xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 975f2d73a99f35b57ffa2ad7bff8562225cdcfcb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/pkt_cls.h>
28 #include <net/switchdev.h>
29 
30 #include "ksz_common.h"
31 #include "ksz_ptp.h"
32 #include "ksz8.h"
33 #include "ksz9477.h"
34 #include "lan937x.h"
35 
36 #define MIB_COUNTER_NUM 0x20
37 
38 struct ksz_stats_raw {
39 	u64 rx_hi;
40 	u64 rx_undersize;
41 	u64 rx_fragments;
42 	u64 rx_oversize;
43 	u64 rx_jabbers;
44 	u64 rx_symbol_err;
45 	u64 rx_crc_err;
46 	u64 rx_align_err;
47 	u64 rx_mac_ctrl;
48 	u64 rx_pause;
49 	u64 rx_bcast;
50 	u64 rx_mcast;
51 	u64 rx_ucast;
52 	u64 rx_64_or_less;
53 	u64 rx_65_127;
54 	u64 rx_128_255;
55 	u64 rx_256_511;
56 	u64 rx_512_1023;
57 	u64 rx_1024_1522;
58 	u64 rx_1523_2000;
59 	u64 rx_2001;
60 	u64 tx_hi;
61 	u64 tx_late_col;
62 	u64 tx_pause;
63 	u64 tx_bcast;
64 	u64 tx_mcast;
65 	u64 tx_ucast;
66 	u64 tx_deferred;
67 	u64 tx_total_col;
68 	u64 tx_exc_col;
69 	u64 tx_single_col;
70 	u64 tx_mult_col;
71 	u64 rx_total;
72 	u64 tx_total;
73 	u64 rx_discards;
74 	u64 tx_discards;
75 };
76 
77 struct ksz88xx_stats_raw {
78 	u64 rx;
79 	u64 rx_hi;
80 	u64 rx_undersize;
81 	u64 rx_fragments;
82 	u64 rx_oversize;
83 	u64 rx_jabbers;
84 	u64 rx_symbol_err;
85 	u64 rx_crc_err;
86 	u64 rx_align_err;
87 	u64 rx_mac_ctrl;
88 	u64 rx_pause;
89 	u64 rx_bcast;
90 	u64 rx_mcast;
91 	u64 rx_ucast;
92 	u64 rx_64_or_less;
93 	u64 rx_65_127;
94 	u64 rx_128_255;
95 	u64 rx_256_511;
96 	u64 rx_512_1023;
97 	u64 rx_1024_1522;
98 	u64 tx;
99 	u64 tx_hi;
100 	u64 tx_late_col;
101 	u64 tx_pause;
102 	u64 tx_bcast;
103 	u64 tx_mcast;
104 	u64 tx_ucast;
105 	u64 tx_deferred;
106 	u64 tx_total_col;
107 	u64 tx_exc_col;
108 	u64 tx_single_col;
109 	u64 tx_mult_col;
110 	u64 rx_discards;
111 	u64 tx_discards;
112 };
113 
114 static const struct ksz_mib_names ksz88xx_mib_names[] = {
115 	{ 0x00, "rx" },
116 	{ 0x01, "rx_hi" },
117 	{ 0x02, "rx_undersize" },
118 	{ 0x03, "rx_fragments" },
119 	{ 0x04, "rx_oversize" },
120 	{ 0x05, "rx_jabbers" },
121 	{ 0x06, "rx_symbol_err" },
122 	{ 0x07, "rx_crc_err" },
123 	{ 0x08, "rx_align_err" },
124 	{ 0x09, "rx_mac_ctrl" },
125 	{ 0x0a, "rx_pause" },
126 	{ 0x0b, "rx_bcast" },
127 	{ 0x0c, "rx_mcast" },
128 	{ 0x0d, "rx_ucast" },
129 	{ 0x0e, "rx_64_or_less" },
130 	{ 0x0f, "rx_65_127" },
131 	{ 0x10, "rx_128_255" },
132 	{ 0x11, "rx_256_511" },
133 	{ 0x12, "rx_512_1023" },
134 	{ 0x13, "rx_1024_1522" },
135 	{ 0x14, "tx" },
136 	{ 0x15, "tx_hi" },
137 	{ 0x16, "tx_late_col" },
138 	{ 0x17, "tx_pause" },
139 	{ 0x18, "tx_bcast" },
140 	{ 0x19, "tx_mcast" },
141 	{ 0x1a, "tx_ucast" },
142 	{ 0x1b, "tx_deferred" },
143 	{ 0x1c, "tx_total_col" },
144 	{ 0x1d, "tx_exc_col" },
145 	{ 0x1e, "tx_single_col" },
146 	{ 0x1f, "tx_mult_col" },
147 	{ 0x100, "rx_discards" },
148 	{ 0x101, "tx_discards" },
149 };
150 
151 static const struct ksz_mib_names ksz9477_mib_names[] = {
152 	{ 0x00, "rx_hi" },
153 	{ 0x01, "rx_undersize" },
154 	{ 0x02, "rx_fragments" },
155 	{ 0x03, "rx_oversize" },
156 	{ 0x04, "rx_jabbers" },
157 	{ 0x05, "rx_symbol_err" },
158 	{ 0x06, "rx_crc_err" },
159 	{ 0x07, "rx_align_err" },
160 	{ 0x08, "rx_mac_ctrl" },
161 	{ 0x09, "rx_pause" },
162 	{ 0x0A, "rx_bcast" },
163 	{ 0x0B, "rx_mcast" },
164 	{ 0x0C, "rx_ucast" },
165 	{ 0x0D, "rx_64_or_less" },
166 	{ 0x0E, "rx_65_127" },
167 	{ 0x0F, "rx_128_255" },
168 	{ 0x10, "rx_256_511" },
169 	{ 0x11, "rx_512_1023" },
170 	{ 0x12, "rx_1024_1522" },
171 	{ 0x13, "rx_1523_2000" },
172 	{ 0x14, "rx_2001" },
173 	{ 0x15, "tx_hi" },
174 	{ 0x16, "tx_late_col" },
175 	{ 0x17, "tx_pause" },
176 	{ 0x18, "tx_bcast" },
177 	{ 0x19, "tx_mcast" },
178 	{ 0x1A, "tx_ucast" },
179 	{ 0x1B, "tx_deferred" },
180 	{ 0x1C, "tx_total_col" },
181 	{ 0x1D, "tx_exc_col" },
182 	{ 0x1E, "tx_single_col" },
183 	{ 0x1F, "tx_mult_col" },
184 	{ 0x80, "rx_total" },
185 	{ 0x81, "tx_total" },
186 	{ 0x82, "rx_discards" },
187 	{ 0x83, "tx_discards" },
188 };
189 
190 struct ksz_driver_strength_prop {
191 	const char *name;
192 	int offset;
193 	int value;
194 };
195 
196 enum ksz_driver_strength_type {
197 	KSZ_DRIVER_STRENGTH_HI,
198 	KSZ_DRIVER_STRENGTH_LO,
199 	KSZ_DRIVER_STRENGTH_IO,
200 };
201 
202 /**
203  * struct ksz_drive_strength - drive strength mapping
204  * @reg_val:	register value
205  * @microamp:	microamp value
206  */
207 struct ksz_drive_strength {
208 	u32 reg_val;
209 	u32 microamp;
210 };
211 
212 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
213  *
214  * This values are not documented in KSZ9477 variants but confirmed by
215  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
216  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
217  *
218  * Documentation in KSZ8795CLX provides more information with some
219  * recommendations:
220  * - for high speed signals
221  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
222  *      2.5V or 3.3V VDDIO.
223  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
224  *      using 1.8V VDDIO.
225  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
226  *      or 3.3V VDDIO.
227  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
228  *   5. In same interface, the heavy loading should use higher one of the
229  *      drive current strength.
230  * - for low speed signals
231  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
232  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
233  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
234  *   4. If it is heavy loading, can use higher drive current strength.
235  */
236 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
237 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
238 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
239 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
240 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
241 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
242 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
243 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
244 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
245 };
246 
247 /* ksz8830_drive_strengths - Drive strength mapping for KSZ8830, KSZ8873, ..
248  *			     variants.
249  * This values are documented in KSZ8873 and KSZ8863 datasheets.
250  */
251 static const struct ksz_drive_strength ksz8830_drive_strengths[] = {
252 	{ 0,  8000 },
253 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
254 };
255 
256 static const struct ksz_dev_ops ksz8_dev_ops = {
257 	.setup = ksz8_setup,
258 	.get_port_addr = ksz8_get_port_addr,
259 	.cfg_port_member = ksz8_cfg_port_member,
260 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
261 	.port_setup = ksz8_port_setup,
262 	.r_phy = ksz8_r_phy,
263 	.w_phy = ksz8_w_phy,
264 	.r_mib_cnt = ksz8_r_mib_cnt,
265 	.r_mib_pkt = ksz8_r_mib_pkt,
266 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
267 	.freeze_mib = ksz8_freeze_mib,
268 	.port_init_cnt = ksz8_port_init_cnt,
269 	.fdb_dump = ksz8_fdb_dump,
270 	.fdb_add = ksz8_fdb_add,
271 	.fdb_del = ksz8_fdb_del,
272 	.mdb_add = ksz8_mdb_add,
273 	.mdb_del = ksz8_mdb_del,
274 	.vlan_filtering = ksz8_port_vlan_filtering,
275 	.vlan_add = ksz8_port_vlan_add,
276 	.vlan_del = ksz8_port_vlan_del,
277 	.mirror_add = ksz8_port_mirror_add,
278 	.mirror_del = ksz8_port_mirror_del,
279 	.get_caps = ksz8_get_caps,
280 	.phylink_mac_link_up = ksz8_phylink_mac_link_up,
281 	.config_cpu_port = ksz8_config_cpu_port,
282 	.enable_stp_addr = ksz8_enable_stp_addr,
283 	.reset = ksz8_reset_switch,
284 	.init = ksz8_switch_init,
285 	.exit = ksz8_switch_exit,
286 	.change_mtu = ksz8_change_mtu,
287 };
288 
289 static void ksz9477_phylink_mac_link_up(struct ksz_device *dev, int port,
290 					unsigned int mode,
291 					phy_interface_t interface,
292 					struct phy_device *phydev, int speed,
293 					int duplex, bool tx_pause,
294 					bool rx_pause);
295 
296 static const struct ksz_dev_ops ksz9477_dev_ops = {
297 	.setup = ksz9477_setup,
298 	.get_port_addr = ksz9477_get_port_addr,
299 	.cfg_port_member = ksz9477_cfg_port_member,
300 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
301 	.port_setup = ksz9477_port_setup,
302 	.set_ageing_time = ksz9477_set_ageing_time,
303 	.r_phy = ksz9477_r_phy,
304 	.w_phy = ksz9477_w_phy,
305 	.r_mib_cnt = ksz9477_r_mib_cnt,
306 	.r_mib_pkt = ksz9477_r_mib_pkt,
307 	.r_mib_stat64 = ksz_r_mib_stats64,
308 	.freeze_mib = ksz9477_freeze_mib,
309 	.port_init_cnt = ksz9477_port_init_cnt,
310 	.vlan_filtering = ksz9477_port_vlan_filtering,
311 	.vlan_add = ksz9477_port_vlan_add,
312 	.vlan_del = ksz9477_port_vlan_del,
313 	.mirror_add = ksz9477_port_mirror_add,
314 	.mirror_del = ksz9477_port_mirror_del,
315 	.get_caps = ksz9477_get_caps,
316 	.fdb_dump = ksz9477_fdb_dump,
317 	.fdb_add = ksz9477_fdb_add,
318 	.fdb_del = ksz9477_fdb_del,
319 	.mdb_add = ksz9477_mdb_add,
320 	.mdb_del = ksz9477_mdb_del,
321 	.change_mtu = ksz9477_change_mtu,
322 	.phylink_mac_link_up = ksz9477_phylink_mac_link_up,
323 	.get_wol = ksz9477_get_wol,
324 	.set_wol = ksz9477_set_wol,
325 	.wol_pre_shutdown = ksz9477_wol_pre_shutdown,
326 	.config_cpu_port = ksz9477_config_cpu_port,
327 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
328 	.enable_stp_addr = ksz9477_enable_stp_addr,
329 	.reset = ksz9477_reset_switch,
330 	.init = ksz9477_switch_init,
331 	.exit = ksz9477_switch_exit,
332 };
333 
334 static const struct ksz_dev_ops lan937x_dev_ops = {
335 	.setup = lan937x_setup,
336 	.teardown = lan937x_teardown,
337 	.get_port_addr = ksz9477_get_port_addr,
338 	.cfg_port_member = ksz9477_cfg_port_member,
339 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
340 	.port_setup = lan937x_port_setup,
341 	.set_ageing_time = lan937x_set_ageing_time,
342 	.r_phy = lan937x_r_phy,
343 	.w_phy = lan937x_w_phy,
344 	.r_mib_cnt = ksz9477_r_mib_cnt,
345 	.r_mib_pkt = ksz9477_r_mib_pkt,
346 	.r_mib_stat64 = ksz_r_mib_stats64,
347 	.freeze_mib = ksz9477_freeze_mib,
348 	.port_init_cnt = ksz9477_port_init_cnt,
349 	.vlan_filtering = ksz9477_port_vlan_filtering,
350 	.vlan_add = ksz9477_port_vlan_add,
351 	.vlan_del = ksz9477_port_vlan_del,
352 	.mirror_add = ksz9477_port_mirror_add,
353 	.mirror_del = ksz9477_port_mirror_del,
354 	.get_caps = lan937x_phylink_get_caps,
355 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
356 	.fdb_dump = ksz9477_fdb_dump,
357 	.fdb_add = ksz9477_fdb_add,
358 	.fdb_del = ksz9477_fdb_del,
359 	.mdb_add = ksz9477_mdb_add,
360 	.mdb_del = ksz9477_mdb_del,
361 	.change_mtu = lan937x_change_mtu,
362 	.phylink_mac_link_up = ksz9477_phylink_mac_link_up,
363 	.config_cpu_port = lan937x_config_cpu_port,
364 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
365 	.enable_stp_addr = ksz9477_enable_stp_addr,
366 	.reset = lan937x_reset_switch,
367 	.init = lan937x_switch_init,
368 	.exit = lan937x_switch_exit,
369 };
370 
371 static const u16 ksz8795_regs[] = {
372 	[REG_SW_MAC_ADDR]		= 0x68,
373 	[REG_IND_CTRL_0]		= 0x6E,
374 	[REG_IND_DATA_8]		= 0x70,
375 	[REG_IND_DATA_CHECK]		= 0x72,
376 	[REG_IND_DATA_HI]		= 0x71,
377 	[REG_IND_DATA_LO]		= 0x75,
378 	[REG_IND_MIB_CHECK]		= 0x74,
379 	[REG_IND_BYTE]			= 0xA0,
380 	[P_FORCE_CTRL]			= 0x0C,
381 	[P_LINK_STATUS]			= 0x0E,
382 	[P_LOCAL_CTRL]			= 0x07,
383 	[P_NEG_RESTART_CTRL]		= 0x0D,
384 	[P_REMOTE_STATUS]		= 0x08,
385 	[P_SPEED_STATUS]		= 0x09,
386 	[S_TAIL_TAG_CTRL]		= 0x0C,
387 	[P_STP_CTRL]			= 0x02,
388 	[S_START_CTRL]			= 0x01,
389 	[S_BROADCAST_CTRL]		= 0x06,
390 	[S_MULTICAST_CTRL]		= 0x04,
391 	[P_XMII_CTRL_0]			= 0x06,
392 	[P_XMII_CTRL_1]			= 0x06,
393 };
394 
395 static const u32 ksz8795_masks[] = {
396 	[PORT_802_1P_REMAPPING]		= BIT(7),
397 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
398 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
399 	[MIB_COUNTER_VALID]		= BIT(5),
400 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
401 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
402 	[VLAN_TABLE_VALID]		= BIT(12),
403 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
404 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
405 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
406 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
407 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
408 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
409 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
410 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
411 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
412 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
413 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
414 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
415 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
416 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
417 };
418 
419 static const u8 ksz8795_xmii_ctrl0[] = {
420 	[P_MII_100MBIT]			= 0,
421 	[P_MII_10MBIT]			= 1,
422 	[P_MII_FULL_DUPLEX]		= 0,
423 	[P_MII_HALF_DUPLEX]		= 1,
424 };
425 
426 static const u8 ksz8795_xmii_ctrl1[] = {
427 	[P_RGMII_SEL]			= 3,
428 	[P_GMII_SEL]			= 2,
429 	[P_RMII_SEL]			= 1,
430 	[P_MII_SEL]			= 0,
431 	[P_GMII_1GBIT]			= 1,
432 	[P_GMII_NOT_1GBIT]		= 0,
433 };
434 
435 static const u8 ksz8795_shifts[] = {
436 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
437 	[VLAN_TABLE]			= 16,
438 	[STATIC_MAC_FWD_PORTS]		= 16,
439 	[STATIC_MAC_FID]		= 24,
440 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
441 	[DYNAMIC_MAC_ENTRIES]		= 29,
442 	[DYNAMIC_MAC_FID]		= 16,
443 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
444 	[DYNAMIC_MAC_SRC_PORT]		= 24,
445 };
446 
447 static const u16 ksz8863_regs[] = {
448 	[REG_SW_MAC_ADDR]		= 0x70,
449 	[REG_IND_CTRL_0]		= 0x79,
450 	[REG_IND_DATA_8]		= 0x7B,
451 	[REG_IND_DATA_CHECK]		= 0x7B,
452 	[REG_IND_DATA_HI]		= 0x7C,
453 	[REG_IND_DATA_LO]		= 0x80,
454 	[REG_IND_MIB_CHECK]		= 0x80,
455 	[P_FORCE_CTRL]			= 0x0C,
456 	[P_LINK_STATUS]			= 0x0E,
457 	[P_LOCAL_CTRL]			= 0x0C,
458 	[P_NEG_RESTART_CTRL]		= 0x0D,
459 	[P_REMOTE_STATUS]		= 0x0E,
460 	[P_SPEED_STATUS]		= 0x0F,
461 	[S_TAIL_TAG_CTRL]		= 0x03,
462 	[P_STP_CTRL]			= 0x02,
463 	[S_START_CTRL]			= 0x01,
464 	[S_BROADCAST_CTRL]		= 0x06,
465 	[S_MULTICAST_CTRL]		= 0x04,
466 };
467 
468 static const u32 ksz8863_masks[] = {
469 	[PORT_802_1P_REMAPPING]		= BIT(3),
470 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
471 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
