xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 9acb51e9617c28a92f9ce2af767db6bd660a6d4f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/ieee8021q.h>
28 #include <net/pkt_cls.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_common.h"
32 #include "ksz_dcb.h"
33 #include "ksz_ptp.h"
34 #include "ksz8.h"
35 #include "ksz9477.h"
36 #include "lan937x.h"
37 
38 #define MIB_COUNTER_NUM 0x20
39 
40 struct ksz_stats_raw {
41 	u64 rx_hi;
42 	u64 rx_undersize;
43 	u64 rx_fragments;
44 	u64 rx_oversize;
45 	u64 rx_jabbers;
46 	u64 rx_symbol_err;
47 	u64 rx_crc_err;
48 	u64 rx_align_err;
49 	u64 rx_mac_ctrl;
50 	u64 rx_pause;
51 	u64 rx_bcast;
52 	u64 rx_mcast;
53 	u64 rx_ucast;
54 	u64 rx_64_or_less;
55 	u64 rx_65_127;
56 	u64 rx_128_255;
57 	u64 rx_256_511;
58 	u64 rx_512_1023;
59 	u64 rx_1024_1522;
60 	u64 rx_1523_2000;
61 	u64 rx_2001;
62 	u64 tx_hi;
63 	u64 tx_late_col;
64 	u64 tx_pause;
65 	u64 tx_bcast;
66 	u64 tx_mcast;
67 	u64 tx_ucast;
68 	u64 tx_deferred;
69 	u64 tx_total_col;
70 	u64 tx_exc_col;
71 	u64 tx_single_col;
72 	u64 tx_mult_col;
73 	u64 rx_total;
74 	u64 tx_total;
75 	u64 rx_discards;
76 	u64 tx_discards;
77 };
78 
79 struct ksz88xx_stats_raw {
80 	u64 rx;
81 	u64 rx_hi;
82 	u64 rx_undersize;
83 	u64 rx_fragments;
84 	u64 rx_oversize;
85 	u64 rx_jabbers;
86 	u64 rx_symbol_err;
87 	u64 rx_crc_err;
88 	u64 rx_align_err;
89 	u64 rx_mac_ctrl;
90 	u64 rx_pause;
91 	u64 rx_bcast;
92 	u64 rx_mcast;
93 	u64 rx_ucast;
94 	u64 rx_64_or_less;
95 	u64 rx_65_127;
96 	u64 rx_128_255;
97 	u64 rx_256_511;
98 	u64 rx_512_1023;
99 	u64 rx_1024_1522;
100 	u64 tx;
101 	u64 tx_hi;
102 	u64 tx_late_col;
103 	u64 tx_pause;
104 	u64 tx_bcast;
105 	u64 tx_mcast;
106 	u64 tx_ucast;
107 	u64 tx_deferred;
108 	u64 tx_total_col;
109 	u64 tx_exc_col;
110 	u64 tx_single_col;
111 	u64 tx_mult_col;
112 	u64 rx_discards;
113 	u64 tx_discards;
114 };
115 
116 static const struct ksz_mib_names ksz88xx_mib_names[] = {
117 	{ 0x00, "rx" },
118 	{ 0x01, "rx_hi" },
119 	{ 0x02, "rx_undersize" },
120 	{ 0x03, "rx_fragments" },
121 	{ 0x04, "rx_oversize" },
122 	{ 0x05, "rx_jabbers" },
123 	{ 0x06, "rx_symbol_err" },
124 	{ 0x07, "rx_crc_err" },
125 	{ 0x08, "rx_align_err" },
126 	{ 0x09, "rx_mac_ctrl" },
127 	{ 0x0a, "rx_pause" },
128 	{ 0x0b, "rx_bcast" },
129 	{ 0x0c, "rx_mcast" },
130 	{ 0x0d, "rx_ucast" },
131 	{ 0x0e, "rx_64_or_less" },
132 	{ 0x0f, "rx_65_127" },
133 	{ 0x10, "rx_128_255" },
134 	{ 0x11, "rx_256_511" },
135 	{ 0x12, "rx_512_1023" },
136 	{ 0x13, "rx_1024_1522" },
137 	{ 0x14, "tx" },
138 	{ 0x15, "tx_hi" },
139 	{ 0x16, "tx_late_col" },
140 	{ 0x17, "tx_pause" },
141 	{ 0x18, "tx_bcast" },
142 	{ 0x19, "tx_mcast" },
143 	{ 0x1a, "tx_ucast" },
144 	{ 0x1b, "tx_deferred" },
145 	{ 0x1c, "tx_total_col" },
146 	{ 0x1d, "tx_exc_col" },
147 	{ 0x1e, "tx_single_col" },
148 	{ 0x1f, "tx_mult_col" },
149 	{ 0x100, "rx_discards" },
150 	{ 0x101, "tx_discards" },
151 };
152 
153 static const struct ksz_mib_names ksz9477_mib_names[] = {
154 	{ 0x00, "rx_hi" },
155 	{ 0x01, "rx_undersize" },
156 	{ 0x02, "rx_fragments" },
157 	{ 0x03, "rx_oversize" },
158 	{ 0x04, "rx_jabbers" },
159 	{ 0x05, "rx_symbol_err" },
160 	{ 0x06, "rx_crc_err" },
161 	{ 0x07, "rx_align_err" },
162 	{ 0x08, "rx_mac_ctrl" },
163 	{ 0x09, "rx_pause" },
164 	{ 0x0A, "rx_bcast" },
165 	{ 0x0B, "rx_mcast" },
166 	{ 0x0C, "rx_ucast" },
167 	{ 0x0D, "rx_64_or_less" },
168 	{ 0x0E, "rx_65_127" },
169 	{ 0x0F, "rx_128_255" },
170 	{ 0x10, "rx_256_511" },
171 	{ 0x11, "rx_512_1023" },
172 	{ 0x12, "rx_1024_1522" },
173 	{ 0x13, "rx_1523_2000" },
174 	{ 0x14, "rx_2001" },
175 	{ 0x15, "tx_hi" },
176 	{ 0x16, "tx_late_col" },
177 	{ 0x17, "tx_pause" },
178 	{ 0x18, "tx_bcast" },
179 	{ 0x19, "tx_mcast" },
180 	{ 0x1A, "tx_ucast" },
181 	{ 0x1B, "tx_deferred" },
182 	{ 0x1C, "tx_total_col" },
183 	{ 0x1D, "tx_exc_col" },
184 	{ 0x1E, "tx_single_col" },
185 	{ 0x1F, "tx_mult_col" },
186 	{ 0x80, "rx_total" },
187 	{ 0x81, "tx_total" },
188 	{ 0x82, "rx_discards" },
189 	{ 0x83, "tx_discards" },
190 };
191 
192 struct ksz_driver_strength_prop {
193 	const char *name;
194 	int offset;
195 	int value;
196 };
197 
198 enum ksz_driver_strength_type {
199 	KSZ_DRIVER_STRENGTH_HI,
200 	KSZ_DRIVER_STRENGTH_LO,
201 	KSZ_DRIVER_STRENGTH_IO,
202 };
203 
204 /**
205  * struct ksz_drive_strength - drive strength mapping
206  * @reg_val:	register value
207  * @microamp:	microamp value
208  */
209 struct ksz_drive_strength {
210 	u32 reg_val;
211 	u32 microamp;
212 };
213 
214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
215  *
216  * This values are not documented in KSZ9477 variants but confirmed by
217  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
218  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
219  *
220  * Documentation in KSZ8795CLX provides more information with some
221  * recommendations:
222  * - for high speed signals
223  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
224  *      2.5V or 3.3V VDDIO.
225  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
226  *      using 1.8V VDDIO.
227  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
228  *      or 3.3V VDDIO.
229  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
230  *   5. In same interface, the heavy loading should use higher one of the
231  *      drive current strength.
232  * - for low speed signals
233  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
234  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
235  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
236  *   4. If it is heavy loading, can use higher drive current strength.
237  */
238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
239 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
240 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
241 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
242 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
243 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
244 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
245 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
246 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
247 };
248 
249 /* ksz8830_drive_strengths - Drive strength mapping for KSZ8830, KSZ8873, ..
250  *			     variants.
251  * This values are documented in KSZ8873 and KSZ8863 datasheets.
252  */
253 static const struct ksz_drive_strength ksz8830_drive_strengths[] = {
254 	{ 0,  8000 },
255 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
256 };
257 
258 static void ksz8830_phylink_mac_config(struct phylink_config *config,
259 				       unsigned int mode,
260 				       const struct phylink_link_state *state);
261 static void ksz_phylink_mac_config(struct phylink_config *config,
262 				   unsigned int mode,
263 				   const struct phylink_link_state *state);
264 static void ksz_phylink_mac_link_down(struct phylink_config *config,
265 				      unsigned int mode,
266 				      phy_interface_t interface);
267 
268 static const struct phylink_mac_ops ksz8830_phylink_mac_ops = {
269 	.mac_config	= ksz8830_phylink_mac_config,
270 	.mac_link_down	= ksz_phylink_mac_link_down,
271 	.mac_link_up	= ksz8_phylink_mac_link_up,
272 };
273 
274 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
275 	.mac_config	= ksz_phylink_mac_config,
276 	.mac_link_down	= ksz_phylink_mac_link_down,
277 	.mac_link_up	= ksz8_phylink_mac_link_up,
278 };
279 
280 static const struct ksz_dev_ops ksz8_dev_ops = {
281 	.setup = ksz8_setup,
282 	.get_port_addr = ksz8_get_port_addr,
283 	.cfg_port_member = ksz8_cfg_port_member,
284 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
285 	.port_setup = ksz8_port_setup,
286 	.r_phy = ksz8_r_phy,
287 	.w_phy = ksz8_w_phy,
288 	.r_mib_cnt = ksz8_r_mib_cnt,
289 	.r_mib_pkt = ksz8_r_mib_pkt,
290 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
291 	.freeze_mib = ksz8_freeze_mib,
292 	.port_init_cnt = ksz8_port_init_cnt,
293 	.fdb_dump = ksz8_fdb_dump,
294 	.fdb_add = ksz8_fdb_add,
295 	.fdb_del = ksz8_fdb_del,
296 	.mdb_add = ksz8_mdb_add,
297 	.mdb_del = ksz8_mdb_del,
298 	.vlan_filtering = ksz8_port_vlan_filtering,
299 	.vlan_add = ksz8_port_vlan_add,
300 	.vlan_del = ksz8_port_vlan_del,
301 	.mirror_add = ksz8_port_mirror_add,
302 	.mirror_del = ksz8_port_mirror_del,
303 	.get_caps = ksz8_get_caps,
304 	.config_cpu_port = ksz8_config_cpu_port,
305 	.enable_stp_addr = ksz8_enable_stp_addr,
306 	.reset = ksz8_reset_switch,
307 	.init = ksz8_switch_init,
308 	.exit = ksz8_switch_exit,
309 	.change_mtu = ksz8_change_mtu,
310 };
311 
312 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
313 					struct phy_device *phydev,
314 					unsigned int mode,
315 					phy_interface_t interface,
316 					int speed, int duplex, bool tx_pause,
317 					bool rx_pause);
318 
319 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
320 	.mac_config	= ksz_phylink_mac_config,
321 	.mac_link_down	= ksz_phylink_mac_link_down,
322 	.mac_link_up	= ksz9477_phylink_mac_link_up,
323 };
324 
325 static const struct ksz_dev_ops ksz9477_dev_ops = {
326 	.setup = ksz9477_setup,
327 	.get_port_addr = ksz9477_get_port_addr,
328 	.cfg_port_member = ksz9477_cfg_port_member,
329 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
330 	.port_setup = ksz9477_port_setup,
331 	.set_ageing_time = ksz9477_set_ageing_time,
332 	.r_phy = ksz9477_r_phy,
333 	.w_phy = ksz9477_w_phy,
334 	.r_mib_cnt = ksz9477_r_mib_cnt,
335 	.r_mib_pkt = ksz9477_r_mib_pkt,
336 	.r_mib_stat64 = ksz_r_mib_stats64,
337 	.freeze_mib = ksz9477_freeze_mib,
338 	.port_init_cnt = ksz9477_port_init_cnt,
339 	.vlan_filtering = ksz9477_port_vlan_filtering,
340 	.vlan_add = ksz9477_port_vlan_add,
341 	.vlan_del = ksz9477_port_vlan_del,
342 	.mirror_add = ksz9477_port_mirror_add,
343 	.mirror_del = ksz9477_port_mirror_del,
344 	.get_caps = ksz9477_get_caps,
345 	.fdb_dump = ksz9477_fdb_dump,
346 	.fdb_add = ksz9477_fdb_add,
347 	.fdb_del = ksz9477_fdb_del,
348 	.mdb_add = ksz9477_mdb_add,
349 	.mdb_del = ksz9477_mdb_del,
350 	.change_mtu = ksz9477_change_mtu,
351 	.get_wol = ksz9477_get_wol,
352 	.set_wol = ksz9477_set_wol,
353 	.wol_pre_shutdown = ksz9477_wol_pre_shutdown,
354 	.config_cpu_port = ksz9477_config_cpu_port,
355 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
356 	.enable_stp_addr = ksz9477_enable_stp_addr,
357 	.reset = ksz9477_reset_switch,
358 	.init = ksz9477_switch_init,
359 	.exit = ksz9477_switch_exit,
360 };
361 
362 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
363 	.mac_config	= ksz_phylink_mac_config,
364 	.mac_link_down	= ksz_phylink_mac_link_down,
365 	.mac_link_up	= ksz9477_phylink_mac_link_up,
366 };
367 
368 static const struct ksz_dev_ops lan937x_dev_ops = {
369 	.setup = lan937x_setup,
370 	.teardown = lan937x_teardown,
371 	.get_port_addr = ksz9477_get_port_addr,
372 	.cfg_port_member = ksz9477_cfg_port_member,
373 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
374 	.port_setup = lan937x_port_setup,
375 	.set_ageing_time = lan937x_set_ageing_time,
376 	.r_phy = lan937x_r_phy,
377 	.w_phy = lan937x_w_phy,
378 	.r_mib_cnt = ksz9477_r_mib_cnt,
379 	.r_mib_pkt = ksz9477_r_mib_pkt,
380 	.r_mib_stat64 = ksz_r_mib_stats64,
381 	.freeze_mib = ksz9477_freeze_mib,
382 	.port_init_cnt = ksz9477_port_init_cnt,
383 	.vlan_filtering = ksz9477_port_vlan_filtering,
384 	.vlan_add = ksz9477_port_vlan_add,
385 	.vlan_del = ksz9477_port_vlan_del,
386 	.mirror_add = ksz9477_port_mirror_add,
387 	.mirror_del = ksz9477_port_mirror_del,
388 	.get_caps = lan937x_phylink_get_caps,
389 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
390 	.fdb_dump = ksz9477_fdb_dump,
391 	.fdb_add = ksz9477_fdb_add,
392 	.fdb_del = ksz9477_fdb_del,
393 	.mdb_add = ksz9477_mdb_add,
394 	.mdb_del = ksz9477_mdb_del,
395 	.change_mtu = lan937x_change_mtu,
396 	.config_cpu_port = lan937x_config_cpu_port,
397 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
398 	.enable_stp_addr = ksz9477_enable_stp_addr,
399 	.reset = lan937x_reset_switch,
400 	.init = lan937x_switch_init,
401 	.exit = lan937x_switch_exit,
402 };
403 
404 static const u16 ksz8795_regs[] = {
405 	[REG_SW_MAC_ADDR]		= 0x68,
406 	[REG_IND_CTRL_0]		= 0x6E,
407 	[REG_IND_DATA_8]		= 0x70,
408 	[REG_IND_DATA_CHECK]		= 0x72,
409 	[REG_IND_DATA_HI]		= 0x71,
410 	[REG_IND_DATA_LO]		= 0x75,
411 	[REG_IND_MIB_CHECK]		= 0x74,
412 	[REG_IND_BYTE]			= 0xA0,
413 	[P_FORCE_CTRL]			= 0x0C,
414 	[P_LINK_STATUS]			= 0x0E,
415 	[P_LOCAL_CTRL]			= 0x07,
416 	[P_NEG_RESTART_CTRL]		= 0x0D,
417 	[P_REMOTE_STATUS]		= 0x08,
418 	[P_SPEED_STATUS]		= 0x09,
419 	[S_TAIL_TAG_CTRL]		= 0x0C,
420 	[P_STP_CTRL]			= 0x02,
421 	[S_START_CTRL]			= 0x01,
422 	[S_BROADCAST_CTRL]		= 0x06,
423 	[S_MULTICAST_CTRL]		= 0x04,
424 	[P_XMII_CTRL_0]			= 0x06,
425 	[P_XMII_CTRL_1]			= 0x06,
426 };
427 
428 static const u32 ksz8795_masks[] = {
429 	[PORT_802_1P_REMAPPING]		= BIT(7),
430 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
431 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
432 	[MIB_COUNTER_VALID]		= BIT(5),
433 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
434 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
435 	[VLAN_TABLE_VALID]		= BIT(12),
436 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
437 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
438 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
439 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
440 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
441 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
442 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
443 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
444 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
445 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
446 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
447 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
448 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
449 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
450 };
451 
452 static const u8 ksz8795_xmii_ctrl0[] = {
453 	[P_MII_100MBIT]			= 0,
454 	[P_MII_10MBIT]			= 1,
455 	[P_MII_FULL_DUPLEX]		= 0,
456 	[P_MII_HALF_DUPLEX]		= 1,
457 };
458 
459 static const u8 ksz8795_xmii_ctrl1[] = {
460 	[P_RGMII_SEL]			= 3,
461 	[P_GMII_SEL]			= 2,
462 	[P_RMII_SEL]			= 1,
463 	[P_MII_SEL]			= 0,
464 	[P_GMII_1GBIT]			= 1,
465 	[P_GMII_NOT_1GBIT]		= 0,
466 };
467 
468 static const u8 ksz8795_shifts[] = {
469 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
470 	[VLAN_TABLE]			= 16,
471 	[STATIC_MAC_FWD_PORTS]		= 16,
472 	[STATIC_MAC_FID]		= 24,
473 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
474 	[DYNAMIC_MAC_ENTRIES]		= 29,
475 	[DYNAMIC_MAC_FID]		= 16,
476 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
477 	[DYNAMIC_MAC_SRC_PORT]		= 24,
478 };
479 
480 static const u16 ksz8863_regs[] = {
481 	[REG_SW_MAC_ADDR]		= 0x70,
