),
744 	regmap_reg_range(0x201f, 0x2021),
745 	regmap_reg_range(0x2030, 0x2030),
746 	regmap_reg_range(0x2100, 0x2111),
747 	regmap_reg_range(0x211a, 0x211d),
748 	regmap_reg_range(0x2122, 0x2127),
749 	regmap_reg_range(0x212a, 0x212b),
750 	regmap_reg_range(0x2136, 0x2139),
751 	regmap_reg_range(0x213e, 0x213f),
752 	regmap_reg_range(0x2400, 0x2401),
753 	regmap_reg_range(0x2403, 0x2403),
754 	regmap_reg_range(0x2410, 0x2417),
755 	regmap_reg_range(0x2420, 0x2423),
756 	regmap_reg_range(0x2500, 0x2507),
757 	regmap_reg_range(0x2600, 0x2612),
758 	regmap_reg_range(0x2800, 0x280f),
759 	regmap_reg_range(0x2900, 0x2907),
760 	regmap_reg_range(0x2914, 0x291b),
761 	regmap_reg_range(0x2a00, 0x2a03),
762 	regmap_reg_range(0x2a04, 0x2a08),
763 	regmap_reg_range(0x2b00, 0x2b01),
764 	regmap_reg_range(0x2b04, 0x2b04),
765 	regmap_reg_range(0x2c00, 0x2c05),
766 	regmap_reg_range(0x2c08, 0x2c1b),
767 
768 	/* port 3 */
769 	regmap_reg_range(0x3000, 0x3001),
770 	regmap_reg_range(0x3004, 0x300b),
771 	regmap_reg_range(0x3013, 0x3013),
772 	regmap_reg_range(0x3017, 0x3017),
773 	regmap_reg_range(0x301b, 0x301b),
774 	regmap_reg_range(0x301f, 0x3021),
775 	regmap_reg_range(0x3030, 0x3030),
776 	regmap_reg_range(0x3300, 0x3301),
777 	regmap_reg_range(0x3303, 0x3303),
778 	regmap_reg_range(0x3400, 0x3401),
779 	regmap_reg_range(0x3403, 0x3403),
780 	regmap_reg_range(0x3410, 0x3417),
781 	regmap_reg_range(0x3420, 0x3423),
782 	regmap_reg_range(0x3500, 0x3507),
783 	regmap_reg_range(0x3600, 0x3612),
784 	regmap_reg_range(0x3800, 0x380f),
785 	regmap_reg_range(0x3900, 0x3907),
786 	regmap_reg_range(0x3914, 0x391b),
787 	regmap_reg_range(0x3a00, 0x3a03),
788 	regmap_reg_range(0x3a04, 0x3a08),
789 	regmap_reg_range(0x3b00, 0x3b01),
790 	regmap_reg_range(0x3b04, 0x3b04),
791 	regmap_reg_range(0x3c00, 0x3c05),
792 	regmap_reg_range(0x3c08, 0x3c1b),
793 };
794 
795 static const struct regmap_access_table ksz8563_register_set = {
796 	.yes_ranges = ksz8563_valid_regs,
797 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
798 };
799 
800 static const struct regmap_range ksz9477_valid_regs[] = {
801 	regmap_reg_range(0x0000, 0x0003),
802 	regmap_reg_range(0x0006, 0x0006),
803 	regmap_reg_range(0x0010, 0x001f),
804 	regmap_reg_range(0x0100, 0x0100),
805 	regmap_reg_range(0x0103, 0x0107),
806 	regmap_reg_range(0x010d, 0x010d),
807 	regmap_reg_range(0x0110, 0x0113),
808 	regmap_reg_range(0x0120, 0x012b),
809 	regmap_reg_range(0x0201, 0x0201),
810 	regmap_reg_range(0x0210, 0x0213),
811 	regmap_reg_range(0x0300, 0x0300),
812 	regmap_reg_range(0x0302, 0x031b),
813 	regmap_reg_range(0x0320, 0x032b),
814 	regmap_reg_range(0x0330, 0x0336),
815 	regmap_reg_range(0x0338, 0x033b),
816 	regmap_reg_range(0x033e, 0x033e),
817 	regmap_reg_range(0x0340, 0x035f),
818 	regmap_reg_range(0x0370, 0x0370),
819 	regmap_reg_range(0x0378, 0x0378),
820 	regmap_reg_range(0x037c, 0x037d),
821 	regmap_reg_range(0x0390, 0x0393),
822 	regmap_reg_range(0x0400, 0x040e),
823 	regmap_reg_range(0x0410, 0x042f),
824 	regmap_reg_range(0x0444, 0x044b),
825 	regmap_reg_range(0x0450, 0x046f),
826 	regmap_reg_range(0x0500, 0x0519),
827 	regmap_reg_range(0x0520, 0x054b),
828 	regmap_reg_range(0x0550, 0x05b3),
829 	regmap_reg_range(0x0604, 0x060b),
830 	regmap_reg_range(0x0610, 0x0612),
831 	regmap_reg_range(0x0614, 0x062c),
832 	regmap_reg_range(0x0640, 0x0645),
833 	regmap_reg_range(0x0648, 0x064d),
834 
835 	/* port 1 */
836 	regmap_reg_range(0x1000, 0x1001),
837 	regmap_reg_range(0x1013, 0x1013),
838 	regmap_reg_range(0x1017, 0x1017),
839 	regmap_reg_range(0x101b, 0x101b),
840 	regmap_reg_range(0x101f, 0x1020),
841 	regmap_reg_range(0x1030, 0x1030),
842 	regmap_reg_range(0x1100, 0x1115),
843 	regmap_reg_range(0x111a, 0x111f),
844 	regmap_reg_range(0x1120, 0x112b),
845 	regmap_reg_range(0x1134, 0x113b),
846 	regmap_reg_range(0x113c, 0x113f),
847 	regmap_reg_range(0x1400, 0x1401),
848 	regmap_reg_range(0x1403, 0x1403),
849 	regmap_reg_range(0x1410, 0x1417),
850 	regmap_reg_range(0x1420, 0x1423),
851 	regmap_reg_range(0x1500, 0x1507),
852 	regmap_reg_range(0x1600, 0x1613),
853 	regmap_reg_range(0x1800, 0x180f),
854 	regmap_reg_range(0x1820, 0x1827),
855 	regmap_reg_range(0x1830, 0x1837),
856 	regmap_reg_range(0x1840, 0x184b),
857 	regmap_reg_range(0x1900, 0x1907),
858 	regmap_reg_range(0x1914, 0x191b),
859 	regmap_reg_range(0x1920, 0x1920),
860 	regmap_reg_range(0x1923, 0x1927),
861 	regmap_reg_range(0x1a00, 0x1a03),
862 	regmap_reg_range(0x1a04, 0x1a07),
863 	regmap_reg_range(0x1b00, 0x1b01),
864 	regmap_reg_range(0x1b04, 0x1b04),
865 	regmap_reg_range(0x1c00, 0x1c05),
866 	regmap_reg_range(0x1c08, 0x1c1b),
867 
868 	/* port 2 */
869 	regmap_reg_range(0x2000, 0x2001),
870 	regmap_reg_range(0x2013, 0x2013),
871 	regmap_reg_range(0x2017, 0x2017),
872 	regmap_reg_range(0x201b, 0x201b),
873 	regmap_reg_range(0x201f, 0x2020),
874 	regmap_reg_range(0x2030, 0x2030),
875 	regmap_reg_range(0x2100, 0x2115),
876 	regmap_reg_range(0x211a, 0x211f),
877 	regmap_reg_range(0x2120, 0x212b),
878 	regmap_reg_range(0x2134, 0x213b),
879 	regmap_reg_range(0x213c, 0x213f),
880 	regmap_reg_range(0x2400, 0x2401),
881 	regmap_reg_range(0x2403, 0x2403),
882 	regmap_reg_range(0x2410, 0x2417),
883 	regmap_reg_range(0x2420, 0x2423),
884 	regmap_reg_range(0x2500, 0x2507),
885 	regmap_reg_range(0x2600, 0x2613),
886 	regmap_reg_range(0x2800, 0x280f),
887 	regmap_reg_range(0x2820, 0x2827),
888 	regmap_reg_range(0x2830, 0x2837),
889 	regmap_reg_range(0x2840, 0x284b),
890 	regmap_reg_range(0x2900, 0x2907),
891 	regmap_reg_range(0x2914, 0x291b),
892 	regmap_reg_range(0x2920, 0x2920),
893 	regmap_reg_range(0x2923, 0x2927),
894 	regmap_reg_range(0x2a00, 0x2a03),
895 	regmap_reg_range(0x2a04, 0x2a07),
896 	regmap_reg_range(0x2b00, 0x2b01),
897 	regmap_reg_range(0x2b04, 0x2b04),
898 	regmap_reg_range(0x2c00, 0x2c05),
899 	regmap_reg_range(0x2c08, 0x2c1b),
900 
901 	/* port 3 */
902 	regmap_reg_range(0x3000, 0x3001),
903 	regmap_reg_range(0x3013, 0x3013),
904 	regmap_reg_range(0x3017, 0x3017),
905 	regmap_reg_range(0x301b, 0x301b),
906 	regmap_reg_range(0x301f, 0x3020),
907 	regmap_reg_range(0x3030, 0x3030),
908 	regmap_reg_range(0x3100, 0x3115),
909 	regmap_reg_range(0x311a, 0x311f),
910 	regmap_reg_range(0x3120, 0x312b),
911 	regmap_reg_range(0x3134, 0x313b),
912 	regmap_reg_range(0x313c, 0x313f),
913 	regmap_reg_range(0x3400, 0x3401),
914 	regmap_reg_range(0x3403, 0x3403),
915 	regmap_reg_range(0x3410, 0x3417),
916 	regmap_reg_range(0x3420, 0x3423),
917 	regmap_reg_range(0x3500, 0x3507),
918 	regmap_reg_range(0x3600, 0x3613),
919 	regmap_reg_range(0x3800, 0x380f),
920 	regmap_reg_range(0x3820, 0x3827),
921 	regmap_reg_range(0x3830, 0x3837),
922 	regmap_reg_range(0x3840, 0x384b),
923 	regmap_reg_range(0x3900, 0x3907),
924 	regmap_reg_range(0x3914, 0x391b),
925 	regmap_reg_range(0x3920, 0x3920),
926 	regmap_reg_range(0x3923, 0x3927),
927 	regmap_reg_range(0x3a00, 0x3a03),
928 	regmap_reg_range(0x3a04, 0x3a07),
929 	regmap_reg_range(0x3b00, 0x3b01),
930 	regmap_reg_range(0x3b04, 0x3b04),
931 	regmap_reg_range(0x3c00, 0x3c05),
932 	regmap_reg_range(0x3c08, 0x3c1b),
933 
934 	/* port 4 */
935 	regmap_reg_range(0x4000, 0x4001),
936 	regmap_reg_range(0x4013, 0x4013),
937 	regmap_reg_range(0x4017, 0x4017),
938 	regmap_reg_range(0x401b, 0x401b),
939 	regmap_reg_range(0x401f, 0x4020),
940 	regmap_reg_range(0x4030, 0x4030),
941 	regmap_reg_range(0x4100, 0x4115),
942 	regmap_reg_range(0x411a, 0x411f),
943 	regmap_reg_range(0x4120, 0x412b),
944 	regmap_reg_range(0x4134, 0x413b),
945 	regmap_reg_range(0x413c, 0x413f),
946 	regmap_reg_range(0x4400, 0x4401),
947 	regmap_reg_range(0x4403, 0x4403),
948 	regmap_reg_range(0x4410, 0x4417),
949 	regmap_reg_range(0x4420, 0x4423),
950 	regmap_reg_range(0x4500, 0x4507),
951 	regmap_reg_range(0x4600, 0x4613),
952 	regmap_reg_range(0x4800, 0x480f),
953 	regmap_reg_range(0x4820, 0x4827),
954 	regmap_reg_range(0x4830, 0x4837),
955 	regmap_reg_range(0x4840, 0x484b),
956 	regmap_reg_range(0x4900, 0x4907),
957 	regmap_reg_range(0x4914, 0x491b),
958 	regmap_reg_range(0x4920, 0x4920),
959 	regmap_reg_range(0x4923, 0x4927),
960 	regmap_reg_range(0x4a00, 0x4a03),
961 	regmap_reg_range(0x4a04, 0x4a07),
962 	regmap_reg_range(0x4b00, 0x4b01),
963 	regmap_reg_range(0x4b04, 0x4b04),
964 	regmap_reg_range(0x4c00, 0x4c05),
965 	regmap_reg_range(0x4c08, 0x4c1b),
966 
967 	/* port 5 */
968 	regmap_reg_range(0x5000, 0x5001),
969 	regmap_reg_range(0x5013, 0x5013),
970 	regmap_reg_range(0x5017, 0x5017),
971 	regmap_reg_range(0x501b, 0x501b),
972 	regmap_reg_range(0x501f, 0x5020),
973 	regmap_reg_range(0x5030, 0x5030),
974 	regmap_reg_range(0x5100, 0x5115),
975 	regmap_reg_range(0x511a, 0x511f),
976 	regmap_reg_range(0x5120, 0x512b),
977 	regmap_reg_range(0x5134, 0x513b),
978 	regmap_reg_range(0x513c, 0x513f),
979 	regmap_reg_range(0x5400, 0x5401),
980 	regmap_reg_range(0x5403, 0x5403),
981 	regmap_reg_range(0x5410, 0x5417),
982 	regmap_reg_range(0x5420, 0x5423),
983 	regmap_reg_range(0x5500, 0x5507),
984 	regmap_reg_range(0x5600, 0x5613),
985 	regmap_reg_range(0x5800, 0x580f),
986 	regmap_reg_range(0x5820, 0x5827),
987 	regmap_reg_range(0x5830, 0x5837),
988 	regmap_reg_range(0x5840, 0x584b),
989 	regmap_reg_range(0x5900, 0x5907),
990 	regmap_reg_range(0x5914, 0x591b),
991 	regmap_reg_range(0x5920, 0x5920),
992 	regmap_reg_range(0x5923, 0x5927),
993 	regmap_reg_range(0x5a00, 0x5a03),
994 	regmap_reg_range(0x5a04, 0x5a07),
995 	regmap_reg_range(0x5b00, 0x5b01),
996 	regmap_reg_range(0x5b04, 0x5b04),
997 	regmap_reg_range(0x5c00, 0x5c05),
998 	regmap_reg_range(0x5c08, 0x5c1b),
999 
1000 	/* port 6 */
1001 	regmap_reg_range(0x6000, 0x6001),
1002 	regmap_reg_range(0x6013, 0x6013),
1003 	regmap_reg_range(0x6017, 0x6017),
1004 	regmap_reg_range(0x601b, 0x601b),
1005 	regmap_reg_range(0x601f, 0x6020),
1006 	regmap_reg_range(0x6030, 0x6030),
1007 	regmap_reg_range(0x6300, 0x6301),
1008 	regmap_reg_range(0x6400, 0x6401),
1009 	regmap_reg_range(0x6403, 0x6403),
1010 	regmap_reg_range(0x6410, 0x6417),
1011 	regmap_reg_range(0x6420, 0x6423),
1012 	regmap_reg_range(0x6500, 0x6507),
1013 	regmap_reg_range(0x6600, 0x6613),
1014 	regmap_reg_range(0x6800, 0x680f),
1015 	regmap_reg_range(0x6820, 0x6827),
1016 	regmap_reg_range(0x6830, 0x6837),
1017 	regmap_reg_range(0x6840, 0x684b),
1018 	regmap_reg_range(0x6900, 0x6907),
1019 	regmap_reg_range(0x6914, 0x691b),
1020 	regmap_reg_range(0x6920, 0x6920),
1021 	regmap_reg_range(0x6923, 0x6927),
1022 	regmap_reg_range(0x6a00, 0x6a03),
1023 	regmap_reg_range(0x6a04, 0x6a07),
1024 	regmap_reg_range(0x6b00, 0x6b01),
1025 	regmap_reg_range(0x6b04, 0x6b04),
1026 	regmap_reg_range(0x6c00, 0x6c05),
1027 	regmap_reg_range(0x6c08, 0x6c1b),
1028 
1029 	/* port 7 */
1030 	regmap_reg_range(0x7000, 0x7001),
1031 	regmap_reg_range(0x7013, 0x7013),
1032 	regmap_reg_range(0x7017, 0x7017),
1033 	regmap_reg_range(0x701b, 0x701b),
1034 	regmap_reg_range(0x701f, 0x7020),
1035 	regmap_reg_range(0x7030, 0x7030),
1036 	regmap_reg_range(0x7200, 0x7203),
1037 	regmap_reg_range(0x7206, 0x7207),
1038 	regmap_reg_range(0x7300, 0x7301),
1039 	regmap_reg_range(0x7400, 0x7401),
1040 	regmap_reg_range(0x7403, 0x7403),
1041 	regmap_reg_range(0x7410, 0x7417),
1042 	regmap_reg_range(0x7420, 0x7423),
1043 	regmap_reg_range(0x7500, 0x7507),
1044 	regmap_reg_range(0x7600, 0x7613),
1045 	regmap_reg_range(0x7800, 0x780f),
1046 	regmap_reg_range(0x7820, 0x7827),
1047 	regmap_reg_range(0x7830, 0x7837),
1048 	regmap_reg_range(0x7840, 0x784b),
1049 	regmap_reg_range(0x7900, 0x7907),
1050 	regmap_reg_range(0x7914, 0x791b),
1051 	regmap_reg_range(0x7920, 0x7920),
1052 	regmap_reg_range(0x7923, 0x7927),
1053 	regmap_reg_range(0x7a00, 0x7a03),
1054 	regmap_reg_range(0x7a04, 0x7a07),
1055 	regmap_reg_range(0x7b00, 0x7b01),
1056 	regmap_reg_range(0x7b04, 0x7b04),
1057 	regmap_reg_range(0x7c00, 0x7c05),
1058 	regmap_reg_range(0x7c08, 0x7c1b),
1059 };
1060 
1061 static const struct regmap_access_table ksz9477_register_set = {
1062 	.yes_ranges = ksz9477_valid_regs,
1063 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1064 };
1065 
1066 static const struct regmap_range ksz9896_valid_regs[] = {
1067 	regmap_reg_range(0x0000, 0x0003),
1068 	regmap_reg_range(0x0006, 0x0006),
1069 	regmap_reg_range(0x0010, 0x001f),
1070 	regmap_reg_range(0x0100, 0x0100),
1071 	regmap_reg_range(0x0103, 0x0107),
1072 	regmap_reg_range(0x010d, 0x010d),
1073 	regmap_reg_range(0x0110, 0x0113),
1074 	regmap_reg_range(0x0120, 0x0127),
1075 	regmap_reg_range(0x0201, 0x0201),
1076 	regmap_reg_range(0x0210, 0x0213),
1077 	regmap_reg_range(0x0300, 0x0300),
1078 	regmap_reg_range(0x0302, 0x030b),
1079 	regmap_reg_range(0x0310, 0x031b),
1080 	regmap_reg_range(0x0320, 0x032b),
1081 	regmap_reg_range(0x0330, 0x0336),
1082 	regmap_reg_range(0x0338, 0x033b),
1083 	regmap_reg_range(0x033e, 0x033e),
1084 	regmap_reg_range(0x0340, 0x035f),
1085 	regmap_reg_range(0x0370, 0x0370),
1086 	regmap_reg_range(0x0378, 0x0378),
1087 	regmap_reg_range(0x037c, 0x037d),
1088 	regmap_reg_range(0x0390, 0x0393),
1089 	regmap_reg_range(0x0400, 0x040e),
1090 	regmap_reg_range(0x0410, 0x042f),
1091 
1092 	/* port 1 */
1093 	regmap_reg_range(0x1000, 0x1001),
1094 	regmap_reg_range(0x1013, 0x1013),
1095 	regmap_reg_range(0x1017, 0x1017),
1096 	regmap_reg_range(0x101b, 0x101b),
1097 	regmap_reg_range(0x101f, 0x1020),
1098 	regmap_reg_range(0x1030, 0x1030),
1099 	regmap_reg_range(0x1100, 0x1115),
1100 	regmap_reg_range(0x111a, 0x111f),
1101 	regmap_reg_range(0x1122, 0x1127),
1102 	regmap_reg_range(0x112a, 0x112b),
1103 	regmap_reg_range(0x1136, 0x1139),
1104 	regmap_reg_range(0x113e, 0x113f),
1105 	regmap_reg_range(0x1400, 0x1401),
1106 	regmap_reg_range(0x1403, 0x1403),
1107 	regmap_reg_range(0x1410, 0x1417),
