1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Microchip switch driver main logic 4 * 5 * Copyright (C) 2017-2025 Microchip Technology Inc. 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/dsa/ksz_common.h> 10 #include <linux/export.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/platform_data/microchip-ksz.h> 15 #include <linux/phy.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_bridge.h> 18 #include <linux/if_vlan.h> 19 #include <linux/if_hsr.h> 20 #include <linux/irq.h> 21 #include <linux/irqdomain.h> 22 #include <linux/of.h> 23 #include <linux/of_mdio.h> 24 #include <linux/of_net.h> 25 #include <linux/micrel_phy.h> 26 #include <linux/pinctrl/consumer.h> 27 #include <net/dsa.h> 28 #include <net/ieee8021q.h> 29 #include <net/pkt_cls.h> 30 #include <net/switchdev.h> 31 32 #include "ksz_common.h" 33 #include "ksz_dcb.h" 34 #include "ksz_ptp.h" 35 #include "ksz8.h" 36 #include "ksz9477.h" 37 #include "lan937x.h" 38 39 #define MIB_COUNTER_NUM 0x20 40 41 struct ksz_stats_raw { 42 u64 rx_hi; 43 u64 rx_undersize; 44 u64 rx_fragments; 45 u64 rx_oversize; 46 u64 rx_jabbers; 47 u64 rx_symbol_err; 48 u64 rx_crc_err; 49 u64 rx_align_err; 50 u64 rx_mac_ctrl; 51 u64 rx_pause; 52 u64 rx_bcast; 53 u64 rx_mcast; 54 u64 rx_ucast; 55 u64 rx_64_or_less; 56 u64 rx_65_127; 57 u64 rx_128_255; 58 u64 rx_256_511; 59 u64 rx_512_1023; 60 u64 rx_1024_1522; 61 u64 rx_1523_2000; 62 u64 rx_2001; 63 u64 tx_hi; 64 u64 tx_late_col; 65 u64 tx_pause; 66 u64 tx_bcast; 67 u64 tx_mcast; 68 u64 tx_ucast; 69 u64 tx_deferred; 70 u64 tx_total_col; 71 u64 tx_exc_col; 72 u64 tx_single_col; 73 u64 tx_mult_col; 74 u64 rx_total; 75 u64 tx_total; 76 u64 rx_discards; 77 u64 tx_discards; 78 }; 79 80 struct ksz88xx_stats_raw { 81 u64 rx; 82 u64 rx_hi; 83 u64 rx_undersize; 84 u64 rx_fragments; 85 u64 rx_oversize; 86 u64 rx_jabbers; 87 u64 rx_symbol_err; 88 u64 rx_crc_err; 89 u64 rx_align_err; 90 u64 rx_mac_ctrl; 91 u64 rx_pause; 92 u64 rx_bcast; 93 u64 rx_mcast; 94 u64 rx_ucast; 95 u64 rx_64_or_less; 96 u64 rx_65_127; 97 u64 rx_128_255; 98 u64 rx_256_511; 99 u64 rx_512_1023; 100 u64 rx_1024_1522; 101 u64 tx; 102 u64 tx_hi; 103 u64 tx_late_col; 104 u64 tx_pause; 105 u64 tx_bcast; 106 u64 tx_mcast; 107 u64 tx_ucast; 108 u64 tx_deferred; 109 u64 tx_total_col; 110 u64 tx_exc_col; 111 u64 tx_single_col; 112 u64 tx_mult_col; 113 u64 rx_discards; 114 u64 tx_discards; 115 }; 116 117 static const struct ksz_mib_names ksz88xx_mib_names[] = { 118 { 0x00, "rx" }, 119 { 0x01, "rx_hi" }, 120 { 0x02, "rx_undersize" }, 121 { 0x03, "rx_fragments" }, 122 { 0x04, "rx_oversize" }, 123 { 0x05, "rx_jabbers" }, 124 { 0x06, "rx_symbol_err" }, 125 { 0x07, "rx_crc_err" }, 126 { 0x08, "rx_align_err" }, 127 { 0x09, "rx_mac_ctrl" }, 128 { 0x0a, "rx_pause" }, 129 { 0x0b, "rx_bcast" }, 130 { 0x0c, "rx_mcast" }, 131 { 0x0d, "rx_ucast" }, 132 { 0x0e, "rx_64_or_less" }, 133 { 0x0f, "rx_65_127" }, 134 { 0x10, "rx_128_255" }, 135 { 0x11, "rx_256_511" }, 136 { 0x12, "rx_512_1023" }, 137 { 0x13, "rx_1024_1522" }, 138 { 0x14, "tx" }, 139 { 0x15, "tx_hi" }, 140 { 0x16, "tx_late_col" }, 141 { 0x17, "tx_pause" }, 142 { 0x18, "tx_bcast" }, 143 { 0x19, "tx_mcast" }, 144 { 0x1a, "tx_ucast" }, 145 { 0x1b, "tx_deferred" }, 146 { 0x1c, "tx_total_col" }, 147 { 0x1d, "tx_exc_col" }, 148 { 0x1e, "tx_single_col" }, 149 { 0x1f, "tx_mult_col" }, 150 { 0x100, "rx_discards" }, 151 { 0x101, "tx_discards" }, 152 }; 153 154 static const struct ksz_mib_names ksz9477_mib_names[] = { 155 { 0x00, "rx_hi" }, 156 { 0x01, "rx_undersize" }, 157 { 0x02, "rx_fragments" }, 158 { 0x03, "rx_oversize" }, 159 { 0x04, "rx_jabbers" }, 160 { 0x05, "rx_symbol_err" }, 161 { 0x06, "rx_crc_err" }, 162 { 0x07, "rx_align_err" }, 163 { 0x08, "rx_mac_ctrl" }, 164 { 0x09, "rx_pause" }, 165 { 0x0A, "rx_bcast" }, 166 { 0x0B, "rx_mcast" }, 167 { 0x0C, "rx_ucast" }, 168 { 0x0D, "rx_64_or_less" }, 169 { 0x0E, "rx_65_127" }, 170 { 0x0F, "rx_128_255" }, 171 { 0x10, "rx_256_511" }, 172 { 0x11, "rx_512_1023" }, 173 { 0x12, "rx_1024_1522" }, 174 { 0x13, "rx_1523_2000" }, 175 { 0x14, "rx_2001" }, 176 { 0x15, "tx_hi" }, 177 { 0x16, "tx_late_col" }, 178 { 0x17, "tx_pause" }, 179 { 0x18, "tx_bcast" }, 180 { 0x19, "tx_mcast" }, 181 { 0x1A, "tx_ucast" }, 182 { 0x1B, "tx_deferred" }, 183 { 0x1C, "tx_total_col" }, 184 { 0x1D, "tx_exc_col" }, 185 { 0x1E, "tx_single_col" }, 186 { 0x1F, "tx_mult_col" }, 187 { 0x80, "rx_total" }, 188 { 0x81, "tx_total" }, 189 { 0x82, "rx_discards" }, 190 { 0x83, "tx_discards" }, 191 }; 192 193 struct ksz_driver_strength_prop { 194 const char *name; 195 int offset; 196 int value; 197 }; 198 199 enum ksz_driver_strength_type { 200 KSZ_DRIVER_STRENGTH_HI, 201 KSZ_DRIVER_STRENGTH_LO, 202 KSZ_DRIVER_STRENGTH_IO, 203 }; 204 205 /** 206 * struct ksz_drive_strength - drive strength mapping 207 * @reg_val: register value 208 * @microamp: microamp value 209 */ 210 struct ksz_drive_strength { 211 u32 reg_val; 212 u32 microamp; 213 }; 214 215 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants 216 * 217 * This values are not documented in KSZ9477 variants but confirmed by 218 * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893 219 * and KSZ8563 are using same register (drive strength) settings like KSZ8795. 220 * 221 * Documentation in KSZ8795CLX provides more information with some 222 * recommendations: 223 * - for high speed signals 224 * 1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using 225 * 2.5V or 3.3V VDDIO. 226 * 2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with 227 * using 1.8V VDDIO. 228 * 3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V 229 * or 3.3V VDDIO. 230 * 4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO. 231 * 5. In same interface, the heavy loading should use higher one of the 232 * drive current strength. 233 * - for low speed signals 234 * 1. 3.3V VDDIO, use either 4 mA or 8 mA. 235 * 2. 2.5V VDDIO, use either 8 mA or 12 mA. 236 * 3. 1.8V VDDIO, use either 12 mA or 16 mA. 237 * 4. If it is heavy loading, can use higher drive current strength. 238 */ 239 static const struct ksz_drive_strength ksz9477_drive_strengths[] = { 240 { SW_DRIVE_STRENGTH_2MA, 2000 }, 241 { SW_DRIVE_STRENGTH_4MA, 4000 }, 242 { SW_DRIVE_STRENGTH_8MA, 8000 }, 243 { SW_DRIVE_STRENGTH_12MA, 12000 }, 244 { SW_DRIVE_STRENGTH_16MA, 16000 }, 245 { SW_DRIVE_STRENGTH_20MA, 20000 }, 246 { SW_DRIVE_STRENGTH_24MA, 24000 }, 247 { SW_DRIVE_STRENGTH_28MA, 28000 }, 248 }; 249 250 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, .. 251 * variants. 252 * This values are documented in KSZ8873 and KSZ8863 datasheets. 253 */ 254 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = { 255 { 0, 8000 }, 256 { KSZ8873_DRIVE_STRENGTH_16MA, 16000 }, 257 }; 258 259 static void ksz88x3_phylink_mac_config(struct phylink_config *config, 260 unsigned int mode, 261 const struct phylink_link_state *state); 262 static void ksz_phylink_mac_config(struct phylink_config *config, 263 unsigned int mode, 264 const struct phylink_link_state *state); 265 static void ksz_phylink_mac_link_down(struct phylink_config *config, 266 unsigned int mode, 267 phy_interface_t interface); 268 269 /** 270 * ksz_phylink_mac_disable_tx_lpi() - Callback to signal LPI support (Dummy) 271 * @config: phylink config structure 272 * 273 * This function is a dummy handler. See ksz_phylink_mac_enable_tx_lpi() for 274 * a detailed explanation of EEE/LPI handling in KSZ switches. 275 */ 276 static void ksz_phylink_mac_disable_tx_lpi(struct phylink_config *config) 277 { 278 } 279 280 /** 281 * ksz_phylink_mac_enable_tx_lpi() - Callback to signal LPI support (Dummy) 282 * @config: phylink config structure 283 * @timer: timer value before entering LPI (unused) 284 * @tx_clock_stop: whether to stop the TX clock in LPI mode (unused) 285 * 286 * This function signals to phylink that the driver architecture supports 287 * LPI management, enabling phylink to control EEE advertisement during 288 * negotiation according to IEEE Std 802.3 (Clause 78). 289 * 290 * Hardware Management of EEE/LPI State: 291 * For KSZ switch ports with integrated PHYs (e.g., KSZ9893R ports 1-2), 292 * observation and testing suggest that the actual EEE / Low Power Idle (LPI) 293 * state transitions are managed autonomously by the hardware based on 294 * the auto-negotiation results. (Note: While the datasheet describes EEE 295 * operation based on negotiation, it doesn't explicitly detail the internal 296 * MAC/PHY interaction, so autonomous hardware management of the MAC state 297 * for LPI is inferred from observed behavior). 298 * This hardware control, consistent with the switch's ability to operate 299 * autonomously via strapping, means MAC-level software intervention is not 300 * required or exposed for managing the LPI state once EEE is negotiated. 301 * (Ref: KSZ9893R Data Sheet DS00002420D, primarily Section 4.7.5 explaining 302 * EEE, also Sections 4.1.7 on Auto-Negotiation and 3.2.1 on Configuration 303 * Straps). 304 * 305 * Additionally, ports configured as MAC interfaces (e.g., KSZ9893R port 3) 306 * lack documented MAC-level LPI control. 307 * 308 * Therefore, this callback performs no action and serves primarily to inform 309 * phylink of LPI awareness and to document the inferred hardware behavior. 310 * 311 * Returns: 0 (Always success) 312 */ 313 static int ksz_phylink_mac_enable_tx_lpi(struct phylink_config *config, 314 u32 timer, bool tx_clock_stop) 315 { 316 return 0; 317 } 318 319 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = { 320 .mac_config = ksz88x3_phylink_mac_config, 321 .mac_link_down = ksz_phylink_mac_link_down, 322 .mac_link_up = ksz8_phylink_mac_link_up, 323 .mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi, 324 .mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi, 325 }; 326 327 static const struct phylink_mac_ops ksz8_phylink_mac_ops = { 328 .mac_config = ksz_phylink_mac_config, 329 .mac_link_down = ksz_phylink_mac_link_down, 330 .mac_link_up = ksz8_phylink_mac_link_up, 331 .mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi, 332 .mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi, 333 }; 334 335 static const struct ksz_dev_ops ksz8463_dev_ops = { 336 .setup = ksz8_setup, 337 .get_port_addr = ksz8463_get_port_addr, 338 .cfg_port_member = ksz8_cfg_port_member, 339 .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, 340 .port_setup = ksz8_port_setup, 341 .r_phy = ksz8463_r_phy, 342 .w_phy = ksz8463_w_phy, 343 .r_mib_cnt = ksz8_r_mib_cnt, 344 .r_mib_pkt = ksz8_r_mib_pkt, 345 .r_mib_stat64 = ksz88xx_r_mib_stats64, 346 .freeze_mib = ksz8_freeze_mib, 347 .port_init_cnt = ksz8_port_init_cnt, 348 .fdb_dump = ksz8_fdb_dump, 349 .fdb_add = ksz8_fdb_add, 350 .fdb_del = ksz8_fdb_del, 351 .mdb_add = ksz8_mdb_add, 352 .mdb_del = ksz8_mdb_del, 353 .vlan_filtering = ksz8_port_vlan_filtering, 354 .vlan_add = ksz8_port_vlan_add, 355 .vlan_del = ksz8_port_vlan_del, 356 .mirror_add = ksz8_port_mirror_add, 357 .mirror_del = ksz8_port_mirror_del, 358 .get_caps = ksz8_get_caps, 359 .config_cpu_port = ksz8_config_cpu_port, 360 .enable_stp_addr = ksz8_enable_stp_addr, 361 .reset = ksz8_reset_switch, 362 .init = ksz8_switch_init, 363 .exit = ksz8_switch_exit, 364 .change_mtu = ksz8_change_mtu, 365 }; 366 367 static const struct ksz_dev_ops ksz88xx_dev_ops = { 368 .setup = ksz8_setup, 369 .get_port_addr = ksz8_get_port_addr, 370 .cfg_port_member = ksz8_cfg_port_member, 371 .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, 372 .port_setup = ksz8_port_setup, 373 .r_phy = ksz8_r_phy, 374 .w_phy = ksz8_w_phy, 375 .r_mib_cnt = ksz8_r_mib_cnt, 376 .r_mib_pkt = ksz8_r_mib_pkt, 377 .r_mib_stat64 = ksz88xx_r_mib_stats64, 378 .freeze_mib = ksz8_freeze_mib, 379 .port_init_cnt = ksz8_port_init_cnt, 380 .fdb_dump = ksz8_fdb_dump, 381 .fdb_add = ksz8_fdb_add, 382 .fdb_del = ksz8_fdb_del, 383 .mdb_add = ksz8_mdb_add, 384 .mdb_del = ksz8_mdb_del, 385 .vlan_filtering = ksz8_port_vlan_filtering, 386 .vlan_add = ksz8_port_vlan_add, 387 .vlan_del = ksz8_port_vlan_del, 388 .mirror_add = ksz8_port_mirror_add, 389 .mirror_del = ksz8_port_mirror_del, 390 .get_caps = ksz8_get_caps, 391 .config_cpu_port = ksz8_config_cpu_port, 392 .enable_stp_addr = ksz8_enable_stp_addr, 393 .reset = ksz8_reset_switch, 394 .init = ksz8_switch_init, 395 .exit = ksz8_switch_exit, 396 .change_mtu = ksz8_change_mtu, 397 .pme_write8 = ksz8_pme_write8, 398 .pme_pread8 = ksz8_pme_pread8, 399 .pme_pwrite8 = ksz8_pme_pwrite8, 400 }; 401 402 static const struct ksz_dev_ops ksz87xx_dev_ops = { 403 .setup = ksz8_setup, 404 .get_port_addr = ksz8_get_port_addr, 405 .cfg_port_member = ksz8_cfg_port_member, 406 .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, 407 .port_setup = ksz8_port_setup, 408 .r_phy = ksz8_r_phy, 409 .w_phy = ksz8_w_phy, 410 .r_mib_cnt = ksz8_r_mib_cnt, 411 .r_mib_pkt = ksz8_r_mib_pkt, 412 .r_mib_stat64 = ksz_r_mib_stats64, 413 .freeze_mib = ksz8_freeze_mib, 414 .port_init_cnt = ksz8_port_init_cnt, 415 .fdb_dump = ksz8_fdb_dump, 416 .fdb_add = ksz8_fdb_add, 417 .fdb_del = ksz8_fdb_del, 418 .mdb_add = ksz8_mdb_add, 419 .mdb_del = ksz8_mdb_del, 420 .vlan_filtering = ksz8_port_vlan_filtering, 421 .vlan_add = ksz8_port_vlan_add, 422 .vlan_del = ksz8_port_vlan_del, 423 .mirror_add = ksz8_port_mirror_add, 424 .mirror_del = ksz8_port_mirror_del, 425 .get_caps = ksz8_get_caps, 426 .config_cpu_port = ksz8_config_cpu_port, 427 .enable_stp_addr = ksz8_enable_stp_addr, 428 .reset = ksz8_reset_switch, 429 .init = ksz8_switch_init, 430 .exit = ksz8_switch_exit, 431 .change_mtu = ksz8_change_mtu, 432 .pme_write8 = ksz8_pme_write8, 433 .pme_pread8 = ksz8_pme_pread8, 434 .pme_pwrite8 = ksz8_pme_pwrite8, 435 }; 436 437 static void ksz9477_phylink_mac_link_up(struct phylink_config *config, 438 struct phy_device *phydev, 439 unsigned int mode, 440 phy_interface_t interface, 441 int speed, int duplex, bool tx_pause, 442 bool rx_pause); 443 444 static struct phylink_pcs * 445 ksz_phylink_mac_select_pcs(struct phylink_config *config, 446 phy_interface_t interface) 447 { 448 struct dsa_port *dp = dsa_phylink_to_port(config); 449 struct ksz_device *dev = dp->ds->priv; 450 struct ksz_port *p = &dev->ports[dp->index]; 451 452 if (ksz_is_sgmii_port(dev, dp->index) && 453 (interface == PHY_INTERFACE_MODE_SGMII || 454 interface == PHY_INTERFACE_MODE_1000BASEX)) 455 return p->pcs; 456 457 return NULL; 458 } 459 460 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = { 461 .mac_config = ksz_phylink_mac_config, 462 .mac_link_down = ksz_phylink_mac_link_down, 463 .mac_link_up = ksz9477_phylink_mac_link_up, 464 .mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi, 465 .mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi, 466 .mac_select_pcs = ksz_phylink_mac_select_pcs, 467 }; 468 469 static const struct ksz_dev_ops ksz9477_dev_ops = { 470 .setup = ksz9477_setup, 471 .get_port_addr = ksz9477_get_port_addr, 472 .cfg_port_member = ksz9477_cfg_port_member, 473 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, 474 .port_setup = ksz9477_port_setup, 475 .set_ageing_time = ksz9477_set_ageing_time, 476 .r_phy = ksz9477_r_phy, 477 .w_phy = ksz9477_w_phy, 478 .r_mib_cnt = ksz9477_r_mib_cnt, 479 .r_mib_pkt = ksz9477_r_mib_pkt, 480 .r_mib_stat64 = ksz_r_mib_stats64, 481 .freeze_mib = ksz9477_freeze_mib, 482 .port_init_cnt = ksz9477_port_init_cnt, 483 .vlan_filtering = ksz9477_port_vlan_filtering, 484 .vlan_add = ksz9477_port_vlan_add, 485 .vlan_del = ksz9477_port_vlan_del, 486 .mirror_add = ksz9477_port_mirror_add, 487 .mirror_del = ksz9477_port_mirror_del, 488 .get_caps = ksz9477_get_caps, 489 .fdb_dump = ksz9477_fdb_dump, 490 .fdb_add = ksz9477_fdb_add, 491 .fdb_del = ksz9477_fdb_del, 492 .mdb_add = ksz9477_mdb_add, 493 .mdb_del = ksz9477_mdb_del, 494 .change_mtu = ksz9477_change_mtu, 495 .pme_write8 = ksz_write8, 496 .pme_pread8 = ksz_pread8, 497 .pme_pwrite8 = ksz_pwrite8, 498 .config_cpu_port = ksz9477_config_cpu_port, 499 .tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc, 500 .enable_stp_addr = ksz9477_enable_stp_addr, 501 .reset = ksz9477_reset_switch, 502 .init = ksz9477_switch_init, 503 .exit = ksz9477_switch_exit, 504 .pcs_create = ksz9477_pcs_create, 505 }; 506 507 static const struct phylink_mac_ops lan937x_phylink_mac_ops = { 508 .mac_config = ksz_phylink_mac_config, 509 .mac_link_down = ksz_phylink_mac_link_down, 510 .mac_link_up = ksz9477_phylink_mac_link_up, 511 .mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi, 512 .mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi, 513 }; 514 515 static const struct ksz_dev_ops lan937x_dev_ops = { 516 .setup = lan937x_setup, 517 .teardown = lan937x_teardown, 518 .get_port_addr = ksz9477_get_port_addr, 519 .cfg_port_member = ksz9477_cfg_port_member, 520 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, 521 .port_setup = lan937x_port_setup, 522 .set_ageing_time = lan937x_set_ageing_time, 523 .mdio_bus_preinit = lan937x_mdio_bus_preinit, 524 .create_phy_addr_map = lan937x_create_phy_addr_map, 525 .r_phy = lan937x_r_phy, 526 .w_phy = lan937x_w_phy, 527 .r_mib_cnt = ksz9477_r_mib_cnt, 528 .r_mib_pkt = ksz9477_r_mib_pkt, 529 .r_mib_stat64 = ksz_r_mib_stats64, 530 .freeze_mib = ksz9477_freeze_mib, 531 .port_init_cnt = ksz9477_port_init_cnt, 532 .vlan_filtering = ksz9477_port_vlan_filtering, 533 .vlan_add = ksz9477_port_vlan_add, 534 .vlan_del = ksz9477_port_vlan_del, 535 .mirror_add = ksz9477_port_mirror_add, 536 .mirror_del = ksz9477_port_mirror_del, 537 .get_caps = lan937x_phylink_get_caps, 538 .setup_rgmii_delay = lan937x_setup_rgmii_delay, 539 .fdb_dump = ksz9477_fdb_dump, 540 .fdb_add = ksz9477_fdb_add, 541 .fdb_del = ksz9477_fdb_del, 542 .mdb_add = ksz9477_mdb_add, 543 .mdb_del = ksz9477_mdb_del, 544 .change_mtu = lan937x_change_mtu, 545 .config_cpu_port = lan937x_config_cpu_port, 546 .tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc, 547 .enable_stp_addr = ksz9477_enable_stp_addr, 548 .reset = lan937x_reset_switch, 549 .init = lan937x_switch_init, 550 .exit = lan937x_switch_exit, 551 }; 552 553 static const u16 ksz8463_regs[] = { 554 [REG_SW_MAC_ADDR] = 0x10, 555 [REG_IND_CTRL_0] = 0x30, 556 [REG_IND_DATA_8] = 0x26, 557 [REG_IND_DATA_CHECK] = 0x26, 558 [REG_IND_DATA_HI] = 0x28, 559 [REG_IND_DATA_LO] = 0x2C, 560 [REG_IND_MIB_CHECK] = 0x2F, 561 [P_FORCE_CTRL] = 0x0C, 562 [P_LINK_STATUS] = 0x0E, 563 [P_LOCAL_CTRL] = 0x0C, 564 [P_NEG_RESTART_CTRL] = 0x0D, 565 [P_REMOTE_STATUS] = 0x0E, 566 [P_SPEED_STATUS] = 0x0F, 567 [S_TAIL_TAG_CTRL] = 0xAD, 568 [P_STP_CTRL] = 0x6F, 569 [S_START_CTRL] = 0x01, 570 [S_BROADCAST_CTRL] = 0x06, 571 [S_MULTICAST_CTRL] = 0x04, 572 }; 573 574 static const u32 ksz8463_masks[] = { 575 [PORT_802_1P_REMAPPING] = BIT(3), 576 [SW_TAIL_TAG_ENABLE] = BIT(0), 577 [MIB_COUNTER_OVERFLOW] = BIT(7), 578 [MIB_COUNTER_VALID] = BIT(6), 579 [VLAN_TABLE_FID] = GENMASK(15, 12), 580 [VLAN_TABLE_MEMBERSHIP] = GENMASK(18, 16), 581 [VLAN_TABLE_VALID] = BIT(19), 582 [STATIC_MAC_TABLE_VALID] = BIT(19), 583 [STATIC_MAC_TABLE_USE_FID] = BIT(21), 584 [STATIC_MAC_TABLE_FID] = GENMASK(25, 22), 585 [STATIC_MAC_TABLE_OVERRIDE] = BIT(20), 586 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(18, 16), 587 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(1, 0), 588 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(2), 589 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 590 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 24), 591 [DYNAMIC_MAC_TABLE_FID] = GENMASK(19, 16), 592 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(21, 20), 593 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(23, 22), 594 }; 595 596 static u8 ksz8463_shifts[] = { 597 [VLAN_TABLE_MEMBERSHIP_S] = 16, 598 [STATIC_MAC_FWD_PORTS] = 16, 599 [STATIC_MAC_FID] = 22, 600 [DYNAMIC_MAC_ENTRIES_H] = 8, 601 [DYNAMIC_MAC_ENTRIES] = 24, 602 [DYNAMIC_MAC_FID] = 16, 603 [DYNAMIC_MAC_TIMESTAMP] = 22, 604 [DYNAMIC_MAC_SRC_PORT] = 20, 605 }; 606 607 static const u16 ksz8795_regs[] = { 608 [REG_SW_MAC_ADDR] = 0x68, 609 [REG_IND_CTRL_0] = 0x6E, 610 [REG_IND_DATA_8] = 0x70, 611 [REG_IND_DATA_CHECK] = 0x72, 612 [REG_IND_DATA_HI] = 0x71, 613 [REG_IND_DATA_LO] = 0x75, 614 [REG_IND_MIB_CHECK] = 0x74, 615 [REG_IND_BYTE] = 0xA0, 616 [P_FORCE_CTRL] = 0x0C, 617 [P_LINK_STATUS] = 0x0E, 618 [P_LOCAL_CTRL] = 0x07, 619 [P_NEG_RESTART_CTRL] = 0x0D, 620 [P_REMOTE_STATUS] = 0x08, 621 [P_SPEED_STATUS] = 0x09, 622 [S_TAIL_TAG_CTRL] = 0x0C, 623 [P_STP_CTRL] = 0x02, 624 [S_START_CTRL] = 0x01, 625 [S_BROADCAST_CTRL] = 0x06, 626 [S_MULTICAST_CTRL] = 0x04, 627 [P_XMII_CTRL_0] = 0x06, 628 [P_XMII_CTRL_1] = 0x06, 629 [REG_SW_PME_CTRL] = 0x8003, 630 [REG_PORT_PME_STATUS] = 0x8003, 631 [REG_PORT_PME_CTRL] = 0x8007, 632 }; 633 634 static const u32 ksz8795_masks[] = { 635 [PORT_802_1P_REMAPPING] = BIT(7), 636 [SW_TAIL_TAG_ENABLE] = BIT(1), 637 [MIB_COUNTER_OVERFLOW] = BIT(6), 638 [MIB_COUNTER_VALID] = BIT(5), 639 [VLAN_TABLE_FID] = GENMASK(6, 0), 640 [VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7), 641 [VLAN_TABLE_VALID] = BIT(12), 642 [STATIC_MAC_TABLE_VALID] = BIT(21), 643 [STATIC_MAC_TABLE_USE_FID] = BIT(23), 644 [STATIC_MAC_TABLE_FID] = GENMASK(30, 24), 645 [STATIC_MAC_TABLE_OVERRIDE] = BIT(22), 646 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(20, 16), 647 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0), 648 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7), 649 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 650 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29), 651 [DYNAMIC_MAC_TABLE_FID] = GENMASK(22, 16), 652 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24), 653 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27), 654 [P_MII_TX_FLOW_CTRL] = BIT(5), 655 [P_MII_RX_FLOW_CTRL] = BIT(5), 656 }; 657 658 static const u8 ksz8795_xmii_ctrl0[] = { 659 [P_MII_100MBIT] = 0, 660 [P_MII_10MBIT] = 1, 661 [P_MII_FULL_DUPLEX] = 0, 662 [P_MII_HALF_DUPLEX] = 1, 663 }; 664 665 static const u8 ksz8795_xmii_ctrl1[] = { 666 [P_RGMII_SEL] = 3, 667 [P_GMII_SEL] = 2, 668 [P_RMII_SEL] = 1, 669 [P_MII_SEL] = 0, 670 [P_GMII_1GBIT] = 1, 671 [P_GMII_NOT_1GBIT] = 0, 672 }; 673 674 static const u8 ksz8795_shifts[] = { 675 [VLAN_TABLE_MEMBERSHIP_S] = 7, 676 [VLAN_TABLE] = 16, 677 [STATIC_MAC_FWD_PORTS] = 16, 678 [STATIC_MAC_FID] = 24, 679 [DYNAMIC_MAC_ENTRIES_H] = 3, 680 [DYNAMIC_MAC_ENTRIES] = 29, 681 [DYNAMIC_MAC_FID] = 16, 682 [DYNAMIC_MAC_TIMESTAMP] = 27, 683 [DYNAMIC_MAC_SRC_PORT] = 24, 684 }; 685 686 static const u16 ksz8863_regs[] = { 687 [REG_SW_MAC_ADDR] = 0x70, 688 [REG_IND_CTRL_0] = 0x79, 689 [REG_IND_DATA_8] = 0x7B, 690 [REG_IND_DATA_CHECK] = 0x7B, 691 [REG_IND_DATA_HI] = 0x7C, 692 [REG_IND_DATA_LO] = 0x80, 693 [REG_IND_MIB_CHECK] = 0x80, 694 [P_FORCE_CTRL] = 0x0C, 695 [P_LINK_STATUS] = 0x0E, 696 [P_LOCAL_CTRL] = 0x0C, 697 [P_NEG_RESTART_CTRL] = 0x0D, 698 [P_REMOTE_STATUS] = 0x0E, 699 [P_SPEED_STATUS] = 0x0F, 700 [S_TAIL_TAG_CTRL] = 0x03, 701 [P_STP_CTRL] = 0x02, 702 [S_START_CTRL] = 0x01, 703 [S_BROADCAST_CTRL] = 0x06, 704 [S_MULTICAST_CTRL] = 0x04, 705 }; 706 707 static const u32 ksz8863_masks[] = { 708 [PORT_802_1P_REMAPPING] = BIT(3), 709 [SW_TAIL_TAG_ENABLE] = BIT(6), 710 [MIB_COUNTER_OVERFLOW] = BIT(7), 711 [MIB_COUNTER_VALID] = BIT(6), 712 [VLAN_TABLE_FID] = GENMASK(15, 12), 713 [VLAN_TABLE_MEMBERSHIP] = GENMASK(18, 16), 714 [VLAN_TABLE_VALID] = BIT(19), 715 [STATIC_MAC_TABLE_VALID] = BIT(19), 716 [STATIC_MAC_TABLE_USE_FID] = BIT(21), 717 [STATIC_MAC_TABLE_FID] = GENMASK(25, 22), 718 [STATIC_MAC_TABLE_OVERRIDE] = BIT(20), 719 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(18, 16), 720 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(1, 0), 721 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(2), 722 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 723 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 24), 724 [DYNAMIC_MAC_TABLE_FID] = GENMASK(19, 16), 725 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(21, 20), 726 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(23, 22), 727 }; 728 729 static u8 ksz8863_shifts[] = { 730 [VLAN_TABLE_MEMBERSHIP_S] = 16, 731 [STATIC_MAC_FWD_PORTS] = 16, 732 [STATIC_MAC_FID] = 22, 733 [DYNAMIC_MAC_ENTRIES_H] = 8, 734 [DYNAMIC_MAC_ENTRIES] = 24, 735 [DYNAMIC_MAC_FID] = 16, 736 [DYNAMIC_MAC_TIMESTAMP] = 22, 737 [DYNAMIC_MAC_SRC_PORT] = 20, 738 }; 739 740 static const u16 ksz8895_regs[] = { 741 [REG_SW_MAC_ADDR] = 0x68, 742 [REG_IND_CTRL_0] = 0x6E, 743 [REG_IND_DATA_8] = 0x70, 744 [REG_IND_DATA_CHECK] = 0x72, 745 [REG_IND_DATA_HI] = 0x71, 746 [REG_IND_DATA_LO] = 0x75, 747 [REG_IND_MIB_CHECK] = 0x75, 748 [P_FORCE_CTRL] = 0x0C, 749 [P_LINK_STATUS] = 0x0E, 750 [P_LOCAL_CTRL] = 0x0C, 751 [P_NEG_RESTART_CTRL] = 0x0D, 752 [P_REMOTE_STATUS] = 0x0E, 753 [P_SPEED_STATUS] = 0x09, 754 [S_TAIL_TAG_CTRL] = 0x0C, 755 [P_STP_CTRL] = 0x02, 756 [S_START_CTRL] = 0x01, 757 [S_BROADCAST_CTRL] = 0x06, 758 [S_MULTICAST_CTRL] = 0x04, 759 }; 760 761 static const u32 ksz8895_masks[] = { 762 [PORT_802_1P_REMAPPING] = BIT(7), 763 [SW_TAIL_TAG_ENABLE] = BIT(1), 764 [MIB_COUNTER_OVERFLOW] = BIT(7), 765 [MIB_COUNTER_VALID] = BIT(6), 766 [VLAN_TABLE_FID] = GENMASK(6, 0), 767 [VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7), 768 [VLAN_TABLE_VALID] = BIT(12), 769 [STATIC_MAC_TABLE_VALID] = BIT(21), 770 [STATIC_MAC_TABLE_USE_FID] = BIT(23), 771 [STATIC_MAC_TABLE_FID] = GENMASK(30, 24), 772 [STATIC_MAC_TABLE_OVERRIDE] = BIT(22), 773 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(20, 16), 774 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0), 775 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7), 776 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 777 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29), 778 [DYNAMIC_MAC_TABLE_FID] = GENMASK(22, 16), 779 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24), 780 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27), 781 }; 782 783 static const u8 ksz8895_shifts[] = { 784 [VLAN_TABLE_MEMBERSHIP_S] = 7, 785 [VLAN_TABLE] = 13, 786 [STATIC_MAC_FWD_PORTS] = 16, 787 [STATIC_MAC_FID] = 24, 788 [DYNAMIC_MAC_ENTRIES_H] = 3, 789 [DYNAMIC_MAC_ENTRIES] = 29, 790 [DYNAMIC_MAC_FID] = 16, 791 [DYNAMIC_MAC_TIMESTAMP] = 27, 792 [DYNAMIC_MAC_SRC_PORT] = 24, 793 }; 794 795 static const u16 ksz9477_regs[] = { 796 [REG_SW_MAC_ADDR] = 0x0302, 797 [P_STP_CTRL] = 0x0B04, 798 [S_START_CTRL] = 0x0300, 799 [S_BROADCAST_CTRL] = 0x0332, 800 [S_MULTICAST_CTRL] = 0x0331, 801 [P_XMII_CTRL_0] = 0x0300, 802 [P_XMII_CTRL_1] = 0x0301, 803 [REG_SW_PME_CTRL] = 0x0006, 804 [REG_PORT_PME_STATUS] = 0x0013, 805 [REG_PORT_PME_CTRL] = 0x0017, 806 }; 807 808 static const u32 ksz9477_masks[] = { 809 [ALU_STAT_WRITE] = 0, 810 [ALU_STAT_READ] = 1, 811 [ALU_STAT_DIRECT] = 0, 812 [ALU_RESV_MCAST_ADDR] = BIT(1), 813 [P_MII_TX_FLOW_CTRL] = BIT(5), 814 [P_MII_RX_FLOW_CTRL] = BIT(3), 815 }; 816 817 static const u8 ksz9477_shifts[] = { 818 [ALU_STAT_INDEX] = 16, 819 }; 820 821 static const u8 ksz9477_xmii_ctrl0[] = { 822 [P_MII_100MBIT] = 1, 823 [P_MII_10MBIT] = 0, 824 [P_MII_FULL_DUPLEX] = 1, 825 [P_MII_HALF_DUPLEX] = 0, 826 }; 827 828 static const u8 ksz9477_xmii_ctrl1[] = { 829 [P_RGMII_SEL] = 0, 830 [P_RMII_SEL] = 1, 831 [P_GMII_SEL] = 2, 832 [P_MII_SEL] = 3, 833 [P_GMII_1GBIT] = 0, 834 [P_GMII_NOT_1GBIT] = 1, 835 }; 836 837 static const u32 lan937x_masks[] = { 838 [ALU_STAT_WRITE] = 1, 839 [ALU_STAT_READ] = 2, 840 [ALU_STAT_DIRECT] = BIT(3), 841 [ALU_RESV_MCAST_ADDR] = BIT(2), 842 [P_MII_TX_FLOW_CTRL] = BIT(5), 843 [P_MII_RX_FLOW_CTRL] = BIT(3), 844 }; 845 846 static const u8 lan937x_shifts[] = { 847 [ALU_STAT_INDEX] = 8, 848 }; 849 850 static const struct regmap_range ksz8563_valid_regs[] = { 851 regmap_reg_range(0x0000, 0x0003), 852 regmap_reg_range(0x0006, 0x0006), 853 regmap_reg_range(0x000f, 0x001f), 854 regmap_reg_range(0x0100, 0x0100), 855 regmap_reg_range(0x0104, 0x0107), 856 regmap_reg_range(0x010d, 0x010d), 857 regmap_reg_range(0x0110, 0x0113), 858 regmap_reg_range(0x0120, 0x012b), 859 regmap_reg_range(0x0201, 0x0201), 860 regmap_reg_range(0x0210, 0x0213), 861 regmap_reg_range(0x0300, 0x0300), 862 regmap_reg_range(0x0302, 0x031b), 863 regmap_reg_range(0x0320, 0x032b), 864 regmap_reg_range(0x0330, 0x0336), 865 regmap_reg_range(0x0338, 0x033e), 866 regmap_reg_range(0x0340, 0x035f), 867 regmap_reg_range(0x0370, 0x0370), 868 regmap_reg_range(0x0378, 0x0378), 869 regmap_reg_range(0x037c, 0x037d), 870 regmap_reg_range(0x0390, 0x0393), 871 regmap_reg_range(0x0400, 0x040e), 872 regmap_reg_range(0x0410, 0x042f), 873 regmap_reg_range(0x0500, 0x0519), 874 regmap_reg_range(0x0520, 0x054b), 875 regmap_reg_range(0x0550, 0x05b3), 876 877 /* port 1 */ 878 regmap_reg_range(0x1000, 0x1001), 879 regmap_reg_range(0x1004, 0x100b), 880 regmap_reg_range(0x1013, 0x1013), 881 regmap_reg_range(0x1017, 0x1017), 882 regmap_reg_range(0x101b, 0x101b), 883 regmap_reg_range(0x101f, 0x1021), 884 regmap_reg_range(0x1030, 0x1030), 885 regmap_reg_range(0x1100, 0x1111), 886 regmap_reg_range(0x111a, 0x111d), 887 regmap_reg_range(0x1122, 0x1127), 888 regmap_reg_range(0x112a, 0x112b), 889 regmap_reg_range(0x1136, 0x1139), 890 regmap_reg_range(0x113e, 0x113f), 891 regmap_reg_range(0x1400, 0x1401), 892 regmap_reg_range(0x1403, 0x1403), 893 regmap_reg_range(0x1410, 0x1417), 894 regmap_reg_range(0x1420, 0x1423), 895 regmap_reg_range(0x1500, 0x1507), 896 regmap_reg_range(0x1600, 0x1612), 897 regmap_reg_range(0x1800, 0x180f), 898 regmap_reg_range(0x1900, 0x1907), 899 regmap_reg_range(0x1914, 0x191b), 900 regmap_reg_range(0x1a00, 0x1a03), 901 regmap_reg_range(0x1a04, 0x1a08), 902 regmap_reg_range(0x1b00, 0x1b01), 903 regmap_reg_range(0x1b04, 0x1b04), 904 regmap_reg_range(0x1c00, 0x1c05), 905 regmap_reg_range(0x1c08, 0x1c1b), 906 907 /* port 2 */ 908 regmap_reg_range(0x2000, 0x2001), 909 regmap_reg_range(0x2004, 0x200b), 910 regmap_reg_range(0x2013, 0x2013), 911 regmap_reg_range(0x2017, 0x2017), 912 regmap_reg_range(0x201b, 0x201b), 913 regmap_reg_range(0x201f, 0x2021), 914 regmap_reg_range(0x2030, 0x2030), 915 regmap_reg_range(0x2100, 0x2111), 916 regmap_reg_range(0x211a, 0x211d), 917 regmap_reg_range(0x2122, 0x2127), 918 regmap_reg_range(0x212a, 0x212b), 919 regmap_reg_range(0x2136, 0x2139), 920 regmap_reg_range(0x213e, 0x213f), 921 regmap_reg_range(0x2400, 0x2401), 922 regmap_reg_range(0x2403, 0x2403), 923 regmap_reg_range(0x2410, 0x2417), 924 regmap_reg_range(0x2420, 0x2423), 925 regmap_reg_range(0x2500, 0x2507), 926 regmap_reg_range(0x2600, 0x2612), 927 regmap_reg_range(0x2800, 0x280f), 928 regmap_reg_range(0x2900, 0x2907), 929 regmap_reg_range(0x2914, 0x291b), 930 regmap_reg_range(0x2a00, 0x2a03), 931 regmap_reg_range(0x2a04, 0x2a08), 932 regmap_reg_range(0x2b00, 0x2b01), 933 regmap_reg_range(0x2b04, 0x2b04), 934 regmap_reg_range(0x2c00, 0x2c05), 935 regmap_reg_range(0x2c08, 0x2c1b), 936 937 /* port 3 */ 938 regmap_reg_range(0x3000, 0x3001), 939 regmap_reg_range(0x3004, 0x300b), 940 regmap_reg_range(0x3013, 0x3013), 941 regmap_reg_range(0x3017, 0x3017), 942 regmap_reg_range(0x301b, 0x301b), 943 regmap_reg_range(0x301f, 0x3021), 944 regmap_reg_range(0x3030, 0x3030), 945 regmap_reg_range(0x3300, 0x3301), 946 regmap_reg_range(0x3303, 0x3303), 947 regmap_reg_range(0x3400, 0x3401), 948 regmap_reg_range(0x3403, 0x3403), 949 regmap_reg_range(0x3410, 0x3417), 950 regmap_reg_range(0x3420, 0x3423), 951 regmap_reg_range(0x3500, 0x3507), 952 regmap_reg_range(0x3600, 0x3612), 953 regmap_reg_range(0x3800, 0x380f), 954 regmap_reg_range(0x3900, 0x3907), 955 regmap_reg_range(0x3914, 0x391b), 956 regmap_reg_range(0x3a00, 0x3a03), 957 regmap_reg_range(0x3a04, 0x3a08), 958 regmap_reg_range(0x3b00, 0x3b01), 959 regmap_reg_range(0x3b04, 0x3b04), 960 regmap_reg_range(0x3c00, 0x3c05), 961 regmap_reg_range(0x3c08, 0x3c1b), 962 }; 963 964 static const struct regmap_access_table ksz8563_register_set = { 965 .yes_ranges = ksz8563_valid_regs, 966 .n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs), 967 }; 968 969 static const struct regmap_range ksz9477_valid_regs[] = { 970 regmap_reg_range(0x0000, 0x0003), 971 regmap_reg_range(0x0006, 0x0006), 972 regmap_reg_range(0x0010, 0x001f), 973 regmap_reg_range(0x0100, 0x0100), 974 regmap_reg_range(0x0103, 0x0107), 975 regmap_reg_range(0x010d, 0x010d), 976 regmap_reg_range(0x0110, 0x0113), 977 regmap_reg_range(0x0120, 0x012b), 978 regmap_reg_range(0x0201, 0x0201), 979 regmap_reg_range(0x0210, 0x0213), 980 regmap_reg_range(0x0300, 0x0300), 981 regmap_reg_range(0x0302, 0x031b), 982 regmap_reg_range(0x0320, 0x032b), 983 regmap_reg_range(0x0330, 0x0336), 984 regmap_reg_range(0x0338, 0x033b), 985 regmap_reg_range(0x033e, 0x033e), 986 regmap_reg_range(0x0340, 0x035f), 987 regmap_reg_range(0x0370, 0x0370), 988 regmap_reg_range(0x0378, 0x0378), 989 regmap_reg_range(0x037c, 0x037d), 990 regmap_reg_range(0x0390, 0x0393), 991 regmap_reg_range(0x0400, 0x040e), 992 regmap_reg_range(0x0410, 0x042f), 993 regmap_reg_range(0x0444, 0x044b), 994 regmap_reg_range(0x0450, 0x046f), 995 regmap_reg_range(0x0500, 0x0519), 996 regmap_reg_range(0x0520, 0x054b), 997 regmap_reg_range(0x0550, 0x05b3), 998 regmap_reg_range(0x0604, 0x060b), 999 regmap_reg_range(0x0610, 0x0612), 1000 regmap_reg_range(0x0614, 0x062c), 1001 regmap_reg_range(0x0640, 0x0645), 1002 regmap_reg_range(0x0648, 0x064d), 1003 1004 /* port 1 */ 1005 regmap_reg_range(0x1000, 0x1001), 1006 regmap_reg_range(0x1013, 0x1013), 1007 regmap_reg_range(0x1017, 0x1017), 1008 regmap_reg_range(0x101b, 0x101b), 1009 regmap_reg_range(0x101f, 0x1020), 1010 regmap_reg_range(0x1030, 0x1030), 1011 regmap_reg_range(0x1100, 0x1115), 1012 regmap_reg_range(0x111a, 0x111f), 1013 regmap_reg_range(0x1120, 0x112b), 1014 regmap_reg_range(0x1134, 0x113b), 1015 regmap_reg_range(0x113c, 0x113f), 1016 regmap_reg_range(0x1400, 0x1401), 1017 regmap_reg_range(0x1403, 0x1403), 1018 regmap_reg_range(0x1410, 0x1417), 1019 regmap_reg_range(0x1420, 0x1423), 1020 regmap_reg_range(0x1500, 0x1507), 1021 regmap_reg_range(0x1600, 0x1613), 1022 regmap_reg_range(0x1800, 0x180f), 1023 regmap_reg_range(0x1820, 0x1827), 1024 regmap_reg_range(0x1830, 0x1837), 1025 regmap_reg_range(0x1840, 0x184b), 1026 regmap_reg_range(0x1900, 0x1907), 1027 regmap_reg_range(0x1914, 0x191b), 1028 regmap_reg_range(0x1920, 0x1920), 1029 regmap_reg_range(0x1923, 0x1927), 1030 regmap_reg_range(0x1a00, 0x1a03), 1031 regmap_reg_range(0x1a04, 0x1a07), 1032 regmap_reg_range(0x1b00, 0x1b01), 1033 regmap_reg_range(0x1b04, 0x1b04), 1034 regmap_reg_range(0x1c00, 0x1c05), 1035 regmap_reg_range(0x1c08, 0x1c1b), 1036 1037 /* port 2 */ 1038 regmap_reg_range(0x2000, 0x2001), 1039 regmap_reg_range(0x2013, 0x2013), 1040 regmap_reg_range(0x2017, 0x2017), 1041 regmap_reg_range(0x201b, 0x201b), 1042 regmap_reg_range(0x201f, 0x2020), 1043 regmap_reg_range(0x2030, 0x2030), 1044 regmap_reg_range(0x2100, 0x2115), 1045 regmap_reg_range(0x211a, 0x211f), 1046 regmap_reg_range(0x2120, 0x212b), 1047 regmap_reg_range(0x2134, 0x213b), 1048 regmap_reg_range(0x213c, 0x213f), 1049 regmap_reg_range(0x2400, 0x2401), 1050 regmap_reg_range(0x2403, 0x2403), 1051 regmap_reg_range(0x2410, 0x2417), 1052 regmap_reg_range(0x2420, 0x2423), 1053 regmap_reg_range(0x2500, 0x2507), 1054 regmap_reg_range(0x2600, 0x2613), 1055 regmap_reg_range(0x2800, 0x280f), 1056 regmap_reg_range(0x2820, 0x2827), 1057 regmap_reg_range(0x2830, 0x2837), 1058 regmap_reg_range(0x2840, 0x284b), 1059 regmap_reg_range(0x2900, 0x2907), 1060 regmap_reg_range(0x2914, 0x291b), 1061 regmap_reg_range(0x2920, 0x2920), 1062 regmap_reg_range(0x2923, 0x2927), 1063 regmap_reg_range(0x2a00, 0x2a03), 1064 regmap_reg_range(0x2a04, 0x2a07), 1065 regmap_reg_range(0x2b00, 0x2b01), 1066 regmap_reg_range(0x2b04, 0x2b04), 1067 regmap_reg_range(0x2c00, 0x2c05), 1068 regmap_reg_range(0x2c08, 0x2c1b), 1069 1070 /* port 3 */ 1071 regmap_reg_range(0x3000, 0x3001), 1072 regmap_reg_range(0x3013, 0x3013), 1073 regmap_reg_range(0x3017, 0x3017), 1074 regmap_reg_range(0x301b, 0x301b), 1075 regmap_reg_range(0x301f, 0x3020), 1076 regmap_reg_range(0x3030, 0x3030), 1077 regmap_reg_range(0x3100, 0x3115), 1078 regmap_reg_range(0x311a, 0x311f), 1079 regmap_reg_range(0x3120, 0x312b), 1080 regmap_reg_range(0x3134, 0x313b), 1081 regmap_reg_range(0x313c, 0x313f), 1082 regmap_reg_range(0x3400, 0x3401), 1083 regmap_reg_range(0x3403, 0x3403), 1084 regmap_reg_range(0x3410, 0x3417), 1085 regmap_reg_range(0x3420, 0x3423), 1086 regmap_reg_range(0x3500, 0x3507), 1087 regmap_reg_range(0x3600, 0x3613), 1088 regmap_reg_range(0x3800, 0x380f), 1089 regmap_reg_range(0x3820, 0x3827), 1090 regmap_reg_range(0x3830, 0x3837), 1091 regmap_reg_range(0x3840, 0x384b), 1092 regmap_reg_range(0x3900, 0x3907), 1093 regmap_reg_range(0x3914, 0x391b), 1094 regmap_reg_range(0x3920, 0x3920), 1095 regmap_reg_range(0x3923, 0x3927), 1096 regmap_reg_range(0x3a00, 0x3a03), 1097 regmap_reg_range(0x3a04, 0x3a07), 1098 regmap_reg_range(0x3b00, 0x3b01), 1099 regmap_reg_range(0x3b04, 0x3b04), 1100 regmap_reg_range(0x3c00, 0x3c05), 1101 regmap_reg_range(0x3c08, 0x3c1b), 1102 1103 /* port 4 */ 1104 regmap_reg_range(0x4000, 0x4001), 1105 regmap_reg_range(0x4013, 0x4013), 1106 regmap_reg_range(0x4017, 0x4017), 1107 regmap_reg_range(0x401b, 0x401b), 1108 regmap_reg_range(0x401f, 0x4020), 1109 regmap_reg_range(0x4030, 0x4030), 1110 regmap_reg_range(0x4100, 0x4115), 1111 regmap_reg_range(0x411a, 0x411f), 1112 regmap_reg_range(0x4120, 0x412b), 1113 regmap_reg_range(0x4134, 0x413b), 1114 regmap_reg_range(0x413c, 0x413f), 1115 regmap_reg_range(0x4400, 0x4401), 1116 regmap_reg_range(0x4403, 0x4403), 1117 regmap_reg_range(0x4410, 0x4417), 1118 regmap_reg_range(0x4420, 0x4423), 1119 regmap_reg_range(0x4500, 0x4507), 1120 regmap_reg_range(0x4600, 0x4613), 1121 regmap_reg_range(0x4800, 0x480f), 1122 regmap_reg_range(0x4820, 0x4827), 1123 regmap_reg_range(0x4830, 0x4837), 1124 regmap_reg_range(0x4840, 0x484b), 1125 regmap_reg_range(0x4900, 0x4907), 1126 regmap_reg_range(0x4914, 0x491b), 1127 regmap_reg_range(0x4920, 0x4920), 1128 regmap_reg_range(0x4923, 0x4927), 1129 regmap_reg_range(0x4a00, 0x4a03), 1130 regmap_reg_range(0x4a04, 0x4a07), 1131 regmap_reg_range(0x4b00, 0x4b01), 1132 regmap_reg_range(0x4b04, 0x4b04), 1133 regmap_reg_range(0x4c00, 0x4c05), 1134 regmap_reg_range(0x4c08, 0x4c1b), 1135 1136 /* port 5 */ 1137 regmap_reg_range(0x5000, 0x5001), 1138 regmap_reg_range(0x5013, 0x5013), 1139 regmap_reg_range(0x5017, 0x5017), 1140 regmap_reg_range(0x501b, 0x501b), 1141 regmap_reg_range(0x501f, 0x5020), 1142 regmap_reg_range(0x5030, 0x5030), 1143 regmap_reg_range(0x5100, 0x5115), 1144 regmap_reg_range(0x511a, 0x511f), 1145 regmap_reg_range(0x5120, 0x512b), 1146 regmap_reg_range(0x5134, 0x513b), 1147 regmap_reg_range(0x513c, 0x513f), 1148 regmap_reg_range(0x5400, 0x5401), 1149 regmap_reg_range(0x5403, 0x5403), 1150 regmap_reg_range(0x5410, 0x5417), 1151 regmap_reg_range(0x5420, 0x5423), 1152 regmap_reg_range(0x5500, 0x5507), 1153 regmap_reg_range(0x5600, 0x5613), 1154 regmap_reg_range(0x5800, 0x580f), 1155 regmap_reg_range(0x5820, 0x5827), 1156 regmap_reg_range(0x5830, 0x5837), 1157 regmap_reg_range(0x5840, 0x584b), 1158 regmap_reg_range(0x5900, 0x5907), 1159 regmap_reg_range(0x5914, 0x591b), 1160 regmap_reg_range(0x5920, 0x5920), 1161 regmap_reg_range(0x5923, 0x5927), 1162 regmap_reg_range(0x5a00, 0x5a03), 1163 regmap_reg_range(0x5a04, 0x5a07), 1164 regmap_reg_range(0x5b00, 0x5b01), 1165 regmap_reg_range(0x5b04, 0x5b04), 1166 regmap_reg_range(0x5c00, 0x5c05), 1167 regmap_reg_range(0x5c08, 0x5c1b), 1168 1169 /* port 6 */ 1170 regmap_reg_range(0x6000, 0x6001), 1171 regmap_reg_range(0x6013, 0x6013), 1172 regmap_reg_range(0x6017, 0x6017), 1173 regmap_reg_range(0x601b, 0x601b), 1174 regmap_reg_range(0x601f, 0x6020), 1175 regmap_reg_range(0x6030, 0x6030), 1176 regmap_reg_range(0x6300, 0x6301), 1177 regmap_reg_range(0x6400, 0x6401), 1178 regmap_reg_range(0x6403, 0x6403), 1179 regmap_reg_range(0x6410, 0x6417), 1180 regmap_reg_range(0x6420, 0x6423), 1181 regmap_reg_range(0x6500, 0x6507), 1182 regmap_reg_range(0x6600, 0x6613), 1183 regmap_reg_range(0x6800, 0x680f), 1184 regmap_reg_range(0x6820, 0x6827), 1185 regmap_reg_range(0x6830, 0x6837), 1186 regmap_reg_range(0x6840, 0x684b), 1187 regmap_reg_range(0x6900, 0x6907), 1188 regmap_reg_range(0x6914, 0x691b), 1189 regmap_reg_range(0x6920, 0x6920), 1190 regmap_reg_range(0x6923, 0x6927), 1191 regmap_reg_range(0x6a00, 0x6a03), 1192 regmap_reg_range(0x6a04, 0x6a07), 1193 regmap_reg_range(0x6b00, 0x6b01), 1194 regmap_reg_range(0x6b04, 0x6b04), 1195 regmap_reg_range(0x6c00, 0x6c05), 1196 regmap_reg_range(0x6c08, 0x6c1b), 1197 1198 /* port 7 */ 1199 regmap_reg_range(0x7000, 0x7001), 1200 regmap_reg_range(0x7013, 0x7013), 1201 regmap_reg_range(0x7017, 0x7017), 1202 regmap_reg_range(0x701b, 0x701b), 1203 regmap_reg_range(0x701f, 0x7020), 1204 regmap_reg_range(0x7030, 0x7030), 1205 regmap_reg_range(0x7200, 0x7207), 1206 regmap_reg_range(0x7300, 0x7301), 1207 regmap_reg_range(0x7400, 0x7401), 1208 regmap_reg_range(0x7403, 0x7403), 1209 regmap_reg_range(0x7410, 0x7417), 1210 regmap_reg_range(0x7420, 0x7423), 1211 regmap_reg_range(0x7500, 0x7507), 1212 regmap_reg_range(0x7600, 0x7613), 1213 regmap_reg_range(0x7800, 0x780f), 1214 regmap_reg_range(0x7820, 0x7827), 1215 regmap_reg_range(0x7830, 0x7837), 1216 regmap_reg_range(0x7840, 0x784b), 1217 regmap_reg_range(0x7900, 0x7907), 1218 regmap_reg_range(0x7914, 0x791b), 1219 regmap_reg_range(0x7920, 0x7920), 1220 regmap_reg_range(0x7923, 0x7927), 1221 regmap_reg_range(0x7a00, 0x7a03), 1222 regmap_reg_range(0x7a04, 0x7a07), 1223 regmap_reg_range(0x7b00, 0x7b01), 1224 regmap_reg_range(0x7b04, 0x7b04), 1225 regmap_reg_range(0x7c00, 0x7c05), 1226 regmap_reg_range(0x7c08, 0x7c1b), 1227 }; 1228 1229 static const struct regmap_access_table ksz9477_register_set = { 1230 .yes_ranges = ksz9477_valid_regs, 1231 .n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs), 1232 }; 1233 1234 static const struct regmap_range ksz9896_valid_regs[] = { 1235 regmap_reg_range(0x0000, 0x0003), 1236 regmap_reg_range(0x0006, 0x0006), 1237 regmap_reg_range(0x0010, 0x001f), 1238 regmap_reg_range(0x0100, 0x0100), 1239 regmap_reg_range(0x0103, 0x0107), 1240 regmap_reg_range(0x010d, 0x010d), 1241 regmap_reg_range(0x0110, 0x0113), 1242 regmap_reg_range(0x0120, 0x0127), 1243 regmap_reg_range(0x0201, 0x0201), 1244 regmap_reg_range(0x0210, 0x0213), 1245 regmap_reg_range(0x0300, 0x0300), 1246 regmap_reg_range(0x0302, 0x030b), 1247 regmap_reg_range(0x0310, 0x031b), 1248 regmap_reg_range(0x0320, 0x032b), 1249 regmap_reg_range(0x0330, 0x0336), 1250 regmap_reg_range(0x0338, 0x033b), 1251 regmap_reg_range(0x033e, 0x033e), 1252 regmap_reg_range(0x0340, 0x035f), 1253 regmap_reg_range(0x0370, 0x0370), 1254 regmap_reg_range(0x0378, 0x0378), 1255 regmap_reg_range(0x037c, 0x037d), 1256 regmap_reg_range(0x0390, 0x0393), 1257 regmap_reg_range(0x0400, 0x040e), 1258 regmap_reg_range(0x0410, 0x042f), 1259 1260 /* port 1 */ 1261 regmap_reg_range(0x1000, 0x1001), 1262 regmap_reg_range(0x1013, 0x1013), 1263 regmap_reg_range(0x1017, 0x1017), 1264 regmap_reg_range(0x101b, 0x101b), 1265 regmap_reg_range(0x101f, 0x1020), 1266 regmap_reg_range(0x1030, 0x1030), 1267 regmap_reg_range(0x1100, 0x1115), 1268 regmap_reg_range(0x111a, 0x111f), 1269 regmap_reg_range(0x1120, 0x112b), 1270 regmap_reg_range(0x1134, 0x113b), 1271 regmap_reg_range(0x113c, 0x113f), 1272 regmap_reg_range(0x1400, 0x1401), 1273 regmap_reg_range(0x1403, 0x1403), 1274 regmap_reg_range(0x1410, 0x1417), 1275 regmap_reg_range(0x1420, 0x1423), 1276 regmap_reg_range(0x1500, 0x1507), 1277 regmap_reg_range(0x1600, 0x1612), 1278 regmap_reg_range(0x1800, 0x180f), 1279 regmap_reg_range(0x1820, 0x1827), 1280 regmap_reg_range(0x1830, 0x1837), 1281 regmap_reg_range(0x1840, 0x184b), 1282 regmap_reg_range(0x1900, 0x1907), 1283 regmap_reg_range(0x1914, 0x1915), 1284 regmap_reg_range(0x1a00, 0x1a03), 1285 regmap_reg_range(0x1a04, 0x1a07), 1286 regmap_reg_range(0x1b00, 0x1b01), 1287 regmap_reg_range(0x1b04, 0x1b04), 1288 