xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2024 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/ieee8021q.h>
28 #include <net/pkt_cls.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_common.h"
32 #include "ksz_dcb.h"
33 #include "ksz_ptp.h"
34 #include "ksz8.h"
35 #include "ksz9477.h"
36 #include "lan937x.h"
37 
38 #define MIB_COUNTER_NUM 0x20
39 
40 struct ksz_stats_raw {
41 	u64 rx_hi;
42 	u64 rx_undersize;
43 	u64 rx_fragments;
44 	u64 rx_oversize;
45 	u64 rx_jabbers;
46 	u64 rx_symbol_err;
47 	u64 rx_crc_err;
48 	u64 rx_align_err;
49 	u64 rx_mac_ctrl;
50 	u64 rx_pause;
51 	u64 rx_bcast;
52 	u64 rx_mcast;
53 	u64 rx_ucast;
54 	u64 rx_64_or_less;
55 	u64 rx_65_127;
56 	u64 rx_128_255;
57 	u64 rx_256_511;
58 	u64 rx_512_1023;
59 	u64 rx_1024_1522;
60 	u64 rx_1523_2000;
61 	u64 rx_2001;
62 	u64 tx_hi;
63 	u64 tx_late_col;
64 	u64 tx_pause;
65 	u64 tx_bcast;
66 	u64 tx_mcast;
67 	u64 tx_ucast;
68 	u64 tx_deferred;
69 	u64 tx_total_col;
70 	u64 tx_exc_col;
71 	u64 tx_single_col;
72 	u64 tx_mult_col;
73 	u64 rx_total;
74 	u64 tx_total;
75 	u64 rx_discards;
76 	u64 tx_discards;
77 };
78 
79 struct ksz88xx_stats_raw {
80 	u64 rx;
81 	u64 rx_hi;
82 	u64 rx_undersize;
83 	u64 rx_fragments;
84 	u64 rx_oversize;
85 	u64 rx_jabbers;
86 	u64 rx_symbol_err;
87 	u64 rx_crc_err;
88 	u64 rx_align_err;
89 	u64 rx_mac_ctrl;
90 	u64 rx_pause;
91 	u64 rx_bcast;
92 	u64 rx_mcast;
93 	u64 rx_ucast;
94 	u64 rx_64_or_less;
95 	u64 rx_65_127;
96 	u64 rx_128_255;
97 	u64 rx_256_511;
98 	u64 rx_512_1023;
99 	u64 rx_1024_1522;
100 	u64 tx;
101 	u64 tx_hi;
102 	u64 tx_late_col;
103 	u64 tx_pause;
104 	u64 tx_bcast;
105 	u64 tx_mcast;
106 	u64 tx_ucast;
107 	u64 tx_deferred;
108 	u64 tx_total_col;
109 	u64 tx_exc_col;
110 	u64 tx_single_col;
111 	u64 tx_mult_col;
112 	u64 rx_discards;
113 	u64 tx_discards;
114 };
115 
116 static const struct ksz_mib_names ksz88xx_mib_names[] = {
117 	{ 0x00, "rx" },
118 	{ 0x01, "rx_hi" },
119 	{ 0x02, "rx_undersize" },
120 	{ 0x03, "rx_fragments" },
121 	{ 0x04, "rx_oversize" },
122 	{ 0x05, "rx_jabbers" },
123 	{ 0x06, "rx_symbol_err" },
124 	{ 0x07, "rx_crc_err" },
125 	{ 0x08, "rx_align_err" },
126 	{ 0x09, "rx_mac_ctrl" },
127 	{ 0x0a, "rx_pause" },
128 	{ 0x0b, "rx_bcast" },
129 	{ 0x0c, "rx_mcast" },
130 	{ 0x0d, "rx_ucast" },
131 	{ 0x0e, "rx_64_or_less" },
132 	{ 0x0f, "rx_65_127" },
133 	{ 0x10, "rx_128_255" },
134 	{ 0x11, "rx_256_511" },
135 	{ 0x12, "rx_512_1023" },
136 	{ 0x13, "rx_1024_1522" },
137 	{ 0x14, "tx" },
138 	{ 0x15, "tx_hi" },
139 	{ 0x16, "tx_late_col" },
140 	{ 0x17, "tx_pause" },
141 	{ 0x18, "tx_bcast" },
142 	{ 0x19, "tx_mcast" },
143 	{ 0x1a, "tx_ucast" },
144 	{ 0x1b, "tx_deferred" },
145 	{ 0x1c, "tx_total_col" },
146 	{ 0x1d, "tx_exc_col" },
147 	{ 0x1e, "tx_single_col" },
148 	{ 0x1f, "tx_mult_col" },
149 	{ 0x100, "rx_discards" },
150 	{ 0x101, "tx_discards" },
151 };
152 
153 static const struct ksz_mib_names ksz9477_mib_names[] = {
154 	{ 0x00, "rx_hi" },
155 	{ 0x01, "rx_undersize" },
156 	{ 0x02, "rx_fragments" },
157 	{ 0x03, "rx_oversize" },
158 	{ 0x04, "rx_jabbers" },
159 	{ 0x05, "rx_symbol_err" },