1108 	regmap_reg_range(0x1420, 0x1423),
1109 	regmap_reg_range(0x1500, 0x1507),
1110 	regmap_reg_range(0x1600, 0x1612),
1111 	regmap_reg_range(0x1800, 0x180f),
1112 	regmap_reg_range(0x1820, 0x1827),
1113 	regmap_reg_range(0x1830, 0x1837),
1114 	regmap_reg_range(0x1840, 0x184b),
1115 	regmap_reg_range(0x1900, 0x1907),
1116 	regmap_reg_range(0x1914, 0x1915),
1117 	regmap_reg_range(0x1a00, 0x1a03),
1118 	regmap_reg_range(0x1a04, 0x1a07),
1119 	regmap_reg_range(0x1b00, 0x1b01),
1120 	regmap_reg_range(0x1b04, 0x1b04),
1121 
1122 	/* port 2 */
1123 	regmap_reg_range(0x2000, 0x2001),
1124 	regmap_reg_range(0x2013, 0x2013),
1125 	regmap_reg_range(0x2017, 0x2017),
1126 	regmap_reg_range(0x201b, 0x201b),
1127 	regmap_reg_range(0x201f, 0x2020),
1128 	regmap_reg_range(0x2030, 0x2030),
1129 	regmap_reg_range(0x2100, 0x2115),
1130 	regmap_reg_range(0x211a, 0x211f),
1131 	regmap_reg_range(0x2122, 0x2127),
1132 	regmap_reg_range(0x212a, 0x212b),
1133 	regmap_reg_range(0x2136, 0x2139),
1134 	regmap_reg_range(0x213e, 0x213f),
1135 	regmap_reg_range(0x2400, 0x2401),
1136 	regmap_reg_range(0x2403, 0x2403),
1137 	regmap_reg_range(0x2410, 0x2417),
1138 	regmap_reg_range(0x2420, 0x2423),
1139 	regmap_reg_range(0x2500, 0x2507),
1140 	regmap_reg_range(0x2600, 0x2612),
1141 	regmap_reg_range(0x2800, 0x280f),
1142 	regmap_reg_range(0x2820, 0x2827),
1143 	regmap_reg_range(0x2830, 0x2837),
1144 	regmap_reg_range(0x2840, 0x284b),
1145 	regmap_reg_range(0x2900, 0x2907),
1146 	regmap_reg_range(0x2914, 0x2915),
1147 	regmap_reg_range(0x2a00, 0x2a03),
1148 	regmap_reg_range(0x2a04, 0x2a07),
1149 	regmap_reg_range(0x2b00, 0x2b01),
1150 	regmap_reg_range(0x2b04, 0x2b04),
1151 
1152 	/* port 3 */
1153 	regmap_reg_range(0x3000, 0x3001),
1154 	regmap_reg_range(0x3013, 0x3013),
1155 	regmap_reg_range(0x3017, 0x3017),
1156 	regmap_reg_range(0x301b, 0x301b),
1157 	regmap_reg_range(0x301f, 0x3020),
1158 	regmap_reg_range(0x3030, 0x3030),
1159 	regmap_reg_range(0x3100, 0x3115),
1160 	regmap_reg_range(0x311a, 0x311f),
1161 	regmap_reg_range(0x3122, 0x3127),
1162 	regmap_reg_range(0x312a, 0x312b),
1163 	regmap_reg_range(0x3136, 0x3139),
1164 	regmap_reg_range(0x313e, 0x313f),
1165 	regmap_reg_range(0x3400, 0x3401),
1166 	regmap_reg_range(0x3403, 0x3403),
1167 	regmap_reg_range(0x3410, 0x3417),
1168 	regmap_reg_range(0x3420, 0x3423),
1169 	regmap_reg_range(0x3500, 0x3507),
1170 	regmap_reg_range(0x3600, 0x3612),
1171 	regmap_reg_range(0x3800, 0x380f),
1172 	regmap_reg_range(0x3820, 0x3827),
1173 	regmap_reg_range(0x3830, 0x3837),
1174 	regmap_reg_range(0x3840, 0x384b),
1175 	regmap_reg_range(0x3900, 0x3907),
1176 	regmap_reg_range(0x3914, 0x3915),
1177 	regmap_reg_range(0x3a00, 0x3a03),
1178 	regmap_reg_range(0x3a04, 0x3a07),
1179 	regmap_reg_range(0x3b00, 0x3b01),
1180 	regmap_reg_range(0x3b04, 0x3b04),
1181 
1182 	/* port 4 */
1183 	regmap_reg_range(0x4000, 0x4001),
1184 	regmap_reg_range(0x4013, 0x4013),
1185 	regmap_reg_range(0x4017, 0x4017),
1186 	regmap_reg_range(0x401b, 0x401b),
1187 	regmap_reg_range(0x401f, 0x4020),
1188 	regmap_reg_range(0x4030, 0x4030),
1189 	regmap_reg_range(0x4100, 0x4115),
1190 	regmap_reg_range(0x411a, 0x411f),
1191 	regmap_reg_range(0x4122, 0x4127),
1192 	regmap_reg_range(0x412a, 0x412b),
1193 	regmap_reg_range(0x4136, 0x4139),
1194 	regmap_reg_range(0x413e, 0x413f),
1195 	regmap_reg_range(0x4400, 0x4401),
1196 	regmap_reg_range(0x4403, 0x4403),
1197 	regmap_reg_range(0x4410, 0x4417),
1198 	regmap_reg_range(0x4420, 0x4423),
1199 	regmap_reg_range(0x4500, 0x4507),
1200 	regmap_reg_range(0x4600, 0x4612),
1201 	regmap_reg_range(0x4800, 0x480f),
1202 	regmap_reg_range(0x4820, 0x4827),
1203 	regmap_reg_range(0x4830, 0x4837),
1204 	regmap_reg_range(0x4840, 0x484b),
1205 	regmap_reg_range(0x4900, 0x4907),
1206 	regmap_reg_range(0x4914, 0x4915),
1207 	regmap_reg_range(0x4a00, 0x4a03),
1208 	regmap_reg_range(0x4a04, 0x4a07),
1209 	regmap_reg_range(0x4b00, 0x4b01),
1210 	regmap_reg_range(0x4b04, 0x4b04),
1211 
1212 	/* port 5 */
1213 	regmap_reg_range(0x5000, 0x5001),
1214 	regmap_reg_range(0x5013, 0x5013),
1215 	regmap_reg_range(0x5017, 0x5017),
1216 	regmap_reg_range(0x501b, 0x501b),
1217 	regmap_reg_range(0x501f, 0x5020),
1218 	regmap_reg_range(0x5030, 0x5030),
1219 	regmap_reg_range(0x5100, 0x5115),
1220 	regmap_reg_range(0x511a, 0x511f),
1221 	regmap_reg_range(0x5122, 0x5127),
1222 	regmap_reg_range(0x512a, 0x512b),
1223 	regmap_reg_range(0x5136, 0x5139),
1224 	regmap_reg_range(0x513e, 0x513f),
1225 	regmap_reg_range(0x5400, 0x5401),
1226 	regmap_reg_range(0x5403, 0x5403),
1227 	regmap_reg_range(0x5410, 0x5417),
1228 	regmap_reg_range(0x5420, 0x5423),
1229 	regmap_reg_range(0x5500, 0x5507),
1230 	regmap_reg_range(0x5600, 0x5612),
1231 	regmap_reg_range(0x5800, 0x580f),
1232 	regmap_reg_range(0x5820, 0x5827),
1233 	regmap_reg_range(0x5830, 0x5837),
1234 	regmap_reg_range(0x5840, 0x584b),
1235 	regmap_reg_range(0x5900, 0x5907),
1236 	regmap_reg_range(0x5914, 0x5915),
1237 	regmap_reg_range(0x5a00, 0x5a03),
1238 	regmap_reg_range(0x5a04, 0x5a07),
1239 	regmap_reg_range(0x5b00, 0x5b01),
1240 	regmap_reg_range(0x5b04, 0x5b04),
1241 
1242 	/* port 6 */
1243 	regmap_reg_range(0x6000, 0x6001),
1244 	regmap_reg_range(0x6013, 0x6013),
1245 	regmap_reg_range(0x6017, 0x6017),
1246 	regmap_reg_range(0x601b, 0x601b),
1247 	regmap_reg_range(0x601f, 0x6020),
1248 	regmap_reg_range(0x6030, 0x6030),
1249 	regmap_reg_range(0x6100, 0x6115),
1250 	regmap_reg_range(0x611a, 0x611f),
1251 	regmap_reg_range(0x6122, 0x6127),
1252 	regmap_reg_range(0x612a, 0x612b),
1253 	regmap_reg_range(0x6136, 0x6139),
1254 	regmap_reg_range(0x613e, 0x613f),
1255 	regmap_reg_range(0x6300, 0x6301),
1256 	regmap_reg_range(0x6400, 0x6401),
1257 	regmap_reg_range(0x6403, 0x6403),
1258 	regmap_reg_range(0x6410, 0x6417),
1259 	regmap_reg_range(0x6420, 0x6423),
1260 	regmap_reg_range(0x6500, 0x6507),
1261 	regmap_reg_range(0x6600, 0x6612),
1262 	regmap_reg_range(0x6800, 0x680f),
1263 	regmap_reg_range(0x6820, 0x6827),
1264 	regmap_reg_range(0x6830, 0x6837),
1265 	regmap_reg_range(0x6840, 0x684b),
1266 	regmap_reg_range(0x6900, 0x6907),
1267 	regmap_reg_range(0x6914, 0x6915),
1268 	regmap_reg_range(0x6a00, 0x6a03),
1269 	regmap_reg_range(0x6a04, 0x6a07),
1270 	regmap_reg_range(0x6b00, 0x6b01),
1271 	regmap_reg_range(0x6b04, 0x6b04),
1272 };
1273 
1274 static const struct regmap_access_table ksz9896_register_set = {
1275 	.yes_ranges = ksz9896_valid_regs,
1276 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1277 };
1278 
1279 static const struct regmap_range ksz8873_valid_regs[] = {
1280 	regmap_reg_range(0x00, 0x01),
1281 	/* global control register */
1282 	regmap_reg_range(0x02, 0x0f),
1283 
1284 	/* port registers */
1285 	regmap_reg_range(0x10, 0x1d),
1286 	regmap_reg_range(0x1e, 0x1f),
1287 	regmap_reg_range(0x20, 0x2d),
1288 	regmap_reg_range(0x2e, 0x2f),
1289 	regmap_reg_range(0x30, 0x39),
1290 	regmap_reg_range(0x3f, 0x3f),
1291 
1292 	/* advanced control registers */
1293 	regmap_reg_range(0x60, 0x6f),
1294 	regmap_reg_range(0x70, 0x75),
1295 	regmap_reg_range(0x76, 0x78),
1296 	regmap_reg_range(0x79, 0x7a),
1297 	regmap_reg_range(0x7b, 0x83),
1298 	regmap_reg_range(0x8e, 0x99),
1299 	regmap_reg_range(0x9a, 0xa5),
1300 	regmap_reg_range(0xa6, 0xa6),
1301 	regmap_reg_range(0xa7, 0xaa),
1302 	regmap_reg_range(0xab, 0xae),
1303 	regmap_reg_range(0xaf, 0xba),
1304 	regmap_reg_range(0xbb, 0xbc),
1305 	regmap_reg_range(0xbd, 0xbd),
1306 	regmap_reg_range(0xc0, 0xc0),
1307 	regmap_reg_range(0xc2, 0xc2),
1308 	regmap_reg_range(0xc3, 0xc3),
1309 	regmap_reg_range(0xc4, 0xc4),
1310 	regmap_reg_range(0xc6, 0xc6),
1311 };
1312 
1313 static const struct regmap_access_table ksz8873_register_set = {
1314 	.yes_ranges = ksz8873_valid_regs,
1315 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1316 };
1317 
1318 const struct ksz_chip_data ksz_switch_chips[] = {
1319 	[KSZ8563] = {
1320 		.chip_id = KSZ8563_CHIP_ID,
1321 		.dev_name = "KSZ8563",
1322 		.num_vlans = 4096,
1323 		.num_alus = 4096,
1324 		.num_statics = 16,
1325 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1326 		.port_cnt = 3,		/* total port count */
1327 		.port_nirqs = 3,
1328 		.num_tx_queues = 4,
1329 		.num_ipms = 8,
1330 		.tc_cbs_supported = true,
1331 		.ops = &ksz9477_dev_ops,
1332 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1333 		.mib_names = ksz9477_mib_names,
1334 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1335 		.reg_mib_cnt = MIB_COUNTER_NUM,
1336 		.regs = ksz9477_regs,
1337 		.masks = ksz9477_masks,
1338 		.shifts = ksz9477_shifts,
1339 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1340 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1341 		.supports_mii = {false, false, true},
1342 		.supports_rmii = {false, false, true},
1343 		.supports_rgmii = {false, false, true},
1344 		.internal_phy = {true, true, false},
1345 		.gbit_capable = {false, false, true},
1346 		.wr_table = &ksz8563_register_set,
1347 		.rd_table = &ksz8563_register_set,
1348 	},
1349 
1350 	[KSZ8795] = {
1351 		.chip_id = KSZ8795_CHIP_ID,
1352 		.dev_name = "KSZ8795",
1353 		.num_vlans = 4096,
1354 		.num_alus = 0,
1355 		.num_statics = 32,
1356 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1357 		.port_cnt = 5,		/* total cpu and user ports */
1358 		.num_tx_queues = 4,
1359 		.num_ipms = 4,
1360 		.ops = &ksz87xx_dev_ops,
1361 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1362 		.ksz87xx_eee_link_erratum = true,
1363 		.mib_names = ksz9477_mib_names,
1364 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1365 		.reg_mib_cnt = MIB_COUNTER_NUM,
1366 		.regs = ksz8795_regs,
1367 		.masks = ksz8795_masks,
1368 		.shifts = ksz8795_shifts,
1369 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1370 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1371 		.supports_mii = {false, false, false, false, true},
1372 		.supports_rmii = {false, false, false, false, true},
1373 		.supports_rgmii = {false, false, false, false, true},
1374 		.internal_phy = {true, true, true, true, false},
1375 	},
1376 
1377 	[KSZ8794] = {
1378 		/* WARNING
1379 		 * =======
1380 		 * KSZ8794 is similar to KSZ8795, except the port map
1381 		 * contains a gap between external and CPU ports, the
1382 		 * port map is NOT continuous. The per-port register
1383 		 * map is shifted accordingly too, i.e. registers at
1384 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1385 		 * used on KSZ8795 for external port 3.
1386 		 *           external  cpu
1387 		 * KSZ8794   0,1,2      4
1388 		 * KSZ8795   0,1,2,3    4
1389 		 * KSZ8765   0,1,2,3    4
1390 		 * port_cnt is configured as 5, even though it is 4
1391 		 */
1392 		.chip_id = KSZ8794_CHIP_ID,
1393 		.dev_name = "KSZ8794",
1394 		.num_vlans = 4096,
1395 		.num_alus = 0,
1396 		.num_statics = 32,
1397 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1398 		.port_cnt = 5,		/* total cpu and user ports */
1399 		.num_tx_queues = 4,
1400 		.num_ipms = 4,
1401 		.ops = &ksz87xx_dev_ops,
1402 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1403 		.ksz87xx_eee_link_erratum = true,
1404 		.mib_names = ksz9477_mib_names,
1405 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1406 		.reg_mib_cnt = MIB_COUNTER_NUM,
1407 		.regs = ksz8795_regs,
1408 		.masks = ksz8795_masks,
1409 		.shifts = ksz8795_shifts,
1410 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1411 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1412 		.supports_mii = {false, false, false, false, true},
1413 		.supports_rmii = {false, false, false, false, true},
1414 		.supports_rgmii = {false, false, false, false, true},
1415 		.internal_phy = {true, true, true, false, false},
1416 	},
1417 
1418 	[KSZ8765] = {
1419 		.chip_id = KSZ8765_CHIP_ID,
1420 		.dev_name = "KSZ8765",
1421 		.num_vlans = 4096,
1422 		.num_alus = 0,
1423 		.num_statics = 32,
1424 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1425 		.port_cnt = 5,		/* total cpu and user ports */
1426 		.num_tx_queues = 4,
1427 		.num_ipms = 4,
1428 		.ops = &ksz87xx_dev_ops,
1429 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1430 		.ksz87xx_eee_link_erratum = true,
1431 		.mib_names = ksz9477_mib_names,
1432 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1433 		.reg_mib_cnt = MIB_COUNTER_NUM,
1434 		.regs = ksz8795_regs,
1435 		.masks = ksz8795_masks,
1436 		.shifts = ksz8795_shifts,
1437 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1438 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1439 		.supports_mii = {false, false, false, false, true},
1440 		.supports_rmii = {false, false, false, false, true},
1441 		.supports_rgmii = {false, false, false, false, true},
1442 		.internal_phy = {true, true, true, true, false},
1443 	},
1444 
1445 	[KSZ88X3] = {
1446 		.chip_id = KSZ88X3_CHIP_ID,
1447 		.dev_name = "KSZ8863/KSZ8873",
1448 		.num_vlans = 16,
1449 		.num_alus = 0,
1450 		.num_statics = 8,
1451 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1452 		.port_cnt = 3,
1453 		.num_tx_queues = 4,
1454 		.num_ipms = 4,
1455 		.ops = &ksz88xx_dev_ops,
1456 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1457 		.mib_names = ksz88xx_mib_names,
1458 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1459 		.reg_mib_cnt = MIB_COUNTER_NUM,
1460 		.regs = ksz8863_regs,
1461 		.masks = ksz8863_masks,
1462 		.shifts = ksz8863_shifts,
1463 		.supports_mii = {false, false, true},
1464 		.supports_rmii = {false, false, true},
1465 		.internal_phy = {true, true, false},
1466 		.wr_table = &ksz8873_register_set,
1467 		.rd_table = &ksz8873_register_set,
1468 	},
1469 
1470 	[KSZ8864] = {
1471 		/* WARNING
1472 		 * =======
1473 		 * KSZ8864 is similar to KSZ8895, except the first port
1474 		 * does not exist.