472 	[MIB_COUNTER_VALID]		= BIT(6),
473 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
474 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
475 	[VLAN_TABLE_VALID]		= BIT(19),
476 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
477 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
478 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
479 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
480 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
481 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
482 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
483 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
484 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
485 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
486 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
487 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
488 };
489 
490 static u8 ksz8863_shifts[] = {
491 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
492 	[STATIC_MAC_FWD_PORTS]		= 16,
493 	[STATIC_MAC_FID]		= 22,
494 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
495 	[DYNAMIC_MAC_ENTRIES]		= 24,
496 	[DYNAMIC_MAC_FID]		= 16,
497 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
498 	[DYNAMIC_MAC_SRC_PORT]		= 20,
499 };
500 
501 static const u16 ksz9477_regs[] = {
502 	[REG_SW_MAC_ADDR]		= 0x0302,
503 	[P_STP_CTRL]			= 0x0B04,
504 	[S_START_CTRL]			= 0x0300,
505 	[S_BROADCAST_CTRL]		= 0x0332,
506 	[S_MULTICAST_CTRL]		= 0x0331,
507 	[P_XMII_CTRL_0]			= 0x0300,
508 	[P_XMII_CTRL_1]			= 0x0301,
509 };
510 
511 static const u32 ksz9477_masks[] = {
512 	[ALU_STAT_WRITE]		= 0,
513 	[ALU_STAT_READ]			= 1,
514 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
515 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
516 };
517 
518 static const u8 ksz9477_shifts[] = {
519 	[ALU_STAT_INDEX]		= 16,
520 };
521 
522 static const u8 ksz9477_xmii_ctrl0[] = {
523 	[P_MII_100MBIT]			= 1,
524 	[P_MII_10MBIT]			= 0,
525 	[P_MII_FULL_DUPLEX]		= 1,
526 	[P_MII_HALF_DUPLEX]		= 0,
527 };
528 
529 static const u8 ksz9477_xmii_ctrl1[] = {
530 	[P_RGMII_SEL]			= 0,
531 	[P_RMII_SEL]			= 1,
532 	[P_GMII_SEL]			= 2,
533 	[P_MII_SEL]			= 3,
534 	[P_GMII_1GBIT]			= 0,
535 	[P_GMII_NOT_1GBIT]		= 1,
536 };
537 
538 static const u32 lan937x_masks[] = {
539 	[ALU_STAT_WRITE]		= 1,
540 	[ALU_STAT_READ]			= 2,
541 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
542 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
543 };
544 
545 static const u8 lan937x_shifts[] = {
546 	[ALU_STAT_INDEX]		= 8,
547 };
548 
549 static const struct regmap_range ksz8563_valid_regs[] = {
550 	regmap_reg_range(0x0000, 0x0003),
551 	regmap_reg_range(0x0006, 0x0006),
552 	regmap_reg_range(0x000f, 0x001f),
553 	regmap_reg_range(0x0100, 0x0100),
554 	regmap_reg_range(0x0104, 0x0107),
555 	regmap_reg_range(0x010d, 0x010d),
556 	regmap_reg_range(0x0110, 0x0113),
557 	regmap_reg_range(0x0120, 0x012b),
558 	regmap_reg_range(0x0201, 0x0201),
559 	regmap_reg_range(0x0210, 0x0213),
560 	regmap_reg_range(0x0300, 0x0300),
561 	regmap_reg_range(0x0302, 0x031b),
562 	regmap_reg_range(0x0320, 0x032b),
563 	regmap_reg_range(0x0330, 0x0336),
564 	regmap_reg_range(0x0338, 0x033e),
565 	regmap_reg_range(0x0340, 0x035f),
566 	regmap_reg_range(0x0370, 0x0370),
567 	regmap_reg_range(0x0378, 0x0378),
568 	regmap_reg_range(0x037c, 0x037d),
569 	regmap_reg_range(0x0390, 0x0393),
570 	regmap_reg_range(0x0400, 0x040e),
571 	regmap_reg_range(0x0410, 0x042f),
572 	regmap_reg_range(0x0500, 0x0519),
573 	regmap_reg_range(0x0520, 0x054b),
574 	regmap_reg_range(0x0550, 0x05b3),
575 
576 	/* port 1 */
577 	regmap_reg_range(0x1000, 0x1001),
578 	regmap_reg_range(0x1004, 0x100b),
579 	regmap_reg_range(0x1013, 0x1013),
580 	regmap_reg_range(0x1017, 0x1017),
581 	regmap_reg_range(0x101b, 0x101b),
582 	regmap_reg_range(0x101f, 0x1021),
583 	regmap_reg_range(0x1030, 0x1030),
584 	regmap_reg_range(0x1100, 0x1111),
585 	regmap_reg_range(0x111a, 0x111d),
586 	regmap_reg_range(0x1122, 0x1127),
587 	regmap_reg_range(0x112a, 0x112b),
588 	regmap_reg_range(0x1136, 0x1139),
589 	regmap_reg_range(0x113e, 0x113f),
590 	regmap_reg_range(0x1400, 0x1401),
591 	regmap_reg_range(0x1403, 0x1403),
592 	regmap_reg_range(0x1410, 0x1417),
593 	regmap_reg_range(0x1420, 0x1423),
594 	regmap_reg_range(0x1500, 0x1507),
595 	regmap_reg_range(0x1600, 0x1612),
596 	regmap_reg_range(0x1800, 0x180f),
597 	regmap_reg_range(0x1900, 0x1907),
598 	regmap_reg_range(0x1914, 0x191b),
599 	regmap_reg_range(0x1a00, 0x1a03),
600 	regmap_reg_range(0x1a04, 0x1a08),
601 	regmap_reg_range(0x1b00, 0x1b01),
602 	regmap_reg_range(0x1b04, 0x1b04),
603 	regmap_reg_range(0x1c00, 0x1c05),
604 	regmap_reg_range(0x1c08, 0x1c1b),
605 
606 	/* port 2 */
607 	regmap_reg_range(0x2000, 0x2001),
608 	regmap_reg_range(0x2004, 0x200b),
609 	regmap_reg_range(0x2013, 0x2013),
610 	regmap_reg_range(0x2017, 0x2017),
611 	regmap_reg_range(0x201b, 0x201b),
612 	regmap_reg_range(0x201f, 0x2021),
613 	regmap_reg_range(0x2030, 0x2030),
614 	regmap_reg_range(0x2100, 0x2111),
615 	regmap_reg_range(0x211a, 0x211d),
616 	regmap_reg_range(0x2122, 0x2127),
617 	regmap_reg_range(0x212a, 0x212b),
618 	regmap_reg_range(0x2136, 0x2139),
619 	regmap_reg_range(0x213e, 0x213f),
620 	regmap_reg_range(0x2400, 0x2401),
621 	regmap_reg_range(0x2403, 0x2403),
622 	regmap_reg_range(0x2410, 0x2417),
623 	regmap_reg_range(0x2420, 0x2423),
624 	regmap_reg_range(0x2500, 0x2507),
625 	regmap_reg_range(0x2600, 0x2612),
626 	regmap_reg_range(0x2800, 0x280f),
627 	regmap_reg_range(0x2900, 0x2907),
628 	regmap_reg_range(0x2914, 0x291b),
629 	regmap_reg_range(0x2a00, 0x2a03),
630 	regmap_reg_range(0x2a04, 0x2a08),
631 	regmap_reg_range(0x2b00, 0x2b01),
632 	regmap_reg_range(0x2b04, 0x2b04),
633 	regmap_reg_range(0x2c00, 0x2c05),
634 	regmap_reg_range(0x2c08, 0x2c1b),
635 
636 	/* port 3 */
637 	regmap_reg_range(0x3000, 0x3001),
638 	regmap_reg_range(0x3004, 0x300b),
639 	regmap_reg_range(0x3013, 0x3013),
640 	regmap_reg_range(0x3017, 0x3017),
641 	regmap_reg_range(0x301b, 0x301b),
642 	regmap_reg_range(0x301f, 0x3021),
643 	regmap_reg_range(0x3030, 0x3030),
644 	regmap_reg_range(0x3300, 0x3301),
645 	regmap_reg_range(0x3303, 0x3303),
646 	regmap_reg_range(0x3400, 0x3401),
647 	regmap_reg_range(0x3403, 0x3403),
648 	regmap_reg_range(0x3410, 0x3417),
649 	regmap_reg_range(0x3420, 0x3423),
650 	regmap_reg_range(0x3500, 0x3507),
651 	regmap_reg_range(0x3600, 0x3612),
652 	regmap_reg_range(0x3800, 0x380f),
653 	regmap_reg_range(0x3900, 0x3907),
654 	regmap_reg_range(0x3914, 0x391b),
655 	regmap_reg_range(0x3a00, 0x3a03),
656 	regmap_reg_range(0x3a04, 0x3a08),
657 	regmap_reg_range(0x3b00, 0x3b01),
658 	regmap_reg_range(0x3b04, 0x3b04),
659 	regmap_reg_range(0x3c00, 0x3c05),
660 	regmap_reg_range(0x3c08, 0x3c1b),
661 };
662 
663 static const struct regmap_access_table ksz8563_register_set = {
664 	.yes_ranges = ksz8563_valid_regs,
665 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
666 };
667 
668 static const struct regmap_range ksz9477_valid_regs[] = {
669 	regmap_reg_range(0x0000, 0x0003),
670 	regmap_reg_range(0x0006, 0x0006),
671 	regmap_reg_range(0x0010, 0x001f),
672 	regmap_reg_range(0x0100, 0x0100),
673 	regmap_reg_range(0x0103, 0x0107),
674 	regmap_reg_range(0x010d, 0x010d),
675 	regmap_reg_range(0x0110, 0x0113),
676 	regmap_reg_range(0x0120, 0x012b),
677 	regmap_reg_range(0x0201, 0x0201),
678 	regmap_reg_range(0x0210, 0x0213),
679 	regmap_reg_range(0x0300, 0x0300),
680 	regmap_reg_range(0x0302, 0x031b),
681 	regmap_reg_range(0x0320, 0x032b),
682 	regmap_reg_range(0x0330, 0x0336),
683 	regmap_reg_range(0x0338, 0x033b),
684 	regmap_reg_range(0x033e, 0x033e),
685 	regmap_reg_range(0x0340, 0x035f),
686 	regmap_reg_range(0x0370, 0x0370),
687 	regmap_reg_range(0x0378, 0x0378),
688 	regmap_reg_range(0x037c, 0x037d),
689 	regmap_reg_range(0x0390, 0x0393),
690 	regmap_reg_range(0x0400, 0x040e),
691 	regmap_reg_range(0x0410, 0x042f),
692 	regmap_reg_range(0x0444, 0x044b),
693 	regmap_reg_range(0x0450, 0x046f),
694 	regmap_reg_range(0x0500, 0x0519),
695 	regmap_reg_range(0x0520, 0x054b),
696 	regmap_reg_range(0x0550, 0x05b3),
697 	regmap_reg_range(0x0604, 0x060b),
698 	regmap_reg_range(0x0610, 0x0612),
699 	regmap_reg_range(0x0614, 0x062c),
700 	regmap_reg_range(0x0640, 0x0645),
701 	regmap_reg_range(0x0648, 0x064d),
702 
703 	/* port 1 */
704 	regmap_reg_range(0x1000, 0x1001),
705 	regmap_reg_range(0x1013, 0x1013),
706 	regmap_reg_range(0x1017, 0x1017),
707 	regmap_reg_range(0x101b, 0x101b),
708 	regmap_reg_range(0x101f, 0x1020),
709 	regmap_reg_range(0x1030, 0x1030),
710 	regmap_reg_range(0x1100, 0x1115),
711 	regmap_reg_range(0x111a, 0x111f),
712 	regmap_reg_range(0x1120, 0x112b),
713 	regmap_reg_range(0x1134, 0x113b),
714 	regmap_reg_range(0x113c, 0x113f),
715 	regmap_reg_range(0x1400, 0x1401),
716 	regmap_reg_range(0x1403, 0x1403),
717 	regmap_reg_range(0x1410, 0x1417),
718 	regmap_reg_range(0x1420, 0x1423),
719 	regmap_reg_range(0x1500, 0x1507),
720 	regmap_reg_range(0x1600, 0x1613),
721 	regmap_reg_range(0x1800, 0x180f),
722 	regmap_reg_range(0x1820, 0x1827),
723 	regmap_reg_range(0x1830, 0x1837),
724 	regmap_reg_range(0x1840, 0x184b),
725 	regmap_reg_range(0x1900, 0x1907),
726 	regmap_reg_range(0x1914, 0x191b),
727 	regmap_reg_range(0x1920, 0x1920),
728 	regmap_reg_range(0x1923, 0x1927),
729 	regmap_reg_range(0x1a00, 0x1a03),
730 	regmap_reg_range(0x1a04, 0x1a07),
731 	regmap_reg_range(0x1b00, 0x1b01),
732 	regmap_reg_range(0x1b04, 0x1b04),
733 	regmap_reg_range(0x1c00, 0x1c05),
734 	regmap_reg_range(0x1c08, 0x1c1b),
735 
736 	/* port 2 */
737 	regmap_reg_range(0x2000, 0x2001),
738 	regmap_reg_range(0x2013, 0x2013),
739 	regmap_reg_range(0x2017, 0x2017),
740 	regmap_reg_range(0x201b, 0x201b),
741 	regmap_reg_range(0x201f, 0x2020),
742 	regmap_reg_range(0x2030, 0x2030),
743 	regmap_reg_range(0x2100, 0x2115),
744 	regmap_reg_range(0x211a, 0x211f),
745 	regmap_reg_range(0x2120, 0x212b),
746 	regmap_reg_range(0x2134, 0x213b),
747 	regmap_reg_range(0x213c, 0x213f),
748 	regmap_reg_range(0x2400, 0x2401),
749 	regmap_reg_range(0x2403, 0x2403),
750 	regmap_reg_range(0x2410, 0x2417),
751 	regmap_reg_range(0x2420, 0x2423),
752 	regmap_reg_range(0x2500, 0x2507),
753 	regmap_reg_range(0x2600, 0x2613),
754 	regmap_reg_range(0x2800, 0x280f),
755 	regmap_reg_range(0x2820, 0x2827),
756 	regmap_reg_range(0x2830, 0x2837),
757 	regmap_reg_range(0x2840, 0x284b),
758 	regmap_reg_range(0x2900, 0x2907),
759 	regmap_reg_range(0x2914, 0x291b),
760 	regmap_reg_range(0x2920, 0x2920),
761 	regmap_reg_range(0x2923, 0x2927),
762 	regmap_reg_range(0x2a00, 0x2a03),
763 	regmap_reg_range(0x2a04, 0x2a07),
764 	regmap_reg_range(0x2b00, 0x2b01),
765 	regmap_reg_range(0x2b04, 0x2b04),
766 	regmap_reg_range(0x2c00, 0x2c05),
767 	regmap_reg_range(0x2c08, 0x2c1b),
768 
769 	/* port 3 */
770 	regmap_reg_range(0x3000, 0x3001),
771 	regmap_reg_range(0x3013, 0x3013),
772 	regmap_reg_range(0x3017, 0x3017),
773 	regmap_reg_range(0x301b, 0x301b),
774 	regmap_reg_range(0x301f, 0x3020),
775 	regmap_reg_range(0x3030, 0x3030),
776 	regmap_reg_range(0x3100, 0x3115),
777 	regmap_reg_range(0x311a, 0x311f),
778 	regmap_reg_range(0x3120, 0x312b),
779 	regmap_reg_range(0x3134, 0x313b),
780 	regmap_reg_range(0x313c, 0x313f),
781 	regmap_reg_range(0x3400, 0x3401),
782 	regmap_reg_range(0x3403, 0x3403),
783 	regmap_reg_range(0x3410, 0x3417),
784 	regmap_reg_range(0x3420, 0x3423),
785 	regmap_reg_range(0x3500, 0x3507),
786 	regmap_reg_range(0x3600, 0x3613),
787 	regmap_reg_range(0x3800, 0x380f),
788 	regmap_reg_range(0x3820, 0x3827),
789 	regmap_reg_range(0x3830, 0x3837),
790 	regmap_reg_range(0x3840, 0x384b),
791 	regmap_reg_range(0x3900, 0x3907),
792 	regmap_reg_range(0x3914, 0x391b),
793 	regmap_reg_range(0x3920, 0x3920),
794 	regmap_reg_range(0x3923, 0x3927),
795 	regmap_reg_range(0x3a00, 0x3a03),
796 	regmap_reg_range(0x3a04, 0x3a07),
797 	regmap_reg_range(0x3b00, 0x3b01),
798 	regmap_reg_range(0x3b04, 0x3b04),
799 	regmap_reg_range(0x3c00, 0x3c05),
800 	regmap_reg_range(0x3c08, 0x3c1b),
801 
802 	/* port 4 */
803 	regmap_reg_range(0x4000, 0x4001),
804 	regmap_reg_range(0x4013, 0x4013),
805 	regmap_reg_range(0x4017, 0x4017),
806 	regmap_reg_range(0x401b, 0x401b),
807 	regmap_reg_range(0x401f, 0x4020),
808 	regmap_reg_range(0x4030, 0x4030),
809 	regmap_reg_range(0x4100, 0x4115),
810 	regmap_reg_range(0x411a, 0x411f),
811 	regmap_reg_range(0x4120, 0x412b),
812 	regmap_reg_range(0x4134, 0x413b),
813 	regmap_reg_range(0x413c, 0x413f),
814 	regmap_reg_range(0x4400, 0x4401),
815 	regmap_reg_range(0x4403, 0x4403),
816 	regmap_reg_range(0x4410, 0x4417),
817 	regmap_reg_range(0x4420, 0x4423),
818 	regmap_reg_range(0x4500, 0x4507),
819 	regmap_reg_range(0x4600, 0x4613),
820 	regmap_reg_range(0x4800, 0x480f),
821 	regmap_reg_range(0x4820, 0x4827),
822 	regmap_reg_range(0x4830, 0x4837),
823 	regmap_reg_range(0x4840, 0x484b),
824 	regmap_reg_range(0x4900, 0x4907),
825 	regmap_reg_range(0x4914, 0x491b),
826 	regmap_reg_range(0x4920, 0x4920),
827 	regmap_reg_range(0x4923, 0x4927),
828 	regmap_reg_range(0x4a00, 0x4a03),
829 	regmap_reg_range(0x4a04, 0x4a07),
830 	regmap_reg_range(0x4b00, 0x4b01),
831 	regmap_reg_range(0x4b04, 0x4b04),
832 	regmap_reg_range(0x4c00, 0x4c05),
833 	regmap_reg_range(0x4c08, 0x4c1b),
834 
835 	/* port 5 */
836 	regmap_reg_range(0x5000, 0x5001),
837 	regmap_reg_range(0x5013, 0x5013),
838 	regmap_reg_range(0x5017, 0x5017),
839 	regmap_reg_range(0x501b, 0x501b),
840 	regmap_reg_range(0x501f, 0x5020),
841 	regmap_reg_range(0x5030, 0x5030),
842 	regmap_reg_range(0x5100, 0x5115),
843 	regmap_reg_range(0x511a, 0x511f),
844 	regmap_reg_range(0x5120, 0x512b),
845 	regmap_reg_range(0x5134, 0x513b),
846 	regmap_reg_range(0x513c, 0x513f),
847 	regmap_reg_range(0x5400, 0x5401),
848 	regmap_reg_range(0x5403, 0x5403),
849 	regmap_reg_range(0x5410, 0x5417),
850 	regmap_reg_range(0x5420, 0x5423),
851 	regmap_reg_range(0x5500, 0x5507),
852 	regmap_reg_range(0x5600, 0x5613),
853 	regmap_reg_range(0x5800, 0x580f),
854 	regmap_reg_range(0x5820, 0x5827),
855 	regmap_reg_range(0x5830, 0x5837),
856 	regmap_reg_range(0x5840, 0x584b),
857 	regmap_reg_range(0x5900, 0x5907),
858 	regmap_reg_range(0x5914, 0x591b),
859 	regmap_reg_range(0x5920, 0x5920),
860 	regmap_reg_range(0x5923, 0x5927),
861 	regmap_reg_range(0x5a00, 0x5a03),
862 	regmap_reg_range(0x5a04, 0x5a07),
863 	regmap_reg_range(0x5b00, 0x5b01),
