1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Microchip switch driver main logic 4 * 5 * Copyright (C) 2017-2019 Microchip Technology Inc. 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/dsa/ksz_common.h> 10 #include <linux/export.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/platform_data/microchip-ksz.h> 15 #include <linux/phy.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_bridge.h> 18 #include <linux/if_vlan.h> 19 #include <linux/if_hsr.h> 20 #include <linux/irq.h> 21 #include <linux/irqdomain.h> 22 #include <linux/of.h> 23 #include <linux/of_mdio.h> 24 #include <linux/of_net.h> 25 #include <linux/micrel_phy.h> 26 #include <net/dsa.h> 27 #include <net/ieee8021q.h> 28 #include <net/pkt_cls.h> 29 #include <net/switchdev.h> 30 31 #include "ksz_common.h" 32 #include "ksz_dcb.h" 33 #include "ksz_ptp.h" 34 #include "ksz8.h" 35 #include "ksz9477.h" 36 #include "lan937x.h" 37 38 #define MIB_COUNTER_NUM 0x20 39 40 struct ksz_stats_raw { 41 u64 rx_hi; 42 u64 rx_undersize; 43 u64 rx_fragments; 44 u64 rx_oversize; 45 u64 rx_jabbers; 46 u64 rx_symbol_err; 47 u64 rx_crc_err; 48 u64 rx_align_err; 49 u64 rx_mac_ctrl; 50 u64 rx_pause; 51 u64 rx_bcast; 52 u64 rx_mcast; 53 u64 rx_ucast; 54 u64 rx_64_or_less; 55 u64 rx_65_127; 56 u64 rx_128_255; 57 u64 rx_256_511; 58 u64 rx_512_1023; 59 u64 rx_1024_1522; 60 u64 rx_1523_2000; 61 u64 rx_2001; 62 u64 tx_hi; 63 u64 tx_late_col; 64 u64 tx_pause; 65 u64 tx_bcast; 66 u64 tx_mcast; 67 u64 tx_ucast; 68 u64 tx_deferred; 69 u64 tx_total_col; 70 u64 tx_exc_col; 71 u64 tx_single_col; 72 u64 tx_mult_col; 73 u64 rx_total; 74 u64 tx_total; 75 u64 rx_discards; 76 u64 tx_discards; 77 }; 78 79 struct ksz88xx_stats_raw { 80 u64 rx; 81 u64 rx_hi; 82 u64 rx_undersize; 83 u64 rx_fragments; 84 u64 rx_oversize; 85 u64 rx_jabbers; 86 u64 rx_symbol_err; 87 u64 rx_crc_err; 88 u64 rx_align_err; 89 u64 rx_mac_ctrl; 90 u64 rx_pause; 91 u64 rx_bcast; 92 u64 rx_mcast; 93 u64 rx_ucast; 94 u64 rx_64_or_less; 95 u64 rx_65_127; 96 u64 rx_128_255; 97 u64 rx_256_511; 98 u64 rx_512_1023; 99 u64 rx_1024_1522; 100 u64 tx; 101 u64 tx_hi; 102 u64 tx_late_col; 103 u64 tx_pause; 104 u64 tx_bcast; 105 u64 tx_mcast; 106 u64 tx_ucast; 107 u64 tx_deferred; 108 u64 tx_total_col; 109 u64 tx_exc_col; 110 u64 tx_single_col; 111 u64 tx_mult_col; 112 u64 rx_discards; 113 u64 tx_discards; 114 }; 115 116 static const struct ksz_mib_names ksz88xx_mib_names[] = { 117 { 0x00, "rx" }, 118 { 0x01, "rx_hi" }, 119 { 0x02, "rx_undersize" }, 120 { 0x03, "rx_fragments" }, 121 { 0x04, "rx_oversize" }, 122 { 0x05, "rx_jabbers" }, 123 { 0x06, "rx_symbol_err" }, 124 { 0x07, "rx_crc_err" }, 125 { 0x08, "rx_align_err" }, 126 { 0x09, "rx_mac_ctrl" }, 127 { 0x0a, "rx_pause" }, 128 { 0x0b, "rx_bcast" }, 129 { 0x0c, "rx_mcast" }, 130 { 0x0d, "rx_ucast" }, 131 { 0x0e, "rx_64_or_less" }, 132 { 0x0f, "rx_65_127" }, 133 { 0x10, "rx_128_255" }, 134 { 0x11, "rx_256_511" }, 135 { 0x12, "rx_512_1023" }, 136 { 0x13, "rx_1024_1522" }, 137 { 0x14, "tx" }, 138 { 0x15, "tx_hi" }, 139 { 0x16, "tx_late_col" }, 140 { 0x17, "tx_pause" }, 141 { 0x18, "tx_bcast" }, 142 { 0x19, "tx_mcast" }, 143 { 0x1a, "tx_ucast" }, 144 { 0x1b, "tx_deferred" }, 145 { 0x1c, "tx_total_col" }, 146 { 0x1d, "tx_exc_col" }, 147 { 0x1e, "tx_single_col" }, 148 { 0x1f, "tx_mult_col" }, 149 { 0x100, "rx_discards" }, 150 { 0x101, "tx_discards" }, 151 }; 152 153 static const struct ksz_mib_names ksz9477_mib_names[] = { 154 { 0x00, "rx_hi" }, 155 { 0x01, "rx_undersize" }, 156 { 0x02, "rx_fragments" }, 157 { 0x03, "rx_oversize" }, 158 { 0x04, "rx_jabbers" }, 159 { 0x05, "rx_symbol_err" }, 160 { 0x06, "rx_crc_err" }, 161 { 0x07, "rx_align_err" }, 162 { 0x08, "rx_mac_ctrl" }, 163 { 0x09, "rx_pause" }, 164 { 0x0A, "rx_bcast" }, 165 { 0x0B, "rx_mcast" }, 166 { 0x0C, "rx_ucast" }, 167 { 0x0D, "rx_64_or_less" }, 168 { 0x0E, "rx_65_127" }, 169 { 0x0F, "rx_128_255" }, 170 { 0x10, "rx_256_511" }, 171 { 0x11, "rx_512_1023" }, 172 { 0x12, "rx_1024_1522" }, 173 { 0x13, "rx_1523_2000" }, 174 { 0x14, "rx_2001" }, 175 { 0x15, "tx_hi" }, 176 { 0x16, "tx_late_col" }, 177 { 0x17, "tx_pause" }, 178 { 0x18, "tx_bcast" }, 179 { 0x19, "tx_mcast" }, 180 { 0x1A, "tx_ucast" }, 181 { 0x1B, "tx_deferred" }, 182 { 0x1C, "tx_total_col" }, 183 { 0x1D, "tx_exc_col" }, 184 { 0x1E, "tx_single_col" }, 185 { 0x1F, "tx_mult_col" }, 186 { 0x80, "rx_total" }, 187 { 0x81, "tx_total" }, 188 { 0x82, "rx_discards" }, 189 { 0x83, "tx_discards" }, 190 }; 191 192 struct ksz_driver_strength_prop { 193 const char *name; 194 int offset; 195 int value; 196 }; 197 198 enum ksz_driver_strength_type { 199 KSZ_DRIVER_STRENGTH_HI, 200 KSZ_DRIVER_STRENGTH_LO, 201 KSZ_DRIVER_STRENGTH_IO, 202 }; 203 204 /** 205 * struct ksz_drive_strength - drive strength mapping 206 * @reg_val: register value 207 * @microamp: microamp value 208 */ 209 struct ksz_drive_strength { 210 u32 reg_val; 211 u32 microamp; 212 }; 213 214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants 215 * 216 * This values are not documented in KSZ9477 variants but confirmed by 217 * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893 218 * and KSZ8563 are using same register (drive strength) settings like KSZ8795. 219 * 220 * Documentation in KSZ8795CLX provides more information with some 221 * recommendations: 222 * - for high speed signals 223 * 1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using 224 * 2.5V or 3.3V VDDIO. 225 * 2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with 226 * using 1.8V VDDIO. 227 * 3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V 228 * or 3.3V VDDIO. 229 * 4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO. 230 * 5. In same interface, the heavy loading should use higher one of the 231 * drive current strength. 232 * - for low speed signals 233 * 1. 3.3V VDDIO, use either 4 mA or 8 mA. 234 * 2. 2.5V VDDIO, use either 8 mA or 12 mA. 235 * 3. 1.8V VDDIO, use either 12 mA or 16 mA. 236 * 4. If it is heavy loading, can use higher drive current strength. 237 */ 238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = { 239 { SW_DRIVE_STRENGTH_2MA, 2000 }, 240 { SW_DRIVE_STRENGTH_4MA, 4000 }, 241 { SW_DRIVE_STRENGTH_8MA, 8000 }, 242 { SW_DRIVE_STRENGTH_12MA, 12000 }, 243 { SW_DRIVE_STRENGTH_16MA, 16000 }, 244 { SW_DRIVE_STRENGTH_20MA, 20000 }, 245 { SW_DRIVE_STRENGTH_24MA, 24000 }, 246 { SW_DRIVE_STRENGTH_28MA, 28000 }, 247 }; 248 249 /* ksz8830_drive_strengths - Drive strength mapping for KSZ8830, KSZ8873, .. 250 * variants. 251 * This values are documented in KSZ8873 and KSZ8863 datasheets. 252 */ 253 static const struct ksz_drive_strength ksz8830_drive_strengths[] = { 254 { 0, 8000 }, 255 { KSZ8873_DRIVE_STRENGTH_16MA, 16000 }, 256 }; 257 258 static void ksz8830_phylink_mac_config(struct phylink_config *config, 259 unsigned int mode, 260 const struct phylink_link_state *state); 261 static void ksz_phylink_mac_config(struct phylink_config *config, 262 unsigned int mode, 263 const struct phylink_link_state *state); 264 static void ksz_phylink_mac_link_down(struct phylink_config *config, 265 unsigned int mode, 266 phy_interface_t interface); 267 268 static const struct phylink_mac_ops ksz8830_phylink_mac_ops = { 269 .mac_config = ksz8830_phylink_mac_config, 270 .mac_link_down = ksz_phylink_mac_link_down, 271 .mac_link_up = ksz8_phylink_mac_link_up, 272 }; 273 274 static const struct phylink_mac_ops ksz8_phylink_mac_ops = { 275 .mac_config = ksz_phylink_mac_config, 276 .mac_link_down = ksz_phylink_mac_link_down, 277 .mac_link_up = ksz8_phylink_mac_link_up, 278 }; 279 280 static const struct ksz_dev_ops ksz8_dev_ops = { 281 .setup = ksz8_setup, 282 .get_port_addr = ksz8_get_port_addr, 283 .cfg_port_member = ksz8_cfg_port_member, 284 .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, 285 .port_setup = ksz8_port_setup, 286 .r_phy = ksz8_r_phy, 287 .w_phy = ksz8_w_phy, 288 .r_mib_cnt = ksz8_r_mib_cnt, 289 .r_mib_pkt = ksz8_r_mib_pkt, 290 .r_mib_stat64 = ksz88xx_r_mib_stats64, 291 .freeze_mib = ksz8_freeze_mib, 292 .port_init_cnt = ksz8_port_init_cnt, 293 .fdb_dump = ksz8_fdb_dump, 294 .fdb_add = ksz8_fdb_add, 295 .fdb_del = ksz8_fdb_del, 296 .mdb_add = ksz8_mdb_add, 297 .mdb_del = ksz8_mdb_del, 298 .vlan_filtering = ksz8_port_vlan_filtering, 299 .vlan_add = ksz8_port_vlan_add, 300 .vlan_del = ksz8_port_vlan_del, 301 .mirror_add = ksz8_port_mirror_add, 302 .mirror_del = ksz8_port_mirror_del, 303 .get_caps = ksz8_get_caps, 304 .config_cpu_port = ksz8_config_cpu_port, 305 .enable_stp_addr = ksz8_enable_stp_addr, 306 .reset = ksz8_reset_switch, 307 .init = ksz8_switch_init, 308 .exit = ksz8_switch_exit, 309 .change_mtu = ksz8_change_mtu, 310 }; 311 312 static void ksz9477_phylink_mac_link_up(struct phylink_config *config, 313 struct phy_device *phydev, 314 unsigned int mode, 315 phy_interface_t interface, 316 int speed, int duplex, bool tx_pause, 317 bool rx_pause); 318 319 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = { 320 .mac_config = ksz_phylink_mac_config, 321 .mac_link_down = ksz_phylink_mac_link_down, 322 .mac_link_up = ksz9477_phylink_mac_link_up, 323 }; 324 325 static const struct ksz_dev_ops ksz9477_dev_ops = { 326 .setup = ksz9477_setup, 327 .get_port_addr = ksz9477_get_port_addr, 328 .cfg_port_member = ksz9477_cfg_port_member, 329 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, 330 .port_setup = ksz9477_port_setup, 331 .set_ageing_time = ksz9477_set_ageing_time, 332 .r_phy = ksz9477_r_phy, 333 .w_phy = ksz9477_w_phy, 334 .r_mib_cnt = ksz9477_r_mib_cnt, 335 .r_mib_pkt = ksz9477_r_mib_pkt, 336 .r_mib_stat64 = ksz_r_mib_stats64, 337 .freeze_mib = ksz9477_freeze_mib, 338 .port_init_cnt = ksz9477_port_init_cnt, 339 .vlan_filtering = ksz9477_port_vlan_filtering, 340 .vlan_add = ksz9477_port_vlan_add, 341 .vlan_del = ksz9477_port_vlan_del, 342 .mirror_add = ksz9477_port_mirror_add, 343 .mirror_del = ksz9477_port_mirror_del, 344 .get_caps = ksz9477_get_caps, 345 .fdb_dump = ksz9477_fdb_dump, 346 .fdb_add = ksz9477_fdb_add, 347 .fdb_del = ksz9477_fdb_del, 348 .mdb_add = ksz9477_mdb_add, 349 .mdb_del = ksz9477_mdb_del, 350 .change_mtu = ksz9477_change_mtu, 351 .get_wol = ksz9477_get_wol, 352 .set_wol = ksz9477_set_wol, 353 .wol_pre_shutdown = ksz9477_wol_pre_shutdown, 354 .config_cpu_port = ksz9477_config_cpu_port, 355 .tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc, 356 .enable_stp_addr = ksz9477_enable_stp_addr, 357 .reset = ksz9477_reset_switch, 358 .init = ksz9477_switch_init, 359 .exit = ksz9477_switch_exit, 360 }; 361 362 static const struct phylink_mac_ops lan937x_phylink_mac_ops = { 363 .mac_config = ksz_phylink_mac_config, 364 .mac_link_down = ksz_phylink_mac_link_down, 365 .mac_link_up = ksz9477_phylink_mac_link_up, 366 }; 367 368 static const struct ksz_dev_ops lan937x_dev_ops = { 369 .setup = lan937x_setup, 370 .teardown = lan937x_teardown, 371 .get_port_addr = ksz9477_get_port_addr, 372 .cfg_port_member = ksz9477_cfg_port_member, 373 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, 374 .port_setup = lan937x_port_setup, 375 .set_ageing_time = lan937x_set_ageing_time, 376 .r_phy = lan937x_r_phy, 377 .w_phy = lan937x_w_phy, 378 .r_mib_cnt = ksz9477_r_mib_cnt, 379 .r_mib_pkt = ksz9477_r_mib_pkt, 380 .r_mib_stat64 = ksz_r_mib_stats64, 381 .freeze_mib = ksz9477_freeze_mib, 382 .port_init_cnt = ksz9477_port_init_cnt, 383 .vlan_filtering = ksz9477_port_vlan_filtering, 384 .vlan_add = ksz9477_port_vlan_add, 385 .vlan_del = ksz9477_port_vlan_del, 386 .mirror_add = ksz9477_port_mirror_add, 387 .mirror_del = ksz9477_port_mirror_del, 388 .get_caps = lan937x_phylink_get_caps, 389 .setup_rgmii_delay = lan937x_setup_rgmii_delay, 390 .fdb_dump = ksz9477_fdb_dump, 391 .fdb_add = ksz9477_fdb_add, 392 .fdb_del = ksz9477_fdb_del, 393 .mdb_add = ksz9477_mdb_add, 394 .mdb_del = ksz9477_mdb_del, 395 .change_mtu = lan937x_change_mtu, 396 .config_cpu_port = lan937x_config_cpu_port, 397 .tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc, 398 .enable_stp_addr = ksz9477_enable_stp_addr, 399 .reset = lan937x_reset_switch, 400 .init = lan937x_switch_init, 401 .exit = lan937x_switch_exit, 402 }; 403 404 static const u16 ksz8795_regs[] = { 405 [REG_SW_MAC_ADDR] = 0x68, 406 [REG_IND_CTRL_0] = 0x6E, 407 [REG_IND_DATA_8] = 0x70, 408 [REG_IND_DATA_CHECK] = 0x72, 409 [REG_IND_DATA_HI] = 0x71, 410 [REG_IND_DATA_LO] = 0x75, 411 [REG_IND_MIB_CHECK] = 0x74, 412 [REG_IND_BYTE] = 0xA0, 413 [P_FORCE_CTRL] = 0x0C, 414 [P_LINK_STATUS] = 0x0E, 415 [P_LOCAL_CTRL] = 0x07, 416 [P_NEG_RESTART_CTRL] = 0x0D, 417 [P_REMOTE_STATUS] = 0x08, 418 [P_SPEED_STATUS] = 0x09, 419 [S_TAIL_TAG_CTRL] = 0x0C, 420 [P_STP_CTRL] = 0x02, 421 [S_START_CTRL] = 0x01, 422 [S_BROADCAST_CTRL] = 0x06, 423 [S_MULTICAST_CTRL] = 0x04, 424 [P_XMII_CTRL_0] = 0x06, 425 [P_XMII_CTRL_1] = 0x06, 426 }; 427 428 static const u32 ksz8795_masks[] = { 429 [PORT_802_1P_REMAPPING] = BIT(7), 430 [SW_TAIL_TAG_ENABLE] = BIT(1), 431 [MIB_COUNTER_OVERFLOW] = BIT(6), 432 [MIB_COUNTER_VALID] = BIT(5), 433 [VLAN_TABLE_FID] = GENMASK(6, 0), 434 [VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7), 435 [VLAN_TABLE_VALID] = BIT(12), 436 [STATIC_MAC_TABLE_VALID] = BIT(21), 437 [STATIC_MAC_TABLE_USE_FID] = BIT(23), 438 [STATIC_MAC_TABLE_FID] = GENMASK(30, 24), 439 [STATIC_MAC_TABLE_OVERRIDE] = BIT(22), 440 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(20, 16), 441 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0), 442 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7), 443 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 444 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29), 445 [DYNAMIC_MAC_TABLE_FID] = GENMASK(22, 16), 446 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24), 447 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27), 448 [P_MII_TX_FLOW_CTRL] = BIT(5), 449 [P_MII_RX_FLOW_CTRL] = BIT(5), 450 }; 451 452 static const u8 ksz8795_xmii_ctrl0[] = { 453 [P_MII_100MBIT] = 0, 454 [P_MII_10MBIT] = 1, 455 [P_MII_FULL_DUPLEX] = 0, 456 [P_MII_HALF_DUPLEX] = 1, 457 }; 458 459 static const u8 ksz8795_xmii_ctrl1[] = { 460 [P_RGMII_SEL] = 3, 461 [P_GMII_SEL] = 2, 462 [P_RMII_SEL] = 1, 463 [P_MII_SEL] = 0, 464 [P_GMII_1GBIT] = 1, 465 [P_GMII_NOT_1GBIT] = 0, 466 }; 467 468 static const u8 ksz8795_shifts[] = { 469 [VLAN_TABLE_MEMBERSHIP_S] = 7, 470 [VLAN_TABLE] = 16, 471 [STATIC_MAC_FWD_PORTS] = 16, 472 [STATIC_MAC_FID] = 24, 473 [DYNAMIC_MAC_ENTRIES_H] = 3, 474 [DYNAMIC_MAC_ENTRIES] = 29, 475 [DYNAMIC_MAC_FID] = 16, 476 [DYNAMIC_MAC_TIMESTAMP] = 27, 477 [DYNAMIC_MAC_SRC_PORT] = 24, 478 }; 479 480 static const u16 ksz8863_regs[] = { 481 [REG_SW_MAC_ADDR] = 0x70, 482 [REG_IND_CTRL_0] = 0x79, 483 [REG_IND_DATA_8] = 0x7B, 484 [REG_IND_DATA_CHECK] = 0x7B, 485 [REG_IND_DATA_HI] = 0x7C, 486 [REG_IND_DATA_LO] = 0x80, 487 [REG_IND_MIB_CHECK] = 0x80, 488 [P_FORCE_CTRL] = 0x0C, 489 [P_LINK_STATUS] = 0x0E, 490 [P_LOCAL_CTRL] = 0x0C, 491 [P_NEG_RESTART_CTRL] = 0x0D, 492 [P_REMOTE_STATUS] = 0x0E, 493 [P_SPEED_STATUS] = 0x0F, 494 [S_TAIL_TAG_CTRL] = 0x03, 495 [P_STP_CTRL] = 0x02, 496 [S_START_CTRL] = 0x01, 497 [S_BROADCAST_CTRL] = 0x06, 498 [S_MULTICAST_CTRL] = 0x04, 499 }; 500 501 static const u32 ksz8863_masks[] = { 502 [PORT_802_1P_REMAPPING] = BIT(3), 503 [SW_TAIL_TAG_ENABLE] = BIT(6), 504 [MIB_COUNTER_OVERFLOW] = BIT(7), 505 [MIB_COUNTER_VALID] = BIT(6), 506 [VLAN_TABLE_FID] = GENMASK(15, 12), 507 [VLAN_TABLE_MEMBERSHIP] = GENMASK(18, 16), 508 [VLAN_TABLE_VALID] = BIT(19), 509 [STATIC_MAC_TABLE_VALID] = BIT(19), 510 [STATIC_MAC_TABLE_USE_FID] = BIT(21), 511 [STATIC_MAC_TABLE_FID] = GENMASK(25, 22), 512 [STATIC_MAC_TABLE_OVERRIDE] = BIT(20), 513 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(18, 16), 514 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(1, 0), 515 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(2), 516 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 517 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 24), 518 [DYNAMIC_MAC_TABLE_FID] = GENMASK(19, 16), 519 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(21, 20), 520 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(23, 22), 521 }; 522 523 static u8 ksz8863_shifts[] = { 524 [VLAN_TABLE_MEMBERSHIP_S] = 16, 525 [STATIC_MAC_FWD_PORTS] = 16, 526 [STATIC_MAC_FID] = 22, 527 [DYNAMIC_MAC_ENTRIES_H] = 8, 528 [DYNAMIC_MAC_ENTRIES] = 24, 529 [DYNAMIC_MAC_FID] = 16, 530 [DYNAMIC_MAC_TIMESTAMP] = 22, 531 [DYNAMIC_MAC_SRC_PORT] = 20, 532 }; 533 534 static const u16 ksz9477_regs[] = { 535 [REG_SW_MAC_ADDR] = 0x0302, 536 [P_STP_CTRL] = 0x0B04, 537 [S_START_CTRL] = 0x0300, 538 [S_BROADCAST_CTRL] = 0x0332, 539 [S_MULTICAST_CTRL] = 0x0331, 540 [P_XMII_CTRL_0] = 0x0300, 541 [P_XMII_CTRL_1] = 0x0301, 542 }; 543 544 static const u32 ksz9477_masks[] = { 545 [ALU_STAT_WRITE] = 0, 546 [ALU_STAT_READ] = 1, 547 [P_MII_TX_FLOW_CTRL] = BIT(5), 548 [P_MII_RX_FLOW_CTRL] = BIT(3), 549 }; 550 551 static const u8 ksz9477_shifts[] = { 552 [ALU_STAT_INDEX] = 16, 553 }; 554 555 static const u8 ksz9477_xmii_ctrl0[] = { 556 [P_MII_100MBIT] = 1, 557 [P_MII_10MBIT] = 0, 558 [P_MII_FULL_DUPLEX] = 1, 559 [P_MII_HALF_DUPLEX] = 0, 560 }; 561 562 static const u8 ksz9477_xmii_ctrl1[] = { 563 [P_RGMII_SEL] = 0, 564 [P_RMII_SEL] = 1, 565 [P_GMII_SEL] = 2, 566 [P_MII_SEL] = 3, 567 [P_GMII_1GBIT] = 0, 568 [P_GMII_NOT_1GBIT] = 1, 569 }; 570 571 static const u32 lan937x_masks[] = { 572 [ALU_STAT_WRITE] = 1, 573 [ALU_STAT_READ] = 2, 574 [P_MII_TX_FLOW_CTRL] = BIT(5), 575 [P_MII_RX_FLOW_CTRL] = BIT(3), 576 }; 577 578 static const u8 lan937x_shifts[] = { 579 [ALU_STAT_INDEX] = 8, 580 }; 581 582 static const struct regmap_range ksz8563_valid_regs[] = { 583 regmap_reg_range(0x0000, 0x0003), 584 regmap_reg_range(0x0006, 0x0006), 585 regmap_reg_range(0x000f, 0x001f), 586 regmap_reg_range(0x0100, 0x0100), 587 regmap_reg_range(0x0104, 0x0107), 588 regmap_reg_range(0x010d, 0x010d), 589 regmap_reg_range(0x0110, 0x0113), 590 regmap_reg_range(0x0120, 0x012b), 591 regmap_reg_range(0x0201, 0x0201), 592 regmap_reg_range(0x0210, 0x0213), 593 regmap_reg_range(0x0300, 0x0300), 594 regmap_reg_range(0x0302, 0x031b), 595 regmap_reg_range(0x0320, 0x032b), 596 regmap_reg_range(0x0330, 0x0336), 597 regmap_reg_range(0x0338, 0x033e), 598 regmap_reg_range(0x0340, 0x035f), 599 regmap_reg_range(0x0370, 0x0370), 600 regmap_reg_range(0x0378, 0x0378), 601 regmap_reg_range(0x037c, 0x037d), 602 regmap_reg_range(0x0390, 0x0393), 603 regmap_reg_range(0x0400, 0x040e), 604 regmap_reg_range(0x0410, 0x042f), 605 regmap_reg_range(0x0500, 0x0519), 606 regmap_reg_range(0x0520, 0x054b), 607 regmap_reg_range(0x0550, 0x05b3), 608 609 /* port 1 */ 610 regmap_reg_range(0x1000, 0x1001), 611 regmap_reg_range(0x1004, 0x100b), 612 regmap_reg_range(0x1013, 0x1013), 613 regmap_reg_range(0x1017, 0x1017), 614 regmap_reg_range(0x101b, 0x101b), 615 regmap_reg_range(0x101f, 0x1021), 616 regmap_reg_range(0x1030, 0x1030), 617 regmap_reg_range(0x1100, 0x1111), 618 regmap_reg_range(0x111a, 0x111d), 619 regmap_reg_range(0x1122, 0x1127), 620 regmap_reg_range(0x112a, 0x112b), 621 regmap_reg_range(0x1136, 0x1139), 622 regmap_reg_range(0x113e, 0x113f), 623 regmap_reg_range(0x1400, 0x1401), 624 regmap_reg_range(0x1403, 0x1403), 625 regmap_reg_range(0x1410, 0x1417), 626 regmap_reg_range(0x1420, 0x1423), 627 regmap_reg_range(0x1500, 0x1507), 628 regmap_reg_range(0x1600, 0x1612), 629 regmap_reg_range(0x1800, 0x180f), 630 regmap_reg_range(0x1900, 0x1907), 631 regmap_reg_range(0x1914, 0x191b), 632 regmap_reg_range(0x1a00, 0x1a03), 633 regmap_reg_range(0x1a04, 0x1a08), 634 regmap_reg_range(0x1b00, 0x1b01), 635 regmap_reg_range(0x1b04, 0x1b04), 636 regmap_reg_range(0x1c00, 0x1c05), 637 regmap_reg_range(0x1c08, 0x1c1b), 638 639 /* port 2 */ 640 regmap_reg_range(0x2000, 0x2001), 641 regmap_reg_range(0x2004, 0x200b), 642 regmap_reg_range(0x2013, 0x2013), 643 regmap_reg_range(0x2017, 0x2017), 644 regmap_reg_range(0x201b, 0x201b), 645 regmap_reg_range(0x201f, 0x2021), 646 regmap_reg_range(0x2030, 0x2030), 647 regmap_reg_range(0x2100, 0x2111), 648 regmap_reg_range(0x211a, 0x211d), 649 regmap_reg_range(0x2122, 0x2127), 650 regmap_reg_range(0x212a, 0x212b), 651 regmap_reg_range(0x2136, 0x2139), 652 regmap_reg_range(0x213e, 0x213f), 653 regmap_reg_range(0x2400, 0x2401), 654 regmap_reg_range(0x2403, 0x2403), 655 regmap_reg_range(0x2410, 0x2417), 656 regmap_reg_range(0x2420, 0x2423), 657 regmap_reg_range(0x2500, 0x2507), 658 regmap_reg_range(0x2600, 0x2612), 659 regmap_reg_range(0x2800, 0x280f), 660 regmap_reg_range(0x2900, 0x2907), 661 regmap_reg_range(0x2914, 0x291b), 662 regmap_reg_range(0x2a00, 0x2a03), 663 regmap_reg_range(0x2a04, 0x2a08), 664 regmap_reg_range(0x2b00, 0x2b01), 665 regmap_reg_range(0x2b04, 0x2b04), 666 regmap_reg_range(0x2c00, 0x2c05), 667 regmap_reg_range(0x2c08, 0x2c1b), 668 669 /* port 3 */ 670 regmap_reg_range(0x3000, 0x3001), 671 regmap_reg_range(0x3004, 0x300b), 672 regmap_reg_range(0x3013, 0x3013), 673 regmap_reg_range(0x3017, 0x3017), 674 regmap_reg_range(0x301b, 0x301b), 675 regmap_reg_range(0x301f, 0x3021), 676 regmap_reg_range(0x3030, 0x3030), 677 regmap_reg_range(0x3300, 0x3301), 678 regmap_reg_range(0x3303, 0x3303), 679 regmap_reg_range(0x3400, 0x3401), 680 regmap_reg_range(0x3403, 0x3403), 681 regmap_reg_range(0x3410, 0x3417), 682 regmap_reg_range(0x3420, 0x3423), 683 regmap_reg_range(0x3500, 0x3507), 684 regmap_reg_range(0x3600, 0x3612), 685 regmap_reg_range(0x3800, 0x380f), 686 regmap_reg_range(0x3900, 0x3907), 687 regmap_reg_range(0x3914, 0x391b), 688 regmap_reg_range(0x3a00, 0x3a03), 689 regmap_reg_range(0x3a04, 0x3a08), 690 regmap_reg_range(0x3b00, 0x3b01), 691 regmap_reg_range(0x3b04, 0x3b04), 692 regmap_reg_range(0x3c00, 0x3c05), 693 regmap_reg_range(0x3c08, 0x3c1b), 694 }; 695 696 static const struct regmap_access_table ksz8563_register_set = { 697 .yes_ranges = ksz8563_valid_regs, 698 .n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs), 699 }; 700 701 static const struct regmap_range ksz9477_valid_regs[] = { 702 regmap_reg_range(0x0000, 0x0003), 703 regmap_reg_range(0x0006, 0x0006), 704 regmap_reg_range(0x0010, 0x001f), 705 regmap_reg_range(0x0100, 0x0100), 706 regmap_reg_range(0x0103, 0x0107), 707 regmap_reg_range(0x010d, 0x010d), 708 regmap_reg_range(0x0110, 0x0113), 709 regmap_reg_range(0x0120, 0x012b), 710 regmap_reg_range(0x0201, 0x0201), 711 regmap_reg_range(0x0210, 0x0213), 712 regmap_reg_range(0x0300, 0x0300), 713 regmap_reg_range(0x0302, 0x031b), 714 regmap_reg_range(0x0320, 0x032b), 715 regmap_reg_range(0x0330, 0x0336), 716 regmap_reg_range(0x0338, 0x033b), 717 regmap_reg_range(0x033e, 0x033e), 718 regmap_reg_range(0x0340, 0x035f), 719 regmap_reg_range(0x0370, 0x0370), 720 regmap_reg_range(0x0378, 0x0378), 721 regmap_reg_range(0x037c, 0x037d), 722 regmap_reg_range(0x0390, 0x0393), 723 regmap_reg_range(0x0400, 0x040e), 724 regmap_reg_range(0x0410, 0x042f), 725 regmap_reg_range(0x0444, 0x044b), 726 regmap_reg_range(0x0450, 0x046f), 727 regmap_reg_range(0x0500, 0x0519), 728 regmap_reg_range(0x0520, 0x054b), 729 regmap_reg_range(0x0550, 0x05b3), 730 regmap_reg_range(0x0604, 0x060b), 731 regmap_reg_range(0x0610, 0x0612), 732 regmap_reg_range(0x0614, 0x062c), 733 regmap_reg_range(0x0640, 0x0645), 734 regmap_reg_range(0x0648, 0x064d), 735 736 /* port 1 */ 737 regmap_reg_range(0x1000, 0x1001), 738 regmap_reg_range(0x1013, 0x1013), 739 regmap_reg_range(0x1017, 0x1017), 740 regmap_reg_range(0x101b, 0x101b), 741 regmap_reg_range(0x101f, 0x1020), 742 regmap_reg_range(0x1030, 0x1030), 743 regmap_reg_range(0x1100, 0x1115), 744 regmap_reg_range(0x111a, 0x111f), 745 regmap_reg_range(0x1120, 0x112b), 746 regmap_reg_range(0x1134, 0x113b), 747 regmap_reg_range(0x113c, 0x113f), 748 regmap_reg_range(0x1400, 0x1401), 749 regmap_reg_range(0x1403, 0x1403), 750 regmap_reg_range(0x1410, 0x1417), 751 regmap_reg_range(0x1420, 0x1423), 752 regmap_reg_range(0x1500, 0x1507), 753 regmap_reg_range(0x1600, 0x1613), 754 regmap_reg_range(0x1800, 0x180f), 755 regmap_reg_range(0x1820, 0x1827), 756 regmap_reg_range(0x1830, 0x1837), 757 regmap_reg_range(0x1840, 0x184b), 758 regmap_reg_range(0x1900, 0x1907), 759 regmap_reg_range(0x1914, 0x191b), 760 regmap_reg_range(0x1920, 0x1920), 761 regmap_reg_range(0x1923, 0x1927), 762 regmap_reg_range(0x1a00, 0x1a03), 763 regmap_reg_range(0x1a04, 0x1a07), 764 regmap_reg_range(0x1b00, 0x1b01), 765 regmap_reg_range(0x1b04, 0x1b04), 766 regmap_reg_range(0x1c00, 0x1c05), 767 regmap_reg_range(0x1c08, 0x1c1b), 768 769 /* port 2 */ 770 regmap_reg_range(0x2000, 0x2001), 771 regmap_reg_range(0x2013, 0x2013), 772 regmap_reg_range(0x2017, 0x2017), 773 regmap_reg_range(0x201b, 0x201b), 774 regmap_reg_range(0x201f, 0x2020), 775 regmap_reg_range(0x2030, 0x2030), 776 regmap_reg_range(0x2100, 0x2115), 777 regmap_reg_range(0x211a, 0x211f), 778 regmap_reg_range(0x2120, 0x212b), 779 regmap_reg_range(0x2134, 0x213b), 780 regmap_reg_range(0x213c, 0x213f), 781 regmap_reg_range(0x2400, 0x2401), 782 regmap_reg_range(0x2403, 0x2403), 783 regmap_reg_range(0x2410, 0x2417), 784 regmap_reg_range(0x2420, 0x2423), 785 regmap_reg_range(0x2500, 0x2507), 786 regmap_reg_range(0x2600, 0x2613), 787 regmap_reg_range(0x2800, 0x280f), 788 regmap_reg_range(0x2820, 0x2827), 789 regmap_reg_range(0x2830, 0x2837), 790 regmap_reg_range(0x2840, 0x284b), 791 regmap_reg_range(0x2900, 0x2907), 792 regmap_reg_range(0x2914, 0x291b), 793 regmap_reg_range(0x2920, 0x2920), 794 regmap_reg_range(0x2923, 0x2927), 795 regmap_reg_range(0x2a00, 0x2a03), 796 regmap_reg_range(0x2a04, 0x2a07), 797 regmap_reg_range(0x2b00, 0x2b01), 798 regmap_reg_range(0x2b04, 0x2b04), 799 regmap_reg_range(0x2c00, 0x2c05), 800 regmap_reg_range(0x2c08, 0x2c1b), 801 802 /* port 3 */ 803 regmap_reg_range(0x3000, 0x3001), 804 regmap_reg_range(0x3013, 0x3013), 805 regmap_reg_range(0x3017, 0x3017), 806 regmap_reg_range(0x301b, 0x301b), 807 regmap_reg_range(0x301f, 0x3020), 808 regmap_reg_range(0x3030, 0x3030), 809 regmap_reg_range(0x3100, 0x3115), 810 regmap_reg_range(0x311a, 0x311f), 811 regmap_reg_range(0x3120, 0x312b), 812 regmap_reg_range(0x3134, 0x313b), 813 regmap_reg_range(0x313c, 0x313f), 814 regmap_reg_range(0x3400, 0x3401), 815 regmap_reg_range(0x3403, 0x3403), 816 regmap_reg_range(0x3410, 0x3417), 817 regmap_reg_range(0x3420, 0x3423), 818 regmap_reg_range(0x3500, 0x3507), 819 regmap_reg_range(0x3600, 0x3613), 820 regmap_reg_range(0x3800, 0x380f), 821 regmap_reg_range(0x3820, 0x3827), 822 regmap_reg_range(0x3830, 0x3837), 823 regmap_reg_range(0x3840, 0x384b), 824 regmap_reg_range(0x3900, 0x3907), 825 regmap_reg_range(0x3914, 0x391b), 826 regmap_reg_range(0x3920, 0x3920), 827 regmap_reg_range(0x3923, 0x3927), 828 regmap_reg_range(0x3a00, 0x3a03), 829 regmap_reg_range(0x3a04, 0x3a07), 830 regmap_reg_range(0x3b00, 0x3b01), 831 regmap_reg_range(0x3b04, 0x3b04), 832 regmap_reg_range(0x3c00, 0x3c05), 833 regmap_reg_range(0x3c08, 0x3c1b), 834 835 /* port 4 */ 836 regmap_reg_range(0x4000, 0x4001), 837 regmap_reg_range(0x4013, 0x4013), 838 regmap_reg_range(0x4017, 0x4017), 839 regmap_reg_range(0x401b, 0x401b), 840 regmap_reg_range(0x401f, 0x4020), 841 regmap_reg_range(0x4030, 0x4030), 842 regmap_reg_range(0x4100, 0x4115), 843 regmap_reg_range(0x411a, 0x411f), 844 regmap_reg_range(0x4120, 0x412b), 845 regmap_reg_range(0x4134, 0x413b), 846 regmap_reg_range(0x413c, 0x413f), 847 regmap_reg_range(0x4400, 0x4401), 848 regmap_reg_range(0x4403, 0x4403), 849 regmap_reg_range(0x4410, 0x4417), 850 regmap_reg_range(0x4420, 0x4423), 851 regmap_reg_range(0x4500, 0x4507), 852 regmap_reg_range(0x4600, 0x4613), 853 regmap_reg_range(0x4800, 0x480f), 854 regmap_reg_range(0x4820, 0x4827), 855 regmap_reg_range(0x4830, 0x4837), 856 regmap_reg_range(0x4840, 0x484b), 857 regmap_reg_range(0x4900, 0x4907), 858 regmap_reg_range(0x4914, 0x491b), 859 regmap_reg_range(0x4920, 0x4920), 860 regmap_reg_range(0x4923, 0x4927), 861 regmap_reg_range(0x4a00, 0x4a03), 862 regmap_reg_range(0x4a04, 0x4a07), 863 regmap_reg_range(0x4b00, 0x4b01), 864 regmap_reg_range(0x4b04, 0x4b04), 865 regmap_reg_range(0x4c00, 0x4c05), 866 regmap_reg_range(0x4c08, 0x4c1b), 867 868 /* port 5 */ 869 regmap_reg_range(0x5000, 0x5001), 870 regmap_reg_range(0x5013, 0x5013), 871 regmap_reg_range(0x5017, 0x5017), 872 regmap_reg_range(0x501b, 0x501b), 873 regmap_reg_range(0x501f, 0x5020), 874 regmap_reg_range(0x5030, 0x5030), 875 regmap_reg_range(0x5100, 0x5115), 876 regmap_reg_range(0x511a, 0x511f), 877 regmap_reg_range(0x5120, 0x512b), 878 regmap_reg_range(0x5134, 0x513b), 879 regmap_reg_range(0x513c, 0x513f), 880 regmap_reg_range(0x5400, 0x5401), 881 regmap_reg_range(0x5403, 0x5403), 882 regmap_reg_range(0x5410, 0x5417), 883 regmap_reg_range(0x5420, 0x5423), 884 regmap_reg_range(0x5500, 0x5507), 885 regmap_reg_range(0x5600, 0x5613), 886 regmap_reg_range(0x5800, 0x580f), 887 regmap_reg_range(0x5820, 0x5827), 888 regmap_reg_range(0x5830, 0x5837), 889 regmap_reg_range(0x5840, 0x584b), 890 regmap_reg_range(0x5900, 0x5907), 891 regmap_reg_range(0x5914, 0x591b), 892 regmap_reg_range(0x5920, 0x5920), 893 regmap_reg_range(0x5923, 0x5927), 894 regmap_reg_range(0x5a00, 0x5a03), 895 regmap_reg_range(0x5a04, 0x5a07), 896 regmap_reg_range(0x5b00, 0x5b01), 897 regmap_reg_range(0x5b04, 0x5b04), 898 regmap_reg_range(0x5c00, 0x5c05), 899 regmap_reg_range(0x5c08, 0x5c1b), 900 901 /* port 6 */ 902 regmap_reg_range(0x6000, 0x6001), 903 regmap_reg_range(0x6013, 0x6013), 904 regmap_reg_range(0x6017, 0x6017), 905 regmap_reg_range(0x601b, 0x601b), 906 regmap_reg_range(0x601f, 0x6020), 907 regmap_reg_range(0x6030, 0x6030), 908 regmap_reg_range(0x6300, 0x6301), 909 regmap_reg_range(0x6400, 0x6401), 910 regmap_reg_range(0x6403, 0x6403), 911 regmap_reg_range(0x6410, 0x6417), 912 regmap_reg_range(0x6420, 0x6423), 913 regmap_reg_range(0x6500, 0x6507), 914 regmap_reg_range(0x6600, 0x6613), 915 regmap_reg_range(0x6800, 0x680f), 916 regmap_reg_range(0x6820, 0x6827), 917 regmap_reg_range(0x6830, 0x6837), 918 regmap_reg_range(0x6840, 0x684b), 919 regmap_reg_range(0x6900, 0x6907), 920 regmap_reg_range(0x6914, 0x691b), 921 regmap_reg_range(0x6920, 0x6920), 922 regmap_reg_range(0x6923, 0x6927), 923 regmap_reg_range(0x6a00, 0x6a03), 924 regmap_reg_range(0x6a04, 0x6a07), 925 regmap_reg_range(0x6b00, 0x6b01), 926 regmap_reg_range(0x6b04, 0x6b04), 927 regmap_reg_range(0x6c00, 0x6c05), 928 regmap_reg_range(0x6c08, 0x6c1b), 929 930 /* port 7 */ 931 regmap_reg_range(0x7000, 0x7001), 932 regmap_reg_range(0x7013, 0x7013), 933 regmap_reg_range(0x7017, 0x7017), 934 regmap_reg_range(0x701b, 0x701b), 935 regmap_reg_range(0x701f, 0x7020), 936 regmap_reg_range(0x7030, 0x7030), 937 regmap_reg_range(0x7200, 0x7203), 938 regmap_reg_range(0x7206, 0x7207), 939 regmap_reg_range(0x7300, 0x7301), 940 regmap_reg_range(0x7400, 0x7401), 941 regmap_reg_range(0x7403, 0x7403), 942 regmap_reg_range(0x7410, 0x7417), 943 regmap_reg_range(0x7420, 0x7423), 944 regmap_reg_range(0x7500, 0x7507), 945 regmap_reg_range(0x7600, 0x7613), 946 regmap_reg_range(0x7800, 0x780f), 947 regmap_reg_range(0x7820, 0x7827), 948 regmap_reg_range(0x7830, 0x7837), 949 regmap_reg_range(0x7840, 0x784b), 950 regmap_reg_range(0x7900, 0x7907), 951 regmap_reg_range(0x7914, 0x791b), 952 regmap_reg_range(0x7920, 0x7920), 953 regmap_reg_range(0x7923, 0x7927), 954 regmap_reg_range(0x7a00, 0x7a03), 955 regmap_reg_range(0x7a04, 0x7a07), 956 regmap_reg_range(0x7b00, 0x7b01), 957 regmap_reg_range(0x7b04, 0x7b04), 958 regmap_reg_range(0x7c00, 0x7c05), 959 regmap_reg_range(0x7c08, 0x7c1b), 960 }; 961 962 static const struct regmap_access_table ksz9477_register_set = { 963 .yes_ranges = ksz9477_valid_regs, 964 .n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs), 965 }; 966 967 static const struct regmap_range ksz9896_valid_regs[] = { 968 regmap_reg_range(0x0000, 0x0003), 969 regmap_reg_range(0x0006, 0x0006), 970 regmap_reg_range(0x0010, 0x001f), 971 regmap_reg_range(0x0100, 0x0100), 972 regmap_reg_range(0x0103, 0x0107), 973 regmap_reg_range(0x010d, 0x010d), 974 regmap_reg_range(0x0110, 0x0113), 975 regmap_reg_range(0x0120, 0x0127), 976 regmap_reg_range(0x0201, 0x0201), 977 regmap_reg_range(0x0210, 0x0213), 978 regmap_reg_range(0x0300, 0x0300), 979 regmap_reg_range(0x0302, 0x030b), 980 regmap_reg_range(0x0310, 0x031b), 981 regmap_reg_range(0x0320, 0x032b), 982 regmap_reg_range(0x0330, 0x0336), 983 regmap_reg_range(0x0338, 0x033b), 984 regmap_reg_range(0x033e, 0x033e), 985 regmap_reg_range(0x0340, 0x035f), 986 regmap_reg_range(0x0370, 0x0370), 987 regmap_reg_range(0x0378, 0x0378), 988 regmap_reg_range(0x037c, 0x037d), 989 regmap_reg_range(0x0390, 0x0393), 990 regmap_reg_range(0x0400, 0x040e), 991 regmap_reg_range(0x0410, 0x042f), 992 993 /* port 1 */ 994 regmap_reg_range(0x1000, 0x1001), 995 regmap_reg_range(0x1013, 0x1013), 996 regmap_reg_range(0x1017, 0x1017), 997 regmap_reg_range(0x101b, 0x101b), 998 regmap_reg_range(0x101f, 0x1020), 999 regmap_reg_range(0x1030, 0x1030), 1000 regmap_reg_range(0x1100, 0x1115), 1001 regmap_reg_range(0x111a, 0x111f), 1002 regmap_reg_range(0x1122, 0x1127), 1003 regmap_reg_range(0x112a, 0x112b), 1004 regmap_reg_range(0x1136, 0x1139), 1005 regmap_reg_range(0x113e, 0x113f), 1006 regmap_reg_range(0x1400, 0x1401), 1007 regmap_reg_range(0x1403, 0x1403), 1008 regmap_reg_range(0x1410, 0x1417), 1009 regmap_reg_range(0x1420, 0x1423), 1010 regmap_reg_range(0x1500, 0x1507), 1011 regmap_reg_range(0x1600, 0x1612), 1012 regmap_reg_range(0x1800, 0x180f), 1013 regmap_reg_range(0x1820, 0x1827), 1014 regmap_reg_range(0x1830, 0x1837), 1015 regmap_reg_range(0x1840, 0x184b), 1016 regmap_reg_range(0x1900, 0x1907), 1017 regmap_reg_range(0x1914, 0x1915), 1018 regmap_reg_range(0x1a00, 0x1a03), 1019 regmap_reg_range(0x1a04, 0x1a07), 1020 regmap_reg_range(0x1b00, 0x1b01), 1021 regmap_reg_range(0x1b04, 0x1b04), 1022 1023 /* port 2 */ 1024 regmap_reg_range(0x2000, 0x2001), 1025 regmap_reg_range(0x2013, 0x2013), 1026 regmap_reg_range(0x2017, 0x2017), 1027 regmap_reg_range(0x201b, 0x201b), 1028 regmap_reg_range(0x201f, 0x2020), 1029 regmap_reg_range(0x2030, 0x2030), 1030 regmap_reg_range(0x2100, 0x2115), 1031 regmap_reg_range(0x211a, 0x211f), 1032 regmap_reg_range(0x2122, 0x2127), 1033 regmap_reg_range(0x212a, 0x212b), 1034 regmap_reg_range(0x2136, 0x2139), 1035 regmap_reg_range(0x213e, 0x213f), 1036 regmap_reg_range(0x2400, 0x2401), 1037 regmap_reg_range(0x2403, 0x2403), 1038 regmap_reg_range(0x2410, 0x2417), 1039 regmap_reg_range(0x2420, 0x2423), 1040 regmap_reg_range(0x2500, 0x2507), 1041 regmap_reg_range(0x2600, 0x2612), 1042 regmap_reg_range(0x2800, 0x280f), 1043 regmap_reg_range(0x2820, 0x2827), 1044 regmap_reg_range(0x2830, 0x2837), 1045 regmap_reg_range(0x2840, 