1475 		 *           external  cpu
1476 		 * KSZ8864   1,2,3      4
1477 		 * KSZ8895   0,1,2,3    4
1478 		 * port_cnt is configured as 5, even though it is 4
1479 		 */
1480 		.chip_id = KSZ8864_CHIP_ID,
1481 		.dev_name = "KSZ8864",
1482 		.num_vlans = 4096,
1483 		.num_alus = 0,
1484 		.num_statics = 32,
1485 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1486 		.port_cnt = 5,		/* total cpu and user ports */
1487 		.num_tx_queues = 4,
1488 		.num_ipms = 4,
1489 		.ops = &ksz88xx_dev_ops,
1490 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1491 		.mib_names = ksz88xx_mib_names,
1492 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1493 		.reg_mib_cnt = MIB_COUNTER_NUM,
1494 		.regs = ksz8895_regs,
1495 		.masks = ksz8895_masks,
1496 		.shifts = ksz8895_shifts,
1497 		.supports_mii = {false, false, false, false, true},
1498 		.supports_rmii = {false, false, false, false, true},
1499 		.internal_phy = {false, true, true, true, false},
1500 	},
1501 
1502 	[KSZ8895] = {
1503 		.chip_id = KSZ8895_CHIP_ID,
1504 		.dev_name = "KSZ8895",
1505 		.num_vlans = 4096,
1506 		.num_alus = 0,
1507 		.num_statics = 32,
1508 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1509 		.port_cnt = 5,		/* total cpu and user ports */
1510 		.num_tx_queues = 4,
1511 		.num_ipms = 4,
1512 		.ops = &ksz88xx_dev_ops,
1513 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1514 		.mib_names = ksz88xx_mib_names,
1515 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1516 		.reg_mib_cnt = MIB_COUNTER_NUM,
1517 		.regs = ksz8895_regs,
1518 		.masks = ksz8895_masks,
1519 		.shifts = ksz8895_shifts,
1520 		.supports_mii = {false, false, false, false, true},
1521 		.supports_rmii = {false, false, false, false, true},
1522 		.internal_phy = {true, true, true, true, false},
1523 	},
1524 
1525 	[KSZ9477] = {
1526 		.chip_id = KSZ9477_CHIP_ID,
1527 		.dev_name = "KSZ9477",
1528 		.num_vlans = 4096,
1529 		.num_alus = 4096,
1530 		.num_statics = 16,
1531 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1532 		.port_cnt = 7,		/* total physical port count */
1533 		.port_nirqs = 4,
1534 		.num_tx_queues = 4,
1535 		.num_ipms = 8,
1536 		.tc_cbs_supported = true,
1537 		.ops = &ksz9477_dev_ops,
1538 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1539 		.phy_errata_9477 = true,
1540 		.mib_names = ksz9477_mib_names,
1541 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1542 		.reg_mib_cnt = MIB_COUNTER_NUM,
1543 		.regs = ksz9477_regs,
1544 		.masks = ksz9477_masks,
1545 		.shifts = ksz9477_shifts,
1546 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1547 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1548 		.supports_mii	= {false, false, false, false,
1549 				   false, true, false},
1550 		.supports_rmii	= {false, false, false, false,
1551 				   false, true, false},
1552 		.supports_rgmii = {false, false, false, false,
1553 				   false, true, false},
1554 		.internal_phy	= {true, true, true, true,
1555 				   true, false, false},
1556 		.gbit_capable	= {true, true, true, true, true, true, true},
1557 		.wr_table = &ksz9477_register_set,
1558 		.rd_table = &ksz9477_register_set,
1559 	},
1560 
1561 	[KSZ9896] = {
1562 		.chip_id = KSZ9896_CHIP_ID,
1563 		.dev_name = "KSZ9896",
1564 		.num_vlans = 4096,
1565 		.num_alus = 4096,
1566 		.num_statics = 16,
1567 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1568 		.port_cnt = 6,		/* total physical port count */
1569 		.port_nirqs = 2,
1570 		.num_tx_queues = 4,
1571 		.num_ipms = 8,
1572 		.ops = &ksz9477_dev_ops,
1573 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1574 		.phy_errata_9477 = true,
1575 		.mib_names = ksz9477_mib_names,
1576 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1577 		.reg_mib_cnt = MIB_COUNTER_NUM,
1578 		.regs = ksz9477_regs,
1579 		.masks = ksz9477_masks,
1580 		.shifts = ksz9477_shifts,
1581 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1582 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1583 		.supports_mii	= {false, false, false, false,
1584 				   false, true},
1585 		.supports_rmii	= {false, false, false, false,
1586 				   false, true},
1587 		.supports_rgmii = {false, false, false, false,
1588 				   false, true},
1589 		.internal_phy	= {true, true, true, true,
1590 				   true, false},
1591 		.gbit_capable	= {true, true, true, true, true, true},
1592 		.wr_table = &ksz9896_register_set,
1593 		.rd_table = &ksz9896_register_set,
1594 	},
1595 
1596 	[KSZ9897] = {
1597 		.chip_id = KSZ9897_CHIP_ID,
1598 		.dev_name = "KSZ9897",
1599 		.num_vlans = 4096,
1600 		.num_alus = 4096,
1601 		.num_statics = 16,
1602 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1603 		.port_cnt = 7,		/* total physical port count */
1604 		.port_nirqs = 2,
1605 		.num_tx_queues = 4,
1606 		.num_ipms = 8,
1607 		.ops = &ksz9477_dev_ops,
1608 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1609 		.phy_errata_9477 = true,
1610 		.mib_names = ksz9477_mib_names,
1611 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1612 		.reg_mib_cnt = MIB_COUNTER_NUM,
1613 		.regs = ksz9477_regs,
1614 		.masks = ksz9477_masks,
1615 		.shifts = ksz9477_shifts,
1616 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1617 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1618 		.supports_mii	= {false, false, false, false,
1619 				   false, true, true},
1620 		.supports_rmii	= {false, false, false, false,
1621 				   false, true, true},
1622 		.supports_rgmii = {false, false, false, false,
1623 				   false, true, true},
1624 		.internal_phy	= {true, true, true, true,
1625 				   true, false, false},
1626 		.gbit_capable	= {true, true, true, true, true, true, true},
1627 	},
1628 
1629 	[KSZ9893] = {
1630 		.chip_id = KSZ9893_CHIP_ID,
1631 		.dev_name = "KSZ9893",
1632 		.num_vlans = 4096,
1633 		.num_alus = 4096,
1634 		.num_statics = 16,
1635 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1636 		.port_cnt = 3,		/* total port count */
1637 		.port_nirqs = 2,
1638 		.num_tx_queues = 4,
1639 		.num_ipms = 8,
1640 		.ops = &ksz9477_dev_ops,
1641 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1642 		.mib_names = ksz9477_mib_names,
1643 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1644 		.reg_mib_cnt = MIB_COUNTER_NUM,
1645 		.regs = ksz9477_regs,
1646 		.masks = ksz9477_masks,
1647 		.shifts = ksz9477_shifts,
1648 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1649 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1650 		.supports_mii = {false, false, true},
1651 		.supports_rmii = {false, false, true},
1652 		.supports_rgmii = {false, false, true},
1653 		.internal_phy = {true, true, false},
1654 		.gbit_capable = {true, true, true},
1655 	},
1656 
1657 	[KSZ9563] = {
1658 		.chip_id = KSZ9563_CHIP_ID,
1659 		.dev_name = "KSZ9563",
1660 		.num_vlans = 4096,
1661 		.num_alus = 4096,
1662 		.num_statics = 16,
1663 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1664 		.port_cnt = 3,		/* total port count */
1665 		.port_nirqs = 3,
1666 		.num_tx_queues = 4,
1667 		.num_ipms = 8,
1668 		.tc_cbs_supported = true,
1669 		.ops = &ksz9477_dev_ops,
1670 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1671 		.mib_names = ksz9477_mib_names,
1672 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1673 		.reg_mib_cnt = MIB_COUNTER_NUM,
1674 		.regs = ksz9477_regs,
1675 		.masks = ksz9477_masks,
1676 		.shifts = ksz9477_shifts,
1677 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1678 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1679 		.supports_mii = {false, false, true},
1680 		.supports_rmii = {false, false, true},
1681 		.supports_rgmii = {false, false, true},
1682 		.internal_phy = {true, true, false},
1683 		.gbit_capable = {true, true, true},
1684 	},
1685 
1686 	[KSZ8567] = {
1687 		.chip_id = KSZ8567_CHIP_ID,
1688 		.dev_name = "KSZ8567",
1689 		.num_vlans = 4096,
1690 		.num_alus = 4096,
1691 		.num_statics = 16,
1692 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1693 		.port_cnt = 7,		/* total port count */
1694 		.port_nirqs = 3,
1695 		.num_tx_queues = 4,
1696 		.num_ipms = 8,
1697 		.tc_cbs_supported = true,
1698 		.ops = &ksz9477_dev_ops,
1699 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1700 		.phy_errata_9477 = true,
1701 		.mib_names = ksz9477_mib_names,
1702 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1703 		.reg_mib_cnt = MIB_COUNTER_NUM,
1704 		.regs = ksz9477_regs,
1705 		.masks = ksz9477_masks,
1706 		.shifts = ksz9477_shifts,
1707 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1708 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1709 		.supports_mii	= {false, false, false, false,
1710 				   false, true, true},
1711 		.supports_rmii	= {false, false, false, false,
1712 				   false, true, true},
1713 		.supports_rgmii = {false, false, false, false,
1714 				   false, true, true},
1715 		.internal_phy	= {true, true, true, true,
1716 				   true, false, false},
1717 		.gbit_capable	= {false, false, false, false, false,
1718 				   true, true},
1719 	},
1720 
1721 	[KSZ9567] = {
1722 		.chip_id = KSZ9567_CHIP_ID,
1723 		.dev_name = "KSZ9567",
1724 		.num_vlans = 4096,
1725 		.num_alus = 4096,
1726 		.num_statics = 16,
1727 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1728 		.port_cnt = 7,		/* total physical port count */
1729 		.port_nirqs = 3,
1730 		.num_tx_queues = 4,
1731 		.num_ipms = 8,
1732 		.tc_cbs_supported = true,
1733 		.ops = &ksz9477_dev_ops,
1734 		.mib_names = ksz9477_mib_names,
1735 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1736 		.reg_mib_cnt = MIB_COUNTER_NUM,
1737 		.regs = ksz9477_regs,
1738 		.masks = ksz9477_masks,
1739 		.shifts = ksz9477_shifts,
1740 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1741 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1742 		.supports_mii	= {false, false, false, false,
1743 				   false, true, true},
1744 		.supports_rmii	= {false, false, false, false,
1745 				   false, true, true},
1746 		.supports_rgmii = {false, false, false, false,
1747 				   false, true, true},
1748 		.internal_phy	= {true, true, true, true,
1749 				   true, false, false},
1750 		.gbit_capable	= {true, true, true, true, true, true, true},
1751 	},
1752 
1753 	[LAN9370] = {
1754 		.chip_id = LAN9370_CHIP_ID,
1755 		.dev_name = "LAN9370",
1756 		.num_vlans = 4096,
1757 		.num_alus = 1024,
1758 		.num_statics = 256,
1759 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1760 		.port_cnt = 5,		/* total physical port count */
1761 		.port_nirqs = 6,
1762 		.num_tx_queues = 8,
1763 		.num_ipms = 8,
1764 		.tc_cbs_supported = true,
1765 		.ops = &lan937x_dev_ops,
1766 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1767 		.mib_names = ksz9477_mib_names,
1768 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1769 		.reg_mib_cnt = MIB_COUNTER_NUM,
1770 		.regs = ksz9477_regs,
1771 		.masks = lan937x_masks,
1772 		.shifts = lan937x_shifts,
1773 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1774 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1775 		.supports_mii = {false, false, false, false, true},
1776 		.supports_rmii = {false, false, false, false, true},
1777 		.supports_rgmii = {false, false, false, false, true},
1778 		.internal_phy = {true, true, true, true, false},
1779 	},
1780 
1781 	[LAN9371] = {
1782 		.chip_id = LAN9371_CHIP_ID,
1783 		.dev_name = "LAN9371",
1784 		.num_vlans = 4096,
1785 		.num_alus = 1024,
1786 		.num_statics = 256,
1787 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1788 		.port_cnt = 6,		/* total physical port count */
1789 		.port_nirqs = 6,
1790 		.num_tx_queues = 8,
1791 		.num_ipms = 8,
1792 		.tc_cbs_supported = true,
1793 		.ops = &lan937x_dev_ops,
1794 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1795 		.mib_names = ksz9477_mib_names,
1796 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1797 		.reg_mib_cnt = MIB_COUNTER_NUM,
1798 		.regs = ksz9477_regs,
1799 		.masks = lan937x_masks,
1800 		.shifts = lan937x_shifts,
1801 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1802 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1803 		.supports_mii = {false, false, false, false, true, true},
1804 		.supports_rmii = {false, false, false, false, true, true},
1805 		.supports_rgmii = {false, false, false, false, true, true},
1806 		.internal_phy = {true, true, true, true, false, false},
1807 	},
1808 
1809 	[LAN9372] = {
1810 		.chip_id = LAN9372_CHIP_ID,
1811 		.dev_name = "LAN9372",
1812 		.num_vlans = 4096,
1813 		.num_alus = 1024,
1814 		.num_statics = 256,
1815 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1816 		.port_cnt = 8,		/* total physical port count */
1817 		.port_nirqs = 6,
1818 		.num_tx_queues = 8,
1819 		.num_ipms = 8,
1820 		.tc_cbs_supported = true,
1821 		.ops = &lan937x_dev_ops,
1822 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1823 		.mib_names = ksz9477_mib_names,
1824 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1825 		.reg_mib_cnt = MIB_COUNTER_NUM,
1826 		.regs = ksz9477_regs,
1827 		.masks = lan937x_masks,
1828 		.shifts = lan937x_shifts,
1829 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1830 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1831 		.supports_mii	= {false, false, false, false,
1832 				   true, true, false, false},
1833 		.supports_rmii	= {false, false, false, false,
1834 				   true, true, false, false},
1835 		.supports_rgmii = {false, false, false, false,
1836 				   true, true, false, false},
1837 		.internal_phy	= {true, true, true, true,
1838 				   false, false, true, true},
1839 	},
1840 
1841 	[LAN9373] = {
1842 		.chip_id = LAN9373_CHIP_ID,
1843 		.dev_name = "LAN9373",
1844 		.num_vlans = 4096,
1845 		.num_alus = 1024,
1846 		.num_statics = 256,
1847 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1848 		.port_cnt = 5,		/* total physical port count */
1849 		.port_nirqs = 6,
1850 		.num_tx_queues = 8,
1851 		.num_ipms = 8,
1852 		.tc_cbs_supported = true,
1853 		.ops = &lan937x_dev_ops,
1854 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1855 		.mib_names = ksz9477_mib_names,
1856 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1857 		.reg_mib_cnt = MIB_COUNTER_NUM,
1858 		.regs = ksz9477_regs,
1859 		.masks = lan937x_masks,
1860 		.shifts = lan937x_shifts,
1861 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1862 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1863 		.supports_mii	= {false, false, false, false,
1864 				   true, true, false, false},
1865 		.supports_rmii	= {false, false, false, false,
1866 				   true, true, false, false},
1867 		.supports_rgmii = {false, false, false, false,
1868 				   true, true, false, false},
1869 		.internal_phy	= {true, true, true, false,
1870 				   false, false, true, true},
1871 	},
1872 
1873 	[LAN9374] = {
1874 		.chip_id = LAN9374_CHIP_ID,
1875 		.dev_name = "LAN9374",
1876 		.num_vlans = 4096,
1877 		.num_alus = 1024,
1878 		.num_statics = 256,
1879 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1880 		.port_cnt = 8,		/* total physical port count */
1881 		.port_nirqs = 6,
1882 		.num_tx_queues = 8,
1883 		.num_ipms = 8,
1884 		.tc_cbs_supported = true,
1885 		.ops = &lan937x_dev_ops,
1886 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1887 		.mib_names = ksz9477_mib_names,
1888 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1889 		.reg_mib_cnt = MIB_COUNTER_NUM,
1890 		.regs = ksz9477_regs,
1891 		.masks = lan937x_masks,
1892 		.shifts = lan937x_shifts,
1893 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1894 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1895 		.supports_mii	= {false, false, false, false,
1896 				   true, true, false, false},
1897 		.supports_rmii	= {false, false, false, false,
1898 				   true, true, false, false},
1899 		.supports_rgmii = {false, false, false, false,
1900 				   true, true, false, false},
1901 		.internal_phy	= {true, true, true, true,
1902 				   false, false, true, true},
1903 	},
1904 };
1905 EXPORT_SYMBOL_GPL(ksz_switch_chips);
1906 
1907 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1908 {
1909 	int i;
1910 
1911 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1912 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1913 
1914 		if (chip->chip_id == prod_num)
1915 			return chip;
1916 	}
1917 
1918 	return NULL;
1919 }
1920 
1921 static int ksz_check_device_id(struct ksz_device *dev)
1922 {
1923 	const struct ksz_chip_data *expected_chip_data;
1924 	u32 expected_chip_id;
1925 
1926 	if (dev->pdata) {
1927 		expected_chip_id = dev->pdata->chip_id;
1928 		expected_chip_data = ksz_lookup_info(expected_chip_id);
1929 		if (WARN_ON(!expected_chip_data))
1930 			return -ENODEV;
1931 	} else {
1932 		expected_chip_data = of_device_get_match_data(dev->dev);
1933 		expected_chip_id = expected_chip_data->chip_id;
1934 	}
1935 
1936 	if (expected_chip_id != dev->chip_id) {
1937 		dev_err(dev->dev,
1938 			"Device tree specifies chip %s but found %s, please fix it!\n",
1939 			expected_chip_data->dev_name, dev->info->dev_name);
1940 		return -ENODEV;
1941 	}
1942 
1943 	return 0;
1944 }
1945 
1946 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1947 				 struct phylink_config *config)
1948 {
1949 	struct ksz_device *dev = ds->priv;
1950 
1951 	if (dev->info->supports_mii[port])
1952 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1953 
1954 	if (dev->info->supports_rmii[port])
1955 		__set_bit(PHY_INTERFACE_MODE_RMII,
1956 			  config->supported_interfaces);
1957 
1958 	if (dev->info->supports_rgmii[port])
1959 		phy_interface_set_rgmii(config->supported_interfaces);