864 	regmap_reg_range(0x5b04, 0x5b04),
865 	regmap_reg_range(0x5c00, 0x5c05),
866 	regmap_reg_range(0x5c08, 0x5c1b),
867 
868 	/* port 6 */
869 	regmap_reg_range(0x6000, 0x6001),
870 	regmap_reg_range(0x6013, 0x6013),
871 	regmap_reg_range(0x6017, 0x6017),
872 	regmap_reg_range(0x601b, 0x601b),
873 	regmap_reg_range(0x601f, 0x6020),
874 	regmap_reg_range(0x6030, 0x6030),
875 	regmap_reg_range(0x6300, 0x6301),
876 	regmap_reg_range(0x6400, 0x6401),
877 	regmap_reg_range(0x6403, 0x6403),
878 	regmap_reg_range(0x6410, 0x6417),
879 	regmap_reg_range(0x6420, 0x6423),
880 	regmap_reg_range(0x6500, 0x6507),
881 	regmap_reg_range(0x6600, 0x6613),
882 	regmap_reg_range(0x6800, 0x680f),
883 	regmap_reg_range(0x6820, 0x6827),
884 	regmap_reg_range(0x6830, 0x6837),
885 	regmap_reg_range(0x6840, 0x684b),
886 	regmap_reg_range(0x6900, 0x6907),
887 	regmap_reg_range(0x6914, 0x691b),
888 	regmap_reg_range(0x6920, 0x6920),
889 	regmap_reg_range(0x6923, 0x6927),
890 	regmap_reg_range(0x6a00, 0x6a03),
891 	regmap_reg_range(0x6a04, 0x6a07),
892 	regmap_reg_range(0x6b00, 0x6b01),
893 	regmap_reg_range(0x6b04, 0x6b04),
894 	regmap_reg_range(0x6c00, 0x6c05),
895 	regmap_reg_range(0x6c08, 0x6c1b),
896 
897 	/* port 7 */
898 	regmap_reg_range(0x7000, 0x7001),
899 	regmap_reg_range(0x7013, 0x7013),
900 	regmap_reg_range(0x7017, 0x7017),
901 	regmap_reg_range(0x701b, 0x701b),
902 	regmap_reg_range(0x701f, 0x7020),
903 	regmap_reg_range(0x7030, 0x7030),
904 	regmap_reg_range(0x7200, 0x7203),
905 	regmap_reg_range(0x7206, 0x7207),
906 	regmap_reg_range(0x7300, 0x7301),
907 	regmap_reg_range(0x7400, 0x7401),
908 	regmap_reg_range(0x7403, 0x7403),
909 	regmap_reg_range(0x7410, 0x7417),
910 	regmap_reg_range(0x7420, 0x7423),
911 	regmap_reg_range(0x7500, 0x7507),
912 	regmap_reg_range(0x7600, 0x7613),
913 	regmap_reg_range(0x7800, 0x780f),
914 	regmap_reg_range(0x7820, 0x7827),
915 	regmap_reg_range(0x7830, 0x7837),
916 	regmap_reg_range(0x7840, 0x784b),
917 	regmap_reg_range(0x7900, 0x7907),
918 	regmap_reg_range(0x7914, 0x791b),
919 	regmap_reg_range(0x7920, 0x7920),
920 	regmap_reg_range(0x7923, 0x7927),
921 	regmap_reg_range(0x7a00, 0x7a03),
922 	regmap_reg_range(0x7a04, 0x7a07),
923 	regmap_reg_range(0x7b00, 0x7b01),
924 	regmap_reg_range(0x7b04, 0x7b04),
925 	regmap_reg_range(0x7c00, 0x7c05),
926 	regmap_reg_range(0x7c08, 0x7c1b),
927 };
928 
929 static const struct regmap_access_table ksz9477_register_set = {
930 	.yes_ranges = ksz9477_valid_regs,
931 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
932 };
933 
934 static const struct regmap_range ksz9896_valid_regs[] = {
935 	regmap_reg_range(0x0000, 0x0003),
936 	regmap_reg_range(0x0006, 0x0006),
937 	regmap_reg_range(0x0010, 0x001f),
938 	regmap_reg_range(0x0100, 0x0100),
939 	regmap_reg_range(0x0103, 0x0107),
940 	regmap_reg_range(0x010d, 0x010d),
941 	regmap_reg_range(0x0110, 0x0113),
942 	regmap_reg_range(0x0120, 0x0127),
943 	regmap_reg_range(0x0201, 0x0201),
944 	regmap_reg_range(0x0210, 0x0213),
945 	regmap_reg_range(0x0300, 0x0300),
946 	regmap_reg_range(0x0302, 0x030b),
947 	regmap_reg_range(0x0310, 0x031b),
948 	regmap_reg_range(0x0320, 0x032b),
949 	regmap_reg_range(0x0330, 0x0336),
950 	regmap_reg_range(0x0338, 0x033b),
951 	regmap_reg_range(0x033e, 0x033e),
952 	regmap_reg_range(0x0340, 0x035f),
953 	regmap_reg_range(0x0370, 0x0370),
954 	regmap_reg_range(0x0378, 0x0378),
955 	regmap_reg_range(0x037c, 0x037d),
956 	regmap_reg_range(0x0390, 0x0393),
957 	regmap_reg_range(0x0400, 0x040e),
958 	regmap_reg_range(0x0410, 0x042f),
959 
960 	/* port 1 */
961 	regmap_reg_range(0x1000, 0x1001),
962 	regmap_reg_range(0x1013, 0x1013),
963 	regmap_reg_range(0x1017, 0x1017),
964 	regmap_reg_range(0x101b, 0x101b),
965 	regmap_reg_range(0x101f, 0x1020),
966 	regmap_reg_range(0x1030, 0x1030),
967 	regmap_reg_range(0x1100, 0x1115),
968 	regmap_reg_range(0x111a, 0x111f),
969 	regmap_reg_range(0x1122, 0x1127),
970 	regmap_reg_range(0x112a, 0x112b),
971 	regmap_reg_range(0x1136, 0x1139),
972 	regmap_reg_range(0x113e, 0x113f),
973 	regmap_reg_range(0x1400, 0x1401),
974 	regmap_reg_range(0x1403, 0x1403),
975 	regmap_reg_range(0x1410, 0x1417),
976 	regmap_reg_range(0x1420, 0x1423),
977 	regmap_reg_range(0x1500, 0x1507),
978 	regmap_reg_range(0x1600, 0x1612),
979 	regmap_reg_range(0x1800, 0x180f),
980 	regmap_reg_range(0x1820, 0x1827),
981 	regmap_reg_range(0x1830, 0x1837),
982 	regmap_reg_range(0x1840, 0x184b),
983 	regmap_reg_range(0x1900, 0x1907),
984 	regmap_reg_range(0x1914, 0x1915),
985 	regmap_reg_range(0x1a00, 0x1a03),
986 	regmap_reg_range(0x1a04, 0x1a07),
987 	regmap_reg_range(0x1b00, 0x1b01),
988 	regmap_reg_range(0x1b04, 0x1b04),
989 
990 	/* port 2 */
991 	regmap_reg_range(0x2000, 0x2001),
992 	regmap_reg_range(0x2013, 0x2013),
993 	regmap_reg_range(0x2017, 0x2017),
994 	regmap_reg_range(0x201b, 0x201b),
995 	regmap_reg_range(0x201f, 0x2020),
996 	regmap_reg_range(0x2030, 0x2030),
997 	regmap_reg_range(0x2100, 0x2115),
998 	regmap_reg_range(0x211a, 0x211f),
999 	regmap_reg_range(0x2122, 0x2127),
1000 	regmap_reg_range(0x212a, 0x212b),
1001 	regmap_reg_range(0x2136, 0x2139),
1002 	regmap_reg_range(0x213e, 0x213f),
1003 	regmap_reg_range(0x2400, 0x2401),
1004 	regmap_reg_range(0x2403, 0x2403),
1005 	regmap_reg_range(0x2410, 0x2417),
1006 	regmap_reg_range(0x2420, 0x2423),
1007 	regmap_reg_range(0x2500, 0x2507),
1008 	regmap_reg_range(0x2600, 0x2612),
1009 	regmap_reg_range(0x2800, 0x280f),
1010 	regmap_reg_range(0x2820, 0x2827),
1011 	regmap_reg_range(0x2830, 0x2837),
1012 	regmap_reg_range(0x2840, 0x284b),
1013 	regmap_reg_range(0x2900, 0x2907),
1014 	regmap_reg_range(0x2914, 0x2915),
1015 	regmap_reg_range(0x2a00, 0x2a03),
1016 	regmap_reg_range(0x2a04, 0x2a07),
1017 	regmap_reg_range(0x2b00, 0x2b01),
1018 	regmap_reg_range(0x2b04, 0x2b04),
1019 
1020 	/* port 3 */
1021 	regmap_reg_range(0x3000, 0x3001),
1022 	regmap_reg_range(0x3013, 0x3013),
1023 	regmap_reg_range(0x3017, 0x3017),
1024 	regmap_reg_range(0x301b, 0x301b),
1025 	regmap_reg_range(0x301f, 0x3020),
1026 	regmap_reg_range(0x3030, 0x3030),
1027 	regmap_reg_range(0x3100, 0x3115),
1028 	regmap_reg_range(0x311a, 0x311f),
1029 	regmap_reg_range(0x3122, 0x3127),
1030 	regmap_reg_range(0x312a, 0x312b),
1031 	regmap_reg_range(0x3136, 0x3139),
1032 	regmap_reg_range(0x313e, 0x313f),
1033 	regmap_reg_range(0x3400, 0x3401),
1034 	regmap_reg_range(0x3403, 0x3403),
1035 	regmap_reg_range(0x3410, 0x3417),
1036 	regmap_reg_range(0x3420, 0x3423),
1037 	regmap_reg_range(0x3500, 0x3507),
1038 	regmap_reg_range(0x3600, 0x3612),
1039 	regmap_reg_range(0x3800, 0x380f),
1040 	regmap_reg_range(0x3820, 0x3827),
1041 	regmap_reg_range(0x3830, 0x3837),
1042 	regmap_reg_range(0x3840, 0x384b),
1043 	regmap_reg_range(0x3900, 0x3907),
1044 	regmap_reg_range(0x3914, 0x3915),
1045 	regmap_reg_range(0x3a00, 0x3a03),
1046 	regmap_reg_range(0x3a04, 0x3a07),
1047 	regmap_reg_range(0x3b00, 0x3b01),
1048 	regmap_reg_range(0x3b04, 0x3b04),
1049 
1050 	/* port 4 */
1051 	regmap_reg_range(0x4000, 0x4001),
1052 	regmap_reg_range(0x4013, 0x4013),
1053 	regmap_reg_range(0x4017, 0x4017),
1054 	regmap_reg_range(0x401b, 0x401b),
1055 	regmap_reg_range(0x401f, 0x4020),
1056 	regmap_reg_range(0x4030, 0x4030),
1057 	regmap_reg_range(0x4100, 0x4115),
1058 	regmap_reg_range(0x411a, 0x411f),
1059 	regmap_reg_range(0x4122, 0x4127),
1060 	regmap_reg_range(0x412a, 0x412b),
1061 	regmap_reg_range(0x4136, 0x4139),
1062 	regmap_reg_range(0x413e, 0x413f),
1063 	regmap_reg_range(0x4400, 0x4401),
1064 	regmap_reg_range(0x4403, 0x4403),
1065 	regmap_reg_range(0x4410, 0x4417),
1066 	regmap_reg_range(0x4420, 0x4423),
1067 	regmap_reg_range(0x4500, 0x4507),
1068 	regmap_reg_range(0x4600, 0x4612),
1069 	regmap_reg_range(0x4800, 0x480f),
1070 	regmap_reg_range(0x4820, 0x4827),
1071 	regmap_reg_range(0x4830, 0x4837),
1072 	regmap_reg_range(0x4840, 0x484b),
1073 	regmap_reg_range(0x4900, 0x4907),
1074 	regmap_reg_range(0x4914, 0x4915),
1075 	regmap_reg_range(0x4a00, 0x4a03),
1076 	regmap_reg_range(0x4a04, 0x4a07),
1077 	regmap_reg_range(0x4b00, 0x4b01),
1078 	regmap_reg_range(0x4b04, 0x4b04),
1079 
1080 	/* port 5 */
1081 	regmap_reg_range(0x5000, 0x5001),
1082 	regmap_reg_range(0x5013, 0x5013),
1083 	regmap_reg_range(0x5017, 0x5017),
1084 	regmap_reg_range(0x501b, 0x501b),
1085 	regmap_reg_range(0x501f, 0x5020),
1086 	regmap_reg_range(0x5030, 0x5030),
1087 	regmap_reg_range(0x5100, 0x5115),
1088 	regmap_reg_range(0x511a, 0x511f),
1089 	regmap_reg_range(0x5122, 0x5127),
1090 	regmap_reg_range(0x512a, 0x512b),
1091 	regmap_reg_range(0x5136, 0x5139),
1092 	regmap_reg_range(0x513e, 0x513f),
1093 	regmap_reg_range(0x5400, 0x5401),
1094 	regmap_reg_range(0x5403, 0x5403),
1095 	regmap_reg_range(0x5410, 0x5417),
1096 	regmap_reg_range(0x5420, 0x5423),
1097 	regmap_reg_range(0x5500, 0x5507),
1098 	regmap_reg_range(0x5600, 0x5612),
1099 	regmap_reg_range(0x5800, 0x580f),
1100 	regmap_reg_range(0x5820, 0x5827),
1101 	regmap_reg_range(0x5830, 0x5837),
1102 	regmap_reg_range(0x5840, 0x584b),
1103 	regmap_reg_range(0x5900, 0x5907),
1104 	regmap_reg_range(0x5914, 0x5915),
1105 	regmap_reg_range(0x5a00, 0x5a03),
1106 	regmap_reg_range(0x5a04, 0x5a07),
1107 	regmap_reg_range(0x5b00, 0x5b01),
1108 	regmap_reg_range(0x5b04, 0x5b04),
1109 
1110 	/* port 6 */
1111 	regmap_reg_range(0x6000, 0x6001),
1112 	regmap_reg_range(0x6013, 0x6013),
1113 	regmap_reg_range(0x6017, 0x6017),
1114 	regmap_reg_range(0x601b, 0x601b),
1115 	regmap_reg_range(0x601f, 0x6020),
1116 	regmap_reg_range(0x6030, 0x6030),
1117 	regmap_reg_range(0x6100, 0x6115),
1118 	regmap_reg_range(0x611a, 0x611f),
1119 	regmap_reg_range(0x6122, 0x6127),
1120 	regmap_reg_range(0x612a, 0x612b),
1121 	regmap_reg_range(0x6136, 0x6139),
1122 	regmap_reg_range(0x613e, 0x613f),
1123 	regmap_reg_range(0x6300, 0x6301),
1124 	regmap_reg_range(0x6400, 0x6401),
1125 	regmap_reg_range(0x6403, 0x6403),
1126 	regmap_reg_range(0x6410, 0x6417),
1127 	regmap_reg_range(0x6420, 0x6423),
1128 	regmap_reg_range(0x6500, 0x6507),
1129 	regmap_reg_range(0x6600, 0x6612),
1130 	regmap_reg_range(0x6800, 0x680f),
1131 	regmap_reg_range(0x6820, 0x6827),
1132 	regmap_reg_range(0x6830, 0x6837),
1133 	regmap_reg_range(0x6840, 0x684b),
1134 	regmap_reg_range(0x6900, 0x6907),
1135 	regmap_reg_range(0x6914, 0x6915),
1136 	regmap_reg_range(0x6a00, 0x6a03),
1137 	regmap_reg_range(0x6a04, 0x6a07),
1138 	regmap_reg_range(0x6b00, 0x6b01),
1139 	regmap_reg_range(0x6b04, 0x6b04),
1140 };
1141 
1142 static const struct regmap_access_table ksz9896_register_set = {
1143 	.yes_ranges = ksz9896_valid_regs,
1144 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1145 };
1146 
1147 static const struct regmap_range ksz8873_valid_regs[] = {
1148 	regmap_reg_range(0x00, 0x01),
1149 	/* global control register */
1150 	regmap_reg_range(0x02, 0x0f),
1151 
1152 	/* port registers */
1153 	regmap_reg_range(0x10, 0x1d),
1154 	regmap_reg_range(0x1e, 0x1f),
1155 	regmap_reg_range(0x20, 0x2d),
1156 	regmap_reg_range(0x2e, 0x2f),
1157 	regmap_reg_range(0x30, 0x39),
1158 	regmap_reg_range(0x3f, 0x3f),
1159 
1160 	/* advanced control registers */
1161 	regmap_reg_range(0x60, 0x6f),
1162 	regmap_reg_range(0x70, 0x75),
1163 	regmap_reg_range(0x76, 0x78),
1164 	regmap_reg_range(0x79, 0x7a),
1165 	regmap_reg_range(0x7b, 0x83),
1166 	regmap_reg_range(0x8e, 0x99),
1167 	regmap_reg_range(0x9a, 0xa5),
1168 	regmap_reg_range(0xa6, 0xa6),
1169 	regmap_reg_range(0xa7, 0xaa),
1170 	regmap_reg_range(0xab, 0xae),
1171 	regmap_reg_range(0xaf, 0xba),
1172 	regmap_reg_range(0xbb, 0xbc),
1173 	regmap_reg_range(0xbd, 0xbd),
1174 	regmap_reg_range(0xc0, 0xc0),
1175 	regmap_reg_range(0xc2, 0xc2),
1176 	regmap_reg_range(0xc3, 0xc3),
1177 	regmap_reg_range(0xc4, 0xc4),
1178 	regmap_reg_range(0xc6, 0xc6),
1179 };
1180 
1181 static const struct regmap_access_table ksz8873_register_set = {
1182 	.yes_ranges = ksz8873_valid_regs,
1183 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1184 };
1185 
1186 const struct ksz_chip_data ksz_switch_chips[] = {
1187 	[KSZ8563] = {
1188 		.chip_id = KSZ8563_CHIP_ID,
1189 		.dev_name = "KSZ8563",
1190 		.num_vlans = 4096,
1191 		.num_alus = 4096,
1192 		.num_statics = 16,
1193 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1194 		.port_cnt = 3,		/* total port count */
1195 		.port_nirqs = 3,
1196 		.num_tx_queues = 4,
1197 		.tc_cbs_supported = true,
1198 		.tc_ets_supported = true,
1199 		.ops = &ksz9477_dev_ops,
1200 		.mib_names = ksz9477_mib_names,
1201 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1202 		.reg_mib_cnt = MIB_COUNTER_NUM,
1203 		.regs = ksz9477_regs,
1204 		.masks = ksz9477_masks,
1205 		.shifts = ksz9477_shifts,
1206 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1207 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1208 		.supports_mii = {false, false, true},
1209 		.supports_rmii = {false, false, true},
1210 		.supports_rgmii = {false, false, true},
1211 		.internal_phy = {true, true, false},
1212 		.gbit_capable = {false, false, true},
1213 		.wr_table = &ksz8563_register_set,
1214 		.rd_table = &ksz8563_register_set,
1215 	},
1216 
1217 	[KSZ8795] = {
1218 		.chip_id = KSZ8795_CHIP_ID,
1219 		.dev_name = "KSZ8795",
1220 		.num_vlans = 4096,
1221 		.num_alus = 0,
1222 		.num_statics = 8,
1223 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1224 		.port_cnt = 5,		/* total cpu and user ports */
1225 		.num_tx_queues = 4,
1226 		.ops = &ksz8_dev_ops,
1227 		.ksz87xx_eee_link_erratum = true,
1228 		.mib_names = ksz9477_mib_names,
1229 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1230 		.reg_mib_cnt = MIB_COUNTER_NUM,
1231 		.regs = ksz8795_regs,
1232 		.masks = ksz8795_masks,
1233 		.shifts = ksz8795_shifts,
1234 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1235 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1236 		.supports_mii = {false, false, false, false, true},
1237 		.supports_rmii = {false, false, false, false, true},
1238 		.supports_rgmii = {false, false, false, false, true},
1239 		.internal_phy = {true, true, true, true, false},
1240 	},
1241 
1242 	[KSZ8794] = {
1243 		/* WARNING
1244 		 * =======
1245 		 * KSZ8794 is similar to KSZ8795, except the port map
1246 		 * contains a gap between external and CPU ports, the
1247 		 * port map is NOT continuous. The per-port register
1248 		 * map is shifted accordingly too, i.e. registers at
1249 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1250 		 * used on KSZ8795 for external port 3.