482 	[REG_IND_CTRL_0]		= 0x79,
483 	[REG_IND_DATA_8]		= 0x7B,
484 	[REG_IND_DATA_CHECK]		= 0x7B,
485 	[REG_IND_DATA_HI]		= 0x7C,
486 	[REG_IND_DATA_LO]		= 0x80,
487 	[REG_IND_MIB_CHECK]		= 0x80,
488 	[P_FORCE_CTRL]			= 0x0C,
489 	[P_LINK_STATUS]			= 0x0E,
490 	[P_LOCAL_CTRL]			= 0x0C,
491 	[P_NEG_RESTART_CTRL]		= 0x0D,
492 	[P_REMOTE_STATUS]		= 0x0E,
493 	[P_SPEED_STATUS]		= 0x0F,
494 	[S_TAIL_TAG_CTRL]		= 0x03,
495 	[P_STP_CTRL]			= 0x02,
496 	[S_START_CTRL]			= 0x01,
497 	[S_BROADCAST_CTRL]		= 0x06,
498 	[S_MULTICAST_CTRL]		= 0x04,
499 };
500 
501 static const u32 ksz8863_masks[] = {
502 	[PORT_802_1P_REMAPPING]		= BIT(3),
503 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
504 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
505 	[MIB_COUNTER_VALID]		= BIT(6),
506 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
507 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
508 	[VLAN_TABLE_VALID]		= BIT(19),
509 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
510 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
511 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
512 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
513 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
514 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
515 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
516 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
517 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
518 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
519 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
520 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
521 };
522 
523 static u8 ksz8863_shifts[] = {
524 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
525 	[STATIC_MAC_FWD_PORTS]		= 16,
526 	[STATIC_MAC_FID]		= 22,
527 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
528 	[DYNAMIC_MAC_ENTRIES]		= 24,
529 	[DYNAMIC_MAC_FID]		= 16,
530 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
531 	[DYNAMIC_MAC_SRC_PORT]		= 20,
532 };
533 
534 static const u16 ksz9477_regs[] = {
535 	[REG_SW_MAC_ADDR]		= 0x0302,
536 	[P_STP_CTRL]			= 0x0B04,
537 	[S_START_CTRL]			= 0x0300,
538 	[S_BROADCAST_CTRL]		= 0x0332,
539 	[S_MULTICAST_CTRL]		= 0x0331,
540 	[P_XMII_CTRL_0]			= 0x0300,
541 	[P_XMII_CTRL_1]			= 0x0301,
542 };
543 
544 static const u32 ksz9477_masks[] = {
545 	[ALU_STAT_WRITE]		= 0,
546 	[ALU_STAT_READ]			= 1,
547 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
548 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
549 };
550 
551 static const u8 ksz9477_shifts[] = {
552 	[ALU_STAT_INDEX]		= 16,
553 };
554 
555 static const u8 ksz9477_xmii_ctrl0[] = {
556 	[P_MII_100MBIT]			= 1,
557 	[P_MII_10MBIT]			= 0,
558 	[P_MII_FULL_DUPLEX]		= 1,
559 	[P_MII_HALF_DUPLEX]		= 0,
560 };
561 
562 static const u8 ksz9477_xmii_ctrl1[] = {
563 	[P_RGMII_SEL]			= 0,
564 	[P_RMII_SEL]			= 1,
565 	[P_GMII_SEL]			= 2,
566 	[P_MII_SEL]			= 3,
567 	[P_GMII_1GBIT]			= 0,
568 	[P_GMII_NOT_1GBIT]		= 1,
569 };
570 
571 static const u32 lan937x_masks[] = {
572 	[ALU_STAT_WRITE]		= 1,
573 	[ALU_STAT_READ]			= 2,
574 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
575 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
576 };
577 
578 static const u8 lan937x_shifts[] = {
579 	[ALU_STAT_INDEX]		= 8,
580 };
581 
582 static const struct regmap_range ksz8563_valid_regs[] = {
583 	regmap_reg_range(0x0000, 0x0003),
584 	regmap_reg_range(0x0006, 0x0006),
585 	regmap_reg_range(0x000f, 0x001f),
586 	regmap_reg_range(0x0100, 0x0100),
587 	regmap_reg_range(0x0104, 0x0107),
588 	regmap_reg_range(0x010d, 0x010d),
589 	regmap_reg_range(0x0110, 0x0113),
590 	regmap_reg_range(0x0120, 0x012b),
591 	regmap_reg_range(0x0201, 0x0201),
592 	regmap_reg_range(0x0210, 0x0213),
593 	regmap_reg_range(0x0300, 0x0300),
594 	regmap_reg_range(0x0302, 0x031b),
595 	regmap_reg_range(0x0320, 0x032b),
596 	regmap_reg_range(0x0330, 0x0336),
597 	regmap_reg_range(0x0338, 0x033e),
598 	regmap_reg_range(0x0340, 0x035f),
599 	regmap_reg_range(0x0370, 0x0370),
600 	regmap_reg_range(0x0378, 0x0378),
601 	regmap_reg_range(0x037c, 0x037d),
602 	regmap_reg_range(0x0390, 0x0393),
603 	regmap_reg_range(0x0400, 0x040e),
604 	regmap_reg_range(0x0410, 0x042f),
605 	regmap_reg_range(0x0500, 0x0519),
606 	regmap_reg_range(0x0520, 0x054b),
607 	regmap_reg_range(0x0550, 0x05b3),
608 
609 	/* port 1 */
610 	regmap_reg_range(0x1000, 0x1001),
611 	regmap_reg_range(0x1004, 0x100b),
612 	regmap_reg_range(0x1013, 0x1013),
613 	regmap_reg_range(0x1017, 0x1017),
614 	regmap_reg_range(0x101b, 0x101b),
615 	regmap_reg_range(0x101f, 0x1021),
616 	regmap_reg_range(0x1030, 0x1030),
617 	regmap_reg_range(0x1100, 0x1111),
618 	regmap_reg_range(0x111a, 0x111d),
619 	regmap_reg_range(0x1122, 0x1127),
620 	regmap_reg_range(0x112a, 0x112b),
621 	regmap_reg_range(0x1136, 0x1139),
622 	regmap_reg_range(0x113e, 0x113f),
623 	regmap_reg_range(0x1400, 0x1401),
624 	regmap_reg_range(0x1403, 0x1403),
625 	regmap_reg_range(0x1410, 0x1417),
626 	regmap_reg_range(0x1420, 0x1423),
627 	regmap_reg_range(0x1500, 0x1507),
628 	regmap_reg_range(0x1600, 0x1612),
629 	regmap_reg_range(0x1800, 0x180f),
630 	regmap_reg_range(0x1900, 0x1907),
631 	regmap_reg_range(0x1914, 0x191b),
632 	regmap_reg_range(0x1a00, 0x1a03),
633 	regmap_reg_range(0x1a04, 0x1a08),
634 	regmap_reg_range(0x1b00, 0x1b01),
635 	regmap_reg_range(0x1b04, 0x1b04),
636 	regmap_reg_range(0x1c00, 0x1c05),
637 	regmap_reg_range(0x1c08, 0x1c1b),
638 
639 	/* port 2 */
640 	regmap_reg_range(0x2000, 0x2001),
641 	regmap_reg_range(0x2004, 0x200b),
642 	regmap_reg_range(0x2013, 0x2013),
643 	regmap_reg_range(0x2017, 0x2017),
644 	regmap_reg_range(0x201b, 0x201b),
645 	regmap_reg_range(0x201f, 0x2021),
646 	regmap_reg_range(0x2030, 0x2030),
647 	regmap_reg_range(0x2100, 0x2111),
648 	regmap_reg_range(0x211a, 0x211d),
649 	regmap_reg_range(0x2122, 0x2127),
650 	regmap_reg_range(0x212a, 0x212b),
651 	regmap_reg_range(0x2136, 0x2139),
652 	regmap_reg_range(0x213e, 0x213f),
653 	regmap_reg_range(0x2400, 0x2401),
654 	regmap_reg_range(0x2403, 0x2403),
655 	regmap_reg_range(0x2410, 0x2417),
656 	regmap_reg_range(0x2420, 0x2423),
657 	regmap_reg_range(0x2500, 0x2507),
658 	regmap_reg_range(0x2600, 0x2612),
659 	regmap_reg_range(0x2800, 0x280f),
660 	regmap_reg_range(0x2900, 0x2907),
661 	regmap_reg_range(0x2914, 0x291b),
662 	regmap_reg_range(0x2a00, 0x2a03),
663 	regmap_reg_range(0x2a04, 0x2a08),
664 	regmap_reg_range(0x2b00, 0x2b01),
665 	regmap_reg_range(0x2b04, 0x2b04),
666 	regmap_reg_range(0x2c00, 0x2c05),
667 	regmap_reg_range(0x2c08, 0x2c1b),
668 
669 	/* port 3 */
670 	regmap_reg_range(0x3000, 0x3001),
671 	regmap_reg_range(0x3004, 0x300b),
672 	regmap_reg_range(0x3013, 0x3013),
673 	regmap_reg_range(0x3017, 0x3017),
674 	regmap_reg_range(0x301b, 0x301b),
675 	regmap_reg_range(0x301f, 0x3021),
676 	regmap_reg_range(0x3030, 0x3030),
677 	regmap_reg_range(0x3300, 0x3301),
678 	regmap_reg_range(0x3303, 0x3303),
679 	regmap_reg_range(0x3400, 0x3401),
680 	regmap_reg_range(0x3403, 0x3403),
681 	regmap_reg_range(0x3410, 0x3417),
682 	regmap_reg_range(0x3420, 0x3423),
683 	regmap_reg_range(0x3500, 0x3507),
684 	regmap_reg_range(0x3600, 0x3612),
685 	regmap_reg_range(0x3800, 0x380f),
686 	regmap_reg_range(0x3900, 0x3907),
687 	regmap_reg_range(0x3914, 0x391b),
688 	regmap_reg_range(0x3a00, 0x3a03),
689 	regmap_reg_range(0x3a04, 0x3a08),
690 	regmap_reg_range(0x3b00, 0x3b01),
691 	regmap_reg_range(0x3b04, 0x3b04),
692 	regmap_reg_range(0x3c00, 0x3c05),
693 	regmap_reg_range(0x3c08, 0x3c1b),
694 };
695 
696 static const struct regmap_access_table ksz8563_register_set = {
697 	.yes_ranges = ksz8563_valid_regs,
698 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
699 };
700 
701 static const struct regmap_range ksz9477_valid_regs[] = {
702 	regmap_reg_range(0x0000, 0x0003),
703 	regmap_reg_range(0x0006, 0x0006),
704 	regmap_reg_range(0x0010, 0x001f),
705 	regmap_reg_range(0x0100, 0x0100),
706 	regmap_reg_range(0x0103, 0x0107),
707 	regmap_reg_range(0x010d, 0x010d),
708 	regmap_reg_range(0x0110, 0x0113),
709 	regmap_reg_range(0x0120, 0x012b),
710 	regmap_reg_range(0x0201, 0x0201),
711 	regmap_reg_range(0x0210, 0x0213),
712 	regmap_reg_range(0x0300, 0x0300),
713 	regmap_reg_range(0x0302, 0x031b),
714 	regmap_reg_range(0x0320, 0x032b),
715 	regmap_reg_range(0x0330, 0x0336),
716 	regmap_reg_range(0x0338, 0x033b),
717 	regmap_reg_range(0x033e, 0x033e),
718 	regmap_reg_range(0x0340, 0x035f),
719 	regmap_reg_range(0x0370, 0x0370),
720 	regmap_reg_range(0x0378, 0x0378),
721 	regmap_reg_range(0x037c, 0x037d),
722 	regmap_reg_range(0x0390, 0x0393),
723 	regmap_reg_range(0x0400, 0x040e),
724 	regmap_reg_range(0x0410, 0x042f),
725 	regmap_reg_range(0x0444, 0x044b),
726 	regmap_reg_range(0x0450, 0x046f),
727 	regmap_reg_range(0x0500, 0x0519),
728 	regmap_reg_range(0x0520, 0x054b),
729 	regmap_reg_range(0x0550, 0x05b3),
730 	regmap_reg_range(0x0604, 0x060b),
731 	regmap_reg_range(0x0610, 0x0612),
732 	regmap_reg_range(0x0614, 0x062c),
733 	regmap_reg_range(0x0640, 0x0645),
734 	regmap_reg_range(0x0648, 0x064d),
735 
736 	/* port 1 */
737 	regmap_reg_range(0x1000, 0x1001),
738 	regmap_reg_range(0x1013, 0x1013),
739 	regmap_reg_range(0x1017, 0x1017),
740 	regmap_reg_range(0x101b, 0x101b),
741 	regmap_reg_range(0x101f, 0x1020),
742 	regmap_reg_range(0x1030, 0x1030),
743 	regmap_reg_range(0x1100, 0x1115),
744 	regmap_reg_range(0x111a, 0x111f),
745 	regmap_reg_range(0x1120, 0x112b),
746 	regmap_reg_range(0x1134, 0x113b),
747 	regmap_reg_range(0x113c, 0x113f),
748 	regmap_reg_range(0x1400, 0x1401),
749 	regmap_reg_range(0x1403, 0x1403),
750 	regmap_reg_range(0x1410, 0x1417),
751 	regmap_reg_range(0x1420, 0x1423),
752 	regmap_reg_range(0x1500, 0x1507),
753 	regmap_reg_range(0x1600, 0x1613),
754 	regmap_reg_range(0x1800, 0x180f),
755 	regmap_reg_range(0x1820, 0x1827),
756 	regmap_reg_range(0x1830, 0x1837),
757 	regmap_reg_range(0x1840, 0x184b),
758 	regmap_reg_range(0x1900, 0x1907),
759 	regmap_reg_range(0x1914, 0x191b),
760 	regmap_reg_range(0x1920, 0x1920),
761 	regmap_reg_range(0x1923, 0x1927),
762 	regmap_reg_range(0x1a00, 0x1a03),
763 	regmap_reg_range(0x1a04, 0x1a07),
764 	regmap_reg_range(0x1b00, 0x1b01),
765 	regmap_reg_range(0x1b04, 0x1b04),
766 	regmap_reg_range(0x1c00, 0x1c05),
767 	regmap_reg_range(0x1c08, 0x1c1b),
768 
769 	/* port 2 */
770 	regmap_reg_range(0x2000, 0x2001),
771 	regmap_reg_range(0x2013, 0x2013),
772 	regmap_reg_range(0x2017, 0x2017),
773 	regmap_reg_range(0x201b, 0x201b),
774 	regmap_reg_range(0x201f, 0x2020),
775 	regmap_reg_range(0x2030, 0x2030),
776 	regmap_reg_range(0x2100, 0x2115),
777 	regmap_reg_range(0x211a, 0x211f),
778 	regmap_reg_range(0x2120, 0x212b),
779 	regmap_reg_range(0x2134, 0x213b),
780 	regmap_reg_range(0x213c, 0x213f),
781 	regmap_reg_range(0x2400, 0x2401),
782 	regmap_reg_range(0x2403, 0x2403),
783 	regmap_reg_range(0x2410, 0x2417),
784 	regmap_reg_range(0x2420, 0x2423),
785 	regmap_reg_range(0x2500, 0x2507),
786 	regmap_reg_range(0x2600, 0x2613),
787 	regmap_reg_range(0x2800, 0x280f),
788 	regmap_reg_range(0x2820, 0x2827),
789 	regmap_reg_range(0x2830, 0x2837),
790 	regmap_reg_range(0x2840, 0x284b),
791 	regmap_reg_range(0x2900, 0x2907),
792 	regmap_reg_range(0x2914, 0x291b),
793 	regmap_reg_range(0x2920, 0x2920),
794 	regmap_reg_range(0x2923, 0x2927),
795 	regmap_reg_range(0x2a00, 0x2a03),
796 	regmap_reg_range(0x2a04, 0x2a07),
797 	regmap_reg_range(0x2b00, 0x2b01),
798 	regmap_reg_range(0x2b04, 0x2b04),
799 	regmap_reg_range(0x2c00, 0x2c05),
800 	regmap_reg_range(0x2c08, 0x2c1b),
801 
802 	/* port 3 */
803 	regmap_reg_range(0x3000, 0x3001),
804 	regmap_reg_range(0x3013, 0x3013),
805 	regmap_reg_range(0x3017, 0x3017),
806 	regmap_reg_range(0x301b, 0x301b),
807 	regmap_reg_range(0x301f, 0x3020),
808 	regmap_reg_range(0x3030, 0x3030),
809 	regmap_reg_range(0x3100, 0x3115),
810 	regmap_reg_range(0x311a, 0x311f),
811 	regmap_reg_range(0x3120, 0x312b),
812 	regmap_reg_range(0x3134, 0x313b),
813 	regmap_reg_range(0x313c, 0x313f),
814 	regmap_reg_range(0x3400, 0x3401),
815 	regmap_reg_range(0x3403, 0x3403),
816 	regmap_reg_range(0x3410, 0x3417),
817 	regmap_reg_range(0x3420, 0x3423),
818 	regmap_reg_range(0x3500, 0x3507),
819 	regmap_reg_range(0x3600, 0x3613),
820 	regmap_reg_range(0x3800, 0x380f),
821 	regmap_reg_range(0x3820, 0x3827),
822 	regmap_reg_range(0x3830, 0x3837),
823 	regmap_reg_range(0x3840, 0x384b),
824 	regmap_reg_range(0x3900, 0x3907),
825 	regmap_reg_range(0x3914, 0x391b),
826 	regmap_reg_range(0x3920, 0x3920),
827 	regmap_reg_range(0x3923, 0x3927),
828 	regmap_reg_range(0x3a00, 0x3a03),
829 	regmap_reg_range(0x3a04, 0x3a07),
830 	regmap_reg_range(0x3b00, 0x3b01),
831 	regmap_reg_range(0x3b04, 0x3b04),
832 	regmap_reg_range(0x3c00, 0x3c05),
833 	regmap_reg_range(0x3c08, 0x3c1b),
834 
835 	/* port 4 */
836 	regmap_reg_range(0x4000, 0x4001),
837 	regmap_reg_range(0x4013, 0x4013),
838 	regmap_reg_range(0x4017, 0x4017),
839 	regmap_reg_range(0x401b, 0x401b),
840 	regmap_reg_range(0x401f, 0x4020),
841 	regmap_reg_range(0x4030, 0x4030),
842 	regmap_reg_range(0x4100, 0x4115),
843 	regmap_reg_range(0x411a, 0x411f),
844 	regmap_reg_range(0x4120, 0x412b),
845 	regmap_reg_range(0x4134, 0x413b),
846 	regmap_reg_range(0x413c, 0x413f),
847 	regmap_reg_range(0x4400, 0x4401),
848 	regmap_reg_range(0x4403, 0x4403),
849 	regmap_reg_range(0x4410, 0x4417),
850 	regmap_reg_range(0x4420, 0x4423),
851 	regmap_reg_range(0x4500, 0x4507),
852 	regmap_reg_range(0x4600, 0x4613),
853 	regmap_reg_range(0x4800, 0x480f),
854 	regmap_reg_range(0x4820, 0x4827),
855 	regmap_reg_range(0x4830, 0x4837),
856 	regmap_reg_range(0x4840, 0x484b),
857 	regmap_reg_range(0x4900, 0x4907),
858 	regmap_reg_range(0x4914, 0x491b),
859 	regmap_reg_range(0x4920, 0x4920),
860 	regmap_reg_range(0x4923, 0x4927),
861 	regmap_reg_range(0x4a00, 0x4a03),
862 	regmap_reg_range(0x4a04, 0x4a07),
863 	regmap_reg_range(0x4b00, 0x4b01),
864 	regmap_reg_range(0x4b04, 0x4b04),
865 	regmap_reg_range(0x4c00, 0x4c05),
866 	regmap_reg_range(0x4c08, 0x4c1b),
867 
868 	/* port 5 */
869 	regmap_reg_range(0x5000, 0x5001),
870 	regmap_reg_range(0x5013, 0x5013),
871 	regmap_reg_range(0x5017, 0x5017),
872 	regmap_reg_range(0x501b, 0x501b),
873 	regmap_reg_range(0x501f, 0x5020),
874 	regmap_reg_range(0x5030, 0x5030),
875 	regmap_reg_range(0x5100, 0x5115),
876 	regmap_reg_range(0x511a, 0x511f),
877 	regmap_reg_range(0x5120, 0x512b),
878 	regmap_reg_range(0x5134, 0x513b),
879 	regmap_reg_range(0x513c, 0x513f),
880 	regmap_reg_range(0x5400, 0x5401),
881 	regmap_reg_range(0x5403, 0x5403),
882 	regmap_reg_range(0x5410, 0x5417),
883 	regmap_reg_range(0x5420, 0x5423),
884 	regmap_reg_range(0x5500, 0x5507),
885 	regmap_reg_range(0x5600, 0x5613),
886 	regmap_reg_range(0x5800, 0x580f),
887 	regmap_reg_range(0x5820, 0x5827),
888 	regmap_reg_range(0x5830, 0x5837),
889 	regmap_reg_range(0x5840, 0x584b),
