1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Microchip switch driver main logic 4 * 5 * Copyright (C) 2017-2024 Microchip Technology Inc. 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/dsa/ksz_common.h> 10 #include <linux/export.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/platform_data/microchip-ksz.h> 15 #include <linux/phy.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_bridge.h> 18 #include <linux/if_vlan.h> 19 #include <linux/if_hsr.h> 20 #include <linux/irq.h> 21 #include <linux/irqdomain.h> 22 #include <linux/of.h> 23 #include <linux/of_mdio.h> 24 #include <linux/of_net.h> 25 #include <linux/micrel_phy.h> 26 #include <net/dsa.h> 27 #include <net/ieee8021q.h> 28 #include <net/pkt_cls.h> 29 #include <net/switchdev.h> 30 31 #include "ksz_common.h" 32 #include "ksz_dcb.h" 33 #include "ksz_ptp.h" 34 #include "ksz8.h" 35 #include "ksz9477.h" 36 #include "lan937x.h" 37 38 #define MIB_COUNTER_NUM 0x20 39 40 struct ksz_stats_raw { 41 u64 rx_hi; 42 u64 rx_undersize; 43 u64 rx_fragments; 44 u64 rx_oversize; 45 u64 rx_jabbers; 46 u64 rx_symbol_err; 47 u64 rx_crc_err; 48 u64 rx_align_err; 49 u64 rx_mac_ctrl; 50 u64 rx_pause; 51 u64 rx_bcast; 52 u64 rx_mcast; 53 u64 rx_ucast; 54 u64 rx_64_or_less; 55 u64 rx_65_127; 56 u64 rx_128_255; 57 u64 rx_256_511; 58 u64 rx_512_1023; 59 u64 rx_1024_1522; 60 u64 rx_1523_2000; 61 u64 rx_2001; 62 u64 tx_hi; 63 u64 tx_late_col; 64 u64 tx_pause; 65 u64 tx_bcast; 66 u64 tx_mcast; 67 u64 tx_ucast; 68 u64 tx_deferred; 69 u64 tx_total_col; 70 u64 tx_exc_col; 71 u64 tx_single_col; 72 u64 tx_mult_col; 73 u64 rx_total; 74 u64 tx_total; 75 u64 rx_discards; 76 u64 tx_discards; 77 }; 78 79 struct ksz88xx_stats_raw { 80 u64 rx; 81 u64 rx_hi; 82 u64 rx_undersize; 83 u64 rx_fragments; 84 u64 rx_oversize; 85 u64 rx_jabbers; 86 u64 rx_symbol_err; 87 u64 rx_crc_err; 88 u64 rx_align_err; 89 u64 rx_mac_ctrl; 90 u64 rx_pause; 91 u64 rx_bcast; 92 u64 rx_mcast; 93 u64 rx_ucast; 94 u64 rx_64_or_less; 95 u64 rx_65_127; 96 u64 rx_128_255; 97 u64 rx_256_511; 98 u64 rx_512_1023; 99 u64 rx_1024_1522; 100 u64 tx; 101 u64 tx_hi; 102 u64 tx_late_col; 103 u64 tx_pause; 104 u64 tx_bcast; 105 u64 tx_mcast; 106 u64 tx_ucast; 107 u64 tx_deferred; 108 u64 tx_total_col; 109 u64 tx_exc_col; 110 u64 tx_single_col; 111 u64 tx_mult_col; 112 u64 rx_discards; 113 u64 tx_discards; 114 }; 115 116 static const struct ksz_mib_names ksz88xx_mib_names[] = { 117 { 0x00, "rx" }, 118 { 0x01, "rx_hi" }, 119 { 0x02, "rx_undersize" }, 120 { 0x03, "rx_fragments" }, 121 { 0x04, "rx_oversize" }, 122 { 0x05, "rx_jabbers" }, 123 { 0x06, "rx_symbol_err" }, 124 { 0x07, "rx_crc_err" }, 125 { 0x08, "rx_align_err" }, 126 { 0x09, "rx_mac_ctrl" }, 127 { 0x0a, "rx_pause" }, 128 { 0x0b, "rx_bcast" }, 129 { 0x0c, "rx_mcast" }, 130 { 0x0d, "rx_ucast" }, 131 { 0x0e, "rx_64_or_less" }, 132 { 0x0f, "rx_65_127" }, 133 { 0x10, "rx_128_255" }, 134 { 0x11, "rx_256_511" }, 135 { 0x12, "rx_512_1023" }, 136 { 0x13, "rx_1024_1522" }, 137 { 0x14, "tx" }, 138 { 0x15, "tx_hi" }, 139 { 0x16, "tx_late_col" }, 140 { 0x17, "tx_pause" }, 141 { 0x18, "tx_bcast" }, 142 { 0x19, "tx_mcast" }, 143 { 0x1a, "tx_ucast" }, 144 { 0x1b, "tx_deferred" }, 145 { 0x1c, "tx_total_col" }, 146 { 0x1d, "tx_exc_col" }, 147 { 0x1e, "tx_single_col" }, 148 { 0x1f, "tx_mult_col" }, 149 { 0x100, "rx_discards" }, 150 { 0x101, "tx_discards" }, 151 }; 152 153 static const struct ksz_mib_names ksz9477_mib_names[] = { 154 { 0x00, "rx_hi" }, 155 { 0x01, "rx_undersize" }, 156 { 0x02, "rx_fragments" }, 157 { 0x03, "rx_oversize" }, 158 { 0x04, "rx_jabbers" }, 159 { 0x05, "rx_symbol_err" }, 160 { 0x06, "rx_crc_err" }, 161 { 0x07, "rx_align_err" }, 162 { 0x08, "rx_mac_ctrl" }, 163 { 0x09, "rx_pause" }, 164 { 0x0A, "rx_bcast" }, 165 { 0x0B, "rx_mcast" }, 166 { 0x0C, "rx_ucast" }, 167 { 0x0D, "rx_64_or_less" }, 168 { 0x0E, "rx_65_127" }, 169 { 0x0F, "rx_128_255" }, 170 { 0x10, "rx_256_511" }, 171 { 0x11, "rx_512_1023" }, 172 { 0x12, "rx_1024_1522" }, 173 { 0x13, "rx_1523_2000" }, 174 { 0x14, "rx_2001" }, 175 { 0x15, "tx_hi" }, 176 { 0x16, "tx_late_col" }, 177 { 0x17, "tx_pause" }, 178 { 0x18, "tx_bcast" }, 179 { 0x19, "tx_mcast" }, 180 { 0x1A, "tx_ucast" }, 181 { 0x1B, "tx_deferred" }, 182 { 0x1C, "tx_total_col" }, 183 { 0x1D, "tx_exc_col" }, 184 { 0x1E, "tx_single_col" }, 185 { 0x1F, "tx_mult_col" }, 186 { 0x80, "rx_total" }, 187 { 0x81, "tx_total" }, 188 { 0x82, "rx_discards" }, 189 { 0x83, "tx_discards" }, 190 }; 191 192 struct ksz_driver_strength_prop { 193 const char *name; 194 int offset; 195 int value; 196 }; 197 198 enum ksz_driver_strength_type { 199 KSZ_DRIVER_STRENGTH_HI, 200 KSZ_DRIVER_STRENGTH_LO, 201 KSZ_DRIVER_STRENGTH_IO, 202 }; 203 204 /** 205 * struct ksz_drive_strength - drive strength mapping 206 * @reg_val: register value 207 * @microamp: microamp value 208 */ 209 struct ksz_drive_strength { 210 u32 reg_val; 211 u32 microamp; 212 }; 213 214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants 215 * 216 * This values are not documented in KSZ9477 variants but confirmed by 217 * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893 218 * and KSZ8563 are using same register (drive strength) settings like KSZ8795. 219 * 220 * Documentation in KSZ8795CLX provides more information with some 221 * recommendations: 222 * - for high speed signals 223 * 1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using 224 * 2.5V or 3.3V VDDIO. 225 * 2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with 226 * using 1.8V VDDIO. 227 * 3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V 228 * or 3.3V VDDIO. 229 * 4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO. 230 * 5. In same interface, the heavy loading should use higher one of the 231 * drive current strength. 232 * - for low speed signals 233 * 1. 3.3V VDDIO, use either 4 mA or 8 mA. 234 * 2. 2.5V VDDIO, use either 8 mA or 12 mA. 235 * 3. 1.8V VDDIO, use either 12 mA or 16 mA. 236 * 4. If it is heavy loading, can use higher drive current strength. 237 */ 238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = { 239 { SW_DRIVE_STRENGTH_2MA, 2000 }, 240 { SW_DRIVE_STRENGTH_4MA, 4000 }, 241 { SW_DRIVE_STRENGTH_8MA, 8000 }, 242 { SW_DRIVE_STRENGTH_12MA, 12000 }, 243 { SW_DRIVE_STRENGTH_16MA, 16000 }, 244 { SW_DRIVE_STRENGTH_20MA, 20000 }, 245 { SW_DRIVE_STRENGTH_24MA, 24000 }, 246 { SW_DRIVE_STRENGTH_28MA, 28000 }, 247 }; 248 249 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, .. 250 * variants. 251 * This values are documented in KSZ8873 and KSZ8863 datasheets. 252 */ 253 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = { 254 { 0, 8000 }, 255 { KSZ8873_DRIVE_STRENGTH_16MA, 16000 }, 256 }; 257 258 static void ksz88x3_phylink_mac_config(struct phylink_config *config, 259 unsigned int mode, 260 const struct phylink_link_state *state); 261 static void ksz_phylink_mac_config(struct phylink_config *config, 262 unsigned int mode, 263 const struct phylink_link_state *state); 264 static void ksz_phylink_mac_link_down(struct phylink_config *config, 265 unsigned int mode, 266 phy_interface_t interface); 267 268 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = { 269 .mac_config = ksz88x3_phylink_mac_config, 270 .mac_link_down = ksz_phylink_mac_link_down, 271 .mac_link_up = ksz8_phylink_mac_link_up, 272 }; 273 274 static const struct phylink_mac_ops ksz8_phylink_mac_ops = { 275 .mac_config = ksz_phylink_mac_config, 276 .mac_link_down = ksz_phylink_mac_link_down, 277 .mac_link_up = ksz8_phylink_mac_link_up, 278 }; 279 280 static const struct ksz_dev_ops ksz88xx_dev_ops = { 281 .setup = ksz8_setup, 282 .get_port_addr = ksz8_get_port_addr, 283 .cfg_port_member = ksz8_cfg_port_member, 284 .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, 285 .port_setup = ksz8_port_setup, 286 .r_phy = ksz8_r_phy, 287 .w_phy = ksz8_w_phy, 288 .r_mib_cnt = ksz8_r_mib_cnt, 289 .r_mib_pkt = ksz8_r_mib_pkt, 290 .r_mib_stat64 = ksz88xx_r_mib_stats64, 291 .freeze_mib = ksz8_freeze_mib, 292 .port_init_cnt = ksz8_port_init_cnt, 293 .fdb_dump = ksz8_fdb_dump, 294 .fdb_add = ksz8_fdb_add, 295 .fdb_del = ksz8_fdb_del, 296 .mdb_add = ksz8_mdb_add, 297 .mdb_del = ksz8_mdb_del, 298 .vlan_filtering = ksz8_port_vlan_filtering, 299 .vlan_add = ksz8_port_vlan_add, 300 .vlan_del = ksz8_port_vlan_del, 301 .mirror_add = ksz8_port_mirror_add, 302 .mirror_del = ksz8_port_mirror_del, 303 .get_caps = ksz8_get_caps, 304 .config_cpu_port = ksz8_config_cpu_port, 305 .enable_stp_addr = ksz8_enable_stp_addr, 306 .reset = ksz8_reset_switch, 307 .init = ksz8_switch_init, 308 .exit = ksz8_switch_exit, 309 .change_mtu = ksz8_change_mtu, 310 .pme_write8 = ksz8_pme_write8, 311 .pme_pread8 = ksz8_pme_pread8, 312 .pme_pwrite8 = ksz8_pme_pwrite8, 313 }; 314 315 static const struct ksz_dev_ops ksz87xx_dev_ops = { 316 .setup = ksz8_setup, 317 .get_port_addr = ksz8_get_port_addr, 318 .cfg_port_member = ksz8_cfg_port_member, 319 .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, 320 .port_setup = ksz8_port_setup, 321 .r_phy = ksz8_r_phy, 322 .w_phy = ksz8_w_phy, 323 .r_mib_cnt = ksz8_r_mib_cnt, 324 .r_mib_pkt = ksz8_r_mib_pkt, 325 .r_mib_stat64 = ksz_r_mib_stats64, 326 .freeze_mib = ksz8_freeze_mib, 327 .port_init_cnt = ksz8_port_init_cnt, 328 .fdb_dump = ksz8_fdb_dump, 329 .fdb_add = ksz8_fdb_add, 330 .fdb_del = ksz8_fdb_del, 331 .mdb_add = ksz8_mdb_add, 332 .mdb_del = ksz8_mdb_del, 333 .vlan_filtering = ksz8_port_vlan_filtering, 334 .vlan_add = ksz8_port_vlan_add, 335 .vlan_del = ksz8_port_vlan_del, 336 .mirror_add = ksz8_port_mirror_add, 337 .mirror_del = ksz8_port_mirror_del, 338 .get_caps = ksz8_get_caps, 339 .config_cpu_port = ksz8_config_cpu_port, 340 .enable_stp_addr = ksz8_enable_stp_addr, 341 .reset = ksz8_reset_switch, 342 .init = ksz8_switch_init, 343 .exit = ksz8_switch_exit, 344 .change_mtu = ksz8_change_mtu, 345 .pme_write8 = ksz8_pme_write8, 346 .pme_pread8 = ksz8_pme_pread8, 347 .pme_pwrite8 = ksz8_pme_pwrite8, 348 }; 349 350 static void ksz9477_phylink_mac_link_up(struct phylink_config *config, 351 struct phy_device *phydev, 352 unsigned int mode, 353 phy_interface_t interface, 354 int speed, int duplex, bool tx_pause, 355 bool rx_pause); 356 357 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = { 358 .mac_config = ksz_phylink_mac_config, 359 .mac_link_down = ksz_phylink_mac_link_down, 360 .mac_link_up = ksz9477_phylink_mac_link_up, 361 }; 362 363 static const struct ksz_dev_ops ksz9477_dev_ops = { 364 .setup = ksz9477_setup, 365 .get_port_addr = ksz9477_get_port_addr, 366 .cfg_port_member = ksz9477_cfg_port_member, 367 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, 368 .port_setup = ksz9477_port_setup, 369 .set_ageing_time = ksz9477_set_ageing_time, 370 .r_phy = ksz9477_r_phy, 371 .w_phy = ksz9477_w_phy, 372 .r_mib_cnt = ksz9477_r_mib_cnt, 373 .r_mib_pkt = ksz9477_r_mib_pkt, 374 .r_mib_stat64 = ksz_r_mib_stats64, 375 .freeze_mib = ksz9477_freeze_mib, 376 .port_init_cnt = ksz9477_port_init_cnt, 377 .vlan_filtering = ksz9477_port_vlan_filtering, 378 .vlan_add = ksz9477_port_vlan_add, 379 .vlan_del = ksz9477_port_vlan_del, 380 .mirror_add = ksz9477_port_mirror_add, 381 .mirror_del = ksz9477_port_mirror_del, 382 .get_caps = ksz9477_get_caps, 383 .fdb_dump = ksz9477_fdb_dump, 384 .fdb_add = ksz9477_fdb_add, 385 .fdb_del = ksz9477_fdb_del, 386 .mdb_add = ksz9477_mdb_add, 387 .mdb_del = ksz9477_mdb_del, 388 .change_mtu = ksz9477_change_mtu, 389 .pme_write8 = ksz_write8, 390 .pme_pread8 = ksz_pread8, 391 .pme_pwrite8 = ksz_pwrite8, 392 .config_cpu_port = ksz9477_config_cpu_port, 393 .tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc, 394 .enable_stp_addr = ksz9477_enable_stp_addr, 395 .reset = ksz9477_reset_switch, 396 .init = ksz9477_switch_init, 397 .exit = ksz9477_switch_exit, 398 }; 399 400 static const struct phylink_mac_ops lan937x_phylink_mac_ops = { 401 .mac_config = ksz_phylink_mac_config, 402 .mac_link_down = ksz_phylink_mac_link_down, 403 .mac_link_up = ksz9477_phylink_mac_link_up, 404 }; 405 406 static const struct ksz_dev_ops lan937x_dev_ops = { 407 .setup = lan937x_setup, 408 .teardown = lan937x_teardown, 409 .get_port_addr = ksz9477_get_port_addr, 410 .cfg_port_member = ksz9477_cfg_port_member, 411 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, 412 .port_setup = lan937x_port_setup, 413 .set_ageing_time = lan937x_set_ageing_time, 414 .mdio_bus_preinit = lan937x_mdio_bus_preinit, 415 .create_phy_addr_map = lan937x_create_phy_addr_map, 416 .r_phy = lan937x_r_phy, 417 .w_phy = lan937x_w_phy, 418 .r_mib_cnt = ksz9477_r_mib_cnt, 419 .r_mib_pkt = ksz9477_r_mib_pkt, 420 .r_mib_stat64 = ksz_r_mib_stats64, 421 .freeze_mib = ksz9477_freeze_mib, 422 .port_init_cnt = ksz9477_port_init_cnt, 423 .vlan_filtering = ksz9477_port_vlan_filtering, 424 .vlan_add = ksz9477_port_vlan_add, 425 .vlan_del = ksz9477_port_vlan_del, 426 .mirror_add = ksz9477_port_mirror_add, 427 .mirror_del = ksz9477_port_mirror_del, 428 .get_caps = lan937x_phylink_get_caps, 429 .setup_rgmii_delay = lan937x_setup_rgmii_delay, 430 .fdb_dump = ksz9477_fdb_dump, 431 .fdb_add = ksz9477_fdb_add, 432 .fdb_del = ksz9477_fdb_del, 433 .mdb_add = ksz9477_mdb_add, 434 .mdb_del = ksz9477_mdb_del, 435 .change_mtu = lan937x_change_mtu, 436 .config_cpu_port = lan937x_config_cpu_port, 437 .tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc, 438 .enable_stp_addr = ksz9477_enable_stp_addr, 439 .reset = lan937x_reset_switch, 440 .init = lan937x_switch_init, 441 .exit = lan937x_switch_exit, 442 }; 443 444 static const u16 ksz8795_regs[] = { 445 [REG_SW_MAC_ADDR] = 0x68, 446 [REG_IND_CTRL_0] = 0x6E, 447 [REG_IND_DATA_8] = 0x70, 448 [REG_IND_DATA_CHECK] = 0x72, 449 [REG_IND_DATA_HI] = 0x71, 450 [REG_IND_DATA_LO] = 0x75, 451 [REG_IND_MIB_CHECK] = 0x74, 452 [REG_IND_BYTE] = 0xA0, 453 [P_FORCE_CTRL] = 0x0C, 454 [P_LINK_STATUS] = 0x0E, 455 [P_LOCAL_CTRL] = 0x07, 456 [P_NEG_RESTART_CTRL] = 0x0D, 457 [P_REMOTE_STATUS] = 0x08, 458 [P_SPEED_STATUS] = 0x09, 459 [S_TAIL_TAG_CTRL] = 0x0C, 460 [P_STP_CTRL] = 0x02, 461 [S_START_CTRL] = 0x01, 462 [S_BROADCAST_CTRL] = 0x06, 463 [S_MULTICAST_CTRL] = 0x04, 464 [P_XMII_CTRL_0] = 0x06, 465 [P_XMII_CTRL_1] = 0x06, 466 [REG_SW_PME_CTRL] = 0x8003, 467 [REG_PORT_PME_STATUS] = 0x8003, 468 [REG_PORT_PME_CTRL] = 0x8007, 469 }; 470 471 static const u32 ksz8795_masks[] = { 472 [PORT_802_1P_REMAPPING] = BIT(7), 473 [SW_TAIL_TAG_ENABLE] = BIT(1), 474 [MIB_COUNTER_OVERFLOW] = BIT(6), 475 [MIB_COUNTER_VALID] = BIT(5), 476 [VLAN_TABLE_FID] = GENMASK(6, 0), 477 [VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7), 478 [VLAN_TABLE_VALID] = BIT(12), 479 [STATIC_MAC_TABLE_VALID] = BIT(21), 480 [STATIC_MAC_TABLE_USE_FID] = BIT(23), 481 [STATIC_MAC_TABLE_FID] = GENMASK(30, 24), 482 [STATIC_MAC_TABLE_OVERRIDE] = BIT(22), 483 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(20, 16), 484 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0), 485 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7), 486 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 487 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29), 488 [DYNAMIC_MAC_TABLE_FID] = GENMASK(22, 16), 489 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24), 490 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27), 491 [P_MII_TX_FLOW_CTRL] = BIT(5), 492 [P_MII_RX_FLOW_CTRL] = BIT(5), 493 }; 494 495 static const u8 ksz8795_xmii_ctrl0[] = { 496 [P_MII_100MBIT] = 0, 497 [P_MII_10MBIT] = 1, 498 [P_MII_FULL_DUPLEX] = 0, 499 [P_MII_HALF_DUPLEX] = 1, 500 }; 501 502 static const u8 ksz8795_xmii_ctrl1[] = { 503 [P_RGMII_SEL] = 3, 504 [P_GMII_SEL] = 2, 505 [P_RMII_SEL] = 1, 506 [P_MII_SEL] = 0, 507 [P_GMII_1GBIT] = 1, 508 [P_GMII_NOT_1GBIT] = 0, 509 }; 510 511 static const u8 ksz8795_shifts[] = { 512 [VLAN_TABLE_MEMBERSHIP_S] = 7, 513 [VLAN_TABLE] = 16, 514 [STATIC_MAC_FWD_PORTS] = 16, 515 [STATIC_MAC_FID] = 24, 516 [DYNAMIC_MAC_ENTRIES_H] = 3, 517 [DYNAMIC_MAC_ENTRIES] = 29, 518 [DYNAMIC_MAC_FID] = 16, 519 [DYNAMIC_MAC_TIMESTAMP] = 27, 520 [DYNAMIC_MAC_SRC_PORT] = 24, 521 }; 522 523 static const u16 ksz8863_regs[] = { 524 [REG_SW_MAC_ADDR] = 0x70, 525 [REG_IND_CTRL_0] = 0x79, 526 [REG_IND_DATA_8] = 0x7B, 527 [REG_IND_DATA_CHECK] = 0x7B, 528 [REG_IND_DATA_HI] = 0x7C, 529 [REG_IND_DATA_LO] = 0x80, 530 [REG_IND_MIB_CHECK] = 0x80, 531 [P_FORCE_CTRL] = 0x0C, 532 [P_LINK_STATUS] = 0x0E, 533 [P_LOCAL_CTRL] = 0x0C, 534 [P_NEG_RESTART_CTRL] = 0x0D, 535 [P_REMOTE_STATUS] = 0x0E, 536 [P_SPEED_STATUS] = 0x0F, 537 [S_TAIL_TAG_CTRL] = 0x03, 538 [P_STP_CTRL] = 0x02, 539 [S_START_CTRL] = 0x01, 540 [S_BROADCAST_CTRL] = 0x06, 541 [S_MULTICAST_CTRL] = 0x04, 542 }; 543 544 static const u32 ksz8863_masks[] = { 545 [PORT_802_1P_REMAPPING] = BIT(3), 546 [SW_TAIL_TAG_ENABLE] = BIT(6), 547 [MIB_COUNTER_OVERFLOW] = BIT(7), 548 [MIB_COUNTER_VALID] = BIT(6), 549 [VLAN_TABLE_FID] = GENMASK(15, 12), 550 [VLAN_TABLE_MEMBERSHIP] = GENMASK(18, 16), 551 [VLAN_TABLE_VALID] = BIT(19), 552 [STATIC_MAC_TABLE_VALID] = BIT(19), 553 [STATIC_MAC_TABLE_USE_FID] = BIT(21), 554 [STATIC_MAC_TABLE_FID] = GENMASK(25, 22), 555 [STATIC_MAC_TABLE_OVERRIDE] = BIT(20), 556 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(18, 16), 557 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(1, 0), 558 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(2), 559 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 560 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 24), 561 [DYNAMIC_MAC_TABLE_FID] = GENMASK(19, 16), 562 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(21, 20), 563 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(23, 22), 564 }; 565 566 static u8 ksz8863_shifts[] = { 567 [VLAN_TABLE_MEMBERSHIP_S] = 16, 568 [STATIC_MAC_FWD_PORTS] = 16, 569 [STATIC_MAC_FID] = 22, 570 [DYNAMIC_MAC_ENTRIES_H] = 8, 571 [DYNAMIC_MAC_ENTRIES] = 24, 572 [DYNAMIC_MAC_FID] = 16, 573 [DYNAMIC_MAC_TIMESTAMP] = 22, 574 [DYNAMIC_MAC_SRC_PORT] = 20, 575 }; 576 577 static const u16 ksz8895_regs[] = { 578 [REG_SW_MAC_ADDR] = 0x68, 579 [REG_IND_CTRL_0] = 0x6E, 580 [REG_IND_DATA_8] = 0x70, 581 [REG_IND_DATA_CHECK] = 0x72, 582 [REG_IND_DATA_HI] = 0x71, 583 [REG_IND_DATA_LO] = 0x75, 584 [REG_IND_MIB_CHECK] = 0x75, 585 [P_FORCE_CTRL] = 0x0C, 586 [P_LINK_STATUS] = 0x0E, 587 [P_LOCAL_CTRL] = 0x0C, 588 [P_NEG_RESTART_CTRL] = 0x0D, 589 [P_REMOTE_STATUS] = 0x0E, 590 [P_SPEED_STATUS] = 0x09, 591 [S_TAIL_TAG_CTRL] = 0x0C, 592 [P_STP_CTRL] = 0x02, 593 [S_START_CTRL] = 0x01, 594 [S_BROADCAST_CTRL] = 0x06, 595 [S_MULTICAST_CTRL] = 0x04, 596 }; 597 598 static const u32 ksz8895_masks[] = { 599 [PORT_802_1P_REMAPPING] = BIT(7), 600 [SW_TAIL_TAG_ENABLE] = BIT(1), 601 [MIB_COUNTER_OVERFLOW] = BIT(7), 602 [MIB_COUNTER_VALID] = BIT(6), 603 [VLAN_TABLE_FID] = GENMASK(6, 0), 604 [VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7), 605 [VLAN_TABLE_VALID] = BIT(12), 606 [STATIC_MAC_TABLE_VALID] = BIT(21), 607 [STATIC_MAC_TABLE_USE_FID] = BIT(23), 608 [STATIC_MAC_TABLE_FID] = GENMASK(30, 24), 609 [STATIC_MAC_TABLE_OVERRIDE] = BIT(22), 610 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(20, 16), 611 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0), 612 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7), 613 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 614 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29), 615 [DYNAMIC_MAC_TABLE_FID] = GENMASK(22, 16), 616 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24), 617 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27), 618 }; 619 620 static const u8 ksz8895_shifts[] = { 621 [VLAN_TABLE_MEMBERSHIP_S] = 7, 622 [VLAN_TABLE] = 13, 623 [STATIC_MAC_FWD_PORTS] = 16, 624 [STATIC_MAC_FID] = 24, 625 [DYNAMIC_MAC_ENTRIES_H] = 3, 626 [DYNAMIC_MAC_ENTRIES] = 29, 627 [DYNAMIC_MAC_FID] = 16, 628 [DYNAMIC_MAC_TIMESTAMP] = 27, 629 [DYNAMIC_MAC_SRC_PORT] = 24, 630 }; 631 632 static const u16 ksz9477_regs[] = { 633 [REG_SW_MAC_ADDR] = 0x0302, 634 [P_STP_CTRL] = 0x0B04, 635 [S_START_CTRL] = 0x0300, 636 [S_BROADCAST_CTRL] = 0x0332, 637 [S_MULTICAST_CTRL] = 0x0331, 638 [P_XMII_CTRL_0] = 0x0300, 639 [P_XMII_CTRL_1] = 0x0301, 640 [REG_SW_PME_CTRL] = 0x0006, 641 [REG_PORT_PME_STATUS] = 0x0013, 642 [REG_PORT_PME_CTRL] = 0x0017, 643 }; 644 645 static const u32 ksz9477_masks[] = { 646 [ALU_STAT_WRITE] = 0, 647 [ALU_STAT_READ] = 1, 648 [P_MII_TX_FLOW_CTRL] = BIT(5), 649 [P_MII_RX_FLOW_CTRL] = BIT(3), 650 }; 651 652 static const u8 ksz9477_shifts[] = { 653 [ALU_STAT_INDEX] = 16, 654 }; 655 656 static const u8 ksz9477_xmii_ctrl0[] = { 657 [P_MII_100MBIT] = 1, 658 [P_MII_10MBIT] = 0, 659 [P_MII_FULL_DUPLEX] = 1, 660 [P_MII_HALF_DUPLEX] = 0, 