1960 
1961 	if (dev->info->internal_phy[port]) {
1962 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1963 			  config->supported_interfaces);
1964 		/* Compatibility for phylib's default interface type when the
1965 		 * phy-mode property is absent
1966 		 */
1967 		__set_bit(PHY_INTERFACE_MODE_GMII,
1968 			  config->supported_interfaces);
1969 	}
1970 
1971 	if (dev->dev_ops->get_caps)
1972 		dev->dev_ops->get_caps(dev, port, config);
1973 }
1974 
1975 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
1976 {
1977 	struct ethtool_pause_stats *pstats;
1978 	struct rtnl_link_stats64 *stats;
1979 	struct ksz_stats_raw *raw;
1980 	struct ksz_port_mib *mib;
1981 	int ret;
1982 
1983 	mib = &dev->ports[port].mib;
1984 	stats = &mib->stats64;
1985 	pstats = &mib->pause_stats;
1986 	raw = (struct ksz_stats_raw *)mib->counters;
1987 
1988 	spin_lock(&mib->stats64_lock);
1989 
1990 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1991 		raw->rx_pause;
1992 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1993 		raw->tx_pause;
1994 
1995 	/* HW counters are counting bytes + FCS which is not acceptable
1996 	 * for rtnl_link_stats64 interface
1997 	 */
1998 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
1999 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
2000 
2001 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2002 		raw->rx_oversize;
2003 
2004 	stats->rx_crc_errors = raw->rx_crc_err;
2005 	stats->rx_frame_errors = raw->rx_align_err;
2006 	stats->rx_dropped = raw->rx_discards;
2007 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2008 		stats->rx_frame_errors  + stats->rx_dropped;
2009 
2010 	stats->tx_window_errors = raw->tx_late_col;
2011 	stats->tx_fifo_errors = raw->tx_discards;
2012 	stats->tx_aborted_errors = raw->tx_exc_col;
2013 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2014 		stats->tx_aborted_errors;
2015 
2016 	stats->multicast = raw->rx_mcast;
2017 	stats->collisions = raw->tx_total_col;
2018 
2019 	pstats->tx_pause_frames = raw->tx_pause;
2020 	pstats->rx_pause_frames = raw->rx_pause;
2021 
2022 	spin_unlock(&mib->stats64_lock);
2023 
2024 	if (dev->info->phy_errata_9477) {
2025 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
2026 		if (ret)
2027 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
2028 	}
2029 }
2030 
2031 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
2032 {
2033 	struct ethtool_pause_stats *pstats;
2034 	struct rtnl_link_stats64 *stats;
2035 	struct ksz88xx_stats_raw *raw;
2036 	struct ksz_port_mib *mib;
2037 
2038 	mib = &dev->ports[port].mib;
2039 	stats = &mib->stats64;
2040 	pstats = &mib->pause_stats;
2041 	raw = (struct ksz88xx_stats_raw *)mib->counters;
2042 
2043 	spin_lock(&mib->stats64_lock);
2044 
2045 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2046 		raw->rx_pause;
2047 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2048 		raw->tx_pause;
2049 
2050 	/* HW counters are counting bytes + FCS which is not acceptable
2051 	 * for rtnl_link_stats64 interface
2052 	 */
2053 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
2054 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
2055 
2056 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2057 		raw->rx_oversize;
2058 
2059 	stats->rx_crc_errors = raw->rx_crc_err;
2060 	stats->rx_frame_errors = raw->rx_align_err;
2061 	stats->rx_dropped = raw->rx_discards;
2062 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2063 		stats->rx_frame_errors  + stats->rx_dropped;
2064 
2065 	stats->tx_window_errors = raw->tx_late_col;
2066 	stats->tx_fifo_errors = raw->tx_discards;
2067 	stats->tx_aborted_errors = raw->tx_exc_col;
2068 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2069 		stats->tx_aborted_errors;
2070 
2071 	stats->multicast = raw->rx_mcast;
2072 	stats->collisions = raw->tx_total_col;
2073 
2074 	pstats->tx_pause_frames = raw->tx_pause;
2075 	pstats->rx_pause_frames = raw->rx_pause;
2076 
2077 	spin_unlock(&mib->stats64_lock);
2078 }
2079 
2080 static void ksz_get_stats64(struct dsa_switch *ds, int port,
2081 			    struct rtnl_link_stats64 *s)
2082 {
2083 	struct ksz_device *dev = ds->priv;
2084 	struct ksz_port_mib *mib;
2085 
2086 	mib = &dev->ports[port].mib;
2087 
2088 	spin_lock(&mib->stats64_lock);
2089 	memcpy(s, &mib->stats64, sizeof(*s));
2090 	spin_unlock(&mib->stats64_lock);
2091 }
2092 
2093 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
2094 				struct ethtool_pause_stats *pause_stats)
2095 {
2096 	struct ksz_device *dev = ds->priv;
2097 	struct ksz_port_mib *mib;
2098 
2099 	mib = &dev->ports[port].mib;
2100 
2101 	spin_lock(&mib->stats64_lock);
2102 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
2103 	spin_unlock(&mib->stats64_lock);
2104 }
2105 
2106 static void ksz_get_strings(struct dsa_switch *ds, int port,
2107 			    u32 stringset, uint8_t *buf)
2108 {
2109 	struct ksz_device *dev = ds->priv;
2110 	int i;
2111 
2112 	if (stringset != ETH_SS_STATS)
2113 		return;
2114 
2115 	for (i = 0; i < dev->info->mib_cnt; i++) {
2116 		memcpy(buf + i * ETH_GSTRING_LEN,
2117 		       dev->info->mib_names[i].string, ETH_GSTRING_LEN);
2118 	}
2119 }
2120 
2121 /**
2122  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2123  *			    isolation settings.
2124  * @dev: A pointer to the struct ksz_device representing the device.
2125  * @port: The port number to adjust.
2126  *
2127  * This function dynamically adjusts the port membership configuration for a
2128  * specified port and other device ports, based on Spanning Tree Protocol (STP)
2129  * states and port isolation settings. Each port, including the CPU port, has a
2130  * membership register, represented as a bitfield, where each bit corresponds
2131  * to a port number. A set bit indicates permission to forward frames to that
2132  * port. This function iterates over all ports, updating the membership register
2133  * to reflect current forwarding permissions:
2134  *
2135  * 1. Forwards frames only to ports that are part of the same bridge group and
2136  *    in the BR_STATE_FORWARDING state.
2137  * 2. Takes into account the isolation status of ports; ports in the
2138  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2139  *    frames to each other, even if they are in the same bridge group.
2140  * 3. Ensures that the CPU port is included in the membership based on its
2141  *    upstream port configuration, allowing for management and control traffic
2142  *    to flow as required.
2143  */
2144 static void ksz_update_port_member(struct ksz_device *dev, int port)
2145 {
2146 	struct ksz_port *p = &dev->ports[port];
2147 	struct dsa_switch *ds = dev->ds;
2148 	u8 port_member = 0, cpu_port;
2149 	const struct dsa_port *dp;
2150 	int i, j;
2151 
2152 	if (!dsa_is_user_port(ds, port))
2153 		return;
2154 
2155 	dp = dsa_to_port(ds, port);
2156 	cpu_port = BIT(dsa_upstream_port(ds, port));
2157 
2158 	for (i = 0; i < ds->num_ports; i++) {
2159 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2160 		struct ksz_port *other_p = &dev->ports[i];
2161 		u8 val = 0;
2162 
2163 		if (!dsa_is_user_port(ds, i))
2164 			continue;
2165 		if (port == i)
2166 			continue;
2167 		if (!dsa_port_bridge_same(dp, other_dp))
2168 			continue;
2169 		if (other_p->stp_state != BR_STATE_FORWARDING)
2170 			continue;
2171 
2172 		/* At this point we know that "port" and "other" port [i] are in
2173 		 * the same bridge group and that "other" port [i] is in
2174 		 * forwarding stp state. If "port" is also in forwarding stp
2175 		 * state, we can allow forwarding from port [port] to port [i].
2176 		 * Except if both ports are isolated.
2177 		 */
2178 		if (p->stp_state == BR_STATE_FORWARDING &&
2179 		    !(p->isolated && other_p->isolated)) {
2180 			val |= BIT(port);
2181 			port_member |= BIT(i);
2182 		}
2183 
2184 		/* Retain port [i]'s relationship to other ports than [port] */
2185 		for (j = 0; j < ds->num_ports; j++) {
2186 			const struct dsa_port *third_dp;
2187 			struct ksz_port *third_p;
2188 
2189 			if (j == i)
2190 				continue;
2191 			if (j == port)
2192 				continue;
2193 			if (!dsa_is_user_port(ds, j))
2194 				continue;
2195 			third_p = &dev->ports[j];
2196 			if (third_p->stp_state != BR_STATE_FORWARDING)
2197 				continue;
2198 
2199 			third_dp = dsa_to_port(ds, j);
2200 
2201 			/* Now we updating relation of the "other" port [i] to
2202 			 * the "third" port [j]. We already know that "other"
2203 			 * port [i] is in forwarding stp state and that "third"
2204 			 * port [j] is in forwarding stp state too.
2205 			 * We need to check if "other" port [i] and "third" port
2206 			 * [j] are in the same bridge group and not isolated
2207 			 * before allowing forwarding from port [i] to port [j].
2208 			 */
2209 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2210 			    !(other_p->isolated && third_p->isolated))
2211 				val |= BIT(j);
2212 		}
2213 
2214 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2215 	}
2216 
2217 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2218 }
2219 
2220 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2221 {
2222 	struct ksz_device *dev = bus->priv;
2223 	u16 val;
2224 	int ret;
2225 
2226 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2227 	if (ret < 0)
2228 		return ret;
2229 
2230 	return val;
2231 }
2232 
2233 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2234 			     u16 val)
2235 {
2236 	struct ksz_device *dev = bus->priv;
2237 
2238 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2239 }
2240 
2241 static int ksz_irq_phy_setup(struct ksz_device *dev)
2242 {
2243 	struct dsa_switch *ds = dev->ds;
2244 	int phy;
2245 	int irq;
2246 	int ret;
2247 
2248 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) {
2249 		if (BIT(phy) & ds->phys_mii_mask) {
2250 			irq = irq_find_mapping(dev->ports[phy].pirq.domain,
2251 					       PORT_SRC_PHY_INT);
2252 			if (irq < 0) {
2253 				ret = irq;
2254 				goto out;
2255 			}
2256 			ds->user_mii_bus->irq[phy] = irq;
2257 		}
2258 	}
2259 	return 0;
2260 out:
2261 	while (phy--)
2262 		if (BIT(phy) & ds->phys_mii_mask)
2263 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2264 
2265 	return ret;
2266 }
2267 
2268 static void ksz_irq_phy_free(struct ksz_device *dev)
2269 {
2270 	struct dsa_switch *ds = dev->ds;
2271 	int phy;
2272 
2273 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++)
2274 		if (BIT(phy) & ds->phys_mii_mask)
2275 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2276 }
2277 
2278 static int ksz_mdio_register(struct ksz_device *dev)
2279 {
2280 	struct dsa_switch *ds = dev->ds;
2281 	struct device_node *mdio_np;
2282 	struct mii_bus *bus;
2283 	int ret;
2284 
2285 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2286 	if (!mdio_np)
2287 		return 0;
2288 
2289 	bus = devm_mdiobus_alloc(ds->dev);
2290 	if (!bus) {
2291 		of_node_put(mdio_np);
2292 		return -ENOMEM;
2293 	}
2294 
2295 	bus->priv = dev;
2296 	bus->read = ksz_sw_mdio_read;
2297 	bus->write = ksz_sw_mdio_write;
2298 	bus->name = "ksz user smi";
2299 	snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2300 	bus->parent = ds->dev;
2301 	bus->phy_mask = ~ds->phys_mii_mask;
2302 
2303 	ds->user_mii_bus = bus;
2304 
2305 	if (dev->irq > 0) {
2306 		ret = ksz_irq_phy_setup(dev);
2307 		if (ret) {
2308 			of_node_put(mdio_np);
2309 			return ret;
2310 		}
2311 	}
2312 
2313 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2314 	if (ret) {
2315 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2316 			bus->id);
2317 		if (dev->irq > 0)
2318 			ksz_irq_phy_free(dev);
2319 	}
2320 
2321 	of_node_put(mdio_np);
2322 
2323 	return ret;
2324 }
2325 
2326 static void ksz_irq_mask(struct irq_data *d)
2327 {
2328 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2329 
2330 	kirq->masked |= BIT(d->hwirq);
2331 }
2332 
2333 static void ksz_irq_unmask(struct irq_data *d)
2334 {
2335 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2336 
2337 	kirq->masked &= ~BIT(d->hwirq);
2338 }
2339 
2340 static void ksz_irq_bus_lock(struct irq_data *d)
2341 {
2342 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2343 
2344 	mutex_lock(&kirq->dev->lock_irq);
2345 }
2346 
2347 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2348 {
2349 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2350 	struct ksz_device *dev = kirq->dev;
2351 	int ret;
2352 
2353 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2354 	if (ret)
2355 		dev_err(dev->dev, "failed to change IRQ mask\n");
2356 
2357 	mutex_unlock(&dev->lock_irq);
2358 }
2359 
2360 static const struct irq_chip ksz_irq_chip = {
2361 	.name			= "ksz-irq",
2362 	.irq_mask		= ksz_irq_mask,
2363 	.irq_unmask		= ksz_irq_unmask,
2364 	.irq_bus_lock		= ksz_irq_bus_lock,
2365 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2366 };
2367 
2368 static int ksz_irq_domain_map(struct irq_domain *d,
2369 			      unsigned int irq, irq_hw_number_t hwirq)
2370 {
2371 	irq_set_chip_data(irq, d->host_data);
2372 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2373 	irq_set_noprobe(irq);
2374 
2375 	return 0;
2376 }
2377 
2378 static const struct irq_domain_ops ksz_irq_domain_ops = {
2379 	.map	= ksz_irq_domain_map,
2380 	.xlate	= irq_domain_xlate_twocell,
2381 };
2382 
2383 static void ksz_irq_free(struct ksz_irq *kirq)
2384 {
2385 	int irq, virq;
2386 
2387 	free_irq(kirq->irq_num, kirq);
2388 
2389 	for (irq = 0; irq < kirq->nirqs; irq++) {
2390 		virq = irq_find_mapping(kirq->domain, irq);
2391 		irq_dispose_mapping(virq);
2392 	}
2393 
2394 	irq_domain_remove(kirq->domain);
2395 }
2396 
2397 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2398 {
2399 	struct ksz_irq *kirq = dev_id;
2400 	unsigned int nhandled = 0;
2401 	struct ksz_device *dev;
2402 	unsigned int sub_irq;
2403 	u8 data;
2404 	int ret;
2405 	u8 n;
2406 
2407 	dev = kirq->dev;
2408 
2409 	/* Read interrupt status register */
2410 	ret = ksz_read8(dev, kirq->reg_status, &data);
2411 	if (ret)
2412 		goto out;
2413 
2414 	for (n = 0; n < kirq->nirqs; ++n) {
2415 		if (data & BIT(n)) {
2416 			sub_irq = irq_find_mapping(kirq->domain, n);
2417 			handle_nested_irq(sub_irq);
2418 			++nhandled;
2419 		}
2420 	}
2421 out:
2422 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2423 }
2424 
2425 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2426 {
2427 	int ret, n;
2428 
2429 	kirq->dev = dev;
2430 	kirq->masked = ~0;
2431 
2432 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2433 					     &ksz_irq_domain_ops, kirq);
2434 	if (!kirq->domain)
2435 		return -ENOMEM;
2436 
2437 	for (n = 0; n < kirq->nirqs; n++)
2438 		irq_create_mapping(kirq->domain, n);
2439 
2440 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2441 				   IRQF_ONESHOT, kirq->name, kirq);
2442 	if (ret)
2443 		goto out;
2444 
2445 	return 0;
2446 
2447 out:
2448 	ksz_irq_free(kirq);
2449 
2450 	return ret;
2451 }
2452 
2453 static int ksz_girq_setup(struct ksz_device *dev)
2454 {
2455 	struct ksz_irq *girq = &dev->girq;
2456 
2457 	girq->nirqs = dev->info->port_cnt;
2458 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2459 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2460 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2461 
2462 	girq->irq_num = dev->irq;
2463 
2464 	return ksz_irq_common_setup(dev, girq);
2465 }
2466 
2467 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2468 {
2469 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2470 
2471 	pirq->nirqs = dev->info->port_nirqs;
2472 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2473 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2474 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2475 
2476 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2477 	if (pirq->irq_num < 0)
2478 		return pirq->irq_num;
2479 
2480 	return ksz_irq_common_setup(dev, pirq);
2481 }
2482 
2483 static int ksz_parse_drive_strength(struct ksz_device *dev);
2484 
2485 static int ksz_setup(struct dsa_switch *ds)
2486 {
2487 	struct ksz_device *dev = ds->priv;
2488 	struct dsa_port *dp;
2489 	struct ksz_port *p;
2490 	const u16 *regs;
2491 	int ret;
2492 
2493 	regs = dev->info->regs;
2494 
2495 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2496 				       dev->info->num_vlans, GFP_KERNEL);
2497 	if (!dev->vlan_cache)
2498 		return -ENOMEM;
2499 
2500 	ret = dev->dev_ops->reset(dev);
2501 	if (ret) {
2502 		dev_err(ds->dev, "failed to reset switch\n");
2503 		return ret;
2504 	}
2505 
2506 	ret = ksz_parse_drive_strength(dev);
2507 	if (ret)
2508 		return ret;
2509 
2510 	/* set broadcast storm protection 10% rate */
2511 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2512 			   BROADCAST_STORM_RATE,
2513 			   (BROADCAST_STORM_VALUE *
2514 			   BROADCAST_STORM_PROT_RATE) / 100);
2515 
2516 	dev->dev_ops->config_cpu_port(ds);
2517 
2518 	dev->dev_ops->enable_stp_addr(dev);
2519 
2520 	ds->num_tx_queues = dev->info->num_tx_queues;
2521 
2522 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2523 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2524 
2525 	ksz_init_mib_timer(dev);
2526 
2527 	ds->configure_vlan_while_not_filtering = false;
2528 	ds->dscp_prio_mapping_is_global = true;
2529 
2530 	if (dev->dev_ops->setup) {
2531 		ret = dev->dev_ops->setup(ds);
2532 		if (ret)
2533 			return ret;
2534 	}
2535 
2536 	/* Start with learning disabled on standalone user ports, and enabled
2537 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2538 	 * CPU port will avoid flooding bridge local addresses on the network
2539 	 * in some cases.