890 	regmap_reg_range(0x5900, 0x5907),
891 	regmap_reg_range(0x5914, 0x591b),
892 	regmap_reg_range(0x5920, 0x5920),
893 	regmap_reg_range(0x5923, 0x5927),
894 	regmap_reg_range(0x5a00, 0x5a03),
895 	regmap_reg_range(0x5a04, 0x5a07),
896 	regmap_reg_range(0x5b00, 0x5b01),
897 	regmap_reg_range(0x5b04, 0x5b04),
898 	regmap_reg_range(0x5c00, 0x5c05),
899 	regmap_reg_range(0x5c08, 0x5c1b),
900 
901 	/* port 6 */
902 	regmap_reg_range(0x6000, 0x6001),
903 	regmap_reg_range(0x6013, 0x6013),
904 	regmap_reg_range(0x6017, 0x6017),
905 	regmap_reg_range(0x601b, 0x601b),
906 	regmap_reg_range(0x601f, 0x6020),
907 	regmap_reg_range(0x6030, 0x6030),
908 	regmap_reg_range(0x6300, 0x6301),
909 	regmap_reg_range(0x6400, 0x6401),
910 	regmap_reg_range(0x6403, 0x6403),
911 	regmap_reg_range(0x6410, 0x6417),
912 	regmap_reg_range(0x6420, 0x6423),
913 	regmap_reg_range(0x6500, 0x6507),
914 	regmap_reg_range(0x6600, 0x6613),
915 	regmap_reg_range(0x6800, 0x680f),
916 	regmap_reg_range(0x6820, 0x6827),
917 	regmap_reg_range(0x6830, 0x6837),
918 	regmap_reg_range(0x6840, 0x684b),
919 	regmap_reg_range(0x6900, 0x6907),
920 	regmap_reg_range(0x6914, 0x691b),
921 	regmap_reg_range(0x6920, 0x6920),
922 	regmap_reg_range(0x6923, 0x6927),
923 	regmap_reg_range(0x6a00, 0x6a03),
924 	regmap_reg_range(0x6a04, 0x6a07),
925 	regmap_reg_range(0x6b00, 0x6b01),
926 	regmap_reg_range(0x6b04, 0x6b04),
927 	regmap_reg_range(0x6c00, 0x6c05),
928 	regmap_reg_range(0x6c08, 0x6c1b),
929 
930 	/* port 7 */
931 	regmap_reg_range(0x7000, 0x7001),
932 	regmap_reg_range(0x7013, 0x7013),
933 	regmap_reg_range(0x7017, 0x7017),
934 	regmap_reg_range(0x701b, 0x701b),
935 	regmap_reg_range(0x701f, 0x7020),
936 	regmap_reg_range(0x7030, 0x7030),
937 	regmap_reg_range(0x7200, 0x7203),
938 	regmap_reg_range(0x7206, 0x7207),
939 	regmap_reg_range(0x7300, 0x7301),
940 	regmap_reg_range(0x7400, 0x7401),
941 	regmap_reg_range(0x7403, 0x7403),
942 	regmap_reg_range(0x7410, 0x7417),
943 	regmap_reg_range(0x7420, 0x7423),
944 	regmap_reg_range(0x7500, 0x7507),
945 	regmap_reg_range(0x7600, 0x7613),
946 	regmap_reg_range(0x7800, 0x780f),
947 	regmap_reg_range(0x7820, 0x7827),
948 	regmap_reg_range(0x7830, 0x7837),
949 	regmap_reg_range(0x7840, 0x784b),
950 	regmap_reg_range(0x7900, 0x7907),
951 	regmap_reg_range(0x7914, 0x791b),
952 	regmap_reg_range(0x7920, 0x7920),
953 	regmap_reg_range(0x7923, 0x7927),
954 	regmap_reg_range(0x7a00, 0x7a03),
955 	regmap_reg_range(0x7a04, 0x7a07),
956 	regmap_reg_range(0x7b00, 0x7b01),
957 	regmap_reg_range(0x7b04, 0x7b04),
958 	regmap_reg_range(0x7c00, 0x7c05),
959 	regmap_reg_range(0x7c08, 0x7c1b),
960 };
961 
962 static const struct regmap_access_table ksz9477_register_set = {
963 	.yes_ranges = ksz9477_valid_regs,
964 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
965 };
966 
967 static const struct regmap_range ksz9896_valid_regs[] = {
968 	regmap_reg_range(0x0000, 0x0003),
969 	regmap_reg_range(0x0006, 0x0006),
970 	regmap_reg_range(0x0010, 0x001f),
971 	regmap_reg_range(0x0100, 0x0100),
972 	regmap_reg_range(0x0103, 0x0107),
973 	regmap_reg_range(0x010d, 0x010d),
974 	regmap_reg_range(0x0110, 0x0113),
975 	regmap_reg_range(0x0120, 0x0127),
976 	regmap_reg_range(0x0201, 0x0201),
977 	regmap_reg_range(0x0210, 0x0213),
978 	regmap_reg_range(0x0300, 0x0300),
979 	regmap_reg_range(0x0302, 0x030b),
980 	regmap_reg_range(0x0310, 0x031b),
981 	regmap_reg_range(0x0320, 0x032b),
982 	regmap_reg_range(0x0330, 0x0336),
983 	regmap_reg_range(0x0338, 0x033b),
984 	regmap_reg_range(0x033e, 0x033e),
985 	regmap_reg_range(0x0340, 0x035f),
986 	regmap_reg_range(0x0370, 0x0370),
987 	regmap_reg_range(0x0378, 0x0378),
988 	regmap_reg_range(0x037c, 0x037d),
989 	regmap_reg_range(0x0390, 0x0393),
990 	regmap_reg_range(0x0400, 0x040e),
991 	regmap_reg_range(0x0410, 0x042f),
992 
993 	/* port 1 */
994 	regmap_reg_range(0x1000, 0x1001),
995 	regmap_reg_range(0x1013, 0x1013),
996 	regmap_reg_range(0x1017, 0x1017),
997 	regmap_reg_range(0x101b, 0x101b),
998 	regmap_reg_range(0x101f, 0x1020),
999 	regmap_reg_range(0x1030, 0x1030),
1000 	regmap_reg_range(0x1100, 0x1115),
1001 	regmap_reg_range(0x111a, 0x111f),
1002 	regmap_reg_range(0x1122, 0x1127),
1003 	regmap_reg_range(0x112a, 0x112b),
1004 	regmap_reg_range(0x1136, 0x1139),
1005 	regmap_reg_range(0x113e, 0x113f),
1006 	regmap_reg_range(0x1400, 0x1401),
1007 	regmap_reg_range(0x1403, 0x1403),
1008 	regmap_reg_range(0x1410, 0x1417),
1009 	regmap_reg_range(0x1420, 0x1423),
1010 	regmap_reg_range(0x1500, 0x1507),
1011 	regmap_reg_range(0x1600, 0x1612),
1012 	regmap_reg_range(0x1800, 0x180f),
1013 	regmap_reg_range(0x1820, 0x1827),
1014 	regmap_reg_range(0x1830, 0x1837),
1015 	regmap_reg_range(0x1840, 0x184b),
1016 	regmap_reg_range(0x1900, 0x1907),
1017 	regmap_reg_range(0x1914, 0x1915),
1018 	regmap_reg_range(0x1a00, 0x1a03),
1019 	regmap_reg_range(0x1a04, 0x1a07),
1020 	regmap_reg_range(0x1b00, 0x1b01),
1021 	regmap_reg_range(0x1b04, 0x1b04),
1022 
1023 	/* port 2 */
1024 	regmap_reg_range(0x2000, 0x2001),
1025 	regmap_reg_range(0x2013, 0x2013),
1026 	regmap_reg_range(0x2017, 0x2017),
1027 	regmap_reg_range(0x201b, 0x201b),
1028 	regmap_reg_range(0x201f, 0x2020),
1029 	regmap_reg_range(0x2030, 0x2030),
1030 	regmap_reg_range(0x2100, 0x2115),
1031 	regmap_reg_range(0x211a, 0x211f),
1032 	regmap_reg_range(0x2122, 0x2127),
1033 	regmap_reg_range(0x212a, 0x212b),
1034 	regmap_reg_range(0x2136, 0x2139),
1035 	regmap_reg_range(0x213e, 0x213f),
1036 	regmap_reg_range(0x2400, 0x2401),
1037 	regmap_reg_range(0x2403, 0x2403),
1038 	regmap_reg_range(0x2410, 0x2417),
1039 	regmap_reg_range(0x2420, 0x2423),
1040 	regmap_reg_range(0x2500, 0x2507),
1041 	regmap_reg_range(0x2600, 0x2612),
1042 	regmap_reg_range(0x2800, 0x280f),
1043 	regmap_reg_range(0x2820, 0x2827),
1044 	regmap_reg_range(0x2830, 0x2837),
1045 	regmap_reg_range(0x2840, 0x284b),
1046 	regmap_reg_range(0x2900, 0x2907),
1047 	regmap_reg_range(0x2914, 0x2915),
1048 	regmap_reg_range(0x2a00, 0x2a03),
1049 	regmap_reg_range(0x2a04, 0x2a07),
1050 	regmap_reg_range(0x2b00, 0x2b01),
1051 	regmap_reg_range(0x2b04, 0x2b04),
1052 
1053 	/* port 3 */
1054 	regmap_reg_range(0x3000, 0x3001),
1055 	regmap_reg_range(0x3013, 0x3013),
1056 	regmap_reg_range(0x3017, 0x3017),
1057 	regmap_reg_range(0x301b, 0x301b),
1058 	regmap_reg_range(0x301f, 0x3020),
1059 	regmap_reg_range(0x3030, 0x3030),
1060 	regmap_reg_range(0x3100, 0x3115),
1061 	regmap_reg_range(0x311a, 0x311f),
1062 	regmap_reg_range(0x3122, 0x3127),
1063 	regmap_reg_range(0x312a, 0x312b),
1064 	regmap_reg_range(0x3136, 0x3139),
1065 	regmap_reg_range(0x313e, 0x313f),
1066 	regmap_reg_range(0x3400, 0x3401),
1067 	regmap_reg_range(0x3403, 0x3403),
1068 	regmap_reg_range(0x3410, 0x3417),
1069 	regmap_reg_range(0x3420, 0x3423),
1070 	regmap_reg_range(0x3500, 0x3507),
1071 	regmap_reg_range(0x3600, 0x3612),
1072 	regmap_reg_range(0x3800, 0x380f),
1073 	regmap_reg_range(0x3820, 0x3827),
1074 	regmap_reg_range(0x3830, 0x3837),
1075 	regmap_reg_range(0x3840, 0x384b),
1076 	regmap_reg_range(0x3900, 0x3907),
1077 	regmap_reg_range(0x3914, 0x3915),
1078 	regmap_reg_range(0x3a00, 0x3a03),
1079 	regmap_reg_range(0x3a04, 0x3a07),
1080 	regmap_reg_range(0x3b00, 0x3b01),
1081 	regmap_reg_range(0x3b04, 0x3b04),
1082 
1083 	/* port 4 */
1084 	regmap_reg_range(0x4000, 0x4001),
1085 	regmap_reg_range(0x4013, 0x4013),
1086 	regmap_reg_range(0x4017, 0x4017),
1087 	regmap_reg_range(0x401b, 0x401b),
1088 	regmap_reg_range(0x401f, 0x4020),
1089 	regmap_reg_range(0x4030, 0x4030),
1090 	regmap_reg_range(0x4100, 0x4115),
1091 	regmap_reg_range(0x411a, 0x411f),
1092 	regmap_reg_range(0x4122, 0x4127),
1093 	regmap_reg_range(0x412a, 0x412b),
1094 	regmap_reg_range(0x4136, 0x4139),
1095 	regmap_reg_range(0x413e, 0x413f),
1096 	regmap_reg_range(0x4400, 0x4401),
1097 	regmap_reg_range(0x4403, 0x4403),
1098 	regmap_reg_range(0x4410, 0x4417),
1099 	regmap_reg_range(0x4420, 0x4423),
1100 	regmap_reg_range(0x4500, 0x4507),
1101 	regmap_reg_range(0x4600, 0x4612),
1102 	regmap_reg_range(0x4800, 0x480f),
1103 	regmap_reg_range(0x4820, 0x4827),
1104 	regmap_reg_range(0x4830, 0x4837),
1105 	regmap_reg_range(0x4840, 0x484b),
1106 	regmap_reg_range(0x4900, 0x4907),
1107 	regmap_reg_range(0x4914, 0x4915),
1108 	regmap_reg_range(0x4a00, 0x4a03),
1109 	regmap_reg_range(0x4a04, 0x4a07),
1110 	regmap_reg_range(0x4b00, 0x4b01),
1111 	regmap_reg_range(0x4b04, 0x4b04),
1112 
1113 	/* port 5 */
1114 	regmap_reg_range(0x5000, 0x5001),
1115 	regmap_reg_range(0x5013, 0x5013),
1116 	regmap_reg_range(0x5017, 0x5017),
1117 	regmap_reg_range(0x501b, 0x501b),
1118 	regmap_reg_range(0x501f, 0x5020),
1119 	regmap_reg_range(0x5030, 0x5030),
1120 	regmap_reg_range(0x5100, 0x5115),
1121 	regmap_reg_range(0x511a, 0x511f),
1122 	regmap_reg_range(0x5122, 0x5127),
1123 	regmap_reg_range(0x512a, 0x512b),
1124 	regmap_reg_range(0x5136, 0x5139),
1125 	regmap_reg_range(0x513e, 0x513f),
1126 	regmap_reg_range(0x5400, 0x5401),
1127 	regmap_reg_range(0x5403, 0x5403),
1128 	regmap_reg_range(0x5410, 0x5417),
1129 	regmap_reg_range(0x5420, 0x5423),
1130 	regmap_reg_range(0x5500, 0x5507),
1131 	regmap_reg_range(0x5600, 0x5612),
1132 	regmap_reg_range(0x5800, 0x580f),
1133 	regmap_reg_range(0x5820, 0x5827),
1134 	regmap_reg_range(0x5830, 0x5837),
1135 	regmap_reg_range(0x5840, 0x584b),
1136 	regmap_reg_range(0x5900, 0x5907),
1137 	regmap_reg_range(0x5914, 0x5915),
1138 	regmap_reg_range(0x5a00, 0x5a03),
1139 	regmap_reg_range(0x5a04, 0x5a07),
1140 	regmap_reg_range(0x5b00, 0x5b01),
1141 	regmap_reg_range(0x5b04, 0x5b04),
1142 
1143 	/* port 6 */
1144 	regmap_reg_range(0x6000, 0x6001),
1145 	regmap_reg_range(0x6013, 0x6013),
1146 	regmap_reg_range(0x6017, 0x6017),
1147 	regmap_reg_range(0x601b, 0x601b),
1148 	regmap_reg_range(0x601f, 0x6020),
1149 	regmap_reg_range(0x6030, 0x6030),
1150 	regmap_reg_range(0x6100, 0x6115),
1151 	regmap_reg_range(0x611a, 0x611f),
1152 	regmap_reg_range(0x6122, 0x6127),
1153 	regmap_reg_range(0x612a, 0x612b),
1154 	regmap_reg_range(0x6136, 0x6139),
1155 	regmap_reg_range(0x613e, 0x613f),
1156 	regmap_reg_range(0x6300, 0x6301),
1157 	regmap_reg_range(0x6400, 0x6401),
1158 	regmap_reg_range(0x6403, 0x6403),
1159 	regmap_reg_range(0x6410, 0x6417),
1160 	regmap_reg_range(0x6420, 0x6423),
1161 	regmap_reg_range(0x6500, 0x6507),
1162 	regmap_reg_range(0x6600, 0x6612),
1163 	regmap_reg_range(0x6800, 0x680f),
1164 	regmap_reg_range(0x6820, 0x6827),
1165 	regmap_reg_range(0x6830, 0x6837),
1166 	regmap_reg_range(0x6840, 0x684b),
1167 	regmap_reg_range(0x6900, 0x6907),
1168 	regmap_reg_range(0x6914, 0x6915),
1169 	regmap_reg_range(0x6a00, 0x6a03),
1170 	regmap_reg_range(0x6a04, 0x6a07),
1171 	regmap_reg_range(0x6b00, 0x6b01),
1172 	regmap_reg_range(0x6b04, 0x6b04),
1173 };
1174 
1175 static const struct regmap_access_table ksz9896_register_set = {
1176 	.yes_ranges = ksz9896_valid_regs,
1177 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1178 };
1179 
1180 static const struct regmap_range ksz8873_valid_regs[] = {
1181 	regmap_reg_range(0x00, 0x01),
1182 	/* global control register */
1183 	regmap_reg_range(0x02, 0x0f),
1184 
1185 	/* port registers */
1186 	regmap_reg_range(0x10, 0x1d),
1187 	regmap_reg_range(0x1e, 0x1f),
1188 	regmap_reg_range(0x20, 0x2d),
1189 	regmap_reg_range(0x2e, 0x2f),
1190 	regmap_reg_range(0x30, 0x39),
1191 	regmap_reg_range(0x3f, 0x3f),
1192 
1193 	/* advanced control registers */
1194 	regmap_reg_range(0x60, 0x6f),
1195 	regmap_reg_range(0x70, 0x75),
1196 	regmap_reg_range(0x76, 0x78),
1197 	regmap_reg_range(0x79, 0x7a),
1198 	regmap_reg_range(0x7b, 0x83),
1199 	regmap_reg_range(0x8e, 0x99),
1200 	regmap_reg_range(0x9a, 0xa5),
1201 	regmap_reg_range(0xa6, 0xa6),
1202 	regmap_reg_range(0xa7, 0xaa),
1203 	regmap_reg_range(0xab, 0xae),
1204 	regmap_reg_range(0xaf, 0xba),
1205 	regmap_reg_range(0xbb, 0xbc),
1206 	regmap_reg_range(0xbd, 0xbd),
1207 	regmap_reg_range(0xc0, 0xc0),
1208 	regmap_reg_range(0xc2, 0xc2),
1209 	regmap_reg_range(0xc3, 0xc3),
1210 	regmap_reg_range(0xc4, 0xc4),
1211 	regmap_reg_range(0xc6, 0xc6),
1212 };
1213 
1214 static const struct regmap_access_table ksz8873_register_set = {
1215 	.yes_ranges = ksz8873_valid_regs,
1216 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1217 };
1218 
1219 const struct ksz_chip_data ksz_switch_chips[] = {
1220 	[KSZ8563] = {
1221 		.chip_id = KSZ8563_CHIP_ID,
1222 		.dev_name = "KSZ8563",
1223 		.num_vlans = 4096,
1224 		.num_alus = 4096,
1225 		.num_statics = 16,
1226 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1227 		.port_cnt = 3,		/* total port count */
1228 		.port_nirqs = 3,
1229 		.num_tx_queues = 4,
1230 		.num_ipms = 8,
1231 		.tc_cbs_supported = true,
1232 		.ops = &ksz9477_dev_ops,
1233 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1234 		.mib_names = ksz9477_mib_names,
1235 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1236 		.reg_mib_cnt = MIB_COUNTER_NUM,
1237 		.regs = ksz9477_regs,
1238 		.masks = ksz9477_masks,
1239 		.shifts = ksz9477_shifts,
1240 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1241 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1242 		.supports_mii = {false, false, true},
1243 		.supports_rmii = {false, false, true},
1244 		.supports_rgmii = {false, false, true},
1245 		.internal_phy = {true, true, false},
1246 		.gbit_capable = {false, false, true},
1247 		.wr_table = &ksz8563_register_set,
1248 		.rd_table = &ksz8563_register_set,
1249 	},
1250 
1251 	[KSZ8795] = {
1252 		.chip_id = KSZ8795_CHIP_ID,
1253 		.dev_name = "KSZ8795",
1254 		.num_vlans = 4096,
1255 		.num_alus = 0,
1256 		.num_statics = 8,
1257 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1258 		.port_cnt = 5,		/* total cpu and user ports */
1259 		.num_tx_queues = 4,
1260 		.num_ipms = 4,
1261 		.ops = &ksz8_dev_ops,
1262 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1263 		.ksz87xx_eee_link_erratum = true,
1264 		.mib_names = ksz9477_mib_names,
1265 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1266 		.reg_mib_cnt = MIB_COUNTER_NUM,
1267 		.regs = ksz8795_regs,
1268 		.masks = ksz8795_masks,
1269 		.shifts = ksz8795_shifts,
1270 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1271 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1272 		.supports_mii = {false, false, false, false, true},
1273 		.supports_rmii = {false, false, false, false, true},
1274 		.supports_rgmii = {false, false, false, false, true},
1275 		.internal_phy = {true, true, true, true, false},
1276 	},
1277 
1278 	[KSZ8794] = {
1279 		/* WARNING
1280 		 * =======
1281 		 * KSZ8794 is similar to KSZ8795, except the port map
1282 		 * contains a gap between external and CPU ports, the
1283 		 * port map is NOT continuous. The per-port register
1284 		 * map is shifted accordingly too, i.e. registers at
1285 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1286 		 * used on KSZ8795 for external port 3.