661 }; 662 663 static const u8 ksz9477_xmii_ctrl1[] = { 664 [P_RGMII_SEL] = 0, 665 [P_RMII_SEL] = 1, 666 [P_GMII_SEL] = 2, 667 [P_MII_SEL] = 3, 668 [P_GMII_1GBIT] = 0, 669 [P_GMII_NOT_1GBIT] = 1, 670 }; 671 672 static const u32 lan937x_masks[] = { 673 [ALU_STAT_WRITE] = 1, 674 [ALU_STAT_READ] = 2, 675 [P_MII_TX_FLOW_CTRL] = BIT(5), 676 [P_MII_RX_FLOW_CTRL] = BIT(3), 677 }; 678 679 static const u8 lan937x_shifts[] = { 680 [ALU_STAT_INDEX] = 8, 681 }; 682 683 static const struct regmap_range ksz8563_valid_regs[] = { 684 regmap_reg_range(0x0000, 0x0003), 685 regmap_reg_range(0x0006, 0x0006), 686 regmap_reg_range(0x000f, 0x001f), 687 regmap_reg_range(0x0100, 0x0100), 688 regmap_reg_range(0x0104, 0x0107), 689 regmap_reg_range(0x010d, 0x010d), 690 regmap_reg_range(0x0110, 0x0113), 691 regmap_reg_range(0x0120, 0x012b), 692 regmap_reg_range(0x0201, 0x0201), 693 regmap_reg_range(0x0210, 0x0213), 694 regmap_reg_range(0x0300, 0x0300), 695 regmap_reg_range(0x0302, 0x031b), 696 regmap_reg_range(0x0320, 0x032b), 697 regmap_reg_range(0x0330, 0x0336), 698 regmap_reg_range(0x0338, 0x033e), 699 regmap_reg_range(0x0340, 0x035f), 700 regmap_reg_range(0x0370, 0x0370), 701 regmap_reg_range(0x0378, 0x0378), 702 regmap_reg_range(0x037c, 0x037d), 703 regmap_reg_range(0x0390, 0x0393), 704 regmap_reg_range(0x0400, 0x040e), 705 regmap_reg_range(0x0410, 0x042f), 706 regmap_reg_range(0x0500, 0x0519), 707 regmap_reg_range(0x0520, 0x054b), 708 regmap_reg_range(0x0550, 0x05b3), 709 710 /* port 1 */ 711 regmap_reg_range(0x1000, 0x1001), 712 regmap_reg_range(0x1004, 0x100b), 713 regmap_reg_range(0x1013, 0x1013), 714 regmap_reg_range(0x1017, 0x1017), 715 regmap_reg_range(0x101b, 0x101b), 716 regmap_reg_range(0x101f, 0x1021), 717 regmap_reg_range(0x1030, 0x1030), 718 regmap_reg_range(0x1100, 0x1111), 719 regmap_reg_range(0x111a, 0x111d), 720 regmap_reg_range(0x1122, 0x1127), 721 regmap_reg_range(0x112a, 0x112b), 722 regmap_reg_range(0x1136, 0x1139), 723 regmap_reg_range(0x113e, 0x113f), 724 regmap_reg_range(0x1400, 0x1401), 725 regmap_reg_range(0x1403, 0x1403), 726 regmap_reg_range(0x1410, 0x1417), 727 regmap_reg_range(0x1420, 0x1423), 728 regmap_reg_range(0x1500, 0x1507), 729 regmap_reg_range(0x1600, 0x1612), 730 regmap_reg_range(0x1800, 0x180f), 731 regmap_reg_range(0x1900, 0x1907), 732 regmap_reg_range(0x1914, 0x191b), 733 regmap_reg_range(0x1a00, 0x1a03), 734 regmap_reg_range(0x1a04, 0x1a08), 735 regmap_reg_range(0x1b00, 0x1b01), 736 regmap_reg_range(0x1b04, 0x1b04), 737 regmap_reg_range(0x1c00, 0x1c05), 738 regmap_reg_range(0x1c08, 0x1c1b), 739 740 /* port 2 */ 741 regmap_reg_range(0x2000, 0x2001), 742 regmap_reg_range(0x2004, 0x200b), 743 regmap_reg_range(0x2013, 0x2013), 744 regmap_reg_range(0x2017, 0x2017), 745 regmap_reg_range(0x201b, 0x201b), 746 regmap_reg_range(0x201f, 0x2021), 747 regmap_reg_range(0x2030, 0x2030), 748 regmap_reg_range(0x2100, 0x2111), 749 regmap_reg_range(0x211a, 0x211d), 750 regmap_reg_range(0x2122, 0x2127), 751 regmap_reg_range(0x212a, 0x212b), 752 regmap_reg_range(0x2136, 0x2139), 753 regmap_reg_range(0x213e, 0x213f), 754 regmap_reg_range(0x2400, 0x2401), 755 regmap_reg_range(0x2403, 0x2403), 756 regmap_reg_range(0x2410, 0x2417), 757 regmap_reg_range(0x2420, 0x2423), 758 regmap_reg_range(0x2500, 0x2507), 759 regmap_reg_range(0x2600, 0x2612), 760 regmap_reg_range(0x2800, 0x280f), 761 regmap_reg_range(0x2900, 0x2907), 762 regmap_reg_range(0x2914, 0x291b), 763 regmap_reg_range(0x2a00, 0x2a03), 764 regmap_reg_range(0x2a04, 0x2a08), 765 regmap_reg_range(0x2b00, 0x2b01), 766 regmap_reg_range(0x2b04, 0x2b04), 767 regmap_reg_range(0x2c00, 0x2c05), 768 regmap_reg_range(0x2c08, 0x2c1b), 769 770 /* port 3 */ 771 regmap_reg_range(0x3000, 0x3001), 772 regmap_reg_range(0x3004, 0x300b), 773 regmap_reg_range(0x3013, 0x3013), 774 regmap_reg_range(0x3017, 0x3017), 775 regmap_reg_range(0x301b, 0x301b), 776 regmap_reg_range(0x301f, 0x3021), 777 regmap_reg_range(0x3030, 0x3030), 778 regmap_reg_range(0x3300, 0x3301), 779 regmap_reg_range(0x3303, 0x3303), 780 regmap_reg_range(0x3400, 0x3401), 781 regmap_reg_range(0x3403, 0x3403), 782 regmap_reg_range(0x3410, 0x3417), 783 regmap_reg_range(0x3420, 0x3423), 784 regmap_reg_range(0x3500, 0x3507), 785 regmap_reg_range(0x3600, 0x3612), 786 regmap_reg_range(0x3800, 0x380f), 787 regmap_reg_range(0x3900, 0x3907), 788 regmap_reg_range(0x3914, 0x391b), 789 regmap_reg_range(0x3a00, 0x3a03), 790 regmap_reg_range(0x3a04, 0x3a08), 791 regmap_reg_range(0x3b00, 0x3b01), 792 regmap_reg_range(0x3b04, 0x3b04), 793 regmap_reg_range(0x3c00, 0x3c05), 794 regmap_reg_range(0x3c08, 0x3c1b), 795 }; 796 797 static const struct regmap_access_table ksz8563_register_set = { 798 .yes_ranges = ksz8563_valid_regs, 799 .n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs), 800 }; 801 802 static const struct regmap_range ksz9477_valid_regs[] = { 803 regmap_reg_range(0x0000, 0x0003), 804 regmap_reg_range(0x0006, 0x0006), 805 regmap_reg_range(0x0010, 0x001f), 806 regmap_reg_range(0x0100, 0x0100), 807 regmap_reg_range(0x0103, 0x0107), 808 regmap_reg_range(0x010d, 0x010d), 809 regmap_reg_range(0x0110, 0x0113), 810 regmap_reg_range(0x0120, 0x012b), 811 regmap_reg_range(0x0201, 0x0201), 812 regmap_reg_range(0x0210, 0x0213), 813 regmap_reg_range(0x0300, 0x0300), 814 regmap_reg_range(0x0302, 0x031b), 815 regmap_reg_range(0x0320, 0x032b), 816 regmap_reg_range(0x0330, 0x0336), 817 regmap_reg_range(0x0338, 0x033b), 818 regmap_reg_range(0x033e, 0x033e), 819 regmap_reg_range(0x0340, 0x035f), 820 regmap_reg_range(0x0370, 0x0370), 821 regmap_reg_range(0x0378, 0x0378), 822 regmap_reg_range(0x037c, 0x037d), 823 regmap_reg_range(0x0390, 0x0393), 824 regmap_reg_range(0x0400, 0x040e), 825 regmap_reg_range(0x0410, 0x042f), 826 regmap_reg_range(0x0444, 0x044b), 827 regmap_reg_range(0x0450, 0x046f), 828 regmap_reg_range(0x0500, 0x0519), 829 regmap_reg_range(0x0520, 0x054b), 830 regmap_reg_range(0x0550, 0x05b3), 831 regmap_reg_range(0x0604, 0x060b), 832 regmap_reg_range(0x0610, 0x0612), 833 regmap_reg_range(0x0614, 0x062c), 834 regmap_reg_range(0x0640, 0x0645), 835 regmap_reg_range(0x0648, 0x064d), 836 837 /* port 1 */ 838 regmap_reg_range(0x1000, 0x1001), 839 regmap_reg_range(0x1013, 0x1013), 840 regmap_reg_range(0x1017, 0x1017), 841 regmap_reg_range(0x101b, 0x101b), 842 regmap_reg_range(0x101f, 0x1020), 843 regmap_reg_range(0x1030, 0x1030), 844 regmap_reg_range(0x1100, 0x1115), 845 regmap_reg_range(0x111a, 0x111f), 846 regmap_reg_range(0x1120, 0x112b), 847 regmap_reg_range(0x1134, 0x113b), 848 regmap_reg_range(0x113c, 0x113f), 849 regmap_reg_range(0x1400, 0x1401), 850 regmap_reg_range(0x1403, 0x1403), 851 regmap_reg_range(0x1410, 0x1417), 852 regmap_reg_range(0x1420, 0x1423), 853 regmap_reg_range(0x1500, 0x1507), 854 regmap_reg_range(0x1600, 0x1613), 855 regmap_reg_range(0x1800, 0x180f), 856 regmap_reg_range(0x1820, 0x1827), 857 regmap_reg_range(0x1830, 0x1837), 858 regmap_reg_range(0x1840, 0x184b), 859 regmap_reg_range(0x1900, 0x1907), 860 regmap_reg_range(0x1914, 0x191b), 861 regmap_reg_range(0x1920, 0x1920), 862 regmap_reg_range(0x1923, 0x1927), 863 regmap_reg_range(0x1a00, 0x1a03), 864 regmap_reg_range(0x1a04, 0x1a07), 865 regmap_reg_range(0x1b00, 0x1b01), 866 regmap_reg_range(0x1b04, 0x1b04), 867 regmap_reg_range(0x1c00, 0x1c05), 868 regmap_reg_range(0x1c08, 0x1c1b), 869 870 /* port 2 */ 871 regmap_reg_range(0x2000, 0x2001), 872 regmap_reg_range(0x2013, 0x2013), 873 regmap_reg_range(0x2017, 0x2017), 874 regmap_reg_range(0x201b, 0x201b), 875 regmap_reg_range(0x201f, 0x2020), 876 regmap_reg_range(0x2030, 0x2030), 877 regmap_reg_range(0x2100, 0x2115), 878 regmap_reg_range(0x211a, 0x211f), 879 regmap_reg_range(0x2120, 0x212b), 880 regmap_reg_range(0x2134, 0x213b), 881 regmap_reg_range(0x213c, 0x213f), 882 regmap_reg_range(0x2400, 0x2401), 883 regmap_reg_range(0x2403, 0x2403), 884 regmap_reg_range(0x2410, 0x2417), 885 regmap_reg_range(0x2420, 0x2423), 886 regmap_reg_range(0x2500, 0x2507), 887 regmap_reg_range(0x2600, 0x2613), 888 regmap_reg_range(0x2800, 0x280f), 889 regmap_reg_range(0x2820, 0x2827), 890 regmap_reg_range(0x2830, 0x2837), 891 regmap_reg_range(0x2840, 0x284b), 892 regmap_reg_range(0x2900, 0x2907), 893 regmap_reg_range(0x2914, 0x291b), 894 regmap_reg_range(0x2920, 0x2920), 895 regmap_reg_range(0x2923, 0x2927), 896 regmap_reg_range(0x2a00, 0x2a03), 897 regmap_reg_range(0x2a04, 0x2a07), 898 regmap_reg_range(0x2b00, 0x2b01), 899 regmap_reg_range(0x2b04, 0x2b04), 900 regmap_reg_range(0x2c00, 0x2c05), 901 regmap_reg_range(0x2c08, 0x2c1b), 902 903 /* port 3 */ 904 regmap_reg_range(0x3000, 0x3001), 905 regmap_reg_range(0x3013, 0x3013), 906 regmap_reg_range(0x3017, 0x3017), 907 regmap_reg_range(0x301b, 0x301b), 908 regmap_reg_range(0x301f, 0x3020), 909 regmap_reg_range(0x3030, 0x3030), 910 regmap_reg_range(0x3100, 0x3115), 911 regmap_reg_range(0x311a, 0x311f), 912 regmap_reg_range(0x3120, 0x312b), 913 regmap_reg_range(0x3134, 0x313b), 914 regmap_reg_range(0x313c, 0x313f), 915 regmap_reg_range(0x3400, 0x3401), 916 regmap_reg_range(0x3403, 0x3403), 917 regmap_reg_range(0x3410, 0x3417), 918 regmap_reg_range(0x3420, 0x3423), 919 regmap_reg_range(0x3500, 0x3507), 920 regmap_reg_range(0x3600, 0x3613), 921 regmap_reg_range(0x3800, 0x380f), 922 regmap_reg_range(0x3820, 0x3827), 923 regmap_reg_range(0x3830, 0x3837), 924 regmap_reg_range(0x3840, 0x384b), 925 regmap_reg_range(0x3900, 0x3907), 926 regmap_reg_range(0x3914, 0x391b), 927 regmap_reg_range(0x3920, 0x3920), 928 regmap_reg_range(0x3923, 0x3927), 929 regmap_reg_range(0x3a00, 0x3a03), 930 regmap_reg_range(0x3a04, 0x3a07), 931 regmap_reg_range(0x3b00, 0x3b01), 932 regmap_reg_range(0x3b04, 0x3b04), 933 regmap_reg_range(0x3c00, 0x3c05), 934 regmap_reg_range(0x3c08, 0x3c1b), 935 936 /* port 4 */ 937 regmap_reg_range(0x4000, 0x4001), 938 regmap_reg_range(0x4013, 0x4013), 939 regmap_reg_range(0x4017, 0x4017), 940 regmap_reg_range(0x401b, 0x401b), 941 regmap_reg_range(0x401f, 0x4020), 942 regmap_reg_range(0x4030, 0x4030), 943 regmap_reg_range(0x4100, 0x4115), 944 regmap_reg_range(0x411a, 0x411f), 945 regmap_reg_range(0x4120, 0x412b), 946 regmap_reg_range(0x4134, 0x413b), 947 regmap_reg_range(0x413c, 0x413f), 948 regmap_reg_range(0x4400, 0x4401), 949 regmap_reg_range(0x4403, 0x4403), 950 regmap_reg_range(0x4410, 0x4417), 951 regmap_reg_range(0x4420, 0x4423), 952 regmap_reg_range(0x4500, 0x4507), 953 regmap_reg_range(0x4600, 0x4613), 954 regmap_reg_range(0x4800, 0x480f), 955 regmap_reg_range(0x4820, 0x4827), 956 regmap_reg_range(0x4830, 0x4837), 957 regmap_reg_range(0x4840, 0x484b), 958 regmap_reg_range(0x4900, 0x4907), 959 regmap_reg_range(0x4914, 0x491b), 960 regmap_reg_range(0x4920, 0x4920), 961 regmap_reg_range(0x4923, 0x4927), 962 regmap_reg_range(0x4a00, 0x4a03), 963 regmap_reg_range(0x4a04, 0x4a07), 964 regmap_reg_range(0x4b00, 0x4b01), 965 regmap_reg_range(0x4b04, 0x4b04), 966 regmap_reg_range(0x4c00, 0x4c05), 967 regmap_reg_range(0x4c08, 0x4c1b), 968 969 /* port 5 */ 970 regmap_reg_range(0x5000, 0x5001), 971 regmap_reg_range(0x5013, 0x5013), 972 regmap_reg_range(0x5017, 0x5017), 973 regmap_reg_range(0x501b, 0x501b), 974 regmap_reg_range(0x501f, 0x5020), 975 regmap_reg_range(0x5030, 0x5030), 976 regmap_reg_range(0x5100, 0x5115), 977 regmap_reg_range(0x511a, 0x511f), 978 regmap_reg_range(0x5120, 0x512b), 979 regmap_reg_range(0x5134, 0x513b), 980 regmap_reg_range(0x513c, 0x513f), 981 regmap_reg_range(0x5400, 0x5401), 982 regmap_reg_range(0x5403, 0x5403), 983 regmap_reg_range(0x5410, 0x5417), 984 regmap_reg_range(0x5420, 0x5423), 985 regmap_reg_range(0x5500, 0x5507), 986 regmap_reg_range(0x5600, 0x5613), 987 regmap_reg_range(0x5800, 0x580f), 988 regmap_reg_range(0x5820, 0x5827), 989 regmap_reg_range(0x5830, 0x5837), 990 regmap_reg_range(0x5840, 0x584b), 991 regmap_reg_range(0x5900, 0x5907), 992 regmap_reg_range(0x5914, 0x591b), 993 regmap_reg_range(0x5920, 0x5920), 994 regmap_reg_range(0x5923, 0x5927), 995 regmap_reg_range(0x5a00, 0x5a03), 996 regmap_reg_range(0x5a04, 0x5a07), 997 regmap_reg_range(0x5b00, 0x5b01), 998 regmap_reg_range(0x5b04, 0x5b04), 999 regmap_reg_range(0x5c00, 0x5c05), 1000 regmap_reg_range(0x5c08, 0x5c1b), 1001 1002 /* port 6 */ 1003 regmap_reg_range(0x6000, 0x6001), 1004 regmap_reg_range(0x6013, 0x6013), 1005 regmap_reg_range(0x6017, 0x6017), 1006 regmap_reg_range(0x601b, 0x601b), 1007 regmap_reg_range(0x601f, 0x6020), 1008 regmap_reg_range(0x6030, 0x6030), 1009 regmap_reg_range(0x6300, 0x6301), 1010 regmap_reg_range(0x6400, 0x6401), 1011 regmap_reg_range(0x6403, 0x6403), 1012 regmap_reg_range(0x6410, 0x6417), 1013 regmap_reg_range(0x6420, 0x6423), 1014 regmap_reg_range(0x6500, 0x6507), 1015 regmap_reg_range(0x6600, 0x6613), 1016 regmap_reg_range(0x6800, 0x680f), 1017 regmap_reg_range(0x6820, 0x6827), 1018 regmap_reg_range(0x6830, 0x6837), 1019 regmap_reg_range(0x6840, 0x684b), 1020 regmap_reg_range(0x6900, 0x6907), 1021 regmap_reg_range(0x6914, 0x691b), 1022 regmap_reg_range(0x6920, 0x6920), 1023 regmap_reg_range(0x6923, 0x6927), 1024 regmap_reg_range(0x6a00, 0x6a03), 1025 regmap_reg_range(0x6a04, 0x6a07), 1026 regmap_reg_range(0x6b00, 0x6b01), 1027 regmap_reg_range(0x6b04, 0x6b04), 1028 regmap_reg_range(0x6c00, 0x6c05), 1029 regmap_reg_range(0x6c08, 0x6c1b), 1030 1031 /* port 7 */ 1032 regmap_reg_range(0x7000, 0x7001), 1033 regmap_reg_range(0x7013, 0x7013), 1034 regmap_reg_range(0x7017, 0x7017), 1035 regmap_reg_range(0x701b, 0x701b), 1036 regmap_reg_range(0x701f, 0x7020), 1037 regmap_reg_range(0x7030, 0x7030), 1038 regmap_reg_range(0x7200, 0x7203), 1039 regmap_reg_range(0x7206, 0x7207), 1040 regmap_reg_range(0x7300, 0x7301), 1041 regmap_reg_range(0x7400, 0x7401), 1042 regmap_reg_range(0x7403, 0x7403), 1043 regmap_reg_range(0x7410, 0x7417), 1044 regmap_reg_range(0x7420, 0x7423), 1045 regmap_reg_range(0x7500, 0x7507), 1046 regmap_reg_range(0x7600, 0x7613), 1047 regmap_reg_range(0x7800, 0x780f), 1048 regmap_reg_range(0x7820, 0x7827), 1049 regmap_reg_range(0x7830, 0x7837), 1050 regmap_reg_range(0x7840, 0x784b), 1051 regmap_reg_range(0x7900, 0x7907), 1052 regmap_reg_range(0x7914, 0x791b), 1053 regmap_reg_range(0x7920, 0x7920), 1054 regmap_reg_range(0x7923, 0x7927), 1055 regmap_reg_range(0x7a00, 0x7a03), 1056 regmap_reg_range(0x7a04, 0x7a07), 1057 regmap_reg_range(0x7b00, 0x7b01), 1058 regmap_reg_range(0x7b04, 0x7b04), 1059 regmap_reg_range(0x7c00, 0x7c05), 1060 regmap_reg_range(0x7c08, 0x7c1b), 1061 }; 1062 1063 static const struct regmap_access_table ksz9477_register_set = { 1064 .yes_ranges = ksz9477_valid_regs, 1065 .n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs), 1066 }; 1067 1068 static const struct regmap_range ksz9896_valid_regs[] = { 1069 regmap_reg_range(0x0000, 0x0003), 1070 regmap_reg_range(0x0006, 0x0006), 1071 regmap_reg_range(0x0010, 0x001f), 1072 regmap_reg_range(0x0100, 0x0100), 1073 regmap_reg_range(0x0103, 0x0107), 1074 regmap_reg_range(0x010d, 0x010d), 1075 regmap_reg_range(0x0110, 0x0113), 1076 regmap_reg_range(0x0120, 0x0127), 1077 regmap_reg_range(0x0201, 0x0201), 1078 regmap_reg_range(0x0210, 0x0213), 1079 regmap_reg_range(0x0300, 0x0300), 1080 regmap_reg_range(0x0302, 0x030b), 1081 regmap_reg_range(0x0310, 0x031b), 1082 regmap_reg_range(0x0320, 0x032b), 1083 regmap_reg_range(0x0330, 0x0336), 1084 regmap_reg_range(0x0338, 0x033b), 1085 regmap_reg_range(0x033e, 0x033e), 1086 regmap_reg_range(0x0340, 0x035f), 1087 regmap_reg_range(0x0370, 0x0370), 1088 regmap_reg_range(0x0378, 0x0378), 1089 regmap_reg_range(0x037c, 0x037d), 1090 regmap_reg_range(0x0390, 0x0393), 1091 regmap_reg_range(0x0400, 0x040e), 1092 regmap_reg_range(0x0410, 0x042f), 1093 1094 /* port 1 */ 1095 regmap_reg_range(0x1000, 0x1001), 1096 regmap_reg_range(0x1013, 0x1013), 1097 regmap_reg_range(0x1017, 0x1017), 1098 regmap_reg_range(0x101b, 0x101b), 1099 regmap_reg_range(0x101f, 0x1020), 1100 regmap_reg_range(0x1030, 0x1030), 1101 regmap_reg_range(0x1100, 0x1115), 1102 regmap_reg_range(0x111a, 0x111f), 1103 regmap_reg_range(0x1120, 0x112b), 1104 regmap_reg_range(0x1134, 0x113b), 1105 regmap_reg_range(0x113c, 0x113f), 1106 regmap_reg_range(0x1400, 0x1401), 1107 regmap_reg_range(0x1403, 0x1403), 1108 regmap_reg_range(0x1410, 0x1417), 1109 regmap_reg_range(0x1420, 0x1423), 1110 regmap_reg_range(0x1500, 0x1507), 1111 regmap_reg_range(0x1600, 0x1612), 1112 regmap_reg_range(0x1800, 0x180f), 1113 regmap_reg_range(0x1820, 0x1827), 1114 regmap_reg_range(0x1830, 0x1837), 1115 regmap_reg_range(0x1840, 0x184b), 1116 regmap_reg_range(0x1900, 0x1907), 1117 regmap_reg_range(0x1914, 0x1915), 1118 regmap_reg_range(0x1a00, 0x1a03), 1119 regmap_reg_range(0x1a04, 0x1a07), 1120 regmap_reg_range(0x1b00, 0x1b01), 1121 regmap_reg_range(0x1b04, 0x1b04), 1122 1123 /* port 2 */ 1124 regmap_reg_range(0x2000, 0x2001), 1125 regmap_reg_range(0x2013, 0x2013), 1126 regmap_reg_range(0x2017, 0x2017), 1127 regmap_reg_range(0x201b, 0x201b), 1128 regmap_reg_range(0x201f, 0x2020), 1129 regmap_reg_range(0x2030, 0x2030), 1130 regmap_reg_range(0x2100, 0x2115), 1131 regmap_reg_range(0x211a, 0x211f), 1132 regmap_reg_range(0x2120, 0x212b), 1133 regmap_reg_range(0x2134, 0x213b), 1134 regmap_reg_range(0x213c, 0x213f), 1135 regmap_reg_range(0x2400, 0x2401), 1136 regmap_reg_range(0x2403, 0x2403), 1137 regmap_reg_range(0x2410, 0x2417), 1138 regmap_reg_range(0x2420, 0x2423), 1139 regmap_reg_range(0x2500, 0x2507), 1140 regmap_reg_range(0x2600, 0x2612), 1141 regmap_reg_range(0x2800, 0x280f), 1142 regmap_reg_range(0x2820, 0x2827), 1143 regmap_reg_range(0x2830, 0x2837), 1144 regmap_reg_range(0x2840, 0x284b), 1145 regmap_reg_range(0x2900, 0x2907), 1146 regmap_reg_range(0x2914, 0x2915), 1147 regmap_reg_range(0x2a00, 0x2a03), 1148 regmap_reg_range(0x2a04, 0x2a07), 1149 regmap_reg_range(0x2b00, 0x2b01), 1150 regmap_reg_range(0x2b04, 0x2b04), 1151 1152 /* port 3 */ 1153 regmap_reg_range(0x3000, 0x3001), 1154 regmap_reg_range(0x3013, 0x3013), 1155 regmap_reg_range(0x3017, 0x3017), 1156 regmap_reg_range(0x301b, 0x301b), 1157 regmap_reg_range(0x301f, 0x3020), 1158 regmap_reg_range(0x3030, 0x3030), 1159 regmap_reg_range(0x3100, 0x3115), 1160 regmap_reg_range(0x311a, 0x311f), 1161 regmap_reg_range(0x3120, 0x312b), 1162 regmap_reg_range(0x3134, 0x313b), 1163 regmap_reg_range(0x313c, 0x313f), 1164 regmap_reg_range(0x3400, 0x3401), 1165 regmap_reg_range(0x3403, 0x3403), 1166 regmap_reg_range(0x3410, 0x3417), 1167 regmap_reg_range(0x3420, 0x3423), 1168 regmap_reg_range(0x3500, 0x3507), 1169 regmap_reg_range(0x3600, 0x3612), 1170 regmap_reg_range(0x3800, 0x380f), 1171 regmap_reg_range(0x3820, 0x3827), 1172 regmap_reg_range(0x3830, 0x3837), 1173 regmap_reg_range(0x3840, 0x384b), 1174 regmap_reg_range(0x3900, 0x3907), 1175 regmap_reg_range(0x3914, 0x3915), 1176 regmap_reg_range(0x3a00, 0x3a03), 1177 regmap_reg_range(0x3a04, 0x3a07), 1178 regmap_reg_range(0x3b00, 0x3b01), 1179 regmap_reg_range(0x3b04, 0x3b04), 1180 1181 /* port 4 */ 1182 regmap_reg_range(0x4000, 0x4001), 1183 regmap_reg_range(0x4013, 0x4013), 1184 regmap_reg_range(0x4017, 0x4017), 1185 regmap_reg_range(0x401b, 0x401b), 1186 regmap_reg_range(0x401f, 0x4020), 1187 regmap_reg_range(0x4030, 0x4030), 1188 regmap_reg_range(0x4100, 0x4115), 1189 regmap_reg_range(0x411a, 0x411f), 1190 regmap_reg_range(0x4120, 0x412b), 1191 regmap_reg_range(0x4134, 0x413b), 1192 regmap_reg_range(0x413c, 0x413f), 1193 regmap_reg_range(0x4400, 0x4401), 1194 regmap_reg_range(0x4403, 0x4403), 1195 regmap_reg_range(0x4410, 0x4417), 1196 regmap_reg_range(0x4420, 0x4423), 1197 regmap_reg_range(0x4500, 0x4507), 1198 regmap_reg_range(0x4600, 0x4612), 1199 regmap_reg_range(0x4800, 0x480f), 1200 regmap_reg_range(0x4820, 0x4827), 1201 regmap_reg_range(0x4830, 0x4837), 1202 regmap_reg_range(0x4840, 0x484b), 1203 regmap_reg_range(0x4900, 0x4907), 1204 regmap_reg_range(0x4914, 0x4915), 1205 regmap_reg_range(0x4a00, 0x4a03), 1206 regmap_reg_range(0x4a04, 0x4a07), 1207 regmap_reg_range(0x4b00, 0x4b01), 1208 regmap_reg_range(0x4b04, 0x4b04), 1209 1210 /* port 5 */ 1211 regmap_reg_range(0x5000, 0x5001), 1212 regmap_reg_range(0x5013, 0x5013), 1213 regmap_reg_range(0x5017, 0x5017), 1214 regmap_reg_range(0x501b, 0x501b), 1215 regmap_reg_range(0x501f, 0x5020), 1216 regmap_reg_range(0x5030, 0x5030), 1217 regmap_reg_range(0x5100, 0x5115), 1218 regmap_reg_range(0x511a, 0x511f), 1219 regmap_reg_range(0x5120, 0x512b), 1220 regmap_reg_range(0x5134, 0x513b), 1221 regmap_reg_range(0x513c, 0x513f), 1222 regmap_reg_range(0x5400, 0x5401), 1223 regmap_reg_range(0x5403, 0x5403), 1224 regmap_reg_range(0x5410, 0x5417), 1225 regmap_reg_range(0x5420, 0x5423), 1226 regmap_reg_range(0x5500, 0x5507), 