2540 	 */
2541 	p = &dev->ports[dev->cpu_port];
2542 	p->learning = true;
2543 
2544 	if (dev->irq > 0) {
2545 		ret = ksz_girq_setup(dev);
2546 		if (ret)
2547 			return ret;
2548 
2549 		dsa_switch_for_each_user_port(dp, dev->ds) {
2550 			ret = ksz_pirq_setup(dev, dp->index);
2551 			if (ret)
2552 				goto out_girq;
2553 
2554 			ret = ksz_ptp_irq_setup(ds, dp->index);
2555 			if (ret)
2556 				goto out_pirq;
2557 		}
2558 	}
2559 
2560 	ret = ksz_ptp_clock_register(ds);
2561 	if (ret) {
2562 		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2563 		goto out_ptpirq;
2564 	}
2565 
2566 	ret = ksz_mdio_register(dev);
2567 	if (ret < 0) {
2568 		dev_err(dev->dev, "failed to register the mdio");
2569 		goto out_ptp_clock_unregister;
2570 	}
2571 
2572 	ret = ksz_dcb_init(dev);
2573 	if (ret)
2574 		goto out_ptp_clock_unregister;
2575 
2576 	/* start switch */
2577 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2578 			   SW_START, SW_START);
2579 
2580 	return 0;
2581 
2582 out_ptp_clock_unregister:
2583 	ksz_ptp_clock_unregister(ds);
2584 out_ptpirq:
2585 	if (dev->irq > 0)
2586 		dsa_switch_for_each_user_port(dp, dev->ds)
2587 			ksz_ptp_irq_free(ds, dp->index);
2588 out_pirq:
2589 	if (dev->irq > 0)
2590 		dsa_switch_for_each_user_port(dp, dev->ds)
2591 			ksz_irq_free(&dev->ports[dp->index].pirq);
2592 out_girq:
2593 	if (dev->irq > 0)
2594 		ksz_irq_free(&dev->girq);
2595 
2596 	return ret;
2597 }
2598 
2599 static void ksz_teardown(struct dsa_switch *ds)
2600 {
2601 	struct ksz_device *dev = ds->priv;
2602 	struct dsa_port *dp;
2603 
2604 	ksz_ptp_clock_unregister(ds);
2605 
2606 	if (dev->irq > 0) {
2607 		dsa_switch_for_each_user_port(dp, dev->ds) {
2608 			ksz_ptp_irq_free(ds, dp->index);
2609 
2610 			ksz_irq_free(&dev->ports[dp->index].pirq);
2611 		}
2612 
2613 		ksz_irq_free(&dev->girq);
2614 	}
2615 
2616 	if (dev->dev_ops->teardown)
2617 		dev->dev_ops->teardown(ds);
2618 }
2619 
2620 static void port_r_cnt(struct ksz_device *dev, int port)
2621 {
2622 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2623 	u64 *dropped;
2624 
2625 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2626 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2627 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2628 					&mib->counters[mib->cnt_ptr]);
2629 		++mib->cnt_ptr;
2630 	}
2631 
2632 	/* last one in storage */
2633 	dropped = &mib->counters[dev->info->mib_cnt];
2634 
2635 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2636 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2637 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2638 					dropped, &mib->counters[mib->cnt_ptr]);
2639 		++mib->cnt_ptr;
2640 	}
2641 	mib->cnt_ptr = 0;
2642 }
2643 
2644 static void ksz_mib_read_work(struct work_struct *work)
2645 {
2646 	struct ksz_device *dev = container_of(work, struct ksz_device,
2647 					      mib_read.work);
2648 	struct ksz_port_mib *mib;
2649 	struct ksz_port *p;
2650 	int i;
2651 
2652 	for (i = 0; i < dev->info->port_cnt; i++) {
2653 		if (dsa_is_unused_port(dev->ds, i))
2654 			continue;
2655 
2656 		p = &dev->ports[i];
2657 		mib = &p->mib;
2658 		mutex_lock(&mib->cnt_mutex);
2659 
2660 		/* Only read MIB counters when the port is told to do.
2661 		 * If not, read only dropped counters when link is not up.
2662 		 */
2663 		if (!p->read) {
2664 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2665 
2666 			if (!netif_carrier_ok(dp->user))
2667 				mib->cnt_ptr = dev->info->reg_mib_cnt;
2668 		}
2669 		port_r_cnt(dev, i);
2670 		p->read = false;
2671 
2672 		if (dev->dev_ops->r_mib_stat64)
2673 			dev->dev_ops->r_mib_stat64(dev, i);
2674 
2675 		mutex_unlock(&mib->cnt_mutex);
2676 	}
2677 
2678 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2679 }
2680 
2681 void ksz_init_mib_timer(struct ksz_device *dev)
2682 {
2683 	int i;
2684 
2685 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2686 
2687 	for (i = 0; i < dev->info->port_cnt; i++) {
2688 		struct ksz_port_mib *mib = &dev->ports[i].mib;
2689 
2690 		dev->dev_ops->port_init_cnt(dev, i);
2691 
2692 		mib->cnt_ptr = 0;
2693 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2694 	}
2695 }
2696 
2697 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2698 {
2699 	struct ksz_device *dev = ds->priv;
2700 	u16 val = 0xffff;
2701 	int ret;
2702 
2703 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2704 	if (ret)
2705 		return ret;
2706 
2707 	return val;
2708 }
2709 
2710 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2711 {
2712 	struct ksz_device *dev = ds->priv;
2713 	int ret;
2714 
2715 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2716 	if (ret)
2717 		return ret;
2718 
2719 	return 0;
2720 }
2721 
2722 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2723 {
2724 	struct ksz_device *dev = ds->priv;
2725 
2726 	switch (dev->chip_id) {
2727 	case KSZ88X3_CHIP_ID:
2728 		/* Silicon Errata Sheet (DS80000830A):
2729 		 * Port 1 does not work with LinkMD Cable-Testing.
2730 		 * Port 1 does not respond to received PAUSE control frames.
2731 		 */
2732 		if (!port)
2733 			return MICREL_KSZ8_P1_ERRATA;
2734 		break;
2735 	case KSZ8567_CHIP_ID:
2736 		/* KSZ8567R Errata DS80000752C Module 4 */
2737 	case KSZ8765_CHIP_ID:
2738 	case KSZ8794_CHIP_ID:
2739 	case KSZ8795_CHIP_ID:
2740 		/* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */
2741 	case KSZ9477_CHIP_ID:
2742 		/* KSZ9477S Errata DS80000754A Module 4 */
2743 	case KSZ9567_CHIP_ID:
2744 		/* KSZ9567S Errata DS80000756A Module 4 */
2745 	case KSZ9896_CHIP_ID:
2746 		/* KSZ9896C Errata DS80000757A Module 3 */
2747 	case KSZ9897_CHIP_ID:
2748 		/* KSZ9897R Errata DS80000758C Module 4 */
2749 		/* Energy Efficient Ethernet (EEE) feature select must be manually disabled
2750 		 *   The EEE feature is enabled by default, but it is not fully
2751 		 *   operational. It must be manually disabled through register
2752 		 *   controls. If not disabled, the PHY ports can auto-negotiate
2753 		 *   to enable EEE, and this feature can cause link drops when
2754 		 *   linked to another device supporting EEE.
2755 		 *
2756 		 * The same item appears in the errata for all switches above.
2757 		 */
2758 		return MICREL_NO_EEE;
2759 	}
2760 
2761 	return 0;
2762 }
2763 
2764 static void ksz_phylink_mac_link_down(struct phylink_config *config,
2765 				      unsigned int mode,
2766 				      phy_interface_t interface)
2767 {
2768 	struct dsa_port *dp = dsa_phylink_to_port(config);
2769 	struct ksz_device *dev = dp->ds->priv;
2770 
2771 	/* Read all MIB counters when the link is going down. */
2772 	dev->ports[dp->index].read = true;
2773 	/* timer started */
2774 	if (dev->mib_read_interval)
2775 		schedule_delayed_work(&dev->mib_read, 0);
2776 }
2777 
2778 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
2779 {
2780 	struct ksz_device *dev = ds->priv;
2781 
2782 	if (sset != ETH_SS_STATS)
2783 		return 0;
2784 
2785 	return dev->info->mib_cnt;
2786 }
2787 
2788 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
2789 				  uint64_t *buf)
2790 {
2791 	const struct dsa_port *dp = dsa_to_port(ds, port);
2792 	struct ksz_device *dev = ds->priv;
2793 	struct ksz_port_mib *mib;
2794 
2795 	mib = &dev->ports[port].mib;
2796 	mutex_lock(&mib->cnt_mutex);
2797 
2798 	/* Only read dropped counters if no link. */
2799 	if (!netif_carrier_ok(dp->user))
2800 		mib->cnt_ptr = dev->info->reg_mib_cnt;
2801 	port_r_cnt(dev, port);
2802 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
2803 	mutex_unlock(&mib->cnt_mutex);
2804 }
2805 
2806 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
2807 				struct dsa_bridge bridge,
2808 				bool *tx_fwd_offload,
2809 				struct netlink_ext_ack *extack)
2810 {
2811 	/* port_stp_state_set() will be called after to put the port in
2812 	 * appropriate state so there is no need to do anything.
2813 	 */
2814 
2815 	return 0;
2816 }
2817 
2818 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
2819 				  struct dsa_bridge bridge)
2820 {
2821 	/* port_stp_state_set() will be called after to put the port in
2822 	 * forwarding state so there is no need to do anything.
2823 	 */
2824 }
2825 
2826 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
2827 {
2828 	struct ksz_device *dev = ds->priv;
2829 
2830 	dev->dev_ops->flush_dyn_mac_table(dev, port);
2831 }
2832 
2833 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
2834 {
2835 	struct ksz_device *dev = ds->priv;
2836 
2837 	if (!dev->dev_ops->set_ageing_time)
2838 		return -EOPNOTSUPP;
2839 
2840 	return dev->dev_ops->set_ageing_time(dev, msecs);
2841 }
2842 
2843 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
2844 			    const unsigned char *addr, u16 vid,
2845 			    struct dsa_db db)
2846 {
2847 	struct ksz_device *dev = ds->priv;
2848 
2849 	if (!dev->dev_ops->fdb_add)
2850 		return -EOPNOTSUPP;
2851 
2852 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
2853 }
2854 
2855 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
2856 			    const unsigned char *addr,
2857 			    u16 vid, struct dsa_db db)
2858 {
2859 	struct ksz_device *dev = ds->priv;
2860 
2861 	if (!dev->dev_ops->fdb_del)
2862 		return -EOPNOTSUPP;
2863 
2864 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
2865 }
2866 
2867 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
2868 			     dsa_fdb_dump_cb_t *cb, void *data)
2869 {
2870 	struct ksz_device *dev = ds->priv;
2871 
2872 	if (!dev->dev_ops->fdb_dump)
2873 		return -EOPNOTSUPP;
2874 
2875 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
2876 }
2877 
2878 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
2879 			    const struct switchdev_obj_port_mdb *mdb,
2880 			    struct dsa_db db)
2881 {
2882 	struct ksz_device *dev = ds->priv;
2883 
2884 	if (!dev->dev_ops->mdb_add)
2885 		return -EOPNOTSUPP;
2886 
2887 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
2888 }
2889 
2890 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
2891 			    const struct switchdev_obj_port_mdb *mdb,
2892 			    struct dsa_db db)
2893 {
2894 	struct ksz_device *dev = ds->priv;
2895 
2896 	if (!dev->dev_ops->mdb_del)
2897 		return -EOPNOTSUPP;
2898 
2899 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
2900 }
2901 
2902 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
2903 						  int port)
2904 {
2905 	u32 queue_map = 0;
2906 	int ipm;
2907 
2908 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
2909 		int queue;
2910 
2911 		/* Traffic Type (TT) is corresponding to the Internal Priority
2912 		 * Map (IPM) in the switch. Traffic Class (TC) is
2913 		 * corresponding to the queue in the switch.
2914 		 */
2915 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
2916 		if (queue < 0)
2917 			return queue;
2918 
2919 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
2920 	}
2921 
2922 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
2923 }
2924 
2925 static int ksz_port_setup(struct dsa_switch *ds, int port)
2926 {
2927 	struct ksz_device *dev = ds->priv;
2928 	int ret;
2929 
2930 	if (!dsa_is_user_port(ds, port))
2931 		return 0;
2932 
2933 	/* setup user port */
2934 	dev->dev_ops->port_setup(dev, port, false);
2935 
2936 	if (!is_ksz8(dev)) {
2937 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
2938 		if (ret)
2939 			return ret;
2940 	}
2941 
2942 	/* port_stp_state_set() will be called after to enable the port so
2943 	 * there is no need to do anything.
2944 	 */
2945 
2946 	return ksz_dcb_init_port(dev, port);
2947 }
2948 
2949 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
2950 {
2951 	struct ksz_device *dev = ds->priv;
2952 	struct ksz_port *p;
2953 	const u16 *regs;
2954 	u8 data;
2955 
2956 	regs = dev->info->regs;
2957 
2958 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
2959 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2960 
2961 	p = &dev->ports[port];
2962 
2963 	switch (state) {
2964 	case BR_STATE_DISABLED:
2965 		data |= PORT_LEARN_DISABLE;
2966 		break;
2967 	case BR_STATE_LISTENING:
2968 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2969 		break;
2970 	case BR_STATE_LEARNING:
2971 		data |= PORT_RX_ENABLE;
2972 		if (!p->learning)
2973 			data |= PORT_LEARN_DISABLE;
2974 		break;
2975 	case BR_STATE_FORWARDING:
2976 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2977 		if (!p->learning)
2978 			data |= PORT_LEARN_DISABLE;
2979 		break;
2980 	case BR_STATE_BLOCKING:
2981 		data |= PORT_LEARN_DISABLE;
2982 		break;
2983 	default:
2984 		dev_err(ds->dev, "invalid STP state: %d\n", state);
2985 		return;
2986 	}
2987 
2988 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
2989 
2990 	p->stp_state = state;
2991 
2992 	ksz_update_port_member(dev, port);
2993 }
2994 
2995 static void ksz_port_teardown(struct dsa_switch *ds, int port)
2996 {
2997 	struct ksz_device *dev = ds->priv;
2998 
2999 	switch (dev->chip_id) {
3000 	case KSZ8563_CHIP_ID:
3001 	case KSZ8567_CHIP_ID:
3002 	case KSZ9477_CHIP_ID:
3003 	case KSZ9563_CHIP_ID:
3004 	case KSZ9567_CHIP_ID:
3005 	case KSZ9893_CHIP_ID:
3006 	case KSZ9896_CHIP_ID:
3007 	case KSZ9897_CHIP_ID:
3008 		if (dsa_is_user_port(ds, port))
3009 			ksz9477_port_acl_free(dev, port);
3010 	}
3011 }
3012 
3013 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3014 				     struct switchdev_brport_flags flags,
3015 				     struct netlink_ext_ack *extack)
3016 {
3017 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
3018 		return -EINVAL;
3019 
3020 	return 0;
3021 }
3022 
3023 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
3024 				 struct switchdev_brport_flags flags,
3025 				 struct netlink_ext_ack *extack)
3026 {
3027 	struct ksz_device *dev = ds->priv;
3028 	struct ksz_port *p = &dev->ports[port];
3029 
3030 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
3031 		if (flags.mask & BR_LEARNING)
3032 			p->learning = !!(flags.val & BR_LEARNING);
3033 
3034 		if (flags.mask & BR_ISOLATED)
3035 			p->isolated = !!(flags.val & BR_ISOLATED);
3036 
3037 		/* Make the change take effect immediately */
3038 		ksz_port_stp_state_set(ds, port, p->stp_state);
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
3045 						  int port,
3046 						  enum dsa_tag_protocol mp)
3047 {
3048 	struct ksz_device *dev = ds->priv;
3049 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
3050 
3051 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
3052 		proto = DSA_TAG_PROTO_KSZ8795;
3053 
3054 	if (dev->chip_id == KSZ88X3_CHIP_ID ||
3055 	    dev->chip_id == KSZ8563_CHIP_ID ||
3056 	    dev->chip_id == KSZ9893_CHIP_ID ||
3057 	    dev->chip_id == KSZ9563_CHIP_ID)
3058 		proto = DSA_TAG_PROTO_KSZ9893;
3059 
3060 	if (dev->chip_id == KSZ8567_CHIP_ID ||
3061 	    dev->chip_id == KSZ9477_CHIP_ID ||
3062 	    dev->chip_id == KSZ9896_CHIP_ID ||
3063 	    dev->chip_id == KSZ9897_CHIP_ID ||
3064 	    dev->chip_id == KSZ9567_CHIP_ID)
3065 		proto = DSA_TAG_PROTO_KSZ9477;
3066 
3067 	if (is_lan937x(dev))
3068 		proto = DSA_TAG_PROTO_LAN937X;
3069 
3070 	return proto;
3071 }
3072 
3073 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
3074 				    enum dsa_tag_protocol proto)
3075 {
3076 	struct ksz_tagger_data *tagger_data;
3077 
3078 	switch (proto) {
3079 	case DSA_TAG_PROTO_KSZ8795:
3080 		return 0;
3081 	case DSA_TAG_PROTO_KSZ9893:
3082 	case DSA_TAG_PROTO_KSZ9477:
3083 	case DSA_TAG_PROTO_LAN937X:
3084 		tagger_data = ksz_tagger_data(ds);
3085 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
3086 		return 0;
3087 	default:
3088 		return -EPROTONOSUPPORT;
3089 	}
3090 }
3091 
3092 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
3093 				   bool flag, struct netlink_ext_ack *extack)
3094 {
3095 	struct ksz_device *dev = ds->priv;
3096 
3097 	if (!dev->dev_ops->vlan_filtering)
3098 		return -EOPNOTSUPP;
3099 
3100 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
3101 }
3102 
3103 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
3104 			     const struct switchdev_obj_port_vlan *vlan,
3105 			     struct netlink_ext_ack *extack)
3106 {
3107 	struct ksz_device *dev = ds->priv;
3108 
3109 	if (!dev->dev_ops->vlan_add)
3110 		return -EOPNOTSUPP;
3111 
3112 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
3113 }
3114 
3115 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3116 			     const struct switchdev_obj_port_vlan *vlan)
3117 {
3118 	struct ksz_device *dev = ds->priv;
3119 
3120 	if (!dev->dev_ops->vlan_del)
3121 		return -EOPNOTSUPP;
3122 
3123 	return dev->dev_ops->vlan_del(dev, port, vlan);
3124 }
3125 
3126 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3127 			       struct dsa_mall_mirror_tc_entry *mirror,
3128 			       bool ingress, struct netlink_ext_ack *extack)
3129 {
3130 	struct ksz_device *dev = ds->priv;
3131 
3132 	if (!dev->dev_ops->mirror_add)
3133 		return -EOPNOTSUPP;
3134 
3135 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3136 }
3137 
3138 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3139 				struct dsa_mall_mirror_tc_entry *mirror)
3140 {
3141 	struct ksz_device *dev = ds->priv;
3142 
3143 	if (dev->dev_ops->mirror_del)
3144 		dev->dev_ops->mirror_del(dev, port, mirror);
3145 }
3146 
3147 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3148 {
3149 	struct ksz_device *dev = ds->priv;
3150 
3151 	if (!dev->dev_ops->change_mtu)
3152 		return -EOPNOTSUPP;
3153 
3154 	return dev->dev_ops->change_mtu(dev, port, mtu);
3155 }
3156 
3157 static int ksz_max_mtu(struct dsa_switch *ds, int port)
3158 {
3159 	struct ksz_device *dev = ds->priv;
3160 
3161 	switch (dev->chip_id) {
3162 	case KSZ8795_CHIP_ID:
3163 	case KSZ8794_CHIP_ID:
3164 	case KSZ8765_CHIP_ID:
3165 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3166 	case KSZ88X3_CHIP_ID:
3167 	case KSZ8864_CHIP_ID:
3168 	case KSZ8895_CHIP_ID:
3169 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3170 	case KSZ8563_CHIP_ID:
3171 	case KSZ8567_CHIP_ID:
3172 	case KSZ9477_CHIP_ID:
3173 	case KSZ9563_CHIP_ID:
3174 	case KSZ9567_CHIP_ID:
3175 	case KSZ9893_CHIP_ID:
3176 	case KSZ9896_CHIP_ID:
3177 	case KSZ9897_CHIP_ID:
3178 	case LAN9370_CHIP_ID:
3179 	case LAN9371_CHIP_ID:
3180 	case LAN9372_CHIP_ID:
3181 	case LAN9373_CHIP_ID:
3182 	case LAN9374_CHIP_ID:
3183 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3184 	}
3185 
3186 	return -EOPNOTSUPP;
3187 }
3188 
3189 static int ksz_validate_eee(struct dsa_switch *ds, int port)
3190 {
3191 	struct ksz_device *dev = ds->priv;
3192 
3193 	if (!dev->info->internal_phy[port])
3194 		return -EOPNOTSUPP;
3195 
3196 	switch (dev->chip_id) {
3197 	case KSZ8563_CHIP_ID:
3198 	case KSZ8567_CHIP_ID:
3199 	case KSZ9477_CHIP_ID:
3200 	case KSZ9563_CHIP_ID:
3201 	case KSZ9567_CHIP_ID:
3202 	case KSZ9893_CHIP_ID:
3203 	case KSZ9896_CHIP_ID:
3204 	case KSZ9897_CHIP_ID:
3205 		return 0;
3206 	}
3207 
3208 	return -EOPNOTSUPP;
3209 }
3210 
3211 static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
3212 			   struct ethtool_keee *e)
3213 {
3214 	int ret;
3215 
3216 	ret = ksz_validate_eee(ds, port);
3217 	if (ret)
3218 		return ret;
3219 
3220 	/* There is no documented control of Tx LPI configuration. */
3221 	e->tx_lpi_enabled = true;
3222 
3223 	/* There is no documented control of Tx LPI timer. According to tests
3224 	 * Tx LPI timer seems to be set by default to minimal value.