160 	{ 0x06, "rx_crc_err" },
161 	{ 0x07, "rx_align_err" },
162 	{ 0x08, "rx_mac_ctrl" },
163 	{ 0x09, "rx_pause" },
164 	{ 0x0A, "rx_bcast" },
165 	{ 0x0B, "rx_mcast" },
166 	{ 0x0C, "rx_ucast" },
167 	{ 0x0D, "rx_64_or_less" },
168 	{ 0x0E, "rx_65_127" },
169 	{ 0x0F, "rx_128_255" },
170 	{ 0x10, "rx_256_511" },
171 	{ 0x11, "rx_512_1023" },
172 	{ 0x12, "rx_1024_1522" },
173 	{ 0x13, "rx_1523_2000" },
174 	{ 0x14, "rx_2001" },
175 	{ 0x15, "tx_hi" },
176 	{ 0x16, "tx_late_col" },
177 	{ 0x17, "tx_pause" },
178 	{ 0x18, "tx_bcast" },
179 	{ 0x19, "tx_mcast" },
180 	{ 0x1A, "tx_ucast" },
181 	{ 0x1B, "tx_deferred" },
182 	{ 0x1C, "tx_total_col" },
183 	{ 0x1D, "tx_exc_col" },
184 	{ 0x1E, "tx_single_col" },
185 	{ 0x1F, "tx_mult_col" },
186 	{ 0x80, "rx_total" },
187 	{ 0x81, "tx_total" },
188 	{ 0x82, "rx_discards" },
189 	{ 0x83, "tx_discards" },
190 };
191 
192 struct ksz_driver_strength_prop {
193 	const char *name;
194 	int offset;
195 	int value;
196 };
197 
198 enum ksz_driver_strength_type {
199 	KSZ_DRIVER_STRENGTH_HI,
200 	KSZ_DRIVER_STRENGTH_LO,
201 	KSZ_DRIVER_STRENGTH_IO,
202 };
203 
204 /**
205  * struct ksz_drive_strength - drive strength mapping
206  * @reg_val:	register value
207  * @microamp:	microamp value
208  */
209 struct ksz_drive_strength {
210 	u32 reg_val;
211 	u32 microamp;
212 };
213 
214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
215  *
216  * This values are not documented in KSZ9477 variants but confirmed by
217  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
218  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
219  *
220  * Documentation in KSZ8795CLX provides more information with some
221  * recommendations:
222  * - for high speed signals
223  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
224  *      2.5V or 3.3V VDDIO.
225  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
226  *      using 1.8V VDDIO.
227  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
228  *      or 3.3V VDDIO.
229  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
230  *   5. In same interface, the heavy loading should use higher one of the
231  *      drive current strength.
232  * - for low speed signals
233  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
234  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
235  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
236  *   4. If it is heavy loading, can use higher drive current strength.
237  */
238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
239 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
240 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
241 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
242 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
243 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
244 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
245 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
246 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
247 };
248 
249 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, ..
250  *			     variants.
251  * This values are documented in KSZ8873 and KSZ8863 datasheets.