1227 regmap_reg_range(0x5600, 0x5612), 1228 regmap_reg_range(0x5800, 0x580f), 1229 regmap_reg_range(0x5820, 0x5827), 1230 regmap_reg_range(0x5830, 0x5837), 1231 regmap_reg_range(0x5840, 0x584b), 1232 regmap_reg_range(0x5900, 0x5907), 1233 regmap_reg_range(0x5914, 0x5915), 1234 regmap_reg_range(0x5a00, 0x5a03), 1235 regmap_reg_range(0x5a04, 0x5a07), 1236 regmap_reg_range(0x5b00, 0x5b01), 1237 regmap_reg_range(0x5b04, 0x5b04), 1238 1239 /* port 6 */ 1240 regmap_reg_range(0x6000, 0x6001), 1241 regmap_reg_range(0x6013, 0x6013), 1242 regmap_reg_range(0x6017, 0x6017), 1243 regmap_reg_range(0x601b, 0x601b), 1244 regmap_reg_range(0x601f, 0x6020), 1245 regmap_reg_range(0x6030, 0x6030), 1246 regmap_reg_range(0x6100, 0x6115), 1247 regmap_reg_range(0x611a, 0x611f), 1248 regmap_reg_range(0x6120, 0x612b), 1249 regmap_reg_range(0x6134, 0x613b), 1250 regmap_reg_range(0x613c, 0x613f), 1251 regmap_reg_range(0x6300, 0x6301), 1252 regmap_reg_range(0x6400, 0x6401), 1253 regmap_reg_range(0x6403, 0x6403), 1254 regmap_reg_range(0x6410, 0x6417), 1255 regmap_reg_range(0x6420, 0x6423), 1256 regmap_reg_range(0x6500, 0x6507), 1257 regmap_reg_range(0x6600, 0x6612), 1258 regmap_reg_range(0x6800, 0x680f), 1259 regmap_reg_range(0x6820, 0x6827), 1260 regmap_reg_range(0x6830, 0x6837), 1261 regmap_reg_range(0x6840, 0x684b), 1262 regmap_reg_range(0x6900, 0x6907), 1263 regmap_reg_range(0x6914, 0x6915), 1264 regmap_reg_range(0x6a00, 0x6a03), 1265 regmap_reg_range(0x6a04, 0x6a07), 1266 regmap_reg_range(0x6b00, 0x6b01), 1267 regmap_reg_range(0x6b04, 0x6b04), 1268 }; 1269 1270 static const struct regmap_access_table ksz9896_register_set = { 1271 .yes_ranges = ksz9896_valid_regs, 1272 .n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs), 1273 }; 1274 1275 static const struct regmap_range ksz8873_valid_regs[] = { 1276 regmap_reg_range(0x00, 0x01), 1277 /* global control register */ 1278 regmap_reg_range(0x02, 0x0f), 1279 1280 /* port registers */ 1281 regmap_reg_range(0x10, 0x1d), 1282 regmap_reg_range(0x1e, 0x1f), 1283 regmap_reg_range(0x20, 0x2d), 1284 regmap_reg_range(0x2e, 0x2f), 1285 regmap_reg_range(0x30, 0x39), 1286 regmap_reg_range(0x3f, 0x3f), 1287 1288 /* advanced control registers */ 1289 regmap_reg_range(0x60, 0x6f), 1290 regmap_reg_range(0x70, 0x75), 1291 regmap_reg_range(0x76, 0x78), 1292 regmap_reg_range(0x79, 0x7a), 1293 regmap_reg_range(0x7b, 0x83), 1294 regmap_reg_range(0x8e, 0x99), 1295 regmap_reg_range(0x9a, 0xa5), 1296 regmap_reg_range(0xa6, 0xa6), 1297 regmap_reg_range(0xa7, 0xaa), 1298 regmap_reg_range(0xab, 0xae), 1299 regmap_reg_range(0xaf, 0xba), 1300 regmap_reg_range(0xbb, 0xbc), 1301 regmap_reg_range(0xbd, 0xbd), 1302 regmap_reg_range(0xc0, 0xc0), 1303 regmap_reg_range(0xc2, 0xc2), 1304 regmap_reg_range(0xc3, 0xc3), 1305 regmap_reg_range(0xc4, 0xc4), 1306 regmap_reg_range(0xc6, 0xc6), 1307 }; 1308 1309 static const struct regmap_access_table ksz8873_register_set = { 1310 .yes_ranges = ksz8873_valid_regs, 1311 .n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs), 1312 }; 1313 1314 const struct ksz_chip_data ksz_switch_chips[] = { 1315 [KSZ8563] = { 1316 .chip_id = KSZ8563_CHIP_ID, 1317 .dev_name = "KSZ8563", 1318 .num_vlans = 4096, 1319 .num_alus = 4096, 1320 .num_statics = 16, 1321 .cpu_ports = 0x07, /* can be configured as cpu port */ 1322 .port_cnt = 3, /* total port count */ 1323 .port_nirqs = 3, 1324 .num_tx_queues = 4, 1325 .num_ipms = 8, 1326 .tc_cbs_supported = true, 1327 .ops = &ksz9477_dev_ops, 1328 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1329 .mib_names = ksz9477_mib_names, 1330 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1331 .reg_mib_cnt = MIB_COUNTER_NUM, 1332 .regs = ksz9477_regs, 1333 .masks = ksz9477_masks, 1334 .shifts = ksz9477_shifts, 1335 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1336 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1337 .supports_mii = {false, false, true}, 1338 .supports_rmii = {false, false, true}, 1339 .supports_rgmii = {false, false, true}, 1340 .internal_phy = {true, true, false}, 1341 .gbit_capable = {false, false, true}, 1342 .ptp_capable = true, 1343 .wr_table = &ksz8563_register_set, 1344 .rd_table = &ksz8563_register_set, 1345 }, 1346 1347 [KSZ8795] = { 1348 .chip_id = KSZ8795_CHIP_ID, 1349 .dev_name = "KSZ8795", 1350 .num_vlans = 4096, 1351 .num_alus = 0, 1352 .num_statics = 32, 1353 .cpu_ports = 0x10, /* can be configured as cpu port */ 1354 .port_cnt = 5, /* total cpu and user ports */ 1355 .num_tx_queues = 4, 1356 .num_ipms = 4, 1357 .ops = &ksz87xx_dev_ops, 1358 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1359 .ksz87xx_eee_link_erratum = true, 1360 .mib_names = ksz9477_mib_names, 1361 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1362 .reg_mib_cnt = MIB_COUNTER_NUM, 1363 .regs = ksz8795_regs, 1364 .masks = ksz8795_masks, 1365 .shifts = ksz8795_shifts, 1366 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1367 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1368 .supports_mii = {false, false, false, false, true}, 1369 .supports_rmii = {false, false, false, false, true}, 1370 .supports_rgmii = {false, false, false, false, true}, 1371 .internal_phy = {true, true, true, true, false}, 1372 }, 1373 1374 [KSZ8794] = { 1375 /* WARNING 1376 * ======= 1377 * KSZ8794 is similar to KSZ8795, except the port map 1378 * contains a gap between external and CPU ports, the 1379 * port map is NOT continuous. The per-port register 1380 * map is shifted accordingly too, i.e. registers at 1381 * offset 0x40 are NOT used on KSZ8794 and they ARE 1382 * used on KSZ8795 for external port 3. 1383 * external cpu 1384 * KSZ8794 0,1,2 4 1385 * KSZ8795 0,1,2,3 4 1386 * KSZ8765 0,1,2,3 4 1387 * port_cnt is configured as 5, even though it is 4 1388 */ 1389 .chip_id = KSZ8794_CHIP_ID, 1390 .dev_name = "KSZ8794", 1391 .num_vlans = 4096, 1392 .num_alus = 0, 1393 .num_statics = 32, 1394 .cpu_ports = 0x10, /* can be configured as cpu port */ 1395 .port_cnt = 5, /* total cpu and user ports */ 1396 .num_tx_queues = 4, 1397 .num_ipms = 4, 1398 .ops = &ksz87xx_dev_ops, 1399 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1400 .ksz87xx_eee_link_erratum = true, 1401 .mib_names = ksz9477_mib_names, 1402 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1403 .reg_mib_cnt = MIB_COUNTER_NUM, 1404 .regs = ksz8795_regs, 1405 .masks = ksz8795_masks, 1406 .shifts = ksz8795_shifts, 1407 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1408 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1409 .supports_mii = {false, false, false, false, true}, 1410 .supports_rmii = {false, false, false, false, true}, 1411 .supports_rgmii = {false, false, false, false, true}, 1412 .internal_phy = {true, true, true, false, false}, 1413 }, 1414 1415 [KSZ8765] = { 1416 .chip_id = KSZ8765_CHIP_ID, 1417 .dev_name = "KSZ8765", 1418 .num_vlans = 4096, 1419 .num_alus = 0, 1420 .num_statics = 32, 1421 .cpu_ports = 0x10, /* can be configured as cpu port */ 1422 .port_cnt = 5, /* total cpu and user ports */ 1423 .num_tx_queues = 4, 1424 .num_ipms = 4, 1425 .ops = &ksz87xx_dev_ops, 1426 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1427 .ksz87xx_eee_link_erratum = true, 1428 .mib_names = ksz9477_mib_names, 1429 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1430 .reg_mib_cnt = MIB_COUNTER_NUM, 1431 .regs = ksz8795_regs, 1432 .masks = ksz8795_masks, 1433 .shifts = ksz8795_shifts, 1434 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1435 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1436 .supports_mii = {false, false, false, false, true}, 1437 .supports_rmii = {false, false, false, false, true}, 1438 .supports_rgmii = {false, false, false, false, true}, 1439 .internal_phy = {true, true, true, true, false}, 1440 }, 1441 1442 [KSZ88X3] = { 1443 .chip_id = KSZ88X3_CHIP_ID, 1444 .dev_name = "KSZ8863/KSZ8873", 1445 .num_vlans = 16, 1446 .num_alus = 0, 1447 .num_statics = 8, 1448 .cpu_ports = 0x4, /* can be configured as cpu port */ 1449 .port_cnt = 3, 1450 .num_tx_queues = 4, 1451 .num_ipms = 4, 1452 .ops = &ksz88xx_dev_ops, 1453 .phylink_mac_ops = &ksz88x3_phylink_mac_ops, 1454 .mib_names = ksz88xx_mib_names, 1455 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1456 .reg_mib_cnt = MIB_COUNTER_NUM, 1457 .regs = ksz8863_regs, 1458 .masks = ksz8863_masks, 1459 .shifts = ksz8863_shifts, 1460 .supports_mii = {false, false, true}, 1461 .supports_rmii = {false, false, true}, 1462 .internal_phy = {true, true, false}, 1463 .wr_table = &ksz8873_register_set, 1464 .rd_table = &ksz8873_register_set, 1465 }, 1466 1467 [KSZ8864] = { 1468 /* WARNING 1469 * ======= 1470 * KSZ8864 is similar to KSZ8895, except the first port 1471 * does not exist. 1472 * external cpu 1473 * KSZ8864 1,2,3 4 1474 * KSZ8895 0,1,2,3 4 1475 * port_cnt is configured as 5, even though it is 4 1476 */ 1477 .chip_id = KSZ8864_CHIP_ID, 1478 .dev_name = "KSZ8864", 1479 .num_vlans = 4096, 1480 .num_alus = 0, 1481 .num_statics = 32, 1482 .cpu_ports = 0x10, /* can be configured as cpu port */ 1483 .port_cnt = 5, /* total cpu and user ports */ 1484 .num_tx_queues = 4, 1485 .num_ipms = 4, 1486 .ops = &ksz88xx_dev_ops, 1487 .phylink_mac_ops = &ksz88x3_phylink_mac_ops, 1488 .mib_names = ksz88xx_mib_names, 1489 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1490 .reg_mib_cnt = MIB_COUNTER_NUM, 1491 .regs = ksz8895_regs, 1492 .masks = ksz8895_masks, 1493 .shifts = ksz8895_shifts, 1494 .supports_mii = {false, false, false, false, true}, 1495 .supports_rmii = {false, false, false, false, true}, 1496 .internal_phy = {false, true, true, true, false}, 1497 }, 1498 1499 [KSZ8895] = { 1500 .chip_id = KSZ8895_CHIP_ID, 1501 .dev_name = "KSZ8895", 1502 .num_vlans = 4096, 1503 .num_alus = 0, 1504 .num_statics = 32, 1505 .cpu_ports = 0x10, /* can be configured as cpu port */ 1506 .port_cnt = 5, /* total cpu and user ports */ 1507 .num_tx_queues = 4, 1508 .num_ipms = 4, 1509 .ops = &ksz88xx_dev_ops, 1510 .phylink_mac_ops = &ksz88x3_phylink_mac_ops, 1511 .mib_names = ksz88xx_mib_names, 1512 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1513 .reg_mib_cnt = MIB_COUNTER_NUM, 1514 .regs = ksz8895_regs, 1515 .masks = ksz8895_masks, 1516 .shifts = ksz8895_shifts, 1517 .supports_mii = {false, false, false, false, true}, 1518 .supports_rmii = {false, false, false, false, true}, 1519 .internal_phy = {true, true, true, true, false}, 1520 }, 1521 1522 [KSZ9477] = { 1523 .chip_id = KSZ9477_CHIP_ID, 1524 .dev_name = "KSZ9477", 1525 .num_vlans = 4096, 1526 .num_alus = 4096, 1527 .num_statics = 16, 1528 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1529 .port_cnt = 7, /* total physical port count */ 1530 .port_nirqs = 4, 1531 .num_tx_queues = 4, 1532 .num_ipms = 8, 1533 .tc_cbs_supported = true, 1534 .ops = &ksz9477_dev_ops, 1535 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1536 .phy_errata_9477 = true, 1537 .mib_names = ksz9477_mib_names, 1538 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1539 .reg_mib_cnt = MIB_COUNTER_NUM, 1540 .regs = ksz9477_regs, 1541 .masks = ksz9477_masks, 1542 .shifts = ksz9477_shifts, 1543 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1544 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1545 .supports_mii = {false, false, false, false, 1546 false, true, false}, 1547 .supports_rmii = {false, false, false, false, 1548 false, true, false}, 1549 .supports_rgmii = {false, false, false, false, 1550 false, true, false}, 1551 .internal_phy = {true, true, true, true, 1552 true, false, false}, 1553 .gbit_capable = {true, true, true, true, true, true, true}, 1554 .ptp_capable = true, 1555 .wr_table = &ksz9477_register_set, 1556 .rd_table = &ksz9477_register_set, 1557 }, 1558 1559 [KSZ9896] = { 1560 .chip_id = KSZ9896_CHIP_ID, 1561 .dev_name = "KSZ9896", 1562 .num_vlans = 4096, 1563 .num_alus = 4096, 1564 .num_statics = 16, 1565 .cpu_ports = 0x3F, /* can be configured as cpu port */ 1566 .port_cnt = 6, /* total physical port count */ 1567 .port_nirqs = 2, 1568 .num_tx_queues = 4, 1569 .num_ipms = 8, 1570 .ops = &ksz9477_dev_ops, 1571 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1572 .phy_errata_9477 = true, 1573 .mib_names = ksz9477_mib_names, 1574 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1575 .reg_mib_cnt = MIB_COUNTER_NUM, 1576 .regs = ksz9477_regs, 1577 .masks = ksz9477_masks, 1578 .shifts = ksz9477_shifts, 1579 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1580 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1581 .supports_mii = {false, false, false, false, 1582 false, true}, 1583 .supports_rmii = {false, false, false, false, 1584 false, true}, 1585 .supports_rgmii = {false, false, false, false, 1586 false, true}, 1587 .internal_phy = {true, true, true, true, 1588 true, false}, 1589 .gbit_capable = {true, true, true, true, true, true}, 1590 .wr_table = &ksz9896_register_set, 1591 .rd_table = &ksz9896_register_set, 1592 }, 1593 1594 [KSZ9897] = { 1595 .chip_id = KSZ9897_CHIP_ID, 1596 .dev_name = "KSZ9897", 1597 .num_vlans = 4096, 1598 .num_alus = 4096, 1599 .num_statics = 16, 1600 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1601 .port_cnt = 7, /* total physical port count */ 1602 .port_nirqs = 2, 1603 .num_tx_queues = 4, 1604 .num_ipms = 8, 1605 .ops = &ksz9477_dev_ops, 1606 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1607 .phy_errata_9477 = true, 1608 .mib_names = ksz9477_mib_names, 1609 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1610 .reg_mib_cnt = MIB_COUNTER_NUM, 1611 .regs = ksz9477_regs, 1612 .masks = ksz9477_masks, 1613 .shifts = ksz9477_shifts, 1614 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1615 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1616 .supports_mii = {false, false, false, false, 1617 false, true, true}, 1618 .supports_rmii = {false, false, false, false, 1619 false, true, true}, 1620 .supports_rgmii = {false, false, false, false, 1621 false, true, true}, 1622 .internal_phy = {true, true, true, true, 1623 true, false, false}, 1624 .gbit_capable = {true, true, true, true, true, true, true}, 1625 }, 1626 1627 [KSZ9893] = { 1628 .chip_id = KSZ9893_CHIP_ID, 1629 .dev_name = "KSZ9893", 1630 .num_vlans = 4096, 1631 .num_alus = 4096, 1632 .num_statics = 16, 1633 .cpu_ports = 0x07, /* can be configured as cpu port */ 1634 .port_cnt = 3, /* total port count */ 1635 .port_nirqs = 2, 1636 .num_tx_queues = 4, 1637 .num_ipms = 8, 1638 .ops = &ksz9477_dev_ops, 1639 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1640 .mib_names = ksz9477_mib_names, 1641 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1642 .reg_mib_cnt = MIB_COUNTER_NUM, 1643 .regs = ksz9477_regs, 1644 .masks = ksz9477_masks, 1645 .shifts = ksz9477_shifts, 1646 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1647 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1648 .supports_mii = {false, false, true}, 1649 .supports_rmii = {false, false, true}, 1650 .supports_rgmii = {false, false, true}, 1651 .internal_phy = {true, true, false}, 1652 .gbit_capable = {true, true, true}, 1653 }, 1654 1655 [KSZ9563] = { 1656 .chip_id = KSZ9563_CHIP_ID, 1657 .dev_name = "KSZ9563", 1658 .num_vlans = 4096, 1659 .num_alus = 4096, 1660 .num_statics = 16, 1661 .cpu_ports = 0x07, /* can be configured as cpu port */ 1662 .port_cnt = 3, /* total port count */ 1663 .port_nirqs = 3, 1664 .num_tx_queues = 4, 1665 .num_ipms = 8, 1666 .tc_cbs_supported = true, 1667 .ops = &ksz9477_dev_ops, 1668 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1669 .mib_names = ksz9477_mib_names, 1670 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1671 .reg_mib_cnt = MIB_COUNTER_NUM, 1672 .regs = ksz9477_regs, 1673 .masks = ksz9477_masks, 1674 .shifts = ksz9477_shifts, 1675 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1676 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1677 .supports_mii = {false, false, true}, 1678 .supports_rmii = {false, false, true}, 1679 .supports_rgmii = {false, false, true}, 1680 .internal_phy = {true, true, false}, 1681 .gbit_capable = {true, true, true}, 1682 .ptp_capable = true, 1683 }, 1684 1685 [KSZ8567] = { 1686 .chip_id = KSZ8567_CHIP_ID, 1687 .dev_name = "KSZ8567", 1688 .num_vlans = 4096, 1689 .num_alus = 4096, 1690 .num_statics = 16, 1691 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1692 .port_cnt = 7, /* total port count */ 1693 .port_nirqs = 3, 1694 .num_tx_queues = 4, 1695 .num_ipms = 8, 1696 .tc_cbs_supported = true, 1697 .ops = &ksz9477_dev_ops, 1698 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1699 .phy_errata_9477 = true, 1700 .mib_names = ksz9477_mib_names, 1701 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1702 .reg_mib_cnt = MIB_COUNTER_NUM, 1703 .regs = ksz9477_regs, 1704 .masks = ksz9477_masks, 1705 .shifts = ksz9477_shifts, 1706 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1707 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1708 .supports_mii = {false, false, false, false, 1709 false, true, true}, 1710 .supports_rmii = {false, false, false, false, 1711 false, true, true}, 1712 .supports_rgmii = {false, false, false, false, 1713 false, true, true}, 1714 .internal_phy = {true, true, true, true, 1715 true, false, false}, 1716 .gbit_capable = {false, false, false, false, false, 1717 true, true}, 1718 .ptp_capable = true, 1719 }, 1720 1721 [KSZ9567] = { 1722 .chip_id = KSZ9567_CHIP_ID, 1723 .dev_name = "KSZ9567", 1724 .num_vlans = 4096, 1725 .num_alus = 4096, 1726 .num_statics = 16, 1727 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1728 .port_cnt = 7, /* total physical port count */ 1729 .port_nirqs = 3, 1730 .num_tx_queues = 4, 1731 .num_ipms = 8, 1732 .tc_cbs_supported = true, 1733 .ops = &ksz9477_dev_ops, 1734 .mib_names = ksz9477_mib_names, 1735 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1736 .reg_mib_cnt = MIB_COUNTER_NUM, 1737 .regs = ksz9477_regs, 1738 .masks = ksz9477_masks, 1739 .shifts = ksz9477_shifts, 1740 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1741 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1742 .supports_mii = {false, false, false, false, 1743 false, true, true}, 1744 .supports_rmii = {false, false, false, false, 1745 false, true, true}, 1746 .supports_rgmii = {false, false, false, false, 1747 false, true, true}, 1748 .internal_phy = {true, true, true, true, 1749 true, false, false}, 1750 .gbit_capable = {true, true, true, true, true, true, true}, 1751 .ptp_capable = true, 1752 }, 1753 1754 [LAN9370] = { 1755 .chip_id = LAN9370_CHIP_ID, 1756 .dev_name = "LAN9370", 1757 .num_vlans = 4096, 1758 .num_alus = 1024, 1759 .num_statics = 256, 1760 .cpu_ports = 0x10, /* can be configured as cpu port */ 1761 .port_cnt = 5, /* total physical port count */ 1762 .port_nirqs = 6, 1763 .num_tx_queues = 8, 1764 .num_ipms = 8, 1765 .tc_cbs_supported = true, 1766 .phy_side_mdio_supported = true, 1767 .ops = &lan937x_dev_ops, 1768 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1769 .mib_names = ksz9477_mib_names, 1770 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1771 .reg_mib_cnt = MIB_COUNTER_NUM, 1772 .regs = ksz9477_regs, 1773 .masks = lan937x_masks, 1774 .shifts = lan937x_shifts, 1775 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1776 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1777 .supports_mii = {false, false, false, false, true}, 1778 .supports_rmii = {false, false, false, false, true}, 1779 .supports_rgmii = {false, false, false, false, true}, 1780 .internal_phy = {true, true, true, true, false}, 1781 .ptp_capable = true, 1782 }, 1783 1784 [LAN9371] = { 1785 .chip_id = LAN9371_CHIP_ID, 1786 .dev_name = "LAN9371", 1787 .num_vlans = 4096, 1788 .num_alus = 1024, 1789 .num_statics = 256, 1790 .cpu_ports = 0x30, /* can be configured as cpu port */ 1791 .port_cnt = 6, /* total physical port count */ 1792 .port_nirqs = 6, 1793 .num_tx_queues = 8, 1794 .num_ipms = 8, 1795 .tc_cbs_supported = true, 1796 .phy_side_mdio_supported = true, 1797 .ops = &lan937x_dev_ops, 1798 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1799 .mib_names = ksz9477_mib_names, 1800 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1801 .reg_mib_cnt = MIB_COUNTER_NUM, 1802 .regs = ksz9477_regs, 1803 .masks = lan937x_masks, 1804 .shifts = lan937x_shifts, 1805 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1806 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1807 .supports_mii = {false, false, false, false, true, true}, 1808 .supports_rmii = {false, false, false, false, true, true}, 1809 .supports_rgmii = {false, false, false, false, true, true}, 