3225 	 */
3226 	e->tx_lpi_timer = 0;
3227 
3228 	return 0;
3229 }
3230 
3231 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3232 			   struct ethtool_keee *e)
3233 {
3234 	struct ksz_device *dev = ds->priv;
3235 	int ret;
3236 
3237 	ret = ksz_validate_eee(ds, port);
3238 	if (ret)
3239 		return ret;
3240 
3241 	if (!e->tx_lpi_enabled) {
3242 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3243 		return -EINVAL;
3244 	}
3245 
3246 	if (e->tx_lpi_timer) {
3247 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3248 		return -EINVAL;
3249 	}
3250 
3251 	return 0;
3252 }
3253 
3254 static void ksz_set_xmii(struct ksz_device *dev, int port,
3255 			 phy_interface_t interface)
3256 {
3257 	const u8 *bitval = dev->info->xmii_ctrl1;
3258 	struct ksz_port *p = &dev->ports[port];
3259 	const u16 *regs = dev->info->regs;
3260 	u8 data8;
3261 
3262 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3263 
3264 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3265 		   P_RGMII_ID_EG_ENABLE);
3266 
3267 	switch (interface) {
3268 	case PHY_INTERFACE_MODE_MII:
3269 		data8 |= bitval[P_MII_SEL];
3270 		break;
3271 	case PHY_INTERFACE_MODE_RMII:
3272 		data8 |= bitval[P_RMII_SEL];
3273 		break;
3274 	case PHY_INTERFACE_MODE_GMII:
3275 		data8 |= bitval[P_GMII_SEL];
3276 		break;
3277 	case PHY_INTERFACE_MODE_RGMII:
3278 	case PHY_INTERFACE_MODE_RGMII_ID:
3279 	case PHY_INTERFACE_MODE_RGMII_TXID:
3280 	case PHY_INTERFACE_MODE_RGMII_RXID:
3281 		data8 |= bitval[P_RGMII_SEL];
3282 		/* On KSZ9893, disable RGMII in-band status support */
3283 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3284 		    dev->chip_id == KSZ8563_CHIP_ID ||
3285 		    dev->chip_id == KSZ9563_CHIP_ID ||
3286 		    is_lan937x(dev))
3287 			data8 &= ~P_MII_MAC_MODE;
3288 		break;
3289 	default:
3290 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3291 			phy_modes(interface), port);
3292 		return;
3293 	}
3294 
3295 	if (p->rgmii_tx_val)
3296 		data8 |= P_RGMII_ID_EG_ENABLE;
3297 
3298 	if (p->rgmii_rx_val)
3299 		data8 |= P_RGMII_ID_IG_ENABLE;
3300 
3301 	/* Write the updated value */
3302 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3303 }
3304 
3305 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3306 {
3307 	const u8 *bitval = dev->info->xmii_ctrl1;
3308 	const u16 *regs = dev->info->regs;
3309 	phy_interface_t interface;
3310 	u8 data8;
3311 	u8 val;
3312 
3313 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3314 
3315 	val = FIELD_GET(P_MII_SEL_M, data8);
3316 
3317 	if (val == bitval[P_MII_SEL]) {
3318 		if (gbit)
3319 			interface = PHY_INTERFACE_MODE_GMII;
3320 		else
3321 			interface = PHY_INTERFACE_MODE_MII;
3322 	} else if (val == bitval[P_RMII_SEL]) {
3323 		interface = PHY_INTERFACE_MODE_RMII;
3324 	} else {
3325 		interface = PHY_INTERFACE_MODE_RGMII;
3326 		if (data8 & P_RGMII_ID_EG_ENABLE)
3327 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3328 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3329 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3330 			if (data8 & P_RGMII_ID_EG_ENABLE)
3331 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3332 		}
3333 	}
3334 
3335 	return interface;
3336 }
3337 
3338 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
3339 				       unsigned int mode,
3340 				       const struct phylink_link_state *state)
3341 {
3342 	struct dsa_port *dp = dsa_phylink_to_port(config);
3343 	struct ksz_device *dev = dp->ds->priv;
3344 
3345 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3346 }
3347 
3348 static void ksz_phylink_mac_config(struct phylink_config *config,
3349 				   unsigned int mode,
3350 				   const struct phylink_link_state *state)
3351 {
3352 	struct dsa_port *dp = dsa_phylink_to_port(config);
3353 	struct ksz_device *dev = dp->ds->priv;
3354 	int port = dp->index;
3355 
3356 	/* Internal PHYs */
3357 	if (dev->info->internal_phy[port])
3358 		return;
3359 
3360 	if (phylink_autoneg_inband(mode)) {
3361 		dev_err(dev->dev, "In-band AN not supported!\n");
3362 		return;
3363 	}
3364 
3365 	ksz_set_xmii(dev, port, state->interface);
3366 
3367 	if (dev->dev_ops->setup_rgmii_delay)
3368 		dev->dev_ops->setup_rgmii_delay(dev, port);
3369 }
3370 
3371 bool ksz_get_gbit(struct ksz_device *dev, int port)
3372 {
3373 	const u8 *bitval = dev->info->xmii_ctrl1;
3374 	const u16 *regs = dev->info->regs;
3375 	bool gbit = false;
3376 	u8 data8;
3377 	bool val;
3378 
3379 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3380 
3381 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3382 
3383 	if (val == bitval[P_GMII_1GBIT])
3384 		gbit = true;
3385 
3386 	return gbit;
3387 }
3388 
3389 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3390 {
3391 	const u8 *bitval = dev->info->xmii_ctrl1;
3392 	const u16 *regs = dev->info->regs;
3393 	u8 data8;
3394 
3395 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3396 
3397 	data8 &= ~P_GMII_1GBIT_M;
3398 
3399 	if (gbit)
3400 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3401 	else
3402 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3403 
3404 	/* Write the updated value */
3405 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3406 }
3407 
3408 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3409 {
3410 	const u8 *bitval = dev->info->xmii_ctrl0;
3411 	const u16 *regs = dev->info->regs;
3412 	u8 data8;
3413 
3414 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3415 
3416 	data8 &= ~P_MII_100MBIT_M;
3417 
3418 	if (speed == SPEED_100)
3419 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3420 	else
3421 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3422 
3423 	/* Write the updated value */
3424 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3425 }
3426 
3427 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3428 {
3429 	if (speed == SPEED_1000)
3430 		ksz_set_gbit(dev, port, true);
3431 	else
3432 		ksz_set_gbit(dev, port, false);
3433 
3434 	if (speed == SPEED_100 || speed == SPEED_10)
3435 		ksz_set_100_10mbit(dev, port, speed);
3436 }
3437 
3438 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3439 				bool tx_pause, bool rx_pause)
3440 {
3441 	const u8 *bitval = dev->info->xmii_ctrl0;
3442 	const u32 *masks = dev->info->masks;
3443 	const u16 *regs = dev->info->regs;
3444 	u8 mask;
3445 	u8 val;
3446 
3447 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3448 	       masks[P_MII_RX_FLOW_CTRL];
3449 
3450 	if (duplex == DUPLEX_FULL)
3451 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3452 	else
3453 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3454 
3455 	if (tx_pause)
3456 		val |= masks[P_MII_TX_FLOW_CTRL];
3457 
3458 	if (rx_pause)
3459 		val |= masks[P_MII_RX_FLOW_CTRL];
3460 
3461 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3462 }
3463 
3464 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3465 					struct phy_device *phydev,
3466 					unsigned int mode,
3467 					phy_interface_t interface,
3468 					int speed, int duplex, bool tx_pause,
3469 					bool rx_pause)
3470 {
3471 	struct dsa_port *dp = dsa_phylink_to_port(config);
3472 	struct ksz_device *dev = dp->ds->priv;
3473 	int port = dp->index;
3474 	struct ksz_port *p;
3475 
3476 	p = &dev->ports[port];
3477 
3478 	/* Internal PHYs */
3479 	if (dev->info->internal_phy[port])
3480 		return;
3481 
3482 	p->phydev.speed = speed;
3483 
3484 	ksz_port_set_xmii_speed(dev, port, speed);
3485 
3486 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3487 }
3488 
3489 static int ksz_switch_detect(struct ksz_device *dev)
3490 {
3491 	u8 id1, id2, id4;
3492 	u16 id16;
3493 	u32 id32;
3494 	int ret;
3495 
3496 	/* read chip id */
3497 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3498 	if (ret)
3499 		return ret;
3500 
3501 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3502 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3503 
3504 	switch (id1) {
3505 	case KSZ87_FAMILY_ID:
3506 		if (id2 == KSZ87_CHIP_ID_95) {
3507 			u8 val;
3508 
3509 			dev->chip_id = KSZ8795_CHIP_ID;
3510 
3511 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3512 			if (val & KSZ8_PORT_FIBER_MODE)
3513 				dev->chip_id = KSZ8765_CHIP_ID;
3514 		} else if (id2 == KSZ87_CHIP_ID_94) {
3515 			dev->chip_id = KSZ8794_CHIP_ID;
3516 		} else {
3517 			return -ENODEV;
3518 		}
3519 		break;
3520 	case KSZ88_FAMILY_ID:
3521 		if (id2 == KSZ88_CHIP_ID_63)
3522 			dev->chip_id = KSZ88X3_CHIP_ID;
3523 		else
3524 			return -ENODEV;
3525 		break;
3526 	case KSZ8895_FAMILY_ID:
3527 		if (id2 == KSZ8895_CHIP_ID_95 ||
3528 		    id2 == KSZ8895_CHIP_ID_95R)
3529 			dev->chip_id = KSZ8895_CHIP_ID;
3530 		else
3531 			return -ENODEV;
3532 		ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4);
3533 		if (ret)
3534 			return ret;
3535 		if (id4 & SW_KSZ8864)
3536 			dev->chip_id = KSZ8864_CHIP_ID;
3537 		break;
3538 	default:
3539 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3540 		if (ret)
3541 			return ret;
3542 
3543 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3544 		id32 &= ~0xFF;
3545 
3546 		switch (id32) {
3547 		case KSZ9477_CHIP_ID:
3548 		case KSZ9896_CHIP_ID:
3549 		case KSZ9897_CHIP_ID:
3550 		case KSZ9567_CHIP_ID:
3551 		case KSZ8567_CHIP_ID:
3552 		case LAN9370_CHIP_ID:
3553 		case LAN9371_CHIP_ID:
3554 		case LAN9372_CHIP_ID:
3555 		case LAN9373_CHIP_ID:
3556 		case LAN9374_CHIP_ID:
3557 			dev->chip_id = id32;
3558 			break;
3559 		case KSZ9893_CHIP_ID:
3560 			ret = ksz_read8(dev, REG_CHIP_ID4,
3561 					&id4);
3562 			if (ret)
3563 				return ret;
3564 
3565 			if (id4 == SKU_ID_KSZ8563)
3566 				dev->chip_id = KSZ8563_CHIP_ID;
3567 			else if (id4 == SKU_ID_KSZ9563)
3568 				dev->chip_id = KSZ9563_CHIP_ID;
3569 			else
3570 				dev->chip_id = KSZ9893_CHIP_ID;
3571 
3572 			break;
3573 		default:
3574 			dev_err(dev->dev,
3575 				"unsupported switch detected %x)\n", id32);
3576 			return -ENODEV;
3577 		}
3578 	}
3579 	return 0;
3580 }
3581 
3582 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3583 			      struct flow_cls_offload *cls, bool ingress)
3584 {
3585 	struct ksz_device *dev = ds->priv;
3586 
3587 	switch (dev->chip_id) {
3588 	case KSZ8563_CHIP_ID:
3589 	case KSZ8567_CHIP_ID:
3590 	case KSZ9477_CHIP_ID:
3591 	case KSZ9563_CHIP_ID:
3592 	case KSZ9567_CHIP_ID:
3593 	case KSZ9893_CHIP_ID:
3594 	case KSZ9896_CHIP_ID:
3595 	case KSZ9897_CHIP_ID:
3596 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3597 	}
3598 
3599 	return -EOPNOTSUPP;
3600 }
3601 
3602 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3603 			      struct flow_cls_offload *cls, bool ingress)
3604 {
3605 	struct ksz_device *dev = ds->priv;
3606 
3607 	switch (dev->chip_id) {
3608 	case KSZ8563_CHIP_ID:
3609 	case KSZ8567_CHIP_ID:
3610 	case KSZ9477_CHIP_ID:
3611 	case KSZ9563_CHIP_ID:
3612 	case KSZ9567_CHIP_ID:
3613 	case KSZ9893_CHIP_ID:
3614 	case KSZ9896_CHIP_ID:
3615 	case KSZ9897_CHIP_ID:
3616 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3617 	}
3618 
3619 	return -EOPNOTSUPP;
3620 }
3621 
3622 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3623  * is converted to Hex-decimal using the successive multiplication method. On
3624  * every step, integer part is taken and decimal part is carry forwarded.
3625  */
3626 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3627 {
3628 	u32 cinc = 0;
3629 	u32 txrate;
3630 	u32 rate;
3631 	u8 temp;
3632 	u8 i;
3633 
3634 	txrate = idle_slope - send_slope;
3635 
3636 	if (!txrate)
3637 		return -EINVAL;
3638 
3639 	rate = idle_slope;
3640 
3641 	/* 24 bit register */
3642 	for (i = 0; i < 6; i++) {
3643 		rate = rate * 16;
3644 
3645 		temp = rate / txrate;
3646 
3647 		rate %= txrate;
3648 
3649 		cinc = ((cinc << 4) | temp);
3650 	}
3651 
3652 	*bw = cinc;
3653 
3654 	return 0;
3655 }
3656 
3657 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3658 			     u8 shaper)
3659 {
3660 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3661 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3662 			   FIELD_PREP(MTI_SHAPING_M, shaper));
3663 }
3664 
3665 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3666 			    struct tc_cbs_qopt_offload *qopt)
3667 {
3668 	struct ksz_device *dev = ds->priv;
3669 	int ret;
3670 	u32 bw;
3671 
3672 	if (!dev->info->tc_cbs_supported)
3673 		return -EOPNOTSUPP;
3674 
3675 	if (qopt->queue > dev->info->num_tx_queues)
3676 		return -EINVAL;
3677 
3678 	/* Queue Selection */
3679 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3680 	if (ret)
3681 		return ret;
3682 
3683 	if (!qopt->enable)
3684 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3685 					 MTI_SHAPING_OFF);
3686 
3687 	/* High Credit */
3688 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3689 			   qopt->hicredit);
3690 	if (ret)
3691 		return ret;
3692 
3693 	/* Low Credit */
3694 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3695 			   qopt->locredit);
3696 	if (ret)
3697 		return ret;
3698 
3699 	/* Credit Increment Register */
3700 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3701 	if (ret)
3702 		return ret;
3703 
3704 	if (dev->dev_ops->tc_cbs_set_cinc) {
3705 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3706 		if (ret)
3707 			return ret;
3708 	}
3709 
3710 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3711 				 MTI_SHAPING_SRP);
3712 }
3713 
3714 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3715 {
3716 	int queue, ret;
3717 
3718 	/* Configuration will not take effect until the last Port Queue X
3719 	 * Egress Limit Control Register is written.
3720 	 */
3721 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3722 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3723 				  KSZ9477_OUT_RATE_NO_LIMIT);
3724 		if (ret)
3725 			return ret;
3726 	}
3727 
3728 	return 0;
3729 }
3730 
3731 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
3732 				 int band)
3733 {
3734 	/* Compared to queues, bands prioritize packets differently. In strict
3735 	 * priority mode, the lowest priority is assigned to Queue 0 while the
3736 	 * highest priority is given to Band 0.