0x284b), 1046 regmap_reg_range(0x2900, 0x2907), 1047 regmap_reg_range(0x2914, 0x2915), 1048 regmap_reg_range(0x2a00, 0x2a03), 1049 regmap_reg_range(0x2a04, 0x2a07), 1050 regmap_reg_range(0x2b00, 0x2b01), 1051 regmap_reg_range(0x2b04, 0x2b04), 1052 1053 /* port 3 */ 1054 regmap_reg_range(0x3000, 0x3001), 1055 regmap_reg_range(0x3013, 0x3013), 1056 regmap_reg_range(0x3017, 0x3017), 1057 regmap_reg_range(0x301b, 0x301b), 1058 regmap_reg_range(0x301f, 0x3020), 1059 regmap_reg_range(0x3030, 0x3030), 1060 regmap_reg_range(0x3100, 0x3115), 1061 regmap_reg_range(0x311a, 0x311f), 1062 regmap_reg_range(0x3122, 0x3127), 1063 regmap_reg_range(0x312a, 0x312b), 1064 regmap_reg_range(0x3136, 0x3139), 1065 regmap_reg_range(0x313e, 0x313f), 1066 regmap_reg_range(0x3400, 0x3401), 1067 regmap_reg_range(0x3403, 0x3403), 1068 regmap_reg_range(0x3410, 0x3417), 1069 regmap_reg_range(0x3420, 0x3423), 1070 regmap_reg_range(0x3500, 0x3507), 1071 regmap_reg_range(0x3600, 0x3612), 1072 regmap_reg_range(0x3800, 0x380f), 1073 regmap_reg_range(0x3820, 0x3827), 1074 regmap_reg_range(0x3830, 0x3837), 1075 regmap_reg_range(0x3840, 0x384b), 1076 regmap_reg_range(0x3900, 0x3907), 1077 regmap_reg_range(0x3914, 0x3915), 1078 regmap_reg_range(0x3a00, 0x3a03), 1079 regmap_reg_range(0x3a04, 0x3a07), 1080 regmap_reg_range(0x3b00, 0x3b01), 1081 regmap_reg_range(0x3b04, 0x3b04), 1082 1083 /* port 4 */ 1084 regmap_reg_range(0x4000, 0x4001), 1085 regmap_reg_range(0x4013, 0x4013), 1086 regmap_reg_range(0x4017, 0x4017), 1087 regmap_reg_range(0x401b, 0x401b), 1088 regmap_reg_range(0x401f, 0x4020), 1089 regmap_reg_range(0x4030, 0x4030), 1090 regmap_reg_range(0x4100, 0x4115), 1091 regmap_reg_range(0x411a, 0x411f), 1092 regmap_reg_range(0x4122, 0x4127), 1093 regmap_reg_range(0x412a, 0x412b), 1094 regmap_reg_range(0x4136, 0x4139), 1095 regmap_reg_range(0x413e, 0x413f), 1096 regmap_reg_range(0x4400, 0x4401), 1097 regmap_reg_range(0x4403, 0x4403), 1098 regmap_reg_range(0x4410, 0x4417), 1099 regmap_reg_range(0x4420, 0x4423), 1100 regmap_reg_range(0x4500, 0x4507), 1101 regmap_reg_range(0x4600, 0x4612), 1102 regmap_reg_range(0x4800, 0x480f), 1103 regmap_reg_range(0x4820, 0x4827), 1104 regmap_reg_range(0x4830, 0x4837), 1105 regmap_reg_range(0x4840, 0x484b), 1106 regmap_reg_range(0x4900, 0x4907), 1107 regmap_reg_range(0x4914, 0x4915), 1108 regmap_reg_range(0x4a00, 0x4a03), 1109 regmap_reg_range(0x4a04, 0x4a07), 1110 regmap_reg_range(0x4b00, 0x4b01), 1111 regmap_reg_range(0x4b04, 0x4b04), 1112 1113 /* port 5 */ 1114 regmap_reg_range(0x5000, 0x5001), 1115 regmap_reg_range(0x5013, 0x5013), 1116 regmap_reg_range(0x5017, 0x5017), 1117 regmap_reg_range(0x501b, 0x501b), 1118 regmap_reg_range(0x501f, 0x5020), 1119 regmap_reg_range(0x5030, 0x5030), 1120 regmap_reg_range(0x5100, 0x5115), 1121 regmap_reg_range(0x511a, 0x511f), 1122 regmap_reg_range(0x5122, 0x5127), 1123 regmap_reg_range(0x512a, 0x512b), 1124 regmap_reg_range(0x5136, 0x5139), 1125 regmap_reg_range(0x513e, 0x513f), 1126 regmap_reg_range(0x5400, 0x5401), 1127 regmap_reg_range(0x5403, 0x5403), 1128 regmap_reg_range(0x5410, 0x5417), 1129 regmap_reg_range(0x5420, 0x5423), 1130 regmap_reg_range(0x5500, 0x5507), 1131 regmap_reg_range(0x5600, 0x5612), 1132 regmap_reg_range(0x5800, 0x580f), 1133 regmap_reg_range(0x5820, 0x5827), 1134 regmap_reg_range(0x5830, 0x5837), 1135 regmap_reg_range(0x5840, 0x584b), 1136 regmap_reg_range(0x5900, 0x5907), 1137 regmap_reg_range(0x5914, 0x5915), 1138 regmap_reg_range(0x5a00, 0x5a03), 1139 regmap_reg_range(0x5a04, 0x5a07), 1140 regmap_reg_range(0x5b00, 0x5b01), 1141 regmap_reg_range(0x5b04, 0x5b04), 1142 1143 /* port 6 */ 1144 regmap_reg_range(0x6000, 0x6001), 1145 regmap_reg_range(0x6013, 0x6013), 1146 regmap_reg_range(0x6017, 0x6017), 1147 regmap_reg_range(0x601b, 0x601b), 1148 regmap_reg_range(0x601f, 0x6020), 1149 regmap_reg_range(0x6030, 0x6030), 1150 regmap_reg_range(0x6100, 0x6115), 1151 regmap_reg_range(0x611a, 0x611f), 1152 regmap_reg_range(0x6122, 0x6127), 1153 regmap_reg_range(0x612a, 0x612b), 1154 regmap_reg_range(0x6136, 0x6139), 1155 regmap_reg_range(0x613e, 0x613f), 1156 regmap_reg_range(0x6300, 0x6301), 1157 regmap_reg_range(0x6400, 0x6401), 1158 regmap_reg_range(0x6403, 0x6403), 1159 regmap_reg_range(0x6410, 0x6417), 1160 regmap_reg_range(0x6420, 0x6423), 1161 regmap_reg_range(0x6500, 0x6507), 1162 regmap_reg_range(0x6600, 0x6612), 1163 regmap_reg_range(0x6800, 0x680f), 1164 regmap_reg_range(0x6820, 0x6827), 1165 regmap_reg_range(0x6830, 0x6837), 1166 regmap_reg_range(0x6840, 0x684b), 1167 regmap_reg_range(0x6900, 0x6907), 1168 regmap_reg_range(0x6914, 0x6915), 1169 regmap_reg_range(0x6a00, 0x6a03), 1170 regmap_reg_range(0x6a04, 0x6a07), 1171 regmap_reg_range(0x6b00, 0x6b01), 1172 regmap_reg_range(0x6b04, 0x6b04), 1173 }; 1174 1175 static const struct regmap_access_table ksz9896_register_set = { 1176 .yes_ranges = ksz9896_valid_regs, 1177 .n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs), 1178 }; 1179 1180 static const struct regmap_range ksz8873_valid_regs[] = { 1181 regmap_reg_range(0x00, 0x01), 1182 /* global control register */ 1183 regmap_reg_range(0x02, 0x0f), 1184 1185 /* port registers */ 1186 regmap_reg_range(0x10, 0x1d), 1187 regmap_reg_range(0x1e, 0x1f), 1188 regmap_reg_range(0x20, 0x2d), 1189 regmap_reg_range(0x2e, 0x2f), 1190 regmap_reg_range(0x30, 0x39), 1191 regmap_reg_range(0x3f, 0x3f), 1192 1193 /* advanced control registers */ 1194 regmap_reg_range(0x60, 0x6f), 1195 regmap_reg_range(0x70, 0x75), 1196 regmap_reg_range(0x76, 0x78), 1197 regmap_reg_range(0x79, 0x7a), 1198 regmap_reg_range(0x7b, 0x83), 1199 regmap_reg_range(0x8e, 0x99), 1200 regmap_reg_range(0x9a, 0xa5), 1201 regmap_reg_range(0xa6, 0xa6), 1202 regmap_reg_range(0xa7, 0xaa), 1203 regmap_reg_range(0xab, 0xae), 1204 regmap_reg_range(0xaf, 0xba), 1205 regmap_reg_range(0xbb, 0xbc), 1206 regmap_reg_range(0xbd, 0xbd), 1207 regmap_reg_range(0xc0, 0xc0), 1208 regmap_reg_range(0xc2, 0xc2), 1209 regmap_reg_range(0xc3, 0xc3), 1210 regmap_reg_range(0xc4, 0xc4), 1211 regmap_reg_range(0xc6, 0xc6), 1212 }; 1213 1214 static const struct regmap_access_table ksz8873_register_set = { 1215 .yes_ranges = ksz8873_valid_regs, 1216 .n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs), 1217 }; 1218 1219 const struct ksz_chip_data ksz_switch_chips[] = { 1220 [KSZ8563] = { 1221 .chip_id = KSZ8563_CHIP_ID, 1222 .dev_name = "KSZ8563", 1223 .num_vlans = 4096, 1224 .num_alus = 4096, 1225 .num_statics = 16, 1226 .cpu_ports = 0x07, /* can be configured as cpu port */ 1227 .port_cnt = 3, /* total port count */ 1228 .port_nirqs = 3, 1229 .num_tx_queues = 4, 1230 .num_ipms = 8, 1231 .tc_cbs_supported = true, 1232 .ops = &ksz9477_dev_ops, 1233 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1234 .mib_names = ksz9477_mib_names, 1235 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1236 .reg_mib_cnt = MIB_COUNTER_NUM, 1237 .regs = ksz9477_regs, 1238 .masks = ksz9477_masks, 1239 .shifts = ksz9477_shifts, 1240 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1241 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1242 .supports_mii = {false, false, true}, 1243 .supports_rmii = {false, false, true}, 1244 .supports_rgmii = {false, false, true}, 1245 .internal_phy = {true, true, false}, 1246 .gbit_capable = {false, false, true}, 1247 .wr_table = &ksz8563_register_set, 1248 .rd_table = &ksz8563_register_set, 1249 }, 1250 1251 [KSZ8795] = { 1252 .chip_id = KSZ8795_CHIP_ID, 1253 .dev_name = "KSZ8795", 1254 .num_vlans = 4096, 1255 .num_alus = 0, 1256 .num_statics = 8, 1257 .cpu_ports = 0x10, /* can be configured as cpu port */ 1258 .port_cnt = 5, /* total cpu and user ports */ 1259 .num_tx_queues = 4, 1260 .num_ipms = 4, 1261 .ops = &ksz8_dev_ops, 1262 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1263 .ksz87xx_eee_link_erratum = true, 1264 .mib_names = ksz9477_mib_names, 1265 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1266 .reg_mib_cnt = MIB_COUNTER_NUM, 1267 .regs = ksz8795_regs, 1268 .masks = ksz8795_masks, 1269 .shifts = ksz8795_shifts, 1270 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1271 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1272 .supports_mii = {false, false, false, false, true}, 1273 .supports_rmii = {false, false, false, false, true}, 1274 .supports_rgmii = {false, false, false, false, true}, 1275 .internal_phy = {true, true, true, true, false}, 1276 }, 1277 1278 [KSZ8794] = { 1279 /* WARNING 1280 * ======= 1281 * KSZ8794 is similar to KSZ8795, except the port map 1282 * contains a gap between external and CPU ports, the 1283 * port map is NOT continuous. The per-port register 1284 * map is shifted accordingly too, i.e. registers at 1285 * offset 0x40 are NOT used on KSZ8794 and they ARE 1286 * used on KSZ8795 for external port 3. 1287 * external cpu 1288 * KSZ8794 0,1,2 4 1289 * KSZ8795 0,1,2,3 4 1290 * KSZ8765 0,1,2,3 4 1291 * port_cnt is configured as 5, even though it is 4 1292 */ 1293 .chip_id = KSZ8794_CHIP_ID, 1294 .dev_name = "KSZ8794", 1295 .num_vlans = 4096, 1296 .num_alus = 0, 1297 .num_statics = 8, 1298 .cpu_ports = 0x10, /* can be configured as cpu port */ 1299 .port_cnt = 5, /* total cpu and user ports */ 1300 .num_tx_queues = 4, 1301 .num_ipms = 4, 1302 .ops = &ksz8_dev_ops, 1303 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1304 .ksz87xx_eee_link_erratum = true, 1305 .mib_names = ksz9477_mib_names, 1306 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1307 .reg_mib_cnt = MIB_COUNTER_NUM, 1308 .regs = ksz8795_regs, 1309 .masks = ksz8795_masks, 1310 .shifts = ksz8795_shifts, 1311 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1312 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1313 .supports_mii = {false, false, false, false, true}, 1314 .supports_rmii = {false, false, false, false, true}, 1315 .supports_rgmii = {false, false, false, false, true}, 1316 .internal_phy = {true, true, true, false, false}, 1317 }, 1318 1319 [KSZ8765] = { 1320 .chip_id = KSZ8765_CHIP_ID, 1321 .dev_name = "KSZ8765", 1322 .num_vlans = 4096, 1323 .num_alus = 0, 1324 .num_statics = 8, 1325 .cpu_ports = 0x10, /* can be configured as cpu port */ 1326 .port_cnt = 5, /* total cpu and user ports */ 1327 .num_tx_queues = 4, 1328 .num_ipms = 4, 1329 .ops = &ksz8_dev_ops, 1330 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1331 .ksz87xx_eee_link_erratum = true, 1332 .mib_names = ksz9477_mib_names, 1333 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1334 .reg_mib_cnt = MIB_COUNTER_NUM, 1335 .regs = ksz8795_regs, 1336 .masks = ksz8795_masks, 1337 .shifts = ksz8795_shifts, 1338 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1339 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1340 .supports_mii = {false, false, false, false, true}, 1341 .supports_rmii = {false, false, false, false, true}, 1342 .supports_rgmii = {false, false, false, false, true}, 1343 .internal_phy = {true, true, true, true, false}, 1344 }, 1345 1346 [KSZ8830] = { 1347 .chip_id = KSZ8830_CHIP_ID, 1348 .dev_name = "KSZ8863/KSZ8873", 1349 .num_vlans = 16, 1350 .num_alus = 0, 1351 .num_statics = 8, 1352 .cpu_ports = 0x4, /* can be configured as cpu port */ 1353 .port_cnt = 3, 1354 .num_tx_queues = 4, 1355 .num_ipms = 4, 1356 .ops = &ksz8_dev_ops, 1357 .phylink_mac_ops = &ksz8830_phylink_mac_ops, 1358 .mib_names = ksz88xx_mib_names, 1359 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1360 .reg_mib_cnt = MIB_COUNTER_NUM, 1361 .regs = ksz8863_regs, 1362 .masks = ksz8863_masks, 1363 .shifts = ksz8863_shifts, 1364 .supports_mii = {false, false, true}, 1365 .supports_rmii = {false, false, true}, 1366 .internal_phy = {true, true, false}, 1367 .wr_table = &ksz8873_register_set, 1368 .rd_table = &ksz8873_register_set, 1369 }, 1370 1371 [KSZ9477] = { 1372 .chip_id = KSZ9477_CHIP_ID, 1373 .dev_name = "KSZ9477", 1374 .num_vlans = 4096, 1375 .num_alus = 4096, 1376 .num_statics = 16, 1377 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1378 .port_cnt = 7, /* total physical port count */ 1379 .port_nirqs = 4, 1380 .num_tx_queues = 4, 1381 .num_ipms = 8, 1382 .tc_cbs_supported = true, 1383 .ops = &ksz9477_dev_ops, 1384 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1385 .mib_names = ksz9477_mib_names, 1386 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1387 .reg_mib_cnt = MIB_COUNTER_NUM, 1388 .regs = ksz9477_regs, 1389 .masks = ksz9477_masks, 1390 .shifts = ksz9477_shifts, 1391 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1392 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1393 .supports_mii = {false, false, false, false, 1394 false, true, false}, 1395 .supports_rmii = {false, false, false, false, 1396 false, true, false}, 1397 .supports_rgmii = {false, false, false, false, 1398 false, true, false}, 1399 .internal_phy = {true, true, true, true, 1400 true, false, false}, 1401 .gbit_capable = {true, true, true, true, true, true, true}, 1402 .wr_table = &ksz9477_register_set, 1403 .rd_table = &ksz9477_register_set, 1404 }, 1405 1406 [KSZ9896] = { 1407 .chip_id = KSZ9896_CHIP_ID, 1408 .dev_name = "KSZ9896", 1409 .num_vlans = 4096, 1410 .num_alus = 4096, 1411 .num_statics = 16, 1412 .cpu_ports = 0x3F, /* can be configured as cpu port */ 1413 .port_cnt = 6, /* total physical port count */ 1414 .port_nirqs = 2, 1415 .num_tx_queues = 4, 1416 .num_ipms = 8, 1417 .ops = &ksz9477_dev_ops, 1418 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1419 .mib_names = ksz9477_mib_names, 1420 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1421 .reg_mib_cnt = MIB_COUNTER_NUM, 1422 .regs = ksz9477_regs, 1423 .masks = ksz9477_masks, 1424 .shifts = ksz9477_shifts, 1425 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1426 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1427 .supports_mii = {false, false, false, false, 1428 false, true}, 1429 .supports_rmii = {false, false, false, false, 1430 false, true}, 1431 .supports_rgmii = {false, false, false, false, 1432 false, true}, 1433 .internal_phy = {true, true, true, true, 1434 true, false}, 1435 .gbit_capable = {true, true, true, true, true, true}, 1436 .wr_table = &ksz9896_register_set, 1437 .rd_table = &ksz9896_register_set, 1438 }, 1439 1440 [KSZ9897] = { 1441 .chip_id = KSZ9897_CHIP_ID, 1442 .dev_name = "KSZ9897", 1443 .num_vlans = 4096, 1444 .num_alus = 4096, 1445 .num_statics = 16, 1446 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1447 .port_cnt = 7, /* total physical port count */ 1448 .port_nirqs = 2, 1449 .num_tx_queues = 4, 1450 .num_ipms = 8, 1451 .ops = &ksz9477_dev_ops, 1452 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1453 .mib_names = ksz9477_mib_names, 1454 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1455 .reg_mib_cnt = MIB_COUNTER_NUM, 1456 .regs = ksz9477_regs, 1457 .masks = ksz9477_masks, 1458 .shifts = ksz9477_shifts, 1459 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1460 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1461 .supports_mii = {false, false, false, false, 1462 false, true, true}, 1463 .supports_rmii = {false, false, false, false, 1464 false, true, true}, 1465 .supports_rgmii = {false, false, false, false, 1466 false, true, true}, 1467 .internal_phy = {true, true, true, true, 1468 true, false, false}, 1469 .gbit_capable = {true, true, true, true, true, true, true}, 1470 }, 1471 1472 [KSZ9893] = { 1473 .chip_id = KSZ9893_CHIP_ID, 1474 .dev_name = "KSZ9893", 1475 .num_vlans = 4096, 1476 .num_alus = 4096, 1477 .num_statics = 16, 1478 .cpu_ports = 0x07, /* can be configured as cpu port */ 1479 .port_cnt = 3, /* total port count */ 1480 .port_nirqs = 2, 1481 .num_tx_queues = 4, 1482 .num_ipms = 8, 1483 .ops = &ksz9477_dev_ops, 1484 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1485 .mib_names = ksz9477_mib_names, 1486 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1487 .reg_mib_cnt = MIB_COUNTER_NUM, 1488 .regs = ksz9477_regs, 1489 .masks = ksz9477_masks, 1490 .shifts = ksz9477_shifts, 1491 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1492 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1493 .supports_mii = {false, false, true}, 1494 .supports_rmii = {false, false, true}, 1495 .supports_rgmii = {false, false, true}, 1496 .internal_phy = {true, true, false}, 1497 .gbit_capable = {true, true, true}, 1498 }, 1499 1500 [KSZ9563] = { 1501 .chip_id = KSZ9563_CHIP_ID, 1502 .dev_name = "KSZ9563", 1503 .num_vlans = 4096, 1504 .num_alus = 4096, 1505 .num_statics = 16, 1506 .cpu_ports = 0x07, /* can be configured as cpu port */ 1507 .port_cnt = 3, /* total port count */ 1508 .port_nirqs = 3, 1509 .num_tx_queues = 4, 1510 .num_ipms = 8, 1511 .tc_cbs_supported = true, 1512 .ops = &ksz9477_dev_ops, 1513 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1514 .mib_names = ksz9477_mib_names, 1515 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1516 .reg_mib_cnt = MIB_COUNTER_NUM, 1517 .regs = ksz9477_regs, 1518 .masks = ksz9477_masks, 1519 .shifts = ksz9477_shifts, 1520 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1521 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1522 .supports_mii = {false, false, true}, 1523 .supports_rmii = {false, false, true}, 1524 .supports_rgmii = {false, false, true}, 1525 .internal_phy = {true, true, false}, 1526 .gbit_capable = {true, true, true}, 