1251 		 *           external  cpu
1252 		 * KSZ8794   0,1,2      4
1253 		 * KSZ8795   0,1,2,3    4
1254 		 * KSZ8765   0,1,2,3    4
1255 		 * port_cnt is configured as 5, even though it is 4
1256 		 */
1257 		.chip_id = KSZ8794_CHIP_ID,
1258 		.dev_name = "KSZ8794",
1259 		.num_vlans = 4096,
1260 		.num_alus = 0,
1261 		.num_statics = 8,
1262 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1263 		.port_cnt = 5,		/* total cpu and user ports */
1264 		.num_tx_queues = 4,
1265 		.ops = &ksz8_dev_ops,
1266 		.ksz87xx_eee_link_erratum = true,
1267 		.mib_names = ksz9477_mib_names,
1268 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1269 		.reg_mib_cnt = MIB_COUNTER_NUM,
1270 		.regs = ksz8795_regs,
1271 		.masks = ksz8795_masks,
1272 		.shifts = ksz8795_shifts,
1273 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1274 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1275 		.supports_mii = {false, false, false, false, true},
1276 		.supports_rmii = {false, false, false, false, true},
1277 		.supports_rgmii = {false, false, false, false, true},
1278 		.internal_phy = {true, true, true, false, false},
1279 	},
1280 
1281 	[KSZ8765] = {
1282 		.chip_id = KSZ8765_CHIP_ID,
1283 		.dev_name = "KSZ8765",
1284 		.num_vlans = 4096,
1285 		.num_alus = 0,
1286 		.num_statics = 8,
1287 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1288 		.port_cnt = 5,		/* total cpu and user ports */
1289 		.num_tx_queues = 4,
1290 		.ops = &ksz8_dev_ops,
1291 		.ksz87xx_eee_link_erratum = true,
1292 		.mib_names = ksz9477_mib_names,
1293 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1294 		.reg_mib_cnt = MIB_COUNTER_NUM,
1295 		.regs = ksz8795_regs,
1296 		.masks = ksz8795_masks,
1297 		.shifts = ksz8795_shifts,
1298 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1299 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1300 		.supports_mii = {false, false, false, false, true},
1301 		.supports_rmii = {false, false, false, false, true},
1302 		.supports_rgmii = {false, false, false, false, true},
1303 		.internal_phy = {true, true, true, true, false},
1304 	},
1305 
1306 	[KSZ8830] = {
1307 		.chip_id = KSZ8830_CHIP_ID,
1308 		.dev_name = "KSZ8863/KSZ8873",
1309 		.num_vlans = 16,
1310 		.num_alus = 0,
1311 		.num_statics = 8,
1312 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1313 		.port_cnt = 3,
1314 		.num_tx_queues = 4,
1315 		.ops = &ksz8_dev_ops,
1316 		.mib_names = ksz88xx_mib_names,
1317 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1318 		.reg_mib_cnt = MIB_COUNTER_NUM,
1319 		.regs = ksz8863_regs,
1320 		.masks = ksz8863_masks,
1321 		.shifts = ksz8863_shifts,
1322 		.supports_mii = {false, false, true},
1323 		.supports_rmii = {false, false, true},
1324 		.internal_phy = {true, true, false},
1325 		.wr_table = &ksz8873_register_set,
1326 		.rd_table = &ksz8873_register_set,
1327 	},
1328 
1329 	[KSZ9477] = {
1330 		.chip_id = KSZ9477_CHIP_ID,
1331 		.dev_name = "KSZ9477",
1332 		.num_vlans = 4096,
1333 		.num_alus = 4096,
1334 		.num_statics = 16,
1335 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1336 		.port_cnt = 7,		/* total physical port count */
1337 		.port_nirqs = 4,
1338 		.num_tx_queues = 4,
1339 		.tc_cbs_supported = true,
1340 		.tc_ets_supported = true,
1341 		.ops = &ksz9477_dev_ops,
1342 		.mib_names = ksz9477_mib_names,
1343 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1344 		.reg_mib_cnt = MIB_COUNTER_NUM,
1345 		.regs = ksz9477_regs,
1346 		.masks = ksz9477_masks,
1347 		.shifts = ksz9477_shifts,
1348 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1349 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1350 		.supports_mii	= {false, false, false, false,
1351 				   false, true, false},
1352 		.supports_rmii	= {false, false, false, false,
1353 				   false, true, false},
1354 		.supports_rgmii = {false, false, false, false,
1355 				   false, true, false},
1356 		.internal_phy	= {true, true, true, true,
1357 				   true, false, false},
1358 		.gbit_capable	= {true, true, true, true, true, true, true},
1359 		.wr_table = &ksz9477_register_set,
1360 		.rd_table = &ksz9477_register_set,
1361 	},
1362 
1363 	[KSZ9896] = {
1364 		.chip_id = KSZ9896_CHIP_ID,
1365 		.dev_name = "KSZ9896",
1366 		.num_vlans = 4096,
1367 		.num_alus = 4096,
1368 		.num_statics = 16,
1369 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1370 		.port_cnt = 6,		/* total physical port count */
1371 		.port_nirqs = 2,
1372 		.num_tx_queues = 4,
1373 		.ops = &ksz9477_dev_ops,
1374 		.mib_names = ksz9477_mib_names,
1375 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1376 		.reg_mib_cnt = MIB_COUNTER_NUM,
1377 		.regs = ksz9477_regs,
1378 		.masks = ksz9477_masks,
1379 		.shifts = ksz9477_shifts,
1380 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1381 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1382 		.supports_mii	= {false, false, false, false,
1383 				   false, true},
1384 		.supports_rmii	= {false, false, false, false,
1385 				   false, true},
1386 		.supports_rgmii = {false, false, false, false,
1387 				   false, true},
1388 		.internal_phy	= {true, true, true, true,
1389 				   true, false},
1390 		.gbit_capable	= {true, true, true, true, true, true},
1391 		.wr_table = &ksz9896_register_set,
1392 		.rd_table = &ksz9896_register_set,
1393 	},
1394 
1395 	[KSZ9897] = {
1396 		.chip_id = KSZ9897_CHIP_ID,
1397 		.dev_name = "KSZ9897",
1398 		.num_vlans = 4096,
1399 		.num_alus = 4096,
1400 		.num_statics = 16,
1401 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1402 		.port_cnt = 7,		/* total physical port count */
1403 		.port_nirqs = 2,
1404 		.num_tx_queues = 4,
1405 		.ops = &ksz9477_dev_ops,
1406 		.mib_names = ksz9477_mib_names,
1407 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1408 		.reg_mib_cnt = MIB_COUNTER_NUM,
1409 		.regs = ksz9477_regs,
1410 		.masks = ksz9477_masks,
1411 		.shifts = ksz9477_shifts,
1412 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1413 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1414 		.supports_mii	= {false, false, false, false,
1415 				   false, true, true},
1416 		.supports_rmii	= {false, false, false, false,
1417 				   false, true, true},
1418 		.supports_rgmii = {false, false, false, false,
1419 				   false, true, true},
1420 		.internal_phy	= {true, true, true, true,
1421 				   true, false, false},
1422 		.gbit_capable	= {true, true, true, true, true, true, true},
1423 	},
1424 
1425 	[KSZ9893] = {
1426 		.chip_id = KSZ9893_CHIP_ID,
1427 		.dev_name = "KSZ9893",
1428 		.num_vlans = 4096,
1429 		.num_alus = 4096,
1430 		.num_statics = 16,
1431 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1432 		.port_cnt = 3,		/* total port count */
1433 		.port_nirqs = 2,
1434 		.num_tx_queues = 4,
1435 		.ops = &ksz9477_dev_ops,
1436 		.mib_names = ksz9477_mib_names,
1437 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1438 		.reg_mib_cnt = MIB_COUNTER_NUM,
1439 		.regs = ksz9477_regs,
1440 		.masks = ksz9477_masks,
1441 		.shifts = ksz9477_shifts,
1442 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1443 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1444 		.supports_mii = {false, false, true},
1445 		.supports_rmii = {false, false, true},
1446 		.supports_rgmii = {false, false, true},
1447 		.internal_phy = {true, true, false},
1448 		.gbit_capable = {true, true, true},
1449 	},
1450 
1451 	[KSZ9563] = {
1452 		.chip_id = KSZ9563_CHIP_ID,
1453 		.dev_name = "KSZ9563",
1454 		.num_vlans = 4096,
1455 		.num_alus = 4096,
1456 		.num_statics = 16,
1457 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1458 		.port_cnt = 3,		/* total port count */
1459 		.port_nirqs = 3,
1460 		.num_tx_queues = 4,
1461 		.tc_cbs_supported = true,
1462 		.tc_ets_supported = true,
1463 		.ops = &ksz9477_dev_ops,
1464 		.mib_names = ksz9477_mib_names,
1465 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1466 		.reg_mib_cnt = MIB_COUNTER_NUM,
1467 		.regs = ksz9477_regs,
1468 		.masks = ksz9477_masks,
1469 		.shifts = ksz9477_shifts,
1470 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1471 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1472 		.supports_mii = {false, false, true},
1473 		.supports_rmii = {false, false, true},
1474 		.supports_rgmii = {false, false, true},
1475 		.internal_phy = {true, true, false},
1476 		.gbit_capable = {true, true, true},
1477 	},
1478 
1479 	[KSZ9567] = {
1480 		.chip_id = KSZ9567_CHIP_ID,
1481 		.dev_name = "KSZ9567",
1482 		.num_vlans = 4096,
1483 		.num_alus = 4096,
1484 		.num_statics = 16,
1485 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1486 		.port_cnt = 7,		/* total physical port count */
1487 		.port_nirqs = 3,
1488 		.num_tx_queues = 4,
1489 		.tc_cbs_supported = true,
1490 		.tc_ets_supported = true,
1491 		.ops = &ksz9477_dev_ops,
1492 		.mib_names = ksz9477_mib_names,
1493 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1494 		.reg_mib_cnt = MIB_COUNTER_NUM,
1495 		.regs = ksz9477_regs,
1496 		.masks = ksz9477_masks,
1497 		.shifts = ksz9477_shifts,
1498 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1499 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1500 		.supports_mii	= {false, false, false, false,
1501 				   false, true, true},
1502 		.supports_rmii	= {false, false, false, false,
1503 				   false, true, true},
1504 		.supports_rgmii = {false, false, false, false,
1505 				   false, true, true},
1506 		.internal_phy	= {true, true, true, true,
1507 				   true, false, false},
1508 		.gbit_capable	= {true, true, true, true, true, true, true},
1509 	},
1510 
1511 	[LAN9370] = {
1512 		.chip_id = LAN9370_CHIP_ID,
1513 		.dev_name = "LAN9370",
1514 		.num_vlans = 4096,
1515 		.num_alus = 1024,
1516 		.num_statics = 256,
1517 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1518 		.port_cnt = 5,		/* total physical port count */
1519 		.port_nirqs = 6,
1520 		.num_tx_queues = 8,
1521 		.tc_cbs_supported = true,
1522 		.tc_ets_supported = true,
1523 		.ops = &lan937x_dev_ops,
1524 		.mib_names = ksz9477_mib_names,
1525 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1526 		.reg_mib_cnt = MIB_COUNTER_NUM,
1527 		.regs = ksz9477_regs,
1528 		.masks = lan937x_masks,
1529 		.shifts = lan937x_shifts,
1530 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1531 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1532 		.supports_mii = {false, false, false, false, true},
1533 		.supports_rmii = {false, false, false, false, true},
1534 		.supports_rgmii = {false, false, false, false, true},
1535 		.internal_phy = {true, true, true, true, false},
1536 	},
1537 
1538 	[LAN9371] = {
1539 		.chip_id = LAN9371_CHIP_ID,
1540 		.dev_name = "LAN9371",
1541 		.num_vlans = 4096,
1542 		.num_alus = 1024,
1543 		.num_statics = 256,
1544 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1545 		.port_cnt = 6,		/* total physical port count */
1546 		.port_nirqs = 6,
1547 		.num_tx_queues = 8,
1548 		.tc_cbs_supported = true,
1549 		.tc_ets_supported = true,
1550 		.ops = &lan937x_dev_ops,
1551 		.mib_names = ksz9477_mib_names,
1552 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1553 		.reg_mib_cnt = MIB_COUNTER_NUM,
1554 		.regs = ksz9477_regs,
1555 		.masks = lan937x_masks,
1556 		.shifts = lan937x_shifts,
1557 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1558 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1559 		.supports_mii = {false, false, false, false, true, true},
1560 		.supports_rmii = {false, false, false, false, true, true},
1561 		.supports_rgmii = {false, false, false, false, true, true},
1562 		.internal_phy = {true, true, true, true, false, false},
1563 	},
1564 
1565 	[LAN9372] = {
1566 		.chip_id = LAN9372_CHIP_ID,
1567 		.dev_name = "LAN9372",
1568 		.num_vlans = 4096,
1569 		.num_alus = 1024,
1570 		.num_statics = 256,
1571 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1572 		.port_cnt = 8,		/* total physical port count */
1573 		.port_nirqs = 6,
1574 		.num_tx_queues = 8,
1575 		.tc_cbs_supported = true,
1576 		.tc_ets_supported = true,
1577 		.ops = &lan937x_dev_ops,
1578 		.mib_names = ksz9477_mib_names,
1579 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1580 		.reg_mib_cnt = MIB_COUNTER_NUM,
1581 		.regs = ksz9477_regs,
1582 		.masks = lan937x_masks,
1583 		.shifts = lan937x_shifts,
1584 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1585 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1586 		.supports_mii	= {false, false, false, false,
1587 				   true, true, false, false},
1588 		.supports_rmii	= {false, false, false, false,
1589 				   true, true, false, false},
1590 		.supports_rgmii = {false, false, false, false,
1591 				   true, true, false, false},
1592 		.internal_phy	= {true, true, true, true,
1593 				   false, false, true, true},
1594 	},
1595 
1596 	[LAN9373] = {
1597 		.chip_id = LAN9373_CHIP_ID,
1598 		.dev_name = "LAN9373",
1599 		.num_vlans = 4096,
1600 		.num_alus = 1024,
1601 		.num_statics = 256,
1602 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1603 		.port_cnt = 5,		/* total physical port count */
1604 		.port_nirqs = 6,
1605 		.num_tx_queues = 8,
1606 		.tc_cbs_supported = true,
1607 		.tc_ets_supported = true,
1608 		.ops = &lan937x_dev_ops,
1609 		.mib_names = ksz9477_mib_names,
1610 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1611 		.reg_mib_cnt = MIB_COUNTER_NUM,
1612 		.regs = ksz9477_regs,
1613 		.masks = lan937x_masks,
1614 		.shifts = lan937x_shifts,
1615 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1616 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1617 		.supports_mii	= {false, false, false, false,
1618 				   true, true, false, false},
1619 		.supports_rmii	= {false, false, false, false,
1620 				   true, true, false, false},
1621 		.supports_rgmii = {false, false, false, false,
1622 				   true, true, false, false},
1623 		.internal_phy	= {true, true, true, false,
1624 				   false, false, true, true},
1625 	},
1626 
1627 	[LAN9374] = {
1628 		.chip_id = LAN9374_CHIP_ID,
1629 		.dev_name = "LAN9374",
1630 		.num_vlans = 4096,
1631 		.num_alus = 1024,
1632 		.num_statics = 256,
1633 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1634 		.port_cnt = 8,		/* total physical port count */
1635 		.port_nirqs = 6,
1636 		.num_tx_queues = 8,
1637 		.tc_cbs_supported = true,
1638 		.tc_ets_supported = true,
1639 		.ops = &lan937x_dev_ops,
1640 		.mib_names = ksz9477_mib_names,
1641 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1642 		.reg_mib_cnt = MIB_COUNTER_NUM,
1643 		.regs = ksz9477_regs,
1644 		.masks = lan937x_masks,
1645 		.shifts = lan937x_shifts,
1646 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1647 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1648 		.supports_mii	= {false, false, false, false,
1649 				   true, true, false, false},
1650 		.supports_rmii	= {false, false, false, false,
1651 				   true, true, false, false},
1652 		.supports_rgmii = {false, false, false, false,
1653 				   true, true, false, false},
1654 		.internal_phy	= {true, true, true, true,
1655 				   false, false, true, true},
1656 	},
1657 };
1658 EXPORT_SYMBOL_GPL(ksz_switch_chips);
1659 
1660 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1661 {
1662 	int i;
1663 
1664 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1665 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1666 
1667 		if (chip->chip_id == prod_num)
1668 			return chip;
1669 	}
1670 
1671 	return NULL;
1672 }
1673 
1674 static int ksz_check_device_id(struct ksz_device *dev)
1675 {
1676 	const struct ksz_chip_data *dt_chip_data;
1677 
1678 	dt_chip_data = of_device_get_match_data(dev->dev);
1679 
1680 	/* Check for Device Tree and Chip ID */
1681 	if (dt_chip_data->chip_id != dev->chip_id) {
1682 		dev_err(dev->dev,
1683 			"Device tree specifies chip %s but found %s, please fix it!\n",
1684 			dt_chip_data->dev_name, dev->info->dev_name);
1685 		return -ENODEV;
1686 	}
1687 
1688 	return 0;
1689 }
1690 
1691 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1692 				 struct phylink_config *config)
1693 {
1694 	struct ksz_device *dev = ds->priv;
1695 
1696 	if (dev->info->supports_mii[port])
1697 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1698 
1699 	if (dev->info->supports_rmii[port])
1700 		__set_bit(PHY_INTERFACE_MODE_RMII,
1701 			  config->supported_interfaces);
1702 
1703 	if (dev->info->supports_rgmii[port])
1704 		phy_interface_set_rgmii(config->supported_interfaces);
1705 
1706 	if (dev->info->internal_phy[port]) {
1707 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1708 			  config->supported_interfaces);
1709 		/* Compatibility for phylib's default interface type when the
1710 		 * phy-mode property is absent
1711 		 */
1712 		__set_bit(PHY_INTERFACE_MODE_GMII,
1713 			  config->supported_interfaces);
1714 	}
1715 
1716 	if (dev->dev_ops->get_caps)
1717 		dev->dev_ops->get_caps(dev, port, config);
1718 }
1719 
1720 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
1721 {
1722 	struct ethtool_pause_stats *pstats;
1723 	struct rtnl_link_stats64 *stats;
1724 	struct ksz_stats_raw *raw;
1725 	struct ksz_port_mib *mib;
1726 
1727 	mib = &dev->ports[port].mib;
1728 	stats = &mib->stats64;
1729 	pstats = &mib->pause_stats;
1730 	raw = (struct ksz_stats_raw *)mib->counters;
1731 
1732 	spin_lock(&mib->stats64_lock);
1733 
1734 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1735 		raw->rx_pause;
1736 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1737 		raw->tx_pause;
1738 
1739 	/* HW counters are counting bytes + FCS which is not acceptable
1740 	 * for rtnl_link_stats64 interface
1741 	 */
1742 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
1743 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
1744 
1745 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1746 		raw->rx_oversize;
1747 
1748 	stats->rx_crc_errors = raw->rx_crc_err;
1749 	stats->rx_frame_errors = raw->rx_align_err;
1750 	stats->rx_dropped = raw->rx_discards;
1751 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1752 		stats->rx_frame_errors  + stats->rx_dropped;
1753 
1754 	stats->tx_window_errors = raw->tx_late_col;
1755 	stats->tx_fifo_errors = raw->tx_discards;
1756 	stats->tx_aborted_errors = raw->tx_exc_col;
1757 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1758 		stats->tx_aborted_errors;
1759 
1760 	stats->multicast = raw->rx_mcast;
1761 	stats->collisions = raw->tx_total_col;
1762 
1763 	pstats->tx_pause_frames = raw->tx_pause;