252  */
253 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = {
254 	{ 0,  8000 },
255 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
256 };
257 
258 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
259 				       unsigned int mode,
260 				       const struct phylink_link_state *state);
261 static void ksz_phylink_mac_config(struct phylink_config *config,
262 				   unsigned int mode,
263 				   const struct phylink_link_state *state);
264 static void ksz_phylink_mac_link_down(struct phylink_config *config,
265 				      unsigned int mode,
266 				      phy_interface_t interface);
267 
268 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = {
269 	.mac_config	= ksz88x3_phylink_mac_config,
270 	.mac_link_down	= ksz_phylink_mac_link_down,
271 	.mac_link_up	= ksz8_phylink_mac_link_up,
272 };
273 
274 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
275 	.mac_config	= ksz_phylink_mac_config,
276 	.mac_link_down	= ksz_phylink_mac_link_down,
277 	.mac_link_up	= ksz8_phylink_mac_link_up,
278 };
279 
280 static const struct ksz_dev_ops ksz88xx_dev_ops = {
281 	.setup = ksz8_setup,
282 	.get_port_addr = ksz8_get_port_addr,
283 	.cfg_port_member = ksz8_cfg_port_member,
284 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
285 	.port_setup = ksz8_port_setup,
286 	.r_phy = ksz8_r_phy,
287 	.w_phy = ksz8_w_phy,
288 	.r_mib_cnt = ksz8_r_mib_cnt,
289 	.r_mib_pkt = ksz8_r_mib_pkt,
290 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
291 	.freeze_mib = ksz8_freeze_mib,
292 	.port_init_cnt = ksz8_port_init_cnt,
293 	.fdb_dump = ksz8_fdb_dump,
294 	.fdb_add = ksz8_fdb_add,
295 	.fdb_del = ksz8_fdb_del,
296 	.mdb_add = ksz8_mdb_add,
297 	.mdb_del = ksz8_mdb_del,
298 	.vlan_filtering = ksz8_port_vlan_filtering,
299 	.vlan_add = ksz8_port_vlan_add,
300 	.vlan_del = ksz8_port_vlan_del,
301 	.mirror_add = ksz8_port_mirror_add,
302 	.mirror_del = ksz8_port_mirror_del,
303 	.get_caps = ksz8_get_caps,
304 	.config_cpu_port = ksz8_config_cpu_port,
305 	.enable_stp_addr = ksz8_enable_stp_addr,
306 	.reset = ksz8_reset_switch,
307 	.init = ksz8_switch_init,
308 	.exit = ksz8_switch_exit,
309 	.change_mtu = ksz8_change_mtu,
310 	.pme_write8 = ksz8_pme_write8,
311 	.pme_pread8 = ksz8_pme_pread8,
312 	.pme_pwrite8 = ksz8_pme_pwrite8,
313 };
314 
315 static const struct ksz_dev_ops ksz87xx_dev_ops = {
316 	.setup = ksz8_setup,
317 	.get_port_addr = ksz8_get_port_addr,
318 	.cfg_port_member = ksz8_cfg_port_member,
319 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
320 	.port_setup = ksz8_port_setup,
321 	.r_phy = ksz8_r_phy,
322 	.w_phy = ksz8_w_phy,
323 	.r_mib_cnt = ksz8_r_mib_cnt,
324 	.r_mib_pkt = ksz8_r_mib_pkt,
325 	.r_mib_stat64 = ksz_r_mib_stats64,
326 	.freeze_mib = ksz8_freeze_mib,
327 	.port_init_cnt = ksz8_port_init_cnt,
328 	.fdb_dump = ksz8_fdb_dump,
329 	.fdb_add = ksz8_fdb_add,
330 	.fdb_del = ksz8_fdb_del,
331 	.mdb_add = ksz8_mdb_add,
332 	.mdb_del = ksz8_mdb_del,
333 	.vlan_filtering = ksz8_port_vlan_filtering,
334 	.vlan_add = ksz8_port_vlan_add,
335 	.vlan_del = ksz8_port_vlan_del,
336 	.mirror_add = ksz8_port_mirror_add,
337 	.mirror_del = ksz8_port_mirror_del,
338 	.get_caps = ksz8_get_caps,
339 	.config_cpu_port = ksz8_config_cpu_port,
340 	.enable_stp_addr = ksz8_enable_stp_addr,
341 	.reset = ksz8_reset_switch,
342 	.init = ksz8_switch_init,
343 	.exit = ksz8_switch_exit,
344 	.change_mtu = ksz8_change_mtu,
345 	.pme_write8 = ksz8_pme_write8,
346 	.pme_pread8 = ksz8_pme_pread8,
347 	.pme_pwrite8 = ksz8_pme_pwrite8,
348 };
349 
350 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
351 					struct phy_device *phydev,
352 					unsigned int mode,
353 					phy_interface_t interface,