1810 .internal_phy = {true, true, true, true, false, false}, 1811 .ptp_capable = true, 1812 }, 1813 1814 [LAN9372] = { 1815 .chip_id = LAN9372_CHIP_ID, 1816 .dev_name = "LAN9372", 1817 .num_vlans = 4096, 1818 .num_alus = 1024, 1819 .num_statics = 256, 1820 .cpu_ports = 0x30, /* can be configured as cpu port */ 1821 .port_cnt = 8, /* total physical port count */ 1822 .port_nirqs = 6, 1823 .num_tx_queues = 8, 1824 .num_ipms = 8, 1825 .tc_cbs_supported = true, 1826 .phy_side_mdio_supported = true, 1827 .ops = &lan937x_dev_ops, 1828 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1829 .mib_names = ksz9477_mib_names, 1830 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1831 .reg_mib_cnt = MIB_COUNTER_NUM, 1832 .regs = ksz9477_regs, 1833 .masks = lan937x_masks, 1834 .shifts = lan937x_shifts, 1835 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1836 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1837 .supports_mii = {false, false, false, false, 1838 true, true, false, false}, 1839 .supports_rmii = {false, false, false, false, 1840 true, true, false, false}, 1841 .supports_rgmii = {false, false, false, false, 1842 true, true, false, false}, 1843 .internal_phy = {true, true, true, true, 1844 false, false, true, true}, 1845 .ptp_capable = true, 1846 }, 1847 1848 [LAN9373] = { 1849 .chip_id = LAN9373_CHIP_ID, 1850 .dev_name = "LAN9373", 1851 .num_vlans = 4096, 1852 .num_alus = 1024, 1853 .num_statics = 256, 1854 .cpu_ports = 0x38, /* can be configured as cpu port */ 1855 .port_cnt = 5, /* total physical port count */ 1856 .port_nirqs = 6, 1857 .num_tx_queues = 8, 1858 .num_ipms = 8, 1859 .tc_cbs_supported = true, 1860 .phy_side_mdio_supported = true, 1861 .ops = &lan937x_dev_ops, 1862 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1863 .mib_names = ksz9477_mib_names, 1864 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1865 .reg_mib_cnt = MIB_COUNTER_NUM, 1866 .regs = ksz9477_regs, 1867 .masks = lan937x_masks, 1868 .shifts = lan937x_shifts, 1869 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1870 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1871 .supports_mii = {false, false, false, false, 1872 true, true, false, false}, 1873 .supports_rmii = {false, false, false, false, 1874 true, true, false, false}, 1875 .supports_rgmii = {false, false, false, false, 1876 true, true, false, false}, 1877 .internal_phy = {true, true, true, false, 1878 false, false, true, true}, 1879 .ptp_capable = true, 1880 }, 1881 1882 [LAN9374] = { 1883 .chip_id = LAN9374_CHIP_ID, 1884 .dev_name = "LAN9374", 1885 .num_vlans = 4096, 1886 .num_alus = 1024, 1887 .num_statics = 256, 1888 .cpu_ports = 0x30, /* can be configured as cpu port */ 1889 .port_cnt = 8, /* total physical port count */ 1890 .port_nirqs = 6, 1891 .num_tx_queues = 8, 1892 .num_ipms = 8, 1893 .tc_cbs_supported = true, 1894 .phy_side_mdio_supported = true, 1895 .ops = &lan937x_dev_ops, 1896 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1897 .mib_names = ksz9477_mib_names, 1898 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1899 .reg_mib_cnt = MIB_COUNTER_NUM, 1900 .regs = ksz9477_regs, 1901 .masks = lan937x_masks, 1902 .shifts = lan937x_shifts, 1903 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1904 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1905 .supports_mii = {false, false, false, false, 1906 true, true, false, false}, 1907 .supports_rmii = {false, false, false, false, 1908 true, true, false, false}, 1909 .supports_rgmii = {false, false, false, false, 1910 true, true, false, false}, 1911 .internal_phy = {true, true, true, true, 1912 false, false, true, true}, 1913 .ptp_capable = true, 1914 }, 1915 1916 [LAN9646] = { 1917 .chip_id = LAN9646_CHIP_ID, 1918 .dev_name = "LAN9646", 1919 .num_vlans = 4096, 1920 .num_alus = 4096, 1921 .num_statics = 16, 1922 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1923 .port_cnt = 7, /* total physical port count */ 1924 .port_nirqs = 4, 1925 .num_tx_queues = 4, 1926 .num_ipms = 8, 1927 .ops = &ksz9477_dev_ops, 1928 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1929 .phy_errata_9477 = true, 1930 .mib_names = ksz9477_mib_names, 1931 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1932 .reg_mib_cnt = MIB_COUNTER_NUM, 1933 .regs = ksz9477_regs, 1934 .masks = ksz9477_masks, 1935 .shifts = ksz9477_shifts, 1936 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1937 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1938 .supports_mii = {false, false, false, false, 1939 false, true, true}, 1940 .supports_rmii = {false, false, false, false, 1941 false, true, true}, 1942 .supports_rgmii = {false, false, false, false, 1943 false, true, true}, 1944 .internal_phy = {true, true, true, true, 1945 true, false, false}, 1946 .gbit_capable = {true, true, true, true, true, true, true}, 1947 .wr_table = &ksz9477_register_set, 1948 .rd_table = &ksz9477_register_set, 1949 }, 1950 }; 1951 EXPORT_SYMBOL_GPL(ksz_switch_chips); 1952 1953 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num) 1954 { 1955 int i; 1956 1957 for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) { 1958 const struct ksz_chip_data *chip = &ksz_switch_chips[i]; 1959 1960 if (chip->chip_id == prod_num) 1961 return chip; 1962 } 1963 1964 return NULL; 1965 } 1966 1967 static int ksz_check_device_id(struct ksz_device *dev) 1968 { 1969 const struct ksz_chip_data *expected_chip_data; 1970 u32 expected_chip_id; 1971 1972 if (dev->pdata) { 1973 expected_chip_id = dev->pdata->chip_id; 1974 expected_chip_data = ksz_lookup_info(expected_chip_id); 1975 if (WARN_ON(!expected_chip_data)) 1976 return -ENODEV; 1977 } else { 1978 expected_chip_data = of_device_get_match_data(dev->dev); 1979 expected_chip_id = expected_chip_data->chip_id; 1980 } 1981 1982 if (expected_chip_id != dev->chip_id) { 1983 dev_err(dev->dev, 1984 "Device tree specifies chip %s but found %s, please fix it!\n", 1985 expected_chip_data->dev_name, dev->info->dev_name); 1986 return -ENODEV; 1987 } 1988 1989 return 0; 1990 } 1991 1992 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port, 1993 struct phylink_config *config) 1994 { 1995 struct ksz_device *dev = ds->priv; 1996 1997 if (dev->info->supports_mii[port]) 1998 __set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces); 1999 2000 if (dev->info->supports_rmii[port]) 2001 __set_bit(PHY_INTERFACE_MODE_RMII, 2002 config->supported_interfaces); 2003 2004 if (dev->info->supports_rgmii[port]) 2005 phy_interface_set_rgmii(config->supported_interfaces); 2006 2007 if (dev->info->internal_phy[port]) { 2008 __set_bit(PHY_INTERFACE_MODE_INTERNAL, 2009 config->supported_interfaces); 2010 /* Compatibility for phylib's default interface type when the 2011 * phy-mode property is absent 2012 */ 2013 __set_bit(PHY_INTERFACE_MODE_GMII, 2014 config->supported_interfaces); 2015 } 2016 2017 if (dev->dev_ops->get_caps) 2018 dev->dev_ops->get_caps(dev, port, config); 2019 } 2020 2021 void ksz_r_mib_stats64(struct ksz_device *dev, int port) 2022 { 2023 struct ethtool_pause_stats *pstats; 2024 struct rtnl_link_stats64 *stats; 2025 struct ksz_stats_raw *raw; 2026 struct ksz_port_mib *mib; 2027 int ret; 2028 2029 mib = &dev->ports[port].mib; 2030 stats = &mib->stats64; 2031 pstats = &mib->pause_stats; 2032 raw = (struct ksz_stats_raw *)mib->counters; 2033 2034 spin_lock(&mib->stats64_lock); 2035 2036 stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast + 2037 raw->rx_pause; 2038 stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast + 2039 raw->tx_pause; 2040 2041 /* HW counters are counting bytes + FCS which is not acceptable 2042 * for rtnl_link_stats64 interface 2043 */ 2044 stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN; 2045 stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN; 2046 2047 stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments + 2048 raw->rx_oversize; 2049 2050 stats->rx_crc_errors = raw->rx_crc_err; 2051 stats->rx_frame_errors = raw->rx_align_err; 2052 stats->rx_dropped = raw->rx_discards; 2053 stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors + 2054 stats->rx_frame_errors + stats->rx_dropped; 2055 2056 stats->tx_window_errors = raw->tx_late_col; 2057 stats->tx_fifo_errors = raw->tx_discards; 2058 stats->tx_aborted_errors = raw->tx_exc_col; 2059 stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors + 2060 stats->tx_aborted_errors; 2061 2062 stats->multicast = raw->rx_mcast; 2063 stats->collisions = raw->tx_total_col; 2064 2065 pstats->tx_pause_frames = raw->tx_pause; 2066 pstats->rx_pause_frames = raw->rx_pause; 2067 2068 spin_unlock(&mib->stats64_lock); 2069 2070 if (dev->info->phy_errata_9477) { 2071 ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col); 2072 if (ret) 2073 dev_err(dev->dev, "Failed to monitor transmission halt\n"); 2074 } 2075 } 2076 2077 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port) 2078 { 2079 struct ethtool_pause_stats *pstats; 2080 struct rtnl_link_stats64 *stats; 2081 struct ksz88xx_stats_raw *raw; 2082 struct ksz_port_mib *mib; 2083 2084 mib = &dev->ports[port].mib; 2085 stats = &mib->stats64; 2086 pstats = &mib->pause_stats; 2087 raw = (struct ksz88xx_stats_raw *)mib->counters; 2088 2089 spin_lock(&mib->stats64_lock); 2090 2091 stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast + 2092 raw->rx_pause; 2093 stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast + 2094 raw->tx_pause; 2095 2096 /* HW counters are counting bytes + FCS which is not acceptable 2097 * for rtnl_link_stats64 interface 2098 */ 2099 stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN; 2100 stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN; 2101 2102 stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments + 2103 raw->rx_oversize; 2104 2105 stats->rx_crc_errors = raw->rx_crc_err; 2106 stats->rx_frame_errors = raw->rx_align_err; 2107 stats->rx_dropped = raw->rx_discards; 2108 stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors + 2109 stats->rx_frame_errors + stats->rx_dropped; 2110 2111 stats->tx_window_errors = raw->tx_late_col; 2112 stats->tx_fifo_errors = raw->tx_discards; 2113 stats->tx_aborted_errors = raw->tx_exc_col; 2114 stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors + 2115 stats->tx_aborted_errors; 2116 2117 stats->multicast = raw->rx_mcast; 2118 stats->collisions = raw->tx_total_col; 2119 2120 pstats->tx_pause_frames = raw->tx_pause; 2121 pstats->rx_pause_frames = raw->rx_pause; 2122 2123 spin_unlock(&mib->stats64_lock); 2124 } 2125 2126 static void ksz_get_stats64(struct dsa_switch *ds, int port, 2127 struct rtnl_link_stats64 *s) 2128 { 2129 struct ksz_device *dev = ds->priv; 2130 struct ksz_port_mib *mib; 2131 2132 mib = &dev->ports[port].mib; 2133 2134 spin_lock(&mib->stats64_lock); 2135 memcpy(s, &mib->stats64, sizeof(*s)); 2136 spin_unlock(&mib->stats64_lock); 2137 } 2138 2139 static void ksz_get_pause_stats(struct dsa_switch *ds, int port, 2140 struct ethtool_pause_stats *pause_stats) 2141 { 2142 struct ksz_device *dev = ds->priv; 2143 struct ksz_port_mib *mib; 2144 2145 mib = &dev->ports[port].mib; 2146 2147 spin_lock(&mib->stats64_lock); 2148 memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats)); 2149 spin_unlock(&mib->stats64_lock); 2150 } 2151 2152 static void ksz_get_strings(struct dsa_switch *ds, int port, 2153 u32 stringset, uint8_t *buf) 2154 { 2155 struct ksz_device *dev = ds->priv; 2156 int i; 2157 2158 if (stringset != ETH_SS_STATS) 2159 return; 2160 2161 for (i = 0; i < dev->info->mib_cnt; i++) 2162 ethtool_puts(&buf, dev->info->mib_names[i].string); 2163 } 2164 2165 /** 2166 * ksz_update_port_member - Adjust port forwarding rules based on STP state and 2167 * isolation settings. 2168 * @dev: A pointer to the struct ksz_device representing the device. 2169 * @port: The port number to adjust. 2170 * 2171 * This function dynamically adjusts the port membership configuration for a 2172 * specified port and other device ports, based on Spanning Tree Protocol (STP) 2173 * states and port isolation settings. Each port, including the CPU port, has a 2174 * membership register, represented as a bitfield, where each bit corresponds 2175 * to a port number. A set bit indicates permission to forward frames to that 2176 * port. This function iterates over all ports, updating the membership register 2177 * to reflect current forwarding permissions: 2178 * 2179 * 1. Forwards frames only to ports that are part of the same bridge group and 2180 * in the BR_STATE_FORWARDING state. 2181 * 2. Takes into account the isolation status of ports; ports in the 2182 * BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward 2183 * frames to each other, even if they are in the same bridge group. 2184 * 3. Ensures that the CPU port is included in the membership based on its 2185 * upstream port configuration, allowing for management and control traffic 2186 * to flow as required. 2187 */ 2188 static void ksz_update_port_member(struct ksz_device *dev, int port) 2189 { 2190 struct ksz_port *p = &dev->ports[port]; 2191 struct dsa_switch *ds = dev->ds; 2192 u8 port_member = 0, cpu_port; 2193 const struct dsa_port *dp; 2194 int i, j; 2195 2196 if (!dsa_is_user_port(ds, port)) 2197 return; 2198 2199 dp = dsa_to_port(ds, port); 2200 cpu_port = BIT(dsa_upstream_port(ds, port)); 2201 2202 for (i = 0; i < ds->num_ports; i++) { 2203 const struct dsa_port *other_dp = dsa_to_port(ds, i); 2204 struct ksz_port *other_p = &dev->ports[i]; 2205 u8 val = 0; 2206 2207 if (!dsa_is_user_port(ds, i)) 2208 continue; 2209 if (port == i) 2210 continue; 2211 if (!dsa_port_bridge_same(dp, other_dp)) 2212 continue; 2213 if (other_p->stp_state != BR_STATE_FORWARDING) 2214 continue; 2215 2216 /* At this point we know that "port" and "other" port [i] are in 2217 * the same bridge group and that "other" port [i] is in 2218 * forwarding stp state. If "port" is also in forwarding stp 2219 * state, we can allow forwarding from port [port] to port [i]. 2220 * Except if both ports are isolated. 2221 */ 2222 if (p->stp_state == BR_STATE_FORWARDING && 2223 !(p->isolated && other_p->isolated)) { 2224 val |= BIT(port); 2225 port_member |= BIT(i); 2226 } 2227 2228 /* Retain port [i]'s relationship to other ports than [port] */ 2229 for (j = 0; j < ds->num_ports; j++) { 2230 const struct dsa_port *third_dp; 2231 struct ksz_port *third_p; 2232 2233 if (j == i) 2234 continue; 2235 if (j == port) 2236 continue; 2237 if (!dsa_is_user_port(ds, j)) 2238 continue; 2239 third_p = &dev->ports[j]; 2240 if (third_p->stp_state != BR_STATE_FORWARDING) 2241 continue; 2242 2243 third_dp = dsa_to_port(ds, j); 2244 2245 /* Now we updating relation of the "other" port [i] to 2246 * the "third" port [j]. We already know that "other" 2247 * port [i] is in forwarding stp state and that "third" 2248 * port [j] is in forwarding stp state too. 2249 * We need to check if "other" port [i] and "third" port 2250 * [j] are in the same bridge group and not isolated 2251 * before allowing forwarding from port [i] to port [j]. 2252 */ 2253 if (dsa_port_bridge_same(other_dp, third_dp) && 2254 !(other_p->isolated && third_p->isolated)) 2255 val |= BIT(j); 2256 } 2257 2258 dev->dev_ops->cfg_port_member(dev, i, val | cpu_port); 2259 } 2260 2261 dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port); 2262 } 2263 2264 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum) 2265 { 2266 struct ksz_device *dev = bus->priv; 2267 u16 val; 2268 int ret; 2269 2270 ret = dev->dev_ops->r_phy(dev, addr, regnum, &val); 2271 if (ret < 0) 2272 return ret; 2273 2274 return val; 2275 } 2276 2277 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum, 2278 u16 val) 2279 { 2280 struct ksz_device *dev = bus->priv; 2281 2282 return dev->dev_ops->w_phy(dev, addr, regnum, val); 2283 } 2284 2285 /** 2286 * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus. 2287 * @bus: MDIO bus structure. 2288 * @addr: PHY address on the parent MDIO bus. 2289 * @regnum: Register number to read. 2290 * 2291 * This function provides a direct read operation on the parent MDIO bus for 2292 * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus 2293 * to retrieve data from the PHY registers at the specified address and register 2294 * number. 2295 * 2296 * Return: Value of the PHY register, or a negative error code on failure. 2297 */ 2298 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum) 2299 { 2300 struct ksz_device *dev = bus->priv; 2301 2302 return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum); 2303 } 2304 2305 /** 2306 * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus. 2307 * @bus: MDIO bus structure. 2308 * @addr: PHY address on the parent MDIO bus. 2309 * @regnum: Register number to write to. 2310 * @val: Value to write to the PHY register. 2311 * 2312 * This function provides a direct write operation on the parent MDIO bus for 2313 * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus 2314 * to modify the PHY register values at the specified address. 2315 * 2316 * Return: 0 on success, or a negative error code on failure. 2317 */ 2318 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum, 2319 u16 val) 2320 { 2321 struct ksz_device *dev = bus->priv; 2322 2323 return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val); 2324 } 2325 2326 /** 2327 * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port. 2328 * @dev: Pointer to device structure. 2329 * @addr: PHY address to map to a port. 2330 * 2331 * This function finds the corresponding switch port for a given PHY address by 2332 * iterating over all user ports on the device. It checks if a port's PHY 2333 * address in `phy_addr_map` matches the specified address and if the port 2334 * contains an internal PHY. If a match is found, the index of the port is 2335 * returned. 2336 * 2337 * Return: Port index on success, or -EINVAL if no matching port is found. 2338 */ 2339 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr) 2340 { 2341 struct dsa_switch *ds = dev->ds; 2342 struct dsa_port *dp; 2343 2344 dsa_switch_for_each_user_port(dp, ds) { 2345 if (dev->info->internal_phy[dp->index] && 2346 dev->phy_addr_map[dp->index] == addr) 2347 return dp->index; 2348 } 2349 2350 return -EINVAL; 2351 } 2352 2353 /** 2354 * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device. 2355 * @dev: Pointer to the KSZ device structure. 2356 * 2357 * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the 2358 * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in 2359 * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain. 2360 * 2361 * Return: 0 on success, or a negative error code on failure. 2362 */ 2363 static int ksz_irq_phy_setup(struct ksz_device *dev) 2364 { 2365 struct dsa_switch *ds = dev->ds; 2366 int phy, port; 2367 int irq; 2368 int ret; 2369 2370 for (phy = 0; phy < PHY_MAX_ADDR; phy++) { 2371 if (BIT(phy) & ds->phys_mii_mask) { 2372 port = ksz_phy_addr_to_port(dev, phy); 2373 if (port < 0) { 2374 ret = port; 2375 goto out; 2376 } 2377 2378 irq = irq_find_mapping(dev->ports[port].pirq.domain, 2379 PORT_SRC_PHY_INT); 2380 if (irq < 0) { 2381 ret = irq; 2382 goto out; 2383 } 2384 ds->user_mii_bus->irq[phy] = irq; 2385 } 2386 } 2387 return 0; 2388 out: 2389 while (phy--) 2390 if (BIT(phy) & ds->phys_mii_mask) 2391 irq_dispose_mapping(ds->user_mii_bus->irq[phy]); 2392 2393 return ret; 2394 } 2395 2396 /** 2397 * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device. 2398 * @dev: Pointer to the KSZ device structure. 2399 * 2400 * Releases any IRQ mappings previously assigned to active PHYs in the KSZ 2401 * switch by disposing of each mapped IRQ in the `user_mii_bus` structure. 2402 */ 2403 static void ksz_irq_phy_free(struct ksz_device *dev) 2404 { 2405 struct dsa_switch *ds = dev->ds; 2406 int phy; 2407 2408 for (phy = 0; phy < PHY_MAX_ADDR; phy++) 2409 if (BIT(phy) & ds->phys_mii_mask) 2410 irq_dispose_mapping(ds->user_mii_bus->irq[phy]); 2411 } 2412 2413 /** 2414 * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT 2415 * @dev: pointer to the KSZ device structure 2416 * @bus: pointer to the MII bus structure 2417 * @mdio_np: pointer to the MDIO node in the device tree 2418 * 2419 * This function parses and validates PHY configurations for each user port 2420 * defined in the device tree for a KSZ switch device. It verifies that the 2421 * `phy-handle` properties are correctly set and that the internal PHYs match 2422 * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if 2423 * all validations pass. Logs error messages for any mismatches or missing data. 2424 * 2425 * Return: 0 on success, or a negative error code on failure. 