1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Microchip switch driver main logic 4 * 5 * Copyright (C) 2017-2019 Microchip Technology Inc. 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/dsa/ksz_common.h> 10 #include <linux/export.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/platform_data/microchip-ksz.h> 15 #include <linux/phy.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_bridge.h> 18 #include <linux/if_vlan.h> 19 #include <linux/if_hsr.h> 20 #include <linux/irq.h> 21 #include <linux/irqdomain.h> 22 #include <linux/of.h> 23 #include <linux/of_mdio.h> 24 #include <linux/of_net.h> 25 #include <linux/micrel_phy.h> 26 #include <net/dsa.h> 27 #include <net/ieee8021q.h> 28 #include <net/pkt_cls.h> 29 #include <net/switchdev.h> 30 31 #include "ksz_common.h" 32 #include "ksz_dcb.h" 33 #include "ksz_ptp.h" 34 #include "ksz8.h" 35 #include "ksz9477.h" 36 #include "lan937x.h" 37 38 #define MIB_COUNTER_NUM 0x20 39 40 struct ksz_stats_raw { 41 u64 rx_hi; 42 u64 rx_undersize; 43 u64 rx_fragments; 44 u64 rx_oversize; 45 u64 rx_jabbers; 46 u64 rx_symbol_err; 47 u64 rx_crc_err; 48 u64 rx_align_err; 49 u64 rx_mac_ctrl; 50 u64 rx_pause; 51 u64 rx_bcast; 52 u64 rx_mcast; 53 u64 rx_ucast; 54 u64 rx_64_or_less; 55 u64 rx_65_127; 56 u64 rx_128_255; 57 u64 rx_256_511; 58 u64 rx_512_1023; 59 u64 rx_1024_1522; 60 u64 rx_1523_2000; 61 u64 rx_2001; 62 u64 tx_hi; 63 u64 tx_late_col; 64 u64 tx_pause; 65 u64 tx_bcast; 66 u64 tx_mcast; 67 u64 tx_ucast; 68 u64 tx_deferred; 69 u64 tx_total_col; 70 u64 tx_exc_col; 71 u64 tx_single_col; 72 u64 tx_mult_col; 73 u64 rx_total; 74 u64 tx_total; 75 u64 rx_discards; 76 u64 tx_discards; 77 }; 78 79 struct ksz88xx_stats_raw { 80 u64 rx; 81 u64 rx_hi; 82 u64 rx_undersize; 83 u64 rx_fragments; 84 u64 rx_oversize; 85 u64 rx_jabbers; 86 u64 rx_symbol_err; 87 u64 rx_crc_err; 88 u64 rx_align_err; 89 u64 rx_mac_ctrl; 90 u64 rx_pause; 91 u64 rx_bcast; 92 u64 rx_mcast; 93 u64 rx_ucast; 94 u64 rx_64_or_less; 95 u64 rx_65_127; 96 u64 rx_128_255; 97 u64 rx_256_511; 98 u64 rx_512_1023; 99 u64 rx_1024_1522; 100 u64 tx; 101 u64 tx_hi; 102 u64 tx_late_col; 103 u64 tx_pause; 104 u64 tx_bcast; 105 u64 tx_mcast; 106 u64 tx_ucast; 107 u64 tx_deferred; 108 u64 tx_total_col; 109 u64 tx_exc_col; 110 u64 tx_single_col; 111 u64 tx_mult_col; 112 u64 rx_discards; 113 u64 tx_discards; 114 }; 115 116 static const struct ksz_mib_names ksz88xx_mib_names[] = { 117 { 0x00, "rx" }, 118 { 0x01, "rx_hi" }, 119 { 0x02, "rx_undersize" }, 120 { 0x03, "rx_fragments" }, 121 { 0x04, "rx_oversize" }, 122 { 0x05, "rx_jabbers" }, 123 { 0x06, "rx_symbol_err" }, 124 { 0x07, "rx_crc_err" }, 125 { 0x08, "rx_align_err" }, 126 { 0x09, "rx_mac_ctrl" }, 127 { 0x0a, "rx_pause" }, 128 { 0x0b, "rx_bcast" }, 129 { 0x0c, "rx_mcast" }, 130 { 0x0d, "rx_ucast" }, 131 { 0x0e, "rx_64_or_less" }, 132 { 0x0f, "rx_65_127" }, 133 { 0x10, "rx_128_255" }, 134 { 0x11, "rx_256_511" }, 135 { 0x12, "rx_512_1023" }, 136 { 0x13, "rx_1024_1522" }, 137 { 0x14, "tx" }, 138 { 0x15, "tx_hi" }, 139 { 0x16, "tx_late_col" }, 140 { 0x17, "tx_pause" }, 141 { 0x18, "tx_bcast" }, 142 { 0x19, "tx_mcast" }, 143 { 0x1a, "tx_ucast" }, 144 { 0x1b, "tx_deferred" }, 145 { 0x1c, "tx_total_col" }, 146 { 0x1d, "tx_exc_col" }, 147 { 0x1e, "tx_single_col" }, 148 { 0x1f, "tx_mult_col" }, 149 { 0x100, "rx_discards" }, 150 { 0x101, "tx_discards" }, 151 }; 152 153 static const struct ksz_mib_names ksz9477_mib_names[] = { 154 { 0x00, "rx_hi" }, 155 { 0x01, "rx_undersize" }, 156 { 0x02, "rx_fragments" }, 157 { 0x03, "rx_oversize" }, 158 { 0x04, "rx_jabbers" }, 159 { 0x05, "rx_symbol_err" }, 160 { 0x06, "rx_crc_err" }, 161 { 0x07, "rx_align_err" }, 162 { 0x08, "rx_mac_ctrl" }, 163 { 0x09, "rx_pause" }, 164 { 0x0A, "rx_bcast" }, 165 { 0x0B, "rx_mcast" }, 166 { 0x0C, "rx_ucast" }, 167 { 0x0D, "rx_64_or_less" }, 168 { 0x0E, "rx_65_127" }, 169 { 0x0F, "rx_128_255" }, 170 { 0x10, "rx_256_511" }, 171 { 0x11, "rx_512_1023" }, 172 { 0x12, "rx_1024_1522" }, 173 { 0x13, "rx_1523_2000" }, 174 { 0x14, "rx_2001" }, 175 { 0x15, "tx_hi" }, 176 { 0x16, "tx_late_col" }, 177 { 0x17, "tx_pause" }, 178 { 0x18, "tx_bcast" }, 179 { 0x19, "tx_mcast" }, 180 { 0x1A, "tx_ucast" }, 181 { 0x1B, "tx_deferred" }, 182 { 0x1C, "tx_total_col" }, 183 { 0x1D, "tx_exc_col" }, 184 { 0x1E, "tx_single_col" }, 185 { 0x1F, "tx_mult_col" }, 186 { 0x80, "rx_total" }, 187 { 0x81, "tx_total" }, 188 { 0x82, "rx_discards" }, 189 { 0x83, "tx_discards" }, 190 }; 191 192 struct ksz_driver_strength_prop { 193 const char *name; 194 int offset; 195 int value; 196 }; 197 198 enum ksz_driver_strength_type { 199 KSZ_DRIVER_STRENGTH_HI, 200 KSZ_DRIVER_STRENGTH_LO, 201 KSZ_DRIVER_STRENGTH_IO, 202 }; 203 204 /** 205 * struct ksz_drive_strength - drive strength mapping 206 * @reg_val: register value 207 * @microamp: microamp value 208 */ 209 struct ksz_drive_strength { 210 u32 reg_val; 211 u32 microamp; 212 }; 213 214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants 215 * 216 * This values are not documented in KSZ9477 variants but confirmed by 217 * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893 218 * and KSZ8563 are using same register (drive strength) settings like KSZ8795. 219 * 220 * Documentation in KSZ8795CLX provides more information with some 221 * recommendations: 222 * - for high speed signals 223 * 1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using 224 * 2.5V or 3.3V VDDIO. 225 * 2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with 226 * using 1.8V VDDIO. 227 * 3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V 228 * or 3.3V VDDIO. 229 * 4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO. 230 * 5. In same interface, the heavy loading should use higher one of the 231 * drive current strength. 232 * - for low speed signals 233 * 1. 3.3V VDDIO, use either 4 mA or 8 mA. 234 * 2. 2.5V VDDIO, use either 8 mA or 12 mA. 235 * 3. 1.8V VDDIO, use either 12 mA or 16 mA. 236 * 4. If it is heavy loading, can use higher drive current strength. 237 */ 238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = { 239 { SW_DRIVE_STRENGTH_2MA, 2000 }, 240 { SW_DRIVE_STRENGTH_4MA, 4000 }, 241 { SW_DRIVE_STRENGTH_8MA, 8000 }, 242 { SW_DRIVE_STRENGTH_12MA, 12000 }, 243 { SW_DRIVE_STRENGTH_16MA, 16000 }, 244 { SW_DRIVE_STRENGTH_20MA, 20000 }, 245 { SW_DRIVE_STRENGTH_24MA, 24000 }, 246 { SW_DRIVE_STRENGTH_28MA, 28000 }, 247 }; 248 249 /* ksz8830_drive_strengths - Drive strength mapping for KSZ8830, KSZ8873, .. 250 * variants. 251 * This values are documented in KSZ8873 and KSZ8863 datasheets. 252 */ 253 static const struct ksz_drive_strength ksz8830_drive_strengths[] = { 254 { 0, 8000 }, 255 { KSZ8873_DRIVE_STRENGTH_16MA, 16000 }, 256 }; 257 258 static void ksz8830_phylink_mac_config(struct phylink_config *config, 259 unsigned int mode, 260 const struct phylink_link_state *state); 261 static void ksz_phylink_mac_config(struct phylink_config *config, 262 unsigned int mode, 263 const struct phylink_link_state *state); 264 static void ksz_phylink_mac_link_down(struct phylink_config *config, 265 unsigned int mode, 266 phy_interface_t interface); 267 268 static const struct phylink_mac_ops ksz8830_phylink_mac_ops = { 269 .mac_config = ksz8830_phylink_mac_config, 270 .mac_link_down = ksz_phylink_mac_link_down, 271 .mac_link_up = ksz8_phylink_mac_link_up, 272 }; 273 274 static const struct phylink_mac_ops ksz8_phylink_mac_ops = { 275 .mac_config = ksz_phylink_mac_config, 276 .mac_link_down = ksz_phylink_mac_link_down, 277 .mac_link_up = ksz8_phylink_mac_link_up, 278 }; 279 280 static const struct ksz_dev_ops ksz8_dev_ops = { 281 .setup = ksz8_setup, 282 .get_port_addr = ksz8_get_port_addr, 283 .cfg_port_member = ksz8_cfg_port_member, 284 .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, 285 .port_setup = ksz8_port_setup, 286 .r_phy = ksz8_r_phy, 287 .w_phy = ksz8_w_phy, 288 .r_mib_cnt = ksz8_r_mib_cnt, 289 .r_mib_pkt = ksz8_r_mib_pkt, 290 .r_mib_stat64 = ksz88xx_r_mib_stats64, 291 .freeze_mib = ksz8_freeze_mib, 292 .port_init_cnt = ksz8_port_init_cnt, 293 .fdb_dump = ksz8_fdb_dump, 294 .fdb_add = ksz8_fdb_add, 295 .fdb_del = ksz8_fdb_del, 296 .mdb_add = ksz8_mdb_add, 297 .mdb_del = ksz8_mdb_del, 298 .vlan_filtering = ksz8_port_vlan_filtering, 299 .vlan_add = ksz8_port_vlan_add, 300 .vlan_del = ksz8_port_vlan_del, 301 .mirror_add = ksz8_port_mirror_add, 302 .mirror_del = ksz8_port_mirror_del, 303 .get_caps = ksz8_get_caps, 304 .config_cpu_port = ksz8_config_cpu_port, 305 .enable_stp_addr = ksz8_enable_stp_addr, 306 .reset = ksz8_reset_switch, 307 .init = ksz8_switch_init, 308 .exit = ksz8_switch_exit, 309 .change_mtu = ksz8_change_mtu, 310 }; 311 312 static void ksz9477_phylink_mac_link_up(struct phylink_config *config, 313 struct phy_device *phydev, 314 unsigned int mode, 315 phy_interface_t interface, 316 int speed, int duplex, bool tx_pause, 317 bool rx_pause); 318 319 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = { 320 .mac_config = ksz_phylink_mac_config, 321 .mac_link_down = ksz_phylink_mac_link_down, 322 .mac_link_up = ksz9477_phylink_mac_link_up, 323 }; 324 325 static const struct ksz_dev_ops ksz9477_dev_ops = { 326 .setup = ksz9477_setup, 327 .get_port_addr = ksz9477_get_port_addr, 328 .cfg_port_member = ksz9477_cfg_port_member, 329 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, 330 .port_setup = ksz9477_port_setup, 331 .set_ageing_time = ksz9477_set_ageing_time, 332 .r_phy = ksz9477_r_phy, 333 .w_phy = ksz9477_w_phy, 334 .r_mib_cnt = ksz9477_r_mib_cnt, 335 .r_mib_pkt = ksz9477_r_mib_pkt, 336 .r_mib_stat64 = ksz_r_mib_stats64, 337 .freeze_mib = ksz9477_freeze_mib, 338 .port_init_cnt = ksz9477_port_init_cnt, 339 .vlan_filtering = ksz9477_port_vlan_filtering, 340 .vlan_add = ksz9477_port_vlan_add, 341 .vlan_del = ksz9477_port_vlan_del, 342 .mirror_add = ksz9477_port_mirror_add, 343 .mirror_del = ksz9477_port_mirror_del, 344 .get_caps = ksz9477_get_caps, 345 .fdb_dump = ksz9477_fdb_dump, 346 .fdb_add = ksz9477_fdb_add, 347 .fdb_del = ksz9477_fdb_del, 348 .mdb_add = ksz9477_mdb_add, 349 .mdb_del = ksz9477_mdb_del, 350 .change_mtu = ksz9477_change_mtu, 351 .get_wol = ksz9477_get_wol, 352 .set_wol = ksz9477_set_wol, 353 .wol_pre_shutdown = ksz9477_wol_pre_shutdown, 354 .config_cpu_port = ksz9477_config_cpu_port, 355 .tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc, 356 .enable_stp_addr = ksz9477_enable_stp_addr, 357 .reset = ksz9477_reset_switch, 358 .init = ksz9477_switch_init, 359 .exit = ksz9477_switch_exit, 360 }; 361 362 static const struct phylink_mac_ops lan937x_phylink_mac_ops = { 363 .mac_config = ksz_phylink_mac_config, 364 .mac_link_down = ksz_phylink_mac_link_down, 365 .mac_link_up = ksz9477_phylink_mac_link_up, 366 }; 367 368 static const struct ksz_dev_ops lan937x_dev_ops = { 369 .setup = lan937x_setup, 370 .teardown = lan937x_teardown, 371 .get_port_addr = ksz9477_get_port_addr, 372 .cfg_port_member = ksz9477_cfg_port_member, 373 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, 374 .port_setup = lan937x_port_setup, 375 .set_ageing_time = lan937x_set_ageing_time, 376 .r_phy = lan937x_r_phy, 377 .w_phy = lan937x_w_phy, 378 .r_mib_cnt = ksz9477_r_mib_cnt, 379 .r_mib_pkt = ksz9477_r_mib_pkt, 380 .r_mib_stat64 = ksz_r_mib_stats64, 381 .freeze_mib = ksz9477_freeze_mib, 382 .port_init_cnt = ksz9477_port_init_cnt, 383 .vlan_filtering = ksz9477_port_vlan_filtering, 384 .vlan_add = ksz9477_port_vlan_add, 385 .vlan_del = ksz9477_port_vlan_del, 386 .mirror_add = ksz9477_port_mirror_add, 387 .mirror_del = ksz9477_port_mirror_del, 388 .get_caps = lan937x_phylink_get_caps, 389 .setup_rgmii_delay = lan937x_setup_rgmii_delay, 390 .fdb_dump = ksz9477_fdb_dump, 391 .fdb_add = ksz9477_fdb_add, 392 .fdb_del = ksz9477_fdb_del, 393 .mdb_add = ksz9477_mdb_add, 394 .mdb_del = ksz9477_mdb_del, 395 .change_mtu = lan937x_change_mtu, 396 .config_cpu_port = lan937x_config_cpu_port, 397 .tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc, 398 .enable_stp_addr = ksz9477_enable_stp_addr, 399 .reset = lan937x_reset_switch, 400 .init = lan937x_switch_init, 401 .exit = lan937x_switch_exit, 402 }; 403 404 static const u16 ksz8795_regs[] = { 405 [REG_SW_MAC_ADDR] = 0x68, 406 [REG_IND_CTRL_0] = 0x6E, 407 [REG_IND_DATA_8] = 0x70, 408 [REG_IND_DATA_CHECK] = 0x72, 409 [REG_IND_DATA_HI] = 0x71, 410 [REG_IND_DATA_LO] = 0x75, 411 [REG_IND_MIB_CHECK] = 0x74, 412 [REG_IND_BYTE] = 0xA0, 413 [P_FORCE_CTRL] = 0x0C, 414 [P_LINK_STATUS] = 0x0E, 415 [P_LOCAL_CTRL] = 0x07, 416 [P_NEG_RESTART_CTRL] = 0x0D, 417 [P_REMOTE_STATUS] = 0x08, 418 [P_SPEED_STATUS] = 0x09, 419 [S_TAIL_TAG_CTRL] = 0x0C, 420 [P_STP_CTRL] = 0x02, 421 [S_START_CTRL] = 0x01, 422 [S_BROADCAST_CTRL] = 0x06, 423 [S_MULTICAST_CTRL] = 0x04, 424 [P_XMII_CTRL_0] = 0x06, 425 [P_XMII_CTRL_1] = 0x06, 426 }; 427 428 static const u32 ksz8795_masks[] = { 429 [PORT_802_1P_REMAPPING] = BIT(7), 430 [SW_TAIL_TAG_ENABLE] = BIT(1), 431 [MIB_COUNTER_OVERFLOW] = BIT(6), 432 [MIB_COUNTER_VALID] = BIT(5), 433 [VLAN_TABLE_FID] = GENMASK(6, 0), 434 [VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7), 435 [VLAN_TABLE_VALID] = BIT(12), 436 [STATIC_MAC_TABLE_VALID] = BIT(21), 437 [STATIC_MAC_TABLE_USE_FID] = BIT(23), 438 [STATIC_MAC_TABLE_FID] = GENMASK(30, 24), 439 [STATIC_MAC_TABLE_OVERRIDE] = BIT(22), 440 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(20, 16), 441 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0), 442 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7), 443 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 444 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29), 445 [DYNAMIC_MAC_TABLE_FID] = GENMASK(22, 16), 446 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24), 447 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27), 448 [P_MII_TX_FLOW_CTRL] = BIT(5), 449 [P_MII_RX_FLOW_CTRL] = BIT(5), 450 }; 451 452 static const u8 ksz8795_xmii_ctrl0[] = { 453 [P_MII_100MBIT] = 0, 454 [P_MII_10MBIT] = 1, 455 [P_MII_FULL_DUPLEX] = 0, 456 [P_MII_HALF_DUPLEX] = 1, 457 }; 458 459 static const u8 ksz8795_xmii_ctrl1[] = { 460 [P_RGMII_SEL] = 3, 461 [P_GMII_SEL] = 2, 462 [P_RMII_SEL] = 1, 463 [P_MII_SEL] = 0, 464 [P_GMII_1GBIT] = 1, 465 [P_GMII_NOT_1GBIT] = 0, 466 }; 467 468 static const u8 ksz8795_shifts[] = { 469 [VLAN_TABLE_MEMBERSHIP_S] = 7, 470 [VLAN_TABLE] = 16, 471 [STATIC_MAC_FWD_PORTS] = 16, 472 [STATIC_MAC_FID] = 24, 473 [DYNAMIC_MAC_ENTRIES_H] = 3, 474 [DYNAMIC_MAC_ENTRIES] = 29, 475 [DYNAMIC_MAC_FID] = 16, 476 [DYNAMIC_MAC_TIMESTAMP] = 27, 477 [DYNAMIC_MAC_SRC_PORT] = 24, 478 }; 479 480 static const u16 ksz8863_regs[] = { 481 [REG_SW_MAC_ADDR] = 0x70, 482 [REG_IND_CTRL_0] = 0x79, 483 [REG_IND_DATA_8] = 0x7B, 484 [REG_IND_DATA_CHECK] = 0x7B, 485 [REG_IND_DATA_HI] = 0x7C, 486 [REG_IND_DATA_LO] = 0x80, 487 [REG_IND_MIB_CHECK] = 0x80, 488 [P_FORCE_CTRL] = 0x0C, 489 [P_LINK_STATUS] = 0x0E, 490 [P_LOCAL_CTRL] = 0x0C, 491 [P_NEG_RESTART_CTRL] = 0x0D, 492 [P_REMOTE_STATUS] = 0x0E, 493 [P_SPEED_STATUS] = 0x0F, 494 [S_TAIL_TAG_CTRL] = 0x03, 495 [P_STP_CTRL] = 0x02, 496 [S_START_CTRL] = 0x01, 497 [S_BROADCAST_CTRL] = 0x06, 498 [S_MULTICAST_CTRL] = 0x04, 499 }; 500 501 static const u32 ksz8863_masks[] = { 502 [PORT_802_1P_REMAPPING] = BIT(3), 503 [SW_TAIL_TAG_ENABLE] = BIT(6), 504 [MIB_COUNTER_OVERFLOW] = BIT(7), 505 [MIB_COUNTER_VALID] = BIT(6), 506 [VLAN_TABLE_FID] = GENMASK(15, 12), 507 [VLAN_TABLE_MEMBERSHIP] = GENMASK(18, 16), 508 [VLAN_TABLE_VALID] = BIT(19), 509 [STATIC_MAC_TABLE_VALID] = BIT(19), 510 [STATIC_MAC_TABLE_USE_FID] = BIT(21), 511 [STATIC_MAC_TABLE_FID] = GENMASK(25, 22), 512 [STATIC_MAC_TABLE_OVERRIDE] = BIT(20), 513 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(18, 16), 514 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(1, 0), 515 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(2), 516 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 517 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 24), 518 [DYNAMIC_MAC_TABLE_FID] = GENMASK(19, 16), 519 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(21, 20), 520 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(23, 22), 521 }; 522 523 static u8 ksz8863_shifts[] = { 524 [VLAN_TABLE_MEMBERSHIP_S] = 16, 525 [STATIC_MAC_FWD_PORTS] = 16, 526 [STATIC_MAC_FID] = 22, 527 [DYNAMIC_MAC_ENTRIES_H] = 8, 528 [DYNAMIC_MAC_ENTRIES] = 24, 529 [DYNAMIC_MAC_FID] = 16, 530 [DYNAMIC_MAC_TIMESTAMP] = 22, 531 [DYNAMIC_MAC_SRC_PORT] = 20, 532 }; 533 534 static const u16 ksz9477_regs[] = { 535 [REG_SW_MAC_ADDR] = 0x0302, 536 [P_STP_CTRL] = 0x0B04, 537 [S_START_CTRL] = 0x0300, 538 [S_BROADCAST_CTRL] = 0x0332, 539 [S_MULTICAST_CTRL] = 0x0331, 540 [P_XMII_CTRL_0] = 0x0300, 541 [P_XMII_CTRL_1] = 0x0301, 542 }; 543 544 static const u32 ksz9477_masks[] = { 545 [ALU_STAT_WRITE] = 0, 546 [ALU_STAT_READ] = 1, 547 [P_MII_TX_FLOW_CTRL] = BIT(5), 548 [P_MII_RX_FLOW_CTRL] = BIT(3), 549 }; 550 551 static const u8 ksz9477_shifts[] = { 552 [ALU_STAT_INDEX] = 16, 553 }; 554 555 static const u8 ksz9477_xmii_ctrl0[] = { 556 [P_MII_100MBIT] = 1, 557 [P_MII_10MBIT] = 0, 558 [P_MII_FULL_DUPLEX] = 1, 559 [P_MII_HALF_DUPLEX] = 0, 560 }; 561 562 static const u8 ksz9477_xmii_ctrl1[] = { 563 [P_RGMII_SEL] = 0, 564 [P_RMII_SEL] = 1, 565 [P_GMII_SEL] = 2, 566 [P_MII_SEL] = 3, 567 [P_GMII_1GBIT] = 0, 568 [P_GMII_NOT_1GBIT] = 1, 569 }; 570 571 static const u32 lan937x_masks[] = { 572 [ALU_STAT_WRITE] = 1, 573 [ALU_STAT_READ] = 2, 574 [P_MII_TX_FLOW_CTRL] = BIT(5), 575 [P_MII_RX_FLOW_CTRL] = BIT(3), 576 }; 577 578 static const u8 lan937x_shifts[] = { 579 [ALU_STAT_INDEX] = 8, 580 }; 581 582 static const struct regmap_range ksz8563_valid_regs[] = { 583 regmap_reg_range(0x0000, 0x0003), 584 regmap_reg_range(0x0006, 0x0006), 585 regmap_reg_range(0x000f, 0x001f), 586 regmap_reg_range(0x0100, 0x0100), 587 regmap_reg_range(0x0104, 0x0107), 588 regmap_reg_range(0x010d, 0x010d), 589 regmap_reg_range(0x0110, 0x0113), 590 regmap_reg_range(0x0120, 0x012b), 591 regmap_reg_range(0x0201, 0x0201), 592 regmap_reg_range(0x0210, 0x0213), 593 regmap_reg_range(0x0300, 0x0300), 594 regmap_reg_range(0x0302, 0x031b), 595 regmap_reg_range(0x0320, 0x032b), 596 regmap_reg_range(0x0330, 0x0336), 597 regmap_reg_range(0x0338, 0x033e), 598 regmap_reg_range(0x0340, 0x035f), 599 regmap_reg_range(0x0370, 0x0370), 600 regmap_reg_range(0x0378, 0x0378), 601 regmap_reg_range(0x037c, 0x037d), 602 regmap_reg_range(0x0390, 0x0393), 603 regmap_reg_range(0x0400, 0x040e), 604 regmap_reg_range(0x0410, 0x042f), 605 regmap_reg_range(0x0500, 0x0519), 606 regmap_reg_range(0x0520, 0x054b), 607 regmap_reg_range(0x0550, 0x05b3), 608 609 /* port 1 */ 610 regmap_reg_range(0x1000, 0x1001), 611 regmap_reg_range(0x1004, 0x100b), 612 regmap_reg_range(0x1013, 0x1013), 613 regmap_reg_range(0x1017, 0x1017), 614 regmap_reg_range(0x101b, 0x101b), 615 regmap_reg_range(0x101f, 0x1021), 616 regmap_reg_range(0x1030, 0x1030), 617 regmap_reg_range(0x1100, 0x1111), 618 regmap_reg_range(0x111a, 0x111d), 619 regmap_reg_range(0x1122, 0x1127), 620 regmap_reg_range(0x112a, 0x112b), 621 regmap_reg_range(0x1136, 0x1139), 622 regmap_reg_range(0x113e, 0x113f), 623 regmap_reg_range(0x1400, 0x1401), 624 regmap_reg_range(0x1403, 0x1403), 625 regmap_reg_range(0x1410, 0x1417), 626 regmap_reg_range(0x1420, 0x1423), 627 regmap_reg_range(0x1500, 0x1507), 628 regmap_reg_range(0x1600, 0x1612), 629 regmap_reg_range(0x1800, 0x180f), 630 regmap_reg_range(0x1900, 0x1907), 631 regmap_reg_range(0x1914, 0x191b), 632 regmap_reg_range(0x1a00, 0x1a03), 633 regmap_reg_range(0x1a04, 0x1a08), 634 regmap_reg_range(0x1b00, 0x1b01), 635 regmap_reg_range(0x1b04, 0x1b04), 636 regmap_reg_range(0x1c00, 0x1c05), 637 regmap_reg_range(0x1c08, 0x1c1b), 638 639 /* port 2 */ 640 regmap_reg_range(0x2000, 0x2001), 641 regmap_reg_range(0x2004, 0x200b), 642 regmap_reg_range(0x2013, 0x2013), 643 regmap_reg_range(0x2017, 0x2017), 644 regmap_reg_range(0x201b, 0x201b), 645 regmap_reg_range(0x201f, 0x2021), 646 regmap_reg_range(0x2030, 0x2030), 647 regmap_reg_range(0x2100, 0x2111), 648 regmap_reg_range(0x211a, 0x211d), 649 regmap_reg_range(0x2122, 0x2127), 650 regmap_reg_range(0x212a, 0x212b), 651 regmap_reg_range(0x2136, 0x2139), 652 regmap_reg_range(0x213e, 0x213f), 653 regmap_reg_range(0x2400, 0x2401), 654 regmap_reg_range(0x2403, 0x2403), 655 regmap_reg_range(0x2410, 0x2417), 656 regmap_reg_range(0x2420, 0x2423), 657 regmap_reg_range(0x2500, 0x2507), 658 regmap_reg_range(0x2600, 0x2612), 659 regmap_reg_range(0x2800, 0x280f), 660 regmap_reg_range(0x2900, 0x2907), 661 regmap_reg_range(0x2914, 0x291b), 662 regmap_reg_range(0x2a00, 0x2a03), 663 regmap_reg_range(0x2a04, 0x2a08), 664 regmap_reg_range(0x2b00, 0x2b01), 665 regmap_reg_range(0x2b04, 0x2b04), 666 regmap_reg_range(0x2c00, 0x2c05), 667 regmap_reg_range(0x2c08, 0x2c1b), 668 669 /* port 3 */ 670 regmap_reg_range(0x3000, 0x3001), 671 regmap_reg_range(0x3004, 0x300b), 672 regmap_reg_range(0x3013, 0x3013), 673 regmap_reg_range(0x3017, 0x3017), 674 regmap_reg_range(0x301b, 0x301b), 675 regmap_reg_range(0x301f, 0x3021), 676 regmap_reg_range(0x3030, 0x3030), 677 regmap_reg_range(0x3300, 0x3301), 678 regmap_reg_range(0x3303, 0x3303), 679 regmap_reg_range(0x3400, 0x3401), 680 regmap_reg_range(0x3403, 0x3403), 681 regmap_reg_range(0x3410, 0x3417), 682 regmap_reg_range(0x3420, 0x3423), 683 regmap_reg_range(0x3500, 0x3507), 684 regmap_reg_range(0x3600, 0x3612), 685 regmap_reg_range(0x3800, 0x380f), 686 regmap_reg_range(0x3900, 0x3907), 687 regmap_reg_range(0x3914, 0x391b), 688 regmap_reg_range(0x3a00, 0x3a03), 689 regmap_reg_range(0x3a04, 0x3a08), 690 regmap_reg_range(0x3b00, 0x3b01), 691 regmap_reg_range(0x3b04, 0x3b04), 692 regmap_reg_range(0x3c00, 0x3c05), 693 regmap_reg_range(0x3c08, 0x3c1b), 694 }; 695 696 static const struct regmap_access_table ksz8563_register_set = { 697 .yes_ranges = ksz8563_valid_regs, 698 .n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs), 699 }; 700 701 static const struct regmap_range ksz9477_valid_regs[] = { 702 regmap_reg_range(0x0000, 0x0003), 703 regmap_reg_range(0x0006, 0x0006), 704 regmap_reg_range(0x0010, 0x001f), 705 regmap_reg_range(0x0100, 0x0100), 706 regmap_reg_range(0x0103, 0x0107), 707 regmap_reg_range(0x010d, 0x010d), 708 regmap_reg_range(0x0110, 0x0113), 709 regmap_reg_range(0x0120, 0x012b), 710 regmap_reg_range(0x0201, 0x0201), 711 regmap_reg_range(0x0210, 0x0213), 712 regmap_reg_range(0x0300, 0x0300), 713 regmap_reg_range(0x0302, 0x031b), 714 regmap_reg_range(0x0320, 0x032b), 715 regmap_reg_range(0x0330, 0x0336), 716 regmap_reg_range(0x0338, 0x033b), 717 regmap_reg_range(0x033e, 0x033e), 718 regmap_reg_range(0x0340, 0x035f), 719 regmap_reg_range(0x0370, 0x0370), 720 regmap_reg_range(0x0378, 0x0378), 721 regmap_reg_range(0x037c, 0x037d), 722 regmap_reg_range(0x0390, 0x0393), 723 regmap_reg_range(0x0400, 0x040e), 724 regmap_reg_range(0x0410, 0x042f), 725 regmap_reg_range(0x0444, 0x044b), 726 regmap_reg_range(0x0450, 0x046f), 727 regmap_reg_range(0x0500, 0x0519), 728 regmap_reg_range(0x0520, 0x054b), 729 regmap_reg_range(0x0550, 0x05b3), 730 regmap_reg_range(0x0604, 0x060b), 731 regmap_reg_range(0x0610, 0x0612), 732 regmap_reg_range(0x0614, 0x062c), 733 regmap_reg_range(0x0640, 0x0645), 734 regmap_reg_range(0x0648, 0x064d), 735 736 /* port 1 */ 737 regmap_reg_range(0x1000, 0x1001), 738 regmap_reg_range(0x1013, 0x1013), 739 regmap_reg_range(0x1017, 0x1017), 740 regmap_reg_range(0x101b, 0x101b), 741 regmap_reg_range(0x101f, 0x1020), 742 regmap_reg_range(0x1030, 0x1030), 743 regmap_reg_range(0x1100, 0x1115), 744 regmap_reg_range(0x111a, 0x111f), 745 regmap_reg_range(0x1120, 0x112b), 746 regmap_reg_range(0x1134, 0x113b), 747 regmap_reg_range(0x113c, 0x113f), 748 regmap_reg_range(0x1400, 0x1401), 749 regmap_reg_range(0x1403, 0x1403), 750 regmap_reg_range(0x1410, 0x1417), 751 regmap_reg_range(0x1420, 0x1423), 752 regmap_reg_range(0x1500, 0x1507), 753 regmap_reg_range(0x1600, 0x1613), 754 regmap_reg_range(0x1800, 0x180f), 755 regmap_reg_range(0x1820, 0x1827), 756 regmap_reg_range(0x1830, 0x1837), 757 regmap_reg_range(0x1840, 0x184b), 758 regmap_reg_range(0x1900, 0x1907), 759 regmap_reg_range(0x1914, 0x191b), 760 regmap_reg_range(0x1920, 0x1920), 761 regmap_reg_range(0x1923, 0x1927), 762 regmap_reg_range(0x1a00, 0x1a03), 763 regmap_reg_range(0x1a04, 0x1a07), 764 regmap_reg_range(0x1b00, 0x1b01), 765 regmap_reg_range(0x1b04, 0x1b04), 766 regmap_reg_range(0x1c00, 0x1c05), 767 regmap_reg_range(0x1c08, 0x1c1b), 768 769 /* port 2 */ 770 regmap_reg_range(0x2000, 0x2001), 771 regmap_reg_range(0x2013, 0x2013), 772 regmap_reg_range(0x2017, 0x2017), 773 regmap_reg_range(0x201b, 0x201b), 774 regmap_reg_range(0x201f, 0x2020), 775 regmap_reg_range(0x2030, 0x2030), 776 regmap_reg_range(0x2100, 0x2115), 777 regmap_reg_range(0x211a, 0x211f), 778 regmap_reg_range(0x2120, 0x212b), 779 regmap_reg_range(0x2134, 0x213b), 780 regmap_reg_range(0x213c, 0x213f), 781 regmap_reg_range(0x2400, 0x2401), 782 regmap_reg_range(0x2403, 0x2403), 783 regmap_reg_range(0x2410, 0x2417), 784 regmap_reg_range(0x2420, 0x2423), 785 regmap_reg_range(0x2500, 0x2507), 786 regmap_reg_range(0x2600, 0x2613), 787 regmap_reg_range(0x2800, 0x280f), 788 regmap_reg_range(0x2820, 0x2827), 789 regmap_reg_range(0x2830, 0x2837), 790 regmap_reg_range(0x2840, 0x284b), 791 regmap_reg_range(0x2900, 0x2907), 792 regmap_reg_range(0x2914, 0x291b), 793 regmap_reg_range(0x2920, 0x2920), 794 regmap_reg_range(0x2923, 0x2927), 795 regmap_reg_range(0x2a00, 0x2a03), 796 regmap_reg_range(0x2a04, 0x2a07), 797 regmap_reg_range(0x2b00, 0x2b01), 798 regmap_reg_range(0x2b04, 0x2b04), 799 regmap_reg_range(0x2c00, 0x2c05), 800 regmap_reg_range(0x2c08, 0x2c1b), 801 802 /* port 3 */ 803 regmap_reg_range(0x3000, 0x3001), 804 regmap_reg_range(0x3013, 0x3013), 805 regmap_reg_range(0x3017, 0x3017), 806 regmap_reg_range(0x301b, 0x301b), 807 regmap_reg_range(0x301f, 0x3020), 808 regmap_reg_range(0x3030, 0x3030), 809 regmap_reg_range(0x3100, 0x3115), 810 regmap_reg_range(0x311a, 0x311f), 811 regmap_reg_range(0x3120, 0x312b), 812 regmap_reg_range(0x3134, 0x313b), 813 regmap_reg_range(0x313c, 0x313f), 814 regmap_reg_range(0x3400, 0x3401), 815 regmap_reg_range(0x3403, 0x3403), 816 regmap_reg_range(0x3410, 0x3417), 817 regmap_reg_range(0x3420, 0x3423), 818 regmap_reg_range(0x3500, 0x3507), 819 regmap_reg_range(0x3600, 0x3613), 820 regmap_reg_range(0x3800, 0x380f), 821 regmap_reg_range(0x3820, 0x3827), 822 regmap_reg_range(0x3830, 0x3837), 823 regmap_reg_range(0x3840, 0x384b), 824 regmap_reg_range(0x3900, 0x3907), 825 regmap_reg_range(0x3914, 0x391b), 826 regmap_reg_range(0x3920, 0x3920), 827 regmap_reg_range(0x3923, 0x3927), 828 regmap_reg_range(0x3a00, 0x3a03), 829 regmap_reg_range(0x3a04, 0x3a07), 830 regmap_reg_range(0x3b00, 0x3b01), 831 regmap_reg_range(0x3b04, 0x3b04), 832 regmap_reg_range(0x3c00, 0x3c05), 833 regmap_reg_range(0x3c08, 0x3c1b), 834 835 /* port 4 */ 836 regmap_reg_range(0x4000, 0x4001), 837 regmap_reg_range(0x4013, 0x4013), 838 regmap_reg_range(0x4017, 0x4017), 839 regmap_reg_range(0x401b, 0x401b), 840 regmap_reg_range(0x401f, 0x4020), 841 regmap_reg_range(0x4030, 0x4030), 842 regmap_reg_range(0x4100, 0x4115), 843 regmap_reg_range(0x411a, 0x411f), 844 regmap_reg_range(0x4120, 0x412b), 845 regmap_reg_range(0x4134, 0x413b), 846 regmap_reg_range(0x413c, 0x413f), 847 regmap_reg_range(0x4400, 0x4401), 848 regmap_reg_range(0x4403, 0x4403), 849 regmap_reg_range(0x4410, 0x4417), 850 regmap_reg_range(0x4420, 0x4423), 851 regmap_reg_range(0x4500, 0x4507), 852 regmap_reg_range(0x4600, 0x4613), 853 regmap_reg_range(0x4800, 0x480f), 854 regmap_reg_range(0x4820, 0x4827), 855 regmap_reg_range(0x4830, 0x4837), 856 regmap_reg_range(0x4840, 0x484b), 857 regmap_reg_range(0x4900, 0x4907), 858 regmap_reg_range(0x4914, 0x491b), 859 regmap_reg_range(0x4920, 0x4920), 860 regmap_reg_range(0x4923, 0x4927), 861 regmap_reg_range(0x4a00, 0x4a03), 862 regmap_reg_range(0x4a04, 0x4a07), 863 regmap_reg_range(0x4b00, 0x4b01), 864 regmap_reg_range(0x4b04, 0x4b04), 865 regmap_reg_range(0x4c00, 0x4c05), 866 regmap_reg_range(0x4c08, 0x4c1b), 867 868 /* port 5 */ 869 regmap_reg_range(0x5000, 0x5001), 870 regmap_reg_range(0x5013, 0x5013), 871 regmap_reg_range(0x5017, 0x5017), 872 regmap_reg_range(0x501b, 0x501b), 873 regmap_reg_range(0x501f, 0x5020), 874 regmap_reg_range(0x5030, 0x5030), 875 regmap_reg_range(0x5100, 0x5115), 876 regmap_reg_range(0x511a, 0x511f), 877 regmap_reg_range(0x5120, 0x512b), 878 regmap_reg_range(0x5134, 0x513b), 879 regmap_reg_range(0x513c, 0x513f), 880 regmap_reg_range(0x5400, 0x5401), 881 regmap_reg_range(0x5403, 0x5403), 882 regmap_reg_range(0x5410, 0x5417), 883 regmap_reg_range(0x5420, 0x5423), 884 regmap_reg_range(0x5500, 0x5507), 885 regmap_reg_range(0x5600, 0x5613), 886 regmap_reg_range(0x5800, 0x580f), 887 regmap_reg_range(0x5820, 0x5827), 888 regmap_reg_range(0x5830, 0x5837), 889 regmap_reg_range(0x5840, 0x584b), 890 regmap_reg_range(0x5900, 0x5907), 891 regmap_reg_range(0x5914, 0x591b), 892 regmap_reg_range(0x5920, 0x5920), 893 regmap_reg_range(0x5923, 0x5927), 894 regmap_reg_range(0x5a00, 0x5a03), 895 regmap_reg_range(0x5a04, 0x5a07), 896 regmap_reg_range(0x5b00, 0x5b01), 897 regmap_reg_range(0x5b04, 0x5b04), 898 regmap_reg_range(0x5c00, 0x5c05), 899 regmap_reg_range(0x5c08, 0x5c1b), 900 901 /* port 6 */ 902 regmap_reg_range(0x6000, 0x6001), 903 regmap_reg_range(0x6013, 0x6013), 904 regmap_reg_range(0x6017, 0x6017), 905 regmap_reg_range(0x601b, 0x601b), 906 regmap_reg_range(0x601f, 0x6020), 907 regmap_reg_range(0x6030, 0x6030), 908 regmap_reg_range(0x6300, 0x6301), 909 regmap_reg_range(0x6400, 0x6401), 910 regmap_reg_range(0x6403, 0x6403), 911 regmap_reg_range(0x6410, 0x6417), 912 regmap_reg_range(0x6420, 0x6423), 913 regmap_reg_range(0x6500, 0x6507), 914 regmap_reg_range(0x6600, 0x6613), 915 regmap_reg_range(0x6800, 0x680f), 916 regmap_reg_range(0x6820, 0x6827), 917 regmap_reg_range(0x6830, 0x6837), 918 regmap_reg_range(0x6840, 0x684b), 919 regmap_reg_range(0x6900, 0x6907), 920 regmap_reg_range(0x6914, 0x691b), 921 regmap_reg_range(0x6920, 0x6920), 922 regmap_reg_range(0x6923, 0x6927), 923 regmap_reg_range(0x6a00, 0x6a03), 924 regmap_reg_range(0x6a04, 0x6a07), 925 regmap_reg_range(0x6b00, 0x6b01), 926 regmap_reg_range(0x6b04, 0x6b04), 927 regmap_reg_range(0x6c00, 0x6c05), 928 regmap_reg_range(0x6c08, 0x6c1b), 929 930 /* port 7 */ 931 regmap_reg_range(0x7000, 0x7001), 932 regmap_reg_range(0x7013, 0x7013), 933 regmap_reg_range(0x7017, 0x7017), 934 regmap_reg_range(0x701b, 0x701b), 935 regmap_reg_range(0x701f, 0x7020), 936 regmap_reg_range(0x7030, 0x7030), 937 regmap_reg_range(0x7200, 0x7203), 938 regmap_reg_range(0x7206, 0x7207), 939 regmap_reg_range(0x7300, 0x7301), 940 regmap_reg_range(0x7400, 0x7401), 941 regmap_reg_range(0x7403, 0x7403), 942 regmap_reg_range(0x7410, 0x7417), 943 regmap_reg_range(0x7420, 0x7423), 944 regmap_reg_range(0x7500, 0x7507), 945 regmap_reg_range(0x7600, 0x7613), 946 regmap_reg_range(0x7800, 0x780f), 947 regmap_reg_range(0x7820, 0x7827), 948 regmap_reg_range(0x7830, 0x7837), 949 regmap_reg_range(0x7840, 0x784b), 950 regmap_reg_range(0x7900, 0x7907), 951 regmap_reg_range(0x7914, 0x791b), 952 regmap_reg_range(0x7920, 0x7920), 953 regmap_reg_range(0x7923, 0x7927), 954 regmap_reg_range(0x7a00, 0x7a03), 955 regmap_reg_range(0x7a04, 0x7a07), 956 regmap_reg_range(0x7b00, 0x7b01), 957 regmap_reg_range(0x7b04, 0x7b04), 958 regmap_reg_range(0x7c00, 0x7c05), 959 regmap_reg_range(0x7c08, 0x7c1b), 960 }; 961 962 static const struct regmap_access_table ksz9477_register_set = { 963 .yes_ranges = ksz9477_valid_regs, 964 .n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs), 965 }; 966 967 static const struct regmap_range ksz9896_valid_regs[] = { 968 regmap_reg_range(0x0000, 0x0003), 969 regmap_reg_range(0x0006, 0x0006), 970 regmap_reg_range(0x0010, 0x001f), 971 regmap_reg_range(0x0100, 0x0100), 972 regmap_reg_range(0x0103, 0x0107), 973 regmap_reg_range(0x010d, 0x010d), 974 regmap_reg_range(0x0110, 0x0113), 975 regmap_reg_range(0x0120, 0x0127), 976 regmap_reg_range(0x0201, 0x0201), 977 regmap_reg_range(0x0210, 0x0213), 978 regmap_reg_range(0x0300, 0x0300), 979 regmap_reg_range(0x0302, 0x030b), 980 regmap_reg_range(0x0310, 0x031b), 981 regmap_reg_range(0x0320, 0x032b), 982 regmap_reg_range(0x0330, 0x0336), 983 regmap_reg_range(0x0338, 0x033b), 984 regmap_reg_range(0x033e, 0x033e), 985 regmap_reg_range(0x0340, 0x035f), 986 regmap_reg_range(0x0370, 0x0370), 987 regmap_reg_range(0x0378, 0x0378), 988 regmap_reg_range(0x037c, 0x037d), 989 regmap_reg_range(0x0390, 0x0393), 990 regmap_reg_range(0x0400, 0x040e), 991 regmap_reg_range(0x0410, 0x042f), 992 993 /* port 1 */ 994 regmap_reg_range(0x1000, 0x1001), 995 regmap_reg_range(0x1013, 0x1013), 996 regmap_reg_range(0x1017, 0x1017), 997 regmap_reg_range(0x101b, 0x101b), 998 regmap_reg_range(0x101f, 0x1020), 999 regmap_reg_range(0x1030, 0x1030), 1000 regmap_reg_range(0x1100, 0x1115), 1001 regmap_reg_range(0x111a, 0x111f), 1002 regmap_reg_range(0x1122, 0x1127), 1003 regmap_reg_range(0x112a, 0x112b), 1004 regmap_reg_range(0x1136, 0x1139), 1005 regmap_reg_range(0x113e, 0x113f), 1006 regmap_reg_range(0x1400, 0x1401), 1007 regmap_reg_range(0x1403, 0x1403), 1008 regmap_reg_range(0x1410, 0x1417), 1009 regmap_reg_range(0x1420, 0x1423), 1010 regmap_reg_range(0x1500, 0x1507), 1011 regmap_reg_range(0x1600, 0x1612), 1012 regmap_reg_range(0x1800, 0x180f), 1013 regmap_reg_range(0x1820, 0x1827), 1014 regmap_reg_range(0x1830, 0x1837), 1015 regmap_reg_range(0x1840, 0x184b), 1016 regmap_reg_range(0x1900, 0x1907), 1017 regmap_reg_range(0x1914, 0x1915), 1018 regmap_reg_range(0x1a00, 0x1a03), 1019 regmap_reg_range(0x1a04, 0x1a07), 1020 regmap_reg_range(0x1b00, 0x1b01), 1021 regmap_reg_range(0x1b04, 0x1b04), 1022 1023 /* port 2 */ 1024 regmap_reg_range(0x2000, 0x2001), 1025 regmap_reg_range(0x2013, 0x2013), 1026 regmap_reg_range(0x2017, 0x2017), 1027 regmap_reg_range(0x201b, 0x201b), 1028 regmap_reg_range(0x201f, 0x2020), 1029 regmap_reg_range(0x2030, 0x2030), 1030 regmap_reg_range(0x2100, 0x2115), 1031 regmap_reg_range(0x211a, 0x211f), 1032 regmap_reg_range(0x2122, 0x2127), 1033 regmap_reg_range(0x212a, 0x212b), 1034 regmap_reg_range(0x2136, 0x2139), 1035 regmap_reg_range(0x213e, 0x213f), 1036 regmap_reg_range(0x2400, 0x2401), 1037 regmap_reg_range(0x2403, 0x2403), 1038 regmap_reg_range(0x2410, 0x2417), 1039 regmap_reg_range(0x2420, 0x2423), 1040 regmap_reg_range(0x2500, 0x2507), 1041 regmap_reg_range(0x2600, 0x2612), 1042 regmap_reg_range(0x2800, 0x280f), 1043 regmap_reg_range(0x2820, 0x2827), 1044 regmap_reg_range(0x2830, 0x2837), 1045 regmap_reg_range(0x2840, 0x284b), 1046 regmap_reg_range(0x2900, 0x2907), 1047 regmap_reg_range(0x2914, 0x2915), 1048 regmap_reg_range(0x2a00, 0x2a03), 1049 regmap_reg_range(0x2a04, 0x2a07), 1050 regmap_reg_range(0x2b00, 0x2b01), 1051 regmap_reg_range(0x2b04, 0x2b04), 1052 1053 /* port 3 */ 1054 regmap_reg_range(0x3000, 