1527 }, 1528 1529 [KSZ8567] = { 1530 .chip_id = KSZ8567_CHIP_ID, 1531 .dev_name = "KSZ8567", 1532 .num_vlans = 4096, 1533 .num_alus = 4096, 1534 .num_statics = 16, 1535 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1536 .port_cnt = 7, /* total port count */ 1537 .port_nirqs = 3, 1538 .num_tx_queues = 4, 1539 .num_ipms = 8, 1540 .tc_cbs_supported = true, 1541 .ops = &ksz9477_dev_ops, 1542 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1543 .mib_names = ksz9477_mib_names, 1544 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1545 .reg_mib_cnt = MIB_COUNTER_NUM, 1546 .regs = ksz9477_regs, 1547 .masks = ksz9477_masks, 1548 .shifts = ksz9477_shifts, 1549 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1550 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1551 .supports_mii = {false, false, false, false, 1552 false, true, true}, 1553 .supports_rmii = {false, false, false, false, 1554 false, true, true}, 1555 .supports_rgmii = {false, false, false, false, 1556 false, true, true}, 1557 .internal_phy = {true, true, true, true, 1558 true, false, false}, 1559 .gbit_capable = {false, false, false, false, false, 1560 true, true}, 1561 }, 1562 1563 [KSZ9567] = { 1564 .chip_id = KSZ9567_CHIP_ID, 1565 .dev_name = "KSZ9567", 1566 .num_vlans = 4096, 1567 .num_alus = 4096, 1568 .num_statics = 16, 1569 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1570 .port_cnt = 7, /* total physical port count */ 1571 .port_nirqs = 3, 1572 .num_tx_queues = 4, 1573 .num_ipms = 8, 1574 .tc_cbs_supported = true, 1575 .ops = &ksz9477_dev_ops, 1576 .mib_names = ksz9477_mib_names, 1577 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1578 .reg_mib_cnt = MIB_COUNTER_NUM, 1579 .regs = ksz9477_regs, 1580 .masks = ksz9477_masks, 1581 .shifts = ksz9477_shifts, 1582 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1583 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1584 .supports_mii = {false, false, false, false, 1585 false, true, true}, 1586 .supports_rmii = {false, false, false, false, 1587 false, true, true}, 1588 .supports_rgmii = {false, false, false, false, 1589 false, true, true}, 1590 .internal_phy = {true, true, true, true, 1591 true, false, false}, 1592 .gbit_capable = {true, true, true, true, true, true, true}, 1593 }, 1594 1595 [LAN9370] = { 1596 .chip_id = LAN9370_CHIP_ID, 1597 .dev_name = "LAN9370", 1598 .num_vlans = 4096, 1599 .num_alus = 1024, 1600 .num_statics = 256, 1601 .cpu_ports = 0x10, /* can be configured as cpu port */ 1602 .port_cnt = 5, /* total physical port count */ 1603 .port_nirqs = 6, 1604 .num_tx_queues = 8, 1605 .num_ipms = 8, 1606 .tc_cbs_supported = true, 1607 .ops = &lan937x_dev_ops, 1608 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1609 .mib_names = ksz9477_mib_names, 1610 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1611 .reg_mib_cnt = MIB_COUNTER_NUM, 1612 .regs = ksz9477_regs, 1613 .masks = lan937x_masks, 1614 .shifts = lan937x_shifts, 1615 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1616 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1617 .supports_mii = {false, false, false, false, true}, 1618 .supports_rmii = {false, false, false, false, true}, 1619 .supports_rgmii = {false, false, false, false, true}, 1620 .internal_phy = {true, true, true, true, false}, 1621 }, 1622 1623 [LAN9371] = { 1624 .chip_id = LAN9371_CHIP_ID, 1625 .dev_name = "LAN9371", 1626 .num_vlans = 4096, 1627 .num_alus = 1024, 1628 .num_statics = 256, 1629 .cpu_ports = 0x30, /* can be configured as cpu port */ 1630 .port_cnt = 6, /* total physical port count */ 1631 .port_nirqs = 6, 1632 .num_tx_queues = 8, 1633 .num_ipms = 8, 1634 .tc_cbs_supported = true, 1635 .ops = &lan937x_dev_ops, 1636 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1637 .mib_names = ksz9477_mib_names, 1638 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1639 .reg_mib_cnt = MIB_COUNTER_NUM, 1640 .regs = ksz9477_regs, 1641 .masks = lan937x_masks, 1642 .shifts = lan937x_shifts, 1643 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1644 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1645 .supports_mii = {false, false, false, false, true, true}, 1646 .supports_rmii = {false, false, false, false, true, true}, 1647 .supports_rgmii = {false, false, false, false, true, true}, 1648 .internal_phy = {true, true, true, true, false, false}, 1649 }, 1650 1651 [LAN9372] = { 1652 .chip_id = LAN9372_CHIP_ID, 1653 .dev_name = "LAN9372", 1654 .num_vlans = 4096, 1655 .num_alus = 1024, 1656 .num_statics = 256, 1657 .cpu_ports = 0x30, /* can be configured as cpu port */ 1658 .port_cnt = 8, /* total physical port count */ 1659 .port_nirqs = 6, 1660 .num_tx_queues = 8, 1661 .num_ipms = 8, 1662 .tc_cbs_supported = true, 1663 .ops = &lan937x_dev_ops, 1664 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1665 .mib_names = ksz9477_mib_names, 1666 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1667 .reg_mib_cnt = MIB_COUNTER_NUM, 1668 .regs = ksz9477_regs, 1669 .masks = lan937x_masks, 1670 .shifts = lan937x_shifts, 1671 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1672 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1673 .supports_mii = {false, false, false, false, 1674 true, true, false, false}, 1675 .supports_rmii = {false, false, false, false, 1676 true, true, false, false}, 1677 .supports_rgmii = {false, false, false, false, 1678 true, true, false, false}, 1679 .internal_phy = {true, true, true, true, 1680 false, false, true, true}, 1681 }, 1682 1683 [LAN9373] = { 1684 .chip_id = LAN9373_CHIP_ID, 1685 .dev_name = "LAN9373", 1686 .num_vlans = 4096, 1687 .num_alus = 1024, 1688 .num_statics = 256, 1689 .cpu_ports = 0x38, /* can be configured as cpu port */ 1690 .port_cnt = 5, /* total physical port count */ 1691 .port_nirqs = 6, 1692 .num_tx_queues = 8, 1693 .num_ipms = 8, 1694 .tc_cbs_supported = true, 1695 .ops = &lan937x_dev_ops, 1696 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1697 .mib_names = ksz9477_mib_names, 1698 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1699 .reg_mib_cnt = MIB_COUNTER_NUM, 1700 .regs = ksz9477_regs, 1701 .masks = lan937x_masks, 1702 .shifts = lan937x_shifts, 1703 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1704 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1705 .supports_mii = {false, false, false, false, 1706 true, true, false, false}, 1707 .supports_rmii = {false, false, false, false, 1708 true, true, false, false}, 1709 .supports_rgmii = {false, false, false, false, 1710 true, true, false, false}, 1711 .internal_phy = {true, true, true, false, 1712 false, false, true, true}, 1713 }, 1714 1715 [LAN9374] = { 1716 .chip_id = LAN9374_CHIP_ID, 1717 .dev_name = "LAN9374", 1718 .num_vlans = 4096, 1719 .num_alus = 1024, 1720 .num_statics = 256, 1721 .cpu_ports = 0x30, /* can be configured as cpu port */ 1722 .port_cnt = 8, /* total physical port count */ 1723 .port_nirqs = 6, 1724 .num_tx_queues = 8, 1725 .num_ipms = 8, 1726 .tc_cbs_supported = true, 1727 .ops = &lan937x_dev_ops, 1728 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1729 .mib_names = ksz9477_mib_names, 1730 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1731 .reg_mib_cnt = MIB_COUNTER_NUM, 1732 .regs = ksz9477_regs, 1733 .masks = lan937x_masks, 1734 .shifts = lan937x_shifts, 1735 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1736 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1737 .supports_mii = {false, false, false, false, 1738 true, true, false, false}, 1739 .supports_rmii = {false, false, false, false, 1740 true, true, false, false}, 1741 .supports_rgmii = {false, false, false, false, 1742 true, true, false, false}, 1743 .internal_phy = {true, true, true, true, 1744 false, false, true, true}, 1745 }, 1746 }; 1747 EXPORT_SYMBOL_GPL(ksz_switch_chips); 1748 1749 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num) 1750 { 1751 int i; 1752 1753 for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) { 1754 const struct ksz_chip_data *chip = &ksz_switch_chips[i]; 1755 1756 if (chip->chip_id == prod_num) 1757 return chip; 1758 } 1759 1760 return NULL; 1761 } 1762 1763 static int ksz_check_device_id(struct ksz_device *dev) 1764 { 1765 const struct ksz_chip_data *expected_chip_data; 1766 u32 expected_chip_id; 1767 1768 if (dev->pdata) { 1769 expected_chip_id = dev->pdata->chip_id; 1770 expected_chip_data = ksz_lookup_info(expected_chip_id); 1771 if (WARN_ON(!expected_chip_data)) 1772 return -ENODEV; 1773 } else { 1774 expected_chip_data = of_device_get_match_data(dev->dev); 1775 expected_chip_id = expected_chip_data->chip_id; 1776 } 1777 1778 if (expected_chip_id != dev->chip_id) { 1779 dev_err(dev->dev, 1780 "Device tree specifies chip %s but found %s, please fix it!\n", 1781 expected_chip_data->dev_name, dev->info->dev_name); 1782 return -ENODEV; 1783 } 1784 1785 return 0; 1786 } 1787 1788 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port, 1789 struct phylink_config *config) 1790 { 1791 struct ksz_device *dev = ds->priv; 1792 1793 if (dev->info->supports_mii[port]) 1794 __set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces); 1795 1796 if (dev->info->supports_rmii[port]) 1797 __set_bit(PHY_INTERFACE_MODE_RMII, 1798 config->supported_interfaces); 1799 1800 if (dev->info->supports_rgmii[port]) 1801 phy_interface_set_rgmii(config->supported_interfaces); 1802 1803 if (dev->info->internal_phy[port]) { 1804 __set_bit(PHY_INTERFACE_MODE_INTERNAL, 1805 config->supported_interfaces); 1806 /* Compatibility for phylib's default interface type when the 1807 * phy-mode property is absent 1808 */ 1809 __set_bit(PHY_INTERFACE_MODE_GMII, 1810 config->supported_interfaces); 1811 } 1812 1813 if (dev->dev_ops->get_caps) 1814 dev->dev_ops->get_caps(dev, port, config); 1815 } 1816 1817 void ksz_r_mib_stats64(struct ksz_device *dev, int port) 1818 { 1819 struct ethtool_pause_stats *pstats; 1820 struct rtnl_link_stats64 *stats; 1821 struct ksz_stats_raw *raw; 1822 struct ksz_port_mib *mib; 1823 1824 mib = &dev->ports[port].mib; 1825 stats = &mib->stats64; 1826 pstats = &mib->pause_stats; 1827 raw = (struct ksz_stats_raw *)mib->counters; 1828 1829 spin_lock(&mib->stats64_lock); 1830 1831 stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast + 1832 raw->rx_pause; 1833 stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast + 1834 raw->tx_pause; 1835 1836 /* HW counters are counting bytes + FCS which is not acceptable 1837 * for rtnl_link_stats64 interface 1838 */ 1839 stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN; 1840 stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN; 1841 1842 stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments + 1843 raw->rx_oversize; 1844 1845 stats->rx_crc_errors = raw->rx_crc_err; 1846 stats->rx_frame_errors = raw->rx_align_err; 1847 stats->rx_dropped = raw->rx_discards; 1848 stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors + 1849 stats->rx_frame_errors + stats->rx_dropped; 1850 1851 stats->tx_window_errors = raw->tx_late_col; 1852 stats->tx_fifo_errors = raw->tx_discards; 1853 stats->tx_aborted_errors = raw->tx_exc_col; 1854 stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors + 1855 stats->tx_aborted_errors; 1856 1857 stats->multicast = raw->rx_mcast; 1858 stats->collisions = raw->tx_total_col; 1859 1860 pstats->tx_pause_frames = raw->tx_pause; 1861 pstats->rx_pause_frames = raw->rx_pause; 1862 1863 spin_unlock(&mib->stats64_lock); 1864 } 1865 1866 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port) 1867 { 1868 struct ethtool_pause_stats *pstats; 1869 struct rtnl_link_stats64 *stats; 1870 struct ksz88xx_stats_raw *raw; 1871 struct ksz_port_mib *mib; 1872 1873 mib = &dev->ports[port].mib; 1874 stats = &mib->stats64; 1875 pstats = &mib->pause_stats; 1876 raw = (struct ksz88xx_stats_raw *)mib->counters; 1877 1878 spin_lock(&mib->stats64_lock); 1879 1880 stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast + 1881 raw->rx_pause; 1882 stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast + 1883 raw->tx_pause; 1884 1885 /* HW counters are counting bytes + FCS which is not acceptable 1886 * for rtnl_link_stats64 interface 1887 */ 1888 stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN; 1889 stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN; 1890 1891 stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments + 1892 raw->rx_oversize; 1893 1894 stats->rx_crc_errors = raw->rx_crc_err; 1895 stats->rx_frame_errors = raw->rx_align_err; 1896 stats->rx_dropped = raw->rx_discards; 1897 stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors + 1898 stats->rx_frame_errors + stats->rx_dropped; 1899 1900 stats->tx_window_errors = raw->tx_late_col; 1901 stats->tx_fifo_errors = raw->tx_discards; 1902 stats->tx_aborted_errors = raw->tx_exc_col; 1903 stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors + 1904 stats->tx_aborted_errors; 1905 1906 stats->multicast = raw->rx_mcast; 1907 stats->collisions = raw->tx_total_col; 1908 1909 pstats->tx_pause_frames = raw->tx_pause; 1910 pstats->rx_pause_frames = raw->rx_pause; 1911 1912 spin_unlock(&mib->stats64_lock); 1913 } 1914 1915 static void ksz_get_stats64(struct dsa_switch *ds, int port, 1916 struct rtnl_link_stats64 *s) 1917 { 1918 struct ksz_device *dev = ds->priv; 1919 struct ksz_port_mib *mib; 1920 1921 mib = &dev->ports[port].mib; 1922 1923 spin_lock(&mib->stats64_lock); 1924 memcpy(s, &mib->stats64, sizeof(*s)); 1925 spin_unlock(&mib->stats64_lock); 1926 } 1927 1928 static void ksz_get_pause_stats(struct dsa_switch *ds, int port, 1929 struct ethtool_pause_stats *pause_stats) 1930 { 1931 struct ksz_device *dev = ds->priv; 1932 struct ksz_port_mib *mib; 1933 1934 mib = &dev->ports[port].mib; 1935 1936 spin_lock(&mib->stats64_lock); 1937 memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats)); 1938 spin_unlock(&mib->stats64_lock); 1939 } 1940 1941 static void ksz_get_strings(struct dsa_switch *ds, int port, 1942 u32 stringset, uint8_t *buf) 1943 { 1944 struct ksz_device *dev = ds->priv; 1945 int i; 1946 1947 if (stringset != ETH_SS_STATS) 1948 return; 1949 1950 for (i = 0; i < dev->info->mib_cnt; i++) { 1951 memcpy(buf + i * ETH_GSTRING_LEN, 1952 dev->info->mib_names[i].string, ETH_GSTRING_LEN); 1953 } 1954 } 1955 1956 /** 1957 * ksz_update_port_member - Adjust port forwarding rules based on STP state and 1958 * isolation settings. 1959 * @dev: A pointer to the struct ksz_device representing the device. 1960 * @port: The port number to adjust. 1961 * 1962 * This function dynamically adjusts the port membership configuration for a 1963 * specified port and other device ports, based on Spanning Tree Protocol (STP) 1964 * states and port isolation settings. Each port, including the CPU port, has a 1965 * membership register, represented as a bitfield, where each bit corresponds 1966 * to a port number. A set bit indicates permission to forward frames to that 1967 * port. This function iterates over all ports, updating the membership register 1968 * to reflect current forwarding permissions: 1969 * 1970 * 1. Forwards frames only to ports that are part of the same bridge group and 1971 * in the BR_STATE_FORWARDING state. 1972 * 2. Takes into account the isolation status of ports; ports in the 1973 * BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward 1974 * frames to each other, even if they are in the same bridge group. 1975 * 3. Ensures that the CPU port is included in the membership based on its 1976 * upstream port configuration, allowing for management and control traffic 1977 * to flow as required. 1978 */ 1979 static void ksz_update_port_member(struct ksz_device *dev, int port) 1980 { 1981 struct ksz_port *p = &dev->ports[port]; 1982 struct dsa_switch *ds = dev->ds; 1983 u8 port_member = 0, cpu_port; 1984 const struct dsa_port *dp; 1985 int i, j; 1986 1987 if (!dsa_is_user_port(ds, port)) 1988 return; 1989 1990 dp = dsa_to_port(ds, port); 1991 cpu_port = BIT(dsa_upstream_port(ds, port)); 1992 1993 for (i = 0; i < ds->num_ports; i++) { 1994 const struct dsa_port *other_dp = dsa_to_port(ds, i); 1995 struct ksz_port *other_p = &dev->ports[i]; 1996 u8 val = 0; 1997 1998 if (!dsa_is_user_port(ds, i)) 1999 continue; 2000 if (port == i) 2001 continue; 2002 if (!dsa_port_bridge_same(dp, other_dp)) 2003 continue; 2004 if (other_p->stp_state != BR_STATE_FORWARDING) 2005 continue; 2006 2007 /* At this point we know that "port" and "other" port [i] are in 2008 * the same bridge group and that "other" port [i] is in 2009 * forwarding stp state. If "port" is also in forwarding stp 2010 * state, we can allow forwarding from port [port] to port [i]. 2011 * Except if both ports are isolated. 2012 */ 2013 if (p->stp_state == BR_STATE_FORWARDING && 2014 !(p->isolated && other_p->isolated)) { 2015 val |= BIT(port); 2016 port_member |= BIT(i); 2017 } 2018 2019 /* Retain port [i]'s relationship to other ports than [port] */ 2020 for (j = 0; j < ds->num_ports; j++) { 2021 const struct dsa_port *third_dp; 2022 struct ksz_port *third_p; 2023 2024 if (j == i) 2025 continue; 2026 if (j == port) 2027 continue; 2028 if (!dsa_is_user_port(ds, j)) 2029 continue; 2030 third_p = &dev->ports[j]; 2031 if (third_p->stp_state != BR_STATE_FORWARDING) 2032 continue; 2033 2034 third_dp = dsa_to_port(ds, j); 2035 2036 /* Now we updating relation of the "other" port [i] to 2037 * the "third" port [j]. We already know that "other" 2038 * port [i] is in forwarding stp state and that "third" 2039 * port [j] is in forwarding stp state too. 2040 * We need to check if "other" port [i] and "third" port 2041 * [j] are in the same bridge group and not isolated 2042 * before allowing forwarding from port [i] to port [j]. 