2426 */ 2427 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus, 2428 struct device_node *mdio_np) 2429 { 2430 struct device_node *phy_node, *phy_parent_node; 2431 bool phys_are_valid = true; 2432 struct dsa_port *dp; 2433 u32 phy_addr; 2434 int ret; 2435 2436 dsa_switch_for_each_user_port(dp, dev->ds) { 2437 if (!dev->info->internal_phy[dp->index]) 2438 continue; 2439 2440 phy_node = of_parse_phandle(dp->dn, "phy-handle", 0); 2441 if (!phy_node) { 2442 dev_err(dev->dev, "failed to parse phy-handle for port %d.\n", 2443 dp->index); 2444 phys_are_valid = false; 2445 continue; 2446 } 2447 2448 phy_parent_node = of_get_parent(phy_node); 2449 if (!phy_parent_node) { 2450 dev_err(dev->dev, "failed to get PHY-parent node for port %d\n", 2451 dp->index); 2452 phys_are_valid = false; 2453 } else if (phy_parent_node != mdio_np) { 2454 dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n", 2455 dp->index, mdio_np, phy_parent_node); 2456 phys_are_valid = false; 2457 } else { 2458 ret = of_property_read_u32(phy_node, "reg", &phy_addr); 2459 if (ret < 0) { 2460 dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n", 2461 dp->index, ret); 2462 phys_are_valid = false; 2463 } else if (phy_addr != dev->phy_addr_map[dp->index]) { 2464 dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n", 2465 dp->index, dev->phy_addr_map[dp->index], 2466 phy_addr); 2467 phys_are_valid = false; 2468 } else { 2469 bus->phy_mask |= BIT(phy_addr); 2470 } 2471 } 2472 2473 of_node_put(phy_node); 2474 of_node_put(phy_parent_node); 2475 } 2476 2477 if (!phys_are_valid) 2478 return -EINVAL; 2479 2480 return 0; 2481 } 2482 2483 /** 2484 * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device. 2485 * @dev: Pointer to the KSZ device structure. 2486 * 2487 * This function sets up and registers an MDIO bus for the KSZ switch device, 2488 * allowing access to its internal PHYs. If the device supports side MDIO, 2489 * the function will configure the external MDIO controller specified by the 2490 * "mdio-parent-bus" device tree property to directly manage internal PHYs. 2491 * Otherwise, SPI or I2C access is set up for PHY access. 2492 * 2493 * Return: 0 on success, or a negative error code on failure. 2494 */ 2495 static int ksz_mdio_register(struct ksz_device *dev) 2496 { 2497 struct device_node *parent_bus_node; 2498 struct mii_bus *parent_bus = NULL; 2499 struct dsa_switch *ds = dev->ds; 2500 struct device_node *mdio_np; 2501 struct mii_bus *bus; 2502 int ret, i; 2503 2504 mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio"); 2505 if (!mdio_np) 2506 return 0; 2507 2508 parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0); 2509 if (parent_bus_node && !dev->info->phy_side_mdio_supported) { 2510 dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n"); 2511 ret = -EINVAL; 2512 2513 goto put_mdio_node; 2514 } else if (parent_bus_node) { 2515 parent_bus = of_mdio_find_bus(parent_bus_node); 2516 if (!parent_bus) { 2517 ret = -EPROBE_DEFER; 2518 2519 goto put_mdio_node; 2520 } 2521 2522 dev->parent_mdio_bus = parent_bus; 2523 } 2524 2525 bus = devm_mdiobus_alloc(ds->dev); 2526 if (!bus) { 2527 ret = -ENOMEM; 2528 goto put_mdio_node; 2529 } 2530 2531 if (dev->dev_ops->mdio_bus_preinit) { 2532 ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus); 2533 if (ret) 2534 goto put_mdio_node; 2535 } 2536 2537 if (dev->dev_ops->create_phy_addr_map) { 2538 ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus); 2539 if (ret) 2540 goto put_mdio_node; 2541 } else { 2542 for (i = 0; i < dev->info->port_cnt; i++) 2543 dev->phy_addr_map[i] = i; 2544 } 2545 2546 bus->priv = dev; 2547 if (parent_bus) { 2548 bus->read = ksz_parent_mdio_read; 2549 bus->write = ksz_parent_mdio_write; 2550 bus->name = "KSZ side MDIO"; 2551 snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d", 2552 ds->index); 2553 } else { 2554 bus->read = ksz_sw_mdio_read; 2555 bus->write = ksz_sw_mdio_write; 2556 bus->name = "ksz user smi"; 2557 if (ds->dst->index != 0) { 2558 snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d-%d", ds->dst->index, ds->index); 2559 } else { 2560 snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index); 2561 } 2562 } 2563 2564 ret = ksz_parse_dt_phy_config(dev, bus, mdio_np); 2565 if (ret) 2566 goto put_mdio_node; 2567 2568 ds->phys_mii_mask = bus->phy_mask; 2569 bus->parent = ds->dev; 2570 2571 ds->user_mii_bus = bus; 2572 2573 if (dev->irq > 0) { 2574 ret = ksz_irq_phy_setup(dev); 2575 if (ret) 2576 goto put_mdio_node; 2577 } 2578 2579 ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np); 2580 if (ret) { 2581 dev_err(ds->dev, "unable to register MDIO bus %s\n", 2582 bus->id); 2583 if (dev->irq > 0) 2584 ksz_irq_phy_free(dev); 2585 } 2586 2587 put_mdio_node: 2588 of_node_put(mdio_np); 2589 of_node_put(parent_bus_node); 2590 2591 return ret; 2592 } 2593 2594 static void ksz_irq_mask(struct irq_data *d) 2595 { 2596 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2597 2598 kirq->masked |= BIT(d->hwirq); 2599 } 2600 2601 static void ksz_irq_unmask(struct irq_data *d) 2602 { 2603 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2604 2605 kirq->masked &= ~BIT(d->hwirq); 2606 } 2607 2608 static void ksz_irq_bus_lock(struct irq_data *d) 2609 { 2610 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2611 2612 mutex_lock(&kirq->dev->lock_irq); 2613 } 2614 2615 static void ksz_irq_bus_sync_unlock(struct irq_data *d) 2616 { 2617 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2618 struct ksz_device *dev = kirq->dev; 2619 int ret; 2620 2621 ret = ksz_write8(dev, kirq->reg_mask, kirq->masked); 2622 if (ret) 2623 dev_err(dev->dev, "failed to change IRQ mask\n"); 2624 2625 mutex_unlock(&dev->lock_irq); 2626 } 2627 2628 static const struct irq_chip ksz_irq_chip = { 2629 .name = "ksz-irq", 2630 .irq_mask = ksz_irq_mask, 2631 .irq_unmask = ksz_irq_unmask, 2632 .irq_bus_lock = ksz_irq_bus_lock, 2633 .irq_bus_sync_unlock = ksz_irq_bus_sync_unlock, 2634 }; 2635 2636 static int ksz_irq_domain_map(struct irq_domain *d, 2637 unsigned int irq, irq_hw_number_t hwirq) 2638 { 2639 irq_set_chip_data(irq, d->host_data); 2640 irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq); 2641 irq_set_noprobe(irq); 2642 2643 return 0; 2644 } 2645 2646 static const struct irq_domain_ops ksz_irq_domain_ops = { 2647 .map = ksz_irq_domain_map, 2648 .xlate = irq_domain_xlate_twocell, 2649 }; 2650 2651 static void ksz_irq_free(struct ksz_irq *kirq) 2652 { 2653 int irq, virq; 2654 2655 free_irq(kirq->irq_num, kirq); 2656 2657 for (irq = 0; irq < kirq->nirqs; irq++) { 2658 virq = irq_find_mapping(kirq->domain, irq); 2659 irq_dispose_mapping(virq); 2660 } 2661 2662 irq_domain_remove(kirq->domain); 2663 } 2664 2665 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id) 2666 { 2667 struct ksz_irq *kirq = dev_id; 2668 unsigned int nhandled = 0; 2669 struct ksz_device *dev; 2670 unsigned int sub_irq; 2671 u8 data; 2672 int ret; 2673 u8 n; 2674 2675 dev = kirq->dev; 2676 2677 /* Read interrupt status register */ 2678 ret = ksz_read8(dev, kirq->reg_status, &data); 2679 if (ret) 2680 goto out; 2681 2682 for (n = 0; n < kirq->nirqs; ++n) { 2683 if (data & BIT(n)) { 2684 sub_irq = irq_find_mapping(kirq->domain, n); 2685 handle_nested_irq(sub_irq); 2686 ++nhandled; 2687 } 2688 } 2689 out: 2690 return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE); 2691 } 2692 2693 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq) 2694 { 2695 int ret, n; 2696 2697 kirq->dev = dev; 2698 kirq->masked = ~0; 2699 2700 kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0, 2701 &ksz_irq_domain_ops, kirq); 2702 if (!kirq->domain) 2703 return -ENOMEM; 2704 2705 for (n = 0; n < kirq->nirqs; n++) 2706 irq_create_mapping(kirq->domain, n); 2707 2708 ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn, 2709 IRQF_ONESHOT, kirq->name, kirq); 2710 if (ret) 2711 goto out; 2712 2713 return 0; 2714 2715 out: 2716 ksz_irq_free(kirq); 2717 2718 return ret; 2719 } 2720 2721 static int ksz_girq_setup(struct ksz_device *dev) 2722 { 2723 struct ksz_irq *girq = &dev->girq; 2724 2725 girq->nirqs = dev->info->port_cnt; 2726 girq->reg_mask = REG_SW_PORT_INT_MASK__1; 2727 girq->reg_status = REG_SW_PORT_INT_STATUS__1; 2728 snprintf(girq->name, sizeof(girq->name), "global_port_irq"); 2729 2730 girq->irq_num = dev->irq; 2731 2732 return ksz_irq_common_setup(dev, girq); 2733 } 2734 2735 static int ksz_pirq_setup(struct ksz_device *dev, u8 p) 2736 { 2737 struct ksz_irq *pirq = &dev->ports[p].pirq; 2738 2739 pirq->nirqs = dev->info->port_nirqs; 2740 pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK); 2741 pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS); 2742 snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p); 2743 2744 pirq->irq_num = irq_find_mapping(dev->girq.domain, p); 2745 if (pirq->irq_num < 0) 2746 return pirq->irq_num; 2747 2748 return ksz_irq_common_setup(dev, pirq); 2749 } 2750 2751 static int ksz_parse_drive_strength(struct ksz_device *dev); 2752 2753 static int ksz_setup(struct dsa_switch *ds) 2754 { 2755 struct ksz_device *dev = ds->priv; 2756 struct dsa_port *dp; 2757 struct ksz_port *p; 2758 const u16 *regs; 2759 int ret; 2760 2761 regs = dev->info->regs; 2762 2763 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table), 2764 dev->info->num_vlans, GFP_KERNEL); 2765 if (!dev->vlan_cache) 2766 return -ENOMEM; 2767 2768 ret = dev->dev_ops->reset(dev); 2769 if (ret) { 2770 dev_err(ds->dev, "failed to reset switch\n"); 2771 return ret; 2772 } 2773 2774 ret = ksz_parse_drive_strength(dev); 2775 if (ret) 2776 return ret; 2777 2778 /* set broadcast storm protection 10% rate */ 2779 regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL], 2780 BROADCAST_STORM_RATE, 2781 (BROADCAST_STORM_VALUE * 2782 BROADCAST_STORM_PROT_RATE) / 100); 2783 2784 dev->dev_ops->config_cpu_port(ds); 2785 2786 dev->dev_ops->enable_stp_addr(dev); 2787 2788 ds->num_tx_queues = dev->info->num_tx_queues; 2789 2790 regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL], 2791 MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE); 2792 2793 ksz_init_mib_timer(dev); 2794 2795 ds->configure_vlan_while_not_filtering = false; 2796 ds->dscp_prio_mapping_is_global = true; 2797 2798 if (dev->dev_ops->setup) { 2799 ret = dev->dev_ops->setup(ds); 2800 if (ret) 2801 return ret; 2802 } 2803 2804 /* Start with learning disabled on standalone user ports, and enabled 2805 * on the CPU port. In lack of other finer mechanisms, learning on the 2806 * CPU port will avoid flooding bridge local addresses on the network 2807 * in some cases. 2808 */ 2809 p = &dev->ports[dev->cpu_port]; 2810 p->learning = true; 2811 2812 if (dev->irq > 0) { 2813 ret = ksz_girq_setup(dev); 2814 if (ret) 2815 return ret; 2816 2817 dsa_switch_for_each_user_port(dp, dev->ds) { 2818 ret = ksz_pirq_setup(dev, dp->index); 2819 if (ret) 2820 goto out_girq; 2821 2822 if (dev->info->ptp_capable) { 2823 ret = ksz_ptp_irq_setup(ds, dp->index); 2824 if (ret) 2825 goto out_pirq; 2826 } 2827 } 2828 } 2829 2830 if (dev->info->ptp_capable) { 2831 ret = ksz_ptp_clock_register(ds); 2832 if (ret) { 2833 dev_err(dev->dev, "Failed to register PTP clock: %d\n", 2834 ret); 2835 goto out_ptpirq; 2836 } 2837 } 2838 2839 ret = ksz_mdio_register(dev); 2840 if (ret < 0) { 2841 dev_err(dev->dev, "failed to register the mdio"); 2842 goto out_ptp_clock_unregister; 2843 } 2844 2845 ret = ksz_dcb_init(dev); 2846 if (ret) 2847 goto out_ptp_clock_unregister; 2848 2849 /* start switch */ 2850 regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL], 2851 SW_START, SW_START); 2852 2853 return 0; 2854 2855 out_ptp_clock_unregister: 2856 if (dev->info->ptp_capable) 2857 ksz_ptp_clock_unregister(ds); 2858 out_ptpirq: 2859 if (dev->irq > 0 && dev->info->ptp_capable) 2860 dsa_switch_for_each_user_port(dp, dev->ds) 2861 ksz_ptp_irq_free(ds, dp->index); 2862 out_pirq: 2863 if (dev->irq > 0) 2864 dsa_switch_for_each_user_port(dp, dev->ds) 2865 ksz_irq_free(&dev->ports[dp->index].pirq); 2866 out_girq: 2867 if (dev->irq > 0) 2868 ksz_irq_free(&dev->girq); 2869 2870 return ret; 2871 } 2872 2873 static void ksz_teardown(struct dsa_switch *ds) 2874 { 2875 struct ksz_device *dev = ds->priv; 2876 struct dsa_port *dp; 2877 2878 if (dev->info->ptp_capable) 2879 ksz_ptp_clock_unregister(ds); 2880 2881 if (dev->irq > 0) { 2882 dsa_switch_for_each_user_port(dp, dev->ds) { 2883 if (dev->info->ptp_capable) 2884 ksz_ptp_irq_free(ds, dp->index); 2885 2886 ksz_irq_free(&dev->ports[dp->index].pirq); 2887 } 2888 2889 ksz_irq_free(&dev->girq); 2890 } 2891 2892 if (dev->dev_ops->teardown) 2893 dev->dev_ops->teardown(ds); 2894 } 2895 2896 static void port_r_cnt(struct ksz_device *dev, int port) 2897 { 2898 struct ksz_port_mib *mib = &dev->ports[port].mib; 2899 u64 *dropped; 2900 2901 /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */ 2902 while (mib->cnt_ptr < dev->info->reg_mib_cnt) { 2903 dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr, 2904 &mib->counters[mib->cnt_ptr]); 2905 ++mib->cnt_ptr; 2906 } 2907 2908 /* last one in storage */ 2909 dropped = &mib->counters[dev->info->mib_cnt]; 2910 2911 /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */ 2912 while (mib->cnt_ptr < dev->info->mib_cnt) { 2913 dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr, 2914 dropped, &mib->counters[mib->cnt_ptr]); 2915 ++mib->cnt_ptr; 2916 } 2917 mib->cnt_ptr = 0; 2918 } 2919 2920 static void ksz_mib_read_work(struct work_struct *work) 2921 { 2922 struct ksz_device *dev = container_of(work, struct ksz_device, 2923 mib_read.work); 2924 struct ksz_port_mib *mib; 2925 struct ksz_port *p; 2926 int i; 2927 2928 for (i = 0; i < dev->info->port_cnt; i++) { 2929 if (dsa_is_unused_port(dev->ds, i)) 2930 continue; 2931 2932 p = &dev->ports[i]; 2933 mib = &p->mib; 2934 mutex_lock(&mib->cnt_mutex); 2935 2936 /* Only read MIB counters when the port is told to do. 2937 * If not, read only dropped counters when link is not up. 2938 */ 2939 if (!p->read) { 2940 const struct dsa_port *dp = dsa_to_port(dev->ds, i); 2941 2942 if (!netif_carrier_ok(dp->user)) 2943 mib->cnt_ptr = dev->info->reg_mib_cnt; 2944 } 2945 port_r_cnt(dev, i); 2946 p->read = false; 2947 2948 if (dev->dev_ops->r_mib_stat64) 2949 dev->dev_ops->r_mib_stat64(dev, i); 2950 2951 mutex_unlock(&mib->cnt_mutex); 2952 } 2953 2954 schedule_delayed_work(&dev->mib_read, dev->mib_read_interval); 2955 } 2956 2957 void ksz_init_mib_timer(struct ksz_device *dev) 2958 { 2959 int i; 2960 2961 INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work); 2962 2963 for (i = 0; i < dev->info->port_cnt; i++) { 2964 struct ksz_port_mib *mib = &dev->ports[i].mib; 2965 2966 dev->dev_ops->port_init_cnt(dev, i); 2967 2968 mib->cnt_ptr = 0; 2969 memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64)); 2970 } 2971 } 2972 2973 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg) 2974 { 2975 struct ksz_device *dev = ds->priv; 2976 u16 val = 0xffff; 2977 int ret; 2978 2979 ret = dev->dev_ops->r_phy(dev, addr, reg, &val); 2980 if (ret) 2981 return ret; 2982 2983 return val; 2984 } 2985 2986 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val) 2987 { 2988 struct ksz_device *dev = ds->priv; 2989 int ret; 2990 2991 ret = dev->dev_ops->w_phy(dev, addr, reg, val); 2992 if (ret) 2993 return ret; 2994 2995 return 0; 2996 } 2997 2998 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port) 2999 { 3000 struct ksz_device *dev = ds->priv; 3001 3002 switch (dev->chip_id) { 3003 case KSZ88X3_CHIP_ID: 3004 /* Silicon Errata Sheet (DS80000830A): 3005 * Port 1 does not work with LinkMD Cable-Testing. 3006 * Port 1 does not respond to received PAUSE control frames. 3007 */ 3008 if (!port) 3009 return MICREL_KSZ8_P1_ERRATA; 3010 break; 3011 case KSZ8567_CHIP_ID: 3012 /* KSZ8567R Errata DS80000752C Module 4 */ 3013 case KSZ8765_CHIP_ID: 3014 case KSZ8794_CHIP_ID: 3015 case KSZ8795_CHIP_ID: 3016 /* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */ 3017 case KSZ9477_CHIP_ID: 3018 /* KSZ9477S Errata DS80000754A Module 4 */ 3019 case KSZ9567_CHIP_ID: 3020 /* KSZ9567S Errata DS80000756A Module 4 */ 3021 case KSZ9896_CHIP_ID: 3022 /* KSZ9896C Errata DS80000757A Module 3 */ 3023 case KSZ9897_CHIP_ID: 3024 case LAN9646_CHIP_ID: 3025 /* KSZ9897R Errata DS80000758C Module 4 */ 3026 /* Energy Efficient Ethernet (EEE) feature select must be manually disabled 3027 * The EEE feature is enabled by default, but it is not fully 3028 * operational. It must be manually disabled through register 3029 * controls. If not disabled, the PHY ports can auto-negotiate 3030 * to enable EEE, and this feature can cause link drops when 3031 * linked to another device supporting EEE. 3032 * 3033 * The same item appears in the errata for all switches above. 3034 */ 3035 return MICREL_NO_EEE; 3036 } 3037 3038 return 0; 3039 } 3040 3041 static void ksz_phylink_mac_link_down(struct phylink_config *config, 3042 unsigned int mode, 3043 phy_interface_t interface) 3044 { 3045 struct dsa_port *dp = dsa_phylink_to_port(config); 3046 struct ksz_device *dev = dp->ds->priv; 3047 3048 /* Read all MIB counters when the link is going down. */ 3049 dev->ports[dp->index].read = true; 3050 /* timer started */ 3051 if (dev->mib_read_interval) 3052 schedule_delayed_work(&dev->mib_read, 0); 3053 } 3054 3055 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset) 3056 { 3057 struct ksz_device *dev = ds->priv; 3058 3059 if (sset != ETH_SS_STATS) 3060 return 0; 3061 3062 return dev->info->mib_cnt; 3063 } 3064 3065 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port, 3066 uint64_t *buf) 3067 { 3068 const struct dsa_port *dp = dsa_to_port(ds, port); 3069 struct ksz_device *dev = ds->priv; 3070 struct ksz_port_mib *mib; 3071 3072 mib = &dev->ports[port].mib; 3073 mutex_lock(&mib->cnt_mutex); 3074 3075 /* Only read dropped counters if no link. */ 3076 if (!netif_carrier_ok(dp->user)) 3077 mib->cnt_ptr = dev->info->reg_mib_cnt; 3078 port_r_cnt(dev, port); 3079 memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64)); 3080 mutex_unlock(&mib->cnt_mutex); 3081 } 3082 3083 static int ksz_port_bridge_join(struct dsa_switch *ds, int port, 3084 struct dsa_bridge bridge, 3085 bool *tx_fwd_offload, 3086 struct netlink_ext_ack *extack) 3087 { 3088 /* port_stp_state_set() will be called after to put the port in 3089 * appropriate state so there is no need to do anything. 3090 */ 3091 3092 return 0; 3093 } 3094 3095 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port, 3096 struct dsa_bridge bridge) 3097 { 3098 /* port_stp_state_set() will be called after to put the port in 3099 * forwarding state so there is no need to do anything. 3100 */ 3101 } 3102 3103 static void ksz_port_fast_age(struct dsa_switch *ds, int port) 3104 { 3105 struct ksz_device *dev = ds->priv; 3106 3107 dev->dev_ops->flush_dyn_mac_table(dev, port); 3108 } 3109 3110 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) 3111 { 3112 struct ksz_device *dev = ds->priv; 3113 3114 if (!dev->dev_ops->set_ageing_time) 3115 return -EOPNOTSUPP; 3116 3117 return dev->dev_ops->set_ageing_time(dev, msecs); 3118 } 3119 3120 static int ksz_port_fdb_add(struct dsa_switch *ds, int port, 3121 const unsigned char *addr, u16 vid, 3122 struct dsa_db db) 3123 { 3124 struct ksz_device *dev = ds->priv; 3125 3126 if (!dev->dev_ops->fdb_add) 3127 return -EOPNOTSUPP; 3128 3129 return dev->dev_ops->fdb_add(dev, port, addr, vid, db); 3130 } 3131 3132 static int ksz_port_fdb_del(struct dsa_switch *ds, int port, 3133 const unsigned char *addr, 3134 u16 vid, struct dsa_db db) 3135 { 3136 struct ksz_device *dev = ds->priv; 3137 3138 if (!dev->dev_ops->fdb_del) 3139 return -EOPNOTSUPP; 3140 3141 return dev->dev_ops->fdb_del(dev, port, addr, vid, db); 3142 } 3143 3144 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port, 3145 dsa_fdb_dump_cb_t *cb, void *data) 3146 { 3147 struct ksz_device *dev = ds->priv; 3148 3149 if (!dev->dev_ops->fdb_dump) 3150 return -EOPNOTSUPP; 3151 3152 return dev->dev_ops->fdb_dump(dev, port, cb, data); 3153 } 3154 3155 static int ksz_port_mdb_add(struct dsa_switch *ds, int port, 3156 const struct switchdev_obj_port_mdb *mdb, 3157 struct dsa_db db) 3158 { 3159 struct ksz_device *dev = ds->priv; 3160 3161 if (!dev->dev_ops->mdb_add) 3162 return -EOPNOTSUPP; 3163 3164 return dev->dev_ops->mdb_add(dev, port, mdb, db); 3165 } 3166 3167 static int ksz_port_mdb_del(struct dsa_switch *ds, int port, 3168 const struct switchdev_obj_port_mdb *mdb, 3169 struct dsa_db db) 3170 { 3171 struct ksz_device *dev = ds->priv; 3172 3173 if (!dev->dev_ops->mdb_del) 3174 return -EOPNOTSUPP; 3175 3176 return dev->dev_ops->mdb_del(dev, port, mdb, db); 3177 } 3178 3179 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev, 3180 int port) 3181 { 3182 u32 queue_map = 0; 3183 int ipm; 3184 3185 for (ipm = 0; ipm < dev->info->num_ipms; ipm++) { 3186 int queue; 3187 3188 /* Traffic Type (TT) is corresponding to the Internal Priority 3189 * Map (IPM) in the switch. Traffic Class (TC) is 3190 * corresponding to the queue in the switch. 