0x3001), 1055 regmap_reg_range(0x3013, 0x3013), 1056 regmap_reg_range(0x3017, 0x3017), 1057 regmap_reg_range(0x301b, 0x301b), 1058 regmap_reg_range(0x301f, 0x3020), 1059 regmap_reg_range(0x3030, 0x3030), 1060 regmap_reg_range(0x3100, 0x3115), 1061 regmap_reg_range(0x311a, 0x311f), 1062 regmap_reg_range(0x3122, 0x3127), 1063 regmap_reg_range(0x312a, 0x312b), 1064 regmap_reg_range(0x3136, 0x3139), 1065 regmap_reg_range(0x313e, 0x313f), 1066 regmap_reg_range(0x3400, 0x3401), 1067 regmap_reg_range(0x3403, 0x3403), 1068 regmap_reg_range(0x3410, 0x3417), 1069 regmap_reg_range(0x3420, 0x3423), 1070 regmap_reg_range(0x3500, 0x3507), 1071 regmap_reg_range(0x3600, 0x3612), 1072 regmap_reg_range(0x3800, 0x380f), 1073 regmap_reg_range(0x3820, 0x3827), 1074 regmap_reg_range(0x3830, 0x3837), 1075 regmap_reg_range(0x3840, 0x384b), 1076 regmap_reg_range(0x3900, 0x3907), 1077 regmap_reg_range(0x3914, 0x3915), 1078 regmap_reg_range(0x3a00, 0x3a03), 1079 regmap_reg_range(0x3a04, 0x3a07), 1080 regmap_reg_range(0x3b00, 0x3b01), 1081 regmap_reg_range(0x3b04, 0x3b04), 1082 1083 /* port 4 */ 1084 regmap_reg_range(0x4000, 0x4001), 1085 regmap_reg_range(0x4013, 0x4013), 1086 regmap_reg_range(0x4017, 0x4017), 1087 regmap_reg_range(0x401b, 0x401b), 1088 regmap_reg_range(0x401f, 0x4020), 1089 regmap_reg_range(0x4030, 0x4030), 1090 regmap_reg_range(0x4100, 0x4115), 1091 regmap_reg_range(0x411a, 0x411f), 1092 regmap_reg_range(0x4122, 0x4127), 1093 regmap_reg_range(0x412a, 0x412b), 1094 regmap_reg_range(0x4136, 0x4139), 1095 regmap_reg_range(0x413e, 0x413f), 1096 regmap_reg_range(0x4400, 0x4401), 1097 regmap_reg_range(0x4403, 0x4403), 1098 regmap_reg_range(0x4410, 0x4417), 1099 regmap_reg_range(0x4420, 0x4423), 1100 regmap_reg_range(0x4500, 0x4507), 1101 regmap_reg_range(0x4600, 0x4612), 1102 regmap_reg_range(0x4800, 0x480f), 1103 regmap_reg_range(0x4820, 0x4827), 1104 regmap_reg_range(0x4830, 0x4837), 1105 regmap_reg_range(0x4840, 0x484b), 1106 regmap_reg_range(0x4900, 0x4907), 1107 regmap_reg_range(0x4914, 0x4915), 1108 regmap_reg_range(0x4a00, 0x4a03), 1109 regmap_reg_range(0x4a04, 0x4a07), 1110 regmap_reg_range(0x4b00, 0x4b01), 1111 regmap_reg_range(0x4b04, 0x4b04), 1112 1113 /* port 5 */ 1114 regmap_reg_range(0x5000, 0x5001), 1115 regmap_reg_range(0x5013, 0x5013), 1116 regmap_reg_range(0x5017, 0x5017), 1117 regmap_reg_range(0x501b, 0x501b), 1118 regmap_reg_range(0x501f, 0x5020), 1119 regmap_reg_range(0x5030, 0x5030), 1120 regmap_reg_range(0x5100, 0x5115), 1121 regmap_reg_range(0x511a, 0x511f), 1122 regmap_reg_range(0x5122, 0x5127), 1123 regmap_reg_range(0x512a, 0x512b), 1124 regmap_reg_range(0x5136, 0x5139), 1125 regmap_reg_range(0x513e, 0x513f), 1126 regmap_reg_range(0x5400, 0x5401), 1127 regmap_reg_range(0x5403, 0x5403), 1128 regmap_reg_range(0x5410, 0x5417), 1129 regmap_reg_range(0x5420, 0x5423), 1130 regmap_reg_range(0x5500, 0x5507), 1131 regmap_reg_range(0x5600, 0x5612), 1132 regmap_reg_range(0x5800, 0x580f), 1133 regmap_reg_range(0x5820, 0x5827), 1134 regmap_reg_range(0x5830, 0x5837), 1135 regmap_reg_range(0x5840, 0x584b), 1136 regmap_reg_range(0x5900, 0x5907), 1137 regmap_reg_range(0x5914, 0x5915), 1138 regmap_reg_range(0x5a00, 0x5a03), 1139 regmap_reg_range(0x5a04, 0x5a07), 1140 regmap_reg_range(0x5b00, 0x5b01), 1141 regmap_reg_range(0x5b04, 0x5b04), 1142 1143 /* port 6 */ 1144 regmap_reg_range(0x6000, 0x6001), 1145 regmap_reg_range(0x6013, 0x6013), 1146 regmap_reg_range(0x6017, 0x6017), 1147 regmap_reg_range(0x601b, 0x601b), 1148 regmap_reg_range(0x601f, 0x6020), 1149 regmap_reg_range(0x6030, 0x6030), 1150 regmap_reg_range(0x6100, 0x6115), 1151 regmap_reg_range(0x611a, 0x611f), 1152 regmap_reg_range(0x6122, 0x6127), 1153 regmap_reg_range(0x612a, 0x612b), 1154 regmap_reg_range(0x6136, 0x6139), 1155 regmap_reg_range(0x613e, 0x613f), 1156 regmap_reg_range(0x6300, 0x6301), 1157 regmap_reg_range(0x6400, 0x6401), 1158 regmap_reg_range(0x6403, 0x6403), 1159 regmap_reg_range(0x6410, 0x6417), 1160 regmap_reg_range(0x6420, 0x6423), 1161 regmap_reg_range(0x6500, 0x6507), 1162 regmap_reg_range(0x6600, 0x6612), 1163 regmap_reg_range(0x6800, 0x680f), 1164 regmap_reg_range(0x6820, 0x6827), 1165 regmap_reg_range(0x6830, 0x6837), 1166 regmap_reg_range(0x6840, 0x684b), 1167 regmap_reg_range(0x6900, 0x6907), 1168 regmap_reg_range(0x6914, 0x6915), 1169 regmap_reg_range(0x6a00, 0x6a03), 1170 regmap_reg_range(0x6a04, 0x6a07), 1171 regmap_reg_range(0x6b00, 0x6b01), 1172 regmap_reg_range(0x6b04, 0x6b04), 1173 }; 1174 1175 static const struct regmap_access_table ksz9896_register_set = { 1176 .yes_ranges = ksz9896_valid_regs, 1177 .n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs), 1178 }; 1179 1180 static const struct regmap_range ksz8873_valid_regs[] = { 1181 regmap_reg_range(0x00, 0x01), 1182 /* global control register */ 1183 regmap_reg_range(0x02, 0x0f), 1184 1185 /* port registers */ 1186 regmap_reg_range(0x10, 0x1d), 1187 regmap_reg_range(0x1e, 0x1f), 1188 regmap_reg_range(0x20, 0x2d), 1189 regmap_reg_range(0x2e, 0x2f), 1190 regmap_reg_range(0x30, 0x39), 1191 regmap_reg_range(0x3f, 0x3f), 1192 1193 /* advanced control registers */ 1194 regmap_reg_range(0x60, 0x6f), 1195 regmap_reg_range(0x70, 0x75), 1196 regmap_reg_range(0x76, 0x78), 1197 regmap_reg_range(0x79, 0x7a), 1198 regmap_reg_range(0x7b, 0x83), 1199 regmap_reg_range(0x8e, 0x99), 1200 regmap_reg_range(0x9a, 0xa5), 1201 regmap_reg_range(0xa6, 0xa6), 1202 regmap_reg_range(0xa7, 0xaa), 1203 regmap_reg_range(0xab, 0xae), 1204 regmap_reg_range(0xaf, 0xba), 1205 regmap_reg_range(0xbb, 0xbc), 1206 regmap_reg_range(0xbd, 0xbd), 1207 regmap_reg_range(0xc0, 0xc0), 1208 regmap_reg_range(0xc2, 0xc2), 1209 regmap_reg_range(0xc3, 0xc3), 1210 regmap_reg_range(0xc4, 0xc4), 1211 regmap_reg_range(0xc6, 0xc6), 1212 }; 1213 1214 static const struct regmap_access_table ksz8873_register_set = { 1215 .yes_ranges = ksz8873_valid_regs, 1216 .n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs), 1217 }; 1218 1219 const struct ksz_chip_data ksz_switch_chips[] = { 1220 [KSZ8563] = { 1221 .chip_id = KSZ8563_CHIP_ID, 1222 .dev_name = "KSZ8563", 1223 .num_vlans = 4096, 1224 .num_alus = 4096, 1225 .num_statics = 16, 1226 .cpu_ports = 0x07, /* can be configured as cpu port */ 1227 .port_cnt = 3, /* total port count */ 1228 .port_nirqs = 3, 1229 .num_tx_queues = 4, 1230 .num_ipms = 8, 1231 .tc_cbs_supported = true, 1232 .ops = &ksz9477_dev_ops, 1233 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1234 .mib_names = ksz9477_mib_names, 1235 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1236 .reg_mib_cnt = MIB_COUNTER_NUM, 1237 .regs = ksz9477_regs, 1238 .masks = ksz9477_masks, 1239 .shifts = ksz9477_shifts, 1240 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1241 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1242 .supports_mii = {false, false, true}, 1243 .supports_rmii = {false, false, true}, 1244 .supports_rgmii = {false, false, true}, 1245 .internal_phy = {true, true, false}, 1246 .gbit_capable = {false, false, true}, 1247 .wr_table = &ksz8563_register_set, 1248 .rd_table = &ksz8563_register_set, 1249 }, 1250 1251 [KSZ8795] = { 1252 .chip_id = KSZ8795_CHIP_ID, 1253 .dev_name = "KSZ8795", 1254 .num_vlans = 4096, 1255 .num_alus = 0, 1256 .num_statics = 8, 1257 .cpu_ports = 0x10, /* can be configured as cpu port */ 1258 .port_cnt = 5, /* total cpu and user ports */ 1259 .num_tx_queues = 4, 1260 .num_ipms = 4, 1261 .ops = &ksz8_dev_ops, 1262 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1263 .ksz87xx_eee_link_erratum = true, 1264 .mib_names = ksz9477_mib_names, 1265 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1266 .reg_mib_cnt = MIB_COUNTER_NUM, 1267 .regs = ksz8795_regs, 1268 .masks = ksz8795_masks, 1269 .shifts = ksz8795_shifts, 1270 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1271 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1272 .supports_mii = {false, false, false, false, true}, 1273 .supports_rmii = {false, false, false, false, true}, 1274 .supports_rgmii = {false, false, false, false, true}, 1275 .internal_phy = {true, true, true, true, false}, 1276 }, 1277 1278 [KSZ8794] = { 1279 /* WARNING 1280 * ======= 1281 * KSZ8794 is similar to KSZ8795, except the port map 1282 * contains a gap between external and CPU ports, the 1283 * port map is NOT continuous. The per-port register 1284 * map is shifted accordingly too, i.e. registers at 1285 * offset 0x40 are NOT used on KSZ8794 and they ARE 1286 * used on KSZ8795 for external port 3. 1287 * external cpu 1288 * KSZ8794 0,1,2 4 1289 * KSZ8795 0,1,2,3 4 1290 * KSZ8765 0,1,2,3 4 1291 * port_cnt is configured as 5, even though it is 4 1292 */ 1293 .chip_id = KSZ8794_CHIP_ID, 1294 .dev_name = "KSZ8794", 1295 .num_vlans = 4096, 1296 .num_alus = 0, 1297 .num_statics = 8, 1298 .cpu_ports = 0x10, /* can be configured as cpu port */ 1299 .port_cnt = 5, /* total cpu and user ports */ 1300 .num_tx_queues = 4, 1301 .num_ipms = 4, 1302 .ops = &ksz8_dev_ops, 1303 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1304 .ksz87xx_eee_link_erratum = true, 1305 .mib_names = ksz9477_mib_names, 1306 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1307 .reg_mib_cnt = MIB_COUNTER_NUM, 1308 .regs = ksz8795_regs, 1309 .masks = ksz8795_masks, 1310 .shifts = ksz8795_shifts, 1311 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1312 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1313 .supports_mii = {false, false, false, false, true}, 1314 .supports_rmii = {false, false, false, false, true}, 1315 .supports_rgmii = {false, false, false, false, true}, 1316 .internal_phy = {true, true, true, false, false}, 1317 }, 1318 1319 [KSZ8765] = { 1320 .chip_id = KSZ8765_CHIP_ID, 1321 .dev_name = "KSZ8765", 1322 .num_vlans = 4096, 1323 .num_alus = 0, 1324 .num_statics = 8, 1325 .cpu_ports = 0x10, /* can be configured as cpu port */ 1326 .port_cnt = 5, /* total cpu and user ports */ 1327 .num_tx_queues = 4, 1328 .num_ipms = 4, 1329 .ops = &ksz8_dev_ops, 1330 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1331 .ksz87xx_eee_link_erratum = true, 1332 .mib_names = ksz9477_mib_names, 1333 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1334 .reg_mib_cnt = MIB_COUNTER_NUM, 1335 .regs = ksz8795_regs, 1336 .masks = ksz8795_masks, 1337 .shifts = ksz8795_shifts, 1338 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1339 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1340 .supports_mii = {false, false, false, false, true}, 1341 .supports_rmii = {false, false, false, false, true}, 1342 .supports_rgmii = {false, false, false, false, true}, 1343 .internal_phy = {true, true, true, true, false}, 1344 }, 1345 1346 [KSZ8830] = { 1347 .chip_id = KSZ8830_CHIP_ID, 1348 .dev_name = "KSZ8863/KSZ8873", 1349 .num_vlans = 16, 1350 .num_alus = 0, 1351 .num_statics = 8, 1352 .cpu_ports = 0x4, /* can be configured as cpu port */ 1353 .port_cnt = 3, 1354 .num_tx_queues = 4, 1355 .num_ipms = 4, 1356 .ops = &ksz8_dev_ops, 1357 .phylink_mac_ops = &ksz8830_phylink_mac_ops, 1358 .mib_names = ksz88xx_mib_names, 1359 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1360 .reg_mib_cnt = MIB_COUNTER_NUM, 1361 .regs = ksz8863_regs, 1362 .masks = ksz8863_masks, 1363 .shifts = ksz8863_shifts, 1364 .supports_mii = {false, false, true}, 1365 .supports_rmii = {false, false, true}, 1366 .internal_phy = {true, true, false}, 1367 .wr_table = &ksz8873_register_set, 1368 .rd_table = &ksz8873_register_set, 1369 }, 1370 1371 [KSZ9477] = { 1372 .chip_id = KSZ9477_CHIP_ID, 1373 .dev_name = "KSZ9477", 1374 .num_vlans = 4096, 1375 .num_alus = 4096, 1376 .num_statics = 16, 1377 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1378 .port_cnt = 7, /* total physical port count */ 1379 .port_nirqs = 4, 1380 .num_tx_queues = 4, 1381 .num_ipms = 8, 1382 .tc_cbs_supported = true, 1383 .ops = &ksz9477_dev_ops, 1384 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1385 .phy_errata_9477 = true, 1386 .mib_names = ksz9477_mib_names, 1387 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1388 .reg_mib_cnt = MIB_COUNTER_NUM, 1389 .regs = ksz9477_regs, 1390 .masks = ksz9477_masks, 1391 .shifts = ksz9477_shifts, 1392 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1393 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1394 .supports_mii = {false, false, false, false, 1395 false, true, false}, 1396 .supports_rmii = {false, false, false, false, 1397 false, true, false}, 1398 .supports_rgmii = {false, false, false, false, 1399 false, true, false}, 1400 .internal_phy = {true, true, true, true, 1401 true, false, false}, 1402 .gbit_capable = {true, true, true, true, true, true, true}, 1403 .wr_table = &ksz9477_register_set, 1404 .rd_table = &ksz9477_register_set, 1405 }, 1406 1407 [KSZ9896] = { 1408 .chip_id = KSZ9896_CHIP_ID, 1409 .dev_name = "KSZ9896", 1410 .num_vlans = 4096, 1411 .num_alus = 4096, 1412 .num_statics = 16, 1413 .cpu_ports = 0x3F, /* can be configured as cpu port */ 1414 .port_cnt = 6, /* total physical port count */ 1415 .port_nirqs = 2, 1416 .num_tx_queues = 4, 1417 .num_ipms = 8, 1418 .ops = &ksz9477_dev_ops, 1419 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1420 .phy_errata_9477 = true, 1421 .mib_names = ksz9477_mib_names, 1422 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1423 .reg_mib_cnt = MIB_COUNTER_NUM, 1424 .regs = ksz9477_regs, 1425 .masks = ksz9477_masks, 1426 .shifts = ksz9477_shifts, 1427 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1428 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1429 .supports_mii = {false, false, false, false, 1430 false, true}, 1431 .supports_rmii = {false, false, false, false, 1432 false, true}, 1433 .supports_rgmii = {false, false, false, false, 1434 false, true}, 1435 .internal_phy = {true, true, true, true, 1436 true, false}, 1437 .gbit_capable = {true, true, true, true, true, true}, 1438 .wr_table = &ksz9896_register_set, 1439 .rd_table = &ksz9896_register_set, 1440 }, 1441 1442 [KSZ9897] = { 1443 .chip_id = KSZ9897_CHIP_ID, 1444 .dev_name = "KSZ9897", 1445 .num_vlans = 4096, 1446 .num_alus = 4096, 1447 .num_statics = 16, 1448 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1449 .port_cnt = 7, /* total physical port count */ 1450 .port_nirqs = 2, 1451 .num_tx_queues = 4, 1452 .num_ipms = 8, 1453 .ops = &ksz9477_dev_ops, 1454 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1455 .phy_errata_9477 = true, 1456 .mib_names = ksz9477_mib_names, 1457 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1458 .reg_mib_cnt = MIB_COUNTER_NUM, 1459 .regs = ksz9477_regs, 1460 .masks = ksz9477_masks, 1461 .shifts = ksz9477_shifts, 1462 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1463 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1464 .supports_mii = {false, false, false, false, 1465 false, true, true}, 1466 .supports_rmii = {false, false, false, false, 1467 false, true, true}, 1468 .supports_rgmii = {false, false, false, false, 1469 false, true, true}, 1470 .internal_phy = {true, true, true, true, 1471 true, false, false}, 1472 .gbit_capable = {true, true, true, true, true, true, true}, 1473 }, 1474 1475 [KSZ9893] = { 1476 .chip_id = KSZ9893_CHIP_ID, 1477 .dev_name = "KSZ9893", 1478 .num_vlans = 4096, 1479 .num_alus = 4096, 1480 .num_statics = 16, 1481 .cpu_ports = 0x07, /* can be configured as cpu port */ 1482 .port_cnt = 3, /* total port count */ 1483 .port_nirqs = 2, 1484 .num_tx_queues = 4, 1485 .num_ipms = 8, 1486 .ops = &ksz9477_dev_ops, 1487 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1488 .mib_names = ksz9477_mib_names, 1489 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1490 .reg_mib_cnt = MIB_COUNTER_NUM, 1491 .regs = ksz9477_regs, 1492 .masks = ksz9477_masks, 1493 .shifts = ksz9477_shifts, 1494 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1495 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1496 .supports_mii = {false, false, true}, 1497 .supports_rmii = {false, false, true}, 1498 .supports_rgmii = {false, false, true}, 1499 .internal_phy = {true, true, false}, 1500 .gbit_capable = {true, true, true}, 1501 }, 1502 1503 [KSZ9563] = { 1504 .chip_id = KSZ9563_CHIP_ID, 1505 .dev_name = "KSZ9563", 1506 .num_vlans = 4096, 1507 .num_alus = 4096, 1508 .num_statics = 16, 1509 .cpu_ports = 0x07, /* can be configured as cpu port */ 1510 .port_cnt = 3, /* total port count */ 1511 .port_nirqs = 3, 1512 .num_tx_queues = 4, 1513 .num_ipms = 8, 1514 .tc_cbs_supported = true, 1515 .ops = &ksz9477_dev_ops, 1516 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1517 .mib_names = ksz9477_mib_names, 1518 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1519 .reg_mib_cnt = MIB_COUNTER_NUM, 1520 .regs = ksz9477_regs, 1521 .masks = ksz9477_masks, 1522 .shifts = ksz9477_shifts, 1523 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1524 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1525 .supports_mii = {false, false, true}, 1526 .supports_rmii = {false, false, true}, 1527 .supports_rgmii = {false, false, true}, 1528 .internal_phy = {true, true, false}, 1529 .gbit_capable = {true, true, true}, 1530 }, 1531 1532 [KSZ8567] = { 1533 .chip_id = KSZ8567_CHIP_ID, 1534 .dev_name = "KSZ8567", 1535 .num_vlans = 4096, 1536 .num_alus = 4096, 1537 .num_statics = 16, 1538 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1539 .port_cnt = 7, /* total port count */ 1540 .port_nirqs = 3, 1541 .num_tx_queues = 4, 1542 .num_ipms = 8, 