1287 		 *           external  cpu
1288 		 * KSZ8794   0,1,2      4
1289 		 * KSZ8795   0,1,2,3    4
1290 		 * KSZ8765   0,1,2,3    4
1291 		 * port_cnt is configured as 5, even though it is 4
1292 		 */
1293 		.chip_id = KSZ8794_CHIP_ID,
1294 		.dev_name = "KSZ8794",
1295 		.num_vlans = 4096,
1296 		.num_alus = 0,
1297 		.num_statics = 8,
1298 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1299 		.port_cnt = 5,		/* total cpu and user ports */
1300 		.num_tx_queues = 4,
1301 		.num_ipms = 4,
1302 		.ops = &ksz8_dev_ops,
1303 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1304 		.ksz87xx_eee_link_erratum = true,
1305 		.mib_names = ksz9477_mib_names,
1306 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1307 		.reg_mib_cnt = MIB_COUNTER_NUM,
1308 		.regs = ksz8795_regs,
1309 		.masks = ksz8795_masks,
1310 		.shifts = ksz8795_shifts,
1311 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1312 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1313 		.supports_mii = {false, false, false, false, true},
1314 		.supports_rmii = {false, false, false, false, true},
1315 		.supports_rgmii = {false, false, false, false, true},
1316 		.internal_phy = {true, true, true, false, false},
1317 	},
1318 
1319 	[KSZ8765] = {
1320 		.chip_id = KSZ8765_CHIP_ID,
1321 		.dev_name = "KSZ8765",
1322 		.num_vlans = 4096,
1323 		.num_alus = 0,
1324 		.num_statics = 8,
1325 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1326 		.port_cnt = 5,		/* total cpu and user ports */
1327 		.num_tx_queues = 4,
1328 		.num_ipms = 4,
1329 		.ops = &ksz8_dev_ops,
1330 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1331 		.ksz87xx_eee_link_erratum = true,
1332 		.mib_names = ksz9477_mib_names,
1333 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1334 		.reg_mib_cnt = MIB_COUNTER_NUM,
1335 		.regs = ksz8795_regs,
1336 		.masks = ksz8795_masks,
1337 		.shifts = ksz8795_shifts,
1338 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1339 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1340 		.supports_mii = {false, false, false, false, true},
1341 		.supports_rmii = {false, false, false, false, true},
1342 		.supports_rgmii = {false, false, false, false, true},
1343 		.internal_phy = {true, true, true, true, false},
1344 	},
1345 
1346 	[KSZ8830] = {
1347 		.chip_id = KSZ8830_CHIP_ID,
1348 		.dev_name = "KSZ8863/KSZ8873",
1349 		.num_vlans = 16,
1350 		.num_alus = 0,
1351 		.num_statics = 8,
1352 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1353 		.port_cnt = 3,
1354 		.num_tx_queues = 4,
1355 		.num_ipms = 4,
1356 		.ops = &ksz8_dev_ops,
1357 		.phylink_mac_ops = &ksz8830_phylink_mac_ops,
1358 		.mib_names = ksz88xx_mib_names,
1359 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1360 		.reg_mib_cnt = MIB_COUNTER_NUM,
1361 		.regs = ksz8863_regs,
1362 		.masks = ksz8863_masks,
1363 		.shifts = ksz8863_shifts,
1364 		.supports_mii = {false, false, true},
1365 		.supports_rmii = {false, false, true},
1366 		.internal_phy = {true, true, false},
1367 		.wr_table = &ksz8873_register_set,
1368 		.rd_table = &ksz8873_register_set,
1369 	},
1370 
1371 	[KSZ9477] = {
1372 		.chip_id = KSZ9477_CHIP_ID,
1373 		.dev_name = "KSZ9477",
1374 		.num_vlans = 4096,
1375 		.num_alus = 4096,
1376 		.num_statics = 16,
1377 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1378 		.port_cnt = 7,		/* total physical port count */
1379 		.port_nirqs = 4,
1380 		.num_tx_queues = 4,
1381 		.num_ipms = 8,
1382 		.tc_cbs_supported = true,
1383 		.ops = &ksz9477_dev_ops,
1384 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1385 		.phy_errata_9477 = true,
1386 		.mib_names = ksz9477_mib_names,
1387 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1388 		.reg_mib_cnt = MIB_COUNTER_NUM,
1389 		.regs = ksz9477_regs,
1390 		.masks = ksz9477_masks,
1391 		.shifts = ksz9477_shifts,
1392 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1393 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1394 		.supports_mii	= {false, false, false, false,
1395 				   false, true, false},
1396 		.supports_rmii	= {false, false, false, false,
1397 				   false, true, false},
1398 		.supports_rgmii = {false, false, false, false,
1399 				   false, true, false},
1400 		.internal_phy	= {true, true, true, true,
1401 				   true, false, false},
1402 		.gbit_capable	= {true, true, true, true, true, true, true},
1403 		.wr_table = &ksz9477_register_set,
1404 		.rd_table = &ksz9477_register_set,
1405 	},
1406 
1407 	[KSZ9896] = {
1408 		.chip_id = KSZ9896_CHIP_ID,
1409 		.dev_name = "KSZ9896",
1410 		.num_vlans = 4096,
1411 		.num_alus = 4096,
1412 		.num_statics = 16,
1413 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1414 		.port_cnt = 6,		/* total physical port count */
1415 		.port_nirqs = 2,
1416 		.num_tx_queues = 4,
1417 		.num_ipms = 8,
1418 		.ops = &ksz9477_dev_ops,
1419 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1420 		.phy_errata_9477 = true,
1421 		.mib_names = ksz9477_mib_names,
1422 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1423 		.reg_mib_cnt = MIB_COUNTER_NUM,
1424 		.regs = ksz9477_regs,
1425 		.masks = ksz9477_masks,
1426 		.shifts = ksz9477_shifts,
1427 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1428 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1429 		.supports_mii	= {false, false, false, false,
1430 				   false, true},
1431 		.supports_rmii	= {false, false, false, false,
1432 				   false, true},
1433 		.supports_rgmii = {false, false, false, false,
1434 				   false, true},
1435 		.internal_phy	= {true, true, true, true,
1436 				   true, false},
1437 		.gbit_capable	= {true, true, true, true, true, true},
1438 		.wr_table = &ksz9896_register_set,
1439 		.rd_table = &ksz9896_register_set,
1440 	},
1441 
1442 	[KSZ9897] = {
1443 		.chip_id = KSZ9897_CHIP_ID,
1444 		.dev_name = "KSZ9897",
1445 		.num_vlans = 4096,
1446 		.num_alus = 4096,
1447 		.num_statics = 16,
1448 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1449 		.port_cnt = 7,		/* total physical port count */
1450 		.port_nirqs = 2,
1451 		.num_tx_queues = 4,
1452 		.num_ipms = 8,
1453 		.ops = &ksz9477_dev_ops,
1454 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1455 		.phy_errata_9477 = true,
1456 		.mib_names = ksz9477_mib_names,
1457 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1458 		.reg_mib_cnt = MIB_COUNTER_NUM,
1459 		.regs = ksz9477_regs,
1460 		.masks = ksz9477_masks,
1461 		.shifts = ksz9477_shifts,
1462 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1463 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1464 		.supports_mii	= {false, false, false, false,
1465 				   false, true, true},
1466 		.supports_rmii	= {false, false, false, false,
1467 				   false, true, true},
1468 		.supports_rgmii = {false, false, false, false,
1469 				   false, true, true},
1470 		.internal_phy	= {true, true, true, true,
1471 				   true, false, false},
1472 		.gbit_capable	= {true, true, true, true, true, true, true},
1473 	},
1474 
1475 	[KSZ9893] = {
1476 		.chip_id = KSZ9893_CHIP_ID,
1477 		.dev_name = "KSZ9893",
1478 		.num_vlans = 4096,
1479 		.num_alus = 4096,
1480 		.num_statics = 16,
1481 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1482 		.port_cnt = 3,		/* total port count */
1483 		.port_nirqs = 2,
1484 		.num_tx_queues = 4,
1485 		.num_ipms = 8,
1486 		.ops = &ksz9477_dev_ops,
1487 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1488 		.mib_names = ksz9477_mib_names,
1489 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1490 		.reg_mib_cnt = MIB_COUNTER_NUM,
1491 		.regs = ksz9477_regs,
1492 		.masks = ksz9477_masks,
1493 		.shifts = ksz9477_shifts,
1494 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1495 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1496 		.supports_mii = {false, false, true},
1497 		.supports_rmii = {false, false, true},
1498 		.supports_rgmii = {false, false, true},
1499 		.internal_phy = {true, true, false},
1500 		.gbit_capable = {true, true, true},
1501 	},
1502 
1503 	[KSZ9563] = {
1504 		.chip_id = KSZ9563_CHIP_ID,
1505 		.dev_name = "KSZ9563",
1506 		.num_vlans = 4096,
1507 		.num_alus = 4096,
1508 		.num_statics = 16,
1509 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1510 		.port_cnt = 3,		/* total port count */
1511 		.port_nirqs = 3,
1512 		.num_tx_queues = 4,
1513 		.num_ipms = 8,
1514 		.tc_cbs_supported = true,
1515 		.ops = &ksz9477_dev_ops,
1516 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1517 		.mib_names = ksz9477_mib_names,
1518 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1519 		.reg_mib_cnt = MIB_COUNTER_NUM,
1520 		.regs = ksz9477_regs,
1521 		.masks = ksz9477_masks,
1522 		.shifts = ksz9477_shifts,
1523 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1524 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1525 		.supports_mii = {false, false, true},
1526 		.supports_rmii = {false, false, true},
1527 		.supports_rgmii = {false, false, true},
1528 		.internal_phy = {true, true, false},
1529 		.gbit_capable = {true, true, true},
1530 	},
1531 
1532 	[KSZ8567] = {
1533 		.chip_id = KSZ8567_CHIP_ID,
1534 		.dev_name = "KSZ8567",
1535 		.num_vlans = 4096,
1536 		.num_alus = 4096,
1537 		.num_statics = 16,
1538 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1539 		.port_cnt = 7,		/* total port count */
1540 		.port_nirqs = 3,
1541 		.num_tx_queues = 4,
1542 		.num_ipms = 8,
1543 		.tc_cbs_supported = true,
1544 		.ops = &ksz9477_dev_ops,
1545 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1546 		.phy_errata_9477 = true,
1547 		.mib_names = ksz9477_mib_names,
1548 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1549 		.reg_mib_cnt = MIB_COUNTER_NUM,
1550 		.regs = ksz9477_regs,
1551 		.masks = ksz9477_masks,
1552 		.shifts = ksz9477_shifts,
1553 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1554 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1555 		.supports_mii	= {false, false, false, false,
1556 				   false, true, true},
1557 		.supports_rmii	= {false, false, false, false,
1558 				   false, true, true},
1559 		.supports_rgmii = {false, false, false, false,
1560 				   false, true, true},
1561 		.internal_phy	= {true, true, true, true,
1562 				   true, false, false},
1563 		.gbit_capable	= {false, false, false, false, false,
1564 				   true, true},
1565 	},
1566 
1567 	[KSZ9567] = {
1568 		.chip_id = KSZ9567_CHIP_ID,
1569 		.dev_name = "KSZ9567",
1570 		.num_vlans = 4096,
1571 		.num_alus = 4096,
1572 		.num_statics = 16,
1573 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1574 		.port_cnt = 7,		/* total physical port count */
1575 		.port_nirqs = 3,
1576 		.num_tx_queues = 4,
1577 		.num_ipms = 8,
1578 		.tc_cbs_supported = true,
1579 		.ops = &ksz9477_dev_ops,
1580 		.mib_names = ksz9477_mib_names,
1581 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1582 		.reg_mib_cnt = MIB_COUNTER_NUM,
1583 		.regs = ksz9477_regs,
1584 		.masks = ksz9477_masks,
1585 		.shifts = ksz9477_shifts,
1586 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1587 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1588 		.supports_mii	= {false, false, false, false,
1589 				   false, true, true},
1590 		.supports_rmii	= {false, false, false, false,
1591 				   false, true, true},
1592 		.supports_rgmii = {false, false, false, false,
1593 				   false, true, true},
1594 		.internal_phy	= {true, true, true, true,
1595 				   true, false, false},
1596 		.gbit_capable	= {true, true, true, true, true, true, true},
1597 	},
1598 
1599 	[LAN9370] = {
1600 		.chip_id = LAN9370_CHIP_ID,
1601 		.dev_name = "LAN9370",
1602 		.num_vlans = 4096,
1603 		.num_alus = 1024,
1604 		.num_statics = 256,
1605 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1606 		.port_cnt = 5,		/* total physical port count */
1607 		.port_nirqs = 6,
1608 		.num_tx_queues = 8,
1609 		.num_ipms = 8,
1610 		.tc_cbs_supported = true,
1611 		.ops = &lan937x_dev_ops,
1612 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1613 		.mib_names = ksz9477_mib_names,
1614 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1615 		.reg_mib_cnt = MIB_COUNTER_NUM,
1616 		.regs = ksz9477_regs,
1617 		.masks = lan937x_masks,
1618 		.shifts = lan937x_shifts,
1619 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1620 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1621 		.supports_mii = {false, false, false, false, true},
1622 		.supports_rmii = {false, false, false, false, true},
1623 		.supports_rgmii = {false, false, false, false, true},
1624 		.internal_phy = {true, true, true, true, false},
1625 	},
1626 
1627 	[LAN9371] = {
1628 		.chip_id = LAN9371_CHIP_ID,
1629 		.dev_name = "LAN9371",
1630 		.num_vlans = 4096,
1631 		.num_alus = 1024,
1632 		.num_statics = 256,
1633 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1634 		.port_cnt = 6,		/* total physical port count */
1635 		.port_nirqs = 6,
1636 		.num_tx_queues = 8,
1637 		.num_ipms = 8,
1638 		.tc_cbs_supported = true,
1639 		.ops = &lan937x_dev_ops,
1640 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1641 		.mib_names = ksz9477_mib_names,
1642 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1643 		.reg_mib_cnt = MIB_COUNTER_NUM,
1644 		.regs = ksz9477_regs,
1645 		.masks = lan937x_masks,
1646 		.shifts = lan937x_shifts,
1647 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1648 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1649 		.supports_mii = {false, false, false, false, true, true},
1650 		.supports_rmii = {false, false, false, false, true, true},
1651 		.supports_rgmii = {false, false, false, false, true, true},
1652 		.internal_phy = {true, true, true, true, false, false},
1653 	},
1654 
1655 	[LAN9372] = {
1656 		.chip_id = LAN9372_CHIP_ID,
1657 		.dev_name = "LAN9372",
1658 		.num_vlans = 4096,
1659 		.num_alus = 1024,
1660 		.num_statics = 256,
1661 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1662 		.port_cnt = 8,		/* total physical port count */
1663 		.port_nirqs = 6,
1664 		.num_tx_queues = 8,
1665 		.num_ipms = 8,
1666 		.tc_cbs_supported = true,
1667 		.ops = &lan937x_dev_ops,
1668 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1669 		.mib_names = ksz9477_mib_names,
1670 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1671 		.reg_mib_cnt = MIB_COUNTER_NUM,
1672 		.regs = ksz9477_regs,
1673 		.masks = lan937x_masks,
1674 		.shifts = lan937x_shifts,
1675 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1676 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1677 		.supports_mii	= {false, false, false, false,
1678 				   true, true, false, false},
1679 		.supports_rmii	= {false, false, false, false,
1680 				   true, true, false, false},
1681 		.supports_rgmii = {false, false, false, false,
1682 				   true, true, false, false},
1683 		.internal_phy	= {true, true, true, true,
1684 				   false, false, true, true},
1685 	},
1686 
1687 	[LAN9373] = {
1688 		.chip_id = LAN9373_CHIP_ID,
1689 		.dev_name = "LAN9373",
1690 		.num_vlans = 4096,
1691 		.num_alus = 1024,
1692 		.num_statics = 256,
1693 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1694 		.port_cnt = 5,		/* total physical port count */
1695 		.port_nirqs = 6,
1696 		.num_tx_queues = 8,
1697 		.num_ipms = 8,
1698 		.tc_cbs_supported = true,
1699 		.ops = &lan937x_dev_ops,
1700 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1701 		.mib_names = ksz9477_mib_names,
1702 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1703 		.reg_mib_cnt = MIB_COUNTER_NUM,
1704 		.regs = ksz9477_regs,
1705 		.masks = lan937x_masks,
1706 		.shifts = lan937x_shifts,
1707 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1708 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1709 		.supports_mii	= {false, false, false, false,
1710 				   true, true, false, false},
1711 		.supports_rmii	= {false, false, false, false,
1712 				   true, true, false, false},
1713 		.supports_rgmii = {false, false, false, false,
1714 				   true, true, false, false},
1715 		.internal_phy	= {true, true, true, false,
1716 				   false, false, true, true},
1717 	},
1718 
1719 	[LAN9374] = {
1720 		.chip_id = LAN9374_CHIP_ID,
1721 		.dev_name = "LAN9374",
1722 		.num_vlans = 4096,
1723 		.num_alus = 1024,
1724 		.num_statics = 256,
1725 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1726 		.port_cnt = 8,		/* total physical port count */
1727 		.port_nirqs = 6,
1728 		.num_tx_queues = 8,
1729 		.num_ipms = 8,
1730 		.tc_cbs_supported = true,
1731 		.ops = &lan937x_dev_ops,
1732 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1733 		.mib_names = ksz9477_mib_names,
1734 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1735 		.reg_mib_cnt = MIB_COUNTER_NUM,
1736 		.regs = ksz9477_regs,
1737 		.masks = lan937x_masks,
1738 		.shifts = lan937x_shifts,
1739 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1740 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1741 		.supports_mii	= {false, false, false, false,
1742 				   true, true, false, false},
1743 		.supports_rmii	= {false, false, false, false,
1744 				   true, true, false, false},
1745 		.supports_rgmii = {false, false, false, false,
1746 				   true, true, false, false},
1747 		.internal_phy	= {true, true, true, true,
1748 				   false, false, true, true},
1749 	},
1750 };
1751 EXPORT_SYMBOL_GPL(ksz_switch_chips);
1752 
1753 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1754 {
1755 	int i;
1756 
1757 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1758 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1759 
1760 		if (chip->chip_id == prod_num)
1761 			return chip;
1762 	}
1763 
1764 	return NULL;
1765 }
1766 
1767 static int ksz_check_device_id(struct ksz_device *dev)
1768 {
1769 	const struct ksz_chip_data *expected_chip_data;
1770 	u32 expected_chip_id;
1771 
1772 	if (dev->pdata) {
1773 		expected_chip_id = dev->pdata->chip_id;
1774 		expected_chip_data = ksz_lookup_info(expected_chip_id);
1775 		if (WARN_ON(!expected_chip_data))
1776 			return -ENODEV;
1777 	} else {
1778 		expected_chip_data = of_device_get_match_data(dev->dev);
1779 		expected_chip_id = expected_chip_data->chip_id;
1780 	}
1781 
1782 	if (expected_chip_id != dev->chip_id) {
1783 		dev_err(dev->dev,
1784 			"Device tree specifies chip %s but found %s, please fix it!\n",
1785 			expected_chip_data->dev_name, dev->info->dev_name);
1786 		return -ENODEV;
1787 	}
1788 
1789 	return 0;
1790 }
1791 
1792 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1793 				 struct phylink_config *config)
1794 {
1795 	struct ksz_device *dev = ds->priv;
1796 
1797 	if (dev->info->supports_mii[port])
1798 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1799 
1800 	if (dev->info->supports_rmii[port])
1801 		__set_bit(PHY_INTERFACE_MODE_RMII,
1802 			  config->supported_interfaces);
1803 
1804 	if (dev->info->supports_rgmii[port])
1805 		phy_interface_set_rgmii(config->supported_interfaces);
1806 
1807 	if (dev->info->internal_phy[port]) {
1808 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1809 			  config->supported_interfaces);
1810 		/* Compatibility for phylib's default interface type when the
1811 		 * phy-mode property is absent
1812 		 */
1813 		__set_bit(PHY_INTERFACE_MODE_GMII,
1814 			  config->supported_interfaces);
1815 	}
1816 
1817 	if (dev->dev_ops->get_caps)
1818 		dev->dev_ops->get_caps(dev, port, config);
1819 }
1820 
1821 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
1822 {
1823 	struct ethtool_pause_stats *pstats;
1824 	struct rtnl_link_stats64 *stats;
1825 	struct ksz_stats_raw *raw;
1826 	struct ksz_port_mib *mib;
1827 	int ret;
1828 
1829 	mib = &dev->ports[port].mib;
1830 	stats = &mib->stats64;
1831 	pstats = &mib->pause_stats;
1832 	raw = (struct ksz_stats_raw *)mib->counters;
1833 
1834 	spin_lock(&mib->stats64_lock);
1835 
1836 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1837 		raw->rx_pause;
1838 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1839 		raw->tx_pause;
1840 
1841 	/* HW counters are counting bytes + FCS which is not acceptable
1842 	 * for rtnl_link_stats64 interface
1843 	 */
1844 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
1845 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
1846 
1847 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1848 		raw->rx_oversize;
1849 
1850 	stats->rx_crc_errors = raw->rx_crc_err;
1851 	stats->rx_frame_errors = raw->rx_align_err;
1852 	stats->rx_dropped = raw->rx_discards;
1853 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1854 		stats->rx_frame_errors  + stats->rx_dropped;
1855 
1856 	stats->tx_window_errors = raw->tx_late_col;
1857 	stats->tx_fifo_errors = raw->tx_discards;
1858 	stats->tx_aborted_errors = raw->tx_exc_col;
1859 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1860 		stats->tx_aborted_errors;
1861 
1862 	stats->multicast = raw->rx_mcast;
1863 	stats->collisions = raw->tx_total_col;
1864 
1865 	pstats->tx_pause_frames = raw->tx_pause;
1866 	pstats->rx_pause_frames = raw->rx_pause;
1867 
1868 	spin_unlock(&mib->stats64_lock);
1869 
1870 	if (dev->info->phy_errata_9477) {
1871 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
1872 		if (ret)
1873 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
1874 	}
1875 }
1876 
1877 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
1878 {
1879 	struct ethtool_pause_stats *pstats;
1880 	struct rtnl_link_stats64 *stats;
1881 	struct ksz88xx_stats_raw *raw;
1882 	struct ksz_port_mib *mib;
1883 
1884 	mib = &dev->ports[port].mib;
1885 	stats = &mib->stats64;
1886 	pstats = &mib->pause_stats;
1887 	raw = (struct ksz88xx_stats_raw *)mib->counters;
1888 
1889 	spin_lock(&mib->stats64_lock);
1890 
1891 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1892 		raw->rx_pause;
1893 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1894 		raw->tx_pause;
1895 
1896 	/* HW counters are counting bytes + FCS which is not acceptable
1897 	 * for rtnl_link_stats64 interface
1898 	 */
1899 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
1900 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
1901 
1902 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1903 		raw->rx_oversize;
1904 
1905 	stats->rx_crc_errors = raw->rx_crc_err;
1906 	stats->rx_frame_errors = raw->rx_align_err;
1907 	stats->rx_dropped = raw->rx_discards;
1908 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1909 		stats->rx_frame_errors  + stats->rx_dropped;
1910 
1911 	stats->tx_window_errors = raw->tx_late_col;
1912 	stats->tx_fifo_errors = raw->tx_discards;
1913 	stats->tx_aborted_errors = raw->tx_exc_col;
1914 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1915 		stats->tx_aborted_errors;
1916 
1917 	stats->multicast = raw->rx_mcast;
1918 	stats->collisions = raw->tx_total_col;
1919 
1920 	pstats->tx_pause_frames = raw->tx_pause;
1921 	pstats->rx_pause_frames = raw->rx_pause;
1922 
1923 	spin_unlock(&mib->stats64_lock);
1924 }
1925 
1926 static void ksz_get_stats64(struct dsa_switch *ds, int port,
1927 			    struct rtnl_link_stats64 *s)
1928 {
1929 	struct ksz_device *dev = ds->priv;
1930 	struct ksz_port_mib *mib;
1931 
1932 	mib = &dev->ports[port].mib;
1933 
1934 	spin_lock(&mib->stats64_lock);
1935 	memcpy(s, &mib->stats64, sizeof(*s));
1936 	spin_unlock(&mib->stats64_lock);
1937 }
1938 
1939 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
1940 				struct ethtool_pause_stats *pause_stats)
1941 {
1942 	struct ksz_device *dev = ds->priv;
1943 	struct ksz_port_mib *mib;
1944 
1945 	mib = &dev->ports[port].mib;
1946 
1947 	spin_lock(&mib->stats64_lock);
1948 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
1949 	spin_unlock(&mib->stats64_lock);
1950 }
1951 
1952 static void ksz_get_strings(struct dsa_switch *ds, int port,
1953 			    u32 stringset, uint8_t *buf)
1954 {
1955 	struct ksz_device *dev = ds->priv;
1956 	int i;
1957 
1958 	if (stringset != ETH_SS_STATS)
1959 		return;
1960 
1961 	for (i = 0; i < dev->info->mib_cnt; i++) {
1962 		memcpy(buf + i * ETH_GSTRING_LEN,
1963 		       dev->info->mib_names[i].string, ETH_GSTRING_LEN);
1964 	}
1965 }
1966 
1967 /**
1968  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
1969  *			    isolation settings.