3191 */ 3192 queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues); 3193 if (queue < 0) 3194 return queue; 3195 3196 queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S); 3197 } 3198 3199 return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map); 3200 } 3201 3202 static int ksz_port_setup(struct dsa_switch *ds, int port) 3203 { 3204 struct ksz_device *dev = ds->priv; 3205 int ret; 3206 3207 if (!dsa_is_user_port(ds, port)) 3208 return 0; 3209 3210 /* setup user port */ 3211 dev->dev_ops->port_setup(dev, port, false); 3212 3213 if (!is_ksz8(dev)) { 3214 ret = ksz9477_set_default_prio_queue_mapping(dev, port); 3215 if (ret) 3216 return ret; 3217 } 3218 3219 /* port_stp_state_set() will be called after to enable the port so 3220 * there is no need to do anything. 3221 */ 3222 3223 return ksz_dcb_init_port(dev, port); 3224 } 3225 3226 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) 3227 { 3228 struct ksz_device *dev = ds->priv; 3229 struct ksz_port *p; 3230 const u16 *regs; 3231 u8 data; 3232 3233 regs = dev->info->regs; 3234 3235 ksz_pread8(dev, port, regs[P_STP_CTRL], &data); 3236 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE); 3237 3238 p = &dev->ports[port]; 3239 3240 switch (state) { 3241 case BR_STATE_DISABLED: 3242 data |= PORT_LEARN_DISABLE; 3243 break; 3244 case BR_STATE_LISTENING: 3245 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE); 3246 break; 3247 case BR_STATE_LEARNING: 3248 data |= PORT_RX_ENABLE; 3249 if (!p->learning) 3250 data |= PORT_LEARN_DISABLE; 3251 break; 3252 case BR_STATE_FORWARDING: 3253 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 3254 if (!p->learning) 3255 data |= PORT_LEARN_DISABLE; 3256 break; 3257 case BR_STATE_BLOCKING: 3258 data |= PORT_LEARN_DISABLE; 3259 break; 3260 default: 3261 dev_err(ds->dev, "invalid STP state: %d\n", state); 3262 return; 3263 } 3264 3265 ksz_pwrite8(dev, port, regs[P_STP_CTRL], data); 3266 3267 p->stp_state = state; 3268 3269 ksz_update_port_member(dev, port); 3270 } 3271 3272 static void ksz_port_teardown(struct dsa_switch *ds, int port) 3273 { 3274 struct ksz_device *dev = ds->priv; 3275 3276 switch (dev->chip_id) { 3277 case KSZ8563_CHIP_ID: 3278 case KSZ8567_CHIP_ID: 3279 case KSZ9477_CHIP_ID: 3280 case KSZ9563_CHIP_ID: 3281 case KSZ9567_CHIP_ID: 3282 case KSZ9893_CHIP_ID: 3283 case KSZ9896_CHIP_ID: 3284 case KSZ9897_CHIP_ID: 3285 case LAN9646_CHIP_ID: 3286 if (dsa_is_user_port(ds, port)) 3287 ksz9477_port_acl_free(dev, port); 3288 } 3289 } 3290 3291 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port, 3292 struct switchdev_brport_flags flags, 3293 struct netlink_ext_ack *extack) 3294 { 3295 if (flags.mask & ~(BR_LEARNING | BR_ISOLATED)) 3296 return -EINVAL; 3297 3298 return 0; 3299 } 3300 3301 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port, 3302 struct switchdev_brport_flags flags, 3303 struct netlink_ext_ack *extack) 3304 { 3305 struct ksz_device *dev = ds->priv; 3306 struct ksz_port *p = &dev->ports[port]; 3307 3308 if (flags.mask & (BR_LEARNING | BR_ISOLATED)) { 3309 if (flags.mask & BR_LEARNING) 3310 p->learning = !!(flags.val & BR_LEARNING); 3311 3312 if (flags.mask & BR_ISOLATED) 3313 p->isolated = !!(flags.val & BR_ISOLATED); 3314 3315 /* Make the change take effect immediately */ 3316 ksz_port_stp_state_set(ds, port, p->stp_state); 3317 } 3318 3319 return 0; 3320 } 3321 3322 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds, 3323 int port, 3324 enum dsa_tag_protocol mp) 3325 { 3326 struct ksz_device *dev = ds->priv; 3327 enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE; 3328 3329 if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev)) 3330 proto = DSA_TAG_PROTO_KSZ8795; 3331 3332 if (dev->chip_id == KSZ88X3_CHIP_ID || 3333 dev->chip_id == KSZ8563_CHIP_ID || 3334 dev->chip_id == KSZ9893_CHIP_ID || 3335 dev->chip_id == KSZ9563_CHIP_ID) 3336 proto = DSA_TAG_PROTO_KSZ9893; 3337 3338 if (dev->chip_id == KSZ8567_CHIP_ID || 3339 dev->chip_id == KSZ9477_CHIP_ID || 3340 dev->chip_id == KSZ9896_CHIP_ID || 3341 dev->chip_id == KSZ9897_CHIP_ID || 3342 dev->chip_id == KSZ9567_CHIP_ID || 3343 dev->chip_id == LAN9646_CHIP_ID) 3344 proto = DSA_TAG_PROTO_KSZ9477; 3345 3346 if (is_lan937x(dev)) 3347 proto = DSA_TAG_PROTO_LAN937X; 3348 3349 return proto; 3350 } 3351 3352 static int ksz_connect_tag_protocol(struct dsa_switch *ds, 3353 enum dsa_tag_protocol proto) 3354 { 3355 struct ksz_tagger_data *tagger_data; 3356 3357 switch (proto) { 3358 case DSA_TAG_PROTO_KSZ8795: 3359 return 0; 3360 case DSA_TAG_PROTO_KSZ9893: 3361 case DSA_TAG_PROTO_KSZ9477: 3362 case DSA_TAG_PROTO_LAN937X: 3363 tagger_data = ksz_tagger_data(ds); 3364 tagger_data->xmit_work_fn = ksz_port_deferred_xmit; 3365 return 0; 3366 default: 3367 return -EPROTONOSUPPORT; 3368 } 3369 } 3370 3371 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, 3372 bool flag, struct netlink_ext_ack *extack) 3373 { 3374 struct ksz_device *dev = ds->priv; 3375 3376 if (!dev->dev_ops->vlan_filtering) 3377 return -EOPNOTSUPP; 3378 3379 return dev->dev_ops->vlan_filtering(dev, port, flag, extack); 3380 } 3381 3382 static int ksz_port_vlan_add(struct dsa_switch *ds, int port, 3383 const struct switchdev_obj_port_vlan *vlan, 3384 struct netlink_ext_ack *extack) 3385 { 3386 struct ksz_device *dev = ds->priv; 3387 3388 if (!dev->dev_ops->vlan_add) 3389 return -EOPNOTSUPP; 3390 3391 return dev->dev_ops->vlan_add(dev, port, vlan, extack); 3392 } 3393 3394 static int ksz_port_vlan_del(struct dsa_switch *ds, int port, 3395 const struct switchdev_obj_port_vlan *vlan) 3396 { 3397 struct ksz_device *dev = ds->priv; 3398 3399 if (!dev->dev_ops->vlan_del) 3400 return -EOPNOTSUPP; 3401 3402 return dev->dev_ops->vlan_del(dev, port, vlan); 3403 } 3404 3405 static int ksz_port_mirror_add(struct dsa_switch *ds, int port, 3406 struct dsa_mall_mirror_tc_entry *mirror, 3407 bool ingress, struct netlink_ext_ack *extack) 3408 { 3409 struct ksz_device *dev = ds->priv; 3410 3411 if (!dev->dev_ops->mirror_add) 3412 return -EOPNOTSUPP; 3413 3414 return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack); 3415 } 3416 3417 static void ksz_port_mirror_del(struct dsa_switch *ds, int port, 3418 struct dsa_mall_mirror_tc_entry *mirror) 3419 { 3420 struct ksz_device *dev = ds->priv; 3421 3422 if (dev->dev_ops->mirror_del) 3423 dev->dev_ops->mirror_del(dev, port, mirror); 3424 } 3425 3426 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu) 3427 { 3428 struct ksz_device *dev = ds->priv; 3429 3430 if (!dev->dev_ops->change_mtu) 3431 return -EOPNOTSUPP; 3432 3433 return dev->dev_ops->change_mtu(dev, port, mtu); 3434 } 3435 3436 static int ksz_max_mtu(struct dsa_switch *ds, int port) 3437 { 3438 struct ksz_device *dev = ds->priv; 3439 3440 switch (dev->chip_id) { 3441 case KSZ8795_CHIP_ID: 3442 case KSZ8794_CHIP_ID: 3443 case KSZ8765_CHIP_ID: 3444 return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3445 case KSZ88X3_CHIP_ID: 3446 case KSZ8864_CHIP_ID: 3447 case KSZ8895_CHIP_ID: 3448 return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3449 case KSZ8563_CHIP_ID: 3450 case KSZ8567_CHIP_ID: 3451 case KSZ9477_CHIP_ID: 3452 case KSZ9563_CHIP_ID: 3453 case KSZ9567_CHIP_ID: 3454 case KSZ9893_CHIP_ID: 3455 case KSZ9896_CHIP_ID: 3456 case KSZ9897_CHIP_ID: 3457 case LAN9370_CHIP_ID: 3458 case LAN9371_CHIP_ID: 3459 case LAN9372_CHIP_ID: 3460 case LAN9373_CHIP_ID: 3461 case LAN9374_CHIP_ID: 3462 case LAN9646_CHIP_ID: 3463 return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3464 } 3465 3466 return -EOPNOTSUPP; 3467 } 3468 3469 static bool ksz_support_eee(struct dsa_switch *ds, int port) 3470 { 3471 struct ksz_device *dev = ds->priv; 3472 3473 if (!dev->info->internal_phy[port]) 3474 return false; 3475 3476 switch (dev->chip_id) { 3477 case KSZ8563_CHIP_ID: 3478 case KSZ8567_CHIP_ID: 3479 case KSZ9477_CHIP_ID: 3480 case KSZ9563_CHIP_ID: 3481 case KSZ9567_CHIP_ID: 3482 case KSZ9893_CHIP_ID: 3483 case KSZ9896_CHIP_ID: 3484 case KSZ9897_CHIP_ID: 3485 case LAN9646_CHIP_ID: 3486 return true; 3487 } 3488 3489 return false; 3490 } 3491 3492 static int ksz_set_mac_eee(struct dsa_switch *ds, int port, 3493 struct ethtool_keee *e) 3494 { 3495 struct ksz_device *dev = ds->priv; 3496 3497 if (!e->tx_lpi_enabled) { 3498 dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n"); 3499 return -EINVAL; 3500 } 3501 3502 if (e->tx_lpi_timer) { 3503 dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n"); 3504 return -EINVAL; 3505 } 3506 3507 return 0; 3508 } 3509 3510 static void ksz_set_xmii(struct ksz_device *dev, int port, 3511 phy_interface_t interface) 3512 { 3513 const u8 *bitval = dev->info->xmii_ctrl1; 3514 struct ksz_port *p = &dev->ports[port]; 3515 const u16 *regs = dev->info->regs; 3516 u8 data8; 3517 3518 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3519 3520 data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE | 3521 P_RGMII_ID_EG_ENABLE); 3522 3523 switch (interface) { 3524 case PHY_INTERFACE_MODE_MII: 3525 data8 |= bitval[P_MII_SEL]; 3526 break; 3527 case PHY_INTERFACE_MODE_RMII: 3528 data8 |= bitval[P_RMII_SEL]; 3529 break; 3530 case PHY_INTERFACE_MODE_GMII: 3531 data8 |= bitval[P_GMII_SEL]; 3532 break; 3533 case PHY_INTERFACE_MODE_RGMII: 3534 case PHY_INTERFACE_MODE_RGMII_ID: 3535 case PHY_INTERFACE_MODE_RGMII_TXID: 3536 case PHY_INTERFACE_MODE_RGMII_RXID: 3537 data8 |= bitval[P_RGMII_SEL]; 3538 /* On KSZ9893, disable RGMII in-band status support */ 3539 if (dev->chip_id == KSZ9893_CHIP_ID || 3540 dev->chip_id == KSZ8563_CHIP_ID || 3541 dev->chip_id == KSZ9563_CHIP_ID || 3542 is_lan937x(dev)) 3543 data8 &= ~P_MII_MAC_MODE; 3544 break; 3545 default: 3546 dev_err(dev->dev, "Unsupported interface '%s' for port %d\n", 3547 phy_modes(interface), port); 3548 return; 3549 } 3550 3551 if (p->rgmii_tx_val) 3552 data8 |= P_RGMII_ID_EG_ENABLE; 3553 3554 if (p->rgmii_rx_val) 3555 data8 |= P_RGMII_ID_IG_ENABLE; 3556 3557 /* Write the updated value */ 3558 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8); 3559 } 3560 3561 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit) 3562 { 3563 const u8 *bitval = dev->info->xmii_ctrl1; 3564 const u16 *regs = dev->info->regs; 3565 phy_interface_t interface; 3566 u8 data8; 3567 u8 val; 3568 3569 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3570 3571 val = FIELD_GET(P_MII_SEL_M, data8); 3572 3573 if (val == bitval[P_MII_SEL]) { 3574 if (gbit) 3575 interface = PHY_INTERFACE_MODE_GMII; 3576 else 3577 interface = PHY_INTERFACE_MODE_MII; 3578 } else if (val == bitval[P_RMII_SEL]) { 3579 interface = PHY_INTERFACE_MODE_RMII; 3580 } else { 3581 interface = PHY_INTERFACE_MODE_RGMII; 3582 if (data8 & P_RGMII_ID_EG_ENABLE) 3583 interface = PHY_INTERFACE_MODE_RGMII_TXID; 3584 if (data8 & P_RGMII_ID_IG_ENABLE) { 3585 interface = PHY_INTERFACE_MODE_RGMII_RXID; 3586 if (data8 & P_RGMII_ID_EG_ENABLE) 3587 interface = PHY_INTERFACE_MODE_RGMII_ID; 3588 } 3589 } 3590 3591 return interface; 3592 } 3593 3594 static void ksz88x3_phylink_mac_config(struct phylink_config *config, 3595 unsigned int mode, 3596 const struct phylink_link_state *state) 3597 { 3598 struct dsa_port *dp = dsa_phylink_to_port(config); 3599 struct ksz_device *dev = dp->ds->priv; 3600 3601 dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN); 3602 } 3603 3604 static void ksz_phylink_mac_config(struct phylink_config *config, 3605 unsigned int mode, 3606 const struct phylink_link_state *state) 3607 { 3608 struct dsa_port *dp = dsa_phylink_to_port(config); 3609 struct ksz_device *dev = dp->ds->priv; 3610 int port = dp->index; 3611 3612 /* Internal PHYs */ 3613 if (dev->info->internal_phy[port]) 3614 return; 3615 3616 if (phylink_autoneg_inband(mode)) { 3617 dev_err(dev->dev, "In-band AN not supported!\n"); 3618 return; 3619 } 3620 3621 ksz_set_xmii(dev, port, state->interface); 3622 3623 if (dev->dev_ops->setup_rgmii_delay) 3624 dev->dev_ops->setup_rgmii_delay(dev, port); 3625 } 3626 3627 bool ksz_get_gbit(struct ksz_device *dev, int port) 3628 { 3629 const u8 *bitval = dev->info->xmii_ctrl1; 3630 const u16 *regs = dev->info->regs; 3631 bool gbit = false; 3632 u8 data8; 3633 bool val; 3634 3635 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3636 3637 val = FIELD_GET(P_GMII_1GBIT_M, data8); 3638 3639 if (val == bitval[P_GMII_1GBIT]) 3640 gbit = true; 3641 3642 return gbit; 3643 } 3644 3645 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit) 3646 { 3647 const u8 *bitval = dev->info->xmii_ctrl1; 3648 const u16 *regs = dev->info->regs; 3649 u8 data8; 3650 3651 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3652 3653 data8 &= ~P_GMII_1GBIT_M; 3654 3655 if (gbit) 3656 data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]); 3657 else 3658 data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]); 3659 3660 /* Write the updated value */ 3661 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8); 3662 } 3663 3664 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed) 3665 { 3666 const u8 *bitval = dev->info->xmii_ctrl0; 3667 const u16 *regs = dev->info->regs; 3668 u8 data8; 3669 3670 ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8); 3671 3672 data8 &= ~P_MII_100MBIT_M; 3673 3674 if (speed == SPEED_100) 3675 data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]); 3676 else 3677 data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]); 3678 3679 /* Write the updated value */ 3680 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8); 3681 } 3682 3683 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed) 3684 { 3685 if (speed == SPEED_1000) 3686 ksz_set_gbit(dev, port, true); 3687 else 3688 ksz_set_gbit(dev, port, false); 3689 3690 if (speed == SPEED_100 || speed == SPEED_10) 3691 ksz_set_100_10mbit(dev, port, speed); 3692 } 3693 3694 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex, 3695 bool tx_pause, bool rx_pause) 3696 { 3697 const u8 *bitval = dev->info->xmii_ctrl0; 3698 const u32 *masks = dev->info->masks; 3699 const u16 *regs = dev->info->regs; 3700 u8 mask; 3701 u8 val; 3702 3703 mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] | 3704 masks[P_MII_RX_FLOW_CTRL]; 3705 3706 if (duplex == DUPLEX_FULL) 3707 val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]); 3708 else 3709 val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]); 3710 3711 if (tx_pause) 3712 val |= masks[P_MII_TX_FLOW_CTRL]; 3713 3714 if (rx_pause) 3715 val |= masks[P_MII_RX_FLOW_CTRL]; 3716 3717 ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val); 3718 } 3719 3720 static void ksz9477_phylink_mac_link_up(struct phylink_config *config, 3721 struct phy_device *phydev, 3722 unsigned int mode, 3723 phy_interface_t interface, 3724 int speed, int duplex, bool tx_pause, 3725 bool rx_pause) 3726 { 3727 struct dsa_port *dp = dsa_phylink_to_port(config); 3728 struct ksz_device *dev = dp->ds->priv; 3729 int port = dp->index; 3730 struct ksz_port *p; 3731 3732 p = &dev->ports[port]; 3733 3734 /* Internal PHYs */ 3735 if (dev->info->internal_phy[port]) 3736 return; 3737 3738 p->phydev.speed = speed; 3739 3740 ksz_port_set_xmii_speed(dev, port, speed); 3741 3742 ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause); 3743 } 3744 3745 static int ksz_switch_detect(struct ksz_device *dev) 3746 { 3747 u8 id1, id2, id4; 3748 u16 id16; 3749 u32 id32; 3750 int ret; 3751 3752 /* read chip id */ 3753 ret = ksz_read16(dev, REG_CHIP_ID0, &id16); 3754 if (ret) 3755 return ret; 3756 3757 id1 = FIELD_GET(SW_FAMILY_ID_M, id16); 3758 id2 = FIELD_GET(SW_CHIP_ID_M, id16); 3759 3760 switch (id1) { 3761 case KSZ87_FAMILY_ID: 3762 if (id2 == KSZ87_CHIP_ID_95) { 3763 u8 val; 3764 3765 dev->chip_id = KSZ8795_CHIP_ID; 3766 3767 ksz_read8(dev, KSZ8_PORT_STATUS_0, &val); 3768 if (val & KSZ8_PORT_FIBER_MODE) 3769 dev->chip_id = KSZ8765_CHIP_ID; 3770 } else if (id2 == KSZ87_CHIP_ID_94) { 3771 dev->chip_id = KSZ8794_CHIP_ID; 3772 } else { 3773 return -ENODEV; 3774 } 3775 break; 3776 case KSZ88_FAMILY_ID: 3777 if (id2 == KSZ88_CHIP_ID_63) 3778 dev->chip_id = KSZ88X3_CHIP_ID; 3779 else 3780 return -ENODEV; 3781 break; 3782 case KSZ8895_FAMILY_ID: 3783 if (id2 == KSZ8895_CHIP_ID_95 || 3784 id2 == KSZ8895_CHIP_ID_95R) 3785 dev->chip_id = KSZ8895_CHIP_ID; 3786 else 3787 return -ENODEV; 3788 ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4); 3789 if (ret) 3790 return ret; 3791 if (id4 & SW_KSZ8864) 3792 dev->chip_id = KSZ8864_CHIP_ID; 3793 break; 3794 default: 3795 ret = ksz_read32(dev, REG_CHIP_ID0, &id32); 3796 if (ret) 3797 return ret; 3798 3799 dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32); 3800 id32 &= ~0xFF; 3801 3802 switch (id32) { 3803 case KSZ9477_CHIP_ID: 3804 case KSZ9896_CHIP_ID: 3805 case KSZ9897_CHIP_ID: 3806 case KSZ9567_CHIP_ID: 3807 case KSZ8567_CHIP_ID: 3808 case LAN9370_CHIP_ID: 3809 case LAN9371_CHIP_ID: 3810 case LAN9372_CHIP_ID: 3811 case LAN9373_CHIP_ID: 3812 case LAN9374_CHIP_ID: 3813 3814 /* LAN9646 does not have its own chip id. */ 3815 if (dev->chip_id != LAN9646_CHIP_ID) 3816 dev->chip_id = id32; 3817 break; 3818 case KSZ9893_CHIP_ID: 3819 ret = ksz_read8(dev, REG_CHIP_ID4, 3820 &id4); 3821 if (ret) 3822 return ret; 3823 3824 if (id4 == SKU_ID_KSZ8563) 3825 dev->chip_id = KSZ8563_CHIP_ID; 3826 else if (id4 == SKU_ID_KSZ9563) 3827 dev->chip_id = KSZ9563_CHIP_ID; 3828 else 3829 dev->chip_id = KSZ9893_CHIP_ID; 3830 3831 break; 3832 default: 3833 dev_err(dev->dev, 3834 "unsupported switch detected %x)\n", id32); 3835 return -ENODEV; 3836 } 3837 } 3838 return 0; 3839 } 3840 3841 static int ksz_cls_flower_add(struct dsa_switch *ds, int port, 3842 struct flow_cls_offload *cls, bool ingress) 3843 { 3844 struct ksz_device *dev = ds->priv; 3845 3846 switch (dev->chip_id) { 3847 case KSZ8563_CHIP_ID: 3848 case KSZ8567_CHIP_ID: 3849 case KSZ9477_CHIP_ID: 3850 case KSZ9563_CHIP_ID: 3851 case KSZ9567_CHIP_ID: 3852 case KSZ9893_CHIP_ID: 3853 case KSZ9896_CHIP_ID: 3854 case KSZ9897_CHIP_ID: 3855 case LAN9646_CHIP_ID: 3856 return ksz9477_cls_flower_add(ds, port, cls, ingress); 3857 } 3858 3859 return -EOPNOTSUPP; 3860 } 3861 3862 static int ksz_cls_flower_del(struct dsa_switch *ds, int port, 3863 struct flow_cls_offload *cls, bool ingress) 3864 { 3865 struct ksz_device *dev = ds->priv; 3866 3867 switch (dev->chip_id) { 3868 case KSZ8563_CHIP_ID: 3869 case KSZ8567_CHIP_ID: 3870 case KSZ9477_CHIP_ID: 3871 case KSZ9563_CHIP_ID: 3872 case KSZ9567_CHIP_ID: 3873 case KSZ9893_CHIP_ID: 3874 case KSZ9896_CHIP_ID: 3875 case KSZ9897_CHIP_ID: 3876 case LAN9646_CHIP_ID: 3877 return ksz9477_cls_flower_del(ds, port, cls, ingress); 3878 } 3879 3880 return -EOPNOTSUPP; 3881 } 3882 3883 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth 3884 * is converted to Hex-decimal using the successive multiplication method. On 3885 * every step, integer part is taken and decimal part is carry forwarded. 