1543 .tc_cbs_supported = true, 1544 .ops = &ksz9477_dev_ops, 1545 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1546 .phy_errata_9477 = true, 1547 .mib_names = ksz9477_mib_names, 1548 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1549 .reg_mib_cnt = MIB_COUNTER_NUM, 1550 .regs = ksz9477_regs, 1551 .masks = ksz9477_masks, 1552 .shifts = ksz9477_shifts, 1553 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1554 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1555 .supports_mii = {false, false, false, false, 1556 false, true, true}, 1557 .supports_rmii = {false, false, false, false, 1558 false, true, true}, 1559 .supports_rgmii = {false, false, false, false, 1560 false, true, true}, 1561 .internal_phy = {true, true, true, true, 1562 true, false, false}, 1563 .gbit_capable = {false, false, false, false, false, 1564 true, true}, 1565 }, 1566 1567 [KSZ9567] = { 1568 .chip_id = KSZ9567_CHIP_ID, 1569 .dev_name = "KSZ9567", 1570 .num_vlans = 4096, 1571 .num_alus = 4096, 1572 .num_statics = 16, 1573 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1574 .port_cnt = 7, /* total physical port count */ 1575 .port_nirqs = 3, 1576 .num_tx_queues = 4, 1577 .num_ipms = 8, 1578 .tc_cbs_supported = true, 1579 .ops = &ksz9477_dev_ops, 1580 .mib_names = ksz9477_mib_names, 1581 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1582 .reg_mib_cnt = MIB_COUNTER_NUM, 1583 .regs = ksz9477_regs, 1584 .masks = ksz9477_masks, 1585 .shifts = ksz9477_shifts, 1586 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1587 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1588 .supports_mii = {false, false, false, false, 1589 false, true, true}, 1590 .supports_rmii = {false, false, false, false, 1591 false, true, true}, 1592 .supports_rgmii = {false, false, false, false, 1593 false, true, true}, 1594 .internal_phy = {true, true, true, true, 1595 true, false, false}, 1596 .gbit_capable = {true, true, true, true, true, true, true}, 1597 }, 1598 1599 [LAN9370] = { 1600 .chip_id = LAN9370_CHIP_ID, 1601 .dev_name = "LAN9370", 1602 .num_vlans = 4096, 1603 .num_alus = 1024, 1604 .num_statics = 256, 1605 .cpu_ports = 0x10, /* can be configured as cpu port */ 1606 .port_cnt = 5, /* total physical port count */ 1607 .port_nirqs = 6, 1608 .num_tx_queues = 8, 1609 .num_ipms = 8, 1610 .tc_cbs_supported = true, 1611 .ops = &lan937x_dev_ops, 1612 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1613 .mib_names = ksz9477_mib_names, 1614 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1615 .reg_mib_cnt = MIB_COUNTER_NUM, 1616 .regs = ksz9477_regs, 1617 .masks = lan937x_masks, 1618 .shifts = lan937x_shifts, 1619 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1620 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1621 .supports_mii = {false, false, false, false, true}, 1622 .supports_rmii = {false, false, false, false, true}, 1623 .supports_rgmii = {false, false, false, false, true}, 1624 .internal_phy = {true, true, true, true, false}, 1625 }, 1626 1627 [LAN9371] = { 1628 .chip_id = LAN9371_CHIP_ID, 1629 .dev_name = "LAN9371", 1630 .num_vlans = 4096, 1631 .num_alus = 1024, 1632 .num_statics = 256, 1633 .cpu_ports = 0x30, /* can be configured as cpu port */ 1634 .port_cnt = 6, /* total physical port count */ 1635 .port_nirqs = 6, 1636 .num_tx_queues = 8, 1637 .num_ipms = 8, 1638 .tc_cbs_supported = true, 1639 .ops = &lan937x_dev_ops, 1640 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1641 .mib_names = ksz9477_mib_names, 1642 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1643 .reg_mib_cnt = MIB_COUNTER_NUM, 1644 .regs = ksz9477_regs, 1645 .masks = lan937x_masks, 1646 .shifts = lan937x_shifts, 1647 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1648 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1649 .supports_mii = {false, false, false, false, true, true}, 1650 .supports_rmii = {false, false, false, false, true, true}, 1651 .supports_rgmii = {false, false, false, false, true, true}, 1652 .internal_phy = {true, true, true, true, false, false}, 1653 }, 1654 1655 [LAN9372] = { 1656 .chip_id = LAN9372_CHIP_ID, 1657 .dev_name = "LAN9372", 1658 .num_vlans = 4096, 1659 .num_alus = 1024, 1660 .num_statics = 256, 1661 .cpu_ports = 0x30, /* can be configured as cpu port */ 1662 .port_cnt = 8, /* total physical port count */ 1663 .port_nirqs = 6, 1664 .num_tx_queues = 8, 1665 .num_ipms = 8, 1666 .tc_cbs_supported = true, 1667 .ops = &lan937x_dev_ops, 1668 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1669 .mib_names = ksz9477_mib_names, 1670 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1671 .reg_mib_cnt = MIB_COUNTER_NUM, 1672 .regs = ksz9477_regs, 1673 .masks = lan937x_masks, 1674 .shifts = lan937x_shifts, 1675 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1676 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1677 .supports_mii = {false, false, false, false, 1678 true, true, false, false}, 1679 .supports_rmii = {false, false, false, false, 1680 true, true, false, false}, 1681 .supports_rgmii = {false, false, false, false, 1682 true, true, false, false}, 1683 .internal_phy = {true, true, true, true, 1684 false, false, true, true}, 1685 }, 1686 1687 [LAN9373] = { 1688 .chip_id = LAN9373_CHIP_ID, 1689 .dev_name = "LAN9373", 1690 .num_vlans = 4096, 1691 .num_alus = 1024, 1692 .num_statics = 256, 1693 .cpu_ports = 0x38, /* can be configured as cpu port */ 1694 .port_cnt = 5, /* total physical port count */ 1695 .port_nirqs = 6, 1696 .num_tx_queues = 8, 1697 .num_ipms = 8, 1698 .tc_cbs_supported = true, 1699 .ops = &lan937x_dev_ops, 1700 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1701 .mib_names = ksz9477_mib_names, 1702 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1703 .reg_mib_cnt = MIB_COUNTER_NUM, 1704 .regs = ksz9477_regs, 1705 .masks = lan937x_masks, 1706 .shifts = lan937x_shifts, 1707 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1708 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1709 .supports_mii = {false, false, false, false, 1710 true, true, false, false}, 1711 .supports_rmii = {false, false, false, false, 1712 true, true, false, false}, 1713 .supports_rgmii = {false, false, false, false, 1714 true, true, false, false}, 1715 .internal_phy = {true, true, true, false, 1716 false, false, true, true}, 1717 }, 1718 1719 [LAN9374] = { 1720 .chip_id = LAN9374_CHIP_ID, 1721 .dev_name = "LAN9374", 1722 .num_vlans = 4096, 1723 .num_alus = 1024, 1724 .num_statics = 256, 1725 .cpu_ports = 0x30, /* can be configured as cpu port */ 1726 .port_cnt = 8, /* total physical port count */ 1727 .port_nirqs = 6, 1728 .num_tx_queues = 8, 1729 .num_ipms = 8, 1730 .tc_cbs_supported = true, 1731 .ops = &lan937x_dev_ops, 1732 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1733 .mib_names = ksz9477_mib_names, 1734 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1735 .reg_mib_cnt = MIB_COUNTER_NUM, 1736 .regs = ksz9477_regs, 1737 .masks = lan937x_masks, 1738 .shifts = lan937x_shifts, 1739 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1740 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1741 .supports_mii = {false, false, false, false, 1742 true, true, false, false}, 1743 .supports_rmii = {false, false, false, false, 1744 true, true, false, false}, 1745 .supports_rgmii = {false, false, false, false, 1746 true, true, false, false}, 1747 .internal_phy = {true, true, true, true, 1748 false, false, true, true}, 1749 }, 1750 }; 1751 EXPORT_SYMBOL_GPL(ksz_switch_chips); 1752 1753 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num) 1754 { 1755 int i; 1756 1757 for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) { 1758 const struct ksz_chip_data *chip = &ksz_switch_chips[i]; 1759 1760 if (chip->chip_id == prod_num) 1761 return chip; 1762 } 1763 1764 return NULL; 1765 } 1766 1767 static int ksz_check_device_id(struct ksz_device *dev) 1768 { 1769 const struct ksz_chip_data *expected_chip_data; 1770 u32 expected_chip_id; 1771 1772 if (dev->pdata) { 1773 expected_chip_id = dev->pdata->chip_id; 1774 expected_chip_data = ksz_lookup_info(expected_chip_id); 1775 if (WARN_ON(!expected_chip_data)) 1776 return -ENODEV; 1777 } else { 1778 expected_chip_data = of_device_get_match_data(dev->dev); 1779 expected_chip_id = expected_chip_data->chip_id; 1780 } 1781 1782 if (expected_chip_id != dev->chip_id) { 1783 dev_err(dev->dev, 1784 "Device tree specifies chip %s but found %s, please fix it!\n", 1785 expected_chip_data->dev_name, dev->info->dev_name); 1786 return -ENODEV; 1787 } 1788 1789 return 0; 1790 } 1791 1792 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port, 1793 struct phylink_config *config) 1794 { 1795 struct ksz_device *dev = ds->priv; 1796 1797 if (dev->info->supports_mii[port]) 1798 __set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces); 1799 1800 if (dev->info->supports_rmii[port]) 1801 __set_bit(PHY_INTERFACE_MODE_RMII, 1802 config->supported_interfaces); 1803 1804 if (dev->info->supports_rgmii[port]) 1805 phy_interface_set_rgmii(config->supported_interfaces); 1806 1807 if (dev->info->internal_phy[port]) { 1808 __set_bit(PHY_INTERFACE_MODE_INTERNAL, 1809 config->supported_interfaces); 1810 /* Compatibility for phylib's default interface type when the 1811 * phy-mode property is absent 1812 */ 1813 __set_bit(PHY_INTERFACE_MODE_GMII, 1814 config->supported_interfaces); 1815 } 1816 1817 if (dev->dev_ops->get_caps) 1818 dev->dev_ops->get_caps(dev, port, config); 1819 } 1820 1821 void ksz_r_mib_stats64(struct ksz_device *dev, int port) 1822 { 1823 struct ethtool_pause_stats *pstats; 1824 struct rtnl_link_stats64 *stats; 1825 struct ksz_stats_raw *raw; 1826 struct ksz_port_mib *mib; 1827 int ret; 1828 1829 mib = &dev->ports[port].mib; 1830 stats = &mib->stats64; 1831 pstats = &mib->pause_stats; 1832 raw = (struct ksz_stats_raw *)mib->counters; 1833 1834 spin_lock(&mib->stats64_lock); 1835 1836 stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast + 1837 raw->rx_pause; 1838 stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast + 1839 raw->tx_pause; 1840 1841 /* HW counters are counting bytes + FCS which is not acceptable 1842 * for rtnl_link_stats64 interface 1843 */ 1844 stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN; 1845 stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN; 1846 1847 stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments + 1848 raw->rx_oversize; 1849 1850 stats->rx_crc_errors = raw->rx_crc_err; 1851 stats->rx_frame_errors = raw->rx_align_err; 1852 stats->rx_dropped = raw->rx_discards; 1853 stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors + 1854 stats->rx_frame_errors + stats->rx_dropped; 1855 1856 stats->tx_window_errors = raw->tx_late_col; 1857 stats->tx_fifo_errors = raw->tx_discards; 1858 stats->tx_aborted_errors = raw->tx_exc_col; 1859 stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors + 1860 stats->tx_aborted_errors; 1861 1862 stats->multicast = raw->rx_mcast; 1863 stats->collisions = raw->tx_total_col; 1864 1865 pstats->tx_pause_frames = raw->tx_pause; 1866 pstats->rx_pause_frames = raw->rx_pause; 1867 1868 spin_unlock(&mib->stats64_lock); 1869 1870 if (dev->info->phy_errata_9477) { 1871 ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col); 1872 if (ret) 1873 dev_err(dev->dev, "Failed to monitor transmission halt\n"); 1874 } 1875 } 1876 1877 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port) 1878 { 1879 struct ethtool_pause_stats *pstats; 1880 struct rtnl_link_stats64 *stats; 1881 struct ksz88xx_stats_raw *raw; 1882 struct ksz_port_mib *mib; 1883 1884 mib = &dev->ports[port].mib; 1885 stats = &mib->stats64; 1886 pstats = &mib->pause_stats; 1887 raw = (struct ksz88xx_stats_raw *)mib->counters; 1888 1889 spin_lock(&mib->stats64_lock); 1890 1891 stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast + 1892 raw->rx_pause; 1893 stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast + 1894 raw->tx_pause; 1895 1896 /* HW counters are counting bytes + FCS which is not acceptable 1897 * for rtnl_link_stats64 interface 1898 */ 1899 stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN; 1900 stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN; 1901 1902 stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments + 1903 raw->rx_oversize; 1904 1905 stats->rx_crc_errors = raw->rx_crc_err; 1906 stats->rx_frame_errors = raw->rx_align_err; 1907 stats->rx_dropped = raw->rx_discards; 1908 stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors + 1909 stats->rx_frame_errors + stats->rx_dropped; 1910 1911 stats->tx_window_errors = raw->tx_late_col; 1912 stats->tx_fifo_errors = raw->tx_discards; 1913 stats->tx_aborted_errors = raw->tx_exc_col; 1914 stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors + 1915 stats->tx_aborted_errors; 1916 1917 stats->multicast = raw->rx_mcast; 1918 stats->collisions = raw->tx_total_col; 1919 1920 pstats->tx_pause_frames = raw->tx_pause; 1921 pstats->rx_pause_frames = raw->rx_pause; 1922 1923 spin_unlock(&mib->stats64_lock); 1924 } 1925 1926 static void ksz_get_stats64(struct dsa_switch *ds, int port, 1927 struct rtnl_link_stats64 *s) 1928 { 1929 struct ksz_device *dev = ds->priv; 1930 struct ksz_port_mib *mib; 1931 1932 mib = &dev->ports[port].mib; 1933 1934 spin_lock(&mib->stats64_lock); 1935 memcpy(s, &mib->stats64, sizeof(*s)); 1936 spin_unlock(&mib->stats64_lock); 1937 } 1938 1939 static void ksz_get_pause_stats(struct dsa_switch *ds, int port, 1940 struct ethtool_pause_stats *pause_stats) 1941 { 1942 struct ksz_device *dev = ds->priv; 1943 struct ksz_port_mib *mib; 1944 1945 mib = &dev->ports[port].mib; 1946 1947 spin_lock(&mib->stats64_lock); 1948 memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats)); 1949 spin_unlock(&mib->stats64_lock); 1950 } 1951 1952 static void ksz_get_strings(struct dsa_switch *ds, int port, 1953 u32 stringset, uint8_t *buf) 1954 { 1955 struct ksz_device *dev = ds->priv; 1956 int i; 1957 1958 if (stringset != ETH_SS_STATS) 1959 return; 1960 1961 for (i = 0; i < dev->info->mib_cnt; i++) { 1962 memcpy(buf + i * ETH_GSTRING_LEN, 1963 dev->info->mib_names[i].string, ETH_GSTRING_LEN); 1964 } 1965 } 1966 1967 /** 1968 * ksz_update_port_member - Adjust port forwarding rules based on STP state and 1969 * isolation settings. 1970 * @dev: A pointer to the struct ksz_device representing the device. 1971 * @port: The port number to adjust. 1972 * 1973 * This function dynamically adjusts the port membership configuration for a 1974 * specified port and other device ports, based on Spanning Tree Protocol (STP) 1975 * states and port isolation settings. Each port, including the CPU port, has a 1976 * membership register, represented as a bitfield, where each bit corresponds 1977 * to a port number. A set bit indicates permission to forward frames to that 1978 * port. This function iterates over all ports, updating the membership register 1979 * to reflect current forwarding permissions: 1980 * 1981 * 1. Forwards frames only to ports that are part of the same bridge group and 1982 * in the BR_STATE_FORWARDING state. 1983 * 2. Takes into account the isolation status of ports; ports in the 1984 * BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward 1985 * frames to each other, even if they are in the same bridge group. 1986 * 3. Ensures that the CPU port is included in the membership based on its 1987 * upstream port configuration, allowing for management and control traffic 1988 * to flow as required. 1989 */ 1990 static void ksz_update_port_member(struct ksz_device *dev, int port) 1991 { 1992 struct ksz_port *p = &dev->ports[port]; 1993 struct dsa_switch *ds = dev->ds; 1994 u8 port_member = 0, cpu_port; 1995 const struct dsa_port *dp; 1996 int i, j; 1997 1998 if (!dsa_is_user_port(ds, port)) 1999 return; 2000 2001 dp = dsa_to_port(ds, port); 2002 cpu_port = BIT(dsa_upstream_port(ds, port)); 2003 2004 for (i = 0; i < ds->num_ports; i++) { 2005 const struct dsa_port *other_dp = dsa_to_port(ds, i); 2006 struct ksz_port *other_p = &dev->ports[i]; 2007 u8 val = 0; 2008 2009 if (!dsa_is_user_port(ds, i)) 2010 continue; 2011 if (port == i) 2012 continue; 2013 if (!dsa_port_bridge_same(dp, other_dp)) 2014 continue; 2015 if (other_p->stp_state != BR_STATE_FORWARDING) 2016 continue; 2017 2018 /* At this point we know that "port" and "other" port [i] are in 2019 * the same bridge group and that "other" port [i] is in 2020 * forwarding stp state. If "port" is also in forwarding stp 2021 * state, we can allow forwarding from port [port] to port [i]. 2022 * Except if both ports are isolated. 2023 */ 2024 if (p->stp_state == BR_STATE_FORWARDING && 2025 !(p->isolated && other_p->isolated)) { 2026 val |= BIT(port); 2027 port_member |= BIT(i); 2028 } 2029 2030 /* Retain port [i]'s relationship to other ports than [port] */ 2031 for (j = 0; j < ds->num_ports; j++) { 2032 const struct dsa_port *third_dp; 2033 struct ksz_port *third_p; 2034 2035 if (j == i) 2036 continue; 2037 if (j == port) 2038 continue; 2039 if (!dsa_is_user_port(ds, j)) 2040 continue; 2041 third_p = &dev->ports[j]; 2042 if (third_p->stp_state != BR_STATE_FORWARDING) 2043 continue; 2044 2045 third_dp = dsa_to_port(ds, j); 2046 2047 /* Now we updating relation of the "other" port [i] to 2048 * the "third" port [j]. We already know that "other" 2049 * port [i] is in forwarding stp state and that "third" 2050 * port [j] is in forwarding stp state too. 2051 * We need to check if "other" port [i] and "third" port 2052 * [j] are in the same bridge group and not isolated 2053 * before allowing forwarding from port [i] to port [j]. 