1764 	pstats->rx_pause_frames = raw->rx_pause;
1765 
1766 	spin_unlock(&mib->stats64_lock);
1767 }
1768 
1769 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
1770 {
1771 	struct ethtool_pause_stats *pstats;
1772 	struct rtnl_link_stats64 *stats;
1773 	struct ksz88xx_stats_raw *raw;
1774 	struct ksz_port_mib *mib;
1775 
1776 	mib = &dev->ports[port].mib;
1777 	stats = &mib->stats64;
1778 	pstats = &mib->pause_stats;
1779 	raw = (struct ksz88xx_stats_raw *)mib->counters;
1780 
1781 	spin_lock(&mib->stats64_lock);
1782 
1783 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1784 		raw->rx_pause;
1785 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1786 		raw->tx_pause;
1787 
1788 	/* HW counters are counting bytes + FCS which is not acceptable
1789 	 * for rtnl_link_stats64 interface
1790 	 */
1791 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
1792 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
1793 
1794 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1795 		raw->rx_oversize;
1796 
1797 	stats->rx_crc_errors = raw->rx_crc_err;
1798 	stats->rx_frame_errors = raw->rx_align_err;
1799 	stats->rx_dropped = raw->rx_discards;
1800 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1801 		stats->rx_frame_errors  + stats->rx_dropped;
1802 
1803 	stats->tx_window_errors = raw->tx_late_col;
1804 	stats->tx_fifo_errors = raw->tx_discards;
1805 	stats->tx_aborted_errors = raw->tx_exc_col;
1806 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1807 		stats->tx_aborted_errors;
1808 
1809 	stats->multicast = raw->rx_mcast;
1810 	stats->collisions = raw->tx_total_col;
1811 
1812 	pstats->tx_pause_frames = raw->tx_pause;
1813 	pstats->rx_pause_frames = raw->rx_pause;
1814 
1815 	spin_unlock(&mib->stats64_lock);
1816 }
1817 
1818 static void ksz_get_stats64(struct dsa_switch *ds, int port,
1819 			    struct rtnl_link_stats64 *s)
1820 {
1821 	struct ksz_device *dev = ds->priv;
1822 	struct ksz_port_mib *mib;
1823 
1824 	mib = &dev->ports[port].mib;
1825 
1826 	spin_lock(&mib->stats64_lock);
1827 	memcpy(s, &mib->stats64, sizeof(*s));
1828 	spin_unlock(&mib->stats64_lock);
1829 }
1830 
1831 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
1832 				struct ethtool_pause_stats *pause_stats)
1833 {
1834 	struct ksz_device *dev = ds->priv;
1835 	struct ksz_port_mib *mib;
1836 
1837 	mib = &dev->ports[port].mib;
1838 
1839 	spin_lock(&mib->stats64_lock);
1840 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
1841 	spin_unlock(&mib->stats64_lock);
1842 }
1843 
1844 static void ksz_get_strings(struct dsa_switch *ds, int port,
1845 			    u32 stringset, uint8_t *buf)
1846 {
1847 	struct ksz_device *dev = ds->priv;
1848 	int i;
1849 
1850 	if (stringset != ETH_SS_STATS)
1851 		return;
1852 
1853 	for (i = 0; i < dev->info->mib_cnt; i++) {
1854 		memcpy(buf + i * ETH_GSTRING_LEN,
1855 		       dev->info->mib_names[i].string, ETH_GSTRING_LEN);
1856 	}
1857 }
1858 
1859 static void ksz_update_port_member(struct ksz_device *dev, int port)
1860 {
1861 	struct ksz_port *p = &dev->ports[port];
1862 	struct dsa_switch *ds = dev->ds;
1863 	u8 port_member = 0, cpu_port;
1864 	const struct dsa_port *dp;
1865 	int i, j;
1866 
1867 	if (!dsa_is_user_port(ds, port))
1868 		return;
1869 
1870 	dp = dsa_to_port(ds, port);
1871 	cpu_port = BIT(dsa_upstream_port(ds, port));
1872 
1873 	for (i = 0; i < ds->num_ports; i++) {
1874 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
1875 		struct ksz_port *other_p = &dev->ports[i];
1876 		u8 val = 0;
1877 
1878 		if (!dsa_is_user_port(ds, i))
1879 			continue;
1880 		if (port == i)
1881 			continue;
1882 		if (!dsa_port_bridge_same(dp, other_dp))
1883 			continue;
1884 		if (other_p->stp_state != BR_STATE_FORWARDING)
1885 			continue;
1886 
1887 		if (p->stp_state == BR_STATE_FORWARDING) {
1888 			val |= BIT(port);
1889 			port_member |= BIT(i);
1890 		}
1891 
1892 		/* Retain port [i]'s relationship to other ports than [port] */
1893 		for (j = 0; j < ds->num_ports; j++) {
1894 			const struct dsa_port *third_dp;
1895 			struct ksz_port *third_p;
1896 
1897 			if (j == i)
1898 				continue;
1899 			if (j == port)
1900 				continue;
1901 			if (!dsa_is_user_port(ds, j))
1902 				continue;
1903 			third_p = &dev->ports[j];
1904 			if (third_p->stp_state != BR_STATE_FORWARDING)
1905 				continue;
1906 			third_dp = dsa_to_port(ds, j);
1907 			if (dsa_port_bridge_same(other_dp, third_dp))
1908 				val |= BIT(j);
1909 		}
1910 
1911 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
1912 	}
1913 
1914 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
1915 }
1916 
1917 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
1918 {
1919 	struct ksz_device *dev = bus->priv;
1920 	u16 val;
1921 	int ret;
1922 
1923 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
1924 	if (ret < 0)
1925 		return ret;
1926 
1927 	return val;
1928 }
1929 
1930 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
1931 			     u16 val)
1932 {
1933 	struct ksz_device *dev = bus->priv;
1934 
1935 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
1936 }
1937 
1938 static int ksz_irq_phy_setup(struct ksz_device *dev)
1939 {
1940 	struct dsa_switch *ds = dev->ds;
1941 	int phy;
1942 	int irq;
1943 	int ret;
1944 
1945 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) {
1946 		if (BIT(phy) & ds->phys_mii_mask) {
1947 			irq = irq_find_mapping(dev->ports[phy].pirq.domain,
1948 					       PORT_SRC_PHY_INT);
1949 			if (irq < 0) {
1950 				ret = irq;
1951 				goto out;
1952 			}
1953 			ds->user_mii_bus->irq[phy] = irq;
1954 		}
1955 	}
1956 	return 0;
1957 out:
1958 	while (phy--)
1959 		if (BIT(phy) & ds->phys_mii_mask)
1960 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
1961 
1962 	return ret;
1963 }
1964 
1965 static void ksz_irq_phy_free(struct ksz_device *dev)
1966 {
1967 	struct dsa_switch *ds = dev->ds;
1968 	int phy;
1969 
1970 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++)
1971 		if (BIT(phy) & ds->phys_mii_mask)
1972 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
1973 }
1974 
1975 static int ksz_mdio_register(struct ksz_device *dev)
1976 {
1977 	struct dsa_switch *ds = dev->ds;
1978 	struct device_node *mdio_np;
1979 	struct mii_bus *bus;
1980 	int ret;
1981 
1982 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
1983 	if (!mdio_np)
1984 		return 0;
1985 
1986 	bus = devm_mdiobus_alloc(ds->dev);
1987 	if (!bus) {
1988 		of_node_put(mdio_np);
1989 		return -ENOMEM;
1990 	}
1991 
1992 	bus->priv = dev;
1993 	bus->read = ksz_sw_mdio_read;
1994 	bus->write = ksz_sw_mdio_write;
1995 	bus->name = "ksz user smi";
1996 	snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
1997 	bus->parent = ds->dev;
1998 	bus->phy_mask = ~ds->phys_mii_mask;
1999 
2000 	ds->user_mii_bus = bus;
2001 
2002 	if (dev->irq > 0) {
2003 		ret = ksz_irq_phy_setup(dev);
2004 		if (ret) {
2005 			of_node_put(mdio_np);
2006 			return ret;
2007 		}
2008 	}
2009 
2010 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2011 	if (ret) {
2012 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2013 			bus->id);
2014 		if (dev->irq > 0)
2015 			ksz_irq_phy_free(dev);
2016 	}
2017 
2018 	of_node_put(mdio_np);
2019 
2020 	return ret;
2021 }
2022 
2023 static void ksz_irq_mask(struct irq_data *d)
2024 {
2025 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2026 
2027 	kirq->masked |= BIT(d->hwirq);
2028 }
2029 
2030 static void ksz_irq_unmask(struct irq_data *d)
2031 {
2032 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2033 
2034 	kirq->masked &= ~BIT(d->hwirq);
2035 }
2036 
2037 static void ksz_irq_bus_lock(struct irq_data *d)
2038 {
2039 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2040 
2041 	mutex_lock(&kirq->dev->lock_irq);
2042 }
2043 
2044 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2045 {
2046 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2047 	struct ksz_device *dev = kirq->dev;
2048 	int ret;
2049 
2050 	ret = ksz_write32(dev, kirq->reg_mask, kirq->masked);
2051 	if (ret)
2052 		dev_err(dev->dev, "failed to change IRQ mask\n");
2053 
2054 	mutex_unlock(&dev->lock_irq);
2055 }
2056 
2057 static const struct irq_chip ksz_irq_chip = {
2058 	.name			= "ksz-irq",
2059 	.irq_mask		= ksz_irq_mask,
2060 	.irq_unmask		= ksz_irq_unmask,
2061 	.irq_bus_lock		= ksz_irq_bus_lock,
2062 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2063 };
2064 
2065 static int ksz_irq_domain_map(struct irq_domain *d,
2066 			      unsigned int irq, irq_hw_number_t hwirq)
2067 {
2068 	irq_set_chip_data(irq, d->host_data);
2069 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2070 	irq_set_noprobe(irq);
2071 
2072 	return 0;
2073 }
2074 
2075 static const struct irq_domain_ops ksz_irq_domain_ops = {
2076 	.map	= ksz_irq_domain_map,
2077 	.xlate	= irq_domain_xlate_twocell,
2078 };
2079 
2080 static void ksz_irq_free(struct ksz_irq *kirq)
2081 {
2082 	int irq, virq;
2083 
2084 	free_irq(kirq->irq_num, kirq);
2085 
2086 	for (irq = 0; irq < kirq->nirqs; irq++) {
2087 		virq = irq_find_mapping(kirq->domain, irq);
2088 		irq_dispose_mapping(virq);
2089 	}
2090 
2091 	irq_domain_remove(kirq->domain);
2092 }
2093 
2094 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2095 {
2096 	struct ksz_irq *kirq = dev_id;
2097 	unsigned int nhandled = 0;
2098 	struct ksz_device *dev;
2099 	unsigned int sub_irq;
2100 	u8 data;
2101 	int ret;
2102 	u8 n;
2103 
2104 	dev = kirq->dev;
2105 
2106 	/* Read interrupt status register */
2107 	ret = ksz_read8(dev, kirq->reg_status, &data);
2108 	if (ret)
2109 		goto out;
2110 
2111 	for (n = 0; n < kirq->nirqs; ++n) {
2112 		if (data & BIT(n)) {
2113 			sub_irq = irq_find_mapping(kirq->domain, n);
2114 			handle_nested_irq(sub_irq);
2115 			++nhandled;
2116 		}
2117 	}
2118 out:
2119 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2120 }
2121 
2122 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2123 {
2124 	int ret, n;
2125 
2126 	kirq->dev = dev;
2127 	kirq->masked = ~0;
2128 
2129 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2130 					     &ksz_irq_domain_ops, kirq);
2131 	if (!kirq->domain)
2132 		return -ENOMEM;
2133 
2134 	for (n = 0; n < kirq->nirqs; n++)
2135 		irq_create_mapping(kirq->domain, n);
2136 
2137 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2138 				   IRQF_ONESHOT, kirq->name, kirq);
2139 	if (ret)
2140 		goto out;
2141 
2142 	return 0;
2143 
2144 out:
2145 	ksz_irq_free(kirq);
2146 
2147 	return ret;
2148 }
2149 
2150 static int ksz_girq_setup(struct ksz_device *dev)
2151 {
2152 	struct ksz_irq *girq = &dev->girq;
2153 
2154 	girq->nirqs = dev->info->port_cnt;
2155 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2156 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2157 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2158 
2159 	girq->irq_num = dev->irq;
2160 
2161 	return ksz_irq_common_setup(dev, girq);
2162 }
2163 
2164 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2165 {
2166 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2167 
2168 	pirq->nirqs = dev->info->port_nirqs;
2169 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2170 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2171 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2172 
2173 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2174 	if (pirq->irq_num < 0)
2175 		return pirq->irq_num;
2176 
2177 	return ksz_irq_common_setup(dev, pirq);
2178 }
2179 
2180 static int ksz_setup(struct dsa_switch *ds)
2181 {
2182 	struct ksz_device *dev = ds->priv;
2183 	struct dsa_port *dp;
2184 	struct ksz_port *p;
2185 	const u16 *regs;
2186 	int ret;
2187 
2188 	regs = dev->info->regs;
2189 
2190 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2191 				       dev->info->num_vlans, GFP_KERNEL);
2192 	if (!dev->vlan_cache)
2193 		return -ENOMEM;
2194 
2195 	ret = dev->dev_ops->reset(dev);
2196 	if (ret) {
2197 		dev_err(ds->dev, "failed to reset switch\n");
2198 		return ret;
2199 	}
2200 
2201 	/* set broadcast storm protection 10% rate */
2202 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2203 			   BROADCAST_STORM_RATE,
2204 			   (BROADCAST_STORM_VALUE *
2205 			   BROADCAST_STORM_PROT_RATE) / 100);
2206 
2207 	dev->dev_ops->config_cpu_port(ds);
2208 
2209 	dev->dev_ops->enable_stp_addr(dev);
2210 
2211 	ds->num_tx_queues = dev->info->num_tx_queues;
2212 
2213 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2214 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2215 
2216 	ksz_init_mib_timer(dev);
2217 
2218 	ds->configure_vlan_while_not_filtering = false;
2219 
2220 	if (dev->dev_ops->setup) {
2221 		ret = dev->dev_ops->setup(ds);
2222 		if (ret)
2223 			return ret;
2224 	}
2225 
2226 	/* Start with learning disabled on standalone user ports, and enabled
2227 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2228 	 * CPU port will avoid flooding bridge local addresses on the network
2229 	 * in some cases.
2230 	 */
2231 	p = &dev->ports[dev->cpu_port];
2232 	p->learning = true;
2233 
2234 	if (dev->irq > 0) {
2235 		ret = ksz_girq_setup(dev);
2236 		if (ret)
2237 			return ret;
2238 
2239 		dsa_switch_for_each_user_port(dp, dev->ds) {
2240 			ret = ksz_pirq_setup(dev, dp->index);
2241 			if (ret)
2242 				goto out_girq;
2243 
2244 			ret = ksz_ptp_irq_setup(ds, dp->index);
2245 			if (ret)
2246 				goto out_pirq;
2247 		}
2248 	}
2249 
2250 	ret = ksz_ptp_clock_register(ds);
2251 	if (ret) {
2252 		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2253 		goto out_ptpirq;
2254 	}
2255 
2256 	ret = ksz_mdio_register(dev);
2257 	if (ret < 0) {
2258 		dev_err(dev->dev, "failed to register the mdio");
2259 		goto out_ptp_clock_unregister;
2260 	}
2261 
2262 	/* start switch */
2263 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2264 			   SW_START, SW_START);
2265 
2266 	return 0;
2267 
2268 out_ptp_clock_unregister:
2269 	ksz_ptp_clock_unregister(ds);
2270 out_ptpirq:
2271 	if (dev->irq > 0)
2272 		dsa_switch_for_each_user_port(dp, dev->ds)
2273 			ksz_ptp_irq_free(ds, dp->index);
2274 out_pirq:
2275 	if (dev->irq > 0)
2276 		dsa_switch_for_each_user_port(dp, dev->ds)
2277 			ksz_irq_free(&dev->ports[dp->index].pirq);
2278 out_girq:
2279 	if (dev->irq > 0)
2280 		ksz_irq_free(&dev->girq);
2281 
2282 	return ret;
2283 }
2284 
2285 static void ksz_teardown(struct dsa_switch *ds)
2286 {
2287 	struct ksz_device *dev = ds->priv;
2288 	struct dsa_port *dp;
2289 
2290 	ksz_ptp_clock_unregister(ds);
2291 
2292 	if (dev->irq > 0) {
2293 		dsa_switch_for_each_user_port(dp, dev->ds) {
2294 			ksz_ptp_irq_free(ds, dp->index);
2295 
2296 			ksz_irq_free(&dev->ports[dp->index].pirq);
2297 		}
2298 
2299 		ksz_irq_free(&dev->girq);
2300 	}
2301 
2302 	if (dev->dev_ops->teardown)
2303 		dev->dev_ops->teardown(ds);
2304 }
2305 
2306 static void port_r_cnt(struct ksz_device *dev, int port)
2307 {
2308 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2309 	u64 *dropped;
2310 
2311 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2312 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2313 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2314 					&mib->counters[mib->cnt_ptr]);
2315 		++mib->cnt_ptr;
2316 	}
2317 
2318 	/* last one in storage */
2319 	dropped = &mib->counters[dev->info->mib_cnt];
2320 
2321 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2322 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2323 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2324 					dropped, &mib->counters[mib->cnt_ptr]);
2325 		++mib->cnt_ptr;
2326 	}
2327 	mib->cnt_ptr = 0;
2328 }
2329 
2330 static void ksz_mib_read_work(struct work_struct *work)
2331 {
2332 	struct ksz_device *dev = container_of(work, struct ksz_device,
2333 					      mib_read.work);
2334 	struct ksz_port_mib *mib;
2335 	struct ksz_port *p;
2336 	int i;
2337 
2338 	for (i = 0; i < dev->info->port_cnt; i++) {
2339 		if (dsa_is_unused_port(dev->ds, i))
2340 			continue;
2341 
2342 		p = &dev->ports[i];
2343 		mib = &p->mib;
2344 		mutex_lock(&mib->cnt_mutex);
2345 
2346 		/* Only read MIB counters when the port is told to do.
2347 		 * If not, read only dropped counters when link is not up.
2348 		 */
2349 		if (!p->read) {
2350 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2351 
2352 			if (!netif_carrier_ok(dp->user))
2353 				mib->cnt_ptr = dev->info->reg_mib_cnt;
2354 		}
2355 		port_r_cnt(dev, i);
2356 		p->read = false;
2357 
2358 		if (dev->dev_ops->r_mib_stat64)
2359 			dev->dev_ops->r_mib_stat64(dev, i);
2360 
2361 		mutex_unlock(&mib->cnt_mutex);
2362 	}
2363 
2364 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2365 }
2366 
2367 void ksz_init_mib_timer(struct ksz_device *dev)
2368 {
2369 	int i;
2370 
2371 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2372 
2373 	for (i = 0; i < dev->info->port_cnt; i++) {
2374 		struct ksz_port_mib *mib = &dev->ports[i].mib;
2375 
2376 		dev->dev_ops->port_init_cnt(dev, i);
2377 
2378 		mib->cnt_ptr = 0;
2379 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2380 	}
2381 }
2382 
2383 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2384 {
2385 	struct ksz_device *dev = ds->priv;
2386 	u16 val = 0xffff;
2387 	int ret;
2388 
2389 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2390 	if (ret)
2391 		return ret;
2392 
2393 	return val;
2394 }
2395 
2396 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2397 {
2398 	struct ksz_device *dev = ds->priv;
2399 	int ret;
2400 
2401 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2402 	if (ret)
2403 		return ret;
2404 
2405 	return 0;
2406 }
2407 
2408 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2409 {
2410 	struct ksz_device *dev = ds->priv;
2411 
2412 	switch (dev->chip_id) {
2413 	case KSZ8830_CHIP_ID:
2414 		/* Silicon Errata Sheet (DS80000830A):
2415 		 * Port 1 does not work with LinkMD Cable-Testing.
2416 		 * Port 1 does not respond to received PAUSE control frames.
2417 		 */
2418 		if (!port)
2419 			return MICREL_KSZ8_P1_ERRATA;
2420 		break;
2421 	case KSZ9477_CHIP_ID:
2422 		/* KSZ9477 Errata DS80000754C
2423 		 *
2424 		 * Module 4: Energy Efficient Ethernet (EEE) feature select must
2425 		 * be manually disabled
2426 		 *   The EEE feature is enabled by default, but it is not fully
2427 		 *   operational. It must be manually disabled through register
2428 		 *   controls. If not disabled, the PHY ports can auto-negotiate
2429 		 *   to enable EEE, and this feature can cause link drops when
2430 		 *   linked to another device supporting EEE.