3737 	 */
3738 	return p->bands - 1 - band;
3739 }
3740 
3741 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
3742 {
3743 	int ret;
3744 
3745 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3746 	if (ret)
3747 		return ret;
3748 
3749 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3750 				 MTI_SHAPING_OFF);
3751 }
3752 
3753 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
3754 			     int weight)
3755 {
3756 	int ret;
3757 
3758 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3759 	if (ret)
3760 		return ret;
3761 
3762 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3763 				MTI_SHAPING_OFF);
3764 	if (ret)
3765 		return ret;
3766 
3767 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
3768 }
3769 
3770 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
3771 			  struct tc_ets_qopt_offload_replace_params *p)
3772 {
3773 	int ret, band, tc_prio;
3774 	u32 queue_map = 0;
3775 
3776 	/* In order to ensure proper prioritization, it is necessary to set the
3777 	 * rate limit for the related queue to zero. Otherwise strict priority
3778 	 * or WRR mode will not work. This is a hardware limitation.
3779 	 */
3780 	ret = ksz_disable_egress_rate_limit(dev, port);
3781 	if (ret)
3782 		return ret;
3783 
3784 	/* Configure queue scheduling mode for all bands. Currently only strict
3785 	 * prio mode is supported.
3786 	 */
3787 	for (band = 0; band < p->bands; band++) {
3788 		int queue = ksz_ets_band_to_queue(p, band);
3789 
3790 		ret = ksz_queue_set_strict(dev, port, queue);
3791 		if (ret)
3792 			return ret;
3793 	}
3794 
3795 	/* Configure the mapping between traffic classes and queues. Note:
3796 	 * priomap variable support 16 traffic classes, but the chip can handle
3797 	 * only 8 classes.
3798 	 */
3799 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
3800 		int queue;
3801 
3802 		if (tc_prio >= dev->info->num_ipms)
3803 			break;
3804 
3805 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
3806 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3807 	}
3808 
3809 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3810 }
3811 
3812 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
3813 {
3814 	int ret, queue;
3815 
3816 	/* To restore the default chip configuration, set all queues to use the
3817 	 * WRR scheduler with a weight of 1.
3818 	 */
3819 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3820 		ret = ksz_queue_set_wrr(dev, port, queue,
3821 					KSZ9477_DEFAULT_WRR_WEIGHT);
3822 		if (ret)
3823 			return ret;
3824 	}
3825 
3826 	/* Revert the queue mapping for TC-priority to its default setting on
3827 	 * the chip.
3828 	 */
3829 	return ksz9477_set_default_prio_queue_mapping(dev, port);
3830 }
3831 
3832 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
3833 			       struct tc_ets_qopt_offload_replace_params *p)
3834 {
3835 	int band;
3836 
3837 	/* Since it is not feasible to share one port among multiple qdisc,
3838 	 * the user must configure all available queues appropriately.
3839 	 */
3840 	if (p->bands != dev->info->num_tx_queues) {
3841 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
3842 			dev->info->num_tx_queues);
3843 		return -EOPNOTSUPP;
3844 	}
3845 
3846 	for (band = 0; band < p->bands; ++band) {
3847 		/* The KSZ switches utilize a weighted round robin configuration
3848 		 * where a certain number of packets can be transmitted from a
3849 		 * queue before the next queue is serviced. For more information
3850 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
3851 		 * documentation on the Port Transmit Queue Control 1 Register.
3852 		 * However, the current ETS Qdisc implementation (as of February
3853 		 * 2023) assigns a weight to each queue based on the number of
3854 		 * bytes or extrapolated bandwidth in percentages. Since this
3855 		 * differs from the KSZ switches' method and we don't want to
3856 		 * fake support by converting bytes to packets, it is better to
3857 		 * return an error instead.
3858 		 */
3859 		if (p->quanta[band]) {
3860 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
3861 			return -EOPNOTSUPP;
3862 		}
3863 	}
3864 
3865 	return 0;
3866 }
3867 
3868 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
3869 				  struct tc_ets_qopt_offload *qopt)
3870 {
3871 	struct ksz_device *dev = ds->priv;
3872 	int ret;
3873 
3874 	if (is_ksz8(dev))
3875 		return -EOPNOTSUPP;
3876 
3877 	if (qopt->parent != TC_H_ROOT) {
3878 		dev_err(dev->dev, "Parent should be \"root\"\n");
3879 		return -EOPNOTSUPP;
3880 	}
3881 
3882 	switch (qopt->command) {
3883 	case TC_ETS_REPLACE:
3884 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
3885 		if (ret)
3886 			return ret;
3887 
3888 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
3889 	case TC_ETS_DESTROY:
3890 		return ksz_tc_ets_del(dev, port);
3891 	case TC_ETS_STATS:
3892 	case TC_ETS_GRAFT:
3893 		return -EOPNOTSUPP;
3894 	}
3895 
3896 	return -EOPNOTSUPP;
3897 }
3898 
3899 static int ksz_setup_tc(struct dsa_switch *ds, int port,
3900 			enum tc_setup_type type, void *type_data)
3901 {
3902 	switch (type) {
3903 	case TC_SETUP_QDISC_CBS:
3904 		return ksz_setup_tc_cbs(ds, port, type_data);
3905 	case TC_SETUP_QDISC_ETS:
3906 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
3907 	default:
3908 		return -EOPNOTSUPP;
3909 	}
3910 }
3911 
3912 /**
3913  * ksz_handle_wake_reason - Handle wake reason on a specified port.
3914  * @dev: The device structure.
3915  * @port: The port number.
3916  *
3917  * This function reads the PME (Power Management Event) status register of a
3918  * specified port to determine the wake reason. If there is no wake event, it
3919  * returns early. Otherwise, it logs the wake reason which could be due to a
3920  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
3921  * is then cleared to acknowledge the handling of the wake event.
3922  *
3923  * Return: 0 on success, or an error code on failure.
3924  */
3925 int ksz_handle_wake_reason(struct ksz_device *dev, int port)
3926 {
3927 	const struct ksz_dev_ops *ops = dev->dev_ops;
3928 	const u16 *regs = dev->info->regs;
3929 	u8 pme_status;
3930 	int ret;
3931 
3932 	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
3933 			      &pme_status);
3934 	if (ret)
3935 		return ret;
3936 
3937 	if (!pme_status)
3938 		return 0;
3939 
3940 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
3941 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
3942 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
3943 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
3944 
3945 	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
3946 				pme_status);
3947 }
3948 
3949 /**
3950  * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
3951  * @ds: The dsa_switch structure.
3952  * @port: The port number.
3953  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
3954  *
3955  * This function checks the device PME wakeup_source flag and chip_id.
3956  * If enabled and supported, it sets the supported and active WoL
3957  * flags.
3958  */
3959 static void ksz_get_wol(struct dsa_switch *ds, int port,
3960 			struct ethtool_wolinfo *wol)
3961 {
3962 	struct ksz_device *dev = ds->priv;
3963 	const u16 *regs = dev->info->regs;
3964 	u8 pme_ctrl;
3965 	int ret;
3966 
3967 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
3968 		return;
3969 
3970 	if (!dev->wakeup_source)
3971 		return;
3972 
3973 	wol->supported = WAKE_PHY;
3974 
3975 	/* Check if the current MAC address on this port can be set
3976 	 * as global for WAKE_MAGIC support. The result may vary
3977 	 * dynamically based on other ports configurations.
3978 	 */
3979 	if (ksz_is_port_mac_global_usable(dev->ds, port))
3980 		wol->supported |= WAKE_MAGIC;
3981 
3982 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
3983 				       &pme_ctrl);
3984 	if (ret)
3985 		return;
3986 
3987 	if (pme_ctrl & PME_WOL_MAGICPKT)
3988 		wol->wolopts |= WAKE_MAGIC;
3989 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
3990 		wol->wolopts |= WAKE_PHY;
3991 }
3992 
3993 /**
3994  * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
3995  * @ds: The dsa_switch structure.
3996  * @port: The port number.
3997  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
3998  *
3999  * This function configures Wake-on-LAN (WoL) settings for a specified
4000  * port. It validates the provided WoL options, checks if PME is
4001  * enabled and supported, clears any previous wake reasons, and sets
4002  * the Magic Packet flag in the port's PME control register if
4003  * specified.
4004  *
4005  * Return: 0 on success, or other error codes on failure.
4006  */
4007 static int ksz_set_wol(struct dsa_switch *ds, int port,
4008 		       struct ethtool_wolinfo *wol)
4009 {
4010 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
4011 	struct ksz_device *dev = ds->priv;
4012 	const u16 *regs = dev->info->regs;
4013 	bool magic_switched_off;
4014 	bool magic_switched_on;
4015 	int ret;
4016 
4017 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
4018 		return -EINVAL;
4019 
4020 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4021 		return -EOPNOTSUPP;
4022 
4023 	if (!dev->wakeup_source)
4024 		return -EOPNOTSUPP;
4025 
4026 	ret = ksz_handle_wake_reason(dev, port);
4027 	if (ret)
4028 		return ret;
4029 
4030 	if (wol->wolopts & WAKE_MAGIC)
4031 		pme_ctrl |= PME_WOL_MAGICPKT;
4032 	if (wol->wolopts & WAKE_PHY)
4033 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
4034 
4035 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4036 				       &pme_ctrl_old);
4037 	if (ret)
4038 		return ret;
4039 
4040 	if (pme_ctrl_old == pme_ctrl)
4041 		return 0;
4042 
4043 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
4044 			    !(pme_ctrl & PME_WOL_MAGICPKT);
4045 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
4046 			    (pme_ctrl & PME_WOL_MAGICPKT);
4047 
4048 	/* To keep reference count of MAC address, we should do this
4049 	 * operation only on change of WOL settings.
4050 	 */
4051 	if (magic_switched_on) {
4052 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
4053 		if (ret)
4054 			return ret;
4055 	} else if (magic_switched_off) {
4056 		ksz_switch_macaddr_put(dev->ds);
4057 	}
4058 
4059 	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
4060 					pme_ctrl);
4061 	if (ret) {
4062 		if (magic_switched_on)
4063 			ksz_switch_macaddr_put(dev->ds);
4064 		return ret;
4065 	}
4066 
4067 	return 0;
4068 }
4069 
4070 /**
4071  * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
4072  *                        considering Wake-on-LAN (WoL) settings.
4073  * @dev: The switch device structure.
4074  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
4075  *               enabled on any port.
4076  *
4077  * This function prepares the switch device for a safe shutdown while taking
4078  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
4079  * the wol_enabled flag accordingly to reflect whether WoL is active on any
4080  * port.
4081  */
4082 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
4083 {
4084 	const struct ksz_dev_ops *ops = dev->dev_ops;
4085 	const u16 *regs = dev->info->regs;
4086 	u8 pme_pin_en = PME_ENABLE;
4087 	struct dsa_port *dp;
4088 	int ret;
4089 
4090 	*wol_enabled = false;
4091 
4092 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4093 		return;
4094 
4095 	if (!dev->wakeup_source)
4096 		return;
4097 
4098 	dsa_switch_for_each_user_port(dp, dev->ds) {
4099 		u8 pme_ctrl = 0;
4100 
4101 		ret = ops->pme_pread8(dev, dp->index,
4102 				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
4103 		if (!ret && pme_ctrl)
4104 			*wol_enabled = true;
4105 
4106 		/* make sure there are no pending wake events which would
4107 		 * prevent the device from going to sleep/shutdown.
4108 		 */
4109 		ksz_handle_wake_reason(dev, dp->index);
4110 	}
4111 
4112 	/* Now we are save to enable PME pin. */
4113 	if (*wol_enabled) {
4114 		if (dev->pme_active_high)
4115 			pme_pin_en |= PME_POLARITY;
4116 		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
4117 		if (ksz_is_ksz87xx(dev))
4118 			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
4119 	}
4120 }
4121 
4122 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4123 				    const unsigned char *addr)
4124 {
4125 	struct dsa_port *dp = dsa_to_port(ds, port);
4126 	struct ethtool_wolinfo wol;
4127 
4128 	if (dp->hsr_dev) {
4129 		dev_err(ds->dev,
4130 			"Cannot change MAC address on port %d with active HSR offload\n",
4131 			port);
4132 		return -EBUSY;
4133 	}
4134 
4135 	/* Need to initialize variable as the code to fill in settings may
4136 	 * not be executed.
4137 	 */
4138 	wol.wolopts = 0;
4139 
4140 	ksz_get_wol(ds, dp->index, &wol);
4141 	if (wol.wolopts & WAKE_MAGIC) {
4142 		dev_err(ds->dev,
4143 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4144 			port);
4145 		return -EBUSY;
4146 	}
4147 
4148 	return 0;
4149 }
4150 
4151 /**
4152  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4153  *                                 can be used as a global address.
4154  * @ds: Pointer to the DSA switch structure.
4155  * @port: The port number on which the MAC address is to be checked.
4156  *
4157  * This function examines the MAC address set on the specified port and
4158  * determines if it can be used as a global address for the switch.
4159  *
4160  * Return: true if the port's MAC address can be used as a global address, false
4161  * otherwise.
4162  */
4163 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4164 {
4165 	struct net_device *user = dsa_to_port(ds, port)->user;
4166 	const unsigned char *addr = user->dev_addr;
4167 	struct ksz_switch_macaddr *switch_macaddr;
4168 	struct ksz_device *dev = ds->priv;
4169 
4170 	ASSERT_RTNL();
4171 
4172 	switch_macaddr = dev->switch_macaddr;
4173 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4174 		return false;
4175 
4176 	return true;
4177 }
4178 
4179 /**
4180  * ksz_switch_macaddr_get - Program the switch's MAC address register.
4181  * @ds: DSA switch instance.
4182  * @port: Port number.
4183  * @extack: Netlink extended acknowledgment.
4184  *
4185  * This function programs the switch's MAC address register with the MAC address
4186  * of the requesting user port. This single address is used by the switch for
4187  * multiple features like HSR self-address filtering and WoL. Other user ports
4188  * can share ownership of this address as long as their MAC address is the same.
4189  * The MAC addresses of user ports must not change while they have ownership of
4190  * the switch MAC address.
4191  *
4192  * Return: 0 on success, or other error codes on failure.
4193  */
4194 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4195 			   struct netlink_ext_ack *extack)
4196 {
4197 	struct net_device *user = dsa_to_port(ds, port)->user;
4198 	const unsigned char *addr = user->dev_addr;
4199 	struct ksz_switch_macaddr *switch_macaddr;
4200 	struct ksz_device *dev = ds->priv;
4201 	const u16 *regs = dev->info->regs;
4202 	int i, ret;
4203 
4204 	/* Make sure concurrent MAC address changes are blocked */
4205 	ASSERT_RTNL();
4206 
4207 	switch_macaddr = dev->switch_macaddr;
4208 	if (switch_macaddr) {
4209 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4210 			NL_SET_ERR_MSG_FMT_MOD(extack,
4211 					       "Switch already configured for MAC address %pM",
4212 					       switch_macaddr->addr);
4213 			return -EBUSY;
4214 		}
4215 
4216 		refcount_inc(&switch_macaddr->refcount);
4217 		return 0;
4218 	}
4219 
4220 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4221 	if (!switch_macaddr)
4222 		return -ENOMEM;
4223 
4224 	ether_addr_copy(switch_macaddr->addr, addr);
4225 	refcount_set(&switch_macaddr->refcount, 1);
4226 	dev->switch_macaddr = switch_macaddr;
4227 
4228 	/* Program the switch MAC address to hardware */
4229 	for (i = 0; i < ETH_ALEN; i++) {
4230 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
4231 		if (ret)
4232 			goto macaddr_drop;
4233 	}
4234 
4235 	return 0;
4236 
4237 macaddr_drop:
4238 	dev->switch_macaddr = NULL;
4239 	refcount_set(&switch_macaddr->refcount, 0);
4240 	kfree(switch_macaddr);
4241 
4242 	return ret;
4243 }
4244 
4245 void ksz_switch_macaddr_put(struct dsa_switch *ds)
4246 {
4247 	struct ksz_switch_macaddr *switch_macaddr;
4248 	struct ksz_device *dev = ds->priv;
4249 	const u16 *regs = dev->info->regs;
4250 	int i;
4251 
4252 	/* Make sure concurrent MAC address changes are blocked */
4253 	ASSERT_RTNL();
4254 
4255 	switch_macaddr = dev->switch_macaddr;
4256 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4257 		return;
4258 
4259 	for (i = 0; i < ETH_ALEN; i++)
4260 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4261 
4262 	dev->switch_macaddr = NULL;
4263 	kfree(switch_macaddr);
4264 }
4265 
4266 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4267 			struct netlink_ext_ack *extack)
4268 {
4269 	struct ksz_device *dev = ds->priv;
4270 	enum hsr_version ver;
4271 	int ret;
4272 
4273 	ret = hsr_get_version(hsr, &ver);
4274 	if (ret)
4275 		return ret;
4276 
4277 	if (dev->chip_id != KSZ9477_CHIP_ID) {
4278 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4279 		return -EOPNOTSUPP;
4280 	}
4281 
4282 	/* KSZ9477 can support HW offloading of only 1 HSR device */
4283 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4284 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4285 		return -EOPNOTSUPP;
4286 	}
4287 
4288 	/* KSZ9477 only supports HSR v0 and v1 */
4289 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4290 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4291 		return -EOPNOTSUPP;
4292 	}
4293 
4294 	/* KSZ9477 can only perform HSR offloading for up to two ports */
4295 	if (hweight8(dev->hsr_ports) >= 2) {
4296 		NL_SET_ERR_MSG_MOD(extack,
4297 				   "Cannot offload more than two ports - using software HSR");
4298 		return -EOPNOTSUPP;
4299 	}
4300 
4301 	/* Self MAC address filtering, to avoid frames traversing
4302 	 * the HSR ring more than once.