2054 */ 2055 if (dsa_port_bridge_same(other_dp, third_dp) && 2056 !(other_p->isolated && third_p->isolated)) 2057 val |= BIT(j); 2058 } 2059 2060 dev->dev_ops->cfg_port_member(dev, i, val | cpu_port); 2061 } 2062 2063 dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port); 2064 } 2065 2066 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum) 2067 { 2068 struct ksz_device *dev = bus->priv; 2069 u16 val; 2070 int ret; 2071 2072 ret = dev->dev_ops->r_phy(dev, addr, regnum, &val); 2073 if (ret < 0) 2074 return ret; 2075 2076 return val; 2077 } 2078 2079 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum, 2080 u16 val) 2081 { 2082 struct ksz_device *dev = bus->priv; 2083 2084 return dev->dev_ops->w_phy(dev, addr, regnum, val); 2085 } 2086 2087 static int ksz_irq_phy_setup(struct ksz_device *dev) 2088 { 2089 struct dsa_switch *ds = dev->ds; 2090 int phy; 2091 int irq; 2092 int ret; 2093 2094 for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) { 2095 if (BIT(phy) & ds->phys_mii_mask) { 2096 irq = irq_find_mapping(dev->ports[phy].pirq.domain, 2097 PORT_SRC_PHY_INT); 2098 if (irq < 0) { 2099 ret = irq; 2100 goto out; 2101 } 2102 ds->user_mii_bus->irq[phy] = irq; 2103 } 2104 } 2105 return 0; 2106 out: 2107 while (phy--) 2108 if (BIT(phy) & ds->phys_mii_mask) 2109 irq_dispose_mapping(ds->user_mii_bus->irq[phy]); 2110 2111 return ret; 2112 } 2113 2114 static void ksz_irq_phy_free(struct ksz_device *dev) 2115 { 2116 struct dsa_switch *ds = dev->ds; 2117 int phy; 2118 2119 for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) 2120 if (BIT(phy) & ds->phys_mii_mask) 2121 irq_dispose_mapping(ds->user_mii_bus->irq[phy]); 2122 } 2123 2124 static int ksz_mdio_register(struct ksz_device *dev) 2125 { 2126 struct dsa_switch *ds = dev->ds; 2127 struct device_node *mdio_np; 2128 struct mii_bus *bus; 2129 int ret; 2130 2131 mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio"); 2132 if (!mdio_np) 2133 return 0; 2134 2135 bus = devm_mdiobus_alloc(ds->dev); 2136 if (!bus) { 2137 of_node_put(mdio_np); 2138 return -ENOMEM; 2139 } 2140 2141 bus->priv = dev; 2142 bus->read = ksz_sw_mdio_read; 2143 bus->write = ksz_sw_mdio_write; 2144 bus->name = "ksz user smi"; 2145 snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index); 2146 bus->parent = ds->dev; 2147 bus->phy_mask = ~ds->phys_mii_mask; 2148 2149 ds->user_mii_bus = bus; 2150 2151 if (dev->irq > 0) { 2152 ret = ksz_irq_phy_setup(dev); 2153 if (ret) { 2154 of_node_put(mdio_np); 2155 return ret; 2156 } 2157 } 2158 2159 ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np); 2160 if (ret) { 2161 dev_err(ds->dev, "unable to register MDIO bus %s\n", 2162 bus->id); 2163 if (dev->irq > 0) 2164 ksz_irq_phy_free(dev); 2165 } 2166 2167 of_node_put(mdio_np); 2168 2169 return ret; 2170 } 2171 2172 static void ksz_irq_mask(struct irq_data *d) 2173 { 2174 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2175 2176 kirq->masked |= BIT(d->hwirq); 2177 } 2178 2179 static void ksz_irq_unmask(struct irq_data *d) 2180 { 2181 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2182 2183 kirq->masked &= ~BIT(d->hwirq); 2184 } 2185 2186 static void ksz_irq_bus_lock(struct irq_data *d) 2187 { 2188 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2189 2190 mutex_lock(&kirq->dev->lock_irq); 2191 } 2192 2193 static void ksz_irq_bus_sync_unlock(struct irq_data *d) 2194 { 2195 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2196 struct ksz_device *dev = kirq->dev; 2197 int ret; 2198 2199 ret = ksz_write8(dev, kirq->reg_mask, kirq->masked); 2200 if (ret) 2201 dev_err(dev->dev, "failed to change IRQ mask\n"); 2202 2203 mutex_unlock(&dev->lock_irq); 2204 } 2205 2206 static const struct irq_chip ksz_irq_chip = { 2207 .name = "ksz-irq", 2208 .irq_mask = ksz_irq_mask, 2209 .irq_unmask = ksz_irq_unmask, 2210 .irq_bus_lock = ksz_irq_bus_lock, 2211 .irq_bus_sync_unlock = ksz_irq_bus_sync_unlock, 2212 }; 2213 2214 static int ksz_irq_domain_map(struct irq_domain *d, 2215 unsigned int irq, irq_hw_number_t hwirq) 2216 { 2217 irq_set_chip_data(irq, d->host_data); 2218 irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq); 2219 irq_set_noprobe(irq); 2220 2221 return 0; 2222 } 2223 2224 static const struct irq_domain_ops ksz_irq_domain_ops = { 2225 .map = ksz_irq_domain_map, 2226 .xlate = irq_domain_xlate_twocell, 2227 }; 2228 2229 static void ksz_irq_free(struct ksz_irq *kirq) 2230 { 2231 int irq, virq; 2232 2233 free_irq(kirq->irq_num, kirq); 2234 2235 for (irq = 0; irq < kirq->nirqs; irq++) { 2236 virq = irq_find_mapping(kirq->domain, irq); 2237 irq_dispose_mapping(virq); 2238 } 2239 2240 irq_domain_remove(kirq->domain); 2241 } 2242 2243 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id) 2244 { 2245 struct ksz_irq *kirq = dev_id; 2246 unsigned int nhandled = 0; 2247 struct ksz_device *dev; 2248 unsigned int sub_irq; 2249 u8 data; 2250 int ret; 2251 u8 n; 2252 2253 dev = kirq->dev; 2254 2255 /* Read interrupt status register */ 2256 ret = ksz_read8(dev, kirq->reg_status, &data); 2257 if (ret) 2258 goto out; 2259 2260 for (n = 0; n < kirq->nirqs; ++n) { 2261 if (data & BIT(n)) { 2262 sub_irq = irq_find_mapping(kirq->domain, n); 2263 handle_nested_irq(sub_irq); 2264 ++nhandled; 2265 } 2266 } 2267 out: 2268 return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE); 2269 } 2270 2271 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq) 2272 { 2273 int ret, n; 2274 2275 kirq->dev = dev; 2276 kirq->masked = ~0; 2277 2278 kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0, 2279 &ksz_irq_domain_ops, kirq); 2280 if (!kirq->domain) 2281 return -ENOMEM; 2282 2283 for (n = 0; n < kirq->nirqs; n++) 2284 irq_create_mapping(kirq->domain, n); 2285 2286 ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn, 2287 IRQF_ONESHOT, kirq->name, kirq); 2288 if (ret) 2289 goto out; 2290 2291 return 0; 2292 2293 out: 2294 ksz_irq_free(kirq); 2295 2296 return ret; 2297 } 2298 2299 static int ksz_girq_setup(struct ksz_device *dev) 2300 { 2301 struct ksz_irq *girq = &dev->girq; 2302 2303 girq->nirqs = dev->info->port_cnt; 2304 girq->reg_mask = REG_SW_PORT_INT_MASK__1; 2305 girq->reg_status = REG_SW_PORT_INT_STATUS__1; 2306 snprintf(girq->name, sizeof(girq->name), "global_port_irq"); 2307 2308 girq->irq_num = dev->irq; 2309 2310 return ksz_irq_common_setup(dev, girq); 2311 } 2312 2313 static int ksz_pirq_setup(struct ksz_device *dev, u8 p) 2314 { 2315 struct ksz_irq *pirq = &dev->ports[p].pirq; 2316 2317 pirq->nirqs = dev->info->port_nirqs; 2318 pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK); 2319 pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS); 2320 snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p); 2321 2322 pirq->irq_num = irq_find_mapping(dev->girq.domain, p); 2323 if (pirq->irq_num < 0) 2324 return pirq->irq_num; 2325 2326 return ksz_irq_common_setup(dev, pirq); 2327 } 2328 2329 static int ksz_parse_drive_strength(struct ksz_device *dev); 2330 2331 static int ksz_setup(struct dsa_switch *ds) 2332 { 2333 struct ksz_device *dev = ds->priv; 2334 struct dsa_port *dp; 2335 struct ksz_port *p; 2336 const u16 *regs; 2337 int ret; 2338 2339 regs = dev->info->regs; 2340 2341 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table), 2342 dev->info->num_vlans, GFP_KERNEL); 2343 if (!dev->vlan_cache) 2344 return -ENOMEM; 2345 2346 ret = dev->dev_ops->reset(dev); 2347 if (ret) { 2348 dev_err(ds->dev, "failed to reset switch\n"); 2349 return ret; 2350 } 2351 2352 ret = ksz_parse_drive_strength(dev); 2353 if (ret) 2354 return ret; 2355 2356 /* set broadcast storm protection 10% rate */ 2357 regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL], 2358 BROADCAST_STORM_RATE, 2359 (BROADCAST_STORM_VALUE * 2360 BROADCAST_STORM_PROT_RATE) / 100); 2361 2362 dev->dev_ops->config_cpu_port(ds); 2363 2364 dev->dev_ops->enable_stp_addr(dev); 2365 2366 ds->num_tx_queues = dev->info->num_tx_queues; 2367 2368 regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL], 2369 MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE); 2370 2371 ksz_init_mib_timer(dev); 2372 2373 ds->configure_vlan_while_not_filtering = false; 2374 ds->dscp_prio_mapping_is_global = true; 2375 2376 if (dev->dev_ops->setup) { 2377 ret = dev->dev_ops->setup(ds); 2378 if (ret) 2379 return ret; 2380 } 2381 2382 /* Start with learning disabled on standalone user ports, and enabled 2383 * on the CPU port. In lack of other finer mechanisms, learning on the 2384 * CPU port will avoid flooding bridge local addresses on the network 2385 * in some cases. 2386 */ 2387 p = &dev->ports[dev->cpu_port]; 2388 p->learning = true; 2389 2390 if (dev->irq > 0) { 2391 ret = ksz_girq_setup(dev); 2392 if (ret) 2393 return ret; 2394 2395 dsa_switch_for_each_user_port(dp, dev->ds) { 2396 ret = ksz_pirq_setup(dev, dp->index); 2397 if (ret) 2398 goto out_girq; 2399 2400 ret = ksz_ptp_irq_setup(ds, dp->index); 2401 if (ret) 2402 goto out_pirq; 2403 } 2404 } 2405 2406 ret = ksz_ptp_clock_register(ds); 2407 if (ret) { 2408 dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret); 2409 goto out_ptpirq; 2410 } 2411 2412 ret = ksz_mdio_register(dev); 2413 if (ret < 0) { 2414 dev_err(dev->dev, "failed to register the mdio"); 2415 goto out_ptp_clock_unregister; 2416 } 2417 2418 ret = ksz_dcb_init(dev); 2419 if (ret) 2420 goto out_ptp_clock_unregister; 2421 2422 /* start switch */ 2423 regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL], 2424 SW_START, SW_START); 2425 2426 return 0; 2427 2428 out_ptp_clock_unregister: 2429 ksz_ptp_clock_unregister(ds); 2430 out_ptpirq: 2431 if (dev->irq > 0) 2432 dsa_switch_for_each_user_port(dp, dev->ds) 2433 ksz_ptp_irq_free(ds, dp->index); 2434 out_pirq: 2435 if (dev->irq > 0) 2436 dsa_switch_for_each_user_port(dp, dev->ds) 2437 ksz_irq_free(&dev->ports[dp->index].pirq); 2438 out_girq: 2439 if (dev->irq > 0) 2440 ksz_irq_free(&dev->girq); 2441 2442 return ret; 2443 } 2444 2445 static void ksz_teardown(struct dsa_switch *ds) 2446 { 2447 struct ksz_device *dev = ds->priv; 2448 struct dsa_port *dp; 2449 2450 ksz_ptp_clock_unregister(ds); 2451 2452 if (dev->irq > 0) { 2453 dsa_switch_for_each_user_port(dp, dev->ds) { 2454 ksz_ptp_irq_free(ds, dp->index); 2455 2456 ksz_irq_free(&dev->ports[dp->index].pirq); 2457 } 2458 2459 ksz_irq_free(&dev->girq); 2460 } 2461 2462 if (dev->dev_ops->teardown) 2463 dev->dev_ops->teardown(ds); 2464 } 2465 2466 static void port_r_cnt(struct ksz_device *dev, int port) 2467 { 2468 struct ksz_port_mib *mib = &dev->ports[port].mib; 2469 u64 *dropped; 2470 2471 /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */ 2472 while (mib->cnt_ptr < dev->info->reg_mib_cnt) { 2473 dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr, 2474 &mib->counters[mib->cnt_ptr]); 2475 ++mib->cnt_ptr; 2476 } 2477 2478 /* last one in storage */ 2479 dropped = &mib->counters[dev->info->mib_cnt]; 2480 2481 /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */ 2482 while (mib->cnt_ptr < dev->info->mib_cnt) { 2483 dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr, 2484 dropped, &mib->counters[mib->cnt_ptr]); 2485 ++mib->cnt_ptr; 2486 } 2487 mib->cnt_ptr = 0; 2488 } 2489 2490 static void ksz_mib_read_work(struct work_struct *work) 2491 { 2492 struct ksz_device *dev = container_of(work, struct ksz_device, 2493 mib_read.work); 2494 struct ksz_port_mib *mib; 2495 struct ksz_port *p; 2496 int i; 2497 2498 for (i = 0; i < dev->info->port_cnt; i++) { 2499 if (dsa_is_unused_port(dev->ds, i)) 2500 continue; 2501 2502 p = &dev->ports[i]; 2503 mib = &p->mib; 2504 mutex_lock(&mib->cnt_mutex); 2505 2506 /* Only read MIB counters when the port is told to do. 2507 * If not, read only dropped counters when link is not up. 2508 */ 2509 if (!p->read) { 2510 const struct dsa_port *dp = dsa_to_port(dev->ds, i); 2511 2512 if (!netif_carrier_ok(dp->user)) 2513 mib->cnt_ptr = dev->info->reg_mib_cnt; 2514 } 2515 port_r_cnt(dev, i); 2516 p->read = false; 2517 2518 if (dev->dev_ops->r_mib_stat64) 2519 dev->dev_ops->r_mib_stat64(dev, i); 2520 2521 mutex_unlock(&mib->cnt_mutex); 2522 } 2523 2524 schedule_delayed_work(&dev->mib_read, dev->mib_read_interval); 2525 } 2526 2527 void ksz_init_mib_timer(struct ksz_device *dev) 2528 { 2529 int i; 2530 2531 INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work); 2532 2533 for (i = 0; i < dev->info->port_cnt; i++) { 2534 struct ksz_port_mib *mib = &dev->ports[i].mib; 2535 2536 dev->dev_ops->port_init_cnt(dev, i); 2537 2538 mib->cnt_ptr = 0; 2539 memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64)); 2540 } 2541 } 2542 2543 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg) 2544 { 2545 struct ksz_device *dev = ds->priv; 2546 u16 val = 0xffff; 2547 int ret; 2548 2549 ret = dev->dev_ops->r_phy(dev, addr, reg, &val); 2550 if (ret) 2551 return ret; 2552 2553 return val; 2554 } 2555 2556 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val) 2557 { 2558 struct ksz_device *dev = ds->priv; 2559 int ret; 2560 2561 ret = dev->dev_ops->w_phy(dev, addr, reg, val); 2562 if (ret) 2563 return ret; 2564 2565 return 0; 2566 } 2567 2568 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port) 2569 { 2570 struct ksz_device *dev = ds->priv; 2571 2572 switch (dev->chip_id) { 2573 case KSZ8830_CHIP_ID: 2574 /* Silicon Errata Sheet (DS80000830A): 2575 * Port 1 does not work with LinkMD Cable-Testing. 2576 * Port 1 does not respond to received PAUSE control frames. 2577 */ 2578 if (!port) 2579 return MICREL_KSZ8_P1_ERRATA; 2580 break; 2581 case KSZ8567_CHIP_ID: 2582 case KSZ9477_CHIP_ID: 2583 case KSZ9567_CHIP_ID: 2584 case KSZ9896_CHIP_ID: 2585 case KSZ9897_CHIP_ID: 2586 /* KSZ9477 Errata DS80000754C 2587 * 2588 * Module 4: Energy Efficient Ethernet (EEE) feature select must 2589 * be manually disabled 2590 * The EEE feature is enabled by default, but it is not fully 2591 * operational. It must be manually disabled through register 2592 * controls. If not disabled, the PHY ports can auto-negotiate 2593 * to enable EEE, and this feature can cause link drops when 2594 * linked to another device supporting EEE. 2595 * 2596 * The same item appears in the errata for the KSZ9567, KSZ9896, 2597 * and KSZ9897. 2598 * 2599 * A similar item appears in the errata for the KSZ8567, but 2600 * provides an alternative workaround. For now, use the simple 2601 * workaround of disabling the EEE feature for this device too. 2602 */ 2603 return MICREL_NO_EEE; 2604 } 2605 2606 return 0; 2607 } 2608 2609 static void ksz_phylink_mac_link_down(struct phylink_config *config, 2610 unsigned int mode, 2611 phy_interface_t interface) 2612 { 2613 struct dsa_port *dp = dsa_phylink_to_port(config); 2614 struct ksz_device *dev = dp->ds->priv; 2615 2616 /* Read all MIB counters when the link is going down. */ 2617 dev->ports[dp->index].read = true; 2618 /* timer started */ 2619 if (dev->mib_read_interval) 2620 schedule_delayed_work(&dev->mib_read, 0); 2621 } 2622 2623 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset) 2624 { 2625 struct ksz_device *dev = ds->priv; 2626 2627 if (sset != ETH_SS_STATS) 2628 return 0; 2629 2630 return dev->info->mib_cnt; 2631 } 2632 2633 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port, 2634 uint64_t *buf) 2635 { 2636 const struct dsa_port *dp = dsa_to_port(ds, port); 2637 struct ksz_device *dev = ds->priv; 2638 struct ksz_port_mib *mib; 2639 2640 mib = &dev->ports[port].mib; 2641 mutex_lock(&mib->cnt_mutex); 2642 2643 /* Only read dropped counters if no link. */ 2644 if (!netif_carrier_ok(dp->user)) 2645 mib->cnt_ptr = dev->info->reg_mib_cnt; 2646 port_r_cnt(dev, port); 2647 memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64)); 2648 mutex_unlock(&mib->cnt_mutex); 2649 } 2650 2651 static int ksz_port_bridge_join(struct dsa_switch *ds, int port, 2652 struct dsa_bridge bridge, 2653 bool *tx_fwd_offload, 2654 struct netlink_ext_ack *extack) 2655 { 2656 /* port_stp_state_set() will be called after to put the port in 2657 * appropriate state so there is no need to do anything. 2658 */ 2659 2660 return 0; 2661 } 2662 2663 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port, 2664 struct dsa_bridge bridge) 2665 { 2666 /* port_stp_state_set() will be called after to put the port in 2667 * forwarding state so there is no need to do anything. 