2043 */ 2044 if (dsa_port_bridge_same(other_dp, third_dp) && 2045 !(other_p->isolated && third_p->isolated)) 2046 val |= BIT(j); 2047 } 2048 2049 dev->dev_ops->cfg_port_member(dev, i, val | cpu_port); 2050 } 2051 2052 dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port); 2053 } 2054 2055 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum) 2056 { 2057 struct ksz_device *dev = bus->priv; 2058 u16 val; 2059 int ret; 2060 2061 ret = dev->dev_ops->r_phy(dev, addr, regnum, &val); 2062 if (ret < 0) 2063 return ret; 2064 2065 return val; 2066 } 2067 2068 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum, 2069 u16 val) 2070 { 2071 struct ksz_device *dev = bus->priv; 2072 2073 return dev->dev_ops->w_phy(dev, addr, regnum, val); 2074 } 2075 2076 static int ksz_irq_phy_setup(struct ksz_device *dev) 2077 { 2078 struct dsa_switch *ds = dev->ds; 2079 int phy; 2080 int irq; 2081 int ret; 2082 2083 for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) { 2084 if (BIT(phy) & ds->phys_mii_mask) { 2085 irq = irq_find_mapping(dev->ports[phy].pirq.domain, 2086 PORT_SRC_PHY_INT); 2087 if (irq < 0) { 2088 ret = irq; 2089 goto out; 2090 } 2091 ds->user_mii_bus->irq[phy] = irq; 2092 } 2093 } 2094 return 0; 2095 out: 2096 while (phy--) 2097 if (BIT(phy) & ds->phys_mii_mask) 2098 irq_dispose_mapping(ds->user_mii_bus->irq[phy]); 2099 2100 return ret; 2101 } 2102 2103 static void ksz_irq_phy_free(struct ksz_device *dev) 2104 { 2105 struct dsa_switch *ds = dev->ds; 2106 int phy; 2107 2108 for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) 2109 if (BIT(phy) & ds->phys_mii_mask) 2110 irq_dispose_mapping(ds->user_mii_bus->irq[phy]); 2111 } 2112 2113 static int ksz_mdio_register(struct ksz_device *dev) 2114 { 2115 struct dsa_switch *ds = dev->ds; 2116 struct device_node *mdio_np; 2117 struct mii_bus *bus; 2118 int ret; 2119 2120 mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio"); 2121 if (!mdio_np) 2122 return 0; 2123 2124 bus = devm_mdiobus_alloc(ds->dev); 2125 if (!bus) { 2126 of_node_put(mdio_np); 2127 return -ENOMEM; 2128 } 2129 2130 bus->priv = dev; 2131 bus->read = ksz_sw_mdio_read; 2132 bus->write = ksz_sw_mdio_write; 2133 bus->name = "ksz user smi"; 2134 snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index); 2135 bus->parent = ds->dev; 2136 bus->phy_mask = ~ds->phys_mii_mask; 2137 2138 ds->user_mii_bus = bus; 2139 2140 if (dev->irq > 0) { 2141 ret = ksz_irq_phy_setup(dev); 2142 if (ret) { 2143 of_node_put(mdio_np); 2144 return ret; 2145 } 2146 } 2147 2148 ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np); 2149 if (ret) { 2150 dev_err(ds->dev, "unable to register MDIO bus %s\n", 2151 bus->id); 2152 if (dev->irq > 0) 2153 ksz_irq_phy_free(dev); 2154 } 2155 2156 of_node_put(mdio_np); 2157 2158 return ret; 2159 } 2160 2161 static void ksz_irq_mask(struct irq_data *d) 2162 { 2163 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2164 2165 kirq->masked |= BIT(d->hwirq); 2166 } 2167 2168 static void ksz_irq_unmask(struct irq_data *d) 2169 { 2170 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2171 2172 kirq->masked &= ~BIT(d->hwirq); 2173 } 2174 2175 static void ksz_irq_bus_lock(struct irq_data *d) 2176 { 2177 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2178 2179 mutex_lock(&kirq->dev->lock_irq); 2180 } 2181 2182 static void ksz_irq_bus_sync_unlock(struct irq_data *d) 2183 { 2184 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2185 struct ksz_device *dev = kirq->dev; 2186 int ret; 2187 2188 ret = ksz_write32(dev, kirq->reg_mask, kirq->masked); 2189 if (ret) 2190 dev_err(dev->dev, "failed to change IRQ mask\n"); 2191 2192 mutex_unlock(&dev->lock_irq); 2193 } 2194 2195 static const struct irq_chip ksz_irq_chip = { 2196 .name = "ksz-irq", 2197 .irq_mask = ksz_irq_mask, 2198 .irq_unmask = ksz_irq_unmask, 2199 .irq_bus_lock = ksz_irq_bus_lock, 2200 .irq_bus_sync_unlock = ksz_irq_bus_sync_unlock, 2201 }; 2202 2203 static int ksz_irq_domain_map(struct irq_domain *d, 2204 unsigned int irq, irq_hw_number_t hwirq) 2205 { 2206 irq_set_chip_data(irq, d->host_data); 2207 irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq); 2208 irq_set_noprobe(irq); 2209 2210 return 0; 2211 } 2212 2213 static const struct irq_domain_ops ksz_irq_domain_ops = { 2214 .map = ksz_irq_domain_map, 2215 .xlate = irq_domain_xlate_twocell, 2216 }; 2217 2218 static void ksz_irq_free(struct ksz_irq *kirq) 2219 { 2220 int irq, virq; 2221 2222 free_irq(kirq->irq_num, kirq); 2223 2224 for (irq = 0; irq < kirq->nirqs; irq++) { 2225 virq = irq_find_mapping(kirq->domain, irq); 2226 irq_dispose_mapping(virq); 2227 } 2228 2229 irq_domain_remove(kirq->domain); 2230 } 2231 2232 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id) 2233 { 2234 struct ksz_irq *kirq = dev_id; 2235 unsigned int nhandled = 0; 2236 struct ksz_device *dev; 2237 unsigned int sub_irq; 2238 u8 data; 2239 int ret; 2240 u8 n; 2241 2242 dev = kirq->dev; 2243 2244 /* Read interrupt status register */ 2245 ret = ksz_read8(dev, kirq->reg_status, &data); 2246 if (ret) 2247 goto out; 2248 2249 for (n = 0; n < kirq->nirqs; ++n) { 2250 if (data & BIT(n)) { 2251 sub_irq = irq_find_mapping(kirq->domain, n); 2252 handle_nested_irq(sub_irq); 2253 ++nhandled; 2254 } 2255 } 2256 out: 2257 return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE); 2258 } 2259 2260 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq) 2261 { 2262 int ret, n; 2263 2264 kirq->dev = dev; 2265 kirq->masked = ~0; 2266 2267 kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0, 2268 &ksz_irq_domain_ops, kirq); 2269 if (!kirq->domain) 2270 return -ENOMEM; 2271 2272 for (n = 0; n < kirq->nirqs; n++) 2273 irq_create_mapping(kirq->domain, n); 2274 2275 ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn, 2276 IRQF_ONESHOT, kirq->name, kirq); 2277 if (ret) 2278 goto out; 2279 2280 return 0; 2281 2282 out: 2283 ksz_irq_free(kirq); 2284 2285 return ret; 2286 } 2287 2288 static int ksz_girq_setup(struct ksz_device *dev) 2289 { 2290 struct ksz_irq *girq = &dev->girq; 2291 2292 girq->nirqs = dev->info->port_cnt; 2293 girq->reg_mask = REG_SW_PORT_INT_MASK__1; 2294 girq->reg_status = REG_SW_PORT_INT_STATUS__1; 2295 snprintf(girq->name, sizeof(girq->name), "global_port_irq"); 2296 2297 girq->irq_num = dev->irq; 2298 2299 return ksz_irq_common_setup(dev, girq); 2300 } 2301 2302 static int ksz_pirq_setup(struct ksz_device *dev, u8 p) 2303 { 2304 struct ksz_irq *pirq = &dev->ports[p].pirq; 2305 2306 pirq->nirqs = dev->info->port_nirqs; 2307 pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK); 2308 pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS); 2309 snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p); 2310 2311 pirq->irq_num = irq_find_mapping(dev->girq.domain, p); 2312 if (pirq->irq_num < 0) 2313 return pirq->irq_num; 2314 2315 return ksz_irq_common_setup(dev, pirq); 2316 } 2317 2318 static int ksz_parse_drive_strength(struct ksz_device *dev); 2319 2320 static int ksz_setup(struct dsa_switch *ds) 2321 { 2322 struct ksz_device *dev = ds->priv; 2323 struct dsa_port *dp; 2324 struct ksz_port *p; 2325 const u16 *regs; 2326 int ret; 2327 2328 regs = dev->info->regs; 2329 2330 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table), 2331 dev->info->num_vlans, GFP_KERNEL); 2332 if (!dev->vlan_cache) 2333 return -ENOMEM; 2334 2335 ret = dev->dev_ops->reset(dev); 2336 if (ret) { 2337 dev_err(ds->dev, "failed to reset switch\n"); 2338 return ret; 2339 } 2340 2341 ret = ksz_parse_drive_strength(dev); 2342 if (ret) 2343 return ret; 2344 2345 /* set broadcast storm protection 10% rate */ 2346 regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL], 2347 BROADCAST_STORM_RATE, 2348 (BROADCAST_STORM_VALUE * 2349 BROADCAST_STORM_PROT_RATE) / 100); 2350 2351 dev->dev_ops->config_cpu_port(ds); 2352 2353 dev->dev_ops->enable_stp_addr(dev); 2354 2355 ds->num_tx_queues = dev->info->num_tx_queues; 2356 2357 regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL], 2358 MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE); 2359 2360 ksz_init_mib_timer(dev); 2361 2362 ds->configure_vlan_while_not_filtering = false; 2363 ds->dscp_prio_mapping_is_global = true; 2364 2365 if (dev->dev_ops->setup) { 2366 ret = dev->dev_ops->setup(ds); 2367 if (ret) 2368 return ret; 2369 } 2370 2371 /* Start with learning disabled on standalone user ports, and enabled 2372 * on the CPU port. In lack of other finer mechanisms, learning on the 2373 * CPU port will avoid flooding bridge local addresses on the network 2374 * in some cases. 2375 */ 2376 p = &dev->ports[dev->cpu_port]; 2377 p->learning = true; 2378 2379 if (dev->irq > 0) { 2380 ret = ksz_girq_setup(dev); 2381 if (ret) 2382 return ret; 2383 2384 dsa_switch_for_each_user_port(dp, dev->ds) { 2385 ret = ksz_pirq_setup(dev, dp->index); 2386 if (ret) 2387 goto out_girq; 2388 2389 ret = ksz_ptp_irq_setup(ds, dp->index); 2390 if (ret) 2391 goto out_pirq; 2392 } 2393 } 2394 2395 ret = ksz_ptp_clock_register(ds); 2396 if (ret) { 2397 dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret); 2398 goto out_ptpirq; 2399 } 2400 2401 ret = ksz_mdio_register(dev); 2402 if (ret < 0) { 2403 dev_err(dev->dev, "failed to register the mdio"); 2404 goto out_ptp_clock_unregister; 2405 } 2406 2407 ret = ksz_dcb_init(dev); 2408 if (ret) 2409 goto out_ptp_clock_unregister; 2410 2411 /* start switch */ 2412 regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL], 2413 SW_START, SW_START); 2414 2415 return 0; 2416 2417 out_ptp_clock_unregister: 2418 ksz_ptp_clock_unregister(ds); 2419 out_ptpirq: 2420 if (dev->irq > 0) 2421 dsa_switch_for_each_user_port(dp, dev->ds) 2422 ksz_ptp_irq_free(ds, dp->index); 2423 out_pirq: 2424 if (dev->irq > 0) 2425 dsa_switch_for_each_user_port(dp, dev->ds) 2426 ksz_irq_free(&dev->ports[dp->index].pirq); 2427 out_girq: 2428 if (dev->irq > 0) 2429 ksz_irq_free(&dev->girq); 2430 2431 return ret; 2432 } 2433 2434 static void ksz_teardown(struct dsa_switch *ds) 2435 { 2436 struct ksz_device *dev = ds->priv; 2437 struct dsa_port *dp; 2438 2439 ksz_ptp_clock_unregister(ds); 2440 2441 if (dev->irq > 0) { 2442 dsa_switch_for_each_user_port(dp, dev->ds) { 2443 ksz_ptp_irq_free(ds, dp->index); 2444 2445 ksz_irq_free(&dev->ports[dp->index].pirq); 2446 } 2447 2448 ksz_irq_free(&dev->girq); 2449 } 2450 2451 if (dev->dev_ops->teardown) 2452 dev->dev_ops->teardown(ds); 2453 } 2454 2455 static void port_r_cnt(struct ksz_device *dev, int port) 2456 { 2457 struct ksz_port_mib *mib = &dev->ports[port].mib; 2458 u64 *dropped; 2459 2460 /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */ 2461 while (mib->cnt_ptr < dev->info->reg_mib_cnt) { 2462 dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr, 2463 &mib->counters[mib->cnt_ptr]); 2464 ++mib->cnt_ptr; 2465 } 2466 2467 /* last one in storage */ 2468 dropped = &mib->counters[dev->info->mib_cnt]; 2469 2470 /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */ 2471 while (mib->cnt_ptr < dev->info->mib_cnt) { 2472 dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr, 2473 dropped, &mib->counters[mib->cnt_ptr]); 2474 ++mib->cnt_ptr; 2475 } 2476 mib->cnt_ptr = 0; 2477 } 2478 2479 static void ksz_mib_read_work(struct work_struct *work) 2480 { 2481 struct ksz_device *dev = container_of(work, struct ksz_device, 2482 mib_read.work); 2483 struct ksz_port_mib *mib; 2484 struct ksz_port *p; 2485 int i; 2486 2487 for (i = 0; i < dev->info->port_cnt; i++) { 2488 if (dsa_is_unused_port(dev->ds, i)) 2489 continue; 2490 2491 p = &dev->ports[i]; 2492 mib = &p->mib; 2493 mutex_lock(&mib->cnt_mutex); 2494 2495 /* Only read MIB counters when the port is told to do. 2496 * If not, read only dropped counters when link is not up. 2497 */ 2498 if (!p->read) { 2499 const struct dsa_port *dp = dsa_to_port(dev->ds, i); 2500 2501 if (!netif_carrier_ok(dp->user)) 2502 mib->cnt_ptr = dev->info->reg_mib_cnt; 2503 } 2504 port_r_cnt(dev, i); 2505 p->read = false; 2506 2507 if (dev->dev_ops->r_mib_stat64) 2508 dev->dev_ops->r_mib_stat64(dev, i); 2509 2510 mutex_unlock(&mib->cnt_mutex); 2511 } 2512 2513 schedule_delayed_work(&dev->mib_read, dev->mib_read_interval); 2514 } 2515 2516 void ksz_init_mib_timer(struct ksz_device *dev) 2517 { 2518 int i; 2519 2520 INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work); 2521 2522 for (i = 0; i < dev->info->port_cnt; i++) { 2523 struct ksz_port_mib *mib = &dev->ports[i].mib; 2524 2525 dev->dev_ops->port_init_cnt(dev, i); 2526 2527 mib->cnt_ptr = 0; 2528 memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64)); 2529 } 2530 } 2531 2532 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg) 2533 { 2534 struct ksz_device *dev = ds->priv; 2535 u16 val = 0xffff; 2536 int ret; 2537 2538 ret = dev->dev_ops->r_phy(dev, addr, reg, &val); 2539 if (ret) 2540 return ret; 2541 2542 return val; 2543 } 2544 2545 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val) 2546 { 2547 struct ksz_device *dev = ds->priv; 2548 int ret; 2549 2550 ret = dev->dev_ops->w_phy(dev, addr, reg, val); 2551 if (ret) 2552 return ret; 2553 2554 return 0; 2555 } 2556 2557 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port) 2558 { 2559 struct ksz_device *dev = ds->priv; 2560 2561 switch (dev->chip_id) { 2562 case KSZ8830_CHIP_ID: 2563 /* Silicon Errata Sheet (DS80000830A): 2564 * Port 1 does not work with LinkMD Cable-Testing. 2565 * Port 1 does not respond to received PAUSE control frames. 2566 */ 2567 if (!port) 2568 return MICREL_KSZ8_P1_ERRATA; 2569 break; 2570 case KSZ9477_CHIP_ID: 2571 /* KSZ9477 Errata DS80000754C 2572 * 2573 * Module 4: Energy Efficient Ethernet (EEE) feature select must 2574 * be manually disabled 2575 * The EEE feature is enabled by default, but it is not fully 2576 * operational. It must be manually disabled through register 2577 * controls. If not disabled, the PHY ports can auto-negotiate 2578 * to enable EEE, and this feature can cause link drops when 2579 * linked to another device supporting EEE. 2580 */ 2581 return MICREL_NO_EEE; 2582 } 2583 2584 return 0; 2585 } 2586 2587 static void ksz_phylink_mac_link_down(struct phylink_config *config, 2588 unsigned int mode, 2589 phy_interface_t interface) 2590 { 2591 struct dsa_port *dp = dsa_phylink_to_port(config); 2592 struct ksz_device *dev = dp->ds->priv; 2593 2594 /* Read all MIB counters when the link is going down. */ 2595 dev->ports[dp->index].read = true; 2596 /* timer started */ 2597 if (dev->mib_read_interval) 2598 schedule_delayed_work(&dev->mib_read, 0); 2599 } 2600 2601 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset) 2602 { 2603 struct ksz_device *dev = ds->priv; 2604 2605 if (sset != ETH_SS_STATS) 2606 return 0; 2607 2608 return dev->info->mib_cnt; 2609 } 2610 2611 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port, 2612 uint64_t *buf) 2613 { 2614 const struct dsa_port *dp = dsa_to_port(ds, port); 2615 struct ksz_device *dev = ds->priv; 2616 struct ksz_port_mib *mib; 2617 2618 mib = &dev->ports[port].mib; 2619 mutex_lock(&mib->cnt_mutex); 2620 2621 /* Only read dropped counters if no link. */ 2622 if (!netif_carrier_ok(dp->user)) 2623 mib->cnt_ptr = dev->info->reg_mib_cnt; 2624 port_r_cnt(dev, port); 2625 memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64)); 2626 mutex_unlock(&mib->cnt_mutex); 2627 } 2628 2629 static int ksz_port_bridge_join(struct dsa_switch *ds, int port, 2630 struct dsa_bridge bridge, 2631 bool *tx_fwd_offload, 2632 struct netlink_ext_ack *extack) 2633 { 2634 /* port_stp_state_set() will be called after to put the port in 2635 * appropriate state so there is no need to do anything. 2636 */ 2637 2638 return 0; 2639 } 2640 2641 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port, 2642 struct dsa_bridge bridge) 2643 { 2644 /* port_stp_state_set() will be called after to put the port in 2645 * forwarding state so there is no need to do anything. 