1970  * @dev: A pointer to the struct ksz_device representing the device.
1971  * @port: The port number to adjust.
1972  *
1973  * This function dynamically adjusts the port membership configuration for a
1974  * specified port and other device ports, based on Spanning Tree Protocol (STP)
1975  * states and port isolation settings. Each port, including the CPU port, has a
1976  * membership register, represented as a bitfield, where each bit corresponds
1977  * to a port number. A set bit indicates permission to forward frames to that
1978  * port. This function iterates over all ports, updating the membership register
1979  * to reflect current forwarding permissions:
1980  *
1981  * 1. Forwards frames only to ports that are part of the same bridge group and
1982  *    in the BR_STATE_FORWARDING state.
1983  * 2. Takes into account the isolation status of ports; ports in the
1984  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
1985  *    frames to each other, even if they are in the same bridge group.
1986  * 3. Ensures that the CPU port is included in the membership based on its
1987  *    upstream port configuration, allowing for management and control traffic
1988  *    to flow as required.
1989  */
1990 static void ksz_update_port_member(struct ksz_device *dev, int port)
1991 {
1992 	struct ksz_port *p = &dev->ports[port];
1993 	struct dsa_switch *ds = dev->ds;
1994 	u8 port_member = 0, cpu_port;
1995 	const struct dsa_port *dp;
1996 	int i, j;
1997 
1998 	if (!dsa_is_user_port(ds, port))
1999 		return;
2000 
2001 	dp = dsa_to_port(ds, port);
2002 	cpu_port = BIT(dsa_upstream_port(ds, port));
2003 
2004 	for (i = 0; i < ds->num_ports; i++) {
2005 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2006 		struct ksz_port *other_p = &dev->ports[i];
2007 		u8 val = 0;
2008 
2009 		if (!dsa_is_user_port(ds, i))
2010 			continue;
2011 		if (port == i)
2012 			continue;
2013 		if (!dsa_port_bridge_same(dp, other_dp))
2014 			continue;
2015 		if (other_p->stp_state != BR_STATE_FORWARDING)
2016 			continue;
2017 
2018 		/* At this point we know that "port" and "other" port [i] are in
2019 		 * the same bridge group and that "other" port [i] is in
2020 		 * forwarding stp state. If "port" is also in forwarding stp
2021 		 * state, we can allow forwarding from port [port] to port [i].
2022 		 * Except if both ports are isolated.
2023 		 */
2024 		if (p->stp_state == BR_STATE_FORWARDING &&
2025 		    !(p->isolated && other_p->isolated)) {
2026 			val |= BIT(port);
2027 			port_member |= BIT(i);
2028 		}
2029 
2030 		/* Retain port [i]'s relationship to other ports than [port] */
2031 		for (j = 0; j < ds->num_ports; j++) {
2032 			const struct dsa_port *third_dp;
2033 			struct ksz_port *third_p;
2034 
2035 			if (j == i)
2036 				continue;
2037 			if (j == port)
2038 				continue;
2039 			if (!dsa_is_user_port(ds, j))
2040 				continue;
2041 			third_p = &dev->ports[j];
2042 			if (third_p->stp_state != BR_STATE_FORWARDING)
2043 				continue;
2044 
2045 			third_dp = dsa_to_port(ds, j);
2046 
2047 			/* Now we updating relation of the "other" port [i] to
2048 			 * the "third" port [j]. We already know that "other"
2049 			 * port [i] is in forwarding stp state and that "third"
2050 			 * port [j] is in forwarding stp state too.
2051 			 * We need to check if "other" port [i] and "third" port
2052 			 * [j] are in the same bridge group and not isolated
2053 			 * before allowing forwarding from port [i] to port [j].
2054 			 */
2055 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2056 			    !(other_p->isolated && third_p->isolated))
2057 				val |= BIT(j);
2058 		}
2059 
2060 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2061 	}
2062 
2063 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2064 }
2065 
2066 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2067 {
2068 	struct ksz_device *dev = bus->priv;
2069 	u16 val;
2070 	int ret;
2071 
2072 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2073 	if (ret < 0)
2074 		return ret;
2075 
2076 	return val;
2077 }
2078 
2079 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2080 			     u16 val)
2081 {
2082 	struct ksz_device *dev = bus->priv;
2083 
2084 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2085 }
2086 
2087 static int ksz_irq_phy_setup(struct ksz_device *dev)
2088 {
2089 	struct dsa_switch *ds = dev->ds;
2090 	int phy;
2091 	int irq;
2092 	int ret;
2093 
2094 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) {
2095 		if (BIT(phy) & ds->phys_mii_mask) {
2096 			irq = irq_find_mapping(dev->ports[phy].pirq.domain,
2097 					       PORT_SRC_PHY_INT);
2098 			if (irq < 0) {
2099 				ret = irq;
2100 				goto out;
2101 			}
2102 			ds->user_mii_bus->irq[phy] = irq;
2103 		}
2104 	}
2105 	return 0;
2106 out:
2107 	while (phy--)
2108 		if (BIT(phy) & ds->phys_mii_mask)
2109 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2110 
2111 	return ret;
2112 }
2113 
2114 static void ksz_irq_phy_free(struct ksz_device *dev)
2115 {
2116 	struct dsa_switch *ds = dev->ds;
2117 	int phy;
2118 
2119 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++)
2120 		if (BIT(phy) & ds->phys_mii_mask)
2121 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2122 }
2123 
2124 static int ksz_mdio_register(struct ksz_device *dev)
2125 {
2126 	struct dsa_switch *ds = dev->ds;
2127 	struct device_node *mdio_np;
2128 	struct mii_bus *bus;
2129 	int ret;
2130 
2131 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2132 	if (!mdio_np)
2133 		return 0;
2134 
2135 	bus = devm_mdiobus_alloc(ds->dev);
2136 	if (!bus) {
2137 		of_node_put(mdio_np);
2138 		return -ENOMEM;
2139 	}
2140 
2141 	bus->priv = dev;
2142 	bus->read = ksz_sw_mdio_read;
2143 	bus->write = ksz_sw_mdio_write;
2144 	bus->name = "ksz user smi";
2145 	snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2146 	bus->parent = ds->dev;
2147 	bus->phy_mask = ~ds->phys_mii_mask;
2148 
2149 	ds->user_mii_bus = bus;
2150 
2151 	if (dev->irq > 0) {
2152 		ret = ksz_irq_phy_setup(dev);
2153 		if (ret) {
2154 			of_node_put(mdio_np);
2155 			return ret;
2156 		}
2157 	}
2158 
2159 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2160 	if (ret) {
2161 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2162 			bus->id);
2163 		if (dev->irq > 0)
2164 			ksz_irq_phy_free(dev);
2165 	}
2166 
2167 	of_node_put(mdio_np);
2168 
2169 	return ret;
2170 }
2171 
2172 static void ksz_irq_mask(struct irq_data *d)
2173 {
2174 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2175 
2176 	kirq->masked |= BIT(d->hwirq);
2177 }
2178 
2179 static void ksz_irq_unmask(struct irq_data *d)
2180 {
2181 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2182 
2183 	kirq->masked &= ~BIT(d->hwirq);
2184 }
2185 
2186 static void ksz_irq_bus_lock(struct irq_data *d)
2187 {
2188 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2189 
2190 	mutex_lock(&kirq->dev->lock_irq);
2191 }
2192 
2193 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2194 {
2195 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2196 	struct ksz_device *dev = kirq->dev;
2197 	int ret;
2198 
2199 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2200 	if (ret)
2201 		dev_err(dev->dev, "failed to change IRQ mask\n");
2202 
2203 	mutex_unlock(&dev->lock_irq);
2204 }
2205 
2206 static const struct irq_chip ksz_irq_chip = {
2207 	.name			= "ksz-irq",
2208 	.irq_mask		= ksz_irq_mask,
2209 	.irq_unmask		= ksz_irq_unmask,
2210 	.irq_bus_lock		= ksz_irq_bus_lock,
2211 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2212 };
2213 
2214 static int ksz_irq_domain_map(struct irq_domain *d,
2215 			      unsigned int irq, irq_hw_number_t hwirq)
2216 {
2217 	irq_set_chip_data(irq, d->host_data);
2218 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2219 	irq_set_noprobe(irq);
2220 
2221 	return 0;
2222 }
2223 
2224 static const struct irq_domain_ops ksz_irq_domain_ops = {
2225 	.map	= ksz_irq_domain_map,
2226 	.xlate	= irq_domain_xlate_twocell,
2227 };
2228 
2229 static void ksz_irq_free(struct ksz_irq *kirq)
2230 {
2231 	int irq, virq;
2232 
2233 	free_irq(kirq->irq_num, kirq);
2234 
2235 	for (irq = 0; irq < kirq->nirqs; irq++) {
2236 		virq = irq_find_mapping(kirq->domain, irq);
2237 		irq_dispose_mapping(virq);
2238 	}
2239 
2240 	irq_domain_remove(kirq->domain);
2241 }
2242 
2243 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2244 {
2245 	struct ksz_irq *kirq = dev_id;
2246 	unsigned int nhandled = 0;
2247 	struct ksz_device *dev;
2248 	unsigned int sub_irq;
2249 	u8 data;
2250 	int ret;
2251 	u8 n;
2252 
2253 	dev = kirq->dev;
2254 
2255 	/* Read interrupt status register */
2256 	ret = ksz_read8(dev, kirq->reg_status, &data);
2257 	if (ret)
2258 		goto out;
2259 
2260 	for (n = 0; n < kirq->nirqs; ++n) {
2261 		if (data & BIT(n)) {
2262 			sub_irq = irq_find_mapping(kirq->domain, n);
2263 			handle_nested_irq(sub_irq);
2264 			++nhandled;
2265 		}
2266 	}
2267 out:
2268 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2269 }
2270 
2271 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2272 {
2273 	int ret, n;
2274 
2275 	kirq->dev = dev;
2276 	kirq->masked = ~0;
2277 
2278 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2279 					     &ksz_irq_domain_ops, kirq);
2280 	if (!kirq->domain)
2281 		return -ENOMEM;
2282 
2283 	for (n = 0; n < kirq->nirqs; n++)
2284 		irq_create_mapping(kirq->domain, n);
2285 
2286 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2287 				   IRQF_ONESHOT, kirq->name, kirq);
2288 	if (ret)
2289 		goto out;
2290 
2291 	return 0;
2292 
2293 out:
2294 	ksz_irq_free(kirq);
2295 
2296 	return ret;
2297 }
2298 
2299 static int ksz_girq_setup(struct ksz_device *dev)
2300 {
2301 	struct ksz_irq *girq = &dev->girq;
2302 
2303 	girq->nirqs = dev->info->port_cnt;
2304 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2305 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2306 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2307 
2308 	girq->irq_num = dev->irq;
2309 
2310 	return ksz_irq_common_setup(dev, girq);
2311 }
2312 
2313 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2314 {
2315 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2316 
2317 	pirq->nirqs = dev->info->port_nirqs;
2318 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2319 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2320 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2321 
2322 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2323 	if (pirq->irq_num < 0)
2324 		return pirq->irq_num;
2325 
2326 	return ksz_irq_common_setup(dev, pirq);
2327 }
2328 
2329 static int ksz_parse_drive_strength(struct ksz_device *dev);
2330 
2331 static int ksz_setup(struct dsa_switch *ds)
2332 {
2333 	struct ksz_device *dev = ds->priv;
2334 	struct dsa_port *dp;
2335 	struct ksz_port *p;
2336 	const u16 *regs;
2337 	int ret;
2338 
2339 	regs = dev->info->regs;
2340 
2341 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2342 				       dev->info->num_vlans, GFP_KERNEL);
2343 	if (!dev->vlan_cache)
2344 		return -ENOMEM;
2345 
2346 	ret = dev->dev_ops->reset(dev);
2347 	if (ret) {
2348 		dev_err(ds->dev, "failed to reset switch\n");
2349 		return ret;
2350 	}
2351 
2352 	ret = ksz_parse_drive_strength(dev);
2353 	if (ret)
2354 		return ret;
2355 
2356 	/* set broadcast storm protection 10% rate */
2357 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2358 			   BROADCAST_STORM_RATE,
2359 			   (BROADCAST_STORM_VALUE *
2360 			   BROADCAST_STORM_PROT_RATE) / 100);
2361 
2362 	dev->dev_ops->config_cpu_port(ds);
2363 
2364 	dev->dev_ops->enable_stp_addr(dev);
2365 
2366 	ds->num_tx_queues = dev->info->num_tx_queues;
2367 
2368 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2369 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2370 
2371 	ksz_init_mib_timer(dev);
2372 
2373 	ds->configure_vlan_while_not_filtering = false;
2374 	ds->dscp_prio_mapping_is_global = true;
2375 
2376 	if (dev->dev_ops->setup) {
2377 		ret = dev->dev_ops->setup(ds);
2378 		if (ret)
2379 			return ret;
2380 	}
2381 
2382 	/* Start with learning disabled on standalone user ports, and enabled
2383 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2384 	 * CPU port will avoid flooding bridge local addresses on the network
2385 	 * in some cases.
2386 	 */
2387 	p = &dev->ports[dev->cpu_port];
2388 	p->learning = true;
2389 
2390 	if (dev->irq > 0) {
2391 		ret = ksz_girq_setup(dev);
2392 		if (ret)
2393 			return ret;
2394 
2395 		dsa_switch_for_each_user_port(dp, dev->ds) {
2396 			ret = ksz_pirq_setup(dev, dp->index);
2397 			if (ret)
2398 				goto out_girq;
2399 
2400 			ret = ksz_ptp_irq_setup(ds, dp->index);
2401 			if (ret)
2402 				goto out_pirq;
2403 		}
2404 	}
2405 
2406 	ret = ksz_ptp_clock_register(ds);
2407 	if (ret) {
2408 		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2409 		goto out_ptpirq;
2410 	}
2411 
2412 	ret = ksz_mdio_register(dev);
2413 	if (ret < 0) {
2414 		dev_err(dev->dev, "failed to register the mdio");
2415 		goto out_ptp_clock_unregister;
2416 	}
2417 
2418 	ret = ksz_dcb_init(dev);
2419 	if (ret)
2420 		goto out_ptp_clock_unregister;
2421 
2422 	/* start switch */
2423 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2424 			   SW_START, SW_START);
2425 
2426 	return 0;
2427 
2428 out_ptp_clock_unregister:
2429 	ksz_ptp_clock_unregister(ds);
2430 out_ptpirq:
2431 	if (dev->irq > 0)
2432 		dsa_switch_for_each_user_port(dp, dev->ds)
2433 			ksz_ptp_irq_free(ds, dp->index);
2434 out_pirq:
2435 	if (dev->irq > 0)
2436 		dsa_switch_for_each_user_port(dp, dev->ds)
2437 			ksz_irq_free(&dev->ports[dp->index].pirq);
2438 out_girq:
2439 	if (dev->irq > 0)
2440 		ksz_irq_free(&dev->girq);
2441 
2442 	return ret;
2443 }
2444 
2445 static void ksz_teardown(struct dsa_switch *ds)
2446 {
2447 	struct ksz_device *dev = ds->priv;
2448 	struct dsa_port *dp;
2449 
2450 	ksz_ptp_clock_unregister(ds);
2451 
2452 	if (dev->irq > 0) {
2453 		dsa_switch_for_each_user_port(dp, dev->ds) {
2454 			ksz_ptp_irq_free(ds, dp->index);
2455 
2456 			ksz_irq_free(&dev->ports[dp->index].pirq);
2457 		}
2458 
2459 		ksz_irq_free(&dev->girq);
2460 	}
2461 
2462 	if (dev->dev_ops->teardown)
2463 		dev->dev_ops->teardown(ds);
2464 }
2465 
2466 static void port_r_cnt(struct ksz_device *dev, int port)
2467 {
2468 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2469 	u64 *dropped;
2470 
2471 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2472 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2473 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2474 					&mib->counters[mib->cnt_ptr]);
2475 		++mib->cnt_ptr;
2476 	}
2477 
2478 	/* last one in storage */
2479 	dropped = &mib->counters[dev->info->mib_cnt];
2480 
2481 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2482 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2483 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2484 					dropped, &mib->counters[mib->cnt_ptr]);
2485 		++mib->cnt_ptr;
2486 	}
2487 	mib->cnt_ptr = 0;
2488 }
2489 
2490 static void ksz_mib_read_work(struct work_struct *work)
2491 {
2492 	struct ksz_device *dev = container_of(work, struct ksz_device,
2493 					      mib_read.work);
2494 	struct ksz_port_mib *mib;
2495 	struct ksz_port *p;
2496 	int i;
2497 
2498 	for (i = 0; i < dev->info->port_cnt; i++) {
2499 		if (dsa_is_unused_port(dev->ds, i))
2500 			continue;
2501 
2502 		p = &dev->ports[i];
2503 		mib = &p->mib;
2504 		mutex_lock(&mib->cnt_mutex);
2505 
2506 		/* Only read MIB counters when the port is told to do.
2507 		 * If not, read only dropped counters when link is not up.
2508 		 */
2509 		if (!p->read) {
2510 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2511 
2512 			if (!netif_carrier_ok(dp->user))
2513 				mib->cnt_ptr = dev->info->reg_mib_cnt;
2514 		}
2515 		port_r_cnt(dev, i);
2516 		p->read = false;
2517 
2518 		if (dev->dev_ops->r_mib_stat64)
2519 			dev->dev_ops->r_mib_stat64(dev, i);
2520 
2521 		mutex_unlock(&mib->cnt_mutex);
2522 	}
2523 
2524 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2525 }
2526 
2527 void ksz_init_mib_timer(struct ksz_device *dev)
2528 {
2529 	int i;
2530 
2531 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2532 
2533 	for (i = 0; i < dev->info->port_cnt; i++) {
2534 		struct ksz_port_mib *mib = &dev->ports[i].mib;
2535 
2536 		dev->dev_ops->port_init_cnt(dev, i);
2537 
2538 		mib->cnt_ptr = 0;
2539 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2540 	}
2541 }
2542 
2543 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2544 {
2545 	struct ksz_device *dev = ds->priv;
2546 	u16 val = 0xffff;
2547 	int ret;
2548 
2549 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2550 	if (ret)
2551 		return ret;
2552 
2553 	return val;
2554 }
2555 
2556 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2557 {
2558 	struct ksz_device *dev = ds->priv;
2559 	int ret;
2560 
2561 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2562 	if (ret)
2563 		return ret;
2564 
2565 	return 0;
2566 }
2567 
2568 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2569 {
2570 	struct ksz_device *dev = ds->priv;
2571 
2572 	switch (dev->chip_id) {
2573 	case KSZ8830_CHIP_ID:
2574 		/* Silicon Errata Sheet (DS80000830A):
2575 		 * Port 1 does not work with LinkMD Cable-Testing.