2668 */ 2669 } 2670 2671 static void ksz_port_fast_age(struct dsa_switch *ds, int port) 2672 { 2673 struct ksz_device *dev = ds->priv; 2674 2675 dev->dev_ops->flush_dyn_mac_table(dev, port); 2676 } 2677 2678 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) 2679 { 2680 struct ksz_device *dev = ds->priv; 2681 2682 if (!dev->dev_ops->set_ageing_time) 2683 return -EOPNOTSUPP; 2684 2685 return dev->dev_ops->set_ageing_time(dev, msecs); 2686 } 2687 2688 static int ksz_port_fdb_add(struct dsa_switch *ds, int port, 2689 const unsigned char *addr, u16 vid, 2690 struct dsa_db db) 2691 { 2692 struct ksz_device *dev = ds->priv; 2693 2694 if (!dev->dev_ops->fdb_add) 2695 return -EOPNOTSUPP; 2696 2697 return dev->dev_ops->fdb_add(dev, port, addr, vid, db); 2698 } 2699 2700 static int ksz_port_fdb_del(struct dsa_switch *ds, int port, 2701 const unsigned char *addr, 2702 u16 vid, struct dsa_db db) 2703 { 2704 struct ksz_device *dev = ds->priv; 2705 2706 if (!dev->dev_ops->fdb_del) 2707 return -EOPNOTSUPP; 2708 2709 return dev->dev_ops->fdb_del(dev, port, addr, vid, db); 2710 } 2711 2712 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port, 2713 dsa_fdb_dump_cb_t *cb, void *data) 2714 { 2715 struct ksz_device *dev = ds->priv; 2716 2717 if (!dev->dev_ops->fdb_dump) 2718 return -EOPNOTSUPP; 2719 2720 return dev->dev_ops->fdb_dump(dev, port, cb, data); 2721 } 2722 2723 static int ksz_port_mdb_add(struct dsa_switch *ds, int port, 2724 const struct switchdev_obj_port_mdb *mdb, 2725 struct dsa_db db) 2726 { 2727 struct ksz_device *dev = ds->priv; 2728 2729 if (!dev->dev_ops->mdb_add) 2730 return -EOPNOTSUPP; 2731 2732 return dev->dev_ops->mdb_add(dev, port, mdb, db); 2733 } 2734 2735 static int ksz_port_mdb_del(struct dsa_switch *ds, int port, 2736 const struct switchdev_obj_port_mdb *mdb, 2737 struct dsa_db db) 2738 { 2739 struct ksz_device *dev = ds->priv; 2740 2741 if (!dev->dev_ops->mdb_del) 2742 return -EOPNOTSUPP; 2743 2744 return dev->dev_ops->mdb_del(dev, port, mdb, db); 2745 } 2746 2747 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev, 2748 int port) 2749 { 2750 u32 queue_map = 0; 2751 int ipm; 2752 2753 for (ipm = 0; ipm < dev->info->num_ipms; ipm++) { 2754 int queue; 2755 2756 /* Traffic Type (TT) is corresponding to the Internal Priority 2757 * Map (IPM) in the switch. Traffic Class (TC) is 2758 * corresponding to the queue in the switch. 2759 */ 2760 queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues); 2761 if (queue < 0) 2762 return queue; 2763 2764 queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S); 2765 } 2766 2767 return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map); 2768 } 2769 2770 static int ksz_port_setup(struct dsa_switch *ds, int port) 2771 { 2772 struct ksz_device *dev = ds->priv; 2773 int ret; 2774 2775 if (!dsa_is_user_port(ds, port)) 2776 return 0; 2777 2778 /* setup user port */ 2779 dev->dev_ops->port_setup(dev, port, false); 2780 2781 if (!is_ksz8(dev)) { 2782 ret = ksz9477_set_default_prio_queue_mapping(dev, port); 2783 if (ret) 2784 return ret; 2785 } 2786 2787 /* port_stp_state_set() will be called after to enable the port so 2788 * there is no need to do anything. 2789 */ 2790 2791 return ksz_dcb_init_port(dev, port); 2792 } 2793 2794 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) 2795 { 2796 struct ksz_device *dev = ds->priv; 2797 struct ksz_port *p; 2798 const u16 *regs; 2799 u8 data; 2800 2801 regs = dev->info->regs; 2802 2803 ksz_pread8(dev, port, regs[P_STP_CTRL], &data); 2804 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE); 2805 2806 p = &dev->ports[port]; 2807 2808 switch (state) { 2809 case BR_STATE_DISABLED: 2810 data |= PORT_LEARN_DISABLE; 2811 break; 2812 case BR_STATE_LISTENING: 2813 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE); 2814 break; 2815 case BR_STATE_LEARNING: 2816 data |= PORT_RX_ENABLE; 2817 if (!p->learning) 2818 data |= PORT_LEARN_DISABLE; 2819 break; 2820 case BR_STATE_FORWARDING: 2821 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 2822 if (!p->learning) 2823 data |= PORT_LEARN_DISABLE; 2824 break; 2825 case BR_STATE_BLOCKING: 2826 data |= PORT_LEARN_DISABLE; 2827 break; 2828 default: 2829 dev_err(ds->dev, "invalid STP state: %d\n", state); 2830 return; 2831 } 2832 2833 ksz_pwrite8(dev, port, regs[P_STP_CTRL], data); 2834 2835 p->stp_state = state; 2836 2837 ksz_update_port_member(dev, port); 2838 } 2839 2840 static void ksz_port_teardown(struct dsa_switch *ds, int port) 2841 { 2842 struct ksz_device *dev = ds->priv; 2843 2844 switch (dev->chip_id) { 2845 case KSZ8563_CHIP_ID: 2846 case KSZ8567_CHIP_ID: 2847 case KSZ9477_CHIP_ID: 2848 case KSZ9563_CHIP_ID: 2849 case KSZ9567_CHIP_ID: 2850 case KSZ9893_CHIP_ID: 2851 case KSZ9896_CHIP_ID: 2852 case KSZ9897_CHIP_ID: 2853 if (dsa_is_user_port(ds, port)) 2854 ksz9477_port_acl_free(dev, port); 2855 } 2856 } 2857 2858 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port, 2859 struct switchdev_brport_flags flags, 2860 struct netlink_ext_ack *extack) 2861 { 2862 if (flags.mask & ~(BR_LEARNING | BR_ISOLATED)) 2863 return -EINVAL; 2864 2865 return 0; 2866 } 2867 2868 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port, 2869 struct switchdev_brport_flags flags, 2870 struct netlink_ext_ack *extack) 2871 { 2872 struct ksz_device *dev = ds->priv; 2873 struct ksz_port *p = &dev->ports[port]; 2874 2875 if (flags.mask & (BR_LEARNING | BR_ISOLATED)) { 2876 if (flags.mask & BR_LEARNING) 2877 p->learning = !!(flags.val & BR_LEARNING); 2878 2879 if (flags.mask & BR_ISOLATED) 2880 p->isolated = !!(flags.val & BR_ISOLATED); 2881 2882 /* Make the change take effect immediately */ 2883 ksz_port_stp_state_set(ds, port, p->stp_state); 2884 } 2885 2886 return 0; 2887 } 2888 2889 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds, 2890 int port, 2891 enum dsa_tag_protocol mp) 2892 { 2893 struct ksz_device *dev = ds->priv; 2894 enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE; 2895 2896 if (dev->chip_id == KSZ8795_CHIP_ID || 2897 dev->chip_id == KSZ8794_CHIP_ID || 2898 dev->chip_id == KSZ8765_CHIP_ID) 2899 proto = DSA_TAG_PROTO_KSZ8795; 2900 2901 if (dev->chip_id == KSZ8830_CHIP_ID || 2902 dev->chip_id == KSZ8563_CHIP_ID || 2903 dev->chip_id == KSZ9893_CHIP_ID || 2904 dev->chip_id == KSZ9563_CHIP_ID) 2905 proto = DSA_TAG_PROTO_KSZ9893; 2906 2907 if (dev->chip_id == KSZ8567_CHIP_ID || 2908 dev->chip_id == KSZ9477_CHIP_ID || 2909 dev->chip_id == KSZ9896_CHIP_ID || 2910 dev->chip_id == KSZ9897_CHIP_ID || 2911 dev->chip_id == KSZ9567_CHIP_ID) 2912 proto = DSA_TAG_PROTO_KSZ9477; 2913 2914 if (is_lan937x(dev)) 2915 proto = DSA_TAG_PROTO_LAN937X; 2916 2917 return proto; 2918 } 2919 2920 static int ksz_connect_tag_protocol(struct dsa_switch *ds, 2921 enum dsa_tag_protocol proto) 2922 { 2923 struct ksz_tagger_data *tagger_data; 2924 2925 switch (proto) { 2926 case DSA_TAG_PROTO_KSZ8795: 2927 return 0; 2928 case DSA_TAG_PROTO_KSZ9893: 2929 case DSA_TAG_PROTO_KSZ9477: 2930 case DSA_TAG_PROTO_LAN937X: 2931 tagger_data = ksz_tagger_data(ds); 2932 tagger_data->xmit_work_fn = ksz_port_deferred_xmit; 2933 return 0; 2934 default: 2935 return -EPROTONOSUPPORT; 2936 } 2937 } 2938 2939 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, 2940 bool flag, struct netlink_ext_ack *extack) 2941 { 2942 struct ksz_device *dev = ds->priv; 2943 2944 if (!dev->dev_ops->vlan_filtering) 2945 return -EOPNOTSUPP; 2946 2947 return dev->dev_ops->vlan_filtering(dev, port, flag, extack); 2948 } 2949 2950 static int ksz_port_vlan_add(struct dsa_switch *ds, int port, 2951 const struct switchdev_obj_port_vlan *vlan, 2952 struct netlink_ext_ack *extack) 2953 { 2954 struct ksz_device *dev = ds->priv; 2955 2956 if (!dev->dev_ops->vlan_add) 2957 return -EOPNOTSUPP; 2958 2959 return dev->dev_ops->vlan_add(dev, port, vlan, extack); 2960 } 2961 2962 static int ksz_port_vlan_del(struct dsa_switch *ds, int port, 2963 const struct switchdev_obj_port_vlan *vlan) 2964 { 2965 struct ksz_device *dev = ds->priv; 2966 2967 if (!dev->dev_ops->vlan_del) 2968 return -EOPNOTSUPP; 2969 2970 return dev->dev_ops->vlan_del(dev, port, vlan); 2971 } 2972 2973 static int ksz_port_mirror_add(struct dsa_switch *ds, int port, 2974 struct dsa_mall_mirror_tc_entry *mirror, 2975 bool ingress, struct netlink_ext_ack *extack) 2976 { 2977 struct ksz_device *dev = ds->priv; 2978 2979 if (!dev->dev_ops->mirror_add) 2980 return -EOPNOTSUPP; 2981 2982 return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack); 2983 } 2984 2985 static void ksz_port_mirror_del(struct dsa_switch *ds, int port, 2986 struct dsa_mall_mirror_tc_entry *mirror) 2987 { 2988 struct ksz_device *dev = ds->priv; 2989 2990 if (dev->dev_ops->mirror_del) 2991 dev->dev_ops->mirror_del(dev, port, mirror); 2992 } 2993 2994 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu) 2995 { 2996 struct ksz_device *dev = ds->priv; 2997 2998 if (!dev->dev_ops->change_mtu) 2999 return -EOPNOTSUPP; 3000 3001 return dev->dev_ops->change_mtu(dev, port, mtu); 3002 } 3003 3004 static int ksz_max_mtu(struct dsa_switch *ds, int port) 3005 { 3006 struct ksz_device *dev = ds->priv; 3007 3008 switch (dev->chip_id) { 3009 case KSZ8795_CHIP_ID: 3010 case KSZ8794_CHIP_ID: 3011 case KSZ8765_CHIP_ID: 3012 return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3013 case KSZ8830_CHIP_ID: 3014 return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3015 case KSZ8563_CHIP_ID: 3016 case KSZ8567_CHIP_ID: 3017 case KSZ9477_CHIP_ID: 3018 case KSZ9563_CHIP_ID: 3019 case KSZ9567_CHIP_ID: 3020 case KSZ9893_CHIP_ID: 3021 case KSZ9896_CHIP_ID: 3022 case KSZ9897_CHIP_ID: 3023 case LAN9370_CHIP_ID: 3024 case LAN9371_CHIP_ID: 3025 case LAN9372_CHIP_ID: 3026 case LAN9373_CHIP_ID: 3027 case LAN9374_CHIP_ID: 3028 return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3029 } 3030 3031 return -EOPNOTSUPP; 3032 } 3033 3034 static int ksz_validate_eee(struct dsa_switch *ds, int port) 3035 { 3036 struct ksz_device *dev = ds->priv; 3037 3038 if (!dev->info->internal_phy[port]) 3039 return -EOPNOTSUPP; 3040 3041 switch (dev->chip_id) { 3042 case KSZ8563_CHIP_ID: 3043 case KSZ8567_CHIP_ID: 3044 case KSZ9477_CHIP_ID: 3045 case KSZ9563_CHIP_ID: 3046 case KSZ9567_CHIP_ID: 3047 case KSZ9893_CHIP_ID: 3048 case KSZ9896_CHIP_ID: 3049 case KSZ9897_CHIP_ID: 3050 return 0; 3051 } 3052 3053 return -EOPNOTSUPP; 3054 } 3055 3056 static int ksz_get_mac_eee(struct dsa_switch *ds, int port, 3057 struct ethtool_keee *e) 3058 { 3059 int ret; 3060 3061 ret = ksz_validate_eee(ds, port); 3062 if (ret) 3063 return ret; 3064 3065 /* There is no documented control of Tx LPI configuration. */ 3066 e->tx_lpi_enabled = true; 3067 3068 /* There is no documented control of Tx LPI timer. According to tests 3069 * Tx LPI timer seems to be set by default to minimal value. 3070 */ 3071 e->tx_lpi_timer = 0; 3072 3073 return 0; 3074 } 3075 3076 static int ksz_set_mac_eee(struct dsa_switch *ds, int port, 3077 struct ethtool_keee *e) 3078 { 3079 struct ksz_device *dev = ds->priv; 3080 int ret; 3081 3082 ret = ksz_validate_eee(ds, port); 3083 if (ret) 3084 return ret; 3085 3086 if (!e->tx_lpi_enabled) { 3087 dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n"); 3088 return -EINVAL; 3089 } 3090 3091 if (e->tx_lpi_timer) { 3092 dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n"); 3093 return -EINVAL; 3094 } 3095 3096 return 0; 3097 } 3098 3099 static void ksz_set_xmii(struct ksz_device *dev, int port, 3100 phy_interface_t interface) 3101 { 3102 const u8 *bitval = dev->info->xmii_ctrl1; 3103 struct ksz_port *p = &dev->ports[port]; 3104 const u16 *regs = dev->info->regs; 3105 u8 data8; 3106 3107 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3108 3109 data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE | 3110 P_RGMII_ID_EG_ENABLE); 3111 3112 switch (interface) { 3113 case PHY_INTERFACE_MODE_MII: 3114 data8 |= bitval[P_MII_SEL]; 3115 break; 3116 case PHY_INTERFACE_MODE_RMII: 3117 data8 |= bitval[P_RMII_SEL]; 3118 break; 3119 case PHY_INTERFACE_MODE_GMII: 3120 data8 |= bitval[P_GMII_SEL]; 3121 break; 3122 case PHY_INTERFACE_MODE_RGMII: 3123 case PHY_INTERFACE_MODE_RGMII_ID: 3124 case PHY_INTERFACE_MODE_RGMII_TXID: 3125 case PHY_INTERFACE_MODE_RGMII_RXID: 3126 data8 |= bitval[P_RGMII_SEL]; 3127 /* On KSZ9893, disable RGMII in-band status support */ 3128 if (dev->chip_id == KSZ9893_CHIP_ID || 3129 dev->chip_id == KSZ8563_CHIP_ID || 3130 dev->chip_id == KSZ9563_CHIP_ID || 3131 is_lan937x(dev)) 3132 data8 &= ~P_MII_MAC_MODE; 3133 break; 3134 default: 3135 dev_err(dev->dev, "Unsupported interface '%s' for port %d\n", 3136 phy_modes(interface), port); 3137 return; 3138 } 3139 3140 if (p->rgmii_tx_val) 3141 data8 |= P_RGMII_ID_EG_ENABLE; 3142 3143 if (p->rgmii_rx_val) 3144 data8 |= P_RGMII_ID_IG_ENABLE; 3145 3146 /* Write the updated value */ 3147 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8); 3148 } 3149 3150 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit) 3151 { 3152 const u8 *bitval = dev->info->xmii_ctrl1; 3153 const u16 *regs = dev->info->regs; 3154 phy_interface_t interface; 3155 u8 data8; 3156 u8 val; 3157 3158 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3159 3160 val = FIELD_GET(P_MII_SEL_M, data8); 3161 3162 if (val == bitval[P_MII_SEL]) { 3163 if (gbit) 3164 interface = PHY_INTERFACE_MODE_GMII; 3165 else 3166 interface = PHY_INTERFACE_MODE_MII; 3167 } else if (val == bitval[P_RMII_SEL]) { 3168 interface = PHY_INTERFACE_MODE_RMII; 3169 } else { 3170 interface = PHY_INTERFACE_MODE_RGMII; 3171 if (data8 & P_RGMII_ID_EG_ENABLE) 3172 interface = PHY_INTERFACE_MODE_RGMII_TXID; 3173 if (data8 & P_RGMII_ID_IG_ENABLE) { 3174 interface = PHY_INTERFACE_MODE_RGMII_RXID; 3175 if (data8 & P_RGMII_ID_EG_ENABLE) 3176 interface = PHY_INTERFACE_MODE_RGMII_ID; 3177 } 3178 } 3179 3180 return interface; 3181 } 3182 3183 static void ksz8830_phylink_mac_config(struct phylink_config *config, 3184 unsigned int mode, 3185 const struct phylink_link_state *state) 3186 { 3187 struct dsa_port *dp = dsa_phylink_to_port(config); 3188 struct ksz_device *dev = dp->ds->priv; 3189 3190 dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN); 3191 } 3192 3193 static void ksz_phylink_mac_config(struct phylink_config *config, 3194 unsigned int mode, 3195 const struct phylink_link_state *state) 3196 { 3197 struct dsa_port *dp = dsa_phylink_to_port(config); 3198 struct ksz_device *dev = dp->ds->priv; 3199 int port = dp->index; 3200 3201 /* Internal PHYs */ 3202 if (dev->info->internal_phy[port]) 3203 return; 3204 3205 if (phylink_autoneg_inband(mode)) { 3206 dev_err(dev->dev, "In-band AN not supported!\n"); 3207 return; 3208 } 3209 3210 ksz_set_xmii(dev, port, state->interface); 3211 3212 if (dev->dev_ops->setup_rgmii_delay) 3213 dev->dev_ops->setup_rgmii_delay(dev, port); 3214 } 3215 3216 bool ksz_get_gbit(struct ksz_device *dev, int port) 3217 { 3218 const u8 *bitval = dev->info->xmii_ctrl1; 3219 const u16 *regs = dev->info->regs; 3220 bool gbit = false; 3221 u8 data8; 3222 bool val; 3223 3224 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3225 3226 val = FIELD_GET(P_GMII_1GBIT_M, data8); 3227 3228 if (val == bitval[P_GMII_1GBIT]) 3229 gbit = true; 3230 3231 return gbit; 3232 } 3233 3234 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit) 3235 { 3236 const u8 *bitval = dev->info->xmii_ctrl1; 3237 const u16 *regs = dev->info->regs; 3238 u8 data8; 3239 3240 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3241 3242 data8 &= ~P_GMII_1GBIT_M; 3243 3244 if (gbit) 3245 data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]); 3246 else 3247 data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]); 3248 3249 /* Write the updated value */ 3250 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8); 3251 } 3252 3253 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed) 3254 { 3255 const u8 *bitval = dev->info->xmii_ctrl0; 3256 const u16 *regs = dev->info->regs; 3257 u8 data8; 3258 3259 ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8); 3260 3261 data8 &= ~P_MII_100MBIT_M; 3262 3263 if (speed == SPEED_100) 3264 data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]); 3265 else 3266 data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]); 3267 3268 /* Write the updated value */ 3269 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8); 3270 } 3271 3272 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed) 3273 { 3274 if (speed == SPEED_1000) 3275 ksz_set_gbit(dev, port, true); 3276 else 3277 ksz_set_gbit(dev, port, false); 3278 3279 if (speed == SPEED_100 || speed == SPEED_10) 3280 ksz_set_100_10mbit(dev, port, speed); 3281 } 3282 3283 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex, 3284 bool tx_pause, bool rx_pause) 3285 { 3286 const u8 *bitval = dev->info->xmii_ctrl0; 3287 const u32 *masks = dev->info->masks; 3288 const u16 *regs = dev->info->regs; 3289 u8 mask; 3290 u8 val; 3291 3292 mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] | 3293 masks[P_MII_RX_FLOW_CTRL]; 3294 3295 if (duplex == DUPLEX_FULL) 3296 val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]); 3297 else 3298 val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]); 3299 3300 if (tx_pause) 3301 val |= masks[P_MII_TX_FLOW_CTRL]; 3302 3303 if (rx_pause) 3304 val |= masks[P_MII_RX_FLOW_CTRL]; 3305 3306 ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val); 3307 } 3308 3309 static void ksz9477_phylink_mac_link_up(struct phylink_config *config, 3310 struct phy_device *phydev, 3311 unsigned int mode, 3312 phy_interface_t interface, 3313 int speed, int duplex, bool tx_pause, 3314 bool rx_pause) 3315 { 3316 struct dsa_port *dp = dsa_phylink_to_port(config); 3317 struct ksz_device *dev = dp->ds->priv; 3318 int port = dp->index; 3319 struct ksz_port *p; 3320 3321 p = &dev->ports[port]; 3322 3323 /* Internal PHYs */ 3324 if (dev->info->internal_phy[port]) 3325 return; 3326 3327 p->phydev.speed = speed; 3328 3329 ksz_port_set_xmii_speed(dev, port, speed); 3330 3331 ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause); 3332 } 3333 3334 static int ksz_switch_detect(struct ksz_device *dev) 3335 { 3336 u8 id1, id2, id4; 3337 u16 id16; 3338 u32 id32; 3339 int ret; 3340 3341 /* read chip id */ 3342 ret = ksz_read16(dev, REG_CHIP_ID0, &id16); 3343 if (ret) 3344 return ret; 3345 3346 id1 = FIELD_GET(SW_FAMILY_ID_M, id16); 