1289 /* port 2 */ 1290 regmap_reg_range(0x2000, 0x2001), 1291 regmap_reg_range(0x2013, 0x2013), 1292 regmap_reg_range(0x2017, 0x2017), 1293 regmap_reg_range(0x201b, 0x201b), 1294 regmap_reg_range(0x201f, 0x2020), 1295 regmap_reg_range(0x2030, 0x2030), 1296 regmap_reg_range(0x2100, 0x2115), 1297 regmap_reg_range(0x211a, 0x211f), 1298 regmap_reg_range(0x2120, 0x212b), 1299 regmap_reg_range(0x2134, 0x213b), 1300 regmap_reg_range(0x213c, 0x213f), 1301 regmap_reg_range(0x2400, 0x2401), 1302 regmap_reg_range(0x2403, 0x2403), 1303 regmap_reg_range(0x2410, 0x2417), 1304 regmap_reg_range(0x2420, 0x2423), 1305 regmap_reg_range(0x2500, 0x2507), 1306 regmap_reg_range(0x2600, 0x2612), 1307 regmap_reg_range(0x2800, 0x280f), 1308 regmap_reg_range(0x2820, 0x2827), 1309 regmap_reg_range(0x2830, 0x2837), 1310 regmap_reg_range(0x2840, 0x284b), 1311 regmap_reg_range(0x2900, 0x2907), 1312 regmap_reg_range(0x2914, 0x2915), 1313 regmap_reg_range(0x2a00, 0x2a03), 1314 regmap_reg_range(0x2a04, 0x2a07), 1315 regmap_reg_range(0x2b00, 0x2b01), 1316 regmap_reg_range(0x2b04, 0x2b04), 1317 1318 /* port 3 */ 1319 regmap_reg_range(0x3000, 0x3001), 1320 regmap_reg_range(0x3013, 0x3013), 1321 regmap_reg_range(0x3017, 0x3017), 1322 regmap_reg_range(0x301b, 0x301b), 1323 regmap_reg_range(0x301f, 0x3020), 1324 regmap_reg_range(0x3030, 0x3030), 1325 regmap_reg_range(0x3100, 0x3115), 1326 regmap_reg_range(0x311a, 0x311f), 1327 regmap_reg_range(0x3120, 0x312b), 1328 regmap_reg_range(0x3134, 0x313b), 1329 regmap_reg_range(0x313c, 0x313f), 1330 regmap_reg_range(0x3400, 0x3401), 1331 regmap_reg_range(0x3403, 0x3403), 1332 regmap_reg_range(0x3410, 0x3417), 1333 regmap_reg_range(0x3420, 0x3423), 1334 regmap_reg_range(0x3500, 0x3507), 1335 regmap_reg_range(0x3600, 0x3612), 1336 regmap_reg_range(0x3800, 0x380f), 1337 regmap_reg_range(0x3820, 0x3827), 1338 regmap_reg_range(0x3830, 0x3837), 1339 regmap_reg_range(0x3840, 0x384b), 1340 regmap_reg_range(0x3900, 0x3907), 1341 regmap_reg_range(0x3914, 0x3915), 1342 regmap_reg_range(0x3a00, 0x3a03), 1343 regmap_reg_range(0x3a04, 0x3a07), 1344 regmap_reg_range(0x3b00, 0x3b01), 1345 regmap_reg_range(0x3b04, 0x3b04), 1346 1347 /* port 4 */ 1348 regmap_reg_range(0x4000, 0x4001), 1349 regmap_reg_range(0x4013, 0x4013), 1350 regmap_reg_range(0x4017, 0x4017), 1351 regmap_reg_range(0x401b, 0x401b), 1352 regmap_reg_range(0x401f, 0x4020), 1353 regmap_reg_range(0x4030, 0x4030), 1354 regmap_reg_range(0x4100, 0x4115), 1355 regmap_reg_range(0x411a, 0x411f), 1356 regmap_reg_range(0x4120, 0x412b), 1357 regmap_reg_range(0x4134, 0x413b), 1358 regmap_reg_range(0x413c, 0x413f), 1359 regmap_reg_range(0x4400, 0x4401), 1360 regmap_reg_range(0x4403, 0x4403), 1361 regmap_reg_range(0x4410, 0x4417), 1362 regmap_reg_range(0x4420, 0x4423), 1363 regmap_reg_range(0x4500, 0x4507), 1364 regmap_reg_range(0x4600, 0x4612), 1365 regmap_reg_range(0x4800, 0x480f), 1366 regmap_reg_range(0x4820, 0x4827), 1367 regmap_reg_range(0x4830, 0x4837), 1368 regmap_reg_range(0x4840, 0x484b), 1369 regmap_reg_range(0x4900, 0x4907), 1370 regmap_reg_range(0x4914, 0x4915), 1371 regmap_reg_range(0x4a00, 0x4a03), 1372 regmap_reg_range(0x4a04, 0x4a07), 1373 regmap_reg_range(0x4b00, 0x4b01), 1374 regmap_reg_range(0x4b04, 0x4b04), 1375 1376 /* port 5 */ 1377 regmap_reg_range(0x5000, 0x5001), 1378 regmap_reg_range(0x5013, 0x5013), 1379 regmap_reg_range(0x5017, 0x5017), 1380 regmap_reg_range(0x501b, 0x501b), 1381 regmap_reg_range(0x501f, 0x5020), 1382 regmap_reg_range(0x5030, 0x5030), 1383 regmap_reg_range(0x5100, 0x5115), 1384 regmap_reg_range(0x511a, 0x511f), 1385 regmap_reg_range(0x5120, 0x512b), 1386 regmap_reg_range(0x5134, 0x513b), 1387 regmap_reg_range(0x513c, 0x513f), 1388 regmap_reg_range(0x5400, 0x5401), 1389 regmap_reg_range(0x5403, 0x5403), 1390 regmap_reg_range(0x5410, 0x5417), 1391 regmap_reg_range(0x5420, 0x5423), 1392 regmap_reg_range(0x5500, 0x5507), 1393 regmap_reg_range(0x5600, 0x5612), 1394 regmap_reg_range(0x5800, 0x580f), 1395 regmap_reg_range(0x5820, 0x5827), 1396 regmap_reg_range(0x5830, 0x5837), 1397 regmap_reg_range(0x5840, 0x584b), 1398 regmap_reg_range(0x5900, 0x5907), 1399 regmap_reg_range(0x5914, 0x5915), 1400 regmap_reg_range(0x5a00, 0x5a03), 1401 regmap_reg_range(0x5a04, 0x5a07), 1402 regmap_reg_range(0x5b00, 0x5b01), 1403 regmap_reg_range(0x5b04, 0x5b04), 1404 1405 /* port 6 */ 1406 regmap_reg_range(0x6000, 0x6001), 1407 regmap_reg_range(0x6013, 0x6013), 1408 regmap_reg_range(0x6017, 0x6017), 1409 regmap_reg_range(0x601b, 0x601b), 1410 regmap_reg_range(0x601f, 0x6020), 1411 regmap_reg_range(0x6030, 0x6030), 1412 regmap_reg_range(0x6100, 0x6115), 1413 regmap_reg_range(0x611a, 0x611f), 1414 regmap_reg_range(0x6120, 0x612b), 1415 regmap_reg_range(0x6134, 0x613b), 1416 regmap_reg_range(0x613c, 0x613f), 1417 regmap_reg_range(0x6300, 0x6301), 1418 regmap_reg_range(0x6400, 0x6401), 1419 regmap_reg_range(0x6403, 0x6403), 1420 regmap_reg_range(0x6410, 0x6417), 1421 regmap_reg_range(0x6420, 0x6423), 1422 regmap_reg_range(0x6500, 0x6507), 1423 regmap_reg_range(0x6600, 0x6612), 1424 regmap_reg_range(0x6800, 0x680f), 1425 regmap_reg_range(0x6820, 0x6827), 1426 regmap_reg_range(0x6830, 0x6837), 1427 regmap_reg_range(0x6840, 0x684b), 1428 regmap_reg_range(0x6900, 0x6907), 1429 regmap_reg_range(0x6914, 0x6915), 1430 regmap_reg_range(0x6a00, 0x6a03), 1431 regmap_reg_range(0x6a04, 0x6a07), 1432 regmap_reg_range(0x6b00, 0x6b01), 1433 regmap_reg_range(0x6b04, 0x6b04), 1434 }; 1435 1436 static const struct regmap_access_table ksz9896_register_set = { 1437 .yes_ranges = ksz9896_valid_regs, 1438 .n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs), 1439 }; 1440 1441 static const struct regmap_range ksz8873_valid_regs[] = { 1442 regmap_reg_range(0x00, 0x01), 1443 /* global control register */ 1444 regmap_reg_range(0x02, 0x0f), 1445 1446 /* port registers */ 1447 regmap_reg_range(0x10, 0x1d), 1448 regmap_reg_range(0x1e, 0x1f), 1449 regmap_reg_range(0x20, 0x2d), 1450 regmap_reg_range(0x2e, 0x2f), 1451 regmap_reg_range(0x30, 0x39), 1452 regmap_reg_range(0x3f, 0x3f), 1453 1454 /* advanced control registers */ 1455 regmap_reg_range(0x43, 0x43), 1456 regmap_reg_range(0x60, 0x6f), 1457 regmap_reg_range(0x70, 0x75), 1458 regmap_reg_range(0x76, 0x78), 1459 regmap_reg_range(0x79, 0x7a), 1460 regmap_reg_range(0x7b, 0x83), 1461 regmap_reg_range(0x8e, 0x99), 1462 regmap_reg_range(0x9a, 0xa5), 1463 regmap_reg_range(0xa6, 0xa6), 1464 regmap_reg_range(0xa7, 0xaa), 1465 regmap_reg_range(0xab, 0xae), 1466 regmap_reg_range(0xaf, 0xba), 1467 regmap_reg_range(0xbb, 0xbc), 1468 regmap_reg_range(0xbd, 0xbd), 1469 regmap_reg_range(0xc0, 0xc0), 1470 regmap_reg_range(0xc2, 0xc2), 1471 regmap_reg_range(0xc3, 0xc3), 1472 regmap_reg_range(0xc4, 0xc4), 1473 regmap_reg_range(0xc6, 0xc6), 1474 }; 1475 1476 static const struct regmap_access_table ksz8873_register_set = { 1477 .yes_ranges = ksz8873_valid_regs, 1478 .n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs), 1479 }; 1480 1481 const struct ksz_chip_data ksz_switch_chips[] = { 1482 [KSZ8463] = { 1483 .chip_id = KSZ8463_CHIP_ID, 1484 .dev_name = "KSZ8463", 1485 .num_vlans = 16, 1486 .num_alus = 0, 1487 .num_statics = 8, 1488 .cpu_ports = 0x4, /* can be configured as cpu port */ 1489 .port_cnt = 3, 1490 .num_tx_queues = 4, 1491 .num_ipms = 4, 1492 .ops = &ksz8463_dev_ops, 1493 .phylink_mac_ops = &ksz88x3_phylink_mac_ops, 1494 .mib_names = ksz88xx_mib_names, 1495 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1496 .reg_mib_cnt = MIB_COUNTER_NUM, 1497 .regs = ksz8463_regs, 1498 .masks = ksz8463_masks, 1499 .shifts = ksz8463_shifts, 1500 .supports_mii = {false, false, true}, 1501 .supports_rmii = {false, false, true}, 1502 .internal_phy = {true, true, false}, 1503 }, 1504 1505 [KSZ8563] = { 1506 .chip_id = KSZ8563_CHIP_ID, 1507 .dev_name = "KSZ8563", 1508 .num_vlans = 4096, 1509 .num_alus = 4096, 1510 .num_statics = 16, 1511 .cpu_ports = 0x07, /* can be configured as cpu port */ 1512 .port_cnt = 3, /* total port count */ 1513 .port_nirqs = 3, 1514 .num_tx_queues = 4, 1515 .num_ipms = 8, 1516 .tc_cbs_supported = true, 1517 .ops = &ksz9477_dev_ops, 1518 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1519 .mib_names = ksz9477_mib_names, 1520 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1521 .reg_mib_cnt = MIB_COUNTER_NUM, 1522 .regs = ksz9477_regs, 1523 .masks = ksz9477_masks, 1524 .shifts = ksz9477_shifts, 1525 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1526 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1527 .supports_mii = {false, false, true}, 1528 .supports_rmii = {false, false, true}, 1529 .supports_rgmii = {false, false, true}, 1530 .internal_phy = {true, true, false}, 1531 .gbit_capable = {false, false, true}, 1532 .ptp_capable = true, 1533 .wr_table = &ksz8563_register_set, 1534 .rd_table = &ksz8563_register_set, 1535 }, 1536 1537 [KSZ8795] = { 1538 .chip_id = KSZ8795_CHIP_ID, 1539 .dev_name = "KSZ8795", 1540 .num_vlans = 4096, 1541 .num_alus = 0, 1542 .num_statics = 32, 1543 .cpu_ports = 0x10, /* can be configured as cpu port */ 1544 .port_cnt = 5, /* total cpu and user ports */ 1545 .num_tx_queues = 4, 1546 .num_ipms = 4, 1547 .ops = &ksz87xx_dev_ops, 1548 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1549 .ksz87xx_eee_link_erratum = true, 1550 .mib_names = ksz9477_mib_names, 1551 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1552 .reg_mib_cnt = MIB_COUNTER_NUM, 1553 .regs = ksz8795_regs, 1554 .masks = ksz8795_masks, 1555 .shifts = ksz8795_shifts, 1556 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1557 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1558 .supports_mii = {false, false, false, false, true}, 1559 .supports_rmii = {false, false, false, false, true}, 1560 .supports_rgmii = {false, false, false, false, true}, 1561 .internal_phy = {true, true, true, true, false}, 1562 }, 1563 1564 [KSZ8794] = { 1565 /* WARNING 1566 * ======= 1567 * KSZ8794 is similar to KSZ8795, except the port map 1568 * contains a gap between external and CPU ports, the 1569 * port map is NOT continuous. The per-port register 1570 * map is shifted accordingly too, i.e. registers at 1571 * offset 0x40 are NOT used on KSZ8794 and they ARE 1572 * used on KSZ8795 for external port 3. 1573 * external cpu 1574 * KSZ8794 0,1,2 4 1575 * KSZ8795 0,1,2,3 4 1576 * KSZ8765 0,1,2,3 4 1577 * port_cnt is configured as 5, even though it is 4 1578 */ 1579 .chip_id = KSZ8794_CHIP_ID, 1580 .dev_name = "KSZ8794", 1581 .num_vlans = 4096, 1582 .num_alus = 0, 1583 .num_statics = 32, 1584 .cpu_ports = 0x10, /* can be configured as cpu port */ 1585 .port_cnt = 5, /* total cpu and user ports */ 1586 .num_tx_queues = 4, 1587 .num_ipms = 4, 1588 .ops = &ksz87xx_dev_ops, 1589 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1590 .ksz87xx_eee_link_erratum = true, 1591 .mib_names = ksz9477_mib_names, 1592 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1593 .reg_mib_cnt = MIB_COUNTER_NUM, 1594 .regs = ksz8795_regs, 1595 .masks = ksz8795_masks, 1596 .shifts = ksz8795_shifts, 1597 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1598 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1599 .supports_mii = {false, false, false, false, true}, 1600 .supports_rmii = {false, false, false, false, true}, 1601 .supports_rgmii = {false, false, false, false, true}, 1602 .internal_phy = {true, true, true, false, false}, 1603 }, 1604 1605 [KSZ8765] = { 1606 .chip_id = KSZ8765_CHIP_ID, 1607 .dev_name = "KSZ8765", 1608 .num_vlans = 4096, 1609 .num_alus = 0, 1610 .num_statics = 32, 1611 .cpu_ports = 0x10, /* can be configured as cpu port */ 1612 .port_cnt = 5, /* total cpu and user ports */ 1613 .num_tx_queues = 4, 1614 .num_ipms = 4, 1615 .ops = &ksz87xx_dev_ops, 1616 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1617 .ksz87xx_eee_link_erratum = true, 1618 .mib_names = ksz9477_mib_names, 1619 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1620 .reg_mib_cnt = MIB_COUNTER_NUM, 1621 .regs = ksz8795_regs, 1622 .masks = ksz8795_masks, 1623 .shifts = ksz8795_shifts, 1624 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1625 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1626 .supports_mii = {false, false, false, false, true}, 1627 .supports_rmii = {false, false, false, false, true}, 1628 .supports_rgmii = {false, false, false, false, true}, 1629 .internal_phy = {true, true, true, true, false}, 1630 }, 1631 1632 [KSZ88X3] = { 1633 .chip_id = KSZ88X3_CHIP_ID, 1634 .dev_name = "KSZ8863/KSZ8873", 1635 .num_vlans = 16, 1636 .num_alus = 0, 1637 .num_statics = 8, 1638 .cpu_ports = 0x4, /* can be configured as cpu port */ 1639 .port_cnt = 3, 1640 .num_tx_queues = 4, 1641 .num_ipms = 4, 1642 .ops = &ksz88xx_dev_ops, 1643 .phylink_mac_ops = &ksz88x3_phylink_mac_ops, 1644 .mib_names = ksz88xx_mib_names, 1645 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1646 .reg_mib_cnt = MIB_COUNTER_NUM, 1647 .regs = ksz8863_regs, 1648 .masks = ksz8863_masks, 1649 .shifts = ksz8863_shifts, 1650 .supports_mii = {false, false, true}, 1651 .supports_rmii = {false, false, true}, 1652 .internal_phy = {true, true, false}, 1653 .wr_table = &ksz8873_register_set, 1654 .rd_table = &ksz8873_register_set, 1655 }, 1656 1657 [KSZ8864] = { 1658 /* WARNING 1659 * ======= 1660 * KSZ8864 is similar to KSZ8895, except the first port 1661 * does not exist. 1662 * external cpu 1663 * KSZ8864 1,2,3 4 1664 * KSZ8895 0,1,2,3 4 1665 * port_cnt is configured as 5, even though it is 4 1666 */ 1667 .chip_id = KSZ8864_CHIP_ID, 1668 .dev_name = "KSZ8864", 1669 .num_vlans = 4096, 1670 .num_alus = 0, 1671 .num_statics = 32, 1672 .cpu_ports = 0x10, /* can be configured as cpu port */ 1673 .port_cnt = 5, /* total cpu and user ports */ 1674 .num_tx_queues = 4, 1675 .num_ipms = 4, 1676 .ops = &ksz88xx_dev_ops, 1677 .phylink_mac_ops = &ksz88x3_phylink_mac_ops, 1678 .mib_names = ksz88xx_mib_names, 1679 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1680 .reg_mib_cnt = MIB_COUNTER_NUM, 1681 .regs = ksz8895_regs, 1682 .masks = ksz8895_masks, 1683 .shifts = ksz8895_shifts, 1684 .supports_mii = {false, false, false, false, true}, 1685 .supports_rmii = {false, false, false, false, true}, 1686 .internal_phy = {false, true, true, true, false}, 1687 }, 1688 1689 [KSZ8895] = { 1690 .chip_id = KSZ8895_CHIP_ID, 1691 .dev_name = "KSZ8895", 1692 .num_vlans = 4096, 1693 .num_alus = 0, 1694 .num_statics = 32, 1695 .cpu_ports = 0x10, /* can be configured as cpu port */ 1696 .port_cnt = 5, /* total cpu and user ports */ 1697 .num_tx_queues = 4, 1698 .num_ipms = 4, 1699 .ops = &ksz88xx_dev_ops, 1700 .phylink_mac_ops = &ksz88x3_phylink_mac_ops, 1701 .mib_names = ksz88xx_mib_names, 1702 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1703 .reg_mib_cnt = MIB_COUNTER_NUM, 1704 .regs = ksz8895_regs, 1705 .masks = ksz8895_masks, 1706 .shifts = ksz8895_shifts, 1707 .supports_mii = {false, false, false, false, true}, 1708 .supports_rmii = {false, false, false, false, true}, 1709 .internal_phy = {true, true, true, true, false}, 1710 }, 1711 1712 [KSZ9477] = { 1713 .chip_id = KSZ9477_CHIP_ID, 1714 .dev_name = "KSZ9477", 1715 .num_vlans = 4096, 1716 .num_alus = 4096, 1717 .num_statics = 16, 1718 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1719 .port_cnt = 7, /* total physical port count */ 1720 .port_nirqs = 4, 1721 .num_tx_queues = 4, 1722 .num_ipms = 8, 1723 .tc_cbs_supported = true, 1724 .ops = &ksz9477_dev_ops, 1725 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1726 .phy_errata_9477 = true, 1727 .mib_names = ksz9477_mib_names, 1728 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1729 .reg_mib_cnt = MIB_COUNTER_NUM, 1730 .regs = ksz9477_regs, 1731 .masks = ksz9477_masks, 1732 .shifts = ksz9477_shifts, 1733 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1734 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1735 .supports_mii = {false, false, false, false, 1736 false, true, false}, 1737 .supports_rmii = {false, false, false, false, 1738 false, true, false}, 1739 .supports_rgmii = {false, false, false, false, 1740 false, true, false}, 1741 .internal_phy = {true, true, true, true, 1742 true, false, false}, 1743 .gbit_capable = {true, true, true, true, true, true, true}, 1744 .ptp_capable = true, 1745 .sgmii_port = 7, 1746 .wr_table = &ksz9477_register_set, 1747 .rd_table = &ksz9477_register_set, 1748 }, 1749 1750 [KSZ9896] = { 1751 .chip_id = KSZ9896_CHIP_ID, 1752 .dev_name = "KSZ9896", 1753 .num_vlans = 4096, 1754 .num_alus = 4096, 1755 .num_statics = 16, 1756 .cpu_ports = 0x3F, /* can be configured as cpu port */ 1757 .port_cnt = 6, /* total physical port count */ 1758 .port_nirqs = 2, 1759 .num_tx_queues = 4, 1760 .num_ipms = 8, 1761 .ops = &ksz9477_dev_ops, 1762 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1763 .phy_errata_9477 = true, 1764 .mib_names = ksz9477_mib_names, 1765 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1766 .reg_mib_cnt = MIB_COUNTER_NUM, 1767 .regs = ksz9477_regs, 1768 .masks = ksz9477_masks, 1769 .shifts = ksz9477_shifts, 1770 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1771 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1772 .supports_mii = {false, false, false, false, 1773 false, true}, 1774 .supports_rmii = {false, false, false, false, 1775 false, true}, 1776 .supports_rgmii = {false, false, false, false, 1777 false, true}, 1778 .internal_phy = {true, true, true, true, 1779 true, false}, 1780 .gbit_capable = {true, true, true, true, true, true}, 1781 .wr_table = &ksz9896_register_set, 1782 .rd_table = &ksz9896_register_set, 1783 }, 1784 1785 [KSZ9897] = { 1786 .chip_id = KSZ9897_CHIP_ID, 1787 .dev_name = "KSZ9897", 1788 .num_vlans = 4096, 1789 .num_alus = 4096, 1790 .num_statics = 16, 1791 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1792 .port_cnt = 7, /* total physical port count */ 1793 .port_nirqs = 2, 1794 .num_tx_queues = 4, 1795 .num_ipms = 8, 1796 .ops = &ksz9477_dev_ops, 1797 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1798 .phy_errata_9477 = true, 1799 .mib_names = ksz9477_mib_names, 1800 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1801 .reg_mib_cnt = MIB_COUNTER_NUM, 1802 .regs = ksz9477_regs, 1803 .masks = ksz9477_masks, 1804 .shifts = ksz9477_shifts, 1805 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1806 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1807 .supports_mii = {false, false, false, false, 1808 false, true, true}, 1809 .supports_rmii = {false, false, false, false, 1810 false, true, true}, 1811 .supports_rgmii = {false, false, false, false, 1812 false, true, true}, 1813 .internal_phy = {true, true, true, true, 1814 true, false, false}, 1815 .gbit_capable = {true, true, true, true, true, true, true}, 1816 }, 1817 1818 [KSZ9893] = { 1819 .chip_id = KSZ9893_CHIP_ID, 1820 .dev_name = "KSZ9893", 1821 .num_vlans = 4096, 1822 .num_alus = 4096, 1823 .num_statics = 16, 1824 .cpu_ports = 0x07, /* can be configured as cpu port */ 1825 .port_cnt = 3, /* total port count */ 1826 .port_nirqs = 2, 1827 .num_tx_queues = 4, 1828 .num_ipms = 8, 1829 .ops = &ksz9477_dev_ops, 1830 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1831 .mib_names = ksz9477_mib_names, 1832 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1833 .reg_mib_cnt = MIB_COUNTER_NUM, 1834 .regs = ksz9477_regs, 1835 .masks = ksz9477_masks, 1836 .shifts = ksz9477_shifts, 1837 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1838 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1839 .supports_mii = {false, false, true}, 1840 .supports_rmii = {false, false, true}, 1841 .supports_rgmii = {false, false, true}, 1842 .internal_phy = {true, true, false}, 1843 .gbit_capable = {true, true, true}, 1844 }, 1845 1846 [KSZ9563] = { 1847 .chip_id = KSZ9563_CHIP_ID, 1848 .dev_name = "KSZ9563", 1849 .num_vlans = 4096, 1850 .num_alus = 4096, 1851 .num_statics = 16, 1852 .cpu_ports = 0x07, /* can be configured as cpu port */ 1853 .port_cnt = 3, /* total port count */ 1854 .port_nirqs = 3, 1855 .num_tx_queues = 4, 1856 .num_ipms = 8, 1857 .tc_cbs_supported = true, 1858 .ops = &ksz9477_dev_ops, 1859 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1860 .mib_names = ksz9477_mib_names, 1861 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1862 .reg_mib_cnt = MIB_COUNTER_NUM, 1863 .regs = ksz9477_regs, 1864 .masks = ksz9477_masks, 1865 .shifts = ksz9477_shifts, 1866 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1867 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1868 .supports_mii = {false, false, true}, 1869 .supports_rmii = {false, false, true}, 1870 .supports_rgmii = {false, false, true}, 1871 .internal_phy = {true, true, false}, 1872 .gbit_capable = {true, true, true}, 1873 .ptp_capable = true, 1874 }, 1875 1876 [KSZ8567] = { 1877 .chip_id = KSZ8567_CHIP_ID, 1878 .dev_name = "KSZ8567", 1879 .num_vlans = 4096, 1880 .num_alus = 4096, 1881 .num_statics = 16, 1882 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1883 .port_cnt = 7, /* total port count */ 1884 .port_nirqs = 3, 1885 .num_tx_queues = 4, 1886 .num_ipms = 8, 1887 .tc_cbs_supported = true, 1888 .ops = &ksz9477_dev_ops, 1889 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1890 .phy_errata_9477 = true, 1891 .mib_names = ksz9477_mib_names, 1892 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1893 .reg_mib_cnt = MIB_COUNTER_NUM, 1894 .regs = ksz9477_regs, 1895 .masks = ksz9477_masks, 1896 .shifts = ksz9477_shifts, 1897 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1898 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1899 .supports_mii = {false, false, false, false, 1900 false, true, true}, 1901 .supports_rmii = {false, false, false, false, 1902 false, true, true}, 1903 .supports_rgmii = {false, false, false, false, 1904 false, true, true}, 1905 .internal_phy = {true, true, true, true, 1906 true, false, false}, 1907 .gbit_capable = {false, false, false, false, false, 1908 true, true}, 1909 .ptp_capable = true, 