2576 		 * Port 1 does not respond to received PAUSE control frames.
2577 		 */
2578 		if (!port)
2579 			return MICREL_KSZ8_P1_ERRATA;
2580 		break;
2581 	case KSZ9477_CHIP_ID:
2582 		/* KSZ9477 Errata DS80000754C
2583 		 *
2584 		 * Module 4: Energy Efficient Ethernet (EEE) feature select must
2585 		 * be manually disabled
2586 		 *   The EEE feature is enabled by default, but it is not fully
2587 		 *   operational. It must be manually disabled through register
2588 		 *   controls. If not disabled, the PHY ports can auto-negotiate
2589 		 *   to enable EEE, and this feature can cause link drops when
2590 		 *   linked to another device supporting EEE.
2591 		 */
2592 		return MICREL_NO_EEE;
2593 	}
2594 
2595 	return 0;
2596 }
2597 
2598 static void ksz_phylink_mac_link_down(struct phylink_config *config,
2599 				      unsigned int mode,
2600 				      phy_interface_t interface)
2601 {
2602 	struct dsa_port *dp = dsa_phylink_to_port(config);
2603 	struct ksz_device *dev = dp->ds->priv;
2604 
2605 	/* Read all MIB counters when the link is going down. */
2606 	dev->ports[dp->index].read = true;
2607 	/* timer started */
2608 	if (dev->mib_read_interval)
2609 		schedule_delayed_work(&dev->mib_read, 0);
2610 }
2611 
2612 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
2613 {
2614 	struct ksz_device *dev = ds->priv;
2615 
2616 	if (sset != ETH_SS_STATS)
2617 		return 0;
2618 
2619 	return dev->info->mib_cnt;
2620 }
2621 
2622 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
2623 				  uint64_t *buf)
2624 {
2625 	const struct dsa_port *dp = dsa_to_port(ds, port);
2626 	struct ksz_device *dev = ds->priv;
2627 	struct ksz_port_mib *mib;
2628 
2629 	mib = &dev->ports[port].mib;
2630 	mutex_lock(&mib->cnt_mutex);
2631 
2632 	/* Only read dropped counters if no link. */
2633 	if (!netif_carrier_ok(dp->user))
2634 		mib->cnt_ptr = dev->info->reg_mib_cnt;
2635 	port_r_cnt(dev, port);
2636 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
2637 	mutex_unlock(&mib->cnt_mutex);
2638 }
2639 
2640 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
2641 				struct dsa_bridge bridge,
2642 				bool *tx_fwd_offload,
2643 				struct netlink_ext_ack *extack)
2644 {
2645 	/* port_stp_state_set() will be called after to put the port in
2646 	 * appropriate state so there is no need to do anything.
2647 	 */
2648 
2649 	return 0;
2650 }
2651 
2652 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
2653 				  struct dsa_bridge bridge)
2654 {
2655 	/* port_stp_state_set() will be called after to put the port in
2656 	 * forwarding state so there is no need to do anything.
2657 	 */
2658 }
2659 
2660 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
2661 {
2662 	struct ksz_device *dev = ds->priv;
2663 
2664 	dev->dev_ops->flush_dyn_mac_table(dev, port);
2665 }
2666 
2667 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
2668 {
2669 	struct ksz_device *dev = ds->priv;
2670 
2671 	if (!dev->dev_ops->set_ageing_time)
2672 		return -EOPNOTSUPP;
2673 
2674 	return dev->dev_ops->set_ageing_time(dev, msecs);
2675 }
2676 
2677 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
2678 			    const unsigned char *addr, u16 vid,
2679 			    struct dsa_db db)
2680 {
2681 	struct ksz_device *dev = ds->priv;
2682 
2683 	if (!dev->dev_ops->fdb_add)
2684 		return -EOPNOTSUPP;
2685 
2686 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
2687 }
2688 
2689 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
2690 			    const unsigned char *addr,
2691 			    u16 vid, struct dsa_db db)
2692 {
2693 	struct ksz_device *dev = ds->priv;
2694 
2695 	if (!dev->dev_ops->fdb_del)
2696 		return -EOPNOTSUPP;
2697 
2698 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
2699 }
2700 
2701 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
2702 			     dsa_fdb_dump_cb_t *cb, void *data)
2703 {
2704 	struct ksz_device *dev = ds->priv;
2705 
2706 	if (!dev->dev_ops->fdb_dump)
2707 		return -EOPNOTSUPP;
2708 
2709 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
2710 }
2711 
2712 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
2713 			    const struct switchdev_obj_port_mdb *mdb,
2714 			    struct dsa_db db)
2715 {
2716 	struct ksz_device *dev = ds->priv;
2717 
2718 	if (!dev->dev_ops->mdb_add)
2719 		return -EOPNOTSUPP;
2720 
2721 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
2722 }
2723 
2724 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
2725 			    const struct switchdev_obj_port_mdb *mdb,
2726 			    struct dsa_db db)
2727 {
2728 	struct ksz_device *dev = ds->priv;
2729 
2730 	if (!dev->dev_ops->mdb_del)
2731 		return -EOPNOTSUPP;
2732 
2733 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
2734 }
2735 
2736 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
2737 						  int port)
2738 {
2739 	u32 queue_map = 0;
2740 	int ipm;
2741 
2742 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
2743 		int queue;
2744 
2745 		/* Traffic Type (TT) is corresponding to the Internal Priority
2746 		 * Map (IPM) in the switch. Traffic Class (TC) is
2747 		 * corresponding to the queue in the switch.
2748 		 */
2749 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
2750 		if (queue < 0)
2751 			return queue;
2752 
2753 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
2754 	}
2755 
2756 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
2757 }
2758 
2759 static int ksz_port_setup(struct dsa_switch *ds, int port)
2760 {
2761 	struct ksz_device *dev = ds->priv;
2762 	int ret;
2763 
2764 	if (!dsa_is_user_port(ds, port))
2765 		return 0;
2766 
2767 	/* setup user port */
2768 	dev->dev_ops->port_setup(dev, port, false);
2769 
2770 	if (!is_ksz8(dev)) {
2771 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
2772 		if (ret)
2773 			return ret;
2774 	}
2775 
2776 	/* port_stp_state_set() will be called after to enable the port so
2777 	 * there is no need to do anything.
2778 	 */
2779 
2780 	return ksz_dcb_init_port(dev, port);
2781 }
2782 
2783 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
2784 {
2785 	struct ksz_device *dev = ds->priv;
2786 	struct ksz_port *p;
2787 	const u16 *regs;
2788 	u8 data;
2789 
2790 	regs = dev->info->regs;
2791 
2792 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
2793 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2794 
2795 	p = &dev->ports[port];
2796 
2797 	switch (state) {
2798 	case BR_STATE_DISABLED:
2799 		data |= PORT_LEARN_DISABLE;
2800 		break;
2801 	case BR_STATE_LISTENING:
2802 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2803 		break;
2804 	case BR_STATE_LEARNING:
2805 		data |= PORT_RX_ENABLE;
2806 		if (!p->learning)
2807 			data |= PORT_LEARN_DISABLE;
2808 		break;
2809 	case BR_STATE_FORWARDING:
2810 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2811 		if (!p->learning)
2812 			data |= PORT_LEARN_DISABLE;
2813 		break;
2814 	case BR_STATE_BLOCKING:
2815 		data |= PORT_LEARN_DISABLE;
2816 		break;
2817 	default:
2818 		dev_err(ds->dev, "invalid STP state: %d\n", state);
2819 		return;
2820 	}
2821 
2822 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
2823 
2824 	p->stp_state = state;
2825 
2826 	ksz_update_port_member(dev, port);
2827 }
2828 
2829 static void ksz_port_teardown(struct dsa_switch *ds, int port)
2830 {
2831 	struct ksz_device *dev = ds->priv;
2832 
2833 	switch (dev->chip_id) {
2834 	case KSZ8563_CHIP_ID:
2835 	case KSZ8567_CHIP_ID:
2836 	case KSZ9477_CHIP_ID:
2837 	case KSZ9563_CHIP_ID:
2838 	case KSZ9567_CHIP_ID:
2839 	case KSZ9893_CHIP_ID:
2840 	case KSZ9896_CHIP_ID:
2841 	case KSZ9897_CHIP_ID:
2842 		if (dsa_is_user_port(ds, port))
2843 			ksz9477_port_acl_free(dev, port);
2844 	}
2845 }
2846 
2847 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
2848 				     struct switchdev_brport_flags flags,
2849 				     struct netlink_ext_ack *extack)
2850 {
2851 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
2852 		return -EINVAL;
2853 
2854 	return 0;
2855 }
2856 
2857 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
2858 				 struct switchdev_brport_flags flags,
2859 				 struct netlink_ext_ack *extack)
2860 {
2861 	struct ksz_device *dev = ds->priv;
2862 	struct ksz_port *p = &dev->ports[port];
2863 
2864 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
2865 		if (flags.mask & BR_LEARNING)
2866 			p->learning = !!(flags.val & BR_LEARNING);
2867 
2868 		if (flags.mask & BR_ISOLATED)
2869 			p->isolated = !!(flags.val & BR_ISOLATED);
2870 
2871 		/* Make the change take effect immediately */
2872 		ksz_port_stp_state_set(ds, port, p->stp_state);
2873 	}
2874 
2875 	return 0;
2876 }
2877 
2878 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
2879 						  int port,
2880 						  enum dsa_tag_protocol mp)
2881 {
2882 	struct ksz_device *dev = ds->priv;
2883 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
2884 
2885 	if (dev->chip_id == KSZ8795_CHIP_ID ||
2886 	    dev->chip_id == KSZ8794_CHIP_ID ||
2887 	    dev->chip_id == KSZ8765_CHIP_ID)
2888 		proto = DSA_TAG_PROTO_KSZ8795;
2889 
2890 	if (dev->chip_id == KSZ8830_CHIP_ID ||
2891 	    dev->chip_id == KSZ8563_CHIP_ID ||
2892 	    dev->chip_id == KSZ9893_CHIP_ID ||
2893 	    dev->chip_id == KSZ9563_CHIP_ID)
2894 		proto = DSA_TAG_PROTO_KSZ9893;
2895 
2896 	if (dev->chip_id == KSZ8567_CHIP_ID ||
2897 	    dev->chip_id == KSZ9477_CHIP_ID ||
2898 	    dev->chip_id == KSZ9896_CHIP_ID ||
2899 	    dev->chip_id == KSZ9897_CHIP_ID ||
2900 	    dev->chip_id == KSZ9567_CHIP_ID)
2901 		proto = DSA_TAG_PROTO_KSZ9477;
2902 
2903 	if (is_lan937x(dev))
2904 		proto = DSA_TAG_PROTO_LAN937X;
2905 
2906 	return proto;
2907 }
2908 
2909 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
2910 				    enum dsa_tag_protocol proto)
2911 {
2912 	struct ksz_tagger_data *tagger_data;
2913 
2914 	switch (proto) {
2915 	case DSA_TAG_PROTO_KSZ8795:
2916 		return 0;
2917 	case DSA_TAG_PROTO_KSZ9893:
2918 	case DSA_TAG_PROTO_KSZ9477:
2919 	case DSA_TAG_PROTO_LAN937X:
2920 		tagger_data = ksz_tagger_data(ds);
2921 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
2922 		return 0;
2923 	default:
2924 		return -EPROTONOSUPPORT;
2925 	}
2926 }
2927 
2928 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
2929 				   bool flag, struct netlink_ext_ack *extack)
2930 {
2931 	struct ksz_device *dev = ds->priv;
2932 
2933 	if (!dev->dev_ops->vlan_filtering)
2934 		return -EOPNOTSUPP;
2935 
2936 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
2937 }
2938 
2939 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
2940 			     const struct switchdev_obj_port_vlan *vlan,
2941 			     struct netlink_ext_ack *extack)
2942 {
2943 	struct ksz_device *dev = ds->priv;
2944 
2945 	if (!dev->dev_ops->vlan_add)
2946 		return -EOPNOTSUPP;
2947 
2948 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
2949 }
2950 
2951 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
2952 			     const struct switchdev_obj_port_vlan *vlan)
2953 {
2954 	struct ksz_device *dev = ds->priv;
2955 
2956 	if (!dev->dev_ops->vlan_del)
2957 		return -EOPNOTSUPP;
2958 
2959 	return dev->dev_ops->vlan_del(dev, port, vlan);
2960 }
2961 
2962 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
2963 			       struct dsa_mall_mirror_tc_entry *mirror,
2964 			       bool ingress, struct netlink_ext_ack *extack)
2965 {
2966 	struct ksz_device *dev = ds->priv;
2967 
2968 	if (!dev->dev_ops->mirror_add)
2969 		return -EOPNOTSUPP;
2970 
2971 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
2972 }
2973 
2974 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
2975 				struct dsa_mall_mirror_tc_entry *mirror)
2976 {
2977 	struct ksz_device *dev = ds->priv;
2978 
2979 	if (dev->dev_ops->mirror_del)
2980 		dev->dev_ops->mirror_del(dev, port, mirror);
2981 }
2982 
2983 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
2984 {
2985 	struct ksz_device *dev = ds->priv;
2986 
2987 	if (!dev->dev_ops->change_mtu)
2988 		return -EOPNOTSUPP;
2989 
2990 	return dev->dev_ops->change_mtu(dev, port, mtu);
2991 }
2992 
2993 static int ksz_max_mtu(struct dsa_switch *ds, int port)
2994 {
2995 	struct ksz_device *dev = ds->priv;
2996 
2997 	switch (dev->chip_id) {
2998 	case KSZ8795_CHIP_ID:
2999 	case KSZ8794_CHIP_ID:
3000 	case KSZ8765_CHIP_ID:
3001 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3002 	case KSZ8830_CHIP_ID:
3003 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3004 	case KSZ8563_CHIP_ID:
3005 	case KSZ8567_CHIP_ID:
3006 	case KSZ9477_CHIP_ID:
3007 	case KSZ9563_CHIP_ID:
3008 	case KSZ9567_CHIP_ID:
3009 	case KSZ9893_CHIP_ID:
3010 	case KSZ9896_CHIP_ID:
3011 	case KSZ9897_CHIP_ID:
3012 	case LAN9370_CHIP_ID:
3013 	case LAN9371_CHIP_ID:
3014 	case LAN9372_CHIP_ID:
3015 	case LAN9373_CHIP_ID:
3016 	case LAN9374_CHIP_ID:
3017 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3018 	}
3019 
3020 	return -EOPNOTSUPP;
3021 }
3022 
3023 static int ksz_validate_eee(struct dsa_switch *ds, int port)
3024 {
3025 	struct ksz_device *dev = ds->priv;
3026 
3027 	if (!dev->info->internal_phy[port])
3028 		return -EOPNOTSUPP;
3029 
3030 	switch (dev->chip_id) {
3031 	case KSZ8563_CHIP_ID:
3032 	case KSZ8567_CHIP_ID:
3033 	case KSZ9477_CHIP_ID:
3034 	case KSZ9563_CHIP_ID:
3035 	case KSZ9567_CHIP_ID:
3036 	case KSZ9893_CHIP_ID:
3037 	case KSZ9896_CHIP_ID:
3038 	case KSZ9897_CHIP_ID:
3039 		return 0;
3040 	}
3041 
3042 	return -EOPNOTSUPP;
3043 }
3044 
3045 static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
3046 			   struct ethtool_keee *e)
3047 {
3048 	int ret;
3049 
3050 	ret = ksz_validate_eee(ds, port);
3051 	if (ret)
3052 		return ret;
3053 
3054 	/* There is no documented control of Tx LPI configuration. */
3055 	e->tx_lpi_enabled = true;
3056 
3057 	/* There is no documented control of Tx LPI timer. According to tests
3058 	 * Tx LPI timer seems to be set by default to minimal value.