3347 id2 = FIELD_GET(SW_CHIP_ID_M, id16); 3348 3349 switch (id1) { 3350 case KSZ87_FAMILY_ID: 3351 if (id2 == KSZ87_CHIP_ID_95) { 3352 u8 val; 3353 3354 dev->chip_id = KSZ8795_CHIP_ID; 3355 3356 ksz_read8(dev, KSZ8_PORT_STATUS_0, &val); 3357 if (val & KSZ8_PORT_FIBER_MODE) 3358 dev->chip_id = KSZ8765_CHIP_ID; 3359 } else if (id2 == KSZ87_CHIP_ID_94) { 3360 dev->chip_id = KSZ8794_CHIP_ID; 3361 } else { 3362 return -ENODEV; 3363 } 3364 break; 3365 case KSZ88_FAMILY_ID: 3366 if (id2 == KSZ88_CHIP_ID_63) 3367 dev->chip_id = KSZ8830_CHIP_ID; 3368 else 3369 return -ENODEV; 3370 break; 3371 default: 3372 ret = ksz_read32(dev, REG_CHIP_ID0, &id32); 3373 if (ret) 3374 return ret; 3375 3376 dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32); 3377 id32 &= ~0xFF; 3378 3379 switch (id32) { 3380 case KSZ9477_CHIP_ID: 3381 case KSZ9896_CHIP_ID: 3382 case KSZ9897_CHIP_ID: 3383 case KSZ9567_CHIP_ID: 3384 case KSZ8567_CHIP_ID: 3385 case LAN9370_CHIP_ID: 3386 case LAN9371_CHIP_ID: 3387 case LAN9372_CHIP_ID: 3388 case LAN9373_CHIP_ID: 3389 case LAN9374_CHIP_ID: 3390 dev->chip_id = id32; 3391 break; 3392 case KSZ9893_CHIP_ID: 3393 ret = ksz_read8(dev, REG_CHIP_ID4, 3394 &id4); 3395 if (ret) 3396 return ret; 3397 3398 if (id4 == SKU_ID_KSZ8563) 3399 dev->chip_id = KSZ8563_CHIP_ID; 3400 else if (id4 == SKU_ID_KSZ9563) 3401 dev->chip_id = KSZ9563_CHIP_ID; 3402 else 3403 dev->chip_id = KSZ9893_CHIP_ID; 3404 3405 break; 3406 default: 3407 dev_err(dev->dev, 3408 "unsupported switch detected %x)\n", id32); 3409 return -ENODEV; 3410 } 3411 } 3412 return 0; 3413 } 3414 3415 static int ksz_cls_flower_add(struct dsa_switch *ds, int port, 3416 struct flow_cls_offload *cls, bool ingress) 3417 { 3418 struct ksz_device *dev = ds->priv; 3419 3420 switch (dev->chip_id) { 3421 case KSZ8563_CHIP_ID: 3422 case KSZ8567_CHIP_ID: 3423 case KSZ9477_CHIP_ID: 3424 case KSZ9563_CHIP_ID: 3425 case KSZ9567_CHIP_ID: 3426 case KSZ9893_CHIP_ID: 3427 case KSZ9896_CHIP_ID: 3428 case KSZ9897_CHIP_ID: 3429 return ksz9477_cls_flower_add(ds, port, cls, ingress); 3430 } 3431 3432 return -EOPNOTSUPP; 3433 } 3434 3435 static int ksz_cls_flower_del(struct dsa_switch *ds, int port, 3436 struct flow_cls_offload *cls, bool ingress) 3437 { 3438 struct ksz_device *dev = ds->priv; 3439 3440 switch (dev->chip_id) { 3441 case KSZ8563_CHIP_ID: 3442 case KSZ8567_CHIP_ID: 3443 case KSZ9477_CHIP_ID: 3444 case KSZ9563_CHIP_ID: 3445 case KSZ9567_CHIP_ID: 3446 case KSZ9893_CHIP_ID: 3447 case KSZ9896_CHIP_ID: 3448 case KSZ9897_CHIP_ID: 3449 return ksz9477_cls_flower_del(ds, port, cls, ingress); 3450 } 3451 3452 return -EOPNOTSUPP; 3453 } 3454 3455 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth 3456 * is converted to Hex-decimal using the successive multiplication method. On 3457 * every step, integer part is taken and decimal part is carry forwarded. 3458 */ 3459 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw) 3460 { 3461 u32 cinc = 0; 3462 u32 txrate; 3463 u32 rate; 3464 u8 temp; 3465 u8 i; 3466 3467 txrate = idle_slope - send_slope; 3468 3469 if (!txrate) 3470 return -EINVAL; 3471 3472 rate = idle_slope; 3473 3474 /* 24 bit register */ 3475 for (i = 0; i < 6; i++) { 3476 rate = rate * 16; 3477 3478 temp = rate / txrate; 3479 3480 rate %= txrate; 3481 3482 cinc = ((cinc << 4) | temp); 3483 } 3484 3485 *bw = cinc; 3486 3487 return 0; 3488 } 3489 3490 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler, 3491 u8 shaper) 3492 { 3493 return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0, 3494 FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) | 3495 FIELD_PREP(MTI_SHAPING_M, shaper)); 3496 } 3497 3498 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port, 3499 struct tc_cbs_qopt_offload *qopt) 3500 { 3501 struct ksz_device *dev = ds->priv; 3502 int ret; 3503 u32 bw; 3504 3505 if (!dev->info->tc_cbs_supported) 3506 return -EOPNOTSUPP; 3507 3508 if (qopt->queue > dev->info->num_tx_queues) 3509 return -EINVAL; 3510 3511 /* Queue Selection */ 3512 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue); 3513 if (ret) 3514 return ret; 3515 3516 if (!qopt->enable) 3517 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR, 3518 MTI_SHAPING_OFF); 3519 3520 /* High Credit */ 3521 ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK, 3522 qopt->hicredit); 3523 if (ret) 3524 return ret; 3525 3526 /* Low Credit */ 3527 ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK, 3528 qopt->locredit); 3529 if (ret) 3530 return ret; 3531 3532 /* Credit Increment Register */ 3533 ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw); 3534 if (ret) 3535 return ret; 3536 3537 if (dev->dev_ops->tc_cbs_set_cinc) { 3538 ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw); 3539 if (ret) 3540 return ret; 3541 } 3542 3543 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO, 3544 MTI_SHAPING_SRP); 3545 } 3546 3547 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port) 3548 { 3549 int queue, ret; 3550 3551 /* Configuration will not take effect until the last Port Queue X 3552 * Egress Limit Control Register is written. 3553 */ 3554 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 3555 ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue, 3556 KSZ9477_OUT_RATE_NO_LIMIT); 3557 if (ret) 3558 return ret; 3559 } 3560 3561 return 0; 3562 } 3563 3564 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p, 3565 int band) 3566 { 3567 /* Compared to queues, bands prioritize packets differently. In strict 3568 * priority mode, the lowest priority is assigned to Queue 0 while the 3569 * highest priority is given to Band 0. 3570 */ 3571 return p->bands - 1 - band; 3572 } 3573 3574 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue) 3575 { 3576 int ret; 3577 3578 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue); 3579 if (ret) 3580 return ret; 3581 3582 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO, 3583 MTI_SHAPING_OFF); 3584 } 3585 3586 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue, 3587 int weight) 3588 { 3589 int ret; 3590 3591 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue); 3592 if (ret) 3593 return ret; 3594 3595 ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR, 3596 MTI_SHAPING_OFF); 3597 if (ret) 3598 return ret; 3599 3600 return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight); 3601 } 3602 3603 static int ksz_tc_ets_add(struct ksz_device *dev, int port, 3604 struct tc_ets_qopt_offload_replace_params *p) 3605 { 3606 int ret, band, tc_prio; 3607 u32 queue_map = 0; 3608 3609 /* In order to ensure proper prioritization, it is necessary to set the 3610 * rate limit for the related queue to zero. Otherwise strict priority 3611 * or WRR mode will not work. This is a hardware limitation. 3612 */ 3613 ret = ksz_disable_egress_rate_limit(dev, port); 3614 if (ret) 3615 return ret; 3616 3617 /* Configure queue scheduling mode for all bands. Currently only strict 3618 * prio mode is supported. 3619 */ 3620 for (band = 0; band < p->bands; band++) { 3621 int queue = ksz_ets_band_to_queue(p, band); 3622 3623 ret = ksz_queue_set_strict(dev, port, queue); 3624 if (ret) 3625 return ret; 3626 } 3627 3628 /* Configure the mapping between traffic classes and queues. Note: 3629 * priomap variable support 16 traffic classes, but the chip can handle 3630 * only 8 classes. 3631 */ 3632 for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) { 3633 int queue; 3634 3635 if (tc_prio >= dev->info->num_ipms) 3636 break; 3637 3638 queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]); 3639 queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S); 3640 } 3641 3642 return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map); 3643 } 3644 3645 static int ksz_tc_ets_del(struct ksz_device *dev, int port) 3646 { 3647 int ret, queue; 3648 3649 /* To restore the default chip configuration, set all queues to use the 3650 * WRR scheduler with a weight of 1. 3651 */ 3652 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 3653 ret = ksz_queue_set_wrr(dev, port, queue, 3654 KSZ9477_DEFAULT_WRR_WEIGHT); 3655 if (ret) 3656 return ret; 3657 } 3658 3659 /* Revert the queue mapping for TC-priority to its default setting on 3660 * the chip. 3661 */ 3662 return ksz9477_set_default_prio_queue_mapping(dev, port); 3663 } 3664 3665 static int ksz_tc_ets_validate(struct ksz_device *dev, int port, 3666 struct tc_ets_qopt_offload_replace_params *p) 3667 { 3668 int band; 3669 3670 /* Since it is not feasible to share one port among multiple qdisc, 3671 * the user must configure all available queues appropriately. 3672 */ 3673 if (p->bands != dev->info->num_tx_queues) { 3674 dev_err(dev->dev, "Not supported amount of bands. It should be %d\n", 3675 dev->info->num_tx_queues); 3676 return -EOPNOTSUPP; 3677 } 3678 3679 for (band = 0; band < p->bands; ++band) { 3680 /* The KSZ switches utilize a weighted round robin configuration 3681 * where a certain number of packets can be transmitted from a 3682 * queue before the next queue is serviced. For more information 3683 * on this, refer to section 5.2.8.4 of the KSZ8565R 3684 * documentation on the Port Transmit Queue Control 1 Register. 3685 * However, the current ETS Qdisc implementation (as of February 3686 * 2023) assigns a weight to each queue based on the number of 3687 * bytes or extrapolated bandwidth in percentages. Since this 3688 * differs from the KSZ switches' method and we don't want to 3689 * fake support by converting bytes to packets, it is better to 3690 * return an error instead. 3691 */ 3692 if (p->quanta[band]) { 3693 dev_err(dev->dev, "Quanta/weights configuration is not supported.\n"); 3694 return -EOPNOTSUPP; 3695 } 3696 } 3697 3698 return 0; 3699 } 3700 3701 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port, 3702 struct tc_ets_qopt_offload *qopt) 3703 { 3704 struct ksz_device *dev = ds->priv; 3705 int ret; 3706 3707 if (is_ksz8(dev)) 3708 return -EOPNOTSUPP; 3709 3710 if (qopt->parent != TC_H_ROOT) { 3711 dev_err(dev->dev, "Parent should be \"root\"\n"); 3712 return -EOPNOTSUPP; 3713 } 3714 3715 switch (qopt->command) { 3716 case TC_ETS_REPLACE: 3717 ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params); 3718 if (ret) 3719 return ret; 3720 3721 return ksz_tc_ets_add(dev, port, &qopt->replace_params); 3722 case TC_ETS_DESTROY: 3723 return ksz_tc_ets_del(dev, port); 3724 case TC_ETS_STATS: 3725 case TC_ETS_GRAFT: 3726 return -EOPNOTSUPP; 3727 } 3728 3729 return -EOPNOTSUPP; 3730 } 3731 3732 static int ksz_setup_tc(struct dsa_switch *ds, int port, 3733 enum tc_setup_type type, void *type_data) 3734 { 3735 switch (type) { 3736 case TC_SETUP_QDISC_CBS: 3737 return ksz_setup_tc_cbs(ds, port, type_data); 3738 case TC_SETUP_QDISC_ETS: 3739 return ksz_tc_setup_qdisc_ets(ds, port, type_data); 3740 default: 3741 return -EOPNOTSUPP; 3742 } 3743 } 3744 3745 static void ksz_get_wol(struct dsa_switch *ds, int port, 3746 struct ethtool_wolinfo *wol) 3747 { 3748 struct ksz_device *dev = ds->priv; 3749 3750 if (dev->dev_ops->get_wol) 3751 dev->dev_ops->get_wol(dev, port, wol); 3752 } 3753 3754 static int ksz_set_wol(struct dsa_switch *ds, int port, 3755 struct ethtool_wolinfo *wol) 3756 { 3757 struct ksz_device *dev = ds->priv; 3758 3759 if (dev->dev_ops->set_wol) 3760 return dev->dev_ops->set_wol(dev, port, wol); 3761 3762 return -EOPNOTSUPP; 3763 } 3764 3765 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port, 3766 const unsigned char *addr) 3767 { 3768 struct dsa_port *dp = dsa_to_port(ds, port); 3769 struct ethtool_wolinfo wol; 3770 3771 if (dp->hsr_dev) { 3772 dev_err(ds->dev, 3773 "Cannot change MAC address on port %d with active HSR offload\n", 3774 port); 3775 return -EBUSY; 3776 } 3777 3778 /* Need to initialize variable as the code to fill in settings may 3779 * not be executed. 3780 */ 3781 wol.wolopts = 0; 3782 3783 ksz_get_wol(ds, dp->index, &wol); 3784 if (wol.wolopts & WAKE_MAGIC) { 3785 dev_err(ds->dev, 3786 "Cannot change MAC address on port %d with active Wake on Magic Packet\n", 3787 port); 3788 return -EBUSY; 3789 } 3790 3791 return 0; 3792 } 3793 3794 /** 3795 * ksz_is_port_mac_global_usable - Check if the MAC address on a given port 3796 * can be used as a global address. 3797 * @ds: Pointer to the DSA switch structure. 3798 * @port: The port number on which the MAC address is to be checked. 3799 * 3800 * This function examines the MAC address set on the specified port and 3801 * determines if it can be used as a global address for the switch. 3802 * 3803 * Return: true if the port's MAC address can be used as a global address, false 3804 * otherwise. 3805 */ 3806 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port) 3807 { 3808 struct net_device *user = dsa_to_port(ds, port)->user; 3809 const unsigned char *addr = user->dev_addr; 3810 struct ksz_switch_macaddr *switch_macaddr; 3811 struct ksz_device *dev = ds->priv; 3812 3813 ASSERT_RTNL(); 3814 3815 switch_macaddr = dev->switch_macaddr; 3816 if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr)) 3817 return false; 3818 3819 return true; 3820 } 3821 3822 /** 3823 * ksz_switch_macaddr_get - Program the switch's MAC address register. 3824 * @ds: DSA switch instance. 3825 * @port: Port number. 3826 * @extack: Netlink extended acknowledgment. 3827 * 3828 * This function programs the switch's MAC address register with the MAC address 3829 * of the requesting user port. This single address is used by the switch for 3830 * multiple features like HSR self-address filtering and WoL. Other user ports 3831 * can share ownership of this address as long as their MAC address is the same. 3832 * The MAC addresses of user ports must not change while they have ownership of 3833 * the switch MAC address. 3834 * 3835 * Return: 0 on success, or other error codes on failure. 3836 */ 3837 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port, 3838 struct netlink_ext_ack *extack) 3839 { 3840 struct net_device *user = dsa_to_port(ds, port)->user; 3841 const unsigned char *addr = user->dev_addr; 3842 struct ksz_switch_macaddr *switch_macaddr; 3843 struct ksz_device *dev = ds->priv; 3844 const u16 *regs = dev->info->regs; 3845 int i, ret; 3846 3847 /* Make sure concurrent MAC address changes are blocked */ 3848 ASSERT_RTNL(); 3849 3850 switch_macaddr = dev->switch_macaddr; 3851 if (switch_macaddr) { 3852 if (!ether_addr_equal(switch_macaddr->addr, addr)) { 3853 NL_SET_ERR_MSG_FMT_MOD(extack, 3854 "Switch already configured for MAC address %pM", 3855 switch_macaddr->addr); 3856 return -EBUSY; 3857 } 3858 3859 refcount_inc(&switch_macaddr->refcount); 3860 return 0; 3861 } 3862 3863 switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL); 3864 if (!switch_macaddr) 3865 return -ENOMEM; 3866 3867 ether_addr_copy(switch_macaddr->addr, addr); 3868 refcount_set(&switch_macaddr->refcount, 1); 3869 dev->switch_macaddr = switch_macaddr; 3870 3871 /* Program the switch MAC address to hardware */ 3872 for (i = 0; i < ETH_ALEN; i++) { 3873 ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]); 3874 if (ret) 3875 goto macaddr_drop; 3876 } 3877 3878 return 0; 3879 3880 macaddr_drop: 3881 dev->switch_macaddr = NULL; 3882 refcount_set(&switch_macaddr->refcount, 0); 3883 kfree(switch_macaddr); 3884 3885 return ret; 3886 } 3887 3888 void ksz_switch_macaddr_put(struct dsa_switch *ds) 3889 { 3890 struct ksz_switch_macaddr *switch_macaddr; 3891 struct ksz_device *dev = ds->priv; 3892 const u16 *regs = dev->info->regs; 3893 int i; 3894 3895 /* Make sure concurrent MAC address changes are blocked */ 3896 ASSERT_RTNL(); 3897 3898 switch_macaddr = dev->switch_macaddr; 3899 if (!refcount_dec_and_test(&switch_macaddr->refcount)) 3900 return; 3901 3902 for (i = 0; i < ETH_ALEN; i++) 3903 ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0); 3904 3905 dev->switch_macaddr = NULL; 3906 kfree(switch_macaddr); 3907 } 3908 3909 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr, 3910 struct netlink_ext_ack *extack) 3911 { 3912 struct ksz_device *dev = ds->priv; 3913 enum hsr_version ver; 3914 int ret; 3915 3916 ret = hsr_get_version(hsr, &ver); 3917 if (ret) 3918 return ret; 3919 3920 if (dev->chip_id != KSZ9477_CHIP_ID) { 3921 NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload"); 3922 return -EOPNOTSUPP; 3923 } 3924 3925 /* KSZ9477 can support HW offloading of only 1 HSR device */ 3926 if (dev->hsr_dev && hsr != dev->hsr_dev) { 3927 NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR"); 3928 return -EOPNOTSUPP; 3929 } 3930 3931 /* KSZ9477 only supports HSR v0 and v1 */ 3932 if (!