1910 }, 1911 1912 [KSZ9567] = { 1913 .chip_id = KSZ9567_CHIP_ID, 1914 .dev_name = "KSZ9567", 1915 .num_vlans = 4096, 1916 .num_alus = 4096, 1917 .num_statics = 16, 1918 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1919 .port_cnt = 7, /* total physical port count */ 1920 .port_nirqs = 3, 1921 .num_tx_queues = 4, 1922 .num_ipms = 8, 1923 .tc_cbs_supported = true, 1924 .ops = &ksz9477_dev_ops, 1925 .mib_names = ksz9477_mib_names, 1926 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1927 .reg_mib_cnt = MIB_COUNTER_NUM, 1928 .regs = ksz9477_regs, 1929 .masks = ksz9477_masks, 1930 .shifts = ksz9477_shifts, 1931 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1932 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1933 .supports_mii = {false, false, false, false, 1934 false, true, true}, 1935 .supports_rmii = {false, false, false, false, 1936 false, true, true}, 1937 .supports_rgmii = {false, false, false, false, 1938 false, true, true}, 1939 .internal_phy = {true, true, true, true, 1940 true, false, false}, 1941 .gbit_capable = {true, true, true, true, true, true, true}, 1942 .ptp_capable = true, 1943 }, 1944 1945 [LAN9370] = { 1946 .chip_id = LAN9370_CHIP_ID, 1947 .dev_name = "LAN9370", 1948 .num_vlans = 4096, 1949 .num_alus = 1024, 1950 .num_statics = 256, 1951 .cpu_ports = 0x10, /* can be configured as cpu port */ 1952 .port_cnt = 5, /* total physical port count */ 1953 .port_nirqs = 6, 1954 .num_tx_queues = 8, 1955 .num_ipms = 8, 1956 .tc_cbs_supported = true, 1957 .phy_side_mdio_supported = true, 1958 .ops = &lan937x_dev_ops, 1959 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1960 .mib_names = ksz9477_mib_names, 1961 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1962 .reg_mib_cnt = MIB_COUNTER_NUM, 1963 .regs = ksz9477_regs, 1964 .masks = lan937x_masks, 1965 .shifts = lan937x_shifts, 1966 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1967 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1968 .supports_mii = {false, false, false, false, true}, 1969 .supports_rmii = {false, false, false, false, true}, 1970 .supports_rgmii = {false, false, false, false, true}, 1971 .internal_phy = {true, true, true, true, false}, 1972 .ptp_capable = true, 1973 }, 1974 1975 [LAN9371] = { 1976 .chip_id = LAN9371_CHIP_ID, 1977 .dev_name = "LAN9371", 1978 .num_vlans = 4096, 1979 .num_alus = 1024, 1980 .num_statics = 256, 1981 .cpu_ports = 0x30, /* can be configured as cpu port */ 1982 .port_cnt = 6, /* total physical port count */ 1983 .port_nirqs = 6, 1984 .num_tx_queues = 8, 1985 .num_ipms = 8, 1986 .tc_cbs_supported = true, 1987 .phy_side_mdio_supported = true, 1988 .ops = &lan937x_dev_ops, 1989 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1990 .mib_names = ksz9477_mib_names, 1991 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1992 .reg_mib_cnt = MIB_COUNTER_NUM, 1993 .regs = ksz9477_regs, 1994 .masks = lan937x_masks, 1995 .shifts = lan937x_shifts, 1996 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1997 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1998 .supports_mii = {false, false, false, false, true, true}, 1999 .supports_rmii = {false, false, false, false, true, true}, 2000 .supports_rgmii = {false, false, false, false, true, true}, 2001 .internal_phy = {true, true, true, true, false, false}, 2002 .ptp_capable = true, 2003 }, 2004 2005 [LAN9372] = { 2006 .chip_id = LAN9372_CHIP_ID, 2007 .dev_name = "LAN9372", 2008 .num_vlans = 4096, 2009 .num_alus = 1024, 2010 .num_statics = 256, 2011 .cpu_ports = 0x30, /* can be configured as cpu port */ 2012 .port_cnt = 8, /* total physical port count */ 2013 .port_nirqs = 6, 2014 .num_tx_queues = 8, 2015 .num_ipms = 8, 2016 .tc_cbs_supported = true, 2017 .phy_side_mdio_supported = true, 2018 .ops = &lan937x_dev_ops, 2019 .phylink_mac_ops = &lan937x_phylink_mac_ops, 2020 .mib_names = ksz9477_mib_names, 2021 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 2022 .reg_mib_cnt = MIB_COUNTER_NUM, 2023 .regs = ksz9477_regs, 2024 .masks = lan937x_masks, 2025 .shifts = lan937x_shifts, 2026 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 2027 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 2028 .supports_mii = {false, false, false, false, 2029 true, true, false, false}, 2030 .supports_rmii = {false, false, false, false, 2031 true, true, false, false}, 2032 .supports_rgmii = {false, false, false, false, 2033 true, true, false, false}, 2034 .internal_phy = {true, true, true, true, 2035 false, false, true, true}, 2036 .ptp_capable = true, 2037 }, 2038 2039 [LAN9373] = { 2040 .chip_id = LAN9373_CHIP_ID, 2041 .dev_name = "LAN9373", 2042 .num_vlans = 4096, 2043 .num_alus = 1024, 2044 .num_statics = 256, 2045 .cpu_ports = 0x38, /* can be configured as cpu port */ 2046 .port_cnt = 5, /* total physical port count */ 2047 .port_nirqs = 6, 2048 .num_tx_queues = 8, 2049 .num_ipms = 8, 2050 .tc_cbs_supported = true, 2051 .phy_side_mdio_supported = true, 2052 .ops = &lan937x_dev_ops, 2053 .phylink_mac_ops = &lan937x_phylink_mac_ops, 2054 .mib_names = ksz9477_mib_names, 2055 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 2056 .reg_mib_cnt = MIB_COUNTER_NUM, 2057 .regs = ksz9477_regs, 2058 .masks = lan937x_masks, 2059 .shifts = lan937x_shifts, 2060 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 2061 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 2062 .supports_mii = {false, false, false, false, 2063 true, true, false, false}, 2064 .supports_rmii = {false, false, false, false, 2065 true, true, false, false}, 2066 .supports_rgmii = {false, false, false, false, 2067 true, true, false, false}, 2068 .internal_phy = {true, true, true, false, 2069 false, false, true, true}, 2070 .ptp_capable = true, 2071 }, 2072 2073 [LAN9374] = { 2074 .chip_id = LAN9374_CHIP_ID, 2075 .dev_name = "LAN9374", 2076 .num_vlans = 4096, 2077 .num_alus = 1024, 2078 .num_statics = 256, 2079 .cpu_ports = 0x30, /* can be configured as cpu port */ 2080 .port_cnt = 8, /* total physical port count */ 2081 .port_nirqs = 6, 2082 .num_tx_queues = 8, 2083 .num_ipms = 8, 2084 .tc_cbs_supported = true, 2085 .phy_side_mdio_supported = true, 2086 .ops = &lan937x_dev_ops, 2087 .phylink_mac_ops = &lan937x_phylink_mac_ops, 2088 .mib_names = ksz9477_mib_names, 2089 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 2090 .reg_mib_cnt = MIB_COUNTER_NUM, 2091 .regs = ksz9477_regs, 2092 .masks = lan937x_masks, 2093 .shifts = lan937x_shifts, 2094 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 2095 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 2096 .supports_mii = {false, false, false, false, 2097 true, true, false, false}, 2098 .supports_rmii = {false, false, false, false, 2099 true, true, false, false}, 2100 .supports_rgmii = {false, false, false, false, 2101 true, true, false, false}, 2102 .internal_phy = {true, true, true, true, 2103 false, false, true, true}, 2104 .ptp_capable = true, 2105 }, 2106 2107 [LAN9646] = { 2108 .chip_id = LAN9646_CHIP_ID, 2109 .dev_name = "LAN9646", 2110 .num_vlans = 4096, 2111 .num_alus = 4096, 2112 .num_statics = 16, 2113 .cpu_ports = 0x7F, /* can be configured as cpu port */ 2114 .port_cnt = 7, /* total physical port count */ 2115 .port_nirqs = 4, 2116 .num_tx_queues = 4, 2117 .num_ipms = 8, 2118 .ops = &ksz9477_dev_ops, 2119 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 2120 .phy_errata_9477 = true, 2121 .mib_names = ksz9477_mib_names, 2122 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 2123 .reg_mib_cnt = MIB_COUNTER_NUM, 2124 .regs = ksz9477_regs, 2125 .masks = ksz9477_masks, 2126 .shifts = ksz9477_shifts, 2127 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 2128 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 2129 .supports_mii = {false, false, false, false, 2130 false, true, true}, 2131 .supports_rmii = {false, false, false, false, 2132 false, true, true}, 2133 .supports_rgmii = {false, false, false, false, 2134 false, true, true}, 2135 .internal_phy = {true, true, true, true, 2136 true, false, false}, 2137 .gbit_capable = {true, true, true, true, true, true, true}, 2138 .sgmii_port = 7, 2139 .wr_table = &ksz9477_register_set, 2140 .rd_table = &ksz9477_register_set, 2141 }, 2142 }; 2143 EXPORT_SYMBOL_GPL(ksz_switch_chips); 2144 2145 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num) 2146 { 2147 int i; 2148 2149 for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) { 2150 const struct ksz_chip_data *chip = &ksz_switch_chips[i]; 2151 2152 if (chip->chip_id == prod_num) 2153 return chip; 2154 } 2155 2156 return NULL; 2157 } 2158 2159 static int ksz_check_device_id(struct ksz_device *dev) 2160 { 2161 const struct ksz_chip_data *expected_chip_data; 2162 u32 expected_chip_id; 2163 2164 if (dev->pdata) { 2165 expected_chip_id = dev->pdata->chip_id; 2166 expected_chip_data = ksz_lookup_info(expected_chip_id); 2167 if (WARN_ON(!expected_chip_data)) 2168 return -ENODEV; 2169 } else { 2170 expected_chip_data = of_device_get_match_data(dev->dev); 2171 expected_chip_id = expected_chip_data->chip_id; 2172 } 2173 2174 if (expected_chip_id != dev->chip_id) { 2175 dev_err(dev->dev, 2176 "Device tree specifies chip %s but found %s, please fix it!\n", 2177 expected_chip_data->dev_name, dev->info->dev_name); 2178 return -ENODEV; 2179 } 2180 2181 return 0; 2182 } 2183 2184 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port, 2185 struct phylink_config *config) 2186 { 2187 struct ksz_device *dev = ds->priv; 2188 2189 if (dev->info->supports_mii[port]) 2190 __set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces); 2191 2192 if (dev->info->supports_rmii[port]) 2193 __set_bit(PHY_INTERFACE_MODE_RMII, 2194 config->supported_interfaces); 2195 2196 if (dev->info->supports_rgmii[port]) 2197 phy_interface_set_rgmii(config->supported_interfaces); 2198 2199 if (dev->info->internal_phy[port]) { 2200 __set_bit(PHY_INTERFACE_MODE_INTERNAL, 2201 config->supported_interfaces); 2202 /* Compatibility for phylib's default interface type when the 2203 * phy-mode property is absent 2204 */ 2205 __set_bit(PHY_INTERFACE_MODE_GMII, 2206 config->supported_interfaces); 2207 } 2208 2209 if (dev->dev_ops->get_caps) 2210 dev->dev_ops->get_caps(dev, port, config); 2211 2212 if (ds->ops->support_eee && ds->ops->support_eee(ds, port)) { 2213 memcpy(config->lpi_interfaces, config->supported_interfaces, 2214 sizeof(config->lpi_interfaces)); 2215 2216 config->lpi_capabilities = MAC_100FD; 2217 if (dev->info->gbit_capable[port]) 2218 config->lpi_capabilities |= MAC_1000FD; 2219 2220 /* EEE is fully operational */ 2221 config->eee_enabled_default = true; 2222 } 2223 } 2224 2225 void ksz_r_mib_stats64(struct ksz_device *dev, int port) 2226 { 2227 struct ethtool_pause_stats *pstats; 2228 struct rtnl_link_stats64 *stats; 2229 struct ksz_stats_raw *raw; 2230 struct ksz_port_mib *mib; 2231 int ret; 2232 2233 mib = &dev->ports[port].mib; 2234 stats = &mib->stats64; 2235 pstats = &mib->pause_stats; 2236 raw = (struct ksz_stats_raw *)mib->counters; 2237 2238 spin_lock(&mib->stats64_lock); 2239 2240 stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast + 2241 raw->rx_pause; 2242 stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast + 2243 raw->tx_pause; 2244 2245 /* HW counters are counting bytes + FCS which is not acceptable 2246 * for rtnl_link_stats64 interface 2247 */ 2248 stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN; 2249 stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN; 2250 2251 stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments + 2252 raw->rx_oversize; 2253 2254 stats->rx_crc_errors = raw->rx_crc_err; 2255 stats->rx_frame_errors = raw->rx_align_err; 2256 stats->rx_dropped = raw->rx_discards; 2257 stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors + 2258 stats->rx_frame_errors + stats->rx_dropped; 2259 2260 stats->tx_window_errors = raw->tx_late_col; 2261 stats->tx_fifo_errors = raw->tx_discards; 2262 stats->tx_aborted_errors = raw->tx_exc_col; 2263 stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors + 2264 stats->tx_aborted_errors; 2265 2266 stats->multicast = raw->rx_mcast; 2267 stats->collisions = raw->tx_total_col; 2268 2269 pstats->tx_pause_frames = raw->tx_pause; 2270 pstats->rx_pause_frames = raw->rx_pause; 2271 2272 spin_unlock(&mib->stats64_lock); 2273 2274 if (dev->info->phy_errata_9477 && !ksz_is_sgmii_port(dev, port)) { 2275 ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col); 2276 if (ret) 2277 dev_err(dev->dev, "Failed to monitor transmission halt\n"); 2278 } 2279 } 2280 2281 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port) 2282 { 2283 struct ethtool_pause_stats *pstats; 2284 struct rtnl_link_stats64 *stats; 2285 struct ksz88xx_stats_raw *raw; 2286 struct ksz_port_mib *mib; 2287 2288 mib = &dev->ports[port].mib; 2289 stats = &mib->stats64; 2290 pstats = &mib->pause_stats; 2291 raw = (struct ksz88xx_stats_raw *)mib->counters; 2292 2293 spin_lock(&mib->stats64_lock); 2294 2295 stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast + 2296 raw->rx_pause; 2297 stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast + 2298 raw->tx_pause; 2299 2300 /* HW counters are counting bytes + FCS which is not acceptable 2301 * for rtnl_link_stats64 interface 2302 */ 2303 stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN; 2304 stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN; 2305 2306 stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments + 2307 raw->rx_oversize; 2308 2309 stats->rx_crc_errors = raw->rx_crc_err; 2310 stats->rx_frame_errors = raw->rx_align_err; 2311 stats->rx_dropped = raw->rx_discards; 2312 stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors + 2313 stats->rx_frame_errors + stats->rx_dropped; 2314 2315 stats->tx_window_errors = raw->tx_late_col; 2316 stats->tx_fifo_errors = raw->tx_discards; 2317 stats->tx_aborted_errors = raw->tx_exc_col; 2318 stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors + 2319 stats->tx_aborted_errors; 2320 2321 stats->multicast = raw->rx_mcast; 2322 stats->collisions = raw->tx_total_col; 2323 2324 pstats->tx_pause_frames = raw->tx_pause; 2325 pstats->rx_pause_frames = raw->rx_pause; 2326 2327 spin_unlock(&mib->stats64_lock); 2328 } 2329 2330 static void ksz_get_stats64(struct dsa_switch *ds, int port, 2331 struct rtnl_link_stats64 *s) 2332 { 2333 struct ksz_device *dev = ds->priv; 2334 struct ksz_port_mib *mib; 2335 2336 mib = &dev->ports[port].mib; 2337 2338 spin_lock(&mib->stats64_lock); 2339 memcpy(s, &mib->stats64, sizeof(*s)); 2340 spin_unlock(&mib->stats64_lock); 2341 } 2342 2343 static void ksz_get_pause_stats(struct dsa_switch *ds, int port, 2344 struct ethtool_pause_stats *pause_stats) 2345 { 2346 struct ksz_device *dev = ds->priv; 2347 struct ksz_port_mib *mib; 2348 2349 mib = &dev->ports[port].mib; 2350 2351 spin_lock(&mib->stats64_lock); 2352 memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats)); 2353 spin_unlock(&mib->stats64_lock); 2354 } 2355 2356 static void ksz_get_strings(struct dsa_switch *ds, int port, 2357 u32 stringset, uint8_t *buf) 2358 { 2359 struct ksz_device *dev = ds->priv; 2360 int i; 2361 2362 if (stringset != ETH_SS_STATS) 2363 return; 2364 2365 for (i = 0; i < dev->info->mib_cnt; i++) 2366 ethtool_puts(&buf, dev->info->mib_names[i].string); 2367 } 2368 2369 /** 2370 * ksz_update_port_member - Adjust port forwarding rules based on STP state and 2371 * isolation settings. 2372 * @dev: A pointer to the struct ksz_device representing the device. 2373 * @port: The port number to adjust. 2374 * 2375 * This function dynamically adjusts the port membership configuration for a 2376 * specified port and other device ports, based on Spanning Tree Protocol (STP) 2377 * states and port isolation settings. Each port, including the CPU port, has a 2378 * membership register, represented as a bitfield, where each bit corresponds 2379 * to a port number. A set bit indicates permission to forward frames to that 2380 * port. This function iterates over all ports, updating the membership register 2381 * to reflect current forwarding permissions: 2382 * 2383 * 1. Forwards frames only to ports that are part of the same bridge group and 2384 * in the BR_STATE_FORWARDING state. 2385 * 2. Takes into account the isolation status of ports; ports in the 2386 * BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward 2387 * frames to each other, even if they are in the same bridge group. 2388 * 3. Ensures that the CPU port is included in the membership based on its 2389 * upstream port configuration, allowing for management and control traffic 2390 * to flow as required. 2391 */ 2392 static void ksz_update_port_member(struct ksz_device *dev, int port) 2393 { 2394 struct ksz_port *p = &dev->ports[port]; 2395 struct dsa_switch *ds = dev->ds; 2396 u8 port_member = 0, cpu_port; 2397 const struct dsa_port *dp; 2398 int i, j; 2399 2400 if (!dsa_is_user_port(ds, port)) 2401 return; 2402 2403 dp = dsa_to_port(ds, port); 2404 cpu_port = BIT(dsa_upstream_port(ds, port)); 2405 2406 for (i = 0; i < ds->num_ports; i++) { 2407 const struct dsa_port *other_dp = dsa_to_port(ds, i); 2408 struct ksz_port *other_p = &dev->ports[i]; 2409 u8 val = 0; 2410 2411 if (!dsa_is_user_port(ds, i)) 2412 continue; 2413 if (port == i) 2414 continue; 2415 if (!dsa_port_bridge_same(dp, other_dp)) 2416 continue; 2417 if (other_p->stp_state != BR_STATE_FORWARDING) 2418 continue; 2419 2420 /* At this point we know that "port" and "other" port [i] are in 2421 * the same bridge group and that "other" port [i] is in 2422 * forwarding stp state. If "port" is also in forwarding stp 2423 * state, we can allow forwarding from port [port] to port [i]. 2424 * Except if both ports are isolated. 2425 */ 2426 if (p->stp_state == BR_STATE_FORWARDING && 2427 !(p->isolated && other_p->isolated)) { 2428 val |= BIT(port); 2429 port_member |= BIT(i); 2430 } 2431 2432 /* Retain port [i]'s relationship to other ports than [port] */ 2433 for (j = 0; j < ds->num_ports; j++) { 2434 const struct dsa_port *third_dp; 2435 struct ksz_port *third_p; 2436 2437 if (j == i) 2438 continue; 2439 if (j == port) 2440 continue; 2441 if (!dsa_is_user_port(ds, j)) 2442 continue; 2443 third_p = &dev->ports[j]; 2444 if (third_p->stp_state != BR_STATE_FORWARDING) 2445 continue; 2446 2447 third_dp = dsa_to_port(ds, j); 2448 2449 /* Now we updating relation of the "other" port [i] to 2450 * the "third" port [j]. We already know that "other" 2451 * port [i] is in forwarding stp state and that "third" 2452 * port [j] is in forwarding stp state too. 2453 * We need to check if "other" port [i] and "third" port 2454 * [j] are in the same bridge group and not isolated 2455 * before allowing forwarding from port [i] to port [j]. 2456 */ 2457 if (dsa_port_bridge_same(other_dp, third_dp) && 2458 !(other_p->isolated && third_p->isolated)) 2459 val |= BIT(j); 2460 } 2461 2462 dev->dev_ops->cfg_port_member(dev, i, val | cpu_port); 2463 } 2464 2465 /* HSR ports are setup once so need to use the assigned membership 2466 * when the port is enabled. 2467 */ 2468 if (!port_member && p->stp_state == BR_STATE_FORWARDING && 2469 (dev->hsr_ports & BIT(port))) 2470 port_member = dev->hsr_ports; 2471 dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port); 2472 } 2473 2474 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum) 2475 { 2476 struct ksz_device *dev = bus->priv; 2477 u16 val; 2478 int ret; 2479 2480 ret = dev->dev_ops->r_phy(dev, addr, regnum, &val); 2481 if (ret < 0) 2482 return ret; 2483 2484 return val; 2485 } 2486 2487 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum, 2488 u16 val) 2489 { 2490 struct ksz_device *dev = bus->priv; 2491 2492 return dev->dev_ops->w_phy(dev, addr, regnum, val); 2493 } 2494 2495 /** 2496 * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus. 2497 * @bus: MDIO bus structure. 2498 * @addr: PHY address on the parent MDIO bus. 2499 * @regnum: Register number to read. 2500 * 2501 * This function provides a direct read operation on the parent MDIO bus for 2502 * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus 2503 * to retrieve data from the PHY registers at the specified address and register 2504 * number. 2505 * 2506 * Return: Value of the PHY register, or a negative error code on failure. 2507 */ 2508 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum) 2509 { 2510 struct ksz_device *dev = bus->priv; 2511 2512 return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum); 2513 } 2514 2515 /** 2516 * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus. 2517 * @bus: MDIO bus structure. 2518 * @addr: PHY address on the parent MDIO bus. 2519 * @regnum: Register number to write to. 2520 * @val: Value to write to the PHY register. 2521 * 2522 * This function provides a direct write operation on the parent MDIO bus for 2523 * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus 2524 * to modify the PHY register values at the specified address. 2525 * 2526 * Return: 0 on success, or a negative error code on failure. 2527 */ 2528 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum, 2529 u16 val) 2530 { 2531 struct ksz_device *dev = bus->priv; 2532 2533 return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val); 2534 } 2535 2536 /** 2537 * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port. 2538 * @dev: Pointer to device structure. 2539 * @addr: PHY address to map to a port. 2540 * 2541 * This function finds the corresponding switch port for a given PHY address by 2542 * iterating over all user ports on the device. It checks if a port's PHY 2543 * address in `phy_addr_map` matches the specified address and if the port 2544 * contains an internal PHY. If a match is found, the index of the port is 2545 * returned. 2546 * 2547 * Return: Port index on success, or -EINVAL if no matching port is found. 