354 					int speed, int duplex, bool tx_pause,
355 					bool rx_pause);
356 
357 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
358 	.mac_config	= ksz_phylink_mac_config,
359 	.mac_link_down	= ksz_phylink_mac_link_down,
360 	.mac_link_up	= ksz9477_phylink_mac_link_up,
361 };
362 
363 static const struct ksz_dev_ops ksz9477_dev_ops = {
364 	.setup = ksz9477_setup,
365 	.get_port_addr = ksz9477_get_port_addr,
366 	.cfg_port_member = ksz9477_cfg_port_member,
367 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
368 	.port_setup = ksz9477_port_setup,
369 	.set_ageing_time = ksz9477_set_ageing_time,
370 	.r_phy = ksz9477_r_phy,
371 	.w_phy = ksz9477_w_phy,
372 	.r_mib_cnt = ksz9477_r_mib_cnt,
373 	.r_mib_pkt = ksz9477_r_mib_pkt,
374 	.r_mib_stat64 = ksz_r_mib_stats64,
375 	.freeze_mib = ksz9477_freeze_mib,
376 	.port_init_cnt = ksz9477_port_init_cnt,
377 	.vlan_filtering = ksz9477_port_vlan_filtering,
378 	.vlan_add = ksz9477_port_vlan_add,
379 	.vlan_del = ksz9477_port_vlan_del,
380 	.mirror_add = ksz9477_port_mirror_add,
381 	.mirror_del = ksz9477_port_mirror_del,
382 	.get_caps = ksz9477_get_caps,
383 	.fdb_dump = ksz9477_fdb_dump,
384 	.fdb_add = ksz9477_fdb_add,
385 	.fdb_del = ksz9477_fdb_del,
386 	.mdb_add = ksz9477_mdb_add,
387 	.mdb_del = ksz9477_mdb_del,
388 	.change_mtu = ksz9477_change_mtu,
389 	.pme_write8 = ksz_write8,
390 	.pme_pread8 = ksz_pread8,
391 	.pme_pwrite8 = ksz_pwrite8,
392 	.config_cpu_port = ksz9477_config_cpu_port,
393 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
394 	.enable_stp_addr = ksz9477_enable_stp_addr,
395 	.reset = ksz9477_reset_switch,
396 	.init = ksz9477_switch_init,
397 	.exit = ksz9477_switch_exit,
398 };
399 
400 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
401 	.mac_config	= ksz_phylink_mac_config,
402 	.mac_link_down	= ksz_phylink_mac_link_down,
403 	.mac_link_up	= ksz9477_phylink_mac_link_up,
404 };
405 
406 static const struct ksz_dev_ops lan937x_dev_ops = {
407 	.setup = lan937x_setup,
408 	.teardown = lan937x_teardown,
409 	.get_port_addr = ksz9477_get_port_addr,
410 	.cfg_port_member = ksz9477_cfg_port_member,
411 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
412 	.port_setup = lan937x_port_setup,
413 	.set_ageing_time = lan937x_set_ageing_time,
414 	.mdio_bus_preinit = lan937x_mdio_bus_preinit,
415 	.create_phy_addr_map = lan937x_create_phy_addr_map,
416 	.r_phy = lan937x_r_phy,
417 	.w_phy = lan937x_w_phy,
418 	.r_mib_cnt = ksz9477_r_mib_cnt,
419 	.r_mib_pkt = ksz9477_r_mib_pkt,
420 	.r_mib_stat64 = ksz_r_mib_stats64,
421 	.freeze_mib = ksz9477_freeze_mib,
422 	.port_init_cnt = ksz9477_port_init_cnt,
423 	.vlan_filtering = ksz9477_port_vlan_filtering,
424 	.vlan_add = ksz9477_port_vlan_add,
425 	.vlan_del = ksz9477_port_vlan_del,
426 	.mirror_add = ksz9477_port_mirror_add,
427 	.mirror_del = ksz9477_port_mirror_del,
428 	.get_caps = lan937x_phylink_get_caps,
429 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
430 	.fdb_dump = ksz9477_fdb_dump,
431 	.fdb_add = ksz9477_fdb_add,
432 	.fdb_del = ksz9477_fdb_del,
433 	.mdb_add = ksz9477_mdb_add,
434 	.mdb_del = ksz9477_mdb_del,
435 	.change_mtu = lan937x_change_mtu,
436 	.config_cpu_port = lan937x_config_cpu_port,
437 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
438 	.enable_stp_addr = ksz9477_enable_stp_addr,
439 	.reset = lan937x_reset_switch,
440 	.init = lan937x_switch_init,
441 	.exit = lan937x_switch_exit,
442 };
443 
444 static const u16 ksz8795_regs[] = {
445 	[REG_SW_MAC_ADDR]		= 0x68,
446 	[REG_IND_CTRL_0]		= 0x6E,
447 	[REG_IND_DATA_8]		= 0x70,
448 	[REG_IND_DATA_CHECK]		= 0x72,
449 	[REG_IND_DATA_HI]		= 0x71,
450 	[REG_IND_DATA_LO]		= 0x75,
451 	[REG_IND_MIB_CHECK]		= 0x74,