4303 	 */
4304 	ret = ksz_switch_macaddr_get(ds, port, extack);
4305 	if (ret)
4306 		return ret;
4307 
4308 	ksz9477_hsr_join(ds, port, hsr);
4309 	dev->hsr_dev = hsr;
4310 	dev->hsr_ports |= BIT(port);
4311 
4312 	return 0;
4313 }
4314 
4315 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4316 			 struct net_device *hsr)
4317 {
4318 	struct ksz_device *dev = ds->priv;
4319 
4320 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4321 
4322 	ksz9477_hsr_leave(ds, port, hsr);
4323 	dev->hsr_ports &= ~BIT(port);
4324 	if (!dev->hsr_ports)
4325 		dev->hsr_dev = NULL;
4326 
4327 	ksz_switch_macaddr_put(ds);
4328 
4329 	return 0;
4330 }
4331 
4332 static const struct dsa_switch_ops ksz_switch_ops = {
4333 	.get_tag_protocol	= ksz_get_tag_protocol,
4334 	.connect_tag_protocol   = ksz_connect_tag_protocol,
4335 	.get_phy_flags		= ksz_get_phy_flags,
4336 	.setup			= ksz_setup,
4337 	.teardown		= ksz_teardown,
4338 	.phy_read		= ksz_phy_read16,
4339 	.phy_write		= ksz_phy_write16,
4340 	.phylink_get_caps	= ksz_phylink_get_caps,
4341 	.port_setup		= ksz_port_setup,
4342 	.set_ageing_time	= ksz_set_ageing_time,
4343 	.get_strings		= ksz_get_strings,
4344 	.get_ethtool_stats	= ksz_get_ethtool_stats,
4345 	.get_sset_count		= ksz_sset_count,
4346 	.port_bridge_join	= ksz_port_bridge_join,
4347 	.port_bridge_leave	= ksz_port_bridge_leave,
4348 	.port_hsr_join		= ksz_hsr_join,
4349 	.port_hsr_leave		= ksz_hsr_leave,
4350 	.port_set_mac_address	= ksz_port_set_mac_address,
4351 	.port_stp_state_set	= ksz_port_stp_state_set,
4352 	.port_teardown		= ksz_port_teardown,
4353 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4354 	.port_bridge_flags	= ksz_port_bridge_flags,
4355 	.port_fast_age		= ksz_port_fast_age,
4356 	.port_vlan_filtering	= ksz_port_vlan_filtering,
4357 	.port_vlan_add		= ksz_port_vlan_add,
4358 	.port_vlan_del		= ksz_port_vlan_del,
4359 	.port_fdb_dump		= ksz_port_fdb_dump,
4360 	.port_fdb_add		= ksz_port_fdb_add,
4361 	.port_fdb_del		= ksz_port_fdb_del,
4362 	.port_mdb_add           = ksz_port_mdb_add,
4363 	.port_mdb_del           = ksz_port_mdb_del,
4364 	.port_mirror_add	= ksz_port_mirror_add,
4365 	.port_mirror_del	= ksz_port_mirror_del,
4366 	.get_stats64		= ksz_get_stats64,
4367 	.get_pause_stats	= ksz_get_pause_stats,
4368 	.port_change_mtu	= ksz_change_mtu,
4369 	.port_max_mtu		= ksz_max_mtu,
4370 	.get_wol		= ksz_get_wol,
4371 	.set_wol		= ksz_set_wol,
4372 	.get_ts_info		= ksz_get_ts_info,
4373 	.port_hwtstamp_get	= ksz_hwtstamp_get,
4374 	.port_hwtstamp_set	= ksz_hwtstamp_set,
4375 	.port_txtstamp		= ksz_port_txtstamp,
4376 	.port_rxtstamp		= ksz_port_rxtstamp,
4377 	.cls_flower_add		= ksz_cls_flower_add,
4378 	.cls_flower_del		= ksz_cls_flower_del,
4379 	.port_setup_tc		= ksz_setup_tc,
4380 	.get_mac_eee		= ksz_get_mac_eee,
4381 	.set_mac_eee		= ksz_set_mac_eee,
4382 	.port_get_default_prio	= ksz_port_get_default_prio,
4383 	.port_set_default_prio	= ksz_port_set_default_prio,
4384 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
4385 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
4386 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
4387 	.port_get_apptrust	= ksz_port_get_apptrust,
4388 	.port_set_apptrust	= ksz_port_set_apptrust,
4389 };
4390 
4391 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
4392 {
4393 	struct dsa_switch *ds;
4394 	struct ksz_device *swdev;
4395 
4396 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
4397 	if (!ds)
4398 		return NULL;
4399 
4400 	ds->dev = base;
4401 	ds->num_ports = DSA_MAX_PORTS;
4402 	ds->ops = &ksz_switch_ops;
4403 
4404 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
4405 	if (!swdev)
4406 		return NULL;
4407 
4408 	ds->priv = swdev;
4409 	swdev->dev = base;
4410 
4411 	swdev->ds = ds;
4412 	swdev->priv = priv;
4413 
4414 	return swdev;
4415 }
4416 EXPORT_SYMBOL(ksz_switch_alloc);
4417 
4418 /**
4419  * ksz_switch_shutdown - Shutdown routine for the switch device.
4420  * @dev: The switch device structure.
4421  *
4422  * This function is responsible for initiating a shutdown sequence for the
4423  * switch device. It invokes the reset operation defined in the device
4424  * operations, if available, to reset the switch. Subsequently, it calls the
4425  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
4426  * switch.
4427  */
4428 void ksz_switch_shutdown(struct ksz_device *dev)
4429 {
4430 	bool wol_enabled = false;
4431 
4432 	ksz_wol_pre_shutdown(dev, &wol_enabled);
4433 
4434 	if (dev->dev_ops->reset && !wol_enabled)
4435 		dev->dev_ops->reset(dev);
4436 
4437 	dsa_switch_shutdown(dev->ds);
4438 }
4439 EXPORT_SYMBOL(ksz_switch_shutdown);
4440 
4441 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
4442 				  struct device_node *port_dn)
4443 {
4444 	phy_interface_t phy_mode = dev->ports[port_num].interface;
4445 	int rx_delay = -1, tx_delay = -1;
4446 
4447 	if (!phy_interface_mode_is_rgmii(phy_mode))
4448 		return;
4449 
4450 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
4451 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
4452 
4453 	if (rx_delay == -1 && tx_delay == -1) {
4454 		dev_warn(dev->dev,
4455 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
4456 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
4457 			 "\"tx-internal-delay-ps\"",
4458 			 port_num);
4459 
4460 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4461 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4462 			rx_delay = 2000;
4463 
4464 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4465 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4466 			tx_delay = 2000;
4467 	}
4468 
4469 	if (rx_delay < 0)
4470 		rx_delay = 0;
4471 	if (tx_delay < 0)
4472 		tx_delay = 0;
4473 
4474 	dev->ports[port_num].rgmii_rx_val = rx_delay;
4475 	dev->ports[port_num].rgmii_tx_val = tx_delay;
4476 }
4477 
4478 /**
4479  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4480  *				 register value.
4481  * @array:	The array of drive strength values to search.
4482  * @array_size:	The size of the array.
4483  * @microamp:	The drive strength value in microamp to be converted.
4484  *
4485  * This function searches the array of drive strength values for the given
4486  * microamp value and returns the corresponding register value for that drive.
4487  *
4488  * Returns: If found, the corresponding register value for that drive strength
4489  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4490  */
4491 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4492 				     size_t array_size, int microamp)
4493 {
4494 	int i;
4495 
4496 	for (i = 0; i < array_size; i++) {
4497 		if (array[i].microamp == microamp)
4498 			return array[i].reg_val;
4499 	}
4500 
4501 	return -EINVAL;
4502 }
4503 
4504 /**
4505  * ksz_drive_strength_error() - Report invalid drive strength value
4506  * @dev:	ksz device
4507  * @array:	The array of drive strength values to search.
4508  * @array_size:	The size of the array.
4509  * @microamp:	Invalid drive strength value in microamp
4510  *
4511  * This function logs an error message when an unsupported drive strength value
4512  * is detected. It lists out all the supported drive strength values for
4513  * reference in the error message.
4514  */
4515 static void ksz_drive_strength_error(struct ksz_device *dev,
4516 				     const struct ksz_drive_strength *array,
4517 				     size_t array_size, int microamp)
4518 {
4519 	char supported_values[100];
4520 	size_t remaining_size;
4521 	int added_len;
4522 	char *ptr;
4523 	int i;
4524 
4525 	remaining_size = sizeof(supported_values);
4526 	ptr = supported_values;
4527 
4528 	for (i = 0; i < array_size; i++) {
4529 		added_len = snprintf(ptr, remaining_size,
4530 				     i == 0 ? "%d" : ", %d", array[i].microamp);
4531 
4532 		if (added_len >= remaining_size)
4533 			break;
4534 
4535 		ptr += added_len;
4536 		remaining_size -= added_len;
4537 	}
4538 
4539 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
4540 		microamp, supported_values);
4541 }
4542 
4543 /**
4544  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
4545  *				    chip variants.
4546  * @dev:       ksz device
4547  * @props:     Array of drive strength properties to be applied
4548  * @num_props: Number of properties in the array
4549  *
4550  * This function configures the drive strength for various KSZ9477 chip variants
4551  * based on the provided properties. It handles chip-specific nuances and
4552  * ensures only valid drive strengths are written to the respective chip.
4553  *
4554  * Return: 0 on successful configuration, a negative error code on failure.
4555  */
4556 static int ksz9477_drive_strength_write(struct ksz_device *dev,
4557 					struct ksz_driver_strength_prop *props,
4558 					int num_props)
4559 {
4560 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4561 	int i, ret, reg;
4562 	u8 mask = 0;
4563 	u8 val = 0;
4564 
4565 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4566 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4567 			 props[KSZ_DRIVER_STRENGTH_IO].name);
4568 
4569 	if (dev->chip_id == KSZ8795_CHIP_ID ||
4570 	    dev->chip_id == KSZ8794_CHIP_ID ||
4571 	    dev->chip_id == KSZ8765_CHIP_ID)
4572 		reg = KSZ8795_REG_SW_CTRL_20;
4573 	else
4574 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4575 
4576 	for (i = 0; i < num_props; i++) {
4577 		if (props[i].value == -1)
4578 			continue;
4579 
4580 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4581 						array_size, props[i].value);
4582 		if (ret < 0) {
4583 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4584 						 array_size, props[i].value);
4585 			return ret;
4586 		}
4587 
4588 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4589 		val |= ret << props[i].offset;
4590 	}
4591 
4592 	return ksz_rmw8(dev, reg, mask, val);
4593 }
4594 
4595 /**
4596  * ksz88x3_drive_strength_write() - Set the drive strength configuration for
4597  *				    KSZ8863 compatible chip variants.
4598  * @dev:       ksz device
4599  * @props:     Array of drive strength properties to be set
4600  * @num_props: Number of properties in the array
4601  *
4602  * This function applies the specified drive strength settings to KSZ88X3 chip
4603  * variants (KSZ8873, KSZ8863).
4604  * It ensures the configurations align with what the chip variant supports and
4605  * warns or errors out on unsupported settings.
4606  *
4607  * Return: 0 on success, error code otherwise
4608  */
4609 static int ksz88x3_drive_strength_write(struct ksz_device *dev,
4610 					struct ksz_driver_strength_prop *props,
4611 					int num_props)
4612 {
4613 	size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths);
4614 	int microamp;
4615 	int i, ret;
4616 
4617 	for (i = 0; i < num_props; i++) {
4618 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4619 			continue;
4620 
4621 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4622 			 props[i].name);
4623 	}
4624 
4625 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4626 	ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size,
4627 					microamp);
4628 	if (ret < 0) {
4629 		ksz_drive_strength_error(dev, ksz88x3_drive_strengths,
4630 					 array_size, microamp);
4631 		return ret;
4632 	}
4633 
4634 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4635 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4636 }
4637 
4638 /**
4639  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4640  *				from device tree properties.
4641  * @dev:	ksz device
4642  *
4643  * This function reads the specified drive strength properties from the
4644  * device tree, validates against the supported chip variants, and sets
4645  * them accordingly. An error should be critical here, as the drive strength
4646  * settings are crucial for EMI compliance.
4647  *
4648  * Return: 0 on success, error code otherwise
4649  */
4650 static int ksz_parse_drive_strength(struct ksz_device *dev)
4651 {
4652 	struct ksz_driver_strength_prop of_props[] = {
4653 		[KSZ_DRIVER_STRENGTH_HI] = {
4654 			.name = "microchip,hi-drive-strength-microamp",
4655 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4656 			.value = -1,
4657 		},
4658 		[KSZ_DRIVER_STRENGTH_LO] = {
4659 			.name = "microchip,lo-drive-strength-microamp",
4660 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4661 			.value = -1,
4662 		},
4663 		[KSZ_DRIVER_STRENGTH_IO] = {
4664 			.name = "microchip,io-drive-strength-microamp",
4665 			.offset = 0, /* don't care */
4666 			.value = -1,
4667 		},
4668 	};
4669 	struct device_node *np = dev->dev->of_node;
4670 	bool have_any_prop = false;
4671 	int i, ret;
4672 
4673 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4674 		ret = of_property_read_u32(np, of_props[i].name,
4675 					   &of_props[i].value);
4676 		if (ret && ret != -EINVAL)
4677 			dev_warn(dev->dev, "Failed to read %s\n",
4678 				 of_props[i].name);
4679 		if (ret)
4680 			continue;
4681 
4682 		have_any_prop = true;
4683 	}
4684 
4685 	if (!have_any_prop)
4686 		return 0;
4687 
4688 	switch (dev->chip_id) {
4689 	case KSZ88X3_CHIP_ID:
4690 		return ksz88x3_drive_strength_write(dev, of_props,
4691 						    ARRAY_SIZE(of_props));
4692 	case KSZ8795_CHIP_ID:
4693 	case KSZ8794_CHIP_ID:
4694 	case KSZ8765_CHIP_ID:
4695 	case KSZ8563_CHIP_ID:
4696 	case KSZ8567_CHIP_ID:
4697 	case KSZ9477_CHIP_ID:
4698 	case KSZ9563_CHIP_ID:
4699 	case KSZ9567_CHIP_ID:
4700 	case KSZ9893_CHIP_ID:
4701 	case KSZ9896_CHIP_ID:
4702 	case KSZ9897_CHIP_ID:
4703 		return ksz9477_drive_strength_write(dev, of_props,
4704 						    ARRAY_SIZE(of_props));
4705 	default:
4706 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4707 			if (of_props[i].value == -1)
4708 				continue;
4709 
4710 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4711 				 of_props[i].name);
4712 		}
4713 	}
4714 
4715 	return 0;
4716 }
4717 
4718 int ksz_switch_register(struct ksz_device *dev)
4719 {
4720 	const struct ksz_chip_data *info;
4721 	struct device_node *ports;
4722 	phy_interface_t interface;
4723 	unsigned int port_num;
4724 	int ret;
4725 	int i;
4726 
4727 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4728 						  GPIOD_OUT_LOW);
4729 	if (IS_ERR(dev->reset_gpio))
4730 		return PTR_ERR(dev->reset_gpio);
4731 
4732 	if (dev->reset_gpio) {
4733 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4734 		usleep_range(10000, 12000);
4735 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
4736 		msleep(100);
4737 	}
4738 
4739 	mutex_init(&dev->dev_mutex);
4740 	mutex_init(&dev->regmap_mutex);
4741 	mutex_init(&dev->alu_mutex);
4742 	mutex_init(&dev->vlan_mutex);
4743 
4744 	ret = ksz_switch_detect(dev);
4745 	if (ret)
4746 		return ret;
4747 
4748 	info = ksz_lookup_info(dev->chip_id);
4749 	if (!info)
4750 		return -ENODEV;
4751 
4752 	/* Update the compatible info with the probed one */
4753 	dev->info = info;
4754 
4755 	dev_info(dev->dev, "found switch: %s, rev %i\n",
4756 		 dev->info->dev_name, dev->chip_rev);
4757 
4758 	ret = ksz_check_device_id(dev);
4759 	if (ret)
4760 		return ret;
4761 
4762 	dev->dev_ops = dev->info->ops;
4763 
4764 	ret = dev->dev_ops->init(dev);
4765 	if (ret)
4766 		return ret;
4767 
4768 	dev->ports = devm_kzalloc(dev->dev,
4769 				  dev->info->port_cnt * sizeof(struct ksz_port),
4770 				  GFP_KERNEL);
4771 	if (!dev->ports)
4772 		return -ENOMEM;
4773 
4774 	for (i = 0; i < dev->info->port_cnt; i++) {
4775 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
4776 		mutex_init(&dev->ports[i].mib.cnt_mutex);
4777 		dev->ports[i].mib.counters =
4778 			devm_kzalloc(dev->dev,
4779 				     sizeof(u64) * (dev->info->mib_cnt + 1),
4780 				     GFP_KERNEL);
4781 		if (!dev->ports[i].mib.counters)
4782 			return -ENOMEM;
4783 
4784 		dev->ports[i].ksz_dev = dev;
4785 		dev->ports[i].num = i;
4786 	}
4787 
4788 	/* set the real number of ports */
4789 	dev->ds->num_ports = dev->info->port_cnt;
4790 
4791 	/* set the phylink ops */
4792 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
4793 
4794 	/* Host port interface will be self detected, or specifically set in
4795 	 * device tree.
4796 	 */
4797 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
4798 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
4799 	if (dev->dev->of_node) {
4800 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
4801 		if (ret == 0)
4802 			dev->compat_interface = interface;
4803 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
4804 		if (!ports)
4805 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
4806 		if (ports) {
4807 			for_each_available_child_of_node_scoped(ports, port) {
4808 				if (of_property_read_u32(port, "reg",
4809 							 &port_num))
4810 					continue;
4811 				if (!(dev->port_mask & BIT(port_num))) {
4812 					of_node_put(ports);
4813 					return -EINVAL;
4814 				}
4815 				of_get_phy_mode(port,
4816 						&dev->ports[port_num].interface);
4817 
4818 				ksz_parse_rgmii_delay(dev, port_num, port);
4819 			}
4820 			of_node_put(ports);
4821 		}
4822 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
4823 							 "microchip,synclko-125");
4824 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
4825 							     "microchip,synclko-disable");
4826 		if (dev->synclko_125 && dev->synclko_disable) {
4827 			dev_err(dev->dev, "inconsistent synclko settings\n");
4828 			return -EINVAL;
4829 		}
4830 
4831 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
4832 							   "wakeup-source");
4833 		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
4834 							     "microchip,pme-active-high");
4835 	}
4836 
4837 	ret = dsa_register_switch(dev->ds);
4838 	if (ret) {
4839 		dev->dev_ops->exit(dev);
4840 		return ret;
4841 	}
4842 
4843 	/* Read MIB counters every 30 seconds to avoid overflow. */
4844 	dev->mib_read_interval = msecs_to_jiffies(5000);
4845 
4846 	/* Start the MIB timer. */
4847 	schedule_delayed_work(&dev->mib_read, 0);
4848 
4849 	return ret;
4850 }
4851 EXPORT_SYMBOL(ksz_switch_register);
4852 
4853 void ksz_switch_remove(struct ksz_device *dev)
4854 {
4855 	/* timer started */
4856 	if (dev->mib_read_interval) {
4857 		dev->mib_read_interval = 0;
4858 		cancel_delayed_work_sync(&dev->mib_read);
4859 	}
4860 
4861 	dev->dev_ops->exit(dev);
4862 	dsa_unregister_switch(dev->ds);
4863 
4864 	if (dev->reset_gpio)
4865 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4866 
4867 }
4868 EXPORT_SYMBOL(ksz_switch_remove);
4869 
4870 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
4871 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
4872 MODULE_LICENSE("GPL");
4873