2548 */ 2549 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr) 2550 { 2551 struct dsa_switch *ds = dev->ds; 2552 struct dsa_port *dp; 2553 2554 dsa_switch_for_each_user_port(dp, ds) { 2555 if (dev->info->internal_phy[dp->index] && 2556 dev->phy_addr_map[dp->index] == addr) 2557 return dp->index; 2558 } 2559 2560 return -EINVAL; 2561 } 2562 2563 /** 2564 * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device. 2565 * @dev: Pointer to the KSZ device structure. 2566 * 2567 * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the 2568 * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in 2569 * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain. 2570 * 2571 * Return: 0 on success, or a negative error code on failure. 2572 */ 2573 static int ksz_irq_phy_setup(struct ksz_device *dev) 2574 { 2575 struct dsa_switch *ds = dev->ds; 2576 int phy, port; 2577 int irq; 2578 int ret; 2579 2580 for (phy = 0; phy < PHY_MAX_ADDR; phy++) { 2581 if (BIT(phy) & ds->phys_mii_mask) { 2582 port = ksz_phy_addr_to_port(dev, phy); 2583 if (port < 0) { 2584 ret = port; 2585 goto out; 2586 } 2587 2588 irq = irq_find_mapping(dev->ports[port].pirq.domain, 2589 PORT_SRC_PHY_INT); 2590 if (irq < 0) { 2591 ret = irq; 2592 goto out; 2593 } 2594 ds->user_mii_bus->irq[phy] = irq; 2595 } 2596 } 2597 return 0; 2598 out: 2599 while (phy--) 2600 if (BIT(phy) & ds->phys_mii_mask) 2601 irq_dispose_mapping(ds->user_mii_bus->irq[phy]); 2602 2603 return ret; 2604 } 2605 2606 /** 2607 * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device. 2608 * @dev: Pointer to the KSZ device structure. 2609 * 2610 * Releases any IRQ mappings previously assigned to active PHYs in the KSZ 2611 * switch by disposing of each mapped IRQ in the `user_mii_bus` structure. 2612 */ 2613 static void ksz_irq_phy_free(struct ksz_device *dev) 2614 { 2615 struct dsa_switch *ds = dev->ds; 2616 int phy; 2617 2618 for (phy = 0; phy < PHY_MAX_ADDR; phy++) 2619 if (BIT(phy) & ds->phys_mii_mask) 2620 irq_dispose_mapping(ds->user_mii_bus->irq[phy]); 2621 } 2622 2623 /** 2624 * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT 2625 * @dev: pointer to the KSZ device structure 2626 * @bus: pointer to the MII bus structure 2627 * @mdio_np: pointer to the MDIO node in the device tree 2628 * 2629 * This function parses and validates PHY configurations for each user port 2630 * defined in the device tree for a KSZ switch device. It verifies that the 2631 * `phy-handle` properties are correctly set and that the internal PHYs match 2632 * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if 2633 * all validations pass. Logs error messages for any mismatches or missing data. 2634 * 2635 * Return: 0 on success, or a negative error code on failure. 2636 */ 2637 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus, 2638 struct device_node *mdio_np) 2639 { 2640 struct device_node *phy_node, *phy_parent_node; 2641 bool phys_are_valid = true; 2642 struct dsa_port *dp; 2643 u32 phy_addr; 2644 int ret; 2645 2646 dsa_switch_for_each_user_port(dp, dev->ds) { 2647 if (!dev->info->internal_phy[dp->index]) 2648 continue; 2649 2650 phy_node = of_parse_phandle(dp->dn, "phy-handle", 0); 2651 if (!phy_node) { 2652 dev_err(dev->dev, "failed to parse phy-handle for port %d.\n", 2653 dp->index); 2654 phys_are_valid = false; 2655 continue; 2656 } 2657 2658 phy_parent_node = of_get_parent(phy_node); 2659 if (!phy_parent_node) { 2660 dev_err(dev->dev, "failed to get PHY-parent node for port %d\n", 2661 dp->index); 2662 phys_are_valid = false; 2663 } else if (phy_parent_node != mdio_np) { 2664 dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n", 2665 dp->index, mdio_np, phy_parent_node); 2666 phys_are_valid = false; 2667 } else { 2668 ret = of_property_read_u32(phy_node, "reg", &phy_addr); 2669 if (ret < 0) { 2670 dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n", 2671 dp->index, ret); 2672 phys_are_valid = false; 2673 } else if (phy_addr != dev->phy_addr_map[dp->index]) { 2674 dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n", 2675 dp->index, dev->phy_addr_map[dp->index], 2676 phy_addr); 2677 phys_are_valid = false; 2678 } else { 2679 bus->phy_mask |= BIT(phy_addr); 2680 } 2681 } 2682 2683 of_node_put(phy_node); 2684 of_node_put(phy_parent_node); 2685 } 2686 2687 if (!phys_are_valid) 2688 return -EINVAL; 2689 2690 return 0; 2691 } 2692 2693 /** 2694 * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device. 2695 * @dev: Pointer to the KSZ device structure. 2696 * 2697 * This function sets up and registers an MDIO bus for the KSZ switch device, 2698 * allowing access to its internal PHYs. If the device supports side MDIO, 2699 * the function will configure the external MDIO controller specified by the 2700 * "mdio-parent-bus" device tree property to directly manage internal PHYs. 2701 * Otherwise, SPI or I2C access is set up for PHY access. 2702 * 2703 * Return: 0 on success, or a negative error code on failure. 2704 */ 2705 static int ksz_mdio_register(struct ksz_device *dev) 2706 { 2707 struct device_node *parent_bus_node; 2708 struct mii_bus *parent_bus = NULL; 2709 struct dsa_switch *ds = dev->ds; 2710 struct device_node *mdio_np; 2711 struct mii_bus *bus; 2712 int ret, i; 2713 2714 mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio"); 2715 if (!mdio_np) 2716 return 0; 2717 2718 parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0); 2719 if (parent_bus_node && !dev->info->phy_side_mdio_supported) { 2720 dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n"); 2721 ret = -EINVAL; 2722 2723 goto put_mdio_node; 2724 } else if (parent_bus_node) { 2725 parent_bus = of_mdio_find_bus(parent_bus_node); 2726 if (!parent_bus) { 2727 ret = -EPROBE_DEFER; 2728 2729 goto put_mdio_node; 2730 } 2731 2732 dev->parent_mdio_bus = parent_bus; 2733 } 2734 2735 bus = devm_mdiobus_alloc(ds->dev); 2736 if (!bus) { 2737 ret = -ENOMEM; 2738 goto put_mdio_node; 2739 } 2740 2741 if (dev->dev_ops->mdio_bus_preinit) { 2742 ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus); 2743 if (ret) 2744 goto put_mdio_node; 2745 } 2746 2747 if (dev->dev_ops->create_phy_addr_map) { 2748 ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus); 2749 if (ret) 2750 goto put_mdio_node; 2751 } else { 2752 for (i = 0; i < dev->info->port_cnt; i++) 2753 dev->phy_addr_map[i] = i; 2754 } 2755 2756 bus->priv = dev; 2757 if (parent_bus) { 2758 bus->read = ksz_parent_mdio_read; 2759 bus->write = ksz_parent_mdio_write; 2760 bus->name = "KSZ side MDIO"; 2761 snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d", 2762 ds->index); 2763 } else { 2764 bus->read = ksz_sw_mdio_read; 2765 bus->write = ksz_sw_mdio_write; 2766 bus->name = "ksz user smi"; 2767 if (ds->dst->index != 0) { 2768 snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d-%d", ds->dst->index, ds->index); 2769 } else { 2770 snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index); 2771 } 2772 } 2773 2774 ret = ksz_parse_dt_phy_config(dev, bus, mdio_np); 2775 if (ret) 2776 goto put_mdio_node; 2777 2778 ds->phys_mii_mask = bus->phy_mask; 2779 bus->parent = ds->dev; 2780 2781 ds->user_mii_bus = bus; 2782 2783 if (dev->irq > 0) { 2784 ret = ksz_irq_phy_setup(dev); 2785 if (ret) 2786 goto put_mdio_node; 2787 } 2788 2789 ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np); 2790 if (ret) { 2791 dev_err(ds->dev, "unable to register MDIO bus %s\n", 2792 bus->id); 2793 if (dev->irq > 0) 2794 ksz_irq_phy_free(dev); 2795 } 2796 2797 put_mdio_node: 2798 of_node_put(mdio_np); 2799 of_node_put(parent_bus_node); 2800 2801 return ret; 2802 } 2803 2804 static void ksz_irq_mask(struct irq_data *d) 2805 { 2806 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2807 2808 kirq->masked |= BIT(d->hwirq); 2809 } 2810 2811 static void ksz_irq_unmask(struct irq_data *d) 2812 { 2813 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2814 2815 kirq->masked &= ~BIT(d->hwirq); 2816 } 2817 2818 static void ksz_irq_bus_lock(struct irq_data *d) 2819 { 2820 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2821 2822 mutex_lock(&kirq->dev->lock_irq); 2823 } 2824 2825 static void ksz_irq_bus_sync_unlock(struct irq_data *d) 2826 { 2827 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2828 struct ksz_device *dev = kirq->dev; 2829 int ret; 2830 2831 ret = ksz_write8(dev, kirq->reg_mask, kirq->masked); 2832 if (ret) 2833 dev_err(dev->dev, "failed to change IRQ mask\n"); 2834 2835 mutex_unlock(&dev->lock_irq); 2836 } 2837 2838 static const struct irq_chip ksz_irq_chip = { 2839 .name = "ksz-irq", 2840 .irq_mask = ksz_irq_mask, 2841 .irq_unmask = ksz_irq_unmask, 2842 .irq_bus_lock = ksz_irq_bus_lock, 2843 .irq_bus_sync_unlock = ksz_irq_bus_sync_unlock, 2844 }; 2845 2846 static int ksz_irq_domain_map(struct irq_domain *d, 2847 unsigned int irq, irq_hw_number_t hwirq) 2848 { 2849 irq_set_chip_data(irq, d->host_data); 2850 irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq); 2851 irq_set_noprobe(irq); 2852 2853 return 0; 2854 } 2855 2856 static const struct irq_domain_ops ksz_irq_domain_ops = { 2857 .map = ksz_irq_domain_map, 2858 .xlate = irq_domain_xlate_twocell, 2859 }; 2860 2861 static void ksz_irq_free(struct ksz_irq *kirq) 2862 { 2863 int irq, virq; 2864 2865 free_irq(kirq->irq_num, kirq); 2866 2867 for (irq = 0; irq < kirq->nirqs; irq++) { 2868 virq = irq_find_mapping(kirq->domain, irq); 2869 irq_dispose_mapping(virq); 2870 } 2871 2872 irq_domain_remove(kirq->domain); 2873 } 2874 2875 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id) 2876 { 2877 struct ksz_irq *kirq = dev_id; 2878 unsigned int nhandled = 0; 2879 struct ksz_device *dev; 2880 unsigned int sub_irq; 2881 u8 data; 2882 int ret; 2883 u8 n; 2884 2885 dev = kirq->dev; 2886 2887 /* Read interrupt status register */ 2888 ret = ksz_read8(dev, kirq->reg_status, &data); 2889 if (ret) 2890 goto out; 2891 2892 for (n = 0; n < kirq->nirqs; ++n) { 2893 if (data & BIT(n)) { 2894 sub_irq = irq_find_mapping(kirq->domain, n); 2895 handle_nested_irq(sub_irq); 2896 ++nhandled; 2897 } 2898 } 2899 out: 2900 return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE); 2901 } 2902 2903 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq) 2904 { 2905 int ret, n; 2906 2907 kirq->dev = dev; 2908 kirq->masked = ~0; 2909 2910 kirq->domain = irq_domain_create_simple(dev_fwnode(dev->dev), kirq->nirqs, 0, 2911 &ksz_irq_domain_ops, kirq); 2912 if (!kirq->domain) 2913 return -ENOMEM; 2914 2915 for (n = 0; n < kirq->nirqs; n++) 2916 irq_create_mapping(kirq->domain, n); 2917 2918 ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn, 2919 IRQF_ONESHOT, kirq->name, kirq); 2920 if (ret) 2921 goto out; 2922 2923 return 0; 2924 2925 out: 2926 ksz_irq_free(kirq); 2927 2928 return ret; 2929 } 2930 2931 static int ksz_girq_setup(struct ksz_device *dev) 2932 { 2933 struct ksz_irq *girq = &dev->girq; 2934 2935 girq->nirqs = dev->info->port_cnt; 2936 girq->reg_mask = REG_SW_PORT_INT_MASK__1; 2937 girq->reg_status = REG_SW_PORT_INT_STATUS__1; 2938 snprintf(girq->name, sizeof(girq->name), "global_port_irq"); 2939 2940 girq->irq_num = dev->irq; 2941 2942 return ksz_irq_common_setup(dev, girq); 2943 } 2944 2945 static int ksz_pirq_setup(struct ksz_device *dev, u8 p) 2946 { 2947 struct ksz_irq *pirq = &dev->ports[p].pirq; 2948 2949 pirq->nirqs = dev->info->port_nirqs; 2950 pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK); 2951 pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS); 2952 snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p); 2953 2954 pirq->irq_num = irq_find_mapping(dev->girq.domain, p); 2955 if (pirq->irq_num < 0) 2956 return pirq->irq_num; 2957 2958 return ksz_irq_common_setup(dev, pirq); 2959 } 2960 2961 static int ksz_parse_drive_strength(struct ksz_device *dev); 2962 2963 static int ksz_setup(struct dsa_switch *ds) 2964 { 2965 struct ksz_device *dev = ds->priv; 2966 u16 storm_mask, storm_rate; 2967 struct dsa_port *dp; 2968 struct ksz_port *p; 2969 const u16 *regs; 2970 int ret; 2971 2972 regs = dev->info->regs; 2973 2974 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table), 2975 dev->info->num_vlans, GFP_KERNEL); 2976 if (!dev->vlan_cache) 2977 return -ENOMEM; 2978 2979 ret = dev->dev_ops->reset(dev); 2980 if (ret) { 2981 dev_err(ds->dev, "failed to reset switch\n"); 2982 return ret; 2983 } 2984 2985 ret = ksz_parse_drive_strength(dev); 2986 if (ret) 2987 return ret; 2988 2989 if (ksz_has_sgmii_port(dev) && dev->dev_ops->pcs_create) { 2990 ret = dev->dev_ops->pcs_create(dev); 2991 if (ret) 2992 return ret; 2993 } 2994 2995 /* set broadcast storm protection 10% rate */ 2996 storm_mask = BROADCAST_STORM_RATE; 2997 storm_rate = (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100; 2998 if (ksz_is_ksz8463(dev)) { 2999 storm_mask = swab16(storm_mask); 3000 storm_rate = swab16(storm_rate); 3001 } 3002 regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL], 3003 storm_mask, storm_rate); 3004 3005 dev->dev_ops->config_cpu_port(ds); 3006 3007 dev->dev_ops->enable_stp_addr(dev); 3008 3009 ds->num_tx_queues = dev->info->num_tx_queues; 3010 3011 regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL], 3012 MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE); 3013 3014 ksz_init_mib_timer(dev); 3015 3016 ds->configure_vlan_while_not_filtering = false; 3017 ds->dscp_prio_mapping_is_global = true; 3018 3019 if (dev->dev_ops->setup) { 3020 ret = dev->dev_ops->setup(ds); 3021 if (ret) 3022 return ret; 3023 } 3024 3025 /* Start with learning disabled on standalone user ports, and enabled 3026 * on the CPU port. In lack of other finer mechanisms, learning on the 3027 * CPU port will avoid flooding bridge local addresses on the network 3028 * in some cases. 3029 */ 3030 p = &dev->ports[dev->cpu_port]; 3031 p->learning = true; 3032 3033 if (dev->irq > 0) { 3034 ret = ksz_girq_setup(dev); 3035 if (ret) 3036 return ret; 3037 3038 dsa_switch_for_each_user_port(dp, dev->ds) { 3039 ret = ksz_pirq_setup(dev, dp->index); 3040 if (ret) 3041 goto out_girq; 3042 3043 if (dev->info->ptp_capable) { 3044 ret = ksz_ptp_irq_setup(ds, dp->index); 3045 if (ret) 3046 goto out_pirq; 3047 } 3048 } 3049 } 3050 3051 if (dev->info->ptp_capable) { 3052 ret = ksz_ptp_clock_register(ds); 3053 if (ret) { 3054 dev_err(dev->dev, "Failed to register PTP clock: %d\n", 3055 ret); 3056 goto out_ptpirq; 3057 } 3058 } 3059 3060 ret = ksz_mdio_register(dev); 3061 if (ret < 0) { 3062 dev_err(dev->dev, "failed to register the mdio"); 3063 goto out_ptp_clock_unregister; 3064 } 3065 3066 ret = ksz_dcb_init(dev); 3067 if (ret) 3068 goto out_ptp_clock_unregister; 3069 3070 /* start switch */ 3071 regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL], 3072 SW_START, SW_START); 3073 3074 return 0; 3075 3076 out_ptp_clock_unregister: 3077 if (dev->info->ptp_capable) 3078 ksz_ptp_clock_unregister(ds); 3079 out_ptpirq: 3080 if (dev->irq > 0 && dev->info->ptp_capable) 3081 dsa_switch_for_each_user_port(dp, dev->ds) 3082 ksz_ptp_irq_free(ds, dp->index); 3083 out_pirq: 3084 if (dev->irq > 0) 3085 dsa_switch_for_each_user_port(dp, dev->ds) 3086 ksz_irq_free(&dev->ports[dp->index].pirq); 3087 out_girq: 3088 if (dev->irq > 0) 3089 ksz_irq_free(&dev->girq); 3090 3091 return ret; 3092 } 3093 3094 static void ksz_teardown(struct dsa_switch *ds) 3095 { 3096 struct ksz_device *dev = ds->priv; 3097 struct dsa_port *dp; 3098 3099 if (dev->info->ptp_capable) 3100 ksz_ptp_clock_unregister(ds); 3101 3102 if (dev->irq > 0) { 3103 dsa_switch_for_each_user_port(dp, dev->ds) { 3104 if (dev->info->ptp_capable) 3105 ksz_ptp_irq_free(ds, dp->index); 3106 3107 ksz_irq_free(&dev->ports[dp->index].pirq); 3108 } 3109 3110 ksz_irq_free(&dev->girq); 3111 } 3112 3113 if (dev->dev_ops->teardown) 3114 dev->dev_ops->teardown(ds); 3115 } 3116 3117 static void port_r_cnt(struct ksz_device *dev, int port) 3118 { 3119 struct ksz_port_mib *mib = &dev->ports[port].mib; 3120 u64 *dropped; 3121 3122 /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */ 3123 while (mib->cnt_ptr < dev->info->reg_mib_cnt) { 3124 dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr, 3125 &mib->counters[mib->cnt_ptr]); 3126 ++mib->cnt_ptr; 3127 } 3128 3129 /* last one in storage */ 3130 dropped = &mib->counters[dev->info->mib_cnt]; 3131 3132 /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */ 3133 while (mib->cnt_ptr < dev->info->mib_cnt) { 3134 dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr, 3135 dropped, &mib->counters[mib->cnt_ptr]); 3136 ++mib->cnt_ptr; 3137 } 3138 mib->cnt_ptr = 0; 3139 } 3140 3141 static void ksz_mib_read_work(struct work_struct *work) 3142 { 3143 struct ksz_device *dev = container_of(work, struct ksz_device, 3144 mib_read.work); 3145 struct ksz_port_mib *mib; 3146 struct ksz_port *p; 3147 int i; 3148 3149 for (i = 0; i < dev->info->port_cnt; i++) { 3150 if (dsa_is_unused_port(dev->ds, i)) 3151 continue; 3152 3153 p = &dev->ports[i]; 3154 mib = &p->mib; 3155 mutex_lock(&mib->cnt_mutex); 3156 3157 /* Only read MIB counters when the port is told to do. 3158 * If not, read only dropped counters when link is not up. 3159 */ 3160 if (!p->read) { 3161 const struct dsa_port *dp = dsa_to_port(dev->ds, i); 3162 3163 if (!netif_carrier_ok(dp->user)) 3164 mib->cnt_ptr = dev->info->reg_mib_cnt; 3165 } 3166 port_r_cnt(dev, i); 3167 p->read = false; 3168 3169 if (dev->dev_ops->r_mib_stat64) 3170 dev->dev_ops->r_mib_stat64(dev, i); 3171 3172 mutex_unlock(&mib->cnt_mutex); 3173 } 3174 3175 schedule_delayed_work(&dev->mib_read, dev->mib_read_interval); 3176 } 3177 3178 void ksz_init_mib_timer(struct ksz_device *dev) 3179 { 3180 int i; 3181 3182 INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work); 3183 3184 for (i = 0; i < dev->info->port_cnt; i++) { 3185 struct ksz_port_mib *mib = &dev->ports[i].mib; 3186 3187 dev->dev_ops->port_init_cnt(dev, i); 3188 3189 mib->cnt_ptr = 0; 3190 memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64)); 3191 } 3192 } 3193 3194 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg) 3195 { 3196 struct ksz_device *dev = ds->priv; 3197 u16 val = 0xffff; 3198 int ret; 3199 3200 ret = dev->dev_ops->r_phy(dev, addr, reg, &val); 3201 if (ret) 3202 return ret; 3203 3204 return val; 3205 } 3206 3207 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val) 3208 { 3209 struct ksz_device *dev = ds->priv; 3210 int ret; 3211 3212 ret = dev->dev_ops->w_phy(dev, addr, reg, val); 3213 if (ret) 3214 return ret; 3215 3216 return 0; 3217 } 3218 3219 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port) 3220 { 3221 struct ksz_device *dev = ds->priv; 3222 3223 switch (dev->chip_id) { 3224 case KSZ88X3_CHIP_ID: 3225 /* Silicon Errata Sheet (DS80000830A): 3226 * Port 1 does not work with LinkMD Cable-Testing. 3227 * Port 1 does not respond to received PAUSE control frames. 3228 */ 3229 if (!port) 3230 return MICREL_KSZ8_P1_ERRATA; 3231 break; 3232 } 3233 3234 return 0; 3235 } 3236 3237 static void ksz_phylink_mac_link_down(struct phylink_config *config, 3238 unsigned int mode, 3239 phy_interface_t interface) 3240 { 3241 struct dsa_port *dp = dsa_phylink_to_port(config); 3242 struct ksz_device *dev = dp->ds->priv; 3243 3244 /* Read all MIB counters when the link is going down. */ 3245 dev->ports[dp->index].read = true; 3246 /* timer started */ 3247 if (dev->mib_read_interval) 3248 schedule_delayed_work(&dev->mib_read, 0); 3249 } 3250 3251 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset) 3252 { 3253 struct ksz_device *dev = ds->priv; 3254 3255 if (sset != ETH_SS_STATS) 3256 return 0; 3257 3258 return dev->info->mib_cnt; 3259 } 3260 3261 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port, 3262 uint64_t *buf) 3263 { 3264 const struct dsa_port *dp = dsa_to_port(ds, port); 3265 struct ksz_device *dev = ds->priv; 3266 struct ksz_port_mib *mib; 3267 3268 mib = &dev->ports[port].mib; 3269 mutex_lock(&mib->cnt_mutex); 3270 3271 /* Only read dropped counters if no link. */ 3272 if (!netif_carrier_ok(dp->user)) 3273 mib->cnt_ptr = dev->info->reg_mib_cnt; 3274 port_r_cnt(dev, port); 3275 memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64)); 3276 mutex_unlock(&mib->cnt_mutex); 3277 } 3278 3279 static int ksz_port_bridge_join(struct dsa_switch *ds, int port, 3280 struct dsa_bridge bridge, 3281 bool *tx_fwd_offload, 3282 struct netlink_ext_ack *extack) 3283 { 3284 /* port_stp_state_set() will be called after to put the port in 3285 * appropriate state so there is no need to do anything. 3286 */ 3287 3288 return 0; 3289 } 3290 3291 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port, 3292 struct dsa_bridge bridge) 3293 { 3294 /* port_stp_state_set() will be called after to put the port in 3295 * forwarding state so there is no need to do anything. 3296 */ 3297 } 3298 3299 static void ksz_port_fast_age(struct dsa_switch *ds, int port) 3300 { 3301 struct ksz_device *dev = ds->priv; 3302 3303 dev->dev_ops->flush_dyn_mac_table(dev, port); 3304 } 3305 3306 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) 3307 { 3308 struct ksz_device *dev = ds->priv; 3309 3310 if (!dev->dev_ops->set_ageing_time) 3311 return -EOPNOTSUPP; 3312 3313 return dev->dev_ops->set_ageing_time(dev, msecs); 3314 } 3315 3316 static int ksz_port_fdb_add(struct dsa_switch *ds, int port, 3317 const unsigned char *addr, u16 vid, 3318 struct dsa_db db) 3319 { 3320 struct ksz_device *dev = ds->priv; 3321 3322 if (!dev->dev_ops->fdb_add) 3323 return -EOPNOTSUPP; 3324 3325 return dev->dev_ops->fdb_add(dev, port, addr, vid, db); 3326 } 3327 3328 static int ksz_port_fdb_del(struct dsa_switch *ds, int port, 3329 const unsigned char *addr, 3330 u16 vid, struct dsa_db db) 3331 { 3332 struct ksz_device *dev = ds->priv; 3333 3334 if (!dev->dev_ops->fdb_del) 3335 return -EOPNOTSUPP; 3336 3337 return dev->dev_ops->fdb_del(dev, port, addr, vid, db); 3338 } 3339 3340 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port, 3341 dsa_fdb_dump_cb_t *cb, void *data) 3342 { 3343 struct ksz_device *dev = ds->priv; 3344 3345 if (!dev->dev_ops->fdb_dump) 3346 return -EOPNOTSUPP; 3347 3348 return dev->dev_ops->fdb_dump(dev, port, cb, data); 3349 } 3350 3351 static int ksz_port_mdb_add(struct dsa_switch *ds, int port, 3352 const struct switchdev_obj_port_mdb *mdb, 3353 struct dsa_db db) 3354 { 3355 struct ksz_device *dev = ds->priv; 3356 3357 if (!dev->dev_ops->mdb_add) 3358 return -EOPNOTSUPP; 3359 3360 return dev->dev_ops->mdb_add(dev, port, mdb, db); 3361 } 3362 3363 static int ksz_port_mdb_del(struct dsa_switch *ds, int port, 3364 const struct switchdev_obj_port_mdb *mdb, 3365 struct dsa_db db) 3366 { 3367 struct ksz_device *dev = ds->priv; 3368 3369 if (!dev->dev_ops->mdb_del) 3370 return -EOPNOTSUPP; 3371 3372 return dev->dev_ops->mdb_del(dev, port, mdb, db); 3373 } 3374 3375 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev, 3376 int port) 3377 { 3378 u32 queue_map = 0; 3379 int ipm; 3380 3381 for (ipm = 0; ipm < dev->info->num_ipms; ipm++) { 3382 int queue; 3383 3384 /* Traffic Type (TT) is corresponding to the Internal Priority 3385 * Map (IPM) in the switch. Traffic Class (TC) is 3386 * corresponding to the queue in the switch. 