452 	[REG_IND_BYTE]			= 0xA0,
453 	[P_FORCE_CTRL]			= 0x0C,
454 	[P_LINK_STATUS]			= 0x0E,
455 	[P_LOCAL_CTRL]			= 0x07,
456 	[P_NEG_RESTART_CTRL]		= 0x0D,
457 	[P_REMOTE_STATUS]		= 0x08,
458 	[P_SPEED_STATUS]		= 0x09,
459 	[S_TAIL_TAG_CTRL]		= 0x0C,
460 	[P_STP_CTRL]			= 0x02,
461 	[S_START_CTRL]			= 0x01,
462 	[S_BROADCAST_CTRL]		= 0x06,
463 	[S_MULTICAST_CTRL]		= 0x04,
464 	[P_XMII_CTRL_0]			= 0x06,
465 	[P_XMII_CTRL_1]			= 0x06,
466 	[REG_SW_PME_CTRL]		= 0x8003,
467 	[REG_PORT_PME_STATUS]		= 0x8003,
468 	[REG_PORT_PME_CTRL]		= 0x8007,
469 };
470 
471 static const u32 ksz8795_masks[] = {
472 	[PORT_802_1P_REMAPPING]		= BIT(7),
473 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
474 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
475 	[MIB_COUNTER_VALID]		= BIT(5),
476 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
477 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
478 	[VLAN_TABLE_VALID]		= BIT(12),
479 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
480 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
481 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
482 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
483 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
484 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
485 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
486 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
487 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
488 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
489 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
490 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
491 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
492 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
493 };
494 
495 static const u8 ksz8795_xmii_ctrl0[] = {
496 	[P_MII_100MBIT]			= 0,
497 	[P_MII_10MBIT]			= 1,
498 	[P_MII_FULL_DUPLEX]		= 0,
499 	[P_MII_HALF_DUPLEX]		= 1,
500 };
501 
502 static const u8 ksz8795_xmii_ctrl1[] = {
503 	[P_RGMII_SEL]			= 3,
504 	[P_GMII_SEL]			= 2,
505 	[P_RMII_SEL]			= 1,
506 	[P_MII_SEL]			= 0,
507 	[P_GMII_1GBIT]			= 1,
508 	[P_GMII_NOT_1GBIT]		= 0,
509 };
510 
511 static const u8 ksz8795_shifts[] = {
512 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
513 	[VLAN_TABLE]			= 16,
514 	[STATIC_MAC_FWD_PORTS]		= 16,
515 	[STATIC_MAC_FID]		= 24,
516 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
517 	[DYNAMIC_MAC_ENTRIES]		= 29,
518 	[DYNAMIC_MAC_FID]		= 16,
519 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
520 	[DYNAMIC_MAC_SRC_PORT]		= 24,
521 };
522 
523 static const u16 ksz8863_regs[] = {
524 	[REG_SW_MAC_ADDR]		= 0x70,
525 	[REG_IND_CTRL_0]		= 0x79,
526 	[REG_IND_DATA_8]		= 0x7B,
527 	[REG_IND_DATA_CHECK]		= 0x7B,
528 	[REG_IND_DATA_HI]		= 0x7C,
529 	[REG_IND_DATA_LO]		= 0x80,
530 	[REG_IND_MIB_CHECK]		= 0x80,
531 	[P_FORCE_CTRL]			= 0x0C,
532 	[P_LINK_STATUS]			= 0x0E,
533 	[P_LOCAL_CTRL]			= 0x0C,
534 	[P_NEG_RESTART_CTRL]		= 0x0D,
535 	[P_REMOTE_STATUS]		= 0x0E,
536 	[P_SPEED_STATUS]		= 0x0F,
537 	[S_TAIL_TAG_CTRL]		= 0x03,
538 	[P_STP_CTRL]			= 0x02,
539 	[S_START_CTRL]			= 0x01,
540 	[S_BROADCAST_CTRL]		= 0x06,
541 	[S_MULTICAST_CTRL]		= 0x04,
542 };
543 
544 static const u32 ksz8863_masks[] = {
545 	[PORT_802_1P_REMAPPING]		= BIT(3),
546 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
547 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
548 	[MIB_COUNTER_VALID]		= BIT(6),
549 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
550 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
551 	[VLAN_TABLE_VALID]		= BIT(19),
552 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
553 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