3059 	 */
3060 	e->tx_lpi_timer = 0;
3061 
3062 	return 0;
3063 }
3064 
3065 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3066 			   struct ethtool_keee *e)
3067 {
3068 	struct ksz_device *dev = ds->priv;
3069 	int ret;
3070 
3071 	ret = ksz_validate_eee(ds, port);
3072 	if (ret)
3073 		return ret;
3074 
3075 	if (!e->tx_lpi_enabled) {
3076 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3077 		return -EINVAL;
3078 	}
3079 
3080 	if (e->tx_lpi_timer) {
3081 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3082 		return -EINVAL;
3083 	}
3084 
3085 	return 0;
3086 }
3087 
3088 static void ksz_set_xmii(struct ksz_device *dev, int port,
3089 			 phy_interface_t interface)
3090 {
3091 	const u8 *bitval = dev->info->xmii_ctrl1;
3092 	struct ksz_port *p = &dev->ports[port];
3093 	const u16 *regs = dev->info->regs;
3094 	u8 data8;
3095 
3096 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3097 
3098 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3099 		   P_RGMII_ID_EG_ENABLE);
3100 
3101 	switch (interface) {
3102 	case PHY_INTERFACE_MODE_MII:
3103 		data8 |= bitval[P_MII_SEL];
3104 		break;
3105 	case PHY_INTERFACE_MODE_RMII:
3106 		data8 |= bitval[P_RMII_SEL];
3107 		break;
3108 	case PHY_INTERFACE_MODE_GMII:
3109 		data8 |= bitval[P_GMII_SEL];
3110 		break;
3111 	case PHY_INTERFACE_MODE_RGMII:
3112 	case PHY_INTERFACE_MODE_RGMII_ID:
3113 	case PHY_INTERFACE_MODE_RGMII_TXID:
3114 	case PHY_INTERFACE_MODE_RGMII_RXID:
3115 		data8 |= bitval[P_RGMII_SEL];
3116 		/* On KSZ9893, disable RGMII in-band status support */
3117 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3118 		    dev->chip_id == KSZ8563_CHIP_ID ||
3119 		    dev->chip_id == KSZ9563_CHIP_ID ||
3120 		    is_lan937x(dev))
3121 			data8 &= ~P_MII_MAC_MODE;
3122 		break;
3123 	default:
3124 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3125 			phy_modes(interface), port);
3126 		return;
3127 	}
3128 
3129 	if (p->rgmii_tx_val)
3130 		data8 |= P_RGMII_ID_EG_ENABLE;
3131 
3132 	if (p->rgmii_rx_val)
3133 		data8 |= P_RGMII_ID_IG_ENABLE;
3134 
3135 	/* Write the updated value */
3136 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3137 }
3138 
3139 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3140 {
3141 	const u8 *bitval = dev->info->xmii_ctrl1;
3142 	const u16 *regs = dev->info->regs;
3143 	phy_interface_t interface;
3144 	u8 data8;
3145 	u8 val;
3146 
3147 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3148 
3149 	val = FIELD_GET(P_MII_SEL_M, data8);
3150 
3151 	if (val == bitval[P_MII_SEL]) {
3152 		if (gbit)
3153 			interface = PHY_INTERFACE_MODE_GMII;
3154 		else
3155 			interface = PHY_INTERFACE_MODE_MII;
3156 	} else if (val == bitval[P_RMII_SEL]) {
3157 		interface = PHY_INTERFACE_MODE_RMII;
3158 	} else {
3159 		interface = PHY_INTERFACE_MODE_RGMII;
3160 		if (data8 & P_RGMII_ID_EG_ENABLE)
3161 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3162 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3163 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3164 			if (data8 & P_RGMII_ID_EG_ENABLE)
3165 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3166 		}
3167 	}
3168 
3169 	return interface;
3170 }
3171 
3172 static void ksz8830_phylink_mac_config(struct phylink_config *config,
3173 				       unsigned int mode,
3174 				       const struct phylink_link_state *state)
3175 {
3176 	struct dsa_port *dp = dsa_phylink_to_port(config);
3177 	struct ksz_device *dev = dp->ds->priv;
3178 
3179 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3180 }
3181 
3182 static void ksz_phylink_mac_config(struct phylink_config *config,
3183 				   unsigned int mode,
3184 				   const struct phylink_link_state *state)
3185 {
3186 	struct dsa_port *dp = dsa_phylink_to_port(config);
3187 	struct ksz_device *dev = dp->ds->priv;
3188 	int port = dp->index;
3189 
3190 	/* Internal PHYs */
3191 	if (dev->info->internal_phy[port])
3192 		return;
3193 
3194 	if (phylink_autoneg_inband(mode)) {
3195 		dev_err(dev->dev, "In-band AN not supported!\n");
3196 		return;
3197 	}
3198 
3199 	ksz_set_xmii(dev, port, state->interface);
3200 
3201 	if (dev->dev_ops->setup_rgmii_delay)
3202 		dev->dev_ops->setup_rgmii_delay(dev, port);
3203 }
3204 
3205 bool ksz_get_gbit(struct ksz_device *dev, int port)
3206 {
3207 	const u8 *bitval = dev->info->xmii_ctrl1;
3208 	const u16 *regs = dev->info->regs;
3209 	bool gbit = false;
3210 	u8 data8;
3211 	bool val;
3212 
3213 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3214 
3215 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3216 
3217 	if (val == bitval[P_GMII_1GBIT])
3218 		gbit = true;
3219 
3220 	return gbit;
3221 }
3222 
3223 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3224 {
3225 	const u8 *bitval = dev->info->xmii_ctrl1;
3226 	const u16 *regs = dev->info->regs;
3227 	u8 data8;
3228 
3229 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3230 
3231 	data8 &= ~P_GMII_1GBIT_M;
3232 
3233 	if (gbit)
3234 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3235 	else
3236 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3237 
3238 	/* Write the updated value */
3239 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3240 }
3241 
3242 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3243 {
3244 	const u8 *bitval = dev->info->xmii_ctrl0;
3245 	const u16 *regs = dev->info->regs;
3246 	u8 data8;
3247 
3248 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3249 
3250 	data8 &= ~P_MII_100MBIT_M;
3251 
3252 	if (speed == SPEED_100)
3253 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3254 	else
3255 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3256 
3257 	/* Write the updated value */
3258 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3259 }
3260 
3261 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3262 {
3263 	if (speed == SPEED_1000)
3264 		ksz_set_gbit(dev, port, true);
3265 	else
3266 		ksz_set_gbit(dev, port, false);
3267 
3268 	if (speed == SPEED_100 || speed == SPEED_10)
3269 		ksz_set_100_10mbit(dev, port, speed);
3270 }
3271 
3272 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3273 				bool tx_pause, bool rx_pause)
3274 {
3275 	const u8 *bitval = dev->info->xmii_ctrl0;
3276 	const u32 *masks = dev->info->masks;
3277 	const u16 *regs = dev->info->regs;
3278 	u8 mask;
3279 	u8 val;
3280 
3281 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3282 	       masks[P_MII_RX_FLOW_CTRL];
3283 
3284 	if (duplex == DUPLEX_FULL)
3285 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3286 	else
3287 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3288 
3289 	if (tx_pause)
3290 		val |= masks[P_MII_TX_FLOW_CTRL];
3291 
3292 	if (rx_pause)
3293 		val |= masks[P_MII_RX_FLOW_CTRL];
3294 
3295 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3296 }
3297 
3298 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3299 					struct phy_device *phydev,
3300 					unsigned int mode,
3301 					phy_interface_t interface,
3302 					int speed, int duplex, bool tx_pause,
3303 					bool rx_pause)
3304 {
3305 	struct dsa_port *dp = dsa_phylink_to_port(config);
3306 	struct ksz_device *dev = dp->ds->priv;
3307 	int port = dp->index;
3308 	struct ksz_port *p;
3309 
3310 	p = &dev->ports[port];
3311 
3312 	/* Internal PHYs */
3313 	if (dev->info->internal_phy[port])
3314 		return;
3315 
3316 	p->phydev.speed = speed;
3317 
3318 	ksz_port_set_xmii_speed(dev, port, speed);
3319 
3320 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3321 }
3322 
3323 static int ksz_switch_detect(struct ksz_device *dev)
3324 {
3325 	u8 id1, id2, id4;
3326 	u16 id16;
3327 	u32 id32;
3328 	int ret;
3329 
3330 	/* read chip id */
3331 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3332 	if (ret)
3333 		return ret;
3334 
3335 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3336 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3337 
3338 	switch (id1) {
3339 	case KSZ87_FAMILY_ID:
3340 		if (id2 == KSZ87_CHIP_ID_95) {
3341 			u8 val;
3342 
3343 			dev->chip_id = KSZ8795_CHIP_ID;
3344 
3345 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3346 			if (val & KSZ8_PORT_FIBER_MODE)
3347 				dev->chip_id = KSZ8765_CHIP_ID;
3348 		} else if (id2 == KSZ87_CHIP_ID_94) {
3349 			dev->chip_id = KSZ8794_CHIP_ID;
3350 		} else {
3351 			return -ENODEV;
3352 		}
3353 		break;
3354 	case KSZ88_FAMILY_ID:
3355 		if (id2 == KSZ88_CHIP_ID_63)
3356 			dev->chip_id = KSZ8830_CHIP_ID;
3357 		else
3358 			return -ENODEV;
3359 		break;
3360 	default:
3361 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3362 		if (ret)
3363 			return ret;
3364 
3365 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3366 		id32 &= ~0xFF;
3367 
3368 		switch (id32) {
3369 		case KSZ9477_CHIP_ID:
3370 		case KSZ9896_CHIP_ID:
3371 		case KSZ9897_CHIP_ID:
3372 		case KSZ9567_CHIP_ID:
3373 		case KSZ8567_CHIP_ID:
3374 		case LAN9370_CHIP_ID:
3375 		case LAN9371_CHIP_ID:
3376 		case LAN9372_CHIP_ID:
3377 		case LAN9373_CHIP_ID:
3378 		case LAN9374_CHIP_ID:
3379 			dev->chip_id = id32;
3380 			break;
3381 		case KSZ9893_CHIP_ID:
3382 			ret = ksz_read8(dev, REG_CHIP_ID4,
3383 					&id4);
3384 			if (ret)
3385 				return ret;
3386 
3387 			if (id4 == SKU_ID_KSZ8563)
3388 				dev->chip_id = KSZ8563_CHIP_ID;
3389 			else if (id4 == SKU_ID_KSZ9563)
3390 				dev->chip_id = KSZ9563_CHIP_ID;
3391 			else
3392 				dev->chip_id = KSZ9893_CHIP_ID;
3393 
3394 			break;
3395 		default:
3396 			dev_err(dev->dev,
3397 				"unsupported switch detected %x)\n", id32);
3398 			return -ENODEV;
3399 		}
3400 	}
3401 	return 0;
3402 }
3403 
3404 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3405 			      struct flow_cls_offload *cls, bool ingress)
3406 {
3407 	struct ksz_device *dev = ds->priv;
3408 
3409 	switch (dev->chip_id) {
3410 	case KSZ8563_CHIP_ID:
3411 	case KSZ8567_CHIP_ID:
3412 	case KSZ9477_CHIP_ID:
3413 	case KSZ9563_CHIP_ID:
3414 	case KSZ9567_CHIP_ID:
3415 	case KSZ9893_CHIP_ID:
3416 	case KSZ9896_CHIP_ID:
3417 	case KSZ9897_CHIP_ID:
3418 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3419 	}
3420 
3421 	return -EOPNOTSUPP;
3422 }
3423 
3424 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3425 			      struct flow_cls_offload *cls, bool ingress)
3426 {
3427 	struct ksz_device *dev = ds->priv;
3428 
3429 	switch (dev->chip_id) {
3430 	case KSZ8563_CHIP_ID:
3431 	case KSZ8567_CHIP_ID:
3432 	case KSZ9477_CHIP_ID:
3433 	case KSZ9563_CHIP_ID:
3434 	case KSZ9567_CHIP_ID:
3435 	case KSZ9893_CHIP_ID:
3436 	case KSZ9896_CHIP_ID:
3437 	case KSZ9897_CHIP_ID:
3438 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3439 	}
3440 
3441 	return -EOPNOTSUPP;
3442 }
3443 
3444 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3445  * is converted to Hex-decimal using the successive multiplication method. On
3446  * every step, integer part is taken and decimal part is carry forwarded.
3447  */
3448 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3449 {
3450 	u32 cinc = 0;
3451 	u32 txrate;
3452 	u32 rate;
3453 	u8 temp;
3454 	u8 i;
3455 
3456 	txrate = idle_slope - send_slope;
3457 
3458 	if (!txrate)
3459 		return -EINVAL;
3460 
3461 	rate = idle_slope;
3462 
3463 	/* 24 bit register */
3464 	for (i = 0; i < 6; i++) {
3465 		rate = rate * 16;
3466 
3467 		temp = rate / txrate;
3468 
3469 		rate %= txrate;
3470 
3471 		cinc = ((cinc << 4) | temp);
3472 	}
3473 
3474 	*bw = cinc;
3475 
3476 	return 0;
3477 }
3478 
3479 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3480 			     u8 shaper)
3481 {
3482 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3483 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3484 			   FIELD_PREP(MTI_SHAPING_M, shaper));
3485 }
3486 
3487 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3488 			    struct tc_cbs_qopt_offload *qopt)
3489 {
3490 	struct ksz_device *dev = ds->priv;
3491 	int ret;
3492 	u32 bw;
3493 
3494 	if (!dev->info->tc_cbs_supported)
3495 		return -EOPNOTSUPP;
3496 
3497 	if (qopt->queue > dev->info->num_tx_queues)
3498 		return -EINVAL;
3499 
3500 	/* Queue Selection */
3501 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3502 	if (ret)
3503 		return ret;
3504 
3505 	if (!qopt->enable)
3506 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3507 					 MTI_SHAPING_OFF);
3508 
3509 	/* High Credit */
3510 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3511 			   qopt->hicredit);
3512 	if (ret)
3513 		return ret;
3514 
3515 	/* Low Credit */
3516 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3517 			   qopt->locredit);
3518 	if (ret)
3519 		return ret;
3520 
3521 	/* Credit Increment Register */
3522 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3523 	if (ret)
3524 		return ret;
3525 
3526 	if (dev->dev_ops->tc_cbs_set_cinc) {
3527 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3528 		if (ret)
3529 			return ret;
3530 	}
3531 
3532 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3533 				 MTI_SHAPING_SRP);
3534 }
3535 
3536 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3537 {
3538 	int queue, ret;
3539 
3540 	/* Configuration will not take effect until the last Port Queue X
3541 	 * Egress Limit Control Register is written.
3542 	 */
3543 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3544 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3545 				  KSZ9477_OUT_RATE_NO_LIMIT);
3546 		if (ret)
3547 			return ret;
3548 	}
3549 
3550 	return 0;
3551 }
3552 
3553 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
3554 				 int band)
3555 {
3556 	/* Compared to queues, bands prioritize packets differently. In strict
3557 	 * priority mode, the lowest priority is assigned to Queue 0 while the
3558 	 * highest priority is given to Band 0.
3559 	 */
3560 	return p->bands - 1 - band;
3561 }
3562 
3563 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
3564 {
3565 	int ret;
3566 
3567 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3568 	if (ret)
3569 		return ret;
3570 
3571 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3572 				 MTI_SHAPING_OFF);
3573 }
3574 
3575 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
3576 			     int weight)
3577 {
3578 	int ret;
3579 
3580 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3581 	if (ret)
3582 		return ret;
3583 
3584 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3585 				MTI_SHAPING_OFF);
3586 	if (ret)
3587 		return ret;
3588 
3589 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
3590 }
3591 
3592 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
3593 			  struct tc_ets_qopt_offload_replace_params *p)
3594 {
3595 	int ret, band, tc_prio;
3596 	u32 queue_map = 0;
3597 
3598 	/* In order to ensure proper prioritization, it is necessary to set the
3599 	 * rate limit for the related queue to zero. Otherwise strict priority
3600 	 * or WRR mode will not work. This is a hardware limitation.
3601 	 */
3602 	ret = ksz_disable_egress_rate_limit(dev, port);
3603 	if (ret)
3604 		return ret;
3605 
3606 	/* Configure queue scheduling mode for all bands. Currently only strict
3607 	 * prio mode is supported.
3608 	 */
3609 	for (band = 0; band < p->bands; band++) {
3610 		int queue = ksz_ets_band_to_queue(p, band);
3611 
3612 		ret = ksz_queue_set_strict(dev, port, queue);
3613 		if (ret)
3614 			return ret;
3615 	}
3616 
3617 	/* Configure the mapping between traffic classes and queues. Note:
3618 	 * priomap variable support 16 traffic classes, but the chip can handle
3619 	 * only 8 classes.
3620 	 */
3621 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
3622 		int queue;
3623 
3624 		if (tc_prio >= dev->info->num_ipms)
3625 			break;
3626 
3627 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
3628 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3629 	}
3630 
3631 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3632 }
3633 
3634 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
3635 {
3636 	int ret, queue;
3637 
3638 	/* To restore the default chip configuration, set all queues to use the
3639 	 * WRR scheduler with a weight of 1.
3640 	 */
3641 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3642 		ret = ksz_queue_set_wrr(dev, port, queue,
3643 					KSZ9477_DEFAULT_WRR_WEIGHT);
3644 		if (ret)
3645 			return ret;
3646 	}
3647 
3648 	/* Revert the queue mapping for TC-priority to its default setting on
3649 	 * the chip.
3650 	 */
3651 	return ksz9477_set_default_prio_queue_mapping(dev, port);
3652 }
3653 
3654 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
3655 			       struct tc_ets_qopt_offload_replace_params *p)
3656 {
3657 	int band;
3658 
3659 	/* Since it is not feasible to share one port among multiple qdisc,
3660 	 * the user must configure all available queues appropriately.
3661 	 */
3662 	if (p->bands != dev->info->num_tx_queues) {
3663 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
3664 			dev->info->num_tx_queues);
3665 		return -EOPNOTSUPP;
3666 	}
3667 
3668 	for (band = 0; band < p->bands; ++band) {
3669 		/* The KSZ switches utilize a weighted round robin configuration
3670 		 * where a certain number of packets can be transmitted from a
3671 		 * queue before the next queue is serviced. For more information
3672 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
3673 		 * documentation on the Port Transmit Queue Control 1 Register.
3674 		 * However, the current ETS Qdisc implementation (as of February
3675 		 * 2023) assigns a weight to each queue based on the number of
3676 		 * bytes or extrapolated bandwidth in percentages. Since this
3677 		 * differs from the KSZ switches' method and we don't want to
3678 		 * fake support by converting bytes to packets, it is better to
3679 		 * return an error instead.
3680 		 */
3681 		if (p->quanta[band]) {
3682 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
3683 			return -EOPNOTSUPP;
3684 		}
3685 	}
3686 
3687 	return 0;
3688 }
3689 
3690 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
3691 				  struct tc_ets_qopt_offload *qopt)
3692 {
3693 	struct ksz_device *dev = ds->priv;
3694 	int ret;
3695 
3696 	if (is_ksz8(dev))
3697 		return -EOPNOTSUPP;
3698 
3699 	if (qopt->parent != TC_H_ROOT) {
3700 		dev_err(dev->dev, "Parent should be \"root\"\n");
3701 		return -EOPNOTSUPP;
3702 	}
3703 
3704 	switch (qopt->command) {
3705 	case TC_ETS_REPLACE:
3706 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
3707 		if (ret)
3708 			return ret;
3709 
3710 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
3711 	case TC_ETS_DESTROY:
3712 		return ksz_tc_ets_del(dev, port);
3713 	case TC_ETS_STATS:
3714 	case TC_ETS_GRAFT:
3715 		return -EOPNOTSUPP;
3716 	}
3717 
3718 	return -EOPNOTSUPP;
3719 }
3720 
3721 static int ksz_setup_tc(struct dsa_switch *ds, int port,
3722 			enum tc_setup_type type, void *type_data)
3723 {
3724 	switch (type) {
3725 	case TC_SETUP_QDISC_CBS:
3726 		return ksz_setup_tc_cbs(ds, port, type_data);
3727 	case TC_SETUP_QDISC_ETS:
3728 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
3729 	default:
3730 		return -EOPNOTSUPP;
3731 	}
3732 }
3733 
3734 static void ksz_get_wol(struct dsa_switch *ds, int port,
3735 			struct ethtool_wolinfo *wol)
3736 {
3737 	struct ksz_device *dev = ds->priv;
3738 
3739 	if (dev->dev_ops->get_wol)
3740 		dev->dev_ops->get_wol(dev, port, wol);
3741 }
3742 
3743 static int ksz_set_wol(struct dsa_switch *ds, int port,
3744 		       struct ethtool_wolinfo *wol)
3745 {
3746 	struct ksz_device *dev = ds->priv;
3747 
3748 	if (dev->dev_ops->set_wol)
3749 		return dev->dev_ops->set_wol(dev, port, wol);
3750 
3751 	return -EOPNOTSUPP;
3752 }
3753 
3754 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
3755 				    const unsigned char *addr)
3756 {
3757 	struct dsa_port *dp = dsa_to_port(ds, port);
3758 	struct ethtool_wolinfo wol;
3759 
3760 	if (dp->hsr_dev) {
3761 		dev_err(ds->dev,
3762 			"Cannot change MAC address on port %d with active HSR offload\n",
3763 			port);
3764 		return -EBUSY;
3765 	}
3766 
3767 	ksz_get_wol(ds, dp->index, &wol);
3768 	if (wol.wolopts & WAKE_MAGIC) {
3769 		dev_err(ds->dev,
3770 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
3771 			port);
3772 		return -EBUSY;
3773 	}
3774 
3775 	return 0;
3776 }
3777 
3778 /**
3779  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
3780  *                                 can be used as a global address.
3781  * @ds: Pointer to the DSA switch structure.
3782  * @port: The port number on which the MAC address is to be checked.
3783  *
3784  * This function examines the MAC address set on the specified port and
3785  * determines if it can be used as a global address for the switch.
3786  *
3787  * Return: true if the port's MAC address can be used as a global address, false
3788  * otherwise.
3789  */
3790 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
3791 {
3792 	struct net_device *user = dsa_to_port(ds, port)->user;
3793 	const unsigned char *addr = user->dev_addr;
3794 	struct ksz_switch_macaddr *switch_macaddr;
3795 	struct ksz_device *dev = ds->priv;
3796 
3797 	ASSERT_RTNL();
3798 
3799 	switch_macaddr = dev->switch_macaddr;
3800 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
3801 		return false;
3802 
3803 	return true;
3804 }
3805 
3806 /**
3807  * ksz_switch_macaddr_get - Program the switch's MAC address register.
3808  * @ds: DSA switch instance.
3809  * @port: Port number.
3810  * @extack: Netlink extended acknowledgment.
3811  *
3812  * This function programs the switch's MAC address register with the MAC address
3813  * of the requesting user port. This single address is used by the switch for
3814  * multiple features like HSR self-address filtering and WoL. Other user ports
3815  * can share ownership of this address as long as their MAC address is the same.
3816  * The MAC addresses of user ports must not change while they have ownership of
3817  * the switch MAC address.
3818  *
3819  * Return: 0 on success, or other error codes on failure.
3820  */
3821 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
3822 			   struct netlink_ext_ack *extack)
3823 {
3824 	struct net_device *user = dsa_to_port(ds, port)->user;
3825 	const unsigned char *addr = user->dev_addr;
3826 	struct ksz_switch_macaddr *switch_macaddr;
3827 	struct ksz_device *dev = ds->priv;
3828 	const u16 *regs = dev->info->regs;
3829 	int i, ret;
3830 
3831 	/* Make sure concurrent MAC address changes are blocked */
3832 	ASSERT_RTNL();
3833 
3834 	switch_macaddr = dev->switch_macaddr;
3835 	if (switch_macaddr) {
3836 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
3837 			NL_SET_ERR_MSG_FMT_MOD(extack,
3838 					       "Switch already configured for MAC address %pM",
3839 					       switch_macaddr->addr);
3840 			return -EBUSY;
3841 		}
3842 
3843 		refcount_inc(&switch_macaddr->refcount);
3844 		return 0;
3845 	}
3846 
3847 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
3848 	if (!switch_macaddr)
3849 		return -ENOMEM;
3850 
3851 	ether_addr_copy(switch_macaddr->addr, addr);
3852 	refcount_set(&switch_macaddr->refcount, 1);
3853 	dev->switch_macaddr = switch_macaddr;
3854 
3855 	/* Program the switch MAC address to hardware */
3856 	for (i = 0; i < ETH_ALEN; i++) {
3857 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
3858 		if (ret)
3859 			goto macaddr_drop;
3860 	}
3861 
3862 	return 0;
3863 
3864 macaddr_drop:
3865 	dev->switch_macaddr = NULL;
3866 	refcount_set(&switch_macaddr->refcount, 0);
3867 	kfree(switch_macaddr);
3868 
3869 	return ret;
3870 }
3871 
3872 void ksz_switch_macaddr_put(struct dsa_switch *ds)
3873 {
3874 	struct ksz_switch_macaddr *switch_macaddr;
3875 	struct ksz_device *dev = ds->priv;
3876 	const u16 *regs = dev->info->regs;
3877 	int i;
3878 
3879 	/* Make sure concurrent MAC address changes are blocked */
3880 	ASSERT_RTNL();
3881 
3882 	switch_macaddr = dev->switch_macaddr;
3883 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
3884 		return;
3885 
3886 	for (i = 0; i < ETH_ALEN; i++)
3887 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
3888 
3889 	dev->switch_macaddr = NULL;
3890 	kfree(switch_macaddr);
3891 }
3892 
3893 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
3894 			struct netlink_ext_ack *extack)
3895 {
3896 	struct ksz_device *dev = ds->priv;
3897 	enum hsr_version ver;
3898 	int ret;
3899 
3900 	ret = hsr_get_version(hsr, &ver);
3901 	if (ret)
3902 		return ret;
3903 
3904 	if (dev->chip_id != KSZ9477_CHIP_ID) {
3905 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
3906 		return -EOPNOTSUPP;
3907 	}
3908 
3909 	/* KSZ9477 can support HW offloading of only 1 HSR device */
3910 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
3911 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
3912 		return -EOPNOTSUPP;
3913 	}
3914 
3915 	/* KSZ9477 only supports HSR v0 and v1 */
3916 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
3917 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
3918 		return -EOPNOTSUPP;
3919 	}
3920 
3921 	/* KSZ9477 can only perform HSR offloading for up to two ports */
3922 	if (hweight8(dev->hsr_ports) >= 2) {
3923 		NL_SET_ERR_MSG_MOD(extack,
3924 				   "Cannot offload more than two ports - using software HSR");
3925 		return -EOPNOTSUPP;
3926 	}
3927 
3928 	/* Self MAC address filtering, to avoid frames traversing
3929 	 * the HSR ring more than once.