2431 		 */
2432 		return MICREL_NO_EEE;
2433 	}
2434 
2435 	return 0;
2436 }
2437 
2438 static void ksz_mac_link_down(struct dsa_switch *ds, int port,
2439 			      unsigned int mode, phy_interface_t interface)
2440 {
2441 	struct ksz_device *dev = ds->priv;
2442 	struct ksz_port *p = &dev->ports[port];
2443 
2444 	/* Read all MIB counters when the link is going down. */
2445 	p->read = true;
2446 	/* timer started */
2447 	if (dev->mib_read_interval)
2448 		schedule_delayed_work(&dev->mib_read, 0);
2449 }
2450 
2451 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
2452 {
2453 	struct ksz_device *dev = ds->priv;
2454 
2455 	if (sset != ETH_SS_STATS)
2456 		return 0;
2457 
2458 	return dev->info->mib_cnt;
2459 }
2460 
2461 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
2462 				  uint64_t *buf)
2463 {
2464 	const struct dsa_port *dp = dsa_to_port(ds, port);
2465 	struct ksz_device *dev = ds->priv;
2466 	struct ksz_port_mib *mib;
2467 
2468 	mib = &dev->ports[port].mib;
2469 	mutex_lock(&mib->cnt_mutex);
2470 
2471 	/* Only read dropped counters if no link. */
2472 	if (!netif_carrier_ok(dp->user))
2473 		mib->cnt_ptr = dev->info->reg_mib_cnt;
2474 	port_r_cnt(dev, port);
2475 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
2476 	mutex_unlock(&mib->cnt_mutex);
2477 }
2478 
2479 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
2480 				struct dsa_bridge bridge,
2481 				bool *tx_fwd_offload,
2482 				struct netlink_ext_ack *extack)
2483 {
2484 	/* port_stp_state_set() will be called after to put the port in
2485 	 * appropriate state so there is no need to do anything.
2486 	 */
2487 
2488 	return 0;
2489 }
2490 
2491 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
2492 				  struct dsa_bridge bridge)
2493 {
2494 	/* port_stp_state_set() will be called after to put the port in
2495 	 * forwarding state so there is no need to do anything.
2496 	 */
2497 }
2498 
2499 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
2500 {
2501 	struct ksz_device *dev = ds->priv;
2502 
2503 	dev->dev_ops->flush_dyn_mac_table(dev, port);
2504 }
2505 
2506 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
2507 {
2508 	struct ksz_device *dev = ds->priv;
2509 
2510 	if (!dev->dev_ops->set_ageing_time)
2511 		return -EOPNOTSUPP;
2512 
2513 	return dev->dev_ops->set_ageing_time(dev, msecs);
2514 }
2515 
2516 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
2517 			    const unsigned char *addr, u16 vid,
2518 			    struct dsa_db db)
2519 {
2520 	struct ksz_device *dev = ds->priv;
2521 
2522 	if (!dev->dev_ops->fdb_add)
2523 		return -EOPNOTSUPP;
2524 
2525 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
2526 }
2527 
2528 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
2529 			    const unsigned char *addr,
2530 			    u16 vid, struct dsa_db db)
2531 {
2532 	struct ksz_device *dev = ds->priv;
2533 
2534 	if (!dev->dev_ops->fdb_del)
2535 		return -EOPNOTSUPP;
2536 
2537 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
2538 }
2539 
2540 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
2541 			     dsa_fdb_dump_cb_t *cb, void *data)
2542 {
2543 	struct ksz_device *dev = ds->priv;
2544 
2545 	if (!dev->dev_ops->fdb_dump)
2546 		return -EOPNOTSUPP;
2547 
2548 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
2549 }
2550 
2551 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
2552 			    const struct switchdev_obj_port_mdb *mdb,
2553 			    struct dsa_db db)
2554 {
2555 	struct ksz_device *dev = ds->priv;
2556 
2557 	if (!dev->dev_ops->mdb_add)
2558 		return -EOPNOTSUPP;
2559 
2560 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
2561 }
2562 
2563 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
2564 			    const struct switchdev_obj_port_mdb *mdb,
2565 			    struct dsa_db db)
2566 {
2567 	struct ksz_device *dev = ds->priv;
2568 
2569 	if (!dev->dev_ops->mdb_del)
2570 		return -EOPNOTSUPP;
2571 
2572 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
2573 }
2574 
2575 static int ksz_port_setup(struct dsa_switch *ds, int port)
2576 {
2577 	struct ksz_device *dev = ds->priv;
2578 
2579 	if (!dsa_is_user_port(ds, port))
2580 		return 0;
2581 
2582 	/* setup user port */
2583 	dev->dev_ops->port_setup(dev, port, false);
2584 
2585 	/* port_stp_state_set() will be called after to enable the port so
2586 	 * there is no need to do anything.
2587 	 */
2588 
2589 	return 0;
2590 }
2591 
2592 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
2593 {
2594 	struct ksz_device *dev = ds->priv;
2595 	struct ksz_port *p;
2596 	const u16 *regs;
2597 	u8 data;
2598 
2599 	regs = dev->info->regs;
2600 
2601 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
2602 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2603 
2604 	p = &dev->ports[port];
2605 
2606 	switch (state) {
2607 	case BR_STATE_DISABLED:
2608 		data |= PORT_LEARN_DISABLE;
2609 		break;
2610 	case BR_STATE_LISTENING:
2611 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2612 		break;
2613 	case BR_STATE_LEARNING:
2614 		data |= PORT_RX_ENABLE;
2615 		if (!p->learning)
2616 			data |= PORT_LEARN_DISABLE;
2617 		break;
2618 	case BR_STATE_FORWARDING:
2619 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2620 		if (!p->learning)
2621 			data |= PORT_LEARN_DISABLE;
2622 		break;
2623 	case BR_STATE_BLOCKING:
2624 		data |= PORT_LEARN_DISABLE;
2625 		break;
2626 	default:
2627 		dev_err(ds->dev, "invalid STP state: %d\n", state);
2628 		return;
2629 	}
2630 
2631 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
2632 
2633 	p->stp_state = state;
2634 
2635 	ksz_update_port_member(dev, port);
2636 }
2637 
2638 static void ksz_port_teardown(struct dsa_switch *ds, int port)
2639 {
2640 	struct ksz_device *dev = ds->priv;
2641 
2642 	switch (dev->chip_id) {
2643 	case KSZ8563_CHIP_ID:
2644 	case KSZ9477_CHIP_ID:
2645 	case KSZ9563_CHIP_ID:
2646 	case KSZ9567_CHIP_ID:
2647 	case KSZ9893_CHIP_ID:
2648 	case KSZ9896_CHIP_ID:
2649 	case KSZ9897_CHIP_ID:
2650 		if (dsa_is_user_port(ds, port))
2651 			ksz9477_port_acl_free(dev, port);
2652 	}
2653 }
2654 
2655 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
2656 				     struct switchdev_brport_flags flags,
2657 				     struct netlink_ext_ack *extack)
2658 {
2659 	if (flags.mask & ~BR_LEARNING)
2660 		return -EINVAL;
2661 
2662 	return 0;
2663 }
2664 
2665 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
2666 				 struct switchdev_brport_flags flags,
2667 				 struct netlink_ext_ack *extack)
2668 {
2669 	struct ksz_device *dev = ds->priv;
2670 	struct ksz_port *p = &dev->ports[port];
2671 
2672 	if (flags.mask & BR_LEARNING) {
2673 		p->learning = !!(flags.val & BR_LEARNING);
2674 
2675 		/* Make the change take effect immediately */
2676 		ksz_port_stp_state_set(ds, port, p->stp_state);
2677 	}
2678 
2679 	return 0;
2680 }
2681 
2682 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
2683 						  int port,
2684 						  enum dsa_tag_protocol mp)
2685 {
2686 	struct ksz_device *dev = ds->priv;
2687 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
2688 
2689 	if (dev->chip_id == KSZ8795_CHIP_ID ||
2690 	    dev->chip_id == KSZ8794_CHIP_ID ||
2691 	    dev->chip_id == KSZ8765_CHIP_ID)
2692 		proto = DSA_TAG_PROTO_KSZ8795;
2693 
2694 	if (dev->chip_id == KSZ8830_CHIP_ID ||
2695 	    dev->chip_id == KSZ8563_CHIP_ID ||
2696 	    dev->chip_id == KSZ9893_CHIP_ID ||
2697 	    dev->chip_id == KSZ9563_CHIP_ID)
2698 		proto = DSA_TAG_PROTO_KSZ9893;
2699 
2700 	if (dev->chip_id == KSZ9477_CHIP_ID ||
2701 	    dev->chip_id == KSZ9896_CHIP_ID ||
2702 	    dev->chip_id == KSZ9897_CHIP_ID ||
2703 	    dev->chip_id == KSZ9567_CHIP_ID)
2704 		proto = DSA_TAG_PROTO_KSZ9477;
2705 
2706 	if (is_lan937x(dev))
2707 		proto = DSA_TAG_PROTO_LAN937X_VALUE;
2708 
2709 	return proto;
2710 }
2711 
2712 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
2713 				    enum dsa_tag_protocol proto)
2714 {
2715 	struct ksz_tagger_data *tagger_data;
2716 
2717 	tagger_data = ksz_tagger_data(ds);
2718 	tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
2719 
2720 	return 0;
2721 }
2722 
2723 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
2724 				   bool flag, struct netlink_ext_ack *extack)
2725 {
2726 	struct ksz_device *dev = ds->priv;
2727 
2728 	if (!dev->dev_ops->vlan_filtering)
2729 		return -EOPNOTSUPP;
2730 
2731 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
2732 }
2733 
2734 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
2735 			     const struct switchdev_obj_port_vlan *vlan,
2736 			     struct netlink_ext_ack *extack)
2737 {
2738 	struct ksz_device *dev = ds->priv;
2739 
2740 	if (!dev->dev_ops->vlan_add)
2741 		return -EOPNOTSUPP;
2742 
2743 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
2744 }
2745 
2746 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
2747 			     const struct switchdev_obj_port_vlan *vlan)
2748 {
2749 	struct ksz_device *dev = ds->priv;
2750 
2751 	if (!dev->dev_ops->vlan_del)
2752 		return -EOPNOTSUPP;
2753 
2754 	return dev->dev_ops->vlan_del(dev, port, vlan);
2755 }
2756 
2757 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
2758 			       struct dsa_mall_mirror_tc_entry *mirror,
2759 			       bool ingress, struct netlink_ext_ack *extack)
2760 {
2761 	struct ksz_device *dev = ds->priv;
2762 
2763 	if (!dev->dev_ops->mirror_add)
2764 		return -EOPNOTSUPP;
2765 
2766 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
2767 }
2768 
2769 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
2770 				struct dsa_mall_mirror_tc_entry *mirror)
2771 {
2772 	struct ksz_device *dev = ds->priv;
2773 
2774 	if (dev->dev_ops->mirror_del)
2775 		dev->dev_ops->mirror_del(dev, port, mirror);
2776 }
2777 
2778 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
2779 {
2780 	struct ksz_device *dev = ds->priv;
2781 
2782 	if (!dev->dev_ops->change_mtu)
2783 		return -EOPNOTSUPP;
2784 
2785 	return dev->dev_ops->change_mtu(dev, port, mtu);
2786 }
2787 
2788 static int ksz_max_mtu(struct dsa_switch *ds, int port)
2789 {
2790 	struct ksz_device *dev = ds->priv;
2791 
2792 	switch (dev->chip_id) {
2793 	case KSZ8795_CHIP_ID:
2794 	case KSZ8794_CHIP_ID:
2795 	case KSZ8765_CHIP_ID:
2796 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2797 	case KSZ8830_CHIP_ID:
2798 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2799 	case KSZ8563_CHIP_ID:
2800 	case KSZ9477_CHIP_ID:
2801 	case KSZ9563_CHIP_ID:
2802 	case KSZ9567_CHIP_ID:
2803 	case KSZ9893_CHIP_ID:
2804 	case KSZ9896_CHIP_ID:
2805 	case KSZ9897_CHIP_ID:
2806 	case LAN9370_CHIP_ID:
2807 	case LAN9371_CHIP_ID:
2808 	case LAN9372_CHIP_ID:
2809 	case LAN9373_CHIP_ID:
2810 	case LAN9374_CHIP_ID:
2811 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2812 	}
2813 
2814 	return -EOPNOTSUPP;
2815 }
2816 
2817 static int ksz_validate_eee(struct dsa_switch *ds, int port)
2818 {
2819 	struct ksz_device *dev = ds->priv;
2820 
2821 	if (!dev->info->internal_phy[port])
2822 		return -EOPNOTSUPP;
2823 
2824 	switch (dev->chip_id) {
2825 	case KSZ8563_CHIP_ID:
2826 	case KSZ9477_CHIP_ID:
2827 	case KSZ9563_CHIP_ID:
2828 	case KSZ9567_CHIP_ID:
2829 	case KSZ9893_CHIP_ID:
2830 	case KSZ9896_CHIP_ID:
2831 	case KSZ9897_CHIP_ID:
2832 		return 0;
2833 	}
2834 
2835 	return -EOPNOTSUPP;
2836 }
2837 
2838 static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
2839 			   struct ethtool_eee *e)
2840 {
2841 	int ret;
2842 
2843 	ret = ksz_validate_eee(ds, port);
2844 	if (ret)
2845 		return ret;
2846 
2847 	/* There is no documented control of Tx LPI configuration. */
2848 	e->tx_lpi_enabled = true;
2849 
2850 	/* There is no documented control of Tx LPI timer. According to tests
2851 	 * Tx LPI timer seems to be set by default to minimal value.
2852 	 */
2853 	e->tx_lpi_timer = 0;
2854 
2855 	return 0;
2856 }
2857 
2858 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
2859 			   struct ethtool_eee *e)
2860 {
2861 	struct ksz_device *dev = ds->priv;
2862 	int ret;
2863 
2864 	ret = ksz_validate_eee(ds, port);
2865 	if (ret)
2866 		return ret;
2867 
2868 	if (!e->tx_lpi_enabled) {
2869 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
2870 		return -EINVAL;
2871 	}
2872 
2873 	if (e->tx_lpi_timer) {
2874 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
2875 		return -EINVAL;
2876 	}
2877 
2878 	return 0;
2879 }
2880 
2881 static void ksz_set_xmii(struct ksz_device *dev, int port,
2882 			 phy_interface_t interface)
2883 {
2884 	const u8 *bitval = dev->info->xmii_ctrl1;
2885 	struct ksz_port *p = &dev->ports[port];
2886 	const u16 *regs = dev->info->regs;
2887 	u8 data8;
2888 
2889 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
2890 
2891 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
2892 		   P_RGMII_ID_EG_ENABLE);
2893 
2894 	switch (interface) {
2895 	case PHY_INTERFACE_MODE_MII:
2896 		data8 |= bitval[P_MII_SEL];
2897 		break;
2898 	case PHY_INTERFACE_MODE_RMII:
2899 		data8 |= bitval[P_RMII_SEL];
2900 		break;
2901 	case PHY_INTERFACE_MODE_GMII:
2902 		data8 |= bitval[P_GMII_SEL];
2903 		break;
2904 	case PHY_INTERFACE_MODE_RGMII:
2905 	case PHY_INTERFACE_MODE_RGMII_ID:
2906 	case PHY_INTERFACE_MODE_RGMII_TXID:
2907 	case PHY_INTERFACE_MODE_RGMII_RXID:
2908 		data8 |= bitval[P_RGMII_SEL];
2909 		/* On KSZ9893, disable RGMII in-band status support */
2910 		if (dev->chip_id == KSZ9893_CHIP_ID ||
2911 		    dev->chip_id == KSZ8563_CHIP_ID ||
2912 		    dev->chip_id == KSZ9563_CHIP_ID)
2913 			data8 &= ~P_MII_MAC_MODE;
2914 		break;
2915 	default:
2916 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
2917 			phy_modes(interface), port);
2918 		return;
2919 	}
2920 
2921 	if (p->rgmii_tx_val)
2922 		data8 |= P_RGMII_ID_EG_ENABLE;
2923 
2924 	if (p->rgmii_rx_val)
2925 		data8 |= P_RGMII_ID_IG_ENABLE;
2926 
2927 	/* Write the updated value */
2928 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
2929 }
2930 
2931 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
2932 {
2933 	const u8 *bitval = dev->info->xmii_ctrl1;
2934 	const u16 *regs = dev->info->regs;
2935 	phy_interface_t interface;
2936 	u8 data8;
2937 	u8 val;
2938 
2939 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
2940 
2941 	val = FIELD_GET(P_MII_SEL_M, data8);
2942 
2943 	if (val == bitval[P_MII_SEL]) {
2944 		if (gbit)
2945 			interface = PHY_INTERFACE_MODE_GMII;
2946 		else
2947 			interface = PHY_INTERFACE_MODE_MII;
2948 	} else if (val == bitval[P_RMII_SEL]) {
2949 		interface = PHY_INTERFACE_MODE_RGMII;
2950 	} else {
2951 		interface = PHY_INTERFACE_MODE_RGMII;
2952 		if (data8 & P_RGMII_ID_EG_ENABLE)
2953 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
2954 		if (data8 & P_RGMII_ID_IG_ENABLE) {
2955 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
2956 			if (data8 & P_RGMII_ID_EG_ENABLE)
2957 				interface = PHY_INTERFACE_MODE_RGMII_ID;
2958 		}
2959 	}
2960 
2961 	return interface;
2962 }
2963 
2964 static void ksz_phylink_mac_config(struct dsa_switch *ds, int port,
2965 				   unsigned int mode,
2966 				   const struct phylink_link_state *state)
2967 {
2968 	struct ksz_device *dev = ds->priv;
2969 
2970 	if (ksz_is_ksz88x3(dev)) {
2971 		dev->ports[port].manual_flow = !(state->pause & MLO_PAUSE_AN);
2972 		return;
2973 	}
2974 
2975 	/* Internal PHYs */
2976 	if (dev->info->internal_phy[port])
2977 		return;
2978 
2979 	if (phylink_autoneg_inband(mode)) {
2980 		dev_err(dev->dev, "In-band AN not supported!\n");
2981 		return;
2982 	}
2983 
2984 	ksz_set_xmii(dev, port, state->interface);
2985 
2986 	if (dev->dev_ops->phylink_mac_config)
2987 		dev->dev_ops->phylink_mac_config(dev, port, mode, state);
2988 
2989 	if (dev->dev_ops->setup_rgmii_delay)
2990 		dev->dev_ops->setup_rgmii_delay(dev, port);
2991 }
2992 
2993 bool ksz_get_gbit(struct ksz_device *dev, int port)
2994 {
2995 	const u8 *bitval = dev->info->xmii_ctrl1;
2996 	const u16 *regs = dev->info->regs;
2997 	bool gbit = false;
2998 	u8 data8;
2999 	bool val;
3000 
3001 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3002 
3003 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3004 
3005 	if (val == bitval[P_GMII_1GBIT])
3006 		gbit = true;
3007 
3008 	return gbit;
3009 }
3010 
3011 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3012 {
3013 	const u8 *bitval = dev->info->xmii_ctrl1;
3014 	const u16 *regs = dev->info->regs;
3015 	u8 data8;
3016 
3017 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3018 
3019 	data8 &= ~P_GMII_1GBIT_M;
3020 
3021 	if (gbit)
3022 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3023 	else
3024 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3025 
3026 	/* Write the updated value */
3027 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3028 }
3029 
3030 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3031 {
3032 	const u8 *bitval = dev->info->xmii_ctrl0;
3033 	const u16 *regs = dev->info->regs;
3034 	u8 data8;
3035 
3036 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3037 
3038 	data8 &= ~P_MII_100MBIT_M;
3039 
3040 	if (speed == SPEED_100)
3041 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3042 	else
3043 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3044 
3045 	/* Write the updated value */
3046 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3047 }
3048 
3049 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3050 {
3051 	if (speed == SPEED_1000)
3052 		ksz_set_gbit(dev, port, true);
3053 	else
3054 		ksz_set_gbit(dev, port, false);
3055 
3056 	if (speed == SPEED_100 || speed == SPEED_10)
3057 		ksz_set_100_10mbit(dev, port, speed);
3058 }
3059 
3060 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3061 				bool tx_pause, bool rx_pause)
3062 {
3063 	const u8 *bitval = dev->info->xmii_ctrl0;
3064 	const u32 *masks = dev->info->masks;
3065 	const u16 *regs = dev->info->regs;
3066 	u8 mask;
3067 	u8 val;
3068 
3069 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3070 	       masks[P_MII_RX_FLOW_CTRL];
3071 
3072 	if (duplex == DUPLEX_FULL)
3073 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3074 	else
3075 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3076 
3077 	if (tx_pause)
3078 		val |= masks[P_MII_TX_FLOW_CTRL];
3079 
3080 	if (rx_pause)
3081 		val |= masks[P_MII_RX_FLOW_CTRL];
3082 
3083 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3084 }
3085 
3086 static void ksz9477_phylink_mac_link_up(struct ksz_device *dev, int port,
3087 					unsigned int mode,
3088 					phy_interface_t interface,
3089 					struct phy_device *phydev, int speed,
3090 					int duplex, bool tx_pause,
3091 					bool rx_pause)
3092 {
3093 	struct ksz_port *p;
3094 
3095 	p = &dev->ports[port];
3096 
3097 	/* Internal PHYs */
3098 	if (dev->info->internal_phy[port])
3099 		return;
3100 
3101 	p->phydev.speed = speed;
3102 
3103 	ksz_port_set_xmii_speed(dev, port, speed);
3104 
3105 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3106 }
3107 
3108 static void ksz_phylink_mac_link_up(struct dsa_switch *ds, int port,
3109 				    unsigned int mode,
3110 				    phy_interface_t interface,
3111 				    struct phy_device *phydev, int speed,
3112 				    int duplex, bool tx_pause, bool rx_pause)
3113 {
3114 	struct ksz_device *dev = ds->priv;
3115 
3116 	dev->dev_ops->phylink_mac_link_up(dev, port, mode, interface, phydev,
3117 					  speed, duplex, tx_pause, rx_pause);
3118 }
3119 
3120 static int ksz_switch_detect(struct ksz_device *dev)
3121 {
3122 	u8 id1, id2, id4;
3123 	u16 id16;
3124 	u32 id32;
3125 	int ret;
3126 
3127 	/* read chip id */
3128 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3129 	if (ret)
3130 		return ret;
3131 
3132 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3133 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3134 
3135 	switch (id1) {
3136 	case KSZ87_FAMILY_ID:
3137 		if (id2 == KSZ87_CHIP_ID_95) {
3138 			u8 val;
3139 
3140 			dev->chip_id = KSZ8795_CHIP_ID;
3141 
3142 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3143 			if (val & KSZ8_PORT_FIBER_MODE)
3144 				dev->chip_id = KSZ8765_CHIP_ID;
3145 		} else if (id2 == KSZ87_CHIP_ID_94) {
3146 			dev->chip_id = KSZ8794_CHIP_ID;
3147 		} else {
3148 			return -ENODEV;
3149 		}
3150 		break;
3151 	case KSZ88_FAMILY_ID:
3152 		if (id2 == KSZ88_CHIP_ID_63)
3153 			dev->chip_id = KSZ8830_CHIP_ID;
3154 		else
3155 			return -ENODEV;
3156 		break;
3157 	default:
3158 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3159 		if (ret)
3160 			return ret;
3161 
3162 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3163 		id32 &= ~0xFF;
3164 
3165 		switch (id32) {
3166 		case KSZ9477_CHIP_ID:
3167 		case KSZ9896_CHIP_ID:
3168 		case KSZ9897_CHIP_ID:
3169 		case KSZ9567_CHIP_ID:
3170 		case LAN9370_CHIP_ID:
3171 		case LAN9371_CHIP_ID:
3172 		case LAN9372_CHIP_ID:
3173 		case LAN9373_CHIP_ID:
3174 		case LAN9374_CHIP_ID:
3175 			dev->chip_id = id32;
3176 			break;
3177 		case KSZ9893_CHIP_ID:
3178 			ret = ksz_read8(dev, REG_CHIP_ID4,
3179 					&id4);
3180 			if (ret)
3181 				return ret;
3182 
3183 			if (id4 == SKU_ID_KSZ8563)
3184 				dev->chip_id = KSZ8563_CHIP_ID;
3185 			else if (id4 == SKU_ID_KSZ9563)
3186 				dev->chip_id = KSZ9563_CHIP_ID;
3187 			else
3188 				dev->chip_id = KSZ9893_CHIP_ID;
3189 
3190 			break;
3191 		default:
3192 			dev_err(dev->dev,
3193 				"unsupported switch detected %x)\n", id32);
3194 			return -ENODEV;
3195 		}
3196 	}
3197 	return 0;
3198 }
3199 
3200 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3201 			      struct flow_cls_offload *cls, bool ingress)
3202 {
3203 	struct ksz_device *dev = ds->priv;
3204 
3205 	switch (dev->chip_id) {
3206 	case KSZ8563_CHIP_ID:
3207 	case KSZ9477_CHIP_ID:
3208 	case KSZ9563_CHIP_ID:
3209 	case KSZ9567_CHIP_ID:
3210 	case KSZ9893_CHIP_ID:
3211 	case KSZ9896_CHIP_ID:
3212 	case KSZ9897_CHIP_ID:
3213 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3214 	}
3215 
3216 	return -EOPNOTSUPP;
3217 }
3218 
3219 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3220 			      struct flow_cls_offload *cls, bool ingress)
3221 {
3222 	struct ksz_device *dev = ds->priv;
3223 
3224 	switch (dev->chip_id) {
3225 	case KSZ8563_CHIP_ID:
3226 	case KSZ9477_CHIP_ID:
3227 	case KSZ9563_CHIP_ID:
3228 	case KSZ9567_CHIP_ID:
3229 	case KSZ9893_CHIP_ID:
3230 	case KSZ9896_CHIP_ID:
3231 	case KSZ9897_CHIP_ID:
3232 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3233 	}
3234 
3235 	return -EOPNOTSUPP;
3236 }
3237 
3238 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3239  * is converted to Hex-decimal using the successive multiplication method. On
3240  * every step, integer part is taken and decimal part is carry forwarded.