554 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
555 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
556 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
557 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
558 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
559 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
560 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
561 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
562 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
563 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
564 };
565 
566 static u8 ksz8863_shifts[] = {
567 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
568 	[STATIC_MAC_FWD_PORTS]		= 16,
569 	[STATIC_MAC_FID]		= 22,
570 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
571 	[DYNAMIC_MAC_ENTRIES]		= 24,
572 	[DYNAMIC_MAC_FID]		= 16,
573 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
574 	[DYNAMIC_MAC_SRC_PORT]		= 20,
575 };
576 
577 static const u16 ksz8895_regs[] = {
578 	[REG_SW_MAC_ADDR]		= 0x68,
579 	[REG_IND_CTRL_0]		= 0x6E,
580 	[REG_IND_DATA_8]		= 0x70,
581 	[REG_IND_DATA_CHECK]		= 0x72,
582 	[REG_IND_DATA_HI]		= 0x71,
583 	[REG_IND_DATA_LO]		= 0x75,
584 	[REG_IND_MIB_CHECK]		= 0x75,
585 	[P_FORCE_CTRL]			= 0x0C,
586 	[P_LINK_STATUS]			= 0x0E,
587 	[P_LOCAL_CTRL]			= 0x0C,
588 	[P_NEG_RESTART_CTRL]		= 0x0D,
589 	[P_REMOTE_STATUS]		= 0x0E,
590 	[P_SPEED_STATUS]		= 0x09,
591 	[S_TAIL_TAG_CTRL]		= 0x0C,
592 	[P_STP_CTRL]			= 0x02,
593 	[S_START_CTRL]			= 0x01,
594 	[S_BROADCAST_CTRL]		= 0x06,
595 	[S_MULTICAST_CTRL]		= 0x04,
596 };
597 
598 static const u32 ksz8895_masks[] = {
599 	[PORT_802_1P_REMAPPING]		= BIT(7),
600 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
601 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
602 	[MIB_COUNTER_VALID]		= BIT(6),
603 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
604 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
605 	[VLAN_TABLE_VALID]		= BIT(12),
606 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
607 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
608 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
609 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
610 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
611 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
612 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
613 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
614 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
615 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
616 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
617 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
618 };
619 
620 static const u8 ksz8895_shifts[] = {
621 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
622 	[VLAN_TABLE]			= 13,
623 	[STATIC_MAC_FWD_PORTS]		= 16,
624 	[STATIC_MAC_FID]		= 24,
625 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
626 	[DYNAMIC_MAC_ENTRIES]		= 29,
627 	[DYNAMIC_MAC_FID]		= 16,
628 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
629 	[DYNAMIC_MAC_SRC_PORT]		= 24,
630 };
631 
632 static const u16 ksz9477_regs[] = {
633 	[REG_SW_MAC_ADDR]		= 0x0302,
634 	[P_STP_CTRL]			= 0x0B04,
635 	[S_START_CTRL]			= 0x0300,
636 	[S_BROADCAST_CTRL]		= 0x0332,
637 	[S_MULTICAST_CTRL]		= 0x0331,
638 	[P_XMII_CTRL_0]			= 0x0300,
639 	[P_XMII_CTRL_1]			= 0x0301,
640 	[REG_SW_PME_CTRL]		= 0x0006,
641 	[REG_PORT_PME_STATUS]		= 0x0013,
642 	[REG_PORT_PME_CTRL]		= 0x0017,
643 };
644 
645 static const u32 ksz9477_masks[] = {
646 	[ALU_STAT_WRITE]		= 0,
647 	[ALU_STAT_READ]			= 1,
648 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
649 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