3930 	 */
3931 	ret = ksz_switch_macaddr_get(ds, port, extack);
3932 	if (ret)
3933 		return ret;
3934 
3935 	ksz9477_hsr_join(ds, port, hsr);
3936 	dev->hsr_dev = hsr;
3937 	dev->hsr_ports |= BIT(port);
3938 
3939 	return 0;
3940 }
3941 
3942 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
3943 			 struct net_device *hsr)
3944 {
3945 	struct ksz_device *dev = ds->priv;
3946 
3947 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
3948 
3949 	ksz9477_hsr_leave(ds, port, hsr);
3950 	dev->hsr_ports &= ~BIT(port);
3951 	if (!dev->hsr_ports)
3952 		dev->hsr_dev = NULL;
3953 
3954 	ksz_switch_macaddr_put(ds);
3955 
3956 	return 0;
3957 }
3958 
3959 static const struct dsa_switch_ops ksz_switch_ops = {
3960 	.get_tag_protocol	= ksz_get_tag_protocol,
3961 	.connect_tag_protocol   = ksz_connect_tag_protocol,
3962 	.get_phy_flags		= ksz_get_phy_flags,
3963 	.setup			= ksz_setup,
3964 	.teardown		= ksz_teardown,
3965 	.phy_read		= ksz_phy_read16,
3966 	.phy_write		= ksz_phy_write16,
3967 	.phylink_get_caps	= ksz_phylink_get_caps,
3968 	.port_setup		= ksz_port_setup,
3969 	.set_ageing_time	= ksz_set_ageing_time,
3970 	.get_strings		= ksz_get_strings,
3971 	.get_ethtool_stats	= ksz_get_ethtool_stats,
3972 	.get_sset_count		= ksz_sset_count,
3973 	.port_bridge_join	= ksz_port_bridge_join,
3974 	.port_bridge_leave	= ksz_port_bridge_leave,
3975 	.port_hsr_join		= ksz_hsr_join,
3976 	.port_hsr_leave		= ksz_hsr_leave,
3977 	.port_set_mac_address	= ksz_port_set_mac_address,
3978 	.port_stp_state_set	= ksz_port_stp_state_set,
3979 	.port_teardown		= ksz_port_teardown,
3980 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
3981 	.port_bridge_flags	= ksz_port_bridge_flags,
3982 	.port_fast_age		= ksz_port_fast_age,
3983 	.port_vlan_filtering	= ksz_port_vlan_filtering,
3984 	.port_vlan_add		= ksz_port_vlan_add,
3985 	.port_vlan_del		= ksz_port_vlan_del,
3986 	.port_fdb_dump		= ksz_port_fdb_dump,
3987 	.port_fdb_add		= ksz_port_fdb_add,
3988 	.port_fdb_del		= ksz_port_fdb_del,
3989 	.port_mdb_add           = ksz_port_mdb_add,
3990 	.port_mdb_del           = ksz_port_mdb_del,
3991 	.port_mirror_add	= ksz_port_mirror_add,
3992 	.port_mirror_del	= ksz_port_mirror_del,
3993 	.get_stats64		= ksz_get_stats64,
3994 	.get_pause_stats	= ksz_get_pause_stats,
3995 	.port_change_mtu	= ksz_change_mtu,
3996 	.port_max_mtu		= ksz_max_mtu,
3997 	.get_wol		= ksz_get_wol,
3998 	.set_wol		= ksz_set_wol,
3999 	.get_ts_info		= ksz_get_ts_info,
4000 	.port_hwtstamp_get	= ksz_hwtstamp_get,
4001 	.port_hwtstamp_set	= ksz_hwtstamp_set,
4002 	.port_txtstamp		= ksz_port_txtstamp,
4003 	.port_rxtstamp		= ksz_port_rxtstamp,
4004 	.cls_flower_add		= ksz_cls_flower_add,
4005 	.cls_flower_del		= ksz_cls_flower_del,
4006 	.port_setup_tc		= ksz_setup_tc,
4007 	.get_mac_eee		= ksz_get_mac_eee,
4008 	.set_mac_eee		= ksz_set_mac_eee,
4009 	.port_get_default_prio	= ksz_port_get_default_prio,
4010 	.port_set_default_prio	= ksz_port_set_default_prio,
4011 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
4012 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
4013 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
4014 	.port_get_apptrust	= ksz_port_get_apptrust,
4015 	.port_set_apptrust	= ksz_port_set_apptrust,
4016 };
4017 
4018 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
4019 {
4020 	struct dsa_switch *ds;
4021 	struct ksz_device *swdev;
4022 
4023 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
4024 	if (!ds)
4025 		return NULL;
4026 
4027 	ds->dev = base;
4028 	ds->num_ports = DSA_MAX_PORTS;
4029 	ds->ops = &ksz_switch_ops;
4030 
4031 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
4032 	if (!swdev)
4033 		return NULL;
4034 
4035 	ds->priv = swdev;
4036 	swdev->dev = base;
4037 
4038 	swdev->ds = ds;
4039 	swdev->priv = priv;
4040 
4041 	return swdev;
4042 }
4043 EXPORT_SYMBOL(ksz_switch_alloc);
4044 
4045 /**
4046  * ksz_switch_shutdown - Shutdown routine for the switch device.
4047  * @dev: The switch device structure.
4048  *
4049  * This function is responsible for initiating a shutdown sequence for the
4050  * switch device. It invokes the reset operation defined in the device
4051  * operations, if available, to reset the switch. Subsequently, it calls the
4052  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
4053  * switch.
4054  */
4055 void ksz_switch_shutdown(struct ksz_device *dev)
4056 {
4057 	bool wol_enabled = false;
4058 
4059 	if (dev->dev_ops->wol_pre_shutdown)
4060 		dev->dev_ops->wol_pre_shutdown(dev, &wol_enabled);
4061 
4062 	if (dev->dev_ops->reset && !wol_enabled)
4063 		dev->dev_ops->reset(dev);
4064 
4065 	dsa_switch_shutdown(dev->ds);
4066 }
4067 EXPORT_SYMBOL(ksz_switch_shutdown);
4068 
4069 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
4070 				  struct device_node *port_dn)
4071 {
4072 	phy_interface_t phy_mode = dev->ports[port_num].interface;
4073 	int rx_delay = -1, tx_delay = -1;
4074 
4075 	if (!phy_interface_mode_is_rgmii(phy_mode))
4076 		return;
4077 
4078 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
4079 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
4080 
4081 	if (rx_delay == -1 && tx_delay == -1) {
4082 		dev_warn(dev->dev,
4083 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
4084 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
4085 			 "\"tx-internal-delay-ps\"",
4086 			 port_num);
4087 
4088 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4089 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4090 			rx_delay = 2000;
4091 
4092 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4093 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4094 			tx_delay = 2000;
4095 	}
4096 
4097 	if (rx_delay < 0)
4098 		rx_delay = 0;
4099 	if (tx_delay < 0)
4100 		tx_delay = 0;
4101 
4102 	dev->ports[port_num].rgmii_rx_val = rx_delay;
4103 	dev->ports[port_num].rgmii_tx_val = tx_delay;
4104 }
4105 
4106 /**
4107  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4108  *				 register value.
4109  * @array:	The array of drive strength values to search.
4110  * @array_size:	The size of the array.
4111  * @microamp:	The drive strength value in microamp to be converted.
4112  *
4113  * This function searches the array of drive strength values for the given
4114  * microamp value and returns the corresponding register value for that drive.
4115  *
4116  * Returns: If found, the corresponding register value for that drive strength
4117  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4118  */
4119 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4120 				     size_t array_size, int microamp)
4121 {
4122 	int i;
4123 
4124 	for (i = 0; i < array_size; i++) {
4125 		if (array[i].microamp == microamp)
4126 			return array[i].reg_val;
4127 	}
4128 
4129 	return -EINVAL;
4130 }
4131 
4132 /**
4133  * ksz_drive_strength_error() - Report invalid drive strength value
4134  * @dev:	ksz device
4135  * @array:	The array of drive strength values to search.
4136  * @array_size:	The size of the array.
4137  * @microamp:	Invalid drive strength value in microamp
4138  *
4139  * This function logs an error message when an unsupported drive strength value
4140  * is detected. It lists out all the supported drive strength values for
4141  * reference in the error message.
4142  */
4143 static void ksz_drive_strength_error(struct ksz_device *dev,
4144 				     const struct ksz_drive_strength *array,
4145 				     size_t array_size, int microamp)
4146 {
4147 	char supported_values[100];
4148 	size_t remaining_size;
4149 	int added_len;
4150 	char *ptr;
4151 	int i;
4152 
4153 	remaining_size = sizeof(supported_values);
4154 	ptr = supported_values;
4155 
4156 	for (i = 0; i < array_size; i++) {
4157 		added_len = snprintf(ptr, remaining_size,
4158 				     i == 0 ? "%d" : ", %d", array[i].microamp);
4159 
4160 		if (added_len >= remaining_size)
4161 			break;
4162 
4163 		ptr += added_len;
4164 		remaining_size -= added_len;
4165 	}
4166 
4167 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
4168 		microamp, supported_values);
4169 }
4170 
4171 /**
4172  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
4173  *				    chip variants.
4174  * @dev:       ksz device
4175  * @props:     Array of drive strength properties to be applied
4176  * @num_props: Number of properties in the array
4177  *
4178  * This function configures the drive strength for various KSZ9477 chip variants
4179  * based on the provided properties. It handles chip-specific nuances and
4180  * ensures only valid drive strengths are written to the respective chip.
4181  *
4182  * Return: 0 on successful configuration, a negative error code on failure.
4183  */
4184 static int ksz9477_drive_strength_write(struct ksz_device *dev,
4185 					struct ksz_driver_strength_prop *props,
4186 					int num_props)
4187 {
4188 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4189 	int i, ret, reg;
4190 	u8 mask = 0;
4191 	u8 val = 0;
4192 
4193 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4194 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4195 			 props[KSZ_DRIVER_STRENGTH_IO].name);
4196 
4197 	if (dev->chip_id == KSZ8795_CHIP_ID ||
4198 	    dev->chip_id == KSZ8794_CHIP_ID ||
4199 	    dev->chip_id == KSZ8765_CHIP_ID)
4200 		reg = KSZ8795_REG_SW_CTRL_20;
4201 	else
4202 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4203 
4204 	for (i = 0; i < num_props; i++) {
4205 		if (props[i].value == -1)
4206 			continue;
4207 
4208 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4209 						array_size, props[i].value);
4210 		if (ret < 0) {
4211 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4212 						 array_size, props[i].value);
4213 			return ret;
4214 		}
4215 
4216 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4217 		val |= ret << props[i].offset;
4218 	}
4219 
4220 	return ksz_rmw8(dev, reg, mask, val);
4221 }
4222 
4223 /**
4224  * ksz8830_drive_strength_write() - Set the drive strength configuration for
4225  *				    KSZ8830 compatible chip variants.
4226  * @dev:       ksz device
4227  * @props:     Array of drive strength properties to be set
4228  * @num_props: Number of properties in the array
4229  *
4230  * This function applies the specified drive strength settings to KSZ8830 chip
4231  * variants (KSZ8873, KSZ8863).
4232  * It ensures the configurations align with what the chip variant supports and
4233  * warns or errors out on unsupported settings.
4234  *
4235  * Return: 0 on success, error code otherwise
4236  */
4237 static int ksz8830_drive_strength_write(struct ksz_device *dev,
4238 					struct ksz_driver_strength_prop *props,
4239 					int num_props)
4240 {
4241 	size_t array_size = ARRAY_SIZE(ksz8830_drive_strengths);
4242 	int microamp;
4243 	int i, ret;
4244 
4245 	for (i = 0; i < num_props; i++) {
4246 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4247 			continue;
4248 
4249 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4250 			 props[i].name);
4251 	}
4252 
4253 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4254 	ret = ksz_drive_strength_to_reg(ksz8830_drive_strengths, array_size,
4255 					microamp);
4256 	if (ret < 0) {
4257 		ksz_drive_strength_error(dev, ksz8830_drive_strengths,
4258 					 array_size, microamp);
4259 		return ret;
4260 	}
4261 
4262 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4263 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4264 }
4265 
4266 /**
4267  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4268  *				from device tree properties.
4269  * @dev:	ksz device
4270  *
4271  * This function reads the specified drive strength properties from the
4272  * device tree, validates against the supported chip variants, and sets
4273  * them accordingly. An error should be critical here, as the drive strength
4274  * settings are crucial for EMI compliance.
4275  *
4276  * Return: 0 on success, error code otherwise
4277  */
4278 static int ksz_parse_drive_strength(struct ksz_device *dev)
4279 {
4280 	struct ksz_driver_strength_prop of_props[] = {
4281 		[KSZ_DRIVER_STRENGTH_HI] = {
4282 			.name = "microchip,hi-drive-strength-microamp",
4283 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4284 			.value = -1,
4285 		},
4286 		[KSZ_DRIVER_STRENGTH_LO] = {
4287 			.name = "microchip,lo-drive-strength-microamp",
4288 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4289 			.value = -1,
4290 		},
4291 		[KSZ_DRIVER_STRENGTH_IO] = {
4292 			.name = "microchip,io-drive-strength-microamp",
4293 			.offset = 0, /* don't care */
4294 			.value = -1,
4295 		},
4296 	};
4297 	struct device_node *np = dev->dev->of_node;
4298 	bool have_any_prop = false;
4299 	int i, ret;
4300 
4301 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4302 		ret = of_property_read_u32(np, of_props[i].name,
4303 					   &of_props[i].value);
4304 		if (ret && ret != -EINVAL)
4305 			dev_warn(dev->dev, "Failed to read %s\n",
4306 				 of_props[i].name);
4307 		if (ret)
4308 			continue;
4309 
4310 		have_any_prop = true;
4311 	}
4312 
4313 	if (!have_any_prop)
4314 		return 0;
4315 
4316 	switch (dev->chip_id) {
4317 	case KSZ8830_CHIP_ID:
4318 		return ksz8830_drive_strength_write(dev, of_props,
4319 						    ARRAY_SIZE(of_props));
4320 	case KSZ8795_CHIP_ID:
4321 	case KSZ8794_CHIP_ID:
4322 	case KSZ8765_CHIP_ID:
4323 	case KSZ8563_CHIP_ID:
4324 	case KSZ8567_CHIP_ID:
4325 	case KSZ9477_CHIP_ID:
4326 	case KSZ9563_CHIP_ID:
4327 	case KSZ9567_CHIP_ID:
4328 	case KSZ9893_CHIP_ID:
4329 	case KSZ9896_CHIP_ID:
4330 	case KSZ9897_CHIP_ID:
4331 		return ksz9477_drive_strength_write(dev, of_props,
4332 						    ARRAY_SIZE(of_props));
4333 	default:
4334 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4335 			if (of_props[i].value == -1)
4336 				continue;
4337 
4338 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4339 				 of_props[i].name);
4340 		}
4341 	}
4342 
4343 	return 0;
4344 }
4345 
4346 int ksz_switch_register(struct ksz_device *dev)
4347 {
4348 	const struct ksz_chip_data *info;
4349 	struct device_node *port, *ports;
4350 	phy_interface_t interface;
4351 	unsigned int port_num;
4352 	int ret;
4353 	int i;
4354 
4355 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4356 						  GPIOD_OUT_LOW);
4357 	if (IS_ERR(dev->reset_gpio))
4358 		return PTR_ERR(dev->reset_gpio);
4359 
4360 	if (dev->reset_gpio) {
4361 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4362 		usleep_range(10000, 12000);
4363 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
4364 		msleep(100);
4365 	}
4366 
4367 	mutex_init(&dev->dev_mutex);
4368 	mutex_init(&dev->regmap_mutex);
4369 	mutex_init(&dev->alu_mutex);
4370 	mutex_init(&dev->vlan_mutex);
4371 
4372 	ret = ksz_switch_detect(dev);
4373 	if (ret)
4374 		return ret;
4375 
4376 	info = ksz_lookup_info(dev->chip_id);
4377 	if (!info)
4378 		return -ENODEV;
4379 
4380 	/* Update the compatible info with the probed one */
4381 	dev->info = info;
4382 
4383 	dev_info(dev->dev, "found switch: %s, rev %i\n",
4384 		 dev->info->dev_name, dev->chip_rev);
4385 
4386 	ret = ksz_check_device_id(dev);
4387 	if (ret)
4388 		return ret;
4389 
4390 	dev->dev_ops = dev->info->ops;
4391 
4392 	ret = dev->dev_ops->init(dev);
4393 	if (ret)
4394 		return ret;
4395 
4396 	dev->ports = devm_kzalloc(dev->dev,
4397 				  dev->info->port_cnt * sizeof(struct ksz_port),
4398 				  GFP_KERNEL);
4399 	if (!dev->ports)
4400 		return -ENOMEM;
4401 
4402 	for (i = 0; i < dev->info->port_cnt; i++) {
4403 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
4404 		mutex_init(&dev->ports[i].mib.cnt_mutex);
4405 		dev->ports[i].mib.counters =
4406 			devm_kzalloc(dev->dev,
4407 				     sizeof(u64) * (dev->info->mib_cnt + 1),
4408 				     GFP_KERNEL);
4409 		if (!dev->ports[i].mib.counters)
4410 			return -ENOMEM;
4411 
4412 		dev->ports[i].ksz_dev = dev;
4413 		dev->ports[i].num = i;
4414 	}
4415 
4416 	/* set the real number of ports */
4417 	dev->ds->num_ports = dev->info->port_cnt;
4418 
4419 	/* set the phylink ops */
4420 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
4421 
4422 	/* Host port interface will be self detected, or specifically set in
4423 	 * device tree.
4424 	 */
4425 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
4426 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
4427 	if (dev->dev->of_node) {
4428 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
4429 		if (ret == 0)
4430 			dev->compat_interface = interface;
4431 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
4432 		if (!ports)
4433 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
4434 		if (ports) {
4435 			for_each_available_child_of_node(ports, port) {
4436 				if (of_property_read_u32(port, "reg",
4437 							 &port_num))
4438 					continue;
4439 				if (!(dev->port_mask & BIT(port_num))) {
4440 					of_node_put(port);
4441 					of_node_put(ports);
4442 					return -EINVAL;
4443 				}
4444 				of_get_phy_mode(port,
4445 						&dev->ports[port_num].interface);
4446 
4447 				ksz_parse_rgmii_delay(dev, port_num, port);
4448 			}
4449 			of_node_put(ports);
4450 		}
4451 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
4452 							 "microchip,synclko-125");
4453 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
4454 							     "microchip,synclko-disable");
4455 		if (dev->synclko_125 && dev->synclko_disable) {
4456 			dev_err(dev->dev, "inconsistent synclko settings\n");
4457 			return -EINVAL;
4458 		}
4459 
4460 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
4461 							   "wakeup-source");
4462 	}
4463 
4464 	ret = dsa_register_switch(dev->ds);
4465 	if (ret) {
4466 		dev->dev_ops->exit(dev);
4467 		return ret;
4468 	}
4469 
4470 	/* Read MIB counters every 30 seconds to avoid overflow. */
4471 	dev->mib_read_interval = msecs_to_jiffies(5000);
4472 
4473 	/* Start the MIB timer. */
4474 	schedule_delayed_work(&dev->mib_read, 0);
4475 
4476 	return ret;
4477 }
4478 EXPORT_SYMBOL(ksz_switch_register);
4479 
4480 void ksz_switch_remove(struct ksz_device *dev)
4481 {
4482 	/* timer started */
4483 	if (dev->mib_read_interval) {
4484 		dev->mib_read_interval = 0;
4485 		cancel_delayed_work_sync(&dev->mib_read);
4486 	}
4487 
4488 	dev->dev_ops->exit(dev);
4489 	dsa_unregister_switch(dev->ds);
4490 
4491 	if (dev->reset_gpio)
4492 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4493 
4494 }
4495 EXPORT_SYMBOL(ksz_switch_remove);
4496 
4497 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
4498 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
4499 MODULE_LICENSE("GPL");
4500