3241  */
3242 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3243 {
3244 	u32 cinc = 0;
3245 	u32 txrate;
3246 	u32 rate;
3247 	u8 temp;
3248 	u8 i;
3249 
3250 	txrate = idle_slope - send_slope;
3251 
3252 	if (!txrate)
3253 		return -EINVAL;
3254 
3255 	rate = idle_slope;
3256 
3257 	/* 24 bit register */
3258 	for (i = 0; i < 6; i++) {
3259 		rate = rate * 16;
3260 
3261 		temp = rate / txrate;
3262 
3263 		rate %= txrate;
3264 
3265 		cinc = ((cinc << 4) | temp);
3266 	}
3267 
3268 	*bw = cinc;
3269 
3270 	return 0;
3271 }
3272 
3273 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3274 			     u8 shaper)
3275 {
3276 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3277 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3278 			   FIELD_PREP(MTI_SHAPING_M, shaper));
3279 }
3280 
3281 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3282 			    struct tc_cbs_qopt_offload *qopt)
3283 {
3284 	struct ksz_device *dev = ds->priv;
3285 	int ret;
3286 	u32 bw;
3287 
3288 	if (!dev->info->tc_cbs_supported)
3289 		return -EOPNOTSUPP;
3290 
3291 	if (qopt->queue > dev->info->num_tx_queues)
3292 		return -EINVAL;
3293 
3294 	/* Queue Selection */
3295 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3296 	if (ret)
3297 		return ret;
3298 
3299 	if (!qopt->enable)
3300 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3301 					 MTI_SHAPING_OFF);
3302 
3303 	/* High Credit */
3304 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3305 			   qopt->hicredit);
3306 	if (ret)
3307 		return ret;
3308 
3309 	/* Low Credit */
3310 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3311 			   qopt->locredit);
3312 	if (ret)
3313 		return ret;
3314 
3315 	/* Credit Increment Register */
3316 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3317 	if (ret)
3318 		return ret;
3319 
3320 	if (dev->dev_ops->tc_cbs_set_cinc) {
3321 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3322 		if (ret)
3323 			return ret;
3324 	}
3325 
3326 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3327 				 MTI_SHAPING_SRP);
3328 }
3329 
3330 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3331 {
3332 	int queue, ret;
3333 
3334 	/* Configuration will not take effect until the last Port Queue X
3335 	 * Egress Limit Control Register is written.
3336 	 */
3337 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3338 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3339 				  KSZ9477_OUT_RATE_NO_LIMIT);
3340 		if (ret)
3341 			return ret;
3342 	}
3343 
3344 	return 0;
3345 }
3346 
3347 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
3348 				 int band)
3349 {
3350 	/* Compared to queues, bands prioritize packets differently. In strict
3351 	 * priority mode, the lowest priority is assigned to Queue 0 while the
3352 	 * highest priority is given to Band 0.
3353 	 */
3354 	return p->bands - 1 - band;
3355 }
3356 
3357 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
3358 {
3359 	int ret;
3360 
3361 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3362 	if (ret)
3363 		return ret;
3364 
3365 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3366 				 MTI_SHAPING_OFF);
3367 }
3368 
3369 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
3370 			     int weight)
3371 {
3372 	int ret;
3373 
3374 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3375 	if (ret)
3376 		return ret;
3377 
3378 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3379 				MTI_SHAPING_OFF);
3380 	if (ret)
3381 		return ret;
3382 
3383 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
3384 }
3385 
3386 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
3387 			  struct tc_ets_qopt_offload_replace_params *p)
3388 {
3389 	int ret, band, tc_prio;
3390 	u32 queue_map = 0;
3391 
3392 	/* In order to ensure proper prioritization, it is necessary to set the
3393 	 * rate limit for the related queue to zero. Otherwise strict priority
3394 	 * or WRR mode will not work. This is a hardware limitation.
3395 	 */
3396 	ret = ksz_disable_egress_rate_limit(dev, port);
3397 	if (ret)
3398 		return ret;
3399 
3400 	/* Configure queue scheduling mode for all bands. Currently only strict
3401 	 * prio mode is supported.
3402 	 */
3403 	for (band = 0; band < p->bands; band++) {
3404 		int queue = ksz_ets_band_to_queue(p, band);
3405 
3406 		ret = ksz_queue_set_strict(dev, port, queue);
3407 		if (ret)
3408 			return ret;
3409 	}
3410 
3411 	/* Configure the mapping between traffic classes and queues. Note:
3412 	 * priomap variable support 16 traffic classes, but the chip can handle
3413 	 * only 8 classes.
3414 	 */
3415 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
3416 		int queue;
3417 
3418 		if (tc_prio > KSZ9477_MAX_TC_PRIO)
3419 			break;
3420 
3421 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
3422 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3423 	}
3424 
3425 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3426 }
3427 
3428 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
3429 {
3430 	int ret, queue, tc_prio, s;
3431 	u32 queue_map = 0;
3432 
3433 	/* To restore the default chip configuration, set all queues to use the
3434 	 * WRR scheduler with a weight of 1.
3435 	 */
3436 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3437 		ret = ksz_queue_set_wrr(dev, port, queue,
3438 					KSZ9477_DEFAULT_WRR_WEIGHT);
3439 		if (ret)
3440 			return ret;
3441 	}
3442 
3443 	switch (dev->info->num_tx_queues) {
3444 	case 2:
3445 		s = 2;
3446 		break;
3447 	case 4:
3448 		s = 1;
3449 		break;
3450 	case 8:
3451 		s = 0;
3452 		break;
3453 	default:
3454 		return -EINVAL;
3455 	}
3456 
3457 	/* Revert the queue mapping for TC-priority to its default setting on
3458 	 * the chip.
3459 	 */
3460 	for (tc_prio = 0; tc_prio <= KSZ9477_MAX_TC_PRIO; tc_prio++) {
3461 		int queue;
3462 
3463 		queue = tc_prio >> s;
3464 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3465 	}
3466 
3467 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3468 }
3469 
3470 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
3471 			       struct tc_ets_qopt_offload_replace_params *p)
3472 {
3473 	int band;
3474 
3475 	/* Since it is not feasible to share one port among multiple qdisc,
3476 	 * the user must configure all available queues appropriately.
3477 	 */
3478 	if (p->bands != dev->info->num_tx_queues) {
3479 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
3480 			dev->info->num_tx_queues);
3481 		return -EOPNOTSUPP;
3482 	}
3483 
3484 	for (band = 0; band < p->bands; ++band) {
3485 		/* The KSZ switches utilize a weighted round robin configuration
3486 		 * where a certain number of packets can be transmitted from a
3487 		 * queue before the next queue is serviced. For more information
3488 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
3489 		 * documentation on the Port Transmit Queue Control 1 Register.
3490 		 * However, the current ETS Qdisc implementation (as of February
3491 		 * 2023) assigns a weight to each queue based on the number of
3492 		 * bytes or extrapolated bandwidth in percentages. Since this
3493 		 * differs from the KSZ switches' method and we don't want to
3494 		 * fake support by converting bytes to packets, it is better to
3495 		 * return an error instead.
3496 		 */
3497 		if (p->quanta[band]) {
3498 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
3499 			return -EOPNOTSUPP;
3500 		}
3501 	}
3502 
3503 	return 0;
3504 }
3505 
3506 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
3507 				  struct tc_ets_qopt_offload *qopt)
3508 {
3509 	struct ksz_device *dev = ds->priv;
3510 	int ret;
3511 
3512 	if (!dev->info->tc_ets_supported)
3513 		return -EOPNOTSUPP;
3514 
3515 	if (qopt->parent != TC_H_ROOT) {
3516 		dev_err(dev->dev, "Parent should be \"root\"\n");
3517 		return -EOPNOTSUPP;
3518 	}
3519 
3520 	switch (qopt->command) {
3521 	case TC_ETS_REPLACE:
3522 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
3523 		if (ret)
3524 			return ret;
3525 
3526 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
3527 	case TC_ETS_DESTROY:
3528 		return ksz_tc_ets_del(dev, port);
3529 	case TC_ETS_STATS:
3530 	case TC_ETS_GRAFT:
3531 		return -EOPNOTSUPP;
3532 	}
3533 
3534 	return -EOPNOTSUPP;
3535 }
3536 
3537 static int ksz_setup_tc(struct dsa_switch *ds, int port,
3538 			enum tc_setup_type type, void *type_data)
3539 {
3540 	switch (type) {
3541 	case TC_SETUP_QDISC_CBS:
3542 		return ksz_setup_tc_cbs(ds, port, type_data);
3543 	case TC_SETUP_QDISC_ETS:
3544 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
3545 	default:
3546 		return -EOPNOTSUPP;
3547 	}
3548 }
3549 
3550 static void ksz_get_wol(struct dsa_switch *ds, int port,
3551 			struct ethtool_wolinfo *wol)
3552 {
3553 	struct ksz_device *dev = ds->priv;
3554 
3555 	if (dev->dev_ops->get_wol)
3556 		dev->dev_ops->get_wol(dev, port, wol);
3557 }
3558 
3559 static int ksz_set_wol(struct dsa_switch *ds, int port,
3560 		       struct ethtool_wolinfo *wol)
3561 {
3562 	struct ksz_device *dev = ds->priv;
3563 
3564 	if (dev->dev_ops->set_wol)
3565 		return dev->dev_ops->set_wol(dev, port, wol);
3566 
3567 	return -EOPNOTSUPP;
3568 }
3569 
3570 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
3571 				    const unsigned char *addr)
3572 {
3573 	struct dsa_port *dp = dsa_to_port(ds, port);
3574 	struct ethtool_wolinfo wol;
3575 
3576 	if (dp->hsr_dev) {
3577 		dev_err(ds->dev,
3578 			"Cannot change MAC address on port %d with active HSR offload\n",
3579 			port);
3580 		return -EBUSY;
3581 	}
3582 
3583 	ksz_get_wol(ds, dp->index, &wol);
3584 	if (wol.wolopts & WAKE_MAGIC) {
3585 		dev_err(ds->dev,
3586 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
3587 			port);
3588 		return -EBUSY;
3589 	}
3590 
3591 	return 0;
3592 }
3593 
3594 /**
3595  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
3596  *                                 can be used as a global address.
3597  * @ds: Pointer to the DSA switch structure.
3598  * @port: The port number on which the MAC address is to be checked.
3599  *
3600  * This function examines the MAC address set on the specified port and
3601  * determines if it can be used as a global address for the switch.
3602  *
3603  * Return: true if the port's MAC address can be used as a global address, false
3604  * otherwise.
3605  */
3606 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
3607 {
3608 	struct net_device *user = dsa_to_port(ds, port)->user;
3609 	const unsigned char *addr = user->dev_addr;
3610 	struct ksz_switch_macaddr *switch_macaddr;
3611 	struct ksz_device *dev = ds->priv;
3612 
3613 	ASSERT_RTNL();
3614 
3615 	switch_macaddr = dev->switch_macaddr;
3616 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
3617 		return false;
3618 
3619 	return true;
3620 }
3621 
3622 /**
3623  * ksz_switch_macaddr_get - Program the switch's MAC address register.
3624  * @ds: DSA switch instance.
3625  * @port: Port number.
3626  * @extack: Netlink extended acknowledgment.
3627  *
3628  * This function programs the switch's MAC address register with the MAC address
3629  * of the requesting user port. This single address is used by the switch for
3630  * multiple features like HSR self-address filtering and WoL. Other user ports
3631  * can share ownership of this address as long as their MAC address is the same.
3632  * The MAC addresses of user ports must not change while they have ownership of
3633  * the switch MAC address.
3634  *
3635  * Return: 0 on success, or other error codes on failure.
3636  */
3637 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
3638 			   struct netlink_ext_ack *extack)
3639 {
3640 	struct net_device *user = dsa_to_port(ds, port)->user;
3641 	const unsigned char *addr = user->dev_addr;
3642 	struct ksz_switch_macaddr *switch_macaddr;
3643 	struct ksz_device *dev = ds->priv;
3644 	const u16 *regs = dev->info->regs;
3645 	int i, ret;
3646 
3647 	/* Make sure concurrent MAC address changes are blocked */
3648 	ASSERT_RTNL();
3649 
3650 	switch_macaddr = dev->switch_macaddr;
3651 	if (switch_macaddr) {
3652 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
3653 			NL_SET_ERR_MSG_FMT_MOD(extack,
3654 					       "Switch already configured for MAC address %pM",
3655 					       switch_macaddr->addr);
3656 			return -EBUSY;
3657 		}
3658 
3659 		refcount_inc(&switch_macaddr->refcount);
3660 		return 0;
3661 	}
3662 
3663 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
3664 	if (!switch_macaddr)
3665 		return -ENOMEM;
3666 
3667 	ether_addr_copy(switch_macaddr->addr, addr);
3668 	refcount_set(&switch_macaddr->refcount, 1);
3669 	dev->switch_macaddr = switch_macaddr;
3670 
3671 	/* Program the switch MAC address to hardware */
3672 	for (i = 0; i < ETH_ALEN; i++) {
3673 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
3674 		if (ret)
3675 			goto macaddr_drop;
3676 	}
3677 
3678 	return 0;
3679 
3680 macaddr_drop:
3681 	dev->switch_macaddr = NULL;
3682 	refcount_set(&switch_macaddr->refcount, 0);
3683 	kfree(switch_macaddr);
3684 
3685 	return ret;
3686 }
3687 
3688 void ksz_switch_macaddr_put(struct dsa_switch *ds)
3689 {
3690 	struct ksz_switch_macaddr *switch_macaddr;
3691 	struct ksz_device *dev = ds->priv;
3692 	const u16 *regs = dev->info->regs;
3693 	int i;
3694 
3695 	/* Make sure concurrent MAC address changes are blocked */
3696 	ASSERT_RTNL();
3697 
3698 	switch_macaddr = dev->switch_macaddr;
3699 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
3700 		return;
3701 
3702 	for (i = 0; i < ETH_ALEN; i++)
3703 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
3704 
3705 	dev->switch_macaddr = NULL;
3706 	kfree(switch_macaddr);
3707 }
3708 
3709 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
3710 			struct netlink_ext_ack *extack)
3711 {
3712 	struct ksz_device *dev = ds->priv;
3713 	enum hsr_version ver;
3714 	int ret;
3715 
3716 	ret = hsr_get_version(hsr, &ver);
3717 	if (ret)
3718 		return ret;
3719 
3720 	if (dev->chip_id != KSZ9477_CHIP_ID) {
3721 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
3722 		return -EOPNOTSUPP;
3723 	}
3724 
3725 	/* KSZ9477 can support HW offloading of only 1 HSR device */
3726 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
3727 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
3728 		return -EOPNOTSUPP;
3729 	}
3730 
3731 	/* KSZ9477 only supports HSR v0 and v1 */
3732 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
3733 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
3734 		return -EOPNOTSUPP;
3735 	}
3736 
3737 	/* Self MAC address filtering, to avoid frames traversing
3738 	 * the HSR ring more than once.