3886 */ 3887 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw) 3888 { 3889 u32 cinc = 0; 3890 u32 txrate; 3891 u32 rate; 3892 u8 temp; 3893 u8 i; 3894 3895 txrate = idle_slope - send_slope; 3896 3897 if (!txrate) 3898 return -EINVAL; 3899 3900 rate = idle_slope; 3901 3902 /* 24 bit register */ 3903 for (i = 0; i < 6; i++) { 3904 rate = rate * 16; 3905 3906 temp = rate / txrate; 3907 3908 rate %= txrate; 3909 3910 cinc = ((cinc << 4) | temp); 3911 } 3912 3913 *bw = cinc; 3914 3915 return 0; 3916 } 3917 3918 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler, 3919 u8 shaper) 3920 { 3921 return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0, 3922 FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) | 3923 FIELD_PREP(MTI_SHAPING_M, shaper)); 3924 } 3925 3926 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port, 3927 struct tc_cbs_qopt_offload *qopt) 3928 { 3929 struct ksz_device *dev = ds->priv; 3930 int ret; 3931 u32 bw; 3932 3933 if (!dev->info->tc_cbs_supported) 3934 return -EOPNOTSUPP; 3935 3936 if (qopt->queue > dev->info->num_tx_queues) 3937 return -EINVAL; 3938 3939 /* Queue Selection */ 3940 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue); 3941 if (ret) 3942 return ret; 3943 3944 if (!qopt->enable) 3945 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR, 3946 MTI_SHAPING_OFF); 3947 3948 /* High Credit */ 3949 ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK, 3950 qopt->hicredit); 3951 if (ret) 3952 return ret; 3953 3954 /* Low Credit */ 3955 ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK, 3956 qopt->locredit); 3957 if (ret) 3958 return ret; 3959 3960 /* Credit Increment Register */ 3961 ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw); 3962 if (ret) 3963 return ret; 3964 3965 if (dev->dev_ops->tc_cbs_set_cinc) { 3966 ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw); 3967 if (ret) 3968 return ret; 3969 } 3970 3971 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO, 3972 MTI_SHAPING_SRP); 3973 } 3974 3975 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port) 3976 { 3977 int queue, ret; 3978 3979 /* Configuration will not take effect until the last Port Queue X 3980 * Egress Limit Control Register is written. 3981 */ 3982 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 3983 ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue, 3984 KSZ9477_OUT_RATE_NO_LIMIT); 3985 if (ret) 3986 return ret; 3987 } 3988 3989 return 0; 3990 } 3991 3992 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p, 3993 int band) 3994 { 3995 /* Compared to queues, bands prioritize packets differently. In strict 3996 * priority mode, the lowest priority is assigned to Queue 0 while the 3997 * highest priority is given to Band 0. 3998 */ 3999 return p->bands - 1 - band; 4000 } 4001 4002 /** 4003 * ksz88x3_tc_ets_add - Configure ETS (Enhanced Transmission Selection) 4004 * for a port on KSZ88x3 switch 4005 * @dev: Pointer to the KSZ switch device structure 4006 * @port: Port number to configure 4007 * @p: Pointer to offload replace parameters describing ETS bands and mapping 4008 * 4009 * The KSZ88x3 supports two scheduling modes: Strict Priority and 4010 * Weighted Fair Queuing (WFQ). Both modes have fixed behavior: 4011 * - No configurable queue-to-priority mapping 4012 * - No weight adjustment in WFQ mode 4013 * 4014 * This function configures the switch to use strict priority mode by 4015 * clearing the WFQ enable bit for all queues associated with ETS bands. 4016 * If strict priority is not explicitly requested, the switch will default 4017 * to WFQ mode. 4018 * 4019 * Return: 0 on success, or a negative error code on failure 4020 */ 4021 static int ksz88x3_tc_ets_add(struct ksz_device *dev, int port, 4022 struct tc_ets_qopt_offload_replace_params *p) 4023 { 4024 int ret, band; 4025 4026 /* Only strict priority mode is supported for now. 4027 * WFQ is implicitly enabled when strict mode is disabled. 4028 */ 4029 for (band = 0; band < p->bands; band++) { 4030 int queue = ksz_ets_band_to_queue(p, band); 4031 u8 reg; 4032 4033 /* Calculate TXQ Split Control register address for this 4034 * port/queue 4035 */ 4036 reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue); 4037 4038 /* Clear WFQ enable bit to select strict priority scheduling */ 4039 ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE, 0); 4040 if (ret) 4041 return ret; 4042 } 4043 4044 return 0; 4045 } 4046 4047 /** 4048 * ksz88x3_tc_ets_del - Reset ETS (Enhanced Transmission Selection) config 4049 * for a port on KSZ88x3 switch 4050 * @dev: Pointer to the KSZ switch device structure 4051 * @port: Port number to reset 4052 * 4053 * The KSZ88x3 supports only fixed scheduling modes: Strict Priority or 4054 * Weighted Fair Queuing (WFQ), with no reconfiguration of weights or 4055 * queue mapping. This function resets the port’s scheduling mode to 4056 * the default, which is WFQ, by enabling the WFQ bit for all queues. 4057 * 4058 * Return: 0 on success, or a negative error code on failure 4059 */ 4060 static int ksz88x3_tc_ets_del(struct ksz_device *dev, int port) 4061 { 4062 int ret, queue; 4063 4064 /* Iterate over all transmit queues for this port */ 4065 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 4066 u8 reg; 4067 4068 /* Calculate TXQ Split Control register address for this 4069 * port/queue 4070 */ 4071 reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue); 4072 4073 /* Set WFQ enable bit to revert back to default scheduling 4074 * mode 4075 */ 4076 ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE, 4077 KSZ8873_TXQ_WFQ_ENABLE); 4078 if (ret) 4079 return ret; 4080 } 4081 4082 return 0; 4083 } 4084 4085 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue) 4086 { 4087 int ret; 4088 4089 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue); 4090 if (ret) 4091 return ret; 4092 4093 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO, 4094 MTI_SHAPING_OFF); 4095 } 4096 4097 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue, 4098 int weight) 4099 { 4100 int ret; 4101 4102 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue); 4103 if (ret) 4104 return ret; 4105 4106 ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR, 4107 MTI_SHAPING_OFF); 4108 if (ret) 4109 return ret; 4110 4111 return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight); 4112 } 4113 4114 static int ksz_tc_ets_add(struct ksz_device *dev, int port, 4115 struct tc_ets_qopt_offload_replace_params *p) 4116 { 4117 int ret, band, tc_prio; 4118 u32 queue_map = 0; 4119 4120 /* In order to ensure proper prioritization, it is necessary to set the 4121 * rate limit for the related queue to zero. Otherwise strict priority 4122 * or WRR mode will not work. This is a hardware limitation. 4123 */ 4124 ret = ksz_disable_egress_rate_limit(dev, port); 4125 if (ret) 4126 return ret; 4127 4128 /* Configure queue scheduling mode for all bands. Currently only strict 4129 * prio mode is supported. 4130 */ 4131 for (band = 0; band < p->bands; band++) { 4132 int queue = ksz_ets_band_to_queue(p, band); 4133 4134 ret = ksz_queue_set_strict(dev, port, queue); 4135 if (ret) 4136 return ret; 4137 } 4138 4139 /* Configure the mapping between traffic classes and queues. Note: 4140 * priomap variable support 16 traffic classes, but the chip can handle 4141 * only 8 classes. 4142 */ 4143 for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) { 4144 int queue; 4145 4146 if (tc_prio >= dev->info->num_ipms) 4147 break; 4148 4149 queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]); 4150 queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S); 4151 } 4152 4153 return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map); 4154 } 4155 4156 static int ksz_tc_ets_del(struct ksz_device *dev, int port) 4157 { 4158 int ret, queue; 4159 4160 /* To restore the default chip configuration, set all queues to use the 4161 * WRR scheduler with a weight of 1. 4162 */ 4163 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 4164 ret = ksz_queue_set_wrr(dev, port, queue, 4165 KSZ9477_DEFAULT_WRR_WEIGHT); 4166 4167 if (ret) 4168 return ret; 4169 } 4170 4171 /* Revert the queue mapping for TC-priority to its default setting on 4172 * the chip. 4173 */ 4174 return ksz9477_set_default_prio_queue_mapping(dev, port); 4175 } 4176 4177 static int ksz_tc_ets_validate(struct ksz_device *dev, int port, 4178 struct tc_ets_qopt_offload_replace_params *p) 4179 { 4180 int band; 4181 4182 /* Since it is not feasible to share one port among multiple qdisc, 4183 * the user must configure all available queues appropriately. 4184 */ 4185 if (p->bands != dev->info->num_tx_queues) { 4186 dev_err(dev->dev, "Not supported amount of bands. It should be %d\n", 4187 dev->info->num_tx_queues); 4188 return -EOPNOTSUPP; 4189 } 4190 4191 for (band = 0; band < p->bands; ++band) { 4192 /* The KSZ switches utilize a weighted round robin configuration 4193 * where a certain number of packets can be transmitted from a 4194 * queue before the next queue is serviced. For more information 4195 * on this, refer to section 5.2.8.4 of the KSZ8565R 4196 * documentation on the Port Transmit Queue Control 1 Register. 4197 * However, the current ETS Qdisc implementation (as of February 4198 * 2023) assigns a weight to each queue based on the number of 4199 * bytes or extrapolated bandwidth in percentages. Since this 4200 * differs from the KSZ switches' method and we don't want to 4201 * fake support by converting bytes to packets, it is better to 4202 * return an error instead. 4203 */ 4204 if (p->quanta[band]) { 4205 dev_err(dev->dev, "Quanta/weights configuration is not supported.\n"); 4206 return -EOPNOTSUPP; 4207 } 4208 } 4209 4210 return 0; 4211 } 4212 4213 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port, 4214 struct tc_ets_qopt_offload *qopt) 4215 { 4216 struct ksz_device *dev = ds->priv; 4217 int ret; 4218 4219 if (is_ksz8(dev) && !ksz_is_ksz88x3(dev)) 4220 return -EOPNOTSUPP; 4221 4222 if (qopt->parent != TC_H_ROOT) { 4223 dev_err(dev->dev, "Parent should be \"root\"\n"); 4224 return -EOPNOTSUPP; 4225 } 4226 4227 switch (qopt->command) { 4228 case TC_ETS_REPLACE: 4229 ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params); 4230 if (ret) 4231 return ret; 4232 4233 if (ksz_is_ksz88x3(dev)) 4234 return ksz88x3_tc_ets_add(dev, port, 4235 &qopt->replace_params); 4236 else 4237 return ksz_tc_ets_add(dev, port, &qopt->replace_params); 4238 case TC_ETS_DESTROY: 4239 if (ksz_is_ksz88x3(dev)) 4240 return ksz88x3_tc_ets_del(dev, port); 4241 else 4242 return ksz_tc_ets_del(dev, port); 4243 case TC_ETS_STATS: 4244 case TC_ETS_GRAFT: 4245 return -EOPNOTSUPP; 4246 } 4247 4248 return -EOPNOTSUPP; 4249 } 4250 4251 static int ksz_setup_tc(struct dsa_switch *ds, int port, 4252 enum tc_setup_type type, void *type_data) 4253 { 4254 switch (type) { 4255 case TC_SETUP_QDISC_CBS: 4256 return ksz_setup_tc_cbs(ds, port, type_data); 4257 case TC_SETUP_QDISC_ETS: 4258 return ksz_tc_setup_qdisc_ets(ds, port, type_data); 4259 default: 4260 return -EOPNOTSUPP; 4261 } 4262 } 4263 4264 /** 4265 * ksz_handle_wake_reason - Handle wake reason on a specified port. 4266 * @dev: The device structure. 4267 * @port: The port number. 4268 * 4269 * This function reads the PME (Power Management Event) status register of a 4270 * specified port to determine the wake reason. If there is no wake event, it 4271 * returns early. Otherwise, it logs the wake reason which could be due to a 4272 * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register 4273 * is then cleared to acknowledge the handling of the wake event. 4274 * 4275 * Return: 0 on success, or an error code on failure. 4276 */ 4277 int ksz_handle_wake_reason(struct ksz_device *dev, int port) 4278 { 4279 const struct ksz_dev_ops *ops = dev->dev_ops; 4280 const u16 *regs = dev->info->regs; 4281 u8 pme_status; 4282 int ret; 4283 4284 ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS], 4285 &pme_status); 4286 if (ret) 4287 return ret; 4288 4289 if (!pme_status) 4290 return 0; 4291 4292 dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port, 4293 pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "", 4294 pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "", 4295 pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : ""); 4296 4297 return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS], 4298 pme_status); 4299 } 4300 4301 /** 4302 * ksz_get_wol - Get Wake-on-LAN settings for a specified port. 4303 * @ds: The dsa_switch structure. 4304 * @port: The port number. 4305 * @wol: Pointer to ethtool Wake-on-LAN settings structure. 4306 * 4307 * This function checks the device PME wakeup_source flag and chip_id. 4308 * If enabled and supported, it sets the supported and active WoL 4309 * flags. 4310 */ 4311 static void ksz_get_wol(struct dsa_switch *ds, int port, 4312 struct ethtool_wolinfo *wol) 4313 { 4314 struct ksz_device *dev = ds->priv; 4315 const u16 *regs = dev->info->regs; 4316 u8 pme_ctrl; 4317 int ret; 4318 4319 if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev)) 4320 return; 4321 4322 if (!dev->wakeup_source) 4323 return; 4324 4325 wol->supported = WAKE_PHY; 4326 4327 /* Check if the current MAC address on this port can be set 4328 * as global for WAKE_MAGIC support. The result may vary 4329 * dynamically based on other ports configurations. 4330 */ 4331 if (ksz_is_port_mac_global_usable(dev->ds, port)) 4332 wol->supported |= WAKE_MAGIC; 4333 4334 ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL], 4335 &pme_ctrl); 4336 if (ret) 4337 return; 4338 4339 if (pme_ctrl & PME_WOL_MAGICPKT) 4340 wol->wolopts |= WAKE_MAGIC; 4341 if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY)) 4342 wol->wolopts |= WAKE_PHY; 4343 } 4344 4345 /** 4346 * ksz_set_wol - Set Wake-on-LAN settings for a specified port. 4347 * @ds: The dsa_switch structure. 4348 * @port: The port number. 4349 * @wol: Pointer to ethtool Wake-on-LAN settings structure. 4350 * 4351 * This function configures Wake-on-LAN (WoL) settings for a specified 4352 * port. It validates the provided WoL options, checks if PME is 4353 * enabled and supported, clears any previous wake reasons, and sets 4354 * the Magic Packet flag in the port's PME control register if 4355 * specified. 4356 * 4357 * Return: 0 on success, or other error codes on failure. 4358 */ 4359 static int ksz_set_wol(struct dsa_switch *ds, int port, 4360 struct ethtool_wolinfo *wol) 4361 { 4362 u8 pme_ctrl = 0, pme_ctrl_old = 0; 4363 struct ksz_device *dev = ds->priv; 4364 const u16 *regs = dev->info->regs; 4365 bool magic_switched_off; 4366 bool magic_switched_on; 4367 int ret; 4368 4369 if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC)) 4370 return -EINVAL; 4371 4372 if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev)) 4373 return -EOPNOTSUPP; 4374 4375 if (!dev->wakeup_source) 4376 return -EOPNOTSUPP; 4377 4378 ret = ksz_handle_wake_reason(dev, port); 4379 if (ret) 4380 return ret; 4381 4382 if (wol->wolopts & WAKE_MAGIC) 4383 pme_ctrl |= PME_WOL_MAGICPKT; 4384 if (wol->wolopts & WAKE_PHY) 4385 pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY; 4386 4387 ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL], 4388 &pme_ctrl_old); 4389 if (ret) 4390 return ret; 4391 4392 if (pme_ctrl_old == pme_ctrl) 4393 return 0; 4394 4395 magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) && 4396 !(pme_ctrl & PME_WOL_MAGICPKT); 4397 magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) && 4398 (pme_ctrl & PME_WOL_MAGICPKT); 4399 4400 /* To keep reference count of MAC address, we should do this 4401 * operation only on change of WOL settings. 4402 */ 4403 if (magic_switched_on) { 4404 ret = ksz_switch_macaddr_get(dev->ds, port, NULL); 4405 if (ret) 4406 return ret; 4407 } else if (magic_switched_off) { 4408 ksz_switch_macaddr_put(dev->ds); 4409 } 4410 4411 ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL], 4412 pme_ctrl); 4413 if (ret) { 4414 if (magic_switched_on) 4415 ksz_switch_macaddr_put(dev->ds); 4416 return ret; 4417 } 4418 4419 return 0; 4420 } 4421 4422 /** 4423 * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while 4424 * considering Wake-on-LAN (WoL) settings. 4425 * @dev: The switch device structure. 4426 * @wol_enabled: Pointer to a boolean which will be set to true if WoL is 4427 * enabled on any port. 4428 * 4429 * This function prepares the switch device for a safe shutdown while taking 4430 * into account the Wake-on-LAN (WoL) settings on the user ports. It updates 4431 * the wol_enabled flag accordingly to reflect whether WoL is active on any 4432 * port. 4433 */ 4434 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled) 4435 { 4436 const struct ksz_dev_ops *ops = dev->dev_ops; 4437 const u16 *regs = dev->info->regs; 4438 u8 pme_pin_en = PME_ENABLE; 4439 struct dsa_port *dp; 4440 int ret; 4441 4442 *wol_enabled = false; 4443 4444 if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev)) 4445 return; 4446 4447 if (!dev->wakeup_source) 4448 return; 4449 4450 dsa_switch_for_each_user_port(dp, dev->ds) { 4451 u8 pme_ctrl = 0; 4452 4453 ret = ops->pme_pread8(dev, dp->index, 4454 regs[REG_PORT_PME_CTRL], &pme_ctrl); 4455 if (!ret && pme_ctrl) 4456 *wol_enabled = true; 4457 4458 /* make sure there are no pending wake events which would 4459 * prevent the device from going to sleep/shutdown. 4460 */ 4461 ksz_handle_wake_reason(dev, dp->index); 4462 } 4463 4464 /* Now we are save to enable PME pin. */ 4465 if (*wol_enabled) { 4466 if (dev->pme_active_high) 4467 pme_pin_en |= PME_POLARITY; 4468 ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en); 4469 if (ksz_is_ksz87xx(dev)) 4470 ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK); 4471 } 4472 } 4473 4474 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port, 4475 const unsigned char *addr) 4476 { 4477 struct dsa_port *dp = dsa_to_port(ds, port); 4478 struct ethtool_wolinfo wol; 4479 4480 if (dp->hsr_dev) { 4481 dev_err(ds->dev, 4482 "Cannot change MAC address on port %d with active HSR offload\n", 4483 port); 4484 return -EBUSY; 4485 } 4486 4487 /* Need to initialize variable as the code to fill in settings may 4488 * not be executed. 4489 */ 4490 wol.wolopts = 0; 4491 4492 ksz_get_wol(ds, dp->index, &wol); 4493 if (wol.wolopts & WAKE_MAGIC) { 4494 dev_err(ds->dev, 4495 "Cannot change MAC address on port %d with active Wake on Magic Packet\n", 4496 port); 4497 return -EBUSY; 4498 } 4499 4500 return 0; 4501 } 4502 4503 /** 4504 * ksz_is_port_mac_global_usable - Check if the MAC address on a given port 4505 * can be used as a global address. 4506 * @ds: Pointer to the DSA switch structure. 4507 * @port: The port number on which the MAC address is to be checked. 4508 * 4509 * This function examines the MAC address set on the specified port and 4510 * determines if it can be used as a global address for the switch. 4511 * 4512 * Return: true if the port's MAC address can be used as a global address, false 4513 * otherwise. 4514 */ 4515 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port) 4516 { 4517 struct net_device *user = dsa_to_port(ds, port)->user; 4518 const unsigned char *addr = user->dev_addr; 4519 struct ksz_switch_macaddr *switch_macaddr; 4520 struct ksz_device *dev = ds->priv; 4521 4522 ASSERT_RTNL(); 4523 4524 switch_macaddr = dev->switch_macaddr; 4525 if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr)) 4526 return false; 4527 4528 return true; 4529 } 4530 4531 /** 4532 * ksz_switch_macaddr_get - Program the switch's MAC address register. 4533 * @ds: DSA switch instance. 4534 * @port: Port number. 4535 * @extack: Netlink extended acknowledgment. 4536 * 4537 * This function programs the switch's MAC address register with the MAC address 4538 * of the requesting user port. This single address is used by the switch for 4539 * multiple features like HSR self-address filtering and WoL. Other user ports 4540 * can share ownership of this address as long as their MAC address is the same. 4541 * The MAC addresses of user ports must not change while they have ownership of 4542 * the switch MAC address. 4543 * 4544 * Return: 0 on success, or other error codes on failure. 4545 */ 4546 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port, 4547 struct netlink_ext_ack *extack) 4548 { 4549 struct net_device *user = dsa_to_port(ds, port)->user; 4550 const unsigned char *addr = user->dev_addr; 4551 struct ksz_switch_macaddr *switch_macaddr; 4552 struct ksz_device *dev = ds->priv; 4553 const u16 *regs = dev->info->regs; 4554 int i, ret; 4555 4556 /* Make sure concurrent MAC address changes are blocked */ 4557 ASSERT_RTNL(); 4558 4559 switch_macaddr = dev->switch_macaddr; 4560 if (switch_macaddr) { 4561 if (!ether_addr_equal(switch_macaddr->addr, addr)) { 4562 NL_SET_ERR_MSG_FMT_MOD(extack, 4563 "Switch already configured for MAC address %pM", 4564 switch_macaddr->addr); 4565 return -EBUSY; 4566 } 4567 4568 refcount_inc(&switch_macaddr->refcount); 4569 return 0; 4570 } 4571 4572 switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL); 4573 if (!switch_macaddr) 4574 return -ENOMEM; 4575 4576 ether_addr_copy(switch_macaddr->addr, addr); 4577 refcount_set(&switch_macaddr->refcount, 1); 4578 dev->switch_macaddr = switch_macaddr; 4579 4580 /* Program the switch MAC address to hardware */ 4581 for (i = 0; i < ETH_ALEN; i++) { 4582 ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]); 4583 if (ret) 4584 goto macaddr_drop; 4585 } 4586 4587 return 0; 4588 4589 macaddr_drop: 4590 dev->switch_macaddr = NULL; 4591 refcount_set(&switch_macaddr->refcount, 0); 4592 kfree(switch_macaddr); 4593 4594 return ret; 4595 } 4596 4597 void ksz_switch_macaddr_put(struct dsa_switch *ds) 4598 { 4599 struct ksz_switch_macaddr *switch_macaddr; 4600 struct ksz_device *dev = ds->priv; 4601 const u16 *regs = dev->info->regs; 4602 int i; 4603 4604 /* Make sure concurrent MAC address changes are blocked */ 4605 ASSERT_RTNL(); 4606 4607 switch_macaddr = dev->switch_macaddr; 4608 if (!refcount_dec_and_test(&switch_macaddr->refcount)) 4609 return; 4610 4611 for (i = 0; i < ETH_ALEN; i++) 4612 ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0); 4613 4614 dev->switch_macaddr = NULL; 4615 kfree(switch_macaddr); 4616 } 4617 4618 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr, 4619 struct netlink_ext_ack *extack) 4620 { 4621 struct ksz_device *dev = ds->priv; 4622 enum hsr_version ver; 4623 int ret; 4624 4625 ret = hsr_get_version(hsr, &ver); 4626 if (ret) 4627 return ret; 4628 4629 if (dev->chip_id != KSZ9477_CHIP_ID) { 4630 NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload"); 4631 return -EOPNOTSUPP; 4632 } 4633 4634 /* KSZ9477 can support HW offloading of only 1 HSR device */ 4635 if (dev->hsr_dev && hsr != dev->hsr_dev) { 4636 NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR"); 4637 return -EOPNOTSUPP; 4638 } 4639 4640 /* KSZ9477 only supports HSR v0 and v1 */ 4641 if (!