3387 */ 3388 queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues); 3389 if (queue < 0) 3390 return queue; 3391 3392 queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S); 3393 } 3394 3395 return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map); 3396 } 3397 3398 static int ksz_port_setup(struct dsa_switch *ds, int port) 3399 { 3400 struct ksz_device *dev = ds->priv; 3401 int ret; 3402 3403 if (!dsa_is_user_port(ds, port)) 3404 return 0; 3405 3406 /* setup user port */ 3407 dev->dev_ops->port_setup(dev, port, false); 3408 3409 if (!is_ksz8(dev)) { 3410 ret = ksz9477_set_default_prio_queue_mapping(dev, port); 3411 if (ret) 3412 return ret; 3413 } 3414 3415 /* port_stp_state_set() will be called after to enable the port so 3416 * there is no need to do anything. 3417 */ 3418 3419 return ksz_dcb_init_port(dev, port); 3420 } 3421 3422 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) 3423 { 3424 struct ksz_device *dev = ds->priv; 3425 struct ksz_port *p; 3426 const u16 *regs; 3427 u8 data; 3428 3429 regs = dev->info->regs; 3430 3431 ksz_pread8(dev, port, regs[P_STP_CTRL], &data); 3432 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE); 3433 3434 p = &dev->ports[port]; 3435 3436 switch (state) { 3437 case BR_STATE_DISABLED: 3438 data |= PORT_LEARN_DISABLE; 3439 break; 3440 case BR_STATE_LISTENING: 3441 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE); 3442 break; 3443 case BR_STATE_LEARNING: 3444 data |= PORT_RX_ENABLE; 3445 if (!p->learning) 3446 data |= PORT_LEARN_DISABLE; 3447 break; 3448 case BR_STATE_FORWARDING: 3449 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 3450 if (!p->learning) 3451 data |= PORT_LEARN_DISABLE; 3452 break; 3453 case BR_STATE_BLOCKING: 3454 data |= PORT_LEARN_DISABLE; 3455 break; 3456 default: 3457 dev_err(ds->dev, "invalid STP state: %d\n", state); 3458 return; 3459 } 3460 3461 ksz_pwrite8(dev, port, regs[P_STP_CTRL], data); 3462 3463 p->stp_state = state; 3464 3465 ksz_update_port_member(dev, port); 3466 } 3467 3468 static void ksz_port_teardown(struct dsa_switch *ds, int port) 3469 { 3470 struct ksz_device *dev = ds->priv; 3471 3472 switch (dev->chip_id) { 3473 case KSZ8563_CHIP_ID: 3474 case KSZ8567_CHIP_ID: 3475 case KSZ9477_CHIP_ID: 3476 case KSZ9563_CHIP_ID: 3477 case KSZ9567_CHIP_ID: 3478 case KSZ9893_CHIP_ID: 3479 case KSZ9896_CHIP_ID: 3480 case KSZ9897_CHIP_ID: 3481 case LAN9646_CHIP_ID: 3482 if (dsa_is_user_port(ds, port)) 3483 ksz9477_port_acl_free(dev, port); 3484 } 3485 } 3486 3487 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port, 3488 struct switchdev_brport_flags flags, 3489 struct netlink_ext_ack *extack) 3490 { 3491 if (flags.mask & ~(BR_LEARNING | BR_ISOLATED)) 3492 return -EINVAL; 3493 3494 return 0; 3495 } 3496 3497 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port, 3498 struct switchdev_brport_flags flags, 3499 struct netlink_ext_ack *extack) 3500 { 3501 struct ksz_device *dev = ds->priv; 3502 struct ksz_port *p = &dev->ports[port]; 3503 3504 if (flags.mask & (BR_LEARNING | BR_ISOLATED)) { 3505 if (flags.mask & BR_LEARNING) 3506 p->learning = !!(flags.val & BR_LEARNING); 3507 3508 if (flags.mask & BR_ISOLATED) 3509 p->isolated = !!(flags.val & BR_ISOLATED); 3510 3511 /* Make the change take effect immediately */ 3512 ksz_port_stp_state_set(ds, port, p->stp_state); 3513 } 3514 3515 return 0; 3516 } 3517 3518 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds, 3519 int port, 3520 enum dsa_tag_protocol mp) 3521 { 3522 struct ksz_device *dev = ds->priv; 3523 enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE; 3524 3525 if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev)) 3526 proto = DSA_TAG_PROTO_KSZ8795; 3527 3528 if (dev->chip_id == KSZ88X3_CHIP_ID || 3529 dev->chip_id == KSZ8463_CHIP_ID || 3530 dev->chip_id == KSZ8563_CHIP_ID || 3531 dev->chip_id == KSZ9893_CHIP_ID || 3532 dev->chip_id == KSZ9563_CHIP_ID) 3533 proto = DSA_TAG_PROTO_KSZ9893; 3534 3535 if (dev->chip_id == KSZ8567_CHIP_ID || 3536 dev->chip_id == KSZ9477_CHIP_ID || 3537 dev->chip_id == KSZ9896_CHIP_ID || 3538 dev->chip_id == KSZ9897_CHIP_ID || 3539 dev->chip_id == KSZ9567_CHIP_ID || 3540 dev->chip_id == LAN9646_CHIP_ID) 3541 proto = DSA_TAG_PROTO_KSZ9477; 3542 3543 if (is_lan937x(dev)) 3544 proto = DSA_TAG_PROTO_LAN937X; 3545 3546 return proto; 3547 } 3548 3549 static int ksz_connect_tag_protocol(struct dsa_switch *ds, 3550 enum dsa_tag_protocol proto) 3551 { 3552 struct ksz_tagger_data *tagger_data; 3553 3554 switch (proto) { 3555 case DSA_TAG_PROTO_KSZ8795: 3556 return 0; 3557 case DSA_TAG_PROTO_KSZ9893: 3558 case DSA_TAG_PROTO_KSZ9477: 3559 case DSA_TAG_PROTO_LAN937X: 3560 tagger_data = ksz_tagger_data(ds); 3561 tagger_data->xmit_work_fn = ksz_port_deferred_xmit; 3562 return 0; 3563 default: 3564 return -EPROTONOSUPPORT; 3565 } 3566 } 3567 3568 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, 3569 bool flag, struct netlink_ext_ack *extack) 3570 { 3571 struct ksz_device *dev = ds->priv; 3572 3573 if (!dev->dev_ops->vlan_filtering) 3574 return -EOPNOTSUPP; 3575 3576 return dev->dev_ops->vlan_filtering(dev, port, flag, extack); 3577 } 3578 3579 static int ksz_port_vlan_add(struct dsa_switch *ds, int port, 3580 const struct switchdev_obj_port_vlan *vlan, 3581 struct netlink_ext_ack *extack) 3582 { 3583 struct ksz_device *dev = ds->priv; 3584 3585 if (!dev->dev_ops->vlan_add) 3586 return -EOPNOTSUPP; 3587 3588 return dev->dev_ops->vlan_add(dev, port, vlan, extack); 3589 } 3590 3591 static int ksz_port_vlan_del(struct dsa_switch *ds, int port, 3592 const struct switchdev_obj_port_vlan *vlan) 3593 { 3594 struct ksz_device *dev = ds->priv; 3595 3596 if (!dev->dev_ops->vlan_del) 3597 return -EOPNOTSUPP; 3598 3599 return dev->dev_ops->vlan_del(dev, port, vlan); 3600 } 3601 3602 static int ksz_port_mirror_add(struct dsa_switch *ds, int port, 3603 struct dsa_mall_mirror_tc_entry *mirror, 3604 bool ingress, struct netlink_ext_ack *extack) 3605 { 3606 struct ksz_device *dev = ds->priv; 3607 3608 if (!dev->dev_ops->mirror_add) 3609 return -EOPNOTSUPP; 3610 3611 return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack); 3612 } 3613 3614 static void ksz_port_mirror_del(struct dsa_switch *ds, int port, 3615 struct dsa_mall_mirror_tc_entry *mirror) 3616 { 3617 struct ksz_device *dev = ds->priv; 3618 3619 if (dev->dev_ops->mirror_del) 3620 dev->dev_ops->mirror_del(dev, port, mirror); 3621 } 3622 3623 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu) 3624 { 3625 struct ksz_device *dev = ds->priv; 3626 3627 if (!dev->dev_ops->change_mtu) 3628 return -EOPNOTSUPP; 3629 3630 return dev->dev_ops->change_mtu(dev, port, mtu); 3631 } 3632 3633 static int ksz_max_mtu(struct dsa_switch *ds, int port) 3634 { 3635 struct ksz_device *dev = ds->priv; 3636 3637 switch (dev->chip_id) { 3638 case KSZ8795_CHIP_ID: 3639 case KSZ8794_CHIP_ID: 3640 case KSZ8765_CHIP_ID: 3641 return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3642 case KSZ8463_CHIP_ID: 3643 case KSZ88X3_CHIP_ID: 3644 case KSZ8864_CHIP_ID: 3645 case KSZ8895_CHIP_ID: 3646 return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3647 case KSZ8563_CHIP_ID: 3648 case KSZ8567_CHIP_ID: 3649 case KSZ9477_CHIP_ID: 3650 case KSZ9563_CHIP_ID: 3651 case KSZ9567_CHIP_ID: 3652 case KSZ9893_CHIP_ID: 3653 case KSZ9896_CHIP_ID: 3654 case KSZ9897_CHIP_ID: 3655 case LAN9370_CHIP_ID: 3656 case LAN9371_CHIP_ID: 3657 case LAN9372_CHIP_ID: 3658 case LAN9373_CHIP_ID: 3659 case LAN9374_CHIP_ID: 3660 case LAN9646_CHIP_ID: 3661 return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3662 } 3663 3664 return -EOPNOTSUPP; 3665 } 3666 3667 /** 3668 * ksz_support_eee - Determine Energy Efficient Ethernet (EEE) support for a 3669 * port 3670 * @ds: Pointer to the DSA switch structure 3671 * @port: Port number to check 3672 * 3673 * This function also documents devices where EEE was initially advertised but 3674 * later withdrawn due to reliability issues, as described in official errata 3675 * documents. These devices are explicitly listed to record known limitations, 3676 * even if there is no technical necessity for runtime checks. 3677 * 3678 * Returns: true if the internal PHY on the given port supports fully 3679 * operational EEE, false otherwise. 3680 */ 3681 static bool ksz_support_eee(struct dsa_switch *ds, int port) 3682 { 3683 struct ksz_device *dev = ds->priv; 3684 3685 if (!dev->info->internal_phy[port]) 3686 return false; 3687 3688 switch (dev->chip_id) { 3689 case KSZ8563_CHIP_ID: 3690 case KSZ9563_CHIP_ID: 3691 case KSZ9893_CHIP_ID: 3692 return true; 3693 case KSZ8567_CHIP_ID: 3694 /* KSZ8567R Errata DS80000752C Module 4 */ 3695 case KSZ8765_CHIP_ID: 3696 case KSZ8794_CHIP_ID: 3697 case KSZ8795_CHIP_ID: 3698 /* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */ 3699 case KSZ9477_CHIP_ID: 3700 /* KSZ9477S Errata DS80000754A Module 4 */ 3701 case KSZ9567_CHIP_ID: 3702 /* KSZ9567S Errata DS80000756A Module 4 */ 3703 case KSZ9896_CHIP_ID: 3704 /* KSZ9896C Errata DS80000757A Module 3 */ 3705 case KSZ9897_CHIP_ID: 3706 case LAN9646_CHIP_ID: 3707 /* KSZ9897R Errata DS80000758C Module 4 */ 3708 /* Energy Efficient Ethernet (EEE) feature select must be 3709 * manually disabled 3710 * The EEE feature is enabled by default, but it is not fully 3711 * operational. It must be manually disabled through register 3712 * controls. If not disabled, the PHY ports can auto-negotiate 3713 * to enable EEE, and this feature can cause link drops when 3714 * linked to another device supporting EEE. 3715 * 3716 * The same item appears in the errata for all switches above. 3717 */ 3718 break; 3719 } 3720 3721 return false; 3722 } 3723 3724 static int ksz_set_mac_eee(struct dsa_switch *ds, int port, 3725 struct ethtool_keee *e) 3726 { 3727 struct ksz_device *dev = ds->priv; 3728 3729 if (!e->tx_lpi_enabled) { 3730 dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n"); 3731 return -EINVAL; 3732 } 3733 3734 if (e->tx_lpi_timer) { 3735 dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n"); 3736 return -EINVAL; 3737 } 3738 3739 return 0; 3740 } 3741 3742 static void ksz_set_xmii(struct ksz_device *dev, int port, 3743 phy_interface_t interface) 3744 { 3745 const u8 *bitval = dev->info->xmii_ctrl1; 3746 struct ksz_port *p = &dev->ports[port]; 3747 const u16 *regs = dev->info->regs; 3748 u8 data8; 3749 3750 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3751 3752 data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE | 3753 P_RGMII_ID_EG_ENABLE); 3754 3755 switch (interface) { 3756 case PHY_INTERFACE_MODE_MII: 3757 data8 |= bitval[P_MII_SEL]; 3758 break; 3759 case PHY_INTERFACE_MODE_RMII: 3760 data8 |= bitval[P_RMII_SEL]; 3761 break; 3762 case PHY_INTERFACE_MODE_GMII: 3763 data8 |= bitval[P_GMII_SEL]; 3764 break; 3765 case PHY_INTERFACE_MODE_RGMII: 3766 case PHY_INTERFACE_MODE_RGMII_ID: 3767 case PHY_INTERFACE_MODE_RGMII_TXID: 3768 case PHY_INTERFACE_MODE_RGMII_RXID: 3769 data8 |= bitval[P_RGMII_SEL]; 3770 /* On KSZ9893, disable RGMII in-band status support */ 3771 if (dev->chip_id == KSZ9893_CHIP_ID || 3772 dev->chip_id == KSZ8563_CHIP_ID || 3773 dev->chip_id == KSZ9563_CHIP_ID || 3774 is_lan937x(dev)) 3775 data8 &= ~P_MII_MAC_MODE; 3776 break; 3777 default: 3778 dev_err(dev->dev, "Unsupported interface '%s' for port %d\n", 3779 phy_modes(interface), port); 3780 return; 3781 } 3782 3783 if (p->rgmii_tx_val) 3784 data8 |= P_RGMII_ID_EG_ENABLE; 3785 3786 if (p->rgmii_rx_val) 3787 data8 |= P_RGMII_ID_IG_ENABLE; 3788 3789 /* Write the updated value */ 3790 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8); 3791 } 3792 3793 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit) 3794 { 3795 const u8 *bitval = dev->info->xmii_ctrl1; 3796 const u16 *regs = dev->info->regs; 3797 phy_interface_t interface; 3798 u8 data8; 3799 u8 val; 3800 3801 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3802 3803 val = FIELD_GET(P_MII_SEL_M, data8); 3804 3805 if (val == bitval[P_MII_SEL]) { 3806 if (gbit) 3807 interface = PHY_INTERFACE_MODE_GMII; 3808 else 3809 interface = PHY_INTERFACE_MODE_MII; 3810 } else if (val == bitval[P_RMII_SEL]) { 3811 interface = PHY_INTERFACE_MODE_RMII; 3812 } else { 3813 interface = PHY_INTERFACE_MODE_RGMII; 3814 if (data8 & P_RGMII_ID_EG_ENABLE) 3815 interface = PHY_INTERFACE_MODE_RGMII_TXID; 3816 if (data8 & P_RGMII_ID_IG_ENABLE) { 3817 interface = PHY_INTERFACE_MODE_RGMII_RXID; 3818 if (data8 & P_RGMII_ID_EG_ENABLE) 3819 interface = PHY_INTERFACE_MODE_RGMII_ID; 3820 } 3821 } 3822 3823 return interface; 3824 } 3825 3826 static void ksz88x3_phylink_mac_config(struct phylink_config *config, 3827 unsigned int mode, 3828 const struct phylink_link_state *state) 3829 { 3830 struct dsa_port *dp = dsa_phylink_to_port(config); 3831 struct ksz_device *dev = dp->ds->priv; 3832 3833 dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN); 3834 } 3835 3836 static void ksz_phylink_mac_config(struct phylink_config *config, 3837 unsigned int mode, 3838 const struct phylink_link_state *state) 3839 { 3840 struct dsa_port *dp = dsa_phylink_to_port(config); 3841 struct ksz_device *dev = dp->ds->priv; 3842 int port = dp->index; 3843 3844 /* Internal PHYs */ 3845 if (dev->info->internal_phy[port]) 3846 return; 3847 3848 /* No need to configure XMII control register when using SGMII. */ 3849 if (ksz_is_sgmii_port(dev, port)) 3850 return; 3851 3852 if (phylink_autoneg_inband(mode)) { 3853 dev_err(dev->dev, "In-band AN not supported!\n"); 3854 return; 3855 } 3856 3857 ksz_set_xmii(dev, port, state->interface); 3858 3859 if (dev->dev_ops->setup_rgmii_delay) 3860 dev->dev_ops->setup_rgmii_delay(dev, port); 3861 } 3862 3863 bool ksz_get_gbit(struct ksz_device *dev, int port) 3864 { 3865 const u8 *bitval = dev->info->xmii_ctrl1; 3866 const u16 *regs = dev->info->regs; 3867 bool gbit = false; 3868 u8 data8; 3869 bool val; 3870 3871 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3872 3873 val = FIELD_GET(P_GMII_1GBIT_M, data8); 3874 3875 if (val == bitval[P_GMII_1GBIT]) 3876 gbit = true; 3877 3878 return gbit; 3879 } 3880 3881 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit) 3882 { 3883 const u8 *bitval = dev->info->xmii_ctrl1; 3884 const u16 *regs = dev->info->regs; 3885 u8 data8; 3886 3887 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3888 3889 data8 &= ~P_GMII_1GBIT_M; 3890 3891 if (gbit) 3892 data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]); 3893 else 3894 data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]); 3895 3896 /* Write the updated value */ 3897 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8); 3898 } 3899 3900 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed) 3901 { 3902 const u8 *bitval = dev->info->xmii_ctrl0; 3903 const u16 *regs = dev->info->regs; 3904 u8 data8; 3905 3906 ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8); 3907 3908 data8 &= ~P_MII_100MBIT_M; 3909 3910 if (speed == SPEED_100) 3911 data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]); 3912 else 3913 data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]); 3914 3915 /* Write the updated value */ 3916 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8); 3917 } 3918 3919 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed) 3920 { 3921 if (speed == SPEED_1000) 3922 ksz_set_gbit(dev, port, true); 3923 else 3924 ksz_set_gbit(dev, port, false); 3925 3926 if (speed == SPEED_100 || speed == SPEED_10) 3927 ksz_set_100_10mbit(dev, port, speed); 3928 } 3929 3930 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex, 3931 bool tx_pause, bool rx_pause) 3932 { 3933 const u8 *bitval = dev->info->xmii_ctrl0; 3934 const u32 *masks = dev->info->masks; 3935 const u16 *regs = dev->info->regs; 3936 u8 mask; 3937 u8 val; 3938 3939 mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] | 3940 masks[P_MII_RX_FLOW_CTRL]; 3941 3942 if (duplex == DUPLEX_FULL) 3943 val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]); 3944 else 3945 val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]); 3946 3947 if (tx_pause) 3948 val |= masks[P_MII_TX_FLOW_CTRL]; 3949 3950 if (rx_pause) 3951 val |= masks[P_MII_RX_FLOW_CTRL]; 3952 3953 ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val); 3954 } 3955 3956 static void ksz9477_phylink_mac_link_up(struct phylink_config *config, 3957 struct phy_device *phydev, 3958 unsigned int mode, 3959 phy_interface_t interface, 3960 int speed, int duplex, bool tx_pause, 3961 bool rx_pause) 3962 { 3963 struct dsa_port *dp = dsa_phylink_to_port(config); 3964 struct ksz_device *dev = dp->ds->priv; 3965 int port = dp->index; 3966 struct ksz_port *p; 3967 3968 p = &dev->ports[port]; 3969 3970 /* Internal PHYs */ 3971 if (dev->info->internal_phy[port]) 3972 return; 3973 3974 p->phydev.speed = speed; 3975 3976 ksz_port_set_xmii_speed(dev, port, speed); 3977 3978 ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause); 3979 } 3980 3981 static int ksz_switch_detect(struct ksz_device *dev) 3982 { 3983 u8 id1, id2, id4; 3984 u16 id16; 3985 u32 id32; 3986 int ret; 3987 3988 /* read chip id */ 3989 ret = ksz_read16(dev, REG_CHIP_ID0, &id16); 3990 if (ret) 3991 return ret; 3992 3993 id1 = FIELD_GET(SW_FAMILY_ID_M, id16); 3994 id2 = FIELD_GET(SW_CHIP_ID_M, id16); 3995 3996 switch (id1) { 3997 case KSZ84_FAMILY_ID: 3998 dev->chip_id = KSZ8463_CHIP_ID; 3999 break; 4000 case KSZ87_FAMILY_ID: 4001 if (id2 == KSZ87_CHIP_ID_95) { 4002 u8 val; 4003 4004 dev->chip_id = KSZ8795_CHIP_ID; 4005 4006 ksz_read8(dev, KSZ8_PORT_STATUS_0, &val); 4007 if (val & KSZ8_PORT_FIBER_MODE) 4008 dev->chip_id = KSZ8765_CHIP_ID; 4009 } else if (id2 == KSZ87_CHIP_ID_94) { 4010 dev->chip_id = KSZ8794_CHIP_ID; 4011 } else { 4012 return -ENODEV; 4013 } 4014 break; 4015 case KSZ88_FAMILY_ID: 4016 if (id2 == KSZ88_CHIP_ID_63) 4017 dev->chip_id = KSZ88X3_CHIP_ID; 4018 else 4019 return -ENODEV; 4020 break; 4021 case KSZ8895_FAMILY_ID: 4022 if (id2 == KSZ8895_CHIP_ID_95 || 4023 id2 == KSZ8895_CHIP_ID_95R) 4024 dev->chip_id = KSZ8895_CHIP_ID; 4025 else 4026 return -ENODEV; 4027 ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4); 4028 if (ret) 4029 return ret; 4030 if (id4 & SW_KSZ8864) 4031 dev->chip_id = KSZ8864_CHIP_ID; 4032 break; 4033 default: 4034 ret = ksz_read32(dev, REG_CHIP_ID0, &id32); 4035 if (ret) 4036 return ret; 4037 4038 dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32); 4039 id32 &= ~0xFF; 4040 4041 switch (id32) { 4042 case KSZ9477_CHIP_ID: 4043 case KSZ9896_CHIP_ID: 4044 case KSZ9897_CHIP_ID: 4045 case KSZ9567_CHIP_ID: 4046 case KSZ8567_CHIP_ID: 4047 case LAN9370_CHIP_ID: 4048 case LAN9371_CHIP_ID: 4049 case LAN9372_CHIP_ID: 4050 case LAN9373_CHIP_ID: 4051 case LAN9374_CHIP_ID: 4052 4053 /* LAN9646 does not have its own chip id. */ 4054 if (dev->chip_id != LAN9646_CHIP_ID) 4055 dev->chip_id = id32; 4056 break; 4057 case KSZ9893_CHIP_ID: 4058 ret = ksz_read8(dev, REG_CHIP_ID4, 4059 &id4); 4060 if (ret) 4061 return ret; 4062 4063 if (id4 == SKU_ID_KSZ8563) 4064 dev->chip_id = KSZ8563_CHIP_ID; 4065 else if (id4 == SKU_ID_KSZ9563) 4066 dev->chip_id = KSZ9563_CHIP_ID; 4067 else 4068 dev->chip_id = KSZ9893_CHIP_ID; 4069 4070 break; 4071 default: 4072 dev_err(dev->dev, 4073 "unsupported switch detected %x)\n", id32); 4074 return -ENODEV; 4075 } 4076 } 4077 return 0; 4078 } 4079 4080 static int ksz_cls_flower_add(struct dsa_switch *ds, int port, 4081 struct flow_cls_offload *cls, bool ingress) 4082 { 4083 struct ksz_device *dev = ds->priv; 4084 4085 switch (dev->chip_id) { 4086 case KSZ8563_CHIP_ID: 4087 case KSZ8567_CHIP_ID: 4088 case KSZ9477_CHIP_ID: 4089 case KSZ9563_CHIP_ID: 4090 case KSZ9567_CHIP_ID: 4091 case KSZ9893_CHIP_ID: 4092 case KSZ9896_CHIP_ID: 4093 case KSZ9897_CHIP_ID: 4094 case LAN9646_CHIP_ID: 4095 return ksz9477_cls_flower_add(ds, port, cls, ingress); 4096 } 4097 4098 return -EOPNOTSUPP; 4099 } 4100 4101 static int ksz_cls_flower_del(struct dsa_switch *ds, int port, 4102 struct flow_cls_offload *cls, bool ingress) 4103 { 4104 struct ksz_device *dev = ds->priv; 4105 4106 switch (dev->chip_id) { 4107 case KSZ8563_CHIP_ID: 4108 case KSZ8567_CHIP_ID: 4109 case KSZ9477_CHIP_ID: 4110 case KSZ9563_CHIP_ID: 4111 case KSZ9567_CHIP_ID: 4112 case KSZ9893_CHIP_ID: 4113 case KSZ9896_CHIP_ID: 4114 case KSZ9897_CHIP_ID: 4115 case LAN9646_CHIP_ID: 4116 return ksz9477_cls_flower_del(ds, port, cls, ingress); 4117 } 4118 4119 return -EOPNOTSUPP; 4120 } 4121 4122 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth 4123 * is converted to Hex-decimal using the successive multiplication method. On 4124 * every step, integer part is taken and decimal part is carry forwarded. 