650 };
651 
652 static const u8 ksz9477_shifts[] = {
653 	[ALU_STAT_INDEX]		= 16,
654 };
655 
656 static const u8 ksz9477_xmii_ctrl0[] = {
657 	[P_MII_100MBIT]			= 1,
658 	[P_MII_10MBIT]			= 0,
659 	[P_MII_FULL_DUPLEX]		= 1,
660 	[P_MII_HALF_DUPLEX]		= 0,
661 };
662 
663 static const u8 ksz9477_xmii_ctrl1[] = {
664 	[P_RGMII_SEL]			= 0,
665 	[P_RMII_SEL]			= 1,
666 	[P_GMII_SEL]			= 2,
667 	[P_MII_SEL]			= 3,
668 	[P_GMII_1GBIT]			= 0,
669 	[P_GMII_NOT_1GBIT]		= 1,
670 };
671 
672 static const u32 lan937x_masks[] = {
673 	[ALU_STAT_WRITE]		= 1,
674 	[ALU_STAT_READ]			= 2,
675 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
676 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
677 };
678 
679 static const u8 lan937x_shifts[] = {
680 	[ALU_STAT_INDEX]		= 8,
681 };
682 
683 static const struct regmap_range ksz8563_valid_regs[] = {
684 	regmap_reg_range(0x0000, 0x0003),
685 	regmap_reg_range(0x0006, 0x0006),
686 	regmap_reg_range(0x000f, 0x001f),
687 	regmap_reg_range(0x0100, 0x0100),
688 	regmap_reg_range(0x0104, 0x0107),
689 	regmap_reg_range(0x010d, 0x010d),
690 	regmap_reg_range(0x0110, 0x0113),
691 	regmap_reg_range(0x0120, 0x012b),
692 	regmap_reg_range(0x0201, 0x0201),
693 	regmap_reg_range(0x0210, 0x0213),
694 	regmap_reg_range(0x0300, 0x0300),
695 	regmap_reg_range(0x0302, 0x031b),
696 	regmap_reg_range(0x0320, 0x032b),
697 	regmap_reg_range(0x0330, 0x0336),
698 	regmap_reg_range(0x0338, 0x033e),
699 	regmap_reg_range(0x0340, 0x035f),
700 	regmap_reg_range(0x0370, 0x0370),
701 	regmap_reg_range(0x0378, 0x0378),
702 	regmap_reg_range(0x037c, 0x037d),
703 	regmap_reg_range(0x0390, 0x0393),
704 	regmap_reg_range(0x0400, 0x040e),
705 	regmap_reg_range(0x0410, 0x042f),
706 	regmap_reg_range(0x0500, 0x0519),
707 	regmap_reg_range(0x0520, 0x054b),
708 	regmap_reg_range(0x0550, 0x05b3),
709 
710 	/* port 1 */
711 	regmap_reg_range(0x1000, 0x1001),
712 	regmap_reg_range(0x1004, 0x100b),
713 	regmap_reg_range(0x1013, 0x1013),
714 	regmap_reg_range(0x1017, 0x1017),
715 	regmap_reg_range(0x101b, 0x101b),
716 	regmap_reg_range(0x101f, 0x1021),
717 	regmap_reg_range(0x1030, 0x1030),
718 	regmap_reg_range(0x1100, 0x1111),
719 	regmap_reg_range(0x111a, 0x111d),
720 	regmap_reg_range(0x1122, 0x1127),
721 	regmap_reg_range(0x112a, 0x112b),
722 	regmap_reg_range(0x1136, 0x1139),
723 	regmap_reg_range(0x113e, 0x113f),
724 	regmap_reg_range(0x1400, 0x1401),
725 	regmap_reg_range(0x1403, 0x1403),
726 	regmap_reg_range(0x1410, 0x1417),
727 	regmap_reg_range(0x1420, 0x1423),
728 	regmap_reg_range(0x1500, 0x1507),
729 	regmap_reg_range(0x1600, 0x1612),
730 	regmap_reg_range(0x1800, 0x180f),
731 	regmap_reg_range(0x1900, 0x1907),
732 	regmap_reg_range(0x1914, 0x191b),
733 	regmap_reg_range(0x1a00, 0x1a03),
734 	regmap_reg_range(0x1a04, 0x1a08),
735 	regmap_reg_range(0x1b00, 0x1b01),
736 	regmap_reg_range(0x1b04, 0x1b04),
737 	regmap_reg_range(0x1c00, 0x1c05),
738 	regmap_reg_range(0x1c08, 0x1c1b),
739 
740 	/* port 2 */
741 	regmap_reg_range(0x2000, 0x2001),
742 	regmap_reg_range(0x2004, 0x200b),
743 	regmap_reg_range(0x2013, 0x2013),
744 	regmap_reg_range(0x2017, 0x2017),
745 	regmap_reg_range(0x201b, 0x201b),
746 	regmap_reg_range(0x201f, 0x2021),
747 	regmap_reg_range(0x2030, 0x2030),
748 	regmap_reg_range(0x2100, 0x2111),
749 	regmap_reg_range(0x211a, 0x211d),
750 	regmap_reg_range(0x2122, 0x2127),
751 	regmap_reg_range(0x212a, 0x212b),
752 	regmap_reg_range(0x2136, 0x2139),
753 	regmap_reg_range(0x213e, 0x213f),
754 	regmap_reg_range(0x2400, 0x2401),
755 	regmap_reg_range(0x2403, 0x2403),
756 	regmap_reg_range(0x2410, 0x2417),
757 	regmap_reg_range(0x2420, 0x2423),
758 	regmap_reg_range(0x2500, 0x2507),