2646 */ 2647 } 2648 2649 static void ksz_port_fast_age(struct dsa_switch *ds, int port) 2650 { 2651 struct ksz_device *dev = ds->priv; 2652 2653 dev->dev_ops->flush_dyn_mac_table(dev, port); 2654 } 2655 2656 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) 2657 { 2658 struct ksz_device *dev = ds->priv; 2659 2660 if (!dev->dev_ops->set_ageing_time) 2661 return -EOPNOTSUPP; 2662 2663 return dev->dev_ops->set_ageing_time(dev, msecs); 2664 } 2665 2666 static int ksz_port_fdb_add(struct dsa_switch *ds, int port, 2667 const unsigned char *addr, u16 vid, 2668 struct dsa_db db) 2669 { 2670 struct ksz_device *dev = ds->priv; 2671 2672 if (!dev->dev_ops->fdb_add) 2673 return -EOPNOTSUPP; 2674 2675 return dev->dev_ops->fdb_add(dev, port, addr, vid, db); 2676 } 2677 2678 static int ksz_port_fdb_del(struct dsa_switch *ds, int port, 2679 const unsigned char *addr, 2680 u16 vid, struct dsa_db db) 2681 { 2682 struct ksz_device *dev = ds->priv; 2683 2684 if (!dev->dev_ops->fdb_del) 2685 return -EOPNOTSUPP; 2686 2687 return dev->dev_ops->fdb_del(dev, port, addr, vid, db); 2688 } 2689 2690 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port, 2691 dsa_fdb_dump_cb_t *cb, void *data) 2692 { 2693 struct ksz_device *dev = ds->priv; 2694 2695 if (!dev->dev_ops->fdb_dump) 2696 return -EOPNOTSUPP; 2697 2698 return dev->dev_ops->fdb_dump(dev, port, cb, data); 2699 } 2700 2701 static int ksz_port_mdb_add(struct dsa_switch *ds, int port, 2702 const struct switchdev_obj_port_mdb *mdb, 2703 struct dsa_db db) 2704 { 2705 struct ksz_device *dev = ds->priv; 2706 2707 if (!dev->dev_ops->mdb_add) 2708 return -EOPNOTSUPP; 2709 2710 return dev->dev_ops->mdb_add(dev, port, mdb, db); 2711 } 2712 2713 static int ksz_port_mdb_del(struct dsa_switch *ds, int port, 2714 const struct switchdev_obj_port_mdb *mdb, 2715 struct dsa_db db) 2716 { 2717 struct ksz_device *dev = ds->priv; 2718 2719 if (!dev->dev_ops->mdb_del) 2720 return -EOPNOTSUPP; 2721 2722 return dev->dev_ops->mdb_del(dev, port, mdb, db); 2723 } 2724 2725 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev, 2726 int port) 2727 { 2728 u32 queue_map = 0; 2729 int ipm; 2730 2731 for (ipm = 0; ipm < dev->info->num_ipms; ipm++) { 2732 int queue; 2733 2734 /* Traffic Type (TT) is corresponding to the Internal Priority 2735 * Map (IPM) in the switch. Traffic Class (TC) is 2736 * corresponding to the queue in the switch. 2737 */ 2738 queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues); 2739 if (queue < 0) 2740 return queue; 2741 2742 queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S); 2743 } 2744 2745 return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map); 2746 } 2747 2748 static int ksz_port_setup(struct dsa_switch *ds, int port) 2749 { 2750 struct ksz_device *dev = ds->priv; 2751 int ret; 2752 2753 if (!dsa_is_user_port(ds, port)) 2754 return 0; 2755 2756 /* setup user port */ 2757 dev->dev_ops->port_setup(dev, port, false); 2758 2759 if (!is_ksz8(dev)) { 2760 ret = ksz9477_set_default_prio_queue_mapping(dev, port); 2761 if (ret) 2762 return ret; 2763 } 2764 2765 /* port_stp_state_set() will be called after to enable the port so 2766 * there is no need to do anything. 2767 */ 2768 2769 return ksz_dcb_init_port(dev, port); 2770 } 2771 2772 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) 2773 { 2774 struct ksz_device *dev = ds->priv; 2775 struct ksz_port *p; 2776 const u16 *regs; 2777 u8 data; 2778 2779 regs = dev->info->regs; 2780 2781 ksz_pread8(dev, port, regs[P_STP_CTRL], &data); 2782 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE); 2783 2784 p = &dev->ports[port]; 2785 2786 switch (state) { 2787 case BR_STATE_DISABLED: 2788 data |= PORT_LEARN_DISABLE; 2789 break; 2790 case BR_STATE_LISTENING: 2791 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE); 2792 break; 2793 case BR_STATE_LEARNING: 2794 data |= PORT_RX_ENABLE; 2795 if (!p->learning) 2796 data |= PORT_LEARN_DISABLE; 2797 break; 2798 case BR_STATE_FORWARDING: 2799 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 2800 if (!p->learning) 2801 data |= PORT_LEARN_DISABLE; 2802 break; 2803 case BR_STATE_BLOCKING: 2804 data |= PORT_LEARN_DISABLE; 2805 break; 2806 default: 2807 dev_err(ds->dev, "invalid STP state: %d\n", state); 2808 return; 2809 } 2810 2811 ksz_pwrite8(dev, port, regs[P_STP_CTRL], data); 2812 2813 p->stp_state = state; 2814 2815 ksz_update_port_member(dev, port); 2816 } 2817 2818 static void ksz_port_teardown(struct dsa_switch *ds, int port) 2819 { 2820 struct ksz_device *dev = ds->priv; 2821 2822 switch (dev->chip_id) { 2823 case KSZ8563_CHIP_ID: 2824 case KSZ8567_CHIP_ID: 2825 case KSZ9477_CHIP_ID: 2826 case KSZ9563_CHIP_ID: 2827 case KSZ9567_CHIP_ID: 2828 case KSZ9893_CHIP_ID: 2829 case KSZ9896_CHIP_ID: 2830 case KSZ9897_CHIP_ID: 2831 if (dsa_is_user_port(ds, port)) 2832 ksz9477_port_acl_free(dev, port); 2833 } 2834 } 2835 2836 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port, 2837 struct switchdev_brport_flags flags, 2838 struct netlink_ext_ack *extack) 2839 { 2840 if (flags.mask & ~(BR_LEARNING | BR_ISOLATED)) 2841 return -EINVAL; 2842 2843 return 0; 2844 } 2845 2846 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port, 2847 struct switchdev_brport_flags flags, 2848 struct netlink_ext_ack *extack) 2849 { 2850 struct ksz_device *dev = ds->priv; 2851 struct ksz_port *p = &dev->ports[port]; 2852 2853 if (flags.mask & (BR_LEARNING | BR_ISOLATED)) { 2854 if (flags.mask & BR_LEARNING) 2855 p->learning = !!(flags.val & BR_LEARNING); 2856 2857 if (flags.mask & BR_ISOLATED) 2858 p->isolated = !!(flags.val & BR_ISOLATED); 2859 2860 /* Make the change take effect immediately */ 2861 ksz_port_stp_state_set(ds, port, p->stp_state); 2862 } 2863 2864 return 0; 2865 } 2866 2867 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds, 2868 int port, 2869 enum dsa_tag_protocol mp) 2870 { 2871 struct ksz_device *dev = ds->priv; 2872 enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE; 2873 2874 if (dev->chip_id == KSZ8795_CHIP_ID || 2875 dev->chip_id == KSZ8794_CHIP_ID || 2876 dev->chip_id == KSZ8765_CHIP_ID) 2877 proto = DSA_TAG_PROTO_KSZ8795; 2878 2879 if (dev->chip_id == KSZ8830_CHIP_ID || 2880 dev->chip_id == KSZ8563_CHIP_ID || 2881 dev->chip_id == KSZ9893_CHIP_ID || 2882 dev->chip_id == KSZ9563_CHIP_ID) 2883 proto = DSA_TAG_PROTO_KSZ9893; 2884 2885 if (dev->chip_id == KSZ8567_CHIP_ID || 2886 dev->chip_id == KSZ9477_CHIP_ID || 2887 dev->chip_id == KSZ9896_CHIP_ID || 2888 dev->chip_id == KSZ9897_CHIP_ID || 2889 dev->chip_id == KSZ9567_CHIP_ID) 2890 proto = DSA_TAG_PROTO_KSZ9477; 2891 2892 if (is_lan937x(dev)) 2893 proto = DSA_TAG_PROTO_LAN937X; 2894 2895 return proto; 2896 } 2897 2898 static int ksz_connect_tag_protocol(struct dsa_switch *ds, 2899 enum dsa_tag_protocol proto) 2900 { 2901 struct ksz_tagger_data *tagger_data; 2902 2903 switch (proto) { 2904 case DSA_TAG_PROTO_KSZ8795: 2905 return 0; 2906 case DSA_TAG_PROTO_KSZ9893: 2907 case DSA_TAG_PROTO_KSZ9477: 2908 case DSA_TAG_PROTO_LAN937X: 2909 tagger_data = ksz_tagger_data(ds); 2910 tagger_data->xmit_work_fn = ksz_port_deferred_xmit; 2911 return 0; 2912 default: 2913 return -EPROTONOSUPPORT; 2914 } 2915 } 2916 2917 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, 2918 bool flag, struct netlink_ext_ack *extack) 2919 { 2920 struct ksz_device *dev = ds->priv; 2921 2922 if (!dev->dev_ops->vlan_filtering) 2923 return -EOPNOTSUPP; 2924 2925 return dev->dev_ops->vlan_filtering(dev, port, flag, extack); 2926 } 2927 2928 static int ksz_port_vlan_add(struct dsa_switch *ds, int port, 2929 const struct switchdev_obj_port_vlan *vlan, 2930 struct netlink_ext_ack *extack) 2931 { 2932 struct ksz_device *dev = ds->priv; 2933 2934 if (!dev->dev_ops->vlan_add) 2935 return -EOPNOTSUPP; 2936 2937 return dev->dev_ops->vlan_add(dev, port, vlan, extack); 2938 } 2939 2940 static int ksz_port_vlan_del(struct dsa_switch *ds, int port, 2941 const struct switchdev_obj_port_vlan *vlan) 2942 { 2943 struct ksz_device *dev = ds->priv; 2944 2945 if (!dev->dev_ops->vlan_del) 2946 return -EOPNOTSUPP; 2947 2948 return dev->dev_ops->vlan_del(dev, port, vlan); 2949 } 2950 2951 static int ksz_port_mirror_add(struct dsa_switch *ds, int port, 2952 struct dsa_mall_mirror_tc_entry *mirror, 2953 bool ingress, struct netlink_ext_ack *extack) 2954 { 2955 struct ksz_device *dev = ds->priv; 2956 2957 if (!dev->dev_ops->mirror_add) 2958 return -EOPNOTSUPP; 2959 2960 return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack); 2961 } 2962 2963 static void ksz_port_mirror_del(struct dsa_switch *ds, int port, 2964 struct dsa_mall_mirror_tc_entry *mirror) 2965 { 2966 struct ksz_device *dev = ds->priv; 2967 2968 if (dev->dev_ops->mirror_del) 2969 dev->dev_ops->mirror_del(dev, port, mirror); 2970 } 2971 2972 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu) 2973 { 2974 struct ksz_device *dev = ds->priv; 2975 2976 if (!dev->dev_ops->change_mtu) 2977 return -EOPNOTSUPP; 2978 2979 return dev->dev_ops->change_mtu(dev, port, mtu); 2980 } 2981 2982 static int ksz_max_mtu(struct dsa_switch *ds, int port) 2983 { 2984 struct ksz_device *dev = ds->priv; 2985 2986 switch (dev->chip_id) { 2987 case KSZ8795_CHIP_ID: 2988 case KSZ8794_CHIP_ID: 2989 case KSZ8765_CHIP_ID: 2990 return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 2991 case KSZ8830_CHIP_ID: 2992 return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 2993 case KSZ8563_CHIP_ID: 2994 case KSZ8567_CHIP_ID: 2995 case KSZ9477_CHIP_ID: 2996 case KSZ9563_CHIP_ID: 2997 case KSZ9567_CHIP_ID: 2998 case KSZ9893_CHIP_ID: 2999 case KSZ9896_CHIP_ID: 3000 case KSZ9897_CHIP_ID: 3001 case LAN9370_CHIP_ID: 3002 case LAN9371_CHIP_ID: 3003 case LAN9372_CHIP_ID: 3004 case LAN9373_CHIP_ID: 3005 case LAN9374_CHIP_ID: 3006 return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3007 } 3008 3009 return -EOPNOTSUPP; 3010 } 3011 3012 static int ksz_validate_eee(struct dsa_switch *ds, int port) 3013 { 3014 struct ksz_device *dev = ds->priv; 3015 3016 if (!dev->info->internal_phy[port]) 3017 return -EOPNOTSUPP; 3018 3019 switch (dev->chip_id) { 3020 case KSZ8563_CHIP_ID: 3021 case KSZ8567_CHIP_ID: 3022 case KSZ9477_CHIP_ID: 3023 case KSZ9563_CHIP_ID: 3024 case KSZ9567_CHIP_ID: 3025 case KSZ9893_CHIP_ID: 3026 case KSZ9896_CHIP_ID: 3027 case KSZ9897_CHIP_ID: 3028 return 0; 3029 } 3030 3031 return -EOPNOTSUPP; 3032 } 3033 3034 static int ksz_get_mac_eee(struct dsa_switch *ds, int port, 3035 struct ethtool_keee *e) 3036 { 3037 int ret; 3038 3039 ret = ksz_validate_eee(ds, port); 3040 if (ret) 3041 return ret; 3042 3043 /* There is no documented control of Tx LPI configuration. */ 3044 e->tx_lpi_enabled = true; 3045 3046 /* There is no documented control of Tx LPI timer. According to tests 3047 * Tx LPI timer seems to be set by default to minimal value. 3048 */ 3049 e->tx_lpi_timer = 0; 3050 3051 return 0; 3052 } 3053 3054 static int ksz_set_mac_eee(struct dsa_switch *ds, int port, 3055 struct ethtool_keee *e) 3056 { 3057 struct ksz_device *dev = ds->priv; 3058 int ret; 3059 3060 ret = ksz_validate_eee(ds, port); 3061 if (ret) 3062 return ret; 3063 3064 if (!e->tx_lpi_enabled) { 3065 dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n"); 3066 return -EINVAL; 3067 } 3068 3069 if (e->tx_lpi_timer) { 3070 dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n"); 3071 return -EINVAL; 3072 } 3073 3074 return 0; 3075 } 3076 3077 static void ksz_set_xmii(struct ksz_device *dev, int port, 3078 phy_interface_t interface) 3079 { 3080 const u8 *bitval = dev->info->xmii_ctrl1; 3081 struct ksz_port *p = &dev->ports[port]; 3082 const u16 *regs = dev->info->regs; 3083 u8 data8; 3084 3085 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3086 3087 data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE | 3088 P_RGMII_ID_EG_ENABLE); 3089 3090 switch (interface) { 3091 case PHY_INTERFACE_MODE_MII: 3092 data8 |= bitval[P_MII_SEL]; 3093 break; 3094 case PHY_INTERFACE_MODE_RMII: 3095 data8 |= bitval[P_RMII_SEL]; 3096 break; 3097 case PHY_INTERFACE_MODE_GMII: 3098 data8 |= bitval[P_GMII_SEL]; 3099 break; 3100 case PHY_INTERFACE_MODE_RGMII: 3101 case PHY_INTERFACE_MODE_RGMII_ID: 3102 case PHY_INTERFACE_MODE_RGMII_TXID: 3103 case PHY_INTERFACE_MODE_RGMII_RXID: 3104 data8 |= bitval[P_RGMII_SEL]; 3105 /* On KSZ9893, disable RGMII in-band status support */ 3106 if (dev->chip_id == KSZ9893_CHIP_ID || 3107 dev->chip_id == KSZ8563_CHIP_ID || 3108 dev->chip_id == KSZ9563_CHIP_ID) 3109 data8 &= ~P_MII_MAC_MODE; 3110 break; 3111 default: 3112 dev_err(dev->dev, "Unsupported interface '%s' for port %d\n", 3113 phy_modes(interface), port); 3114 return; 3115 } 3116 3117 if (p->rgmii_tx_val) 3118 data8 |= P_RGMII_ID_EG_ENABLE; 3119 3120 if (p->rgmii_rx_val) 3121 data8 |= P_RGMII_ID_IG_ENABLE; 3122 3123 /* Write the updated value */ 3124 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8); 3125 } 3126 3127 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit) 3128 { 3129 const u8 *bitval = dev->info->xmii_ctrl1; 3130 const u16 *regs = dev->info->regs; 3131 phy_interface_t interface; 3132 u8 data8; 3133 u8 val; 3134 3135 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3136 3137 val = FIELD_GET(P_MII_SEL_M, data8); 3138 3139 if (val == bitval[P_MII_SEL]) { 3140 if (gbit) 3141 interface = PHY_INTERFACE_MODE_GMII; 3142 else 3143 interface = PHY_INTERFACE_MODE_MII; 3144 } else if (val == bitval[P_RMII_SEL]) { 3145 interface = PHY_INTERFACE_MODE_RMII; 3146 } else { 3147 interface = PHY_INTERFACE_MODE_RGMII; 3148 if (data8 & P_RGMII_ID_EG_ENABLE) 3149 interface = PHY_INTERFACE_MODE_RGMII_TXID; 3150 if (data8 & P_RGMII_ID_IG_ENABLE) { 3151 interface = PHY_INTERFACE_MODE_RGMII_RXID; 3152 if (data8 & P_RGMII_ID_EG_ENABLE) 3153 interface = PHY_INTERFACE_MODE_RGMII_ID; 3154 } 3155 } 3156 3157 return interface; 3158 } 3159 3160 static void ksz8830_phylink_mac_config(struct phylink_config *config, 3161 unsigned int mode, 3162 const struct phylink_link_state *state) 3163 { 3164 struct dsa_port *dp = dsa_phylink_to_port(config); 3165 struct ksz_device *dev = dp->ds->priv; 3166 3167 dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN); 3168 } 3169 3170 static void ksz_phylink_mac_config(struct phylink_config *config, 3171 unsigned int mode, 3172 const struct phylink_link_state *state) 3173 { 3174 struct dsa_port *dp = dsa_phylink_to_port(config); 3175 struct ksz_device *dev = dp->ds->priv; 3176 int port = dp->index; 3177 3178 /* Internal PHYs */ 3179 if (dev->info->internal_phy[port]) 3180 return; 3181 3182 if (phylink_autoneg_inband(mode)) { 3183 dev_err(dev->dev, "In-band AN not supported!\n"); 3184 return; 3185 } 3186 3187 ksz_set_xmii(dev, port, state->interface); 3188 3189 if (dev->dev_ops->setup_rgmii_delay) 3190 dev->dev_ops->setup_rgmii_delay(dev, port); 3191 } 3192 3193 bool ksz_get_gbit(struct ksz_device *dev, int port) 3194 { 3195 const u8 *bitval = dev->info->xmii_ctrl1; 3196 const u16 *regs = dev->info->regs; 3197 bool gbit = false; 3198 u8 data8; 3199 bool val; 3200 3201 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3202 3203 val = FIELD_GET(P_GMII_1GBIT_M, data8); 3204 3205 if (val == bitval[P_GMII_1GBIT]) 3206 gbit = true; 3207 3208 return gbit; 3209 } 3210 3211 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit) 3212 { 3213 const u8 *bitval = dev->info->xmii_ctrl1; 3214 const u16 *regs = dev->info->regs; 3215 u8 data8; 3216 3217 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3218 3219 data8 &= ~P_GMII_1GBIT_M; 3220 3221 if (gbit) 3222 data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]); 3223 else 3224 data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]); 3225 3226 /* Write the updated value */ 3227 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8); 3228 } 3229 3230 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed) 3231 { 3232 const u8 *bitval = dev->info->xmii_ctrl0; 3233 const u16 *regs = dev->info->regs; 3234 u8 data8; 3235 3236 ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8); 3237 3238 data8 &= ~P_MII_100MBIT_M; 3239 3240 if (speed == SPEED_100) 3241 data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]); 3242 else 3243 data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]); 3244 3245 /* Write the updated value */ 3246 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8); 3247 } 3248 3249 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed) 3250 { 3251 if (speed == SPEED_1000) 3252 ksz_set_gbit(dev, port, true); 3253 else 3254 ksz_set_gbit(dev, port, false); 3255 3256 if (speed == SPEED_100 || speed == SPEED_10) 3257 ksz_set_100_10mbit(dev, port, speed); 3258 } 3259 3260 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex, 3261 bool tx_pause, bool rx_pause) 3262 { 3263 const u8 *bitval = dev->info->xmii_ctrl0; 3264 const u32 *masks = dev->info->masks; 3265 const u16 *regs = dev->info->regs; 3266 u8 mask; 3267 u8 val; 3268 3269 mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] | 3270 masks[P_MII_RX_FLOW_CTRL]; 3271 3272 if (duplex == DUPLEX_FULL) 3273 val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]); 3274 else 3275 val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]); 3276 3277 if (tx_pause) 3278 val |= masks[P_MII_TX_FLOW_CTRL]; 3279 3280 if (rx_pause) 3281 val |= masks[P_MII_RX_FLOW_CTRL]; 3282 3283 ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val); 3284 } 3285 3286 static void ksz9477_phylink_mac_link_up(struct phylink_config *config, 3287 struct phy_device *phydev, 3288 unsigned int mode, 3289 phy_interface_t interface, 3290 int speed, int duplex, bool tx_pause, 3291 bool rx_pause) 3292 { 3293 struct dsa_port *dp = dsa_phylink_to_port(config); 3294 struct ksz_device *dev = dp->ds->priv; 3295 int port = dp->index; 3296 struct ksz_port *p; 3297 3298 p = &dev->ports[port]; 3299 3300 /* Internal PHYs */ 3301 if (dev->info->internal_phy[port]) 3302 return; 3303 3304 p->phydev.speed = speed; 3305 3306 ksz_port_set_xmii_speed(dev, port, speed); 3307 3308 ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause); 3309 } 3310 3311 static int ksz_switch_detect(struct ksz_device *dev) 3312 { 3313 u8 id1, id2, id4; 3314 u16 id16; 3315 u32 id32; 3316 int ret; 3317 3318 /* read chip id */ 3319 ret = ksz_read16(dev, REG_CHIP_ID0, &id16); 3320 if (ret) 3321 return ret; 3322 3323 id1 = FIELD_GET(SW_FAMILY_ID_M, id16); 3324 id2 = FIELD_GET(SW_CHIP_ID_M, id16); 3325 3326 switch (id1) { 3327 case KSZ87_FAMILY_ID: 3328 if (id2 == KSZ87_CHIP_ID_95) { 3329 u8 val; 3330 3331 dev->chip_id = KSZ8795_CHIP_ID; 3332 3333 ksz_read8(dev, KSZ8_PORT_STATUS_0, &val); 3334 if (val & KSZ8_PORT_FIBER_MODE) 3335 dev->chip_id = KSZ8765_CHIP_ID; 3336 } else if (id2 == KSZ87_CHIP_ID_94) { 3337 dev->chip_id = KSZ8794_CHIP_ID; 3338 } else { 3339 return -ENODEV; 3340 } 3341 break; 3342 case KSZ88_FAMILY_ID: 3343 if (id2 == KSZ88_CHIP_ID_63) 3344 dev->chip_id = KSZ8830_CHIP_ID; 3345 else 3346 return -ENODEV; 3347 break; 3348 default: 3349 ret = ksz_read32(dev, REG_CHIP_ID0, &id32); 3350 if (ret) 3351 return ret; 3352 3353 dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32); 3354 id32 &= ~0xFF; 3355 3356 switch (id32) { 3357 case KSZ9477_CHIP_ID: 3358 case KSZ9896_CHIP_ID: 3359 case KSZ9897_CHIP_ID: 3360 case KSZ9567_CHIP_ID: 3361 case KSZ8567_CHIP_ID: 3362 case LAN9370_CHIP_ID: 3363 case LAN9371_CHIP_ID: 3364 case LAN9372_CHIP_ID: 3365 case LAN9373_CHIP_ID: 3366 case LAN9374_CHIP_ID: 3367 dev->chip_id = id32; 3368 break; 3369 case KSZ9893_CHIP_ID: 3370 ret = ksz_read8(dev, REG_CHIP_ID4, 3371 &id4); 3372 if (ret) 3373 return ret; 3374 3375 if (id4 == SKU_ID_KSZ8563) 3376 dev->chip_id = KSZ8563_CHIP_ID; 3377 else if (id4 == SKU_ID_KSZ9563) 3378 dev->chip_id = KSZ9563_CHIP_ID; 3379 else 3380 dev->chip_id = KSZ9893_CHIP_ID; 3381 3382 break; 3383 default: 3384 dev_err(dev->dev, 3385 "unsupported switch detected %x)\n", id32); 3386 return -ENODEV; 3387 } 3388 } 3389 return 0; 3390 } 3391 3392 static int ksz_cls_flower_add(struct dsa_switch *ds, int port, 3393 struct flow_cls_offload *cls, bool ingress) 3394 { 3395 struct ksz_device *dev = ds->priv; 3396 3397 switch (dev->chip_id) { 3398 case KSZ8563_CHIP_ID: 3399 case KSZ8567_CHIP_ID: 3400 case KSZ9477_CHIP_ID: 3401 case KSZ9563_CHIP_ID: 3402 case KSZ9567_CHIP_ID: 3403 case KSZ9893_CHIP_ID: 3404 case KSZ9896_CHIP_ID: 3405 case KSZ9897_CHIP_ID: 3406 return ksz9477_cls_flower_add(ds, port, cls, ingress); 3407 } 3408 3409 return -EOPNOTSUPP; 3410 } 3411 3412 static int ksz_cls_flower_del(struct dsa_switch *ds, int port, 3413 struct flow_cls_offload *cls, bool ingress) 3414 { 3415 struct ksz_device *dev = ds->priv; 3416 3417 switch (dev->chip_id) { 3418 case KSZ8563_CHIP_ID: 3419 case KSZ8567_CHIP_ID: 3420 case KSZ9477_CHIP_ID: 3421 case KSZ9563_CHIP_ID: 3422 case KSZ9567_CHIP_ID: 3423 case KSZ9893_CHIP_ID: 3424 case KSZ9896_CHIP_ID: 3425 case KSZ9897_CHIP_ID: 3426 return ksz9477_cls_flower_del(ds, port, cls, ingress); 3427 } 3428 3429 return -EOPNOTSUPP; 3430 } 3431 3432 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth 3433 * is converted to Hex-decimal using the successive multiplication method. On 3434 * every step, integer part is taken and decimal part is carry forwarded. 3435 */ 3436 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw) 3437 { 3438 u32 cinc = 0; 3439 u32 txrate; 3440 u32 rate; 3441 u8 temp; 3442 u8 i; 3443 3444 txrate = idle_slope - send_slope; 3445 3446 if (!txrate) 3447 return -EINVAL; 3448 3449 rate = idle_slope; 3450 3451 /* 24 bit register */ 3452 for (i = 0; i < 6; i++) { 3453 rate = rate * 16; 3454 3455 temp = rate / txrate; 3456 3457 rate %= txrate; 3458 3459 cinc = ((cinc << 4) | temp); 3460 } 3461 3462 *bw = cinc; 3463 3464 return 0; 3465 } 3466 3467 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler, 3468 u8 shaper) 3469 { 3470 return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0, 3471 FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) | 3472 FIELD_PREP(MTI_SHAPING_M, shaper)); 3473 } 3474 3475 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port, 3476 struct tc_cbs_qopt_offload *qopt) 3477 { 3478 struct ksz_device *dev = ds->priv; 3479 int ret; 3480 u32 bw; 3481 3482 if (!dev->info->tc_cbs_supported) 3483 return -EOPNOTSUPP; 3484 3485 if (qopt->queue > dev->info->num_tx_queues) 3486 return -EINVAL; 3487 3488 /* Queue Selection */ 3489 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue); 3490 if (ret) 3491 return ret; 3492 3493 if (!qopt->enable) 3494 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR, 3495 MTI_SHAPING_OFF); 3496 3497 /* High Credit */ 3498 ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK, 3499 qopt->hicredit); 3500 if (ret) 3501 return ret; 3502 3503 /* Low Credit */ 3504 ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK, 3505 qopt->locredit); 3506 if (ret) 3507 return ret; 3508 3509 /* Credit Increment Register */ 3510 ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw); 3511 if (ret) 3512 return ret; 3513 3514 if (dev->dev_ops->tc_cbs_set_cinc) { 3515 ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw); 3516 if (ret) 3517 return ret; 3518 } 3519 3520 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO, 3521 MTI_SHAPING_SRP); 3522 } 3523 3524 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port) 3525 { 3526 int queue, ret; 3527 3528 /* Configuration will not take effect until the last Port Queue X 3529 * Egress Limit Control Register is written. 3530 */ 3531 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 3532 ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue, 3533 KSZ9477_OUT_RATE_NO_LIMIT); 3534 if (ret) 3535 return ret; 3536 } 3537 3538 return 0; 3539 } 3540 3541 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p, 3542 int band) 3543 { 3544 /* Compared to queues, bands prioritize packets differently. In strict 3545 * priority mode, the lowest priority is assigned to Queue 0 while the 3546 * highest priority is given to Band 0. 3547 */ 3548 return p->bands - 1 - band; 3549 } 3550 3551 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue) 3552 { 3553 int ret; 3554 3555 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue); 3556 if (ret) 3557 return ret; 3558 3559 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO, 3560 MTI_SHAPING_OFF); 3561 } 3562 3563 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue, 3564 int weight) 3565 { 3566 int ret; 3567 3568 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue); 3569 if (ret) 3570 return ret; 3571 3572 ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR, 3573 MTI_SHAPING_OFF); 3574 if (ret) 3575 return ret; 3576 3577 return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight); 3578 } 3579 3580 static int ksz_tc_ets_add(struct ksz_device *dev, int port, 3581 struct tc_ets_qopt_offload_replace_params *p) 3582 { 3583 int ret, band, tc_prio; 3584 u32 queue_map = 0; 3585 3586 /* In order to ensure proper prioritization, it is necessary to set the 3587 * rate limit for the related queue to zero. Otherwise strict priority 3588 * or WRR mode will not work. This is a hardware limitation. 3589 */ 3590 ret = ksz_disable_egress_rate_limit(dev, port); 3591 if (ret) 3592 return ret; 3593 3594 /* Configure queue scheduling mode for all bands. Currently only strict 3595 * prio mode is supported. 3596 */ 3597 for (band = 0; band < p->bands; band++) { 3598 int queue = ksz_ets_band_to_queue(p, band); 3599 3600 ret = ksz_queue_set_strict(dev, port, queue); 3601 if (ret) 3602 return ret; 3603 } 3604 3605 /* Configure the mapping between traffic classes and queues. Note: 3606 * priomap variable support 16 traffic classes, but the chip can handle 3607 * only 8 classes. 3608 */ 3609 for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) { 3610 int queue; 3611 3612 if (tc_prio >= dev->info->num_ipms) 3613 break; 3614 3615 queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]); 3616 queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S); 3617 } 3618 3619 return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map); 3620 } 3621 3622 static int ksz_tc_ets_del(struct ksz_device *dev, int port) 3623 { 3624 int ret, queue; 3625 3626 /* To restore the default chip configuration, set all queues to use the 3627 * WRR scheduler with a weight of 1. 3628 */ 3629 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 3630 ret = ksz_queue_set_wrr(dev, port, queue, 3631 KSZ9477_DEFAULT_WRR_WEIGHT); 3632 if (ret) 3633 return ret; 3634 } 3635 3636 /* Revert the queue mapping for TC-priority to its default setting on 3637 * the chip. 3638 */ 3639 return ksz9477_set_default_prio_queue_mapping(dev, port); 3640 } 3641 3642 static int ksz_tc_ets_validate(struct ksz_device *dev, int port, 3643 struct tc_ets_qopt_offload_replace_params *p) 3644 { 3645 int band; 3646 3647 /* Since it is not feasible to share one port among multiple qdisc, 3648 * the user must configure all available queues appropriately. 3649 */ 3650 if (p->bands != dev->info->num_tx_queues) { 3651 dev_err(dev->dev, "Not supported amount of bands. It should be %d\n", 3652 dev->info->num_tx_queues); 3653 return -EOPNOTSUPP; 3654 } 3655 3656 for (band = 0; band < p->bands; ++band) { 3657 /* The KSZ switches utilize a weighted round robin configuration 3658 * where a certain number of packets can be transmitted from a 3659 * queue before the next queue is serviced. For more information 3660 * on this, refer to section 5.2.8.4 of the KSZ8565R 3661 * documentation on the Port Transmit Queue Control 1 Register. 3662 * However, the current ETS Qdisc implementation (as of February 3663 * 2023) assigns a weight to each queue based on the number of 3664 * bytes or extrapolated bandwidth in percentages. Since this 3665 * differs from the KSZ switches' method and we don't want to 3666 * fake support by converting bytes to packets, it is better to 3667 * return an error instead. 3668 */ 3669 if (p->quanta[band]) { 3670 dev_err(dev->dev, "Quanta/weights configuration is not supported.\n"); 3671 return -EOPNOTSUPP; 3672 } 3673 } 3674 3675 return 0; 3676 } 3677 3678 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port, 3679 struct tc_ets_qopt_offload *qopt) 3680 { 3681 struct ksz_device *dev = ds->priv; 3682 int ret; 3683 3684 if (is_ksz8(dev)) 3685 return -EOPNOTSUPP; 3686 3687 if (qopt->parent != TC_H_ROOT) { 3688 dev_err(dev->dev, "Parent should be \"root\"\n"); 3689 return -EOPNOTSUPP; 3690 } 3691 3692 switch (qopt->command) { 3693 case TC_ETS_REPLACE: 3694 ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params); 3695 if (ret) 3696 return ret; 3697 3698 return ksz_tc_ets_add(dev, port, &qopt->replace_params); 3699 case TC_ETS_DESTROY: 3700 return ksz_tc_ets_del(dev, port); 3701 case TC_ETS_STATS: 3702 case TC_ETS_GRAFT: 3703 return -EOPNOTSUPP; 3704 } 3705 3706 return -EOPNOTSUPP; 3707 } 3708 3709 static int ksz_setup_tc(struct dsa_switch *ds, int port, 3710 enum tc_setup_type type, void *type_data) 3711 { 3712 switch (type) { 3713 case TC_SETUP_QDISC_CBS: 3714 return ksz_setup_tc_cbs(ds, port, type_data); 3715 case TC_SETUP_QDISC_ETS: 3716 return ksz_tc_setup_qdisc_ets(ds, port, type_data); 3717 default: 3718 return -EOPNOTSUPP; 3719 } 3720 } 3721 3722 static void ksz_get_wol(struct dsa_switch *ds, int port, 3723 struct ethtool_wolinfo *wol) 3724 { 3725 struct ksz_device *dev = ds->priv; 3726 3727 if (dev->dev_ops->get_wol) 3728 dev->dev_ops->get_wol(dev, port, wol); 3729 } 3730 3731 static int ksz_set_wol(struct dsa_switch *ds, int port, 3732 struct ethtool_wolinfo *wol) 3733 { 3734 struct ksz_device *dev = ds->priv; 3735 3736 if (dev->dev_ops->set_wol) 3737 return dev->dev_ops->set_wol(dev, port, wol); 3738 3739 return -EOPNOTSUPP; 3740 } 3741 3742 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port, 3743 const unsigned char *addr) 3744 { 3745 struct dsa_port *dp = dsa_to_port(ds, port); 3746 struct ethtool_wolinfo wol; 3747 3748 if (dp->hsr_dev) { 3749 dev_err(ds->dev, 3750 "Cannot change MAC address on port %d with active HSR offload\n", 3751 port); 3752 return -EBUSY; 3753 } 3754 3755 ksz_get_wol(ds, dp->index, &wol); 3756 if (wol.wolopts & WAKE_MAGIC) { 3757 dev_err(ds->dev, 3758 "Cannot change MAC address on port %d with active Wake on Magic Packet\n", 3759 port); 3760 return -EBUSY; 3761 } 3762 3763 return 0; 3764 } 3765 3766 /** 3767 * ksz_is_port_mac_global_usable - Check if the MAC address on a given port 3768 * can be used as a global address. 3769 * @ds: Pointer to the DSA switch structure. 3770 * @port: The port number on which the MAC address is to be checked. 3771 * 3772 * This function examines the MAC address set on the specified port and 3773 * determines if it can be used as a global address for the switch. 3774 * 3775 * Return: true if the port's MAC address can be used as a global address, false 3776 * otherwise. 3777 */ 3778 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port) 3779 { 3780 struct net_device *user = dsa_to_port(ds, port)->user; 3781 const unsigned char *addr = user->dev_addr; 3782 struct ksz_switch_macaddr *switch_macaddr; 3783 struct ksz_device *dev = ds->priv; 3784 3785 ASSERT_RTNL(); 3786 3787 switch_macaddr = dev->switch_macaddr; 3788 if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr)) 3789 return false; 3790 3791 return true; 3792 } 3793 3794 /** 3795 * ksz_switch_macaddr_get - Program the switch's MAC address register. 3796 * @ds: DSA switch instance. 3797 * @port: Port number. 3798 * @extack: Netlink extended acknowledgment. 3799 * 3800 * This function programs the switch's MAC address register with the MAC address 3801 * of the requesting user port. This single address is used by the switch for 3802 * multiple features like HSR self-address filtering and WoL. Other user ports 3803 * can share ownership of this address as long as their MAC address is the same. 3804 * The MAC addresses of user ports must not change while they have ownership of 3805 * the switch MAC address. 3806 * 3807 * Return: 0 on success, or other error codes on failure. 3808 */ 3809 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port, 3810 struct netlink_ext_ack *extack) 3811 { 3812 struct net_device *user = dsa_to_port(ds, port)->user; 3813 const unsigned char *addr = user->dev_addr; 3814 struct ksz_switch_macaddr *switch_macaddr; 3815 struct ksz_device *dev = ds->priv; 3816 const u16 *regs = dev->info->regs; 3817 int i, ret; 3818 3819 /* Make sure concurrent MAC address changes are blocked */ 3820 ASSERT_RTNL(); 3821 3822 switch_macaddr = dev->switch_macaddr; 3823 if (switch_macaddr) { 3824 if (!ether_addr_equal(switch_macaddr->addr, addr)) { 3825 NL_SET_ERR_MSG_FMT_MOD(extack, 3826 "Switch already configured for MAC address %pM", 3827 switch_macaddr->addr); 3828 return -EBUSY; 3829 } 3830 3831 refcount_inc(&switch_macaddr->refcount); 3832 return 0; 3833 } 3834 3835 switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL); 3836 if (!switch_macaddr) 3837 return -ENOMEM; 3838 3839 ether_addr_copy(switch_macaddr->addr, addr); 3840 refcount_set(&switch_macaddr->refcount, 1); 3841 dev->switch_macaddr = switch_macaddr; 3842 3843 /* Program the switch MAC address to hardware */ 3844 for (i = 0; i < ETH_ALEN; i++) { 3845 ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]); 3846 if (ret) 3847 goto macaddr_drop; 3848 } 3849 3850 return 0; 3851 3852 macaddr_drop: 3853 dev->switch_macaddr = NULL; 3854 refcount_set(&switch_macaddr->refcount, 0); 3855 kfree(switch_macaddr); 3856 3857 return ret; 3858 } 3859 3860 void ksz_switch_macaddr_put(struct dsa_switch *ds) 3861 { 3862 struct ksz_switch_macaddr *switch_macaddr; 3863 struct ksz_device *dev = ds->priv; 3864 const u16 *regs = dev->info->regs; 3865 int i; 3866 3867 /* Make sure concurrent MAC address changes are blocked */ 3868 ASSERT_RTNL(); 3869 3870 switch_macaddr = dev->switch_macaddr; 3871 if (!refcount_dec_and_test(&switch_macaddr->refcount)) 3872 return; 3873 3874 for (i = 0; i < ETH_ALEN; i++) 3875 ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0); 3876 3877 dev->switch_macaddr = NULL; 3878 kfree(switch_macaddr); 3879 } 3880 3881 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr, 3882 struct netlink_ext_ack *extack) 3883 { 3884 struct ksz_device *dev = ds->priv; 3885 enum hsr_version ver; 3886 int ret; 3887 3888 ret = hsr_get_version(hsr, &ver); 3889 if (ret) 3890 return ret; 3891 3892 if (dev->chip_id != KSZ9477_CHIP_ID) { 3893 NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload"); 3894 return -EOPNOTSUPP; 3895 } 3896 3897 /* KSZ9477 can support HW offloading of only 1 HSR device */ 3898 if (dev->hsr_dev && hsr != dev->hsr_dev) { 3899 NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR"); 3900 return -EOPNOTSUPP; 3901 } 3902 3903 /* KSZ9477 only supports HSR v0 and v1 */ 3904 if (!