4125 */ 4126 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw) 4127 { 4128 u32 cinc = 0; 4129 u32 txrate; 4130 u32 rate; 4131 u8 temp; 4132 u8 i; 4133 4134 txrate = idle_slope - send_slope; 4135 4136 if (!txrate) 4137 return -EINVAL; 4138 4139 rate = idle_slope; 4140 4141 /* 24 bit register */ 4142 for (i = 0; i < 6; i++) { 4143 rate = rate * 16; 4144 4145 temp = rate / txrate; 4146 4147 rate %= txrate; 4148 4149 cinc = ((cinc << 4) | temp); 4150 } 4151 4152 *bw = cinc; 4153 4154 return 0; 4155 } 4156 4157 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler, 4158 u8 shaper) 4159 { 4160 return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0, 4161 FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) | 4162 FIELD_PREP(MTI_SHAPING_M, shaper)); 4163 } 4164 4165 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port, 4166 struct tc_cbs_qopt_offload *qopt) 4167 { 4168 struct ksz_device *dev = ds->priv; 4169 int ret; 4170 u32 bw; 4171 4172 if (!dev->info->tc_cbs_supported) 4173 return -EOPNOTSUPP; 4174 4175 if (qopt->queue > dev->info->num_tx_queues) 4176 return -EINVAL; 4177 4178 /* Queue Selection */ 4179 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue); 4180 if (ret) 4181 return ret; 4182 4183 if (!qopt->enable) 4184 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR, 4185 MTI_SHAPING_OFF); 4186 4187 /* High Credit */ 4188 ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK, 4189 qopt->hicredit); 4190 if (ret) 4191 return ret; 4192 4193 /* Low Credit */ 4194 ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK, 4195 qopt->locredit); 4196 if (ret) 4197 return ret; 4198 4199 /* Credit Increment Register */ 4200 ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw); 4201 if (ret) 4202 return ret; 4203 4204 if (dev->dev_ops->tc_cbs_set_cinc) { 4205 ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw); 4206 if (ret) 4207 return ret; 4208 } 4209 4210 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO, 4211 MTI_SHAPING_SRP); 4212 } 4213 4214 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port) 4215 { 4216 int queue, ret; 4217 4218 /* Configuration will not take effect until the last Port Queue X 4219 * Egress Limit Control Register is written. 4220 */ 4221 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 4222 ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue, 4223 KSZ9477_OUT_RATE_NO_LIMIT); 4224 if (ret) 4225 return ret; 4226 } 4227 4228 return 0; 4229 } 4230 4231 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p, 4232 int band) 4233 { 4234 /* Compared to queues, bands prioritize packets differently. In strict 4235 * priority mode, the lowest priority is assigned to Queue 0 while the 4236 * highest priority is given to Band 0. 4237 */ 4238 return p->bands - 1 - band; 4239 } 4240 4241 static u8 ksz8463_tc_ctrl(int port, int queue) 4242 { 4243 u8 reg; 4244 4245 reg = 0xC8 + port * 4; 4246 reg += ((3 - queue) / 2) * 2; 4247 reg++; 4248 reg -= (queue & 1); 4249 return reg; 4250 } 4251 4252 /** 4253 * ksz88x3_tc_ets_add - Configure ETS (Enhanced Transmission Selection) 4254 * for a port on KSZ88x3 switch 4255 * @dev: Pointer to the KSZ switch device structure 4256 * @port: Port number to configure 4257 * @p: Pointer to offload replace parameters describing ETS bands and mapping 4258 * 4259 * The KSZ88x3 supports two scheduling modes: Strict Priority and 4260 * Weighted Fair Queuing (WFQ). Both modes have fixed behavior: 4261 * - No configurable queue-to-priority mapping 4262 * - No weight adjustment in WFQ mode 4263 * 4264 * This function configures the switch to use strict priority mode by 4265 * clearing the WFQ enable bit for all queues associated with ETS bands. 4266 * If strict priority is not explicitly requested, the switch will default 4267 * to WFQ mode. 4268 * 4269 * Return: 0 on success, or a negative error code on failure 4270 */ 4271 static int ksz88x3_tc_ets_add(struct ksz_device *dev, int port, 4272 struct tc_ets_qopt_offload_replace_params *p) 4273 { 4274 int ret, band; 4275 4276 /* Only strict priority mode is supported for now. 4277 * WFQ is implicitly enabled when strict mode is disabled. 4278 */ 4279 for (band = 0; band < p->bands; band++) { 4280 int queue = ksz_ets_band_to_queue(p, band); 4281 u8 reg; 4282 4283 /* Calculate TXQ Split Control register address for this 4284 * port/queue 4285 */ 4286 reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue); 4287 if (ksz_is_ksz8463(dev)) 4288 reg = ksz8463_tc_ctrl(port, queue); 4289 4290 /* Clear WFQ enable bit to select strict priority scheduling */ 4291 ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE, 0); 4292 if (ret) 4293 return ret; 4294 } 4295 4296 return 0; 4297 } 4298 4299 /** 4300 * ksz88x3_tc_ets_del - Reset ETS (Enhanced Transmission Selection) config 4301 * for a port on KSZ88x3 switch 4302 * @dev: Pointer to the KSZ switch device structure 4303 * @port: Port number to reset 4304 * 4305 * The KSZ88x3 supports only fixed scheduling modes: Strict Priority or 4306 * Weighted Fair Queuing (WFQ), with no reconfiguration of weights or 4307 * queue mapping. This function resets the port’s scheduling mode to 4308 * the default, which is WFQ, by enabling the WFQ bit for all queues. 4309 * 4310 * Return: 0 on success, or a negative error code on failure 4311 */ 4312 static int ksz88x3_tc_ets_del(struct ksz_device *dev, int port) 4313 { 4314 int ret, queue; 4315 4316 /* Iterate over all transmit queues for this port */ 4317 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 4318 u8 reg; 4319 4320 /* Calculate TXQ Split Control register address for this 4321 * port/queue 4322 */ 4323 reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue); 4324 if (ksz_is_ksz8463(dev)) 4325 reg = ksz8463_tc_ctrl(port, queue); 4326 4327 /* Set WFQ enable bit to revert back to default scheduling 4328 * mode 4329 */ 4330 ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE, 4331 KSZ8873_TXQ_WFQ_ENABLE); 4332 if (ret) 4333 return ret; 4334 } 4335 4336 return 0; 4337 } 4338 4339 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue) 4340 { 4341 int ret; 4342 4343 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue); 4344 if (ret) 4345 return ret; 4346 4347 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO, 4348 MTI_SHAPING_OFF); 4349 } 4350 4351 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue, 4352 int weight) 4353 { 4354 int ret; 4355 4356 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue); 4357 if (ret) 4358 return ret; 4359 4360 ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR, 4361 MTI_SHAPING_OFF); 4362 if (ret) 4363 return ret; 4364 4365 return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight); 4366 } 4367 4368 static int ksz_tc_ets_add(struct ksz_device *dev, int port, 4369 struct tc_ets_qopt_offload_replace_params *p) 4370 { 4371 int ret, band, tc_prio; 4372 u32 queue_map = 0; 4373 4374 /* In order to ensure proper prioritization, it is necessary to set the 4375 * rate limit for the related queue to zero. Otherwise strict priority 4376 * or WRR mode will not work. This is a hardware limitation. 4377 */ 4378 ret = ksz_disable_egress_rate_limit(dev, port); 4379 if (ret) 4380 return ret; 4381 4382 /* Configure queue scheduling mode for all bands. Currently only strict 4383 * prio mode is supported. 4384 */ 4385 for (band = 0; band < p->bands; band++) { 4386 int queue = ksz_ets_band_to_queue(p, band); 4387 4388 ret = ksz_queue_set_strict(dev, port, queue); 4389 if (ret) 4390 return ret; 4391 } 4392 4393 /* Configure the mapping between traffic classes and queues. Note: 4394 * priomap variable support 16 traffic classes, but the chip can handle 4395 * only 8 classes. 4396 */ 4397 for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) { 4398 int queue; 4399 4400 if (tc_prio >= dev->info->num_ipms) 4401 break; 4402 4403 queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]); 4404 queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S); 4405 } 4406 4407 return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map); 4408 } 4409 4410 static int ksz_tc_ets_del(struct ksz_device *dev, int port) 4411 { 4412 int ret, queue; 4413 4414 /* To restore the default chip configuration, set all queues to use the 4415 * WRR scheduler with a weight of 1. 4416 */ 4417 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 4418 ret = ksz_queue_set_wrr(dev, port, queue, 4419 KSZ9477_DEFAULT_WRR_WEIGHT); 4420 4421 if (ret) 4422 return ret; 4423 } 4424 4425 /* Revert the queue mapping for TC-priority to its default setting on 4426 * the chip. 4427 */ 4428 return ksz9477_set_default_prio_queue_mapping(dev, port); 4429 } 4430 4431 static int ksz_tc_ets_validate(struct ksz_device *dev, int port, 4432 struct tc_ets_qopt_offload_replace_params *p) 4433 { 4434 int band; 4435 4436 /* Since it is not feasible to share one port among multiple qdisc, 4437 * the user must configure all available queues appropriately. 4438 */ 4439 if (p->bands != dev->info->num_tx_queues) { 4440 dev_err(dev->dev, "Not supported amount of bands. It should be %d\n", 4441 dev->info->num_tx_queues); 4442 return -EOPNOTSUPP; 4443 } 4444 4445 for (band = 0; band < p->bands; ++band) { 4446 /* The KSZ switches utilize a weighted round robin configuration 4447 * where a certain number of packets can be transmitted from a 4448 * queue before the next queue is serviced. For more information 4449 * on this, refer to section 5.2.8.4 of the KSZ8565R 4450 * documentation on the Port Transmit Queue Control 1 Register. 4451 * However, the current ETS Qdisc implementation (as of February 4452 * 2023) assigns a weight to each queue based on the number of 4453 * bytes or extrapolated bandwidth in percentages. Since this 4454 * differs from the KSZ switches' method and we don't want to 4455 * fake support by converting bytes to packets, it is better to 4456 * return an error instead. 4457 */ 4458 if (p->quanta[band]) { 4459 dev_err(dev->dev, "Quanta/weights configuration is not supported.\n"); 4460 return -EOPNOTSUPP; 4461 } 4462 } 4463 4464 return 0; 4465 } 4466 4467 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port, 4468 struct tc_ets_qopt_offload *qopt) 4469 { 4470 struct ksz_device *dev = ds->priv; 4471 int ret; 4472 4473 if (is_ksz8(dev) && !(ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))) 4474 return -EOPNOTSUPP; 4475 4476 if (qopt->parent != TC_H_ROOT) { 4477 dev_err(dev->dev, "Parent should be \"root\"\n"); 4478 return -EOPNOTSUPP; 4479 } 4480 4481 switch (qopt->command) { 4482 case TC_ETS_REPLACE: 4483 ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params); 4484 if (ret) 4485 return ret; 4486 4487 if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev)) 4488 return ksz88x3_tc_ets_add(dev, port, 4489 &qopt->replace_params); 4490 else 4491 return ksz_tc_ets_add(dev, port, &qopt->replace_params); 4492 case TC_ETS_DESTROY: 4493 if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev)) 4494 return ksz88x3_tc_ets_del(dev, port); 4495 else 4496 return ksz_tc_ets_del(dev, port); 4497 case TC_ETS_STATS: 4498 case TC_ETS_GRAFT: 4499 return -EOPNOTSUPP; 4500 } 4501 4502 return -EOPNOTSUPP; 4503 } 4504 4505 static int ksz_setup_tc(struct dsa_switch *ds, int port, 4506 enum tc_setup_type type, void *type_data) 4507 { 4508 switch (type) { 4509 case TC_SETUP_QDISC_CBS: 4510 return ksz_setup_tc_cbs(ds, port, type_data); 4511 case TC_SETUP_QDISC_ETS: 4512 return ksz_tc_setup_qdisc_ets(ds, port, type_data); 4513 default: 4514 return -EOPNOTSUPP; 4515 } 4516 } 4517 4518 /** 4519 * ksz_handle_wake_reason - Handle wake reason on a specified port. 4520 * @dev: The device structure. 4521 * @port: The port number. 4522 * 4523 * This function reads the PME (Power Management Event) status register of a 4524 * specified port to determine the wake reason. If there is no wake event, it 4525 * returns early. Otherwise, it logs the wake reason which could be due to a 4526 * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register 4527 * is then cleared to acknowledge the handling of the wake event. 4528 * 4529 * Return: 0 on success, or an error code on failure. 4530 */ 4531 int ksz_handle_wake_reason(struct ksz_device *dev, int port) 4532 { 4533 const struct ksz_dev_ops *ops = dev->dev_ops; 4534 const u16 *regs = dev->info->regs; 4535 u8 pme_status; 4536 int ret; 4537 4538 ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS], 4539 &pme_status); 4540 if (ret) 4541 return ret; 4542 4543 if (!pme_status) 4544 return 0; 4545 4546 dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port, 4547 pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "", 4548 pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "", 4549 pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : ""); 4550 4551 return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS], 4552 pme_status); 4553 } 4554 4555 /** 4556 * ksz_get_wol - Get Wake-on-LAN settings for a specified port. 4557 * @ds: The dsa_switch structure. 4558 * @port: The port number. 4559 * @wol: Pointer to ethtool Wake-on-LAN settings structure. 4560 * 4561 * This function checks the device PME wakeup_source flag and chip_id. 4562 * If enabled and supported, it sets the supported and active WoL 4563 * flags. 4564 */ 4565 static void ksz_get_wol(struct dsa_switch *ds, int port, 4566 struct ethtool_wolinfo *wol) 4567 { 4568 struct ksz_device *dev = ds->priv; 4569 const u16 *regs = dev->info->regs; 4570 u8 pme_ctrl; 4571 int ret; 4572 4573 if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev)) 4574 return; 4575 4576 if (!dev->wakeup_source) 4577 return; 4578 4579 wol->supported = WAKE_PHY; 4580 4581 /* Check if the current MAC address on this port can be set 4582 * as global for WAKE_MAGIC support. The result may vary 4583 * dynamically based on other ports configurations. 4584 */ 4585 if (ksz_is_port_mac_global_usable(dev->ds, port)) 4586 wol->supported |= WAKE_MAGIC; 4587 4588 ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL], 4589 &pme_ctrl); 4590 if (ret) 4591 return; 4592 4593 if (pme_ctrl & PME_WOL_MAGICPKT) 4594 wol->wolopts |= WAKE_MAGIC; 4595 if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY)) 4596 wol->wolopts |= WAKE_PHY; 4597 } 4598 4599 /** 4600 * ksz_set_wol - Set Wake-on-LAN settings for a specified port. 4601 * @ds: The dsa_switch structure. 4602 * @port: The port number. 4603 * @wol: Pointer to ethtool Wake-on-LAN settings structure. 4604 * 4605 * This function configures Wake-on-LAN (WoL) settings for a specified 4606 * port. It validates the provided WoL options, checks if PME is 4607 * enabled and supported, clears any previous wake reasons, and sets 4608 * the Magic Packet flag in the port's PME control register if 4609 * specified. 4610 * 4611 * Return: 0 on success, or other error codes on failure. 4612 */ 4613 static int ksz_set_wol(struct dsa_switch *ds, int port, 4614 struct ethtool_wolinfo *wol) 4615 { 4616 u8 pme_ctrl = 0, pme_ctrl_old = 0; 4617 struct ksz_device *dev = ds->priv; 4618 const u16 *regs = dev->info->regs; 4619 bool magic_switched_off; 4620 bool magic_switched_on; 4621 int ret; 4622 4623 if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC)) 4624 return -EINVAL; 4625 4626 if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev)) 4627 return -EOPNOTSUPP; 4628 4629 if (!dev->wakeup_source) 4630 return -EOPNOTSUPP; 4631 4632 ret = ksz_handle_wake_reason(dev, port); 4633 if (ret) 4634 return ret; 4635 4636 if (wol->wolopts & WAKE_MAGIC) 4637 pme_ctrl |= PME_WOL_MAGICPKT; 4638 if (wol->wolopts & WAKE_PHY) 4639 pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY; 4640 4641 ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL], 4642 &pme_ctrl_old); 4643 if (ret) 4644 return ret; 4645 4646 if (pme_ctrl_old == pme_ctrl) 4647 return 0; 4648 4649 magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) && 4650 !(pme_ctrl & PME_WOL_MAGICPKT); 4651 magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) && 4652 (pme_ctrl & PME_WOL_MAGICPKT); 4653 4654 /* To keep reference count of MAC address, we should do this 4655 * operation only on change of WOL settings. 4656 */ 4657 if (magic_switched_on) { 4658 ret = ksz_switch_macaddr_get(dev->ds, port, NULL); 4659 if (ret) 4660 return ret; 4661 } else if (magic_switched_off) { 4662 ksz_switch_macaddr_put(dev->ds); 4663 } 4664 4665 ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL], 4666 pme_ctrl); 4667 if (ret) { 4668 if (magic_switched_on) 4669 ksz_switch_macaddr_put(dev->ds); 4670 return ret; 4671 } 4672 4673 return 0; 4674 } 4675 4676 /** 4677 * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while 4678 * considering Wake-on-LAN (WoL) settings. 4679 * @dev: The switch device structure. 4680 * @wol_enabled: Pointer to a boolean which will be set to true if WoL is 4681 * enabled on any port. 4682 * 4683 * This function prepares the switch device for a safe shutdown while taking 4684 * into account the Wake-on-LAN (WoL) settings on the user ports. It updates 4685 * the wol_enabled flag accordingly to reflect whether WoL is active on any 4686 * port. 4687 */ 4688 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled) 4689 { 4690 const struct ksz_dev_ops *ops = dev->dev_ops; 4691 const u16 *regs = dev->info->regs; 4692 u8 pme_pin_en = PME_ENABLE; 4693 struct dsa_port *dp; 4694 int ret; 4695 4696 *wol_enabled = false; 4697 4698 if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev)) 4699 return; 4700 4701 if (!dev->wakeup_source) 4702 return; 4703 4704 dsa_switch_for_each_user_port(dp, dev->ds) { 4705 u8 pme_ctrl = 0; 4706 4707 ret = ops->pme_pread8(dev, dp->index, 4708 regs[REG_PORT_PME_CTRL], &pme_ctrl); 4709 if (!ret && pme_ctrl) 4710 *wol_enabled = true; 4711 4712 /* make sure there are no pending wake events which would 4713 * prevent the device from going to sleep/shutdown. 4714 */ 4715 ksz_handle_wake_reason(dev, dp->index); 4716 } 4717 4718 /* Now we are save to enable PME pin. */ 4719 if (*wol_enabled) { 4720 if (dev->pme_active_high) 4721 pme_pin_en |= PME_POLARITY; 4722 ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en); 4723 if (ksz_is_ksz87xx(dev)) 4724 ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK); 4725 } 4726 } 4727 4728 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port, 4729 const unsigned char *addr) 4730 { 4731 struct dsa_port *dp = dsa_to_port(ds, port); 4732 struct ethtool_wolinfo wol; 4733 4734 if (dp->hsr_dev) { 4735 dev_err(ds->dev, 4736 "Cannot change MAC address on port %d with active HSR offload\n", 4737 port); 4738 return -EBUSY; 4739 } 4740 4741 /* Need to initialize variable as the code to fill in settings may 4742 * not be executed. 4743 */ 4744 wol.wolopts = 0; 4745 4746 ksz_get_wol(ds, dp->index, &wol); 4747 if (wol.wolopts & WAKE_MAGIC) { 4748 dev_err(ds->dev, 4749 "Cannot change MAC address on port %d with active Wake on Magic Packet\n", 4750 port); 4751 return -EBUSY; 4752 } 4753 4754 return 0; 4755 } 4756 4757 /** 4758 * ksz_is_port_mac_global_usable - Check if the MAC address on a given port 4759 * can be used as a global address. 4760 * @ds: Pointer to the DSA switch structure. 4761 * @port: The port number on which the MAC address is to be checked. 4762 * 4763 * This function examines the MAC address set on the specified port and 4764 * determines if it can be used as a global address for the switch. 4765 * 4766 * Return: true if the port's MAC address can be used as a global address, false 4767 * otherwise. 4768 */ 4769 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port) 4770 { 4771 struct net_device *user = dsa_to_port(ds, port)->user; 4772 const unsigned char *addr = user->dev_addr; 4773 struct ksz_switch_macaddr *switch_macaddr; 4774 struct ksz_device *dev = ds->priv; 4775 4776 ASSERT_RTNL(); 4777 4778 switch_macaddr = dev->switch_macaddr; 4779 if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr)) 4780 return false; 4781 4782 return true; 4783 } 4784 4785 /** 4786 * ksz_switch_macaddr_get - Program the switch's MAC address register. 4787 * @ds: DSA switch instance. 4788 * @port: Port number. 4789 * @extack: Netlink extended acknowledgment. 4790 * 4791 * This function programs the switch's MAC address register with the MAC address 4792 * of the requesting user port. This single address is used by the switch for 4793 * multiple features like HSR self-address filtering and WoL. Other user ports 4794 * can share ownership of this address as long as their MAC address is the same. 4795 * The MAC addresses of user ports must not change while they have ownership of 4796 * the switch MAC address. 4797 * 4798 * Return: 0 on success, or other error codes on failure. 4799 */ 4800 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port, 4801 struct netlink_ext_ack *extack) 4802 { 4803 struct net_device *user = dsa_to_port(ds, port)->user; 4804 const unsigned char *addr = user->dev_addr; 4805 struct ksz_switch_macaddr *switch_macaddr; 4806 struct ksz_device *dev = ds->priv; 4807 const u16 *regs = dev->info->regs; 4808 int i, ret; 4809 4810 /* Make sure concurrent MAC address changes are blocked */ 4811 ASSERT_RTNL(); 4812 4813 switch_macaddr = dev->switch_macaddr; 4814 if (switch_macaddr) { 4815 if (!ether_addr_equal(switch_macaddr->addr, addr)) { 4816 NL_SET_ERR_MSG_FMT_MOD(extack, 4817 "Switch already configured for MAC address %pM", 4818 switch_macaddr->addr); 4819 return -EBUSY; 4820 } 4821 4822 refcount_inc(&switch_macaddr->refcount); 4823 return 0; 4824 } 4825 4826 switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL); 4827 if (!switch_macaddr) 4828 return -ENOMEM; 4829 4830 ether_addr_copy(switch_macaddr->addr, addr); 4831 refcount_set(&switch_macaddr->refcount, 1); 4832 dev->switch_macaddr = switch_macaddr; 4833 4834 /* Program the switch MAC address to hardware */ 4835 for (i = 0; i < ETH_ALEN; i++) { 4836 if (ksz_is_ksz8463(dev)) { 4837 u16 addr16 = ((u16)addr[i] << 8) | addr[i + 1]; 4838 4839 ret = ksz_write16(dev, regs[REG_SW_MAC_ADDR] + i, 4840 addr16); 4841 i++; 4842 } else { 4843 ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 4844 addr[i]); 4845 } 4846 if (ret) 4847 goto macaddr_drop; 4848 } 4849 4850 return 0; 4851 4852 macaddr_drop: 4853 dev->switch_macaddr = NULL; 4854 refcount_set(&switch_macaddr->refcount, 0); 4855 kfree(switch_macaddr); 4856 4857 return ret; 4858 } 4859 4860 void ksz_switch_macaddr_put(struct dsa_switch *ds) 4861 { 4862 struct ksz_switch_macaddr *switch_macaddr; 4863 struct ksz_device *dev = ds->priv; 4864 const u16 *regs = dev->info->regs; 4865 int i; 4866 4867 /* Make sure concurrent MAC address changes are blocked */ 4868 ASSERT_RTNL(); 4869 4870 switch_macaddr = dev->switch_macaddr; 4871 if (!refcount_dec_and_test(&switch_macaddr->refcount)) 4872 return; 4873 4874 for (i = 0; i < ETH_ALEN; i++) 4875 ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0); 4876 4877 dev->switch_macaddr = NULL; 4878 kfree(switch_macaddr); 4879 } 4880 4881 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr, 4882 struct netlink_ext_ack *extack) 4883 { 4884 struct ksz_device *dev = ds->priv; 4885 enum hsr_version ver; 4886 int ret; 4887 4888 ret = hsr_get_version(hsr, &ver); 4889 if (ret) 4890 return ret; 4891 4892 if (dev->chip_id != KSZ9477_CHIP_ID) { 4893 NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload"); 4894 return -EOPNOTSUPP; 4895 } 4896 4897 /* KSZ9477 can support HW offloading of only 1 HSR device */ 4898 if (dev->hsr_dev && hsr != dev->hsr_dev) { 4899 NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR"); 4900 return -EOPNOTSUPP; 4901 } 4902 4903 /* KSZ9477 only supports HSR v0 and v1 */ 4904 if (!