3739 	 */
3740 	ret = ksz_switch_macaddr_get(ds, port, extack);
3741 	if (ret)
3742 		return ret;
3743 
3744 	ksz9477_hsr_join(ds, port, hsr);
3745 	dev->hsr_dev = hsr;
3746 	dev->hsr_ports |= BIT(port);
3747 
3748 	return 0;
3749 }
3750 
3751 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
3752 			 struct net_device *hsr)
3753 {
3754 	struct ksz_device *dev = ds->priv;
3755 
3756 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
3757 
3758 	ksz9477_hsr_leave(ds, port, hsr);
3759 	dev->hsr_ports &= ~BIT(port);
3760 	if (!dev->hsr_ports)
3761 		dev->hsr_dev = NULL;
3762 
3763 	ksz_switch_macaddr_put(ds);
3764 
3765 	return 0;
3766 }
3767 
3768 static const struct dsa_switch_ops ksz_switch_ops = {
3769 	.get_tag_protocol	= ksz_get_tag_protocol,
3770 	.connect_tag_protocol   = ksz_connect_tag_protocol,
3771 	.get_phy_flags		= ksz_get_phy_flags,
3772 	.setup			= ksz_setup,
3773 	.teardown		= ksz_teardown,
3774 	.phy_read		= ksz_phy_read16,
3775 	.phy_write		= ksz_phy_write16,
3776 	.phylink_get_caps	= ksz_phylink_get_caps,
3777 	.phylink_mac_config	= ksz_phylink_mac_config,
3778 	.phylink_mac_link_up	= ksz_phylink_mac_link_up,
3779 	.phylink_mac_link_down	= ksz_mac_link_down,
3780 	.port_setup		= ksz_port_setup,
3781 	.set_ageing_time	= ksz_set_ageing_time,
3782 	.get_strings		= ksz_get_strings,
3783 	.get_ethtool_stats	= ksz_get_ethtool_stats,
3784 	.get_sset_count		= ksz_sset_count,
3785 	.port_bridge_join	= ksz_port_bridge_join,
3786 	.port_bridge_leave	= ksz_port_bridge_leave,
3787 	.port_hsr_join		= ksz_hsr_join,
3788 	.port_hsr_leave		= ksz_hsr_leave,
3789 	.port_set_mac_address	= ksz_port_set_mac_address,
3790 	.port_stp_state_set	= ksz_port_stp_state_set,
3791 	.port_teardown		= ksz_port_teardown,
3792 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
3793 	.port_bridge_flags	= ksz_port_bridge_flags,
3794 	.port_fast_age		= ksz_port_fast_age,
3795 	.port_vlan_filtering	= ksz_port_vlan_filtering,
3796 	.port_vlan_add		= ksz_port_vlan_add,
3797 	.port_vlan_del		= ksz_port_vlan_del,
3798 	.port_fdb_dump		= ksz_port_fdb_dump,
3799 	.port_fdb_add		= ksz_port_fdb_add,
3800 	.port_fdb_del		= ksz_port_fdb_del,
3801 	.port_mdb_add           = ksz_port_mdb_add,
3802 	.port_mdb_del           = ksz_port_mdb_del,
3803 	.port_mirror_add	= ksz_port_mirror_add,
3804 	.port_mirror_del	= ksz_port_mirror_del,
3805 	.get_stats64		= ksz_get_stats64,
3806 	.get_pause_stats	= ksz_get_pause_stats,
3807 	.port_change_mtu	= ksz_change_mtu,
3808 	.port_max_mtu		= ksz_max_mtu,
3809 	.get_wol		= ksz_get_wol,
3810 	.set_wol		= ksz_set_wol,
3811 	.get_ts_info		= ksz_get_ts_info,
3812 	.port_hwtstamp_get	= ksz_hwtstamp_get,
3813 	.port_hwtstamp_set	= ksz_hwtstamp_set,
3814 	.port_txtstamp		= ksz_port_txtstamp,
3815 	.port_rxtstamp		= ksz_port_rxtstamp,
3816 	.cls_flower_add		= ksz_cls_flower_add,
3817 	.cls_flower_del		= ksz_cls_flower_del,
3818 	.port_setup_tc		= ksz_setup_tc,
3819 	.get_mac_eee		= ksz_get_mac_eee,
3820 	.set_mac_eee		= ksz_set_mac_eee,
3821 };
3822 
3823 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
3824 {
3825 	struct dsa_switch *ds;
3826 	struct ksz_device *swdev;
3827 
3828 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
3829 	if (!ds)
3830 		return NULL;
3831 
3832 	ds->dev = base;
3833 	ds->num_ports = DSA_MAX_PORTS;
3834 	ds->ops = &ksz_switch_ops;
3835 
3836 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
3837 	if (!swdev)
3838 		return NULL;
3839 
3840 	ds->priv = swdev;
3841 	swdev->dev = base;
3842 
3843 	swdev->ds = ds;
3844 	swdev->priv = priv;
3845 
3846 	return swdev;
3847 }
3848 EXPORT_SYMBOL(ksz_switch_alloc);
3849 
3850 /**
3851  * ksz_switch_shutdown - Shutdown routine for the switch device.
3852  * @dev: The switch device structure.
3853  *
3854  * This function is responsible for initiating a shutdown sequence for the
3855  * switch device. It invokes the reset operation defined in the device
3856  * operations, if available, to reset the switch. Subsequently, it calls the
3857  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
3858  * switch.
3859  */
3860 void ksz_switch_shutdown(struct ksz_device *dev)
3861 {
3862 	bool wol_enabled = false;
3863 
3864 	if (dev->dev_ops->wol_pre_shutdown)
3865 		dev->dev_ops->wol_pre_shutdown(dev, &wol_enabled);
3866 
3867 	if (dev->dev_ops->reset && !wol_enabled)
3868 		dev->dev_ops->reset(dev);
3869 
3870 	dsa_switch_shutdown(dev->ds);
3871 }
3872 EXPORT_SYMBOL(ksz_switch_shutdown);
3873 
3874 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
3875 				  struct device_node *port_dn)
3876 {
3877 	phy_interface_t phy_mode = dev->ports[port_num].interface;
3878 	int rx_delay = -1, tx_delay = -1;
3879 
3880 	if (!phy_interface_mode_is_rgmii(phy_mode))
3881 		return;
3882 
3883 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
3884 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
3885 
3886 	if (rx_delay == -1 && tx_delay == -1) {
3887 		dev_warn(dev->dev,
3888 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
3889 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
3890 			 "\"tx-internal-delay-ps\"",
3891 			 port_num);
3892 
3893 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
3894 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
3895 			rx_delay = 2000;
3896 
3897 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
3898 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
3899 			tx_delay = 2000;
3900 	}
3901 
3902 	if (rx_delay < 0)
3903 		rx_delay = 0;
3904 	if (tx_delay < 0)
3905 		tx_delay = 0;
3906 
3907 	dev->ports[port_num].rgmii_rx_val = rx_delay;
3908 	dev->ports[port_num].rgmii_tx_val = tx_delay;
3909 }
3910 
3911 /**
3912  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
3913  *				 register value.
3914  * @array:	The array of drive strength values to search.
3915  * @array_size:	The size of the array.
3916  * @microamp:	The drive strength value in microamp to be converted.
3917  *
3918  * This function searches the array of drive strength values for the given
3919  * microamp value and returns the corresponding register value for that drive.
3920  *
3921  * Returns: If found, the corresponding register value for that drive strength
3922  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
3923  */
3924 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
3925 				     size_t array_size, int microamp)
3926 {
3927 	int i;
3928 
3929 	for (i = 0; i < array_size; i++) {
3930 		if (array[i].microamp == microamp)
3931 			return array[i].reg_val;
3932 	}
3933 
3934 	return -EINVAL;
3935 }
3936 
3937 /**
3938  * ksz_drive_strength_error() - Report invalid drive strength value
3939  * @dev:	ksz device
3940  * @array:	The array of drive strength values to search.
3941  * @array_size:	The size of the array.
3942  * @microamp:	Invalid drive strength value in microamp
3943  *
3944  * This function logs an error message when an unsupported drive strength value
3945  * is detected. It lists out all the supported drive strength values for
3946  * reference in the error message.
3947  */
3948 static void ksz_drive_strength_error(struct ksz_device *dev,
3949 				     const struct ksz_drive_strength *array,
3950 				     size_t array_size, int microamp)
3951 {
3952 	char supported_values[100];
3953 	size_t remaining_size;
3954 	int added_len;
3955 	char *ptr;
3956 	int i;
3957 
3958 	remaining_size = sizeof(supported_values);
3959 	ptr = supported_values;
3960 
3961 	for (i = 0; i < array_size; i++) {
3962 		added_len = snprintf(ptr, remaining_size,
3963 				     i == 0 ? "%d" : ", %d", array[i].microamp);
3964 
3965 		if (added_len >= remaining_size)
3966 			break;
3967 
3968 		ptr += added_len;
3969 		remaining_size -= added_len;
3970 	}
3971 
3972 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
3973 		microamp, supported_values);
3974 }
3975 
3976 /**
3977  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
3978  *				    chip variants.
3979  * @dev:       ksz device
3980  * @props:     Array of drive strength properties to be applied
3981  * @num_props: Number of properties in the array
3982  *
3983  * This function configures the drive strength for various KSZ9477 chip variants
3984  * based on the provided properties. It handles chip-specific nuances and
3985  * ensures only valid drive strengths are written to the respective chip.
3986  *
3987  * Return: 0 on successful configuration, a negative error code on failure.
3988  */
3989 static int ksz9477_drive_strength_write(struct ksz_device *dev,
3990 					struct ksz_driver_strength_prop *props,
3991 					int num_props)
3992 {
3993 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
3994 	int i, ret, reg;
3995 	u8 mask = 0;
3996 	u8 val = 0;
3997 
3998 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
3999 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4000 			 props[KSZ_DRIVER_STRENGTH_IO].name);
4001 
4002 	if (dev->chip_id == KSZ8795_CHIP_ID ||
4003 	    dev->chip_id == KSZ8794_CHIP_ID ||
4004 	    dev->chip_id == KSZ8765_CHIP_ID)
4005 		reg = KSZ8795_REG_SW_CTRL_20;
4006 	else
4007 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4008 
4009 	for (i = 0; i < num_props; i++) {
4010 		if (props[i].value == -1)
4011 			continue;
4012 
4013 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4014 						array_size, props[i].value);
4015 		if (ret < 0) {
4016 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4017 						 array_size, props[i].value);
4018 			return ret;
4019 		}
4020 
4021 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4022 		val |= ret << props[i].offset;
4023 	}
4024 
4025 	return ksz_rmw8(dev, reg, mask, val);
4026 }
4027 
4028 /**
4029  * ksz8830_drive_strength_write() - Set the drive strength configuration for
4030  *				    KSZ8830 compatible chip variants.
4031  * @dev:       ksz device
4032  * @props:     Array of drive strength properties to be set
4033  * @num_props: Number of properties in the array
4034  *
4035  * This function applies the specified drive strength settings to KSZ8830 chip
4036  * variants (KSZ8873, KSZ8863).
4037  * It ensures the configurations align with what the chip variant supports and
4038  * warns or errors out on unsupported settings.
4039  *
4040  * Return: 0 on success, error code otherwise
4041  */
4042 static int ksz8830_drive_strength_write(struct ksz_device *dev,
4043 					struct ksz_driver_strength_prop *props,
4044 					int num_props)
4045 {
4046 	size_t array_size = ARRAY_SIZE(ksz8830_drive_strengths);
4047 	int microamp;
4048 	int i, ret;
4049 
4050 	for (i = 0; i < num_props; i++) {
4051 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4052 			continue;
4053 
4054 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4055 			 props[i].name);
4056 	}
4057 
4058 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4059 	ret = ksz_drive_strength_to_reg(ksz8830_drive_strengths, array_size,
4060 					microamp);
4061 	if (ret < 0) {
4062 		ksz_drive_strength_error(dev, ksz8830_drive_strengths,
4063 					 array_size, microamp);
4064 		return ret;
4065 	}
4066 
4067 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4068 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4069 }
4070 
4071 /**
4072  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4073  *				from device tree properties.
4074  * @dev:	ksz device
4075  *
4076  * This function reads the specified drive strength properties from the
4077  * device tree, validates against the supported chip variants, and sets
4078  * them accordingly. An error should be critical here, as the drive strength
4079  * settings are crucial for EMI compliance.
4080  *
4081  * Return: 0 on success, error code otherwise
4082  */
4083 static int ksz_parse_drive_strength(struct ksz_device *dev)
4084 {
4085 	struct ksz_driver_strength_prop of_props[] = {
4086 		[KSZ_DRIVER_STRENGTH_HI] = {
4087 			.name = "microchip,hi-drive-strength-microamp",
4088 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4089 			.value = -1,
4090 		},
4091 		[KSZ_DRIVER_STRENGTH_LO] = {
4092 			.name = "microchip,lo-drive-strength-microamp",
4093 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4094 			.value = -1,
4095 		},
4096 		[KSZ_DRIVER_STRENGTH_IO] = {
4097 			.name = "microchip,io-drive-strength-microamp",
4098 			.offset = 0, /* don't care */
4099 			.value = -1,
4100 		},
4101 	};
4102 	struct device_node *np = dev->dev->of_node;
4103 	bool have_any_prop = false;
4104 	int i, ret;
4105 
4106 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4107 		ret = of_property_read_u32(np, of_props[i].name,
4108 					   &of_props[i].value);
4109 		if (ret && ret != -EINVAL)
4110 			dev_warn(dev->dev, "Failed to read %s\n",
4111 				 of_props[i].name);
4112 		if (ret)
4113 			continue;
4114 
4115 		have_any_prop = true;
4116 	}
4117 
4118 	if (!have_any_prop)
4119 		return 0;
4120 
4121 	switch (dev->chip_id) {
4122 	case KSZ8830_CHIP_ID:
4123 		return ksz8830_drive_strength_write(dev, of_props,
4124 						    ARRAY_SIZE(of_props));
4125 	case KSZ8795_CHIP_ID:
4126 	case KSZ8794_CHIP_ID:
4127 	case KSZ8765_CHIP_ID:
4128 	case KSZ8563_CHIP_ID:
4129 	case KSZ9477_CHIP_ID:
4130 	case KSZ9563_CHIP_ID:
4131 	case KSZ9567_CHIP_ID:
4132 	case KSZ9893_CHIP_ID:
4133 	case KSZ9896_CHIP_ID:
4134 	case KSZ9897_CHIP_ID:
4135 		return ksz9477_drive_strength_write(dev, of_props,
4136 						    ARRAY_SIZE(of_props));
4137 	default:
4138 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4139 			if (of_props[i].value == -1)
4140 				continue;
4141 
4142 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4143 				 of_props[i].name);
4144 		}
4145 	}
4146 
4147 	return 0;
4148 }
4149 
4150 int ksz_switch_register(struct ksz_device *dev)
4151 {
4152 	const struct ksz_chip_data *info;
4153 	struct device_node *port, *ports;
4154 	phy_interface_t interface;
4155 	unsigned int port_num;
4156 	int ret;
4157 	int i;
4158 
4159 	if (dev->pdata)
4160 		dev->chip_id = dev->pdata->chip_id;
4161 
4162 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4163 						  GPIOD_OUT_LOW);
4164 	if (IS_ERR(dev->reset_gpio))
4165 		return PTR_ERR(dev->reset_gpio);
4166 
4167 	if (dev->reset_gpio) {
4168 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4169 		usleep_range(10000, 12000);
4170 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
4171 		msleep(100);
4172 	}
4173 
4174 	mutex_init(&dev->dev_mutex);
4175 	mutex_init(&dev->regmap_mutex);
4176 	mutex_init(&dev->alu_mutex);
4177 	mutex_init(&dev->vlan_mutex);
4178 
4179 	ret = ksz_switch_detect(dev);
4180 	if (ret)
4181 		return ret;
4182 
4183 	info = ksz_lookup_info(dev->chip_id);
4184 	if (!info)
4185 		return -ENODEV;
4186 
4187 	/* Update the compatible info with the probed one */
4188 	dev->info = info;
4189 
4190 	dev_info(dev->dev, "found switch: %s, rev %i\n",
4191 		 dev->info->dev_name, dev->chip_rev);
4192 
4193 	ret = ksz_check_device_id(dev);
4194 	if (ret)
4195 		return ret;
4196 
4197 	dev->dev_ops = dev->info->ops;
4198 
4199 	ret = dev->dev_ops->init(dev);
4200 	if (ret)
4201 		return ret;
4202 
4203 	dev->ports = devm_kzalloc(dev->dev,
4204 				  dev->info->port_cnt * sizeof(struct ksz_port),
4205 				  GFP_KERNEL);
4206 	if (!dev->ports)
4207 		return -ENOMEM;
4208 
4209 	for (i = 0; i < dev->info->port_cnt; i++) {
4210 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
4211 		mutex_init(&dev->ports[i].mib.cnt_mutex);
4212 		dev->ports[i].mib.counters =
4213 			devm_kzalloc(dev->dev,
4214 				     sizeof(u64) * (dev->info->mib_cnt + 1),
4215 				     GFP_KERNEL);
4216 		if (!dev->ports[i].mib.counters)
4217 			return -ENOMEM;
4218 
4219 		dev->ports[i].ksz_dev = dev;
4220 		dev->ports[i].num = i;
4221 	}
4222 
4223 	/* set the real number of ports */
4224 	dev->ds->num_ports = dev->info->port_cnt;
4225 
4226 	/* Host port interface will be self detected, or specifically set in
4227 	 * device tree.
4228 	 */
4229 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
4230 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
4231 	if (dev->dev->of_node) {
4232 		ret = ksz_parse_drive_strength(dev);
4233 		if (ret)
4234 			return ret;
4235 
4236 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
4237 		if (ret == 0)
4238 			dev->compat_interface = interface;
4239 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
4240 		if (!ports)
4241 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
4242 		if (ports) {
4243 			for_each_available_child_of_node(ports, port) {
4244 				if (of_property_read_u32(port, "reg",
4245 							 &port_num))
4246 					continue;
4247 				if (!(dev->port_mask & BIT(port_num))) {
4248 					of_node_put(port);
4249 					of_node_put(ports);
4250 					return -EINVAL;
4251 				}
4252 				of_get_phy_mode(port,
4253 						&dev->ports[port_num].interface);
4254 
4255 				ksz_parse_rgmii_delay(dev, port_num, port);
4256 			}
4257 			of_node_put(ports);
4258 		}
4259 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
4260 							 "microchip,synclko-125");
4261 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
4262 							     "microchip,synclko-disable");
4263 		if (dev->synclko_125 && dev->synclko_disable) {
4264 			dev_err(dev->dev, "inconsistent synclko settings\n");
4265 			return -EINVAL;
4266 		}
4267 
4268 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
4269 							   "wakeup-source");
4270 	}
4271 
4272 	ret = dsa_register_switch(dev->ds);
4273 	if (ret) {
4274 		dev->dev_ops->exit(dev);
4275 		return ret;
4276 	}
4277 
4278 	/* Read MIB counters every 30 seconds to avoid overflow. */
4279 	dev->mib_read_interval = msecs_to_jiffies(5000);
4280 
4281 	/* Start the MIB timer. */
4282 	schedule_delayed_work(&dev->mib_read, 0);
4283 
4284 	return ret;
4285 }
4286 EXPORT_SYMBOL(ksz_switch_register);
4287 
4288 void ksz_switch_remove(struct ksz_device *dev)
4289 {
4290 	/* timer started */
4291 	if (dev->mib_read_interval) {
4292 		dev->mib_read_interval = 0;
4293 		cancel_delayed_work_sync(&dev->mib_read);
4294 	}
4295 
4296 	dev->dev_ops->exit(dev);
4297 	dsa_unregister_switch(dev->ds);
4298 
4299 	if (dev->reset_gpio)
4300 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4301 
4302 }
4303 EXPORT_SYMBOL(ksz_switch_remove);
4304 
4305 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
4306 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
4307 MODULE_LICENSE("GPL");
4308