(ver == HSR_V0 || ver == HSR_V1)) { 3933 NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported"); 3934 return -EOPNOTSUPP; 3935 } 3936 3937 /* KSZ9477 can only perform HSR offloading for up to two ports */ 3938 if (hweight8(dev->hsr_ports) >= 2) { 3939 NL_SET_ERR_MSG_MOD(extack, 3940 "Cannot offload more than two ports - using software HSR"); 3941 return -EOPNOTSUPP; 3942 } 3943 3944 /* Self MAC address filtering, to avoid frames traversing 3945 * the HSR ring more than once. 3946 */ 3947 ret = ksz_switch_macaddr_get(ds, port, extack); 3948 if (ret) 3949 return ret; 3950 3951 ksz9477_hsr_join(ds, port, hsr); 3952 dev->hsr_dev = hsr; 3953 dev->hsr_ports |= BIT(port); 3954 3955 return 0; 3956 } 3957 3958 static int ksz_hsr_leave(struct dsa_switch *ds, int port, 3959 struct net_device *hsr) 3960 { 3961 struct ksz_device *dev = ds->priv; 3962 3963 WARN_ON(dev->chip_id != KSZ9477_CHIP_ID); 3964 3965 ksz9477_hsr_leave(ds, port, hsr); 3966 dev->hsr_ports &= ~BIT(port); 3967 if (!dev->hsr_ports) 3968 dev->hsr_dev = NULL; 3969 3970 ksz_switch_macaddr_put(ds); 3971 3972 return 0; 3973 } 3974 3975 static const struct dsa_switch_ops ksz_switch_ops = { 3976 .get_tag_protocol = ksz_get_tag_protocol, 3977 .connect_tag_protocol = ksz_connect_tag_protocol, 3978 .get_phy_flags = ksz_get_phy_flags, 3979 .setup = ksz_setup, 3980 .teardown = ksz_teardown, 3981 .phy_read = ksz_phy_read16, 3982 .phy_write = ksz_phy_write16, 3983 .phylink_get_caps = ksz_phylink_get_caps, 3984 .port_setup = ksz_port_setup, 3985 .set_ageing_time = ksz_set_ageing_time, 3986 .get_strings = ksz_get_strings, 3987 .get_ethtool_stats = ksz_get_ethtool_stats, 3988 .get_sset_count = ksz_sset_count, 3989 .port_bridge_join = ksz_port_bridge_join, 3990 .port_bridge_leave = ksz_port_bridge_leave, 3991 .port_hsr_join = ksz_hsr_join, 3992 .port_hsr_leave = ksz_hsr_leave, 3993 .port_set_mac_address = ksz_port_set_mac_address, 3994 .port_stp_state_set = ksz_port_stp_state_set, 3995 .port_teardown = ksz_port_teardown, 3996 .port_pre_bridge_flags = ksz_port_pre_bridge_flags, 3997 .port_bridge_flags = ksz_port_bridge_flags, 3998 .port_fast_age = ksz_port_fast_age, 3999 .port_vlan_filtering = ksz_port_vlan_filtering, 4000 .port_vlan_add = ksz_port_vlan_add, 4001 .port_vlan_del = ksz_port_vlan_del, 4002 .port_fdb_dump = ksz_port_fdb_dump, 4003 .port_fdb_add = ksz_port_fdb_add, 4004 .port_fdb_del = ksz_port_fdb_del, 4005 .port_mdb_add = ksz_port_mdb_add, 4006 .port_mdb_del = ksz_port_mdb_del, 4007 .port_mirror_add = ksz_port_mirror_add, 4008 .port_mirror_del = ksz_port_mirror_del, 4009 .get_stats64 = ksz_get_stats64, 4010 .get_pause_stats = ksz_get_pause_stats, 4011 .port_change_mtu = ksz_change_mtu, 4012 .port_max_mtu = ksz_max_mtu, 4013 .get_wol = ksz_get_wol, 4014 .set_wol = ksz_set_wol, 4015 .get_ts_info = ksz_get_ts_info, 4016 .port_hwtstamp_get = ksz_hwtstamp_get, 4017 .port_hwtstamp_set = ksz_hwtstamp_set, 4018 .port_txtstamp = ksz_port_txtstamp, 4019 .port_rxtstamp = ksz_port_rxtstamp, 4020 .cls_flower_add = ksz_cls_flower_add, 4021 .cls_flower_del = ksz_cls_flower_del, 4022 .port_setup_tc = ksz_setup_tc, 4023 .get_mac_eee = ksz_get_mac_eee, 4024 .set_mac_eee = ksz_set_mac_eee, 4025 .port_get_default_prio = ksz_port_get_default_prio, 4026 .port_set_default_prio = ksz_port_set_default_prio, 4027 .port_get_dscp_prio = ksz_port_get_dscp_prio, 4028 .port_add_dscp_prio = ksz_port_add_dscp_prio, 4029 .port_del_dscp_prio = ksz_port_del_dscp_prio, 4030 .port_get_apptrust = ksz_port_get_apptrust, 4031 .port_set_apptrust = ksz_port_set_apptrust, 4032 }; 4033 4034 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv) 4035 { 4036 struct dsa_switch *ds; 4037 struct ksz_device *swdev; 4038 4039 ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL); 4040 if (!ds) 4041 return NULL; 4042 4043 ds->dev = base; 4044 ds->num_ports = DSA_MAX_PORTS; 4045 ds->ops = &ksz_switch_ops; 4046 4047 swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL); 4048 if (!swdev) 4049 return NULL; 4050 4051 ds->priv = swdev; 4052 swdev->dev = base; 4053 4054 swdev->ds = ds; 4055 swdev->priv = priv; 4056 4057 return swdev; 4058 } 4059 EXPORT_SYMBOL(ksz_switch_alloc); 4060 4061 /** 4062 * ksz_switch_shutdown - Shutdown routine for the switch device. 4063 * @dev: The switch device structure. 4064 * 4065 * This function is responsible for initiating a shutdown sequence for the 4066 * switch device. It invokes the reset operation defined in the device 4067 * operations, if available, to reset the switch. Subsequently, it calls the 4068 * DSA framework's shutdown function to ensure a proper shutdown of the DSA 4069 * switch. 4070 */ 4071 void ksz_switch_shutdown(struct ksz_device *dev) 4072 { 4073 bool wol_enabled = false; 4074 4075 if (dev->dev_ops->wol_pre_shutdown) 4076 dev->dev_ops->wol_pre_shutdown(dev, &wol_enabled); 4077 4078 if (dev->dev_ops->reset && !wol_enabled) 4079 dev->dev_ops->reset(dev); 4080 4081 dsa_switch_shutdown(dev->ds); 4082 } 4083 EXPORT_SYMBOL(ksz_switch_shutdown); 4084 4085 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num, 4086 struct device_node *port_dn) 4087 { 4088 phy_interface_t phy_mode = dev->ports[port_num].interface; 4089 int rx_delay = -1, tx_delay = -1; 4090 4091 if (!phy_interface_mode_is_rgmii(phy_mode)) 4092 return; 4093 4094 of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay); 4095 of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay); 4096 4097 if (rx_delay == -1 && tx_delay == -1) { 4098 dev_warn(dev->dev, 4099 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, " 4100 "please update device tree to specify \"rx-internal-delay-ps\" and " 4101 "\"tx-internal-delay-ps\"", 4102 port_num); 4103 4104 if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID || 4105 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 4106 rx_delay = 2000; 4107 4108 if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID || 4109 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 4110 tx_delay = 2000; 4111 } 4112 4113 if (rx_delay < 0) 4114 rx_delay = 0; 4115 if (tx_delay < 0) 4116 tx_delay = 0; 4117 4118 dev->ports[port_num].rgmii_rx_val = rx_delay; 4119 dev->ports[port_num].rgmii_tx_val = tx_delay; 4120 } 4121 4122 /** 4123 * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding 4124 * register value. 4125 * @array: The array of drive strength values to search. 4126 * @array_size: The size of the array. 4127 * @microamp: The drive strength value in microamp to be converted. 4128 * 4129 * This function searches the array of drive strength values for the given 4130 * microamp value and returns the corresponding register value for that drive. 4131 * 4132 * Returns: If found, the corresponding register value for that drive strength 4133 * is returned. Otherwise, -EINVAL is returned indicating an invalid value. 4134 */ 4135 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array, 4136 size_t array_size, int microamp) 4137 { 4138 int i; 4139 4140 for (i = 0; i < array_size; i++) { 4141 if (array[i].microamp == microamp) 4142 return array[i].reg_val; 4143 } 4144 4145 return -EINVAL; 4146 } 4147 4148 /** 4149 * ksz_drive_strength_error() - Report invalid drive strength value 4150 * @dev: ksz device 4151 * @array: The array of drive strength values to search. 4152 * @array_size: The size of the array. 4153 * @microamp: Invalid drive strength value in microamp 4154 * 4155 * This function logs an error message when an unsupported drive strength value 4156 * is detected. It lists out all the supported drive strength values for 4157 * reference in the error message. 4158 */ 4159 static void ksz_drive_strength_error(struct ksz_device *dev, 4160 const struct ksz_drive_strength *array, 4161 size_t array_size, int microamp) 4162 { 4163 char supported_values[100]; 4164 size_t remaining_size; 4165 int added_len; 4166 char *ptr; 4167 int i; 4168 4169 remaining_size = sizeof(supported_values); 4170 ptr = supported_values; 4171 4172 for (i = 0; i < array_size; i++) { 4173 added_len = snprintf(ptr, remaining_size, 4174 i == 0 ? "%d" : ", %d", array[i].microamp); 4175 4176 if (added_len >= remaining_size) 4177 break; 4178 4179 ptr += added_len; 4180 remaining_size -= added_len; 4181 } 4182 4183 dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n", 4184 microamp, supported_values); 4185 } 4186 4187 /** 4188 * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477 4189 * chip variants. 4190 * @dev: ksz device 4191 * @props: Array of drive strength properties to be applied 4192 * @num_props: Number of properties in the array 4193 * 4194 * This function configures the drive strength for various KSZ9477 chip variants 4195 * based on the provided properties. It handles chip-specific nuances and 4196 * ensures only valid drive strengths are written to the respective chip. 4197 * 4198 * Return: 0 on successful configuration, a negative error code on failure. 4199 */ 4200 static int ksz9477_drive_strength_write(struct ksz_device *dev, 4201 struct ksz_driver_strength_prop *props, 4202 int num_props) 4203 { 4204 size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths); 4205 int i, ret, reg; 4206 u8 mask = 0; 4207 u8 val = 0; 4208 4209 if (props[KSZ_DRIVER_STRENGTH_IO].value != -1) 4210 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 4211 props[KSZ_DRIVER_STRENGTH_IO].name); 4212 4213 if (dev->chip_id == KSZ8795_CHIP_ID || 4214 dev->chip_id == KSZ8794_CHIP_ID || 4215 dev->chip_id == KSZ8765_CHIP_ID) 4216 reg = KSZ8795_REG_SW_CTRL_20; 4217 else 4218 reg = KSZ9477_REG_SW_IO_STRENGTH; 4219 4220 for (i = 0; i < num_props; i++) { 4221 if (props[i].value == -1) 4222 continue; 4223 4224 ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths, 4225 array_size, props[i].value); 4226 if (ret < 0) { 4227 ksz_drive_strength_error(dev, ksz9477_drive_strengths, 4228 array_size, props[i].value); 4229 return ret; 4230 } 4231 4232 mask |= SW_DRIVE_STRENGTH_M << props[i].offset; 4233 val |= ret << props[i].offset; 4234 } 4235 4236 return ksz_rmw8(dev, reg, mask, val); 4237 } 4238 4239 /** 4240 * ksz8830_drive_strength_write() - Set the drive strength configuration for 4241 * KSZ8830 compatible chip variants. 4242 * @dev: ksz device 4243 * @props: Array of drive strength properties to be set 4244 * @num_props: Number of properties in the array 4245 * 4246 * This function applies the specified drive strength settings to KSZ8830 chip 4247 * variants (KSZ8873, KSZ8863). 4248 * It ensures the configurations align with what the chip variant supports and 4249 * warns or errors out on unsupported settings. 4250 * 4251 * Return: 0 on success, error code otherwise 4252 */ 4253 static int ksz8830_drive_strength_write(struct ksz_device *dev, 4254 struct ksz_driver_strength_prop *props, 4255 int num_props) 4256 { 4257 size_t array_size = ARRAY_SIZE(ksz8830_drive_strengths); 4258 int microamp; 4259 int i, ret; 4260 4261 for (i = 0; i < num_props; i++) { 4262 if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO) 4263 continue; 4264 4265 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 4266 props[i].name); 4267 } 4268 4269 microamp = props[KSZ_DRIVER_STRENGTH_IO].value; 4270 ret = ksz_drive_strength_to_reg(ksz8830_drive_strengths, array_size, 4271 microamp); 4272 if (ret < 0) { 4273 ksz_drive_strength_error(dev, ksz8830_drive_strengths, 4274 array_size, microamp); 4275 return ret; 4276 } 4277 4278 return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12, 4279 KSZ8873_DRIVE_STRENGTH_16MA, ret); 4280 } 4281 4282 /** 4283 * ksz_parse_drive_strength() - Extract and apply drive strength configurations 4284 * from device tree properties. 4285 * @dev: ksz device 4286 * 4287 * This function reads the specified drive strength properties from the 4288 * device tree, validates against the supported chip variants, and sets 4289 * them accordingly. An error should be critical here, as the drive strength 4290 * settings are crucial for EMI compliance. 4291 * 4292 * Return: 0 on success, error code otherwise 4293 */ 4294 static int ksz_parse_drive_strength(struct ksz_device *dev) 4295 { 4296 struct ksz_driver_strength_prop of_props[] = { 4297 [KSZ_DRIVER_STRENGTH_HI] = { 4298 .name = "microchip,hi-drive-strength-microamp", 4299 .offset = SW_HI_SPEED_DRIVE_STRENGTH_S, 4300 .value = -1, 4301 }, 4302 [KSZ_DRIVER_STRENGTH_LO] = { 4303 .name = "microchip,lo-drive-strength-microamp", 4304 .offset = SW_LO_SPEED_DRIVE_STRENGTH_S, 4305 .value = -1, 4306 }, 4307 [KSZ_DRIVER_STRENGTH_IO] = { 4308 .name = "microchip,io-drive-strength-microamp", 4309 .offset = 0, /* don't care */ 4310 .value = -1, 4311 }, 4312 }; 4313 struct device_node *np = dev->dev->of_node; 4314 bool have_any_prop = false; 4315 int i, ret; 4316 4317 for (i = 0; i < ARRAY_SIZE(of_props); i++) { 4318 ret = of_property_read_u32(np, of_props[i].name, 4319 &of_props[i].value); 4320 if (ret && ret != -EINVAL) 4321 dev_warn(dev->dev, "Failed to read %s\n", 4322 of_props[i].name); 4323 if (ret) 4324 continue; 4325 4326 have_any_prop = true; 4327 } 4328 4329 if (!have_any_prop) 4330 return 0; 4331 4332 switch (dev->chip_id) { 4333 case KSZ8830_CHIP_ID: 4334 return ksz8830_drive_strength_write(dev, of_props, 4335 ARRAY_SIZE(of_props)); 4336 case KSZ8795_CHIP_ID: 4337 case KSZ8794_CHIP_ID: 4338 case KSZ8765_CHIP_ID: 4339 case KSZ8563_CHIP_ID: 4340 case KSZ8567_CHIP_ID: 4341 case KSZ9477_CHIP_ID: 4342 case KSZ9563_CHIP_ID: 4343 case KSZ9567_CHIP_ID: 4344 case KSZ9893_CHIP_ID: 4345 case KSZ9896_CHIP_ID: 4346 case KSZ9897_CHIP_ID: 4347 return ksz9477_drive_strength_write(dev, of_props, 4348 ARRAY_SIZE(of_props)); 4349 default: 4350 for (i = 0; i < ARRAY_SIZE(of_props); i++) { 4351 if (of_props[i].value == -1) 4352 continue; 4353 4354 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 4355 of_props[i].name); 4356 } 4357 } 4358 4359 return 0; 4360 } 4361 4362 int ksz_switch_register(struct ksz_device *dev) 4363 { 4364 const struct ksz_chip_data *info; 4365 struct device_node *port, *ports; 4366 phy_interface_t interface; 4367 unsigned int port_num; 4368 int ret; 4369 int i; 4370 4371 dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset", 4372 GPIOD_OUT_LOW); 4373 if (IS_ERR(dev->reset_gpio)) 4374 return PTR_ERR(dev->reset_gpio); 4375 4376 if (dev->reset_gpio) { 4377 gpiod_set_value_cansleep(dev->reset_gpio, 1); 4378 usleep_range(10000, 12000); 4379 gpiod_set_value_cansleep(dev->reset_gpio, 0); 4380 msleep(100); 4381 } 4382 4383 mutex_init(&dev->dev_mutex); 4384 mutex_init(&dev->regmap_mutex); 4385 mutex_init(&dev->alu_mutex); 4386 mutex_init(&dev->vlan_mutex); 4387 4388 ret = ksz_switch_detect(dev); 4389 if (ret) 4390 return ret; 4391 4392 info = ksz_lookup_info(dev->chip_id); 4393 if (!info) 4394 return -ENODEV; 4395 4396 /* Update the compatible info with the probed one */ 4397 dev->info = info; 4398 4399 dev_info(dev->dev, "found switch: %s, rev %i\n", 4400 dev->info->dev_name, dev->chip_rev); 4401 4402 ret = ksz_check_device_id(dev); 4403 if (ret) 4404 return ret; 4405 4406 dev->dev_ops = dev->info->ops; 4407 4408 ret = dev->dev_ops->init(dev); 4409 if (ret) 4410 return ret; 4411 4412 dev->ports = devm_kzalloc(dev->dev, 4413 dev->info->port_cnt * sizeof(struct ksz_port), 4414 GFP_KERNEL); 4415 if (!dev->ports) 4416 return -ENOMEM; 4417 4418 for (i = 0; i < dev->info->port_cnt; i++) { 4419 spin_lock_init(&dev->ports[i].mib.stats64_lock); 4420 mutex_init(&dev->ports[i].mib.cnt_mutex); 4421 dev->ports[i].mib.counters = 4422 devm_kzalloc(dev->dev, 4423 sizeof(u64) * (dev->info->mib_cnt + 1), 4424 GFP_KERNEL); 4425 if (!dev->ports[i].mib.counters) 4426 return -ENOMEM; 4427 4428 dev->ports[i].ksz_dev = dev; 4429 dev->ports[i].num = i; 4430 } 4431 4432 /* set the real number of ports */ 4433 dev->ds->num_ports = dev->info->port_cnt; 4434 4435 /* set the phylink ops */ 4436 dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops; 4437 4438 /* Host port interface will be self detected, or specifically set in 4439 * device tree. 4440 */ 4441 for (port_num = 0; port_num < dev->info->port_cnt; ++port_num) 4442 dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA; 4443 if (dev->dev->of_node) { 4444 ret = of_get_phy_mode(dev->dev->of_node, &interface); 4445 if (ret == 0) 4446 dev->compat_interface = interface; 4447 ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports"); 4448 if (!ports) 4449 ports = of_get_child_by_name(dev->dev->of_node, "ports"); 4450 if (ports) { 4451 for_each_available_child_of_node(ports, port) { 4452 if (of_property_read_u32(port, "reg", 4453 &port_num)) 4454 continue; 4455 if (!(dev->port_mask & BIT(port_num))) { 4456 of_node_put(port); 4457 of_node_put(ports); 4458 return -EINVAL; 4459 } 4460 of_get_phy_mode(port, 4461 &dev->ports[port_num].interface); 4462 4463 ksz_parse_rgmii_delay(dev, port_num, port); 4464 } 4465 of_node_put(ports); 4466 } 4467 dev->synclko_125 = of_property_read_bool(dev->dev->of_node, 4468 "microchip,synclko-125"); 4469 dev->synclko_disable = of_property_read_bool(dev->dev->of_node, 4470 "microchip,synclko-disable"); 4471 if (dev->synclko_125 && dev->synclko_disable) { 4472 dev_err(dev->dev, "inconsistent synclko settings\n"); 4473 return -EINVAL; 4474 } 4475 4476 dev->wakeup_source = of_property_read_bool(dev->dev->of_node, 4477 "wakeup-source"); 4478 } 4479 4480 ret = dsa_register_switch(dev->ds); 4481 if (ret) { 4482 dev->dev_ops->exit(dev); 4483 return ret; 4484 } 4485 4486 /* Read MIB counters every 30 seconds to avoid overflow. */ 4487 dev->mib_read_interval = msecs_to_jiffies(5000); 4488 4489 /* Start the MIB timer. */ 4490 schedule_delayed_work(&dev->mib_read, 0); 4491 4492 return ret; 4493 } 4494 EXPORT_SYMBOL(ksz_switch_register); 4495 4496 void ksz_switch_remove(struct ksz_device *dev) 4497 { 4498 /* timer started */ 4499 if (dev->mib_read_interval) { 4500 dev->mib_read_interval = 0; 4501 cancel_delayed_work_sync(&dev->mib_read); 4502 } 4503 4504 dev->dev_ops->exit(dev); 4505 dsa_unregister_switch(dev->ds); 4506 4507 if (dev->reset_gpio) 4508 gpiod_set_value_cansleep(dev->reset_gpio, 1); 4509 4510 } 4511 EXPORT_SYMBOL(ksz_switch_remove); 4512 4513 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>"); 4514 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver"); 4515 MODULE_LICENSE("GPL"); 4516