(ver == HSR_V0 || ver == HSR_V1)) { 4905 NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported"); 4906 return -EOPNOTSUPP; 4907 } 4908 4909 /* KSZ9477 can only perform HSR offloading for up to two ports */ 4910 if (hweight8(dev->hsr_ports) >= 2) { 4911 NL_SET_ERR_MSG_MOD(extack, 4912 "Cannot offload more than two ports - using software HSR"); 4913 return -EOPNOTSUPP; 4914 } 4915 4916 /* Self MAC address filtering, to avoid frames traversing 4917 * the HSR ring more than once. 4918 */ 4919 ret = ksz_switch_macaddr_get(ds, port, extack); 4920 if (ret) 4921 return ret; 4922 4923 ksz9477_hsr_join(ds, port, hsr); 4924 dev->hsr_dev = hsr; 4925 dev->hsr_ports |= BIT(port); 4926 4927 return 0; 4928 } 4929 4930 static int ksz_hsr_leave(struct dsa_switch *ds, int port, 4931 struct net_device *hsr) 4932 { 4933 struct ksz_device *dev = ds->priv; 4934 4935 WARN_ON(dev->chip_id != KSZ9477_CHIP_ID); 4936 4937 ksz9477_hsr_leave(ds, port, hsr); 4938 dev->hsr_ports &= ~BIT(port); 4939 if (!dev->hsr_ports) 4940 dev->hsr_dev = NULL; 4941 4942 ksz_switch_macaddr_put(ds); 4943 4944 return 0; 4945 } 4946 4947 static int ksz_suspend(struct dsa_switch *ds) 4948 { 4949 struct ksz_device *dev = ds->priv; 4950 4951 cancel_delayed_work_sync(&dev->mib_read); 4952 return 0; 4953 } 4954 4955 static int ksz_resume(struct dsa_switch *ds) 4956 { 4957 struct ksz_device *dev = ds->priv; 4958 4959 if (dev->mib_read_interval) 4960 schedule_delayed_work(&dev->mib_read, dev->mib_read_interval); 4961 return 0; 4962 } 4963 4964 static const struct dsa_switch_ops ksz_switch_ops = { 4965 .get_tag_protocol = ksz_get_tag_protocol, 4966 .connect_tag_protocol = ksz_connect_tag_protocol, 4967 .get_phy_flags = ksz_get_phy_flags, 4968 .setup = ksz_setup, 4969 .teardown = ksz_teardown, 4970 .phy_read = ksz_phy_read16, 4971 .phy_write = ksz_phy_write16, 4972 .phylink_get_caps = ksz_phylink_get_caps, 4973 .port_setup = ksz_port_setup, 4974 .set_ageing_time = ksz_set_ageing_time, 4975 .get_strings = ksz_get_strings, 4976 .get_ethtool_stats = ksz_get_ethtool_stats, 4977 .get_sset_count = ksz_sset_count, 4978 .port_bridge_join = ksz_port_bridge_join, 4979 .port_bridge_leave = ksz_port_bridge_leave, 4980 .port_hsr_join = ksz_hsr_join, 4981 .port_hsr_leave = ksz_hsr_leave, 4982 .port_set_mac_address = ksz_port_set_mac_address, 4983 .port_stp_state_set = ksz_port_stp_state_set, 4984 .port_teardown = ksz_port_teardown, 4985 .port_pre_bridge_flags = ksz_port_pre_bridge_flags, 4986 .port_bridge_flags = ksz_port_bridge_flags, 4987 .port_fast_age = ksz_port_fast_age, 4988 .port_vlan_filtering = ksz_port_vlan_filtering, 4989 .port_vlan_add = ksz_port_vlan_add, 4990 .port_vlan_del = ksz_port_vlan_del, 4991 .port_fdb_dump = ksz_port_fdb_dump, 4992 .port_fdb_add = ksz_port_fdb_add, 4993 .port_fdb_del = ksz_port_fdb_del, 4994 .port_mdb_add = ksz_port_mdb_add, 4995 .port_mdb_del = ksz_port_mdb_del, 4996 .port_mirror_add = ksz_port_mirror_add, 4997 .port_mirror_del = ksz_port_mirror_del, 4998 .get_stats64 = ksz_get_stats64, 4999 .get_pause_stats = ksz_get_pause_stats, 5000 .port_change_mtu = ksz_change_mtu, 5001 .port_max_mtu = ksz_max_mtu, 5002 .get_wol = ksz_get_wol, 5003 .set_wol = ksz_set_wol, 5004 .suspend = ksz_suspend, 5005 .resume = ksz_resume, 5006 .get_ts_info = ksz_get_ts_info, 5007 .port_hwtstamp_get = ksz_hwtstamp_get, 5008 .port_hwtstamp_set = ksz_hwtstamp_set, 5009 .port_txtstamp = ksz_port_txtstamp, 5010 .port_rxtstamp = ksz_port_rxtstamp, 5011 .cls_flower_add = ksz_cls_flower_add, 5012 .cls_flower_del = ksz_cls_flower_del, 5013 .port_setup_tc = ksz_setup_tc, 5014 .support_eee = ksz_support_eee, 5015 .set_mac_eee = ksz_set_mac_eee, 5016 .port_get_default_prio = ksz_port_get_default_prio, 5017 .port_set_default_prio = ksz_port_set_default_prio, 5018 .port_get_dscp_prio = ksz_port_get_dscp_prio, 5019 .port_add_dscp_prio = ksz_port_add_dscp_prio, 5020 .port_del_dscp_prio = ksz_port_del_dscp_prio, 5021 .port_get_apptrust = ksz_port_get_apptrust, 5022 .port_set_apptrust = ksz_port_set_apptrust, 5023 }; 5024 5025 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv) 5026 { 5027 struct dsa_switch *ds; 5028 struct ksz_device *swdev; 5029 5030 ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL); 5031 if (!ds) 5032 return NULL; 5033 5034 ds->dev = base; 5035 ds->num_ports = DSA_MAX_PORTS; 5036 ds->ops = &ksz_switch_ops; 5037 5038 swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL); 5039 if (!swdev) 5040 return NULL; 5041 5042 ds->priv = swdev; 5043 swdev->dev = base; 5044 5045 swdev->ds = ds; 5046 swdev->priv = priv; 5047 5048 return swdev; 5049 } 5050 EXPORT_SYMBOL(ksz_switch_alloc); 5051 5052 /** 5053 * ksz_switch_shutdown - Shutdown routine for the switch device. 5054 * @dev: The switch device structure. 5055 * 5056 * This function is responsible for initiating a shutdown sequence for the 5057 * switch device. It invokes the reset operation defined in the device 5058 * operations, if available, to reset the switch. Subsequently, it calls the 5059 * DSA framework's shutdown function to ensure a proper shutdown of the DSA 5060 * switch. 5061 */ 5062 void ksz_switch_shutdown(struct ksz_device *dev) 5063 { 5064 bool wol_enabled = false; 5065 5066 ksz_wol_pre_shutdown(dev, &wol_enabled); 5067 5068 if (dev->dev_ops->reset && !wol_enabled) 5069 dev->dev_ops->reset(dev); 5070 5071 dsa_switch_shutdown(dev->ds); 5072 } 5073 EXPORT_SYMBOL(ksz_switch_shutdown); 5074 5075 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num, 5076 struct device_node *port_dn) 5077 { 5078 phy_interface_t phy_mode = dev->ports[port_num].interface; 5079 int rx_delay = -1, tx_delay = -1; 5080 5081 if (!phy_interface_mode_is_rgmii(phy_mode)) 5082 return; 5083 5084 of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay); 5085 of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay); 5086 5087 if (rx_delay == -1 && tx_delay == -1) { 5088 dev_warn(dev->dev, 5089 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, " 5090 "please update device tree to specify \"rx-internal-delay-ps\" and " 5091 "\"tx-internal-delay-ps\"", 5092 port_num); 5093 5094 if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID || 5095 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 5096 rx_delay = 2000; 5097 5098 if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID || 5099 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 5100 tx_delay = 2000; 5101 } 5102 5103 if (rx_delay < 0) 5104 rx_delay = 0; 5105 if (tx_delay < 0) 5106 tx_delay = 0; 5107 5108 dev->ports[port_num].rgmii_rx_val = rx_delay; 5109 dev->ports[port_num].rgmii_tx_val = tx_delay; 5110 } 5111 5112 /** 5113 * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding 5114 * register value. 5115 * @array: The array of drive strength values to search. 5116 * @array_size: The size of the array. 5117 * @microamp: The drive strength value in microamp to be converted. 5118 * 5119 * This function searches the array of drive strength values for the given 5120 * microamp value and returns the corresponding register value for that drive. 5121 * 5122 * Returns: If found, the corresponding register value for that drive strength 5123 * is returned. Otherwise, -EINVAL is returned indicating an invalid value. 5124 */ 5125 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array, 5126 size_t array_size, int microamp) 5127 { 5128 int i; 5129 5130 for (i = 0; i < array_size; i++) { 5131 if (array[i].microamp == microamp) 5132 return array[i].reg_val; 5133 } 5134 5135 return -EINVAL; 5136 } 5137 5138 /** 5139 * ksz_drive_strength_error() - Report invalid drive strength value 5140 * @dev: ksz device 5141 * @array: The array of drive strength values to search. 5142 * @array_size: The size of the array. 5143 * @microamp: Invalid drive strength value in microamp 5144 * 5145 * This function logs an error message when an unsupported drive strength value 5146 * is detected. It lists out all the supported drive strength values for 5147 * reference in the error message. 5148 */ 5149 static void ksz_drive_strength_error(struct ksz_device *dev, 5150 const struct ksz_drive_strength *array, 5151 size_t array_size, int microamp) 5152 { 5153 char supported_values[100]; 5154 size_t remaining_size; 5155 int added_len; 5156 char *ptr; 5157 int i; 5158 5159 remaining_size = sizeof(supported_values); 5160 ptr = supported_values; 5161 5162 for (i = 0; i < array_size; i++) { 5163 added_len = snprintf(ptr, remaining_size, 5164 i == 0 ? "%d" : ", %d", array[i].microamp); 5165 5166 if (added_len >= remaining_size) 5167 break; 5168 5169 ptr += added_len; 5170 remaining_size -= added_len; 5171 } 5172 5173 dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n", 5174 microamp, supported_values); 5175 } 5176 5177 /** 5178 * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477 5179 * chip variants. 5180 * @dev: ksz device 5181 * @props: Array of drive strength properties to be applied 5182 * @num_props: Number of properties in the array 5183 * 5184 * This function configures the drive strength for various KSZ9477 chip variants 5185 * based on the provided properties. It handles chip-specific nuances and 5186 * ensures only valid drive strengths are written to the respective chip. 5187 * 5188 * Return: 0 on successful configuration, a negative error code on failure. 5189 */ 5190 static int ksz9477_drive_strength_write(struct ksz_device *dev, 5191 struct ksz_driver_strength_prop *props, 5192 int num_props) 5193 { 5194 size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths); 5195 int i, ret, reg; 5196 u8 mask = 0; 5197 u8 val = 0; 5198 5199 if (props[KSZ_DRIVER_STRENGTH_IO].value != -1) 5200 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 5201 props[KSZ_DRIVER_STRENGTH_IO].name); 5202 5203 if (dev->chip_id == KSZ8795_CHIP_ID || 5204 dev->chip_id == KSZ8794_CHIP_ID || 5205 dev->chip_id == KSZ8765_CHIP_ID) 5206 reg = KSZ8795_REG_SW_CTRL_20; 5207 else 5208 reg = KSZ9477_REG_SW_IO_STRENGTH; 5209 5210 for (i = 0; i < num_props; i++) { 5211 if (props[i].value == -1) 5212 continue; 5213 5214 ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths, 5215 array_size, props[i].value); 5216 if (ret < 0) { 5217 ksz_drive_strength_error(dev, ksz9477_drive_strengths, 5218 array_size, props[i].value); 5219 return ret; 5220 } 5221 5222 mask |= SW_DRIVE_STRENGTH_M << props[i].offset; 5223 val |= ret << props[i].offset; 5224 } 5225 5226 return ksz_rmw8(dev, reg, mask, val); 5227 } 5228 5229 /** 5230 * ksz88x3_drive_strength_write() - Set the drive strength configuration for 5231 * KSZ8863 compatible chip variants. 5232 * @dev: ksz device 5233 * @props: Array of drive strength properties to be set 5234 * @num_props: Number of properties in the array 5235 * 5236 * This function applies the specified drive strength settings to KSZ88X3 chip 5237 * variants (KSZ8873, KSZ8863). 5238 * It ensures the configurations align with what the chip variant supports and 5239 * warns or errors out on unsupported settings. 5240 * 5241 * Return: 0 on success, error code otherwise 5242 */ 5243 static int ksz88x3_drive_strength_write(struct ksz_device *dev, 5244 struct ksz_driver_strength_prop *props, 5245 int num_props) 5246 { 5247 size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths); 5248 int microamp; 5249 int i, ret; 5250 5251 for (i = 0; i < num_props; i++) { 5252 if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO) 5253 continue; 5254 5255 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 5256 props[i].name); 5257 } 5258 5259 microamp = props[KSZ_DRIVER_STRENGTH_IO].value; 5260 ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size, 5261 microamp); 5262 if (ret < 0) { 5263 ksz_drive_strength_error(dev, ksz88x3_drive_strengths, 5264 array_size, microamp); 5265 return ret; 5266 } 5267 5268 return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12, 5269 KSZ8873_DRIVE_STRENGTH_16MA, ret); 5270 } 5271 5272 /** 5273 * ksz_parse_drive_strength() - Extract and apply drive strength configurations 5274 * from device tree properties. 5275 * @dev: ksz device 5276 * 5277 * This function reads the specified drive strength properties from the 5278 * device tree, validates against the supported chip variants, and sets 5279 * them accordingly. An error should be critical here, as the drive strength 5280 * settings are crucial for EMI compliance. 5281 * 5282 * Return: 0 on success, error code otherwise 5283 */ 5284 static int ksz_parse_drive_strength(struct ksz_device *dev) 5285 { 5286 struct ksz_driver_strength_prop of_props[] = { 5287 [KSZ_DRIVER_STRENGTH_HI] = { 5288 .name = "microchip,hi-drive-strength-microamp", 5289 .offset = SW_HI_SPEED_DRIVE_STRENGTH_S, 5290 .value = -1, 5291 }, 5292 [KSZ_DRIVER_STRENGTH_LO] = { 5293 .name = "microchip,lo-drive-strength-microamp", 5294 .offset = SW_LO_SPEED_DRIVE_STRENGTH_S, 5295 .value = -1, 5296 }, 5297 [KSZ_DRIVER_STRENGTH_IO] = { 5298 .name = "microchip,io-drive-strength-microamp", 5299 .offset = 0, /* don't care */ 5300 .value = -1, 5301 }, 5302 }; 5303 struct device_node *np = dev->dev->of_node; 5304 bool have_any_prop = false; 5305 int i, ret; 5306 5307 for (i = 0; i < ARRAY_SIZE(of_props); i++) { 5308 ret = of_property_read_u32(np, of_props[i].name, 5309 &of_props[i].value); 5310 if (ret && ret != -EINVAL) 5311 dev_warn(dev->dev, "Failed to read %s\n", 5312 of_props[i].name); 5313 if (ret) 5314 continue; 5315 5316 have_any_prop = true; 5317 } 5318 5319 if (!have_any_prop) 5320 return 0; 5321 5322 switch (dev->chip_id) { 5323 case KSZ88X3_CHIP_ID: 5324 return ksz88x3_drive_strength_write(dev, of_props, 5325 ARRAY_SIZE(of_props)); 5326 case KSZ8795_CHIP_ID: 5327 case KSZ8794_CHIP_ID: 5328 case KSZ8765_CHIP_ID: 5329 case KSZ8563_CHIP_ID: 5330 case KSZ8567_CHIP_ID: 5331 case KSZ9477_CHIP_ID: 5332 case KSZ9563_CHIP_ID: 5333 case KSZ9567_CHIP_ID: 5334 case KSZ9893_CHIP_ID: 5335 case KSZ9896_CHIP_ID: 5336 case KSZ9897_CHIP_ID: 5337 case LAN9646_CHIP_ID: 5338 return ksz9477_drive_strength_write(dev, of_props, 5339 ARRAY_SIZE(of_props)); 5340 default: 5341 for (i = 0; i < ARRAY_SIZE(of_props); i++) { 5342 if (of_props[i].value == -1) 5343 continue; 5344 5345 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 5346 of_props[i].name); 5347 } 5348 } 5349 5350 return 0; 5351 } 5352 5353 static int ksz8463_configure_straps_spi(struct ksz_device *dev) 5354 { 5355 struct pinctrl *pinctrl; 5356 struct gpio_desc *rxd0; 5357 struct gpio_desc *rxd1; 5358 5359 rxd0 = devm_gpiod_get_index_optional(dev->dev, "straps-rxd", 0, GPIOD_OUT_LOW); 5360 if (IS_ERR(rxd0)) 5361 return PTR_ERR(rxd0); 5362 5363 rxd1 = devm_gpiod_get_index_optional(dev->dev, "straps-rxd", 1, GPIOD_OUT_HIGH); 5364 if (IS_ERR(rxd1)) 5365 return PTR_ERR(rxd1); 5366 5367 if (!rxd0 && !rxd1) 5368 return 0; 5369 5370 if ((rxd0 && !rxd1) || (rxd1 && !rxd0)) 5371 return -EINVAL; 5372 5373 pinctrl = devm_pinctrl_get_select(dev->dev, "reset"); 5374 if (IS_ERR(pinctrl)) 5375 return PTR_ERR(pinctrl); 5376 5377 return 0; 5378 } 5379 5380 static int ksz8463_release_straps_spi(struct ksz_device *dev) 5381 { 5382 return pinctrl_select_default_state(dev->dev); 5383 } 5384 5385 int ksz_switch_register(struct ksz_device *dev) 5386 { 5387 const struct ksz_chip_data *info; 5388 struct device_node *ports; 5389 phy_interface_t interface; 5390 unsigned int port_num; 5391 int ret; 5392 int i; 5393 5394 dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset", 5395 GPIOD_OUT_LOW); 5396 if (IS_ERR(dev->reset_gpio)) 5397 return PTR_ERR(dev->reset_gpio); 5398 5399 if (dev->reset_gpio) { 5400 if (of_device_is_compatible(dev->dev->of_node, "microchip,ksz8463")) { 5401 ret = ksz8463_configure_straps_spi(dev); 5402 if (ret) 5403 return ret; 5404 } 5405 5406 gpiod_set_value_cansleep(dev->reset_gpio, 1); 5407 usleep_range(10000, 12000); 5408 gpiod_set_value_cansleep(dev->reset_gpio, 0); 5409 msleep(100); 5410 5411 if (of_device_is_compatible(dev->dev->of_node, "microchip,ksz8463")) { 5412 ret = ksz8463_release_straps_spi(dev); 5413 if (ret) 5414 return ret; 5415 } 5416 } 5417 5418 mutex_init(&dev->dev_mutex); 5419 mutex_init(&dev->regmap_mutex); 5420 mutex_init(&dev->alu_mutex); 5421 mutex_init(&dev->vlan_mutex); 5422 5423 ret = ksz_switch_detect(dev); 5424 if (ret) 5425 return ret; 5426 5427 info = ksz_lookup_info(dev->chip_id); 5428 if (!info) 5429 return -ENODEV; 5430 5431 /* Update the compatible info with the probed one */ 5432 dev->info = info; 5433 5434 dev_info(dev->dev, "found switch: %s, rev %i\n", 5435 dev->info->dev_name, dev->chip_rev); 5436 5437 ret = ksz_check_device_id(dev); 5438 if (ret) 5439 return ret; 5440 5441 dev->dev_ops = dev->info->ops; 5442 5443 ret = dev->dev_ops->init(dev); 5444 if (ret) 5445 return ret; 5446 5447 dev->ports = devm_kzalloc(dev->dev, 5448 dev->info->port_cnt * sizeof(struct ksz_port), 5449 GFP_KERNEL); 5450 if (!dev->ports) 5451 return -ENOMEM; 5452 5453 for (i = 0; i < dev->info->port_cnt; i++) { 5454 spin_lock_init(&dev->ports[i].mib.stats64_lock); 5455 mutex_init(&dev->ports[i].mib.cnt_mutex); 5456 dev->ports[i].mib.counters = 5457 devm_kzalloc(dev->dev, 5458 sizeof(u64) * (dev->info->mib_cnt + 1), 5459 GFP_KERNEL); 5460 if (!dev->ports[i].mib.counters) 5461 return -ENOMEM; 5462 5463 dev->ports[i].ksz_dev = dev; 5464 dev->ports[i].num = i; 5465 } 5466 5467 /* set the real number of ports */ 5468 dev->ds->num_ports = dev->info->port_cnt; 5469 5470 /* set the phylink ops */ 5471 dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops; 5472 5473 /* Host port interface will be self detected, or specifically set in 5474 * device tree. 5475 */ 5476 for (port_num = 0; port_num < dev->info->port_cnt; ++port_num) 5477 dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA; 5478 if (dev->dev->of_node) { 5479 ret = of_get_phy_mode(dev->dev->of_node, &interface); 5480 if (ret == 0) 5481 dev->compat_interface = interface; 5482 ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports"); 5483 if (!ports) 5484 ports = of_get_child_by_name(dev->dev->of_node, "ports"); 5485 if (ports) { 5486 for_each_available_child_of_node_scoped(ports, port) { 5487 if (of_property_read_u32(port, "reg", 5488 &port_num)) 5489 continue; 5490 if (!(dev->port_mask & BIT(port_num))) { 5491 of_node_put(ports); 5492 return -EINVAL; 5493 } 5494 of_get_phy_mode(port, 5495 &dev->ports[port_num].interface); 5496 5497 ksz_parse_rgmii_delay(dev, port_num, port); 5498 dev->ports[port_num].fiber = 5499 of_property_read_bool(port, 5500 "micrel,fiber-mode"); 5501 } 5502 of_node_put(ports); 5503 } 5504 dev->synclko_125 = of_property_read_bool(dev->dev->of_node, 5505 "microchip,synclko-125"); 5506 dev->synclko_disable = of_property_read_bool(dev->dev->of_node, 5507 "microchip,synclko-disable"); 5508 if (dev->synclko_125 && dev->synclko_disable) { 5509 dev_err(dev->dev, "inconsistent synclko settings\n"); 5510 return -EINVAL; 5511 } 5512 5513 dev->wakeup_source = of_property_read_bool(dev->dev->of_node, 5514 "wakeup-source"); 5515 dev->pme_active_high = of_property_read_bool(dev->dev->of_node, 5516 "microchip,pme-active-high"); 5517 } 5518 5519 ret = dsa_register_switch(dev->ds); 5520 if (ret) { 5521 dev->dev_ops->exit(dev); 5522 return ret; 5523 } 5524 5525 /* Read MIB counters every 30 seconds to avoid overflow. */ 5526 dev->mib_read_interval = msecs_to_jiffies(5000); 5527 5528 /* Start the MIB timer. */ 5529 schedule_delayed_work(&dev->mib_read, 0); 5530 5531 return ret; 5532 } 5533 EXPORT_SYMBOL(ksz_switch_register); 5534 5535 void ksz_switch_remove(struct ksz_device *dev) 5536 { 5537 /* timer started */ 5538 if (dev->mib_read_interval) { 5539 dev->mib_read_interval = 0; 5540 cancel_delayed_work_sync(&dev->mib_read); 5541 } 5542 5543 dev->dev_ops->exit(dev); 5544 dsa_unregister_switch(dev->ds); 5545 5546 if (dev->reset_gpio) 5547 gpiod_set_value_cansleep(dev->reset_gpio, 1); 5548 5549 } 5550 EXPORT_SYMBOL(ksz_switch_remove); 5551 5552 #ifdef CONFIG_PM_SLEEP 5553 int ksz_switch_suspend(struct device *dev) 5554 { 5555 struct ksz_device *priv = dev_get_drvdata(dev); 5556 5557 return dsa_switch_suspend(priv->ds); 5558 } 5559 EXPORT_SYMBOL(ksz_switch_suspend); 5560 5561 int ksz_switch_resume(struct device *dev) 5562 { 5563 struct ksz_device *priv = dev_get_drvdata(dev); 5564 5565 return dsa_switch_resume(priv->ds); 5566 } 5567 EXPORT_SYMBOL(ksz_switch_resume); 5568 #endif 5569 5570 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>"); 5571 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver"); 5572 MODULE_LICENSE("GPL"); 5573