(ver == HSR_V0 || ver == HSR_V1)) { 4642 NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported"); 4643 return -EOPNOTSUPP; 4644 } 4645 4646 /* KSZ9477 can only perform HSR offloading for up to two ports */ 4647 if (hweight8(dev->hsr_ports) >= 2) { 4648 NL_SET_ERR_MSG_MOD(extack, 4649 "Cannot offload more than two ports - using software HSR"); 4650 return -EOPNOTSUPP; 4651 } 4652 4653 /* Self MAC address filtering, to avoid frames traversing 4654 * the HSR ring more than once. 4655 */ 4656 ret = ksz_switch_macaddr_get(ds, port, extack); 4657 if (ret) 4658 return ret; 4659 4660 ksz9477_hsr_join(ds, port, hsr); 4661 dev->hsr_dev = hsr; 4662 dev->hsr_ports |= BIT(port); 4663 4664 return 0; 4665 } 4666 4667 static int ksz_hsr_leave(struct dsa_switch *ds, int port, 4668 struct net_device *hsr) 4669 { 4670 struct ksz_device *dev = ds->priv; 4671 4672 WARN_ON(dev->chip_id != KSZ9477_CHIP_ID); 4673 4674 ksz9477_hsr_leave(ds, port, hsr); 4675 dev->hsr_ports &= ~BIT(port); 4676 if (!dev->hsr_ports) 4677 dev->hsr_dev = NULL; 4678 4679 ksz_switch_macaddr_put(ds); 4680 4681 return 0; 4682 } 4683 4684 static int ksz_suspend(struct dsa_switch *ds) 4685 { 4686 struct ksz_device *dev = ds->priv; 4687 4688 cancel_delayed_work_sync(&dev->mib_read); 4689 return 0; 4690 } 4691 4692 static int ksz_resume(struct dsa_switch *ds) 4693 { 4694 struct ksz_device *dev = ds->priv; 4695 4696 if (dev->mib_read_interval) 4697 schedule_delayed_work(&dev->mib_read, dev->mib_read_interval); 4698 return 0; 4699 } 4700 4701 static const struct dsa_switch_ops ksz_switch_ops = { 4702 .get_tag_protocol = ksz_get_tag_protocol, 4703 .connect_tag_protocol = ksz_connect_tag_protocol, 4704 .get_phy_flags = ksz_get_phy_flags, 4705 .setup = ksz_setup, 4706 .teardown = ksz_teardown, 4707 .phy_read = ksz_phy_read16, 4708 .phy_write = ksz_phy_write16, 4709 .phylink_get_caps = ksz_phylink_get_caps, 4710 .port_setup = ksz_port_setup, 4711 .set_ageing_time = ksz_set_ageing_time, 4712 .get_strings = ksz_get_strings, 4713 .get_ethtool_stats = ksz_get_ethtool_stats, 4714 .get_sset_count = ksz_sset_count, 4715 .port_bridge_join = ksz_port_bridge_join, 4716 .port_bridge_leave = ksz_port_bridge_leave, 4717 .port_hsr_join = ksz_hsr_join, 4718 .port_hsr_leave = ksz_hsr_leave, 4719 .port_set_mac_address = ksz_port_set_mac_address, 4720 .port_stp_state_set = ksz_port_stp_state_set, 4721 .port_teardown = ksz_port_teardown, 4722 .port_pre_bridge_flags = ksz_port_pre_bridge_flags, 4723 .port_bridge_flags = ksz_port_bridge_flags, 4724 .port_fast_age = ksz_port_fast_age, 4725 .port_vlan_filtering = ksz_port_vlan_filtering, 4726 .port_vlan_add = ksz_port_vlan_add, 4727 .port_vlan_del = ksz_port_vlan_del, 4728 .port_fdb_dump = ksz_port_fdb_dump, 4729 .port_fdb_add = ksz_port_fdb_add, 4730 .port_fdb_del = ksz_port_fdb_del, 4731 .port_mdb_add = ksz_port_mdb_add, 4732 .port_mdb_del = ksz_port_mdb_del, 4733 .port_mirror_add = ksz_port_mirror_add, 4734 .port_mirror_del = ksz_port_mirror_del, 4735 .get_stats64 = ksz_get_stats64, 4736 .get_pause_stats = ksz_get_pause_stats, 4737 .port_change_mtu = ksz_change_mtu, 4738 .port_max_mtu = ksz_max_mtu, 4739 .get_wol = ksz_get_wol, 4740 .set_wol = ksz_set_wol, 4741 .suspend = ksz_suspend, 4742 .resume = ksz_resume, 4743 .get_ts_info = ksz_get_ts_info, 4744 .port_hwtstamp_get = ksz_hwtstamp_get, 4745 .port_hwtstamp_set = ksz_hwtstamp_set, 4746 .port_txtstamp = ksz_port_txtstamp, 4747 .port_rxtstamp = ksz_port_rxtstamp, 4748 .cls_flower_add = ksz_cls_flower_add, 4749 .cls_flower_del = ksz_cls_flower_del, 4750 .port_setup_tc = ksz_setup_tc, 4751 .support_eee = ksz_support_eee, 4752 .set_mac_eee = ksz_set_mac_eee, 4753 .port_get_default_prio = ksz_port_get_default_prio, 4754 .port_set_default_prio = ksz_port_set_default_prio, 4755 .port_get_dscp_prio = ksz_port_get_dscp_prio, 4756 .port_add_dscp_prio = ksz_port_add_dscp_prio, 4757 .port_del_dscp_prio = ksz_port_del_dscp_prio, 4758 .port_get_apptrust = ksz_port_get_apptrust, 4759 .port_set_apptrust = ksz_port_set_apptrust, 4760 }; 4761 4762 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv) 4763 { 4764 struct dsa_switch *ds; 4765 struct ksz_device *swdev; 4766 4767 ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL); 4768 if (!ds) 4769 return NULL; 4770 4771 ds->dev = base; 4772 ds->num_ports = DSA_MAX_PORTS; 4773 ds->ops = &ksz_switch_ops; 4774 4775 swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL); 4776 if (!swdev) 4777 return NULL; 4778 4779 ds->priv = swdev; 4780 swdev->dev = base; 4781 4782 swdev->ds = ds; 4783 swdev->priv = priv; 4784 4785 return swdev; 4786 } 4787 EXPORT_SYMBOL(ksz_switch_alloc); 4788 4789 /** 4790 * ksz_switch_shutdown - Shutdown routine for the switch device. 4791 * @dev: The switch device structure. 4792 * 4793 * This function is responsible for initiating a shutdown sequence for the 4794 * switch device. It invokes the reset operation defined in the device 4795 * operations, if available, to reset the switch. Subsequently, it calls the 4796 * DSA framework's shutdown function to ensure a proper shutdown of the DSA 4797 * switch. 4798 */ 4799 void ksz_switch_shutdown(struct ksz_device *dev) 4800 { 4801 bool wol_enabled = false; 4802 4803 ksz_wol_pre_shutdown(dev, &wol_enabled); 4804 4805 if (dev->dev_ops->reset && !wol_enabled) 4806 dev->dev_ops->reset(dev); 4807 4808 dsa_switch_shutdown(dev->ds); 4809 } 4810 EXPORT_SYMBOL(ksz_switch_shutdown); 4811 4812 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num, 4813 struct device_node *port_dn) 4814 { 4815 phy_interface_t phy_mode = dev->ports[port_num].interface; 4816 int rx_delay = -1, tx_delay = -1; 4817 4818 if (!phy_interface_mode_is_rgmii(phy_mode)) 4819 return; 4820 4821 of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay); 4822 of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay); 4823 4824 if (rx_delay == -1 && tx_delay == -1) { 4825 dev_warn(dev->dev, 4826 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, " 4827 "please update device tree to specify \"rx-internal-delay-ps\" and " 4828 "\"tx-internal-delay-ps\"", 4829 port_num); 4830 4831 if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID || 4832 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 4833 rx_delay = 2000; 4834 4835 if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID || 4836 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 4837 tx_delay = 2000; 4838 } 4839 4840 if (rx_delay < 0) 4841 rx_delay = 0; 4842 if (tx_delay < 0) 4843 tx_delay = 0; 4844 4845 dev->ports[port_num].rgmii_rx_val = rx_delay; 4846 dev->ports[port_num].rgmii_tx_val = tx_delay; 4847 } 4848 4849 /** 4850 * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding 4851 * register value. 4852 * @array: The array of drive strength values to search. 4853 * @array_size: The size of the array. 4854 * @microamp: The drive strength value in microamp to be converted. 4855 * 4856 * This function searches the array of drive strength values for the given 4857 * microamp value and returns the corresponding register value for that drive. 4858 * 4859 * Returns: If found, the corresponding register value for that drive strength 4860 * is returned. Otherwise, -EINVAL is returned indicating an invalid value. 4861 */ 4862 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array, 4863 size_t array_size, int microamp) 4864 { 4865 int i; 4866 4867 for (i = 0; i < array_size; i++) { 4868 if (array[i].microamp == microamp) 4869 return array[i].reg_val; 4870 } 4871 4872 return -EINVAL; 4873 } 4874 4875 /** 4876 * ksz_drive_strength_error() - Report invalid drive strength value 4877 * @dev: ksz device 4878 * @array: The array of drive strength values to search. 4879 * @array_size: The size of the array. 4880 * @microamp: Invalid drive strength value in microamp 4881 * 4882 * This function logs an error message when an unsupported drive strength value 4883 * is detected. It lists out all the supported drive strength values for 4884 * reference in the error message. 4885 */ 4886 static void ksz_drive_strength_error(struct ksz_device *dev, 4887 const struct ksz_drive_strength *array, 4888 size_t array_size, int microamp) 4889 { 4890 char supported_values[100]; 4891 size_t remaining_size; 4892 int added_len; 4893 char *ptr; 4894 int i; 4895 4896 remaining_size = sizeof(supported_values); 4897 ptr = supported_values; 4898 4899 for (i = 0; i < array_size; i++) { 4900 added_len = snprintf(ptr, remaining_size, 4901 i == 0 ? "%d" : ", %d", array[i].microamp); 4902 4903 if (added_len >= remaining_size) 4904 break; 4905 4906 ptr += added_len; 4907 remaining_size -= added_len; 4908 } 4909 4910 dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n", 4911 microamp, supported_values); 4912 } 4913 4914 /** 4915 * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477 4916 * chip variants. 4917 * @dev: ksz device 4918 * @props: Array of drive strength properties to be applied 4919 * @num_props: Number of properties in the array 4920 * 4921 * This function configures the drive strength for various KSZ9477 chip variants 4922 * based on the provided properties. It handles chip-specific nuances and 4923 * ensures only valid drive strengths are written to the respective chip. 4924 * 4925 * Return: 0 on successful configuration, a negative error code on failure. 4926 */ 4927 static int ksz9477_drive_strength_write(struct ksz_device *dev, 4928 struct ksz_driver_strength_prop *props, 4929 int num_props) 4930 { 4931 size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths); 4932 int i, ret, reg; 4933 u8 mask = 0; 4934 u8 val = 0; 4935 4936 if (props[KSZ_DRIVER_STRENGTH_IO].value != -1) 4937 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 4938 props[KSZ_DRIVER_STRENGTH_IO].name); 4939 4940 if (dev->chip_id == KSZ8795_CHIP_ID || 4941 dev->chip_id == KSZ8794_CHIP_ID || 4942 dev->chip_id == KSZ8765_CHIP_ID) 4943 reg = KSZ8795_REG_SW_CTRL_20; 4944 else 4945 reg = KSZ9477_REG_SW_IO_STRENGTH; 4946 4947 for (i = 0; i < num_props; i++) { 4948 if (props[i].value == -1) 4949 continue; 4950 4951 ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths, 4952 array_size, props[i].value); 4953 if (ret < 0) { 4954 ksz_drive_strength_error(dev, ksz9477_drive_strengths, 4955 array_size, props[i].value); 4956 return ret; 4957 } 4958 4959 mask |= SW_DRIVE_STRENGTH_M << props[i].offset; 4960 val |= ret << props[i].offset; 4961 } 4962 4963 return ksz_rmw8(dev, reg, mask, val); 4964 } 4965 4966 /** 4967 * ksz88x3_drive_strength_write() - Set the drive strength configuration for 4968 * KSZ8863 compatible chip variants. 4969 * @dev: ksz device 4970 * @props: Array of drive strength properties to be set 4971 * @num_props: Number of properties in the array 4972 * 4973 * This function applies the specified drive strength settings to KSZ88X3 chip 4974 * variants (KSZ8873, KSZ8863). 4975 * It ensures the configurations align with what the chip variant supports and 4976 * warns or errors out on unsupported settings. 4977 * 4978 * Return: 0 on success, error code otherwise 4979 */ 4980 static int ksz88x3_drive_strength_write(struct ksz_device *dev, 4981 struct ksz_driver_strength_prop *props, 4982 int num_props) 4983 { 4984 size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths); 4985 int microamp; 4986 int i, ret; 4987 4988 for (i = 0; i < num_props; i++) { 4989 if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO) 4990 continue; 4991 4992 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 4993 props[i].name); 4994 } 4995 4996 microamp = props[KSZ_DRIVER_STRENGTH_IO].value; 4997 ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size, 4998 microamp); 4999 if (ret < 0) { 5000 ksz_drive_strength_error(dev, ksz88x3_drive_strengths, 5001 array_size, microamp); 5002 return ret; 5003 } 5004 5005 return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12, 5006 KSZ8873_DRIVE_STRENGTH_16MA, ret); 5007 } 5008 5009 /** 5010 * ksz_parse_drive_strength() - Extract and apply drive strength configurations 5011 * from device tree properties. 5012 * @dev: ksz device 5013 * 5014 * This function reads the specified drive strength properties from the 5015 * device tree, validates against the supported chip variants, and sets 5016 * them accordingly. An error should be critical here, as the drive strength 5017 * settings are crucial for EMI compliance. 5018 * 5019 * Return: 0 on success, error code otherwise 5020 */ 5021 static int ksz_parse_drive_strength(struct ksz_device *dev) 5022 { 5023 struct ksz_driver_strength_prop of_props[] = { 5024 [KSZ_DRIVER_STRENGTH_HI] = { 5025 .name = "microchip,hi-drive-strength-microamp", 5026 .offset = SW_HI_SPEED_DRIVE_STRENGTH_S, 5027 .value = -1, 5028 }, 5029 [KSZ_DRIVER_STRENGTH_LO] = { 5030 .name = "microchip,lo-drive-strength-microamp", 5031 .offset = SW_LO_SPEED_DRIVE_STRENGTH_S, 5032 .value = -1, 5033 }, 5034 [KSZ_DRIVER_STRENGTH_IO] = { 5035 .name = "microchip,io-drive-strength-microamp", 5036 .offset = 0, /* don't care */ 5037 .value = -1, 5038 }, 5039 }; 5040 struct device_node *np = dev->dev->of_node; 5041 bool have_any_prop = false; 5042 int i, ret; 5043 5044 for (i = 0; i < ARRAY_SIZE(of_props); i++) { 5045 ret = of_property_read_u32(np, of_props[i].name, 5046 &of_props[i].value); 5047 if (ret && ret != -EINVAL) 5048 dev_warn(dev->dev, "Failed to read %s\n", 5049 of_props[i].name); 5050 if (ret) 5051 continue; 5052 5053 have_any_prop = true; 5054 } 5055 5056 if (!have_any_prop) 5057 return 0; 5058 5059 switch (dev->chip_id) { 5060 case KSZ88X3_CHIP_ID: 5061 return ksz88x3_drive_strength_write(dev, of_props, 5062 ARRAY_SIZE(of_props)); 5063 case KSZ8795_CHIP_ID: 5064 case KSZ8794_CHIP_ID: 5065 case KSZ8765_CHIP_ID: 5066 case KSZ8563_CHIP_ID: 5067 case KSZ8567_CHIP_ID: 5068 case KSZ9477_CHIP_ID: 5069 case KSZ9563_CHIP_ID: 5070 case KSZ9567_CHIP_ID: 5071 case KSZ9893_CHIP_ID: 5072 case KSZ9896_CHIP_ID: 5073 case KSZ9897_CHIP_ID: 5074 case LAN9646_CHIP_ID: 5075 return ksz9477_drive_strength_write(dev, of_props, 5076 ARRAY_SIZE(of_props)); 5077 default: 5078 for (i = 0; i < ARRAY_SIZE(of_props); i++) { 5079 if (of_props[i].value == -1) 5080 continue; 5081 5082 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 5083 of_props[i].name); 5084 } 5085 } 5086 5087 return 0; 5088 } 5089 5090 int ksz_switch_register(struct ksz_device *dev) 5091 { 5092 const struct ksz_chip_data *info; 5093 struct device_node *ports; 5094 phy_interface_t interface; 5095 unsigned int port_num; 5096 int ret; 5097 int i; 5098 5099 dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset", 5100 GPIOD_OUT_LOW); 5101 if (IS_ERR(dev->reset_gpio)) 5102 return PTR_ERR(dev->reset_gpio); 5103 5104 if (dev->reset_gpio) { 5105 gpiod_set_value_cansleep(dev->reset_gpio, 1); 5106 usleep_range(10000, 12000); 5107 gpiod_set_value_cansleep(dev->reset_gpio, 0); 5108 msleep(100); 5109 } 5110 5111 mutex_init(&dev->dev_mutex); 5112 mutex_init(&dev->regmap_mutex); 5113 mutex_init(&dev->alu_mutex); 5114 mutex_init(&dev->vlan_mutex); 5115 5116 ret = ksz_switch_detect(dev); 5117 if (ret) 5118 return ret; 5119 5120 info = ksz_lookup_info(dev->chip_id); 5121 if (!info) 5122 return -ENODEV; 5123 5124 /* Update the compatible info with the probed one */ 5125 dev->info = info; 5126 5127 dev_info(dev->dev, "found switch: %s, rev %i\n", 5128 dev->info->dev_name, dev->chip_rev); 5129 5130 ret = ksz_check_device_id(dev); 5131 if (ret) 5132 return ret; 5133 5134 dev->dev_ops = dev->info->ops; 5135 5136 ret = dev->dev_ops->init(dev); 5137 if (ret) 5138 return ret; 5139 5140 dev->ports = devm_kzalloc(dev->dev, 5141 dev->info->port_cnt * sizeof(struct ksz_port), 5142 GFP_KERNEL); 5143 if (!dev->ports) 5144 return -ENOMEM; 5145 5146 for (i = 0; i < dev->info->port_cnt; i++) { 5147 spin_lock_init(&dev->ports[i].mib.stats64_lock); 5148 mutex_init(&dev->ports[i].mib.cnt_mutex); 5149 dev->ports[i].mib.counters = 5150 devm_kzalloc(dev->dev, 5151 sizeof(u64) * (dev->info->mib_cnt + 1), 5152 GFP_KERNEL); 5153 if (!dev->ports[i].mib.counters) 5154 return -ENOMEM; 5155 5156 dev->ports[i].ksz_dev = dev; 5157 dev->ports[i].num = i; 5158 } 5159 5160 /* set the real number of ports */ 5161 dev->ds->num_ports = dev->info->port_cnt; 5162 5163 /* set the phylink ops */ 5164 dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops; 5165 5166 /* Host port interface will be self detected, or specifically set in 5167 * device tree. 5168 */ 5169 for (port_num = 0; port_num < dev->info->port_cnt; ++port_num) 5170 dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA; 5171 if (dev->dev->of_node) { 5172 ret = of_get_phy_mode(dev->dev->of_node, &interface); 5173 if (ret == 0) 5174 dev->compat_interface = interface; 5175 ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports"); 5176 if (!ports) 5177 ports = of_get_child_by_name(dev->dev->of_node, "ports"); 5178 if (ports) { 5179 for_each_available_child_of_node_scoped(ports, port) { 5180 if (of_property_read_u32(port, "reg", 5181 &port_num)) 5182 continue; 5183 if (!(dev->port_mask & BIT(port_num))) { 5184 of_node_put(ports); 5185 return -EINVAL; 5186 } 5187 of_get_phy_mode(port, 5188 &dev->ports[port_num].interface); 5189 5190 ksz_parse_rgmii_delay(dev, port_num, port); 5191 } 5192 of_node_put(ports); 5193 } 5194 dev->synclko_125 = of_property_read_bool(dev->dev->of_node, 5195 "microchip,synclko-125"); 5196 dev->synclko_disable = of_property_read_bool(dev->dev->of_node, 5197 "microchip,synclko-disable"); 5198 if (dev->synclko_125 && dev->synclko_disable) { 5199 dev_err(dev->dev, "inconsistent synclko settings\n"); 5200 return -EINVAL; 5201 } 5202 5203 dev->wakeup_source = of_property_read_bool(dev->dev->of_node, 5204 "wakeup-source"); 5205 dev->pme_active_high = of_property_read_bool(dev->dev->of_node, 5206 "microchip,pme-active-high"); 5207 } 5208 5209 ret = dsa_register_switch(dev->ds); 5210 if (ret) { 5211 dev->dev_ops->exit(dev); 5212 return ret; 5213 } 5214 5215 /* Read MIB counters every 30 seconds to avoid overflow. */ 5216 dev->mib_read_interval = msecs_to_jiffies(5000); 5217 5218 /* Start the MIB timer. */ 5219 schedule_delayed_work(&dev->mib_read, 0); 5220 5221 return ret; 5222 } 5223 EXPORT_SYMBOL(ksz_switch_register); 5224 5225 void ksz_switch_remove(struct ksz_device *dev) 5226 { 5227 /* timer started */ 5228 if (dev->mib_read_interval) { 5229 dev->mib_read_interval = 0; 5230 cancel_delayed_work_sync(&dev->mib_read); 5231 } 5232 5233 dev->dev_ops->exit(dev); 5234 dsa_unregister_switch(dev->ds); 5235 5236 if (dev->reset_gpio) 5237 gpiod_set_value_cansleep(dev->reset_gpio, 1); 5238 5239 } 5240 EXPORT_SYMBOL(ksz_switch_remove); 5241 5242 #ifdef CONFIG_PM_SLEEP 5243 int ksz_switch_suspend(struct device *dev) 5244 { 5245 struct ksz_device *priv = dev_get_drvdata(dev); 5246 5247 return dsa_switch_suspend(priv->ds); 5248 } 5249 EXPORT_SYMBOL(ksz_switch_suspend); 5250 5251 int ksz_switch_resume(struct device *dev) 5252 { 5253 struct ksz_device *priv = dev_get_drvdata(dev); 5254 5255 return dsa_switch_resume(priv->ds); 5256 } 5257 EXPORT_SYMBOL(ksz_switch_resume); 5258 #endif 5259 5260 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>"); 5261 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver"); 5262 MODULE_LICENSE("GPL"); 5263