(ver == HSR_V0 || ver == HSR_V1)) { 3905 NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported"); 3906 return -EOPNOTSUPP; 3907 } 3908 3909 /* Self MAC address filtering, to avoid frames traversing 3910 * the HSR ring more than once. 3911 */ 3912 ret = ksz_switch_macaddr_get(ds, port, extack); 3913 if (ret) 3914 return ret; 3915 3916 ksz9477_hsr_join(ds, port, hsr); 3917 dev->hsr_dev = hsr; 3918 dev->hsr_ports |= BIT(port); 3919 3920 return 0; 3921 } 3922 3923 static int ksz_hsr_leave(struct dsa_switch *ds, int port, 3924 struct net_device *hsr) 3925 { 3926 struct ksz_device *dev = ds->priv; 3927 3928 WARN_ON(dev->chip_id != KSZ9477_CHIP_ID); 3929 3930 ksz9477_hsr_leave(ds, port, hsr); 3931 dev->hsr_ports &= ~BIT(port); 3932 if (!dev->hsr_ports) 3933 dev->hsr_dev = NULL; 3934 3935 ksz_switch_macaddr_put(ds); 3936 3937 return 0; 3938 } 3939 3940 static const struct dsa_switch_ops ksz_switch_ops = { 3941 .get_tag_protocol = ksz_get_tag_protocol, 3942 .connect_tag_protocol = ksz_connect_tag_protocol, 3943 .get_phy_flags = ksz_get_phy_flags, 3944 .setup = ksz_setup, 3945 .teardown = ksz_teardown, 3946 .phy_read = ksz_phy_read16, 3947 .phy_write = ksz_phy_write16, 3948 .phylink_get_caps = ksz_phylink_get_caps, 3949 .port_setup = ksz_port_setup, 3950 .set_ageing_time = ksz_set_ageing_time, 3951 .get_strings = ksz_get_strings, 3952 .get_ethtool_stats = ksz_get_ethtool_stats, 3953 .get_sset_count = ksz_sset_count, 3954 .port_bridge_join = ksz_port_bridge_join, 3955 .port_bridge_leave = ksz_port_bridge_leave, 3956 .port_hsr_join = ksz_hsr_join, 3957 .port_hsr_leave = ksz_hsr_leave, 3958 .port_set_mac_address = ksz_port_set_mac_address, 3959 .port_stp_state_set = ksz_port_stp_state_set, 3960 .port_teardown = ksz_port_teardown, 3961 .port_pre_bridge_flags = ksz_port_pre_bridge_flags, 3962 .port_bridge_flags = ksz_port_bridge_flags, 3963 .port_fast_age = ksz_port_fast_age, 3964 .port_vlan_filtering = ksz_port_vlan_filtering, 3965 .port_vlan_add = ksz_port_vlan_add, 3966 .port_vlan_del = ksz_port_vlan_del, 3967 .port_fdb_dump = ksz_port_fdb_dump, 3968 .port_fdb_add = ksz_port_fdb_add, 3969 .port_fdb_del = ksz_port_fdb_del, 3970 .port_mdb_add = ksz_port_mdb_add, 3971 .port_mdb_del = ksz_port_mdb_del, 3972 .port_mirror_add = ksz_port_mirror_add, 3973 .port_mirror_del = ksz_port_mirror_del, 3974 .get_stats64 = ksz_get_stats64, 3975 .get_pause_stats = ksz_get_pause_stats, 3976 .port_change_mtu = ksz_change_mtu, 3977 .port_max_mtu = ksz_max_mtu, 3978 .get_wol = ksz_get_wol, 3979 .set_wol = ksz_set_wol, 3980 .get_ts_info = ksz_get_ts_info, 3981 .port_hwtstamp_get = ksz_hwtstamp_get, 3982 .port_hwtstamp_set = ksz_hwtstamp_set, 3983 .port_txtstamp = ksz_port_txtstamp, 3984 .port_rxtstamp = ksz_port_rxtstamp, 3985 .cls_flower_add = ksz_cls_flower_add, 3986 .cls_flower_del = ksz_cls_flower_del, 3987 .port_setup_tc = ksz_setup_tc, 3988 .get_mac_eee = ksz_get_mac_eee, 3989 .set_mac_eee = ksz_set_mac_eee, 3990 .port_get_default_prio = ksz_port_get_default_prio, 3991 .port_set_default_prio = ksz_port_set_default_prio, 3992 .port_get_dscp_prio = ksz_port_get_dscp_prio, 3993 .port_add_dscp_prio = ksz_port_add_dscp_prio, 3994 .port_del_dscp_prio = ksz_port_del_dscp_prio, 3995 .port_get_apptrust = ksz_port_get_apptrust, 3996 .port_set_apptrust = ksz_port_set_apptrust, 3997 }; 3998 3999 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv) 4000 { 4001 struct dsa_switch *ds; 4002 struct ksz_device *swdev; 4003 4004 ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL); 4005 if (!ds) 4006 return NULL; 4007 4008 ds->dev = base; 4009 ds->num_ports = DSA_MAX_PORTS; 4010 ds->ops = &ksz_switch_ops; 4011 4012 swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL); 4013 if (!swdev) 4014 return NULL; 4015 4016 ds->priv = swdev; 4017 swdev->dev = base; 4018 4019 swdev->ds = ds; 4020 swdev->priv = priv; 4021 4022 return swdev; 4023 } 4024 EXPORT_SYMBOL(ksz_switch_alloc); 4025 4026 /** 4027 * ksz_switch_shutdown - Shutdown routine for the switch device. 4028 * @dev: The switch device structure. 4029 * 4030 * This function is responsible for initiating a shutdown sequence for the 4031 * switch device. It invokes the reset operation defined in the device 4032 * operations, if available, to reset the switch. Subsequently, it calls the 4033 * DSA framework's shutdown function to ensure a proper shutdown of the DSA 4034 * switch. 4035 */ 4036 void ksz_switch_shutdown(struct ksz_device *dev) 4037 { 4038 bool wol_enabled = false; 4039 4040 if (dev->dev_ops->wol_pre_shutdown) 4041 dev->dev_ops->wol_pre_shutdown(dev, &wol_enabled); 4042 4043 if (dev->dev_ops->reset && !wol_enabled) 4044 dev->dev_ops->reset(dev); 4045 4046 dsa_switch_shutdown(dev->ds); 4047 } 4048 EXPORT_SYMBOL(ksz_switch_shutdown); 4049 4050 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num, 4051 struct device_node *port_dn) 4052 { 4053 phy_interface_t phy_mode = dev->ports[port_num].interface; 4054 int rx_delay = -1, tx_delay = -1; 4055 4056 if (!phy_interface_mode_is_rgmii(phy_mode)) 4057 return; 4058 4059 of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay); 4060 of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay); 4061 4062 if (rx_delay == -1 && tx_delay == -1) { 4063 dev_warn(dev->dev, 4064 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, " 4065 "please update device tree to specify \"rx-internal-delay-ps\" and " 4066 "\"tx-internal-delay-ps\"", 4067 port_num); 4068 4069 if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID || 4070 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 4071 rx_delay = 2000; 4072 4073 if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID || 4074 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 4075 tx_delay = 2000; 4076 } 4077 4078 if (rx_delay < 0) 4079 rx_delay = 0; 4080 if (tx_delay < 0) 4081 tx_delay = 0; 4082 4083 dev->ports[port_num].rgmii_rx_val = rx_delay; 4084 dev->ports[port_num].rgmii_tx_val = tx_delay; 4085 } 4086 4087 /** 4088 * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding 4089 * register value. 4090 * @array: The array of drive strength values to search. 4091 * @array_size: The size of the array. 4092 * @microamp: The drive strength value in microamp to be converted. 4093 * 4094 * This function searches the array of drive strength values for the given 4095 * microamp value and returns the corresponding register value for that drive. 4096 * 4097 * Returns: If found, the corresponding register value for that drive strength 4098 * is returned. Otherwise, -EINVAL is returned indicating an invalid value. 4099 */ 4100 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array, 4101 size_t array_size, int microamp) 4102 { 4103 int i; 4104 4105 for (i = 0; i < array_size; i++) { 4106 if (array[i].microamp == microamp) 4107 return array[i].reg_val; 4108 } 4109 4110 return -EINVAL; 4111 } 4112 4113 /** 4114 * ksz_drive_strength_error() - Report invalid drive strength value 4115 * @dev: ksz device 4116 * @array: The array of drive strength values to search. 4117 * @array_size: The size of the array. 4118 * @microamp: Invalid drive strength value in microamp 4119 * 4120 * This function logs an error message when an unsupported drive strength value 4121 * is detected. It lists out all the supported drive strength values for 4122 * reference in the error message. 4123 */ 4124 static void ksz_drive_strength_error(struct ksz_device *dev, 4125 const struct ksz_drive_strength *array, 4126 size_t array_size, int microamp) 4127 { 4128 char supported_values[100]; 4129 size_t remaining_size; 4130 int added_len; 4131 char *ptr; 4132 int i; 4133 4134 remaining_size = sizeof(supported_values); 4135 ptr = supported_values; 4136 4137 for (i = 0; i < array_size; i++) { 4138 added_len = snprintf(ptr, remaining_size, 4139 i == 0 ? "%d" : ", %d", array[i].microamp); 4140 4141 if (added_len >= remaining_size) 4142 break; 4143 4144 ptr += added_len; 4145 remaining_size -= added_len; 4146 } 4147 4148 dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n", 4149 microamp, supported_values); 4150 } 4151 4152 /** 4153 * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477 4154 * chip variants. 4155 * @dev: ksz device 4156 * @props: Array of drive strength properties to be applied 4157 * @num_props: Number of properties in the array 4158 * 4159 * This function configures the drive strength for various KSZ9477 chip variants 4160 * based on the provided properties. It handles chip-specific nuances and 4161 * ensures only valid drive strengths are written to the respective chip. 4162 * 4163 * Return: 0 on successful configuration, a negative error code on failure. 4164 */ 4165 static int ksz9477_drive_strength_write(struct ksz_device *dev, 4166 struct ksz_driver_strength_prop *props, 4167 int num_props) 4168 { 4169 size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths); 4170 int i, ret, reg; 4171 u8 mask = 0; 4172 u8 val = 0; 4173 4174 if (props[KSZ_DRIVER_STRENGTH_IO].value != -1) 4175 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 4176 props[KSZ_DRIVER_STRENGTH_IO].name); 4177 4178 if (dev->chip_id == KSZ8795_CHIP_ID || 4179 dev->chip_id == KSZ8794_CHIP_ID || 4180 dev->chip_id == KSZ8765_CHIP_ID) 4181 reg = KSZ8795_REG_SW_CTRL_20; 4182 else 4183 reg = KSZ9477_REG_SW_IO_STRENGTH; 4184 4185 for (i = 0; i < num_props; i++) { 4186 if (props[i].value == -1) 4187 continue; 4188 4189 ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths, 4190 array_size, props[i].value); 4191 if (ret < 0) { 4192 ksz_drive_strength_error(dev, ksz9477_drive_strengths, 4193 array_size, props[i].value); 4194 return ret; 4195 } 4196 4197 mask |= SW_DRIVE_STRENGTH_M << props[i].offset; 4198 val |= ret << props[i].offset; 4199 } 4200 4201 return ksz_rmw8(dev, reg, mask, val); 4202 } 4203 4204 /** 4205 * ksz8830_drive_strength_write() - Set the drive strength configuration for 4206 * KSZ8830 compatible chip variants. 4207 * @dev: ksz device 4208 * @props: Array of drive strength properties to be set 4209 * @num_props: Number of properties in the array 4210 * 4211 * This function applies the specified drive strength settings to KSZ8830 chip 4212 * variants (KSZ8873, KSZ8863). 4213 * It ensures the configurations align with what the chip variant supports and 4214 * warns or errors out on unsupported settings. 4215 * 4216 * Return: 0 on success, error code otherwise 4217 */ 4218 static int ksz8830_drive_strength_write(struct ksz_device *dev, 4219 struct ksz_driver_strength_prop *props, 4220 int num_props) 4221 { 4222 size_t array_size = ARRAY_SIZE(ksz8830_drive_strengths); 4223 int microamp; 4224 int i, ret; 4225 4226 for (i = 0; i < num_props; i++) { 4227 if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO) 4228 continue; 4229 4230 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 4231 props[i].name); 4232 } 4233 4234 microamp = props[KSZ_DRIVER_STRENGTH_IO].value; 4235 ret = ksz_drive_strength_to_reg(ksz8830_drive_strengths, array_size, 4236 microamp); 4237 if (ret < 0) { 4238 ksz_drive_strength_error(dev, ksz8830_drive_strengths, 4239 array_size, microamp); 4240 return ret; 4241 } 4242 4243 return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12, 4244 KSZ8873_DRIVE_STRENGTH_16MA, ret); 4245 } 4246 4247 /** 4248 * ksz_parse_drive_strength() - Extract and apply drive strength configurations 4249 * from device tree properties. 4250 * @dev: ksz device 4251 * 4252 * This function reads the specified drive strength properties from the 4253 * device tree, validates against the supported chip variants, and sets 4254 * them accordingly. An error should be critical here, as the drive strength 4255 * settings are crucial for EMI compliance. 4256 * 4257 * Return: 0 on success, error code otherwise 4258 */ 4259 static int ksz_parse_drive_strength(struct ksz_device *dev) 4260 { 4261 struct ksz_driver_strength_prop of_props[] = { 4262 [KSZ_DRIVER_STRENGTH_HI] = { 4263 .name = "microchip,hi-drive-strength-microamp", 4264 .offset = SW_HI_SPEED_DRIVE_STRENGTH_S, 4265 .value = -1, 4266 }, 4267 [KSZ_DRIVER_STRENGTH_LO] = { 4268 .name = "microchip,lo-drive-strength-microamp", 4269 .offset = SW_LO_SPEED_DRIVE_STRENGTH_S, 4270 .value = -1, 4271 }, 4272 [KSZ_DRIVER_STRENGTH_IO] = { 4273 .name = "microchip,io-drive-strength-microamp", 4274 .offset = 0, /* don't care */ 4275 .value = -1, 4276 }, 4277 }; 4278 struct device_node *np = dev->dev->of_node; 4279 bool have_any_prop = false; 4280 int i, ret; 4281 4282 for (i = 0; i < ARRAY_SIZE(of_props); i++) { 4283 ret = of_property_read_u32(np, of_props[i].name, 4284 &of_props[i].value); 4285 if (ret && ret != -EINVAL) 4286 dev_warn(dev->dev, "Failed to read %s\n", 4287 of_props[i].name); 4288 if (ret) 4289 continue; 4290 4291 have_any_prop = true; 4292 } 4293 4294 if (!have_any_prop) 4295 return 0; 4296 4297 switch (dev->chip_id) { 4298 case KSZ8830_CHIP_ID: 4299 return ksz8830_drive_strength_write(dev, of_props, 4300 ARRAY_SIZE(of_props)); 4301 case KSZ8795_CHIP_ID: 4302 case KSZ8794_CHIP_ID: 4303 case KSZ8765_CHIP_ID: 4304 case KSZ8563_CHIP_ID: 4305 case KSZ8567_CHIP_ID: 4306 case KSZ9477_CHIP_ID: 4307 case KSZ9563_CHIP_ID: 4308 case KSZ9567_CHIP_ID: 4309 case KSZ9893_CHIP_ID: 4310 case KSZ9896_CHIP_ID: 4311 case KSZ9897_CHIP_ID: 4312 return ksz9477_drive_strength_write(dev, of_props, 4313 ARRAY_SIZE(of_props)); 4314 default: 4315 for (i = 0; i < ARRAY_SIZE(of_props); i++) { 4316 if (of_props[i].value == -1) 4317 continue; 4318 4319 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 4320 of_props[i].name); 4321 } 4322 } 4323 4324 return 0; 4325 } 4326 4327 int ksz_switch_register(struct ksz_device *dev) 4328 { 4329 const struct ksz_chip_data *info; 4330 struct device_node *port, *ports; 4331 phy_interface_t interface; 4332 unsigned int port_num; 4333 int ret; 4334 int i; 4335 4336 dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset", 4337 GPIOD_OUT_LOW); 4338 if (IS_ERR(dev->reset_gpio)) 4339 return PTR_ERR(dev->reset_gpio); 4340 4341 if (dev->reset_gpio) { 4342 gpiod_set_value_cansleep(dev->reset_gpio, 1); 4343 usleep_range(10000, 12000); 4344 gpiod_set_value_cansleep(dev->reset_gpio, 0); 4345 msleep(100); 4346 } 4347 4348 mutex_init(&dev->dev_mutex); 4349 mutex_init(&dev->regmap_mutex); 4350 mutex_init(&dev->alu_mutex); 4351 mutex_init(&dev->vlan_mutex); 4352 4353 ret = ksz_switch_detect(dev); 4354 if (ret) 4355 return ret; 4356 4357 info = ksz_lookup_info(dev->chip_id); 4358 if (!info) 4359 return -ENODEV; 4360 4361 /* Update the compatible info with the probed one */ 4362 dev->info = info; 4363 4364 dev_info(dev->dev, "found switch: %s, rev %i\n", 4365 dev->info->dev_name, dev->chip_rev); 4366 4367 ret = ksz_check_device_id(dev); 4368 if (ret) 4369 return ret; 4370 4371 dev->dev_ops = dev->info->ops; 4372 4373 ret = dev->dev_ops->init(dev); 4374 if (ret) 4375 return ret; 4376 4377 dev->ports = devm_kzalloc(dev->dev, 4378 dev->info->port_cnt * sizeof(struct ksz_port), 4379 GFP_KERNEL); 4380 if (!dev->ports) 4381 return -ENOMEM; 4382 4383 for (i = 0; i < dev->info->port_cnt; i++) { 4384 spin_lock_init(&dev->ports[i].mib.stats64_lock); 4385 mutex_init(&dev->ports[i].mib.cnt_mutex); 4386 dev->ports[i].mib.counters = 4387 devm_kzalloc(dev->dev, 4388 sizeof(u64) * (dev->info->mib_cnt + 1), 4389 GFP_KERNEL); 4390 if (!dev->ports[i].mib.counters) 4391 return -ENOMEM; 4392 4393 dev->ports[i].ksz_dev = dev; 4394 dev->ports[i].num = i; 4395 } 4396 4397 /* set the real number of ports */ 4398 dev->ds->num_ports = dev->info->port_cnt; 4399 4400 /* set the phylink ops */ 4401 dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops; 4402 4403 /* Host port interface will be self detected, or specifically set in 4404 * device tree. 4405 */ 4406 for (port_num = 0; port_num < dev->info->port_cnt; ++port_num) 4407 dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA; 4408 if (dev->dev->of_node) { 4409 ret = of_get_phy_mode(dev->dev->of_node, &interface); 4410 if (ret == 0) 4411 dev->compat_interface = interface; 4412 ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports"); 4413 if (!ports) 4414 ports = of_get_child_by_name(dev->dev->of_node, "ports"); 4415 if (ports) { 4416 for_each_available_child_of_node(ports, port) { 4417 if (of_property_read_u32(port, "reg", 4418 &port_num)) 4419 continue; 4420 if (!(dev->port_mask & BIT(port_num))) { 4421 of_node_put(port); 4422 of_node_put(ports); 4423 return -EINVAL; 4424 } 4425 of_get_phy_mode(port, 4426 &dev->ports[port_num].interface); 4427 4428 ksz_parse_rgmii_delay(dev, port_num, port); 4429 } 4430 of_node_put(ports); 4431 } 4432 dev->synclko_125 = of_property_read_bool(dev->dev->of_node, 4433 "microchip,synclko-125"); 4434 dev->synclko_disable = of_property_read_bool(dev->dev->of_node, 4435 "microchip,synclko-disable"); 4436 if (dev->synclko_125 && dev->synclko_disable) { 4437 dev_err(dev->dev, "inconsistent synclko settings\n"); 4438 return -EINVAL; 4439 } 4440 4441 dev->wakeup_source = of_property_read_bool(dev->dev->of_node, 4442 "wakeup-source"); 4443 } 4444 4445 ret = dsa_register_switch(dev->ds); 4446 if (ret) { 4447 dev->dev_ops->exit(dev); 4448 return ret; 4449 } 4450 4451 /* Read MIB counters every 30 seconds to avoid overflow. */ 4452 dev->mib_read_interval = msecs_to_jiffies(5000); 4453 4454 /* Start the MIB timer. */ 4455 schedule_delayed_work(&dev->mib_read, 0); 4456 4457 return ret; 4458 } 4459 EXPORT_SYMBOL(ksz_switch_register); 4460 4461 void ksz_switch_remove(struct ksz_device *dev) 4462 { 4463 /* timer started */ 4464 if (dev->mib_read_interval) { 4465 dev->mib_read_interval = 0; 4466 cancel_delayed_work_sync(&dev->mib_read); 4467 } 4468 4469 dev->dev_ops->exit(dev); 4470 dsa_unregister_switch(dev->ds); 4471 4472 if (dev->reset_gpio) 4473 gpiod_set_value_cansleep(dev->reset_gpio, 1); 4474 4475 } 4476 EXPORT_SYMBOL(ksz_switch_remove); 4477 4478 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>"); 4479 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver"); 4480 MODULE_LICENSE("GPL"); 4481