759 	regmap_reg_range(0x2600, 0x2612),
760 	regmap_reg_range(0x2800, 0x280f),
761 	regmap_reg_range(0x2900, 0x2907),
762 	regmap_reg_range(0x2914, 0x291b),
763 	regmap_reg_range(0x2a00, 0x2a03),
764 	regmap_reg_range(0x2a04, 0x2a08),
765 	regmap_reg_range(0x2b00, 0x2b01),
766 	regmap_reg_range(0x2b04, 0x2b04),
767 	regmap_reg_range(0x2c00, 0x2c05),
768 	regmap_reg_range(0x2c08, 0x2c1b),
769 
770 	/* port 3 */
771 	regmap_reg_range(0x3000, 0x3001),
772 	regmap_reg_range(0x3004, 0x300b),
773 	regmap_reg_range(0x3013, 0x3013),
774 	regmap_reg_range(0x3017, 0x3017),
775 	regmap_reg_range(0x301b, 0x301b),
776 	regmap_reg_range(0x301f, 0x3021),
777 	regmap_reg_range(0x3030, 0x3030),
778 	regmap_reg_range(0x3300, 0x3301),
779 	regmap_reg_range(0x3303, 0x3303),
780 	regmap_reg_range(0x3400, 0x3401),
781 	regmap_reg_range(0x3403, 0x3403),
782 	regmap_reg_range(0x3410, 0x3417),
783 	regmap_reg_range(0x3420, 0x3423),
784 	regmap_reg_range(0x3500, 0x3507),
785 	regmap_reg_range(0x3600, 0x3612),
786 	regmap_reg_range(0x3800, 0x380f),
787 	regmap_reg_range(0x3900, 0x3907),
788 	regmap_reg_range(0x3914, 0x391b),
789 	regmap_reg_range(0x3a00, 0x3a03),
790 	regmap_reg_range(0x3a04, 0x3a08),
791 	regmap_reg_range(0x3b00, 0x3b01),
792 	regmap_reg_range(0x3b04, 0x3b04),
793 	regmap_reg_range(0x3c00, 0x3c05),
794 	regmap_reg_range(0x3c08, 0x3c1b),
795 };
796 
797 static const struct regmap_access_table ksz8563_register_set = {
798 	.yes_ranges = ksz8563_valid_regs,
799 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
800 };
801 
802 static const struct regmap_range ksz9477_valid_regs[] = {
803 	regmap_reg_range(0x0000, 0x0003),
804 	regmap_reg_range(0x0006, 0x0006),
805 	regmap_reg_range(0x0010, 0x001f),
806 	regmap_reg_range(0x0100, 0x0100),
807 	regmap_reg_range(0x0103, 0x0107),
808 	regmap_reg_range(0x010d, 0x010d),
809 	regmap_reg_range(0x0110, 0x0113),
810 	regmap_reg_range(0x0120, 0x012b),
811 	regmap_reg_range(0x0201, 0x0201),
812 	regmap_reg_range(0x0210, 0x0213),
813 	regmap_reg_range(0x0300, 0x0300),
814 	regmap_reg_range(0x0302, 0x031b),
815 	regmap_reg_range(0x0320, 0x032b),
816 	regmap_reg_range(0x0330, 0x0336),
817 	regmap_reg_range(0x0338, 0x033b),
818 	regmap_reg_range(0x033e, 0x033e),
819 	regmap_reg_range(0x0340, 0x035f),
820 	regmap_reg_range(0x0370, 0x0370),
821 	regmap_reg_range(0x0378, 0x0378),
822 	regmap_reg_range(0x037c, 0x037d),
823 	regmap_reg_range(0x0390, 0x0393),
824 	regmap_reg_range(0x0400, 0x040e),
825 	regmap_reg_range(0x0410, 0x042f),
826 	regmap_reg_range(0x0444, 0x044b),
827 	regmap_reg_range(0x0450, 0x046f),
828 	regmap_reg_range(0x0500, 0x0519),
829 	regmap_reg_range(0x0520, 0x054b),
830 	regmap_reg_range(0x0550, 0x05b3),
831 	regmap_reg_range(0x0604, 0x060b),
832 	regmap_reg_range(0x0610, 0x0612),
833 	regmap_reg_range(0x0614, 0x062c),
834 	regmap_reg_range(0x0640, 0x0645),
835 	regmap_reg_range(0x0648, 0x064d),
836 
837 	/* port 1 */
838 	regmap_reg_range(0x1000, 0x1001),
839 	regmap_reg_range(0x1013, 0x1013),
840 	regmap_reg_range(0x1017, 0x1017),
841 	regmap_reg_range(0x101b, 0x101b),
842 	regmap_reg_range(0x101f, 0x1020),
843 	regmap_reg_range(0x1030, 0x1030),
844 	regmap_reg_range(0x1100, 0x1115),
845 	regmap_reg_range(0x111a, 0x111f),
846 	regmap_reg_range(0x1120, 0x112b),
847 	regmap_reg_range(0x1134, 0x113b),
848 	regmap_reg_range(0x113c, 0x113f),
849 	regmap_reg_range(0x1400, 0x1401),
850 	regmap_reg_range(0x1403, 0x1403),
851 	regmap_reg_range(0x1410, 0x1417),
852 	regmap_reg_range(0x1420, 0x1423),
853 	regmap_reg_range(0x1500, 0x1507),
854 	regmap_reg_range(0x1600, 0x1613),
855 	regmap_reg_range(0x1800, 0x180f),
856 	regmap_reg_range(0x1820, 0x1827),
857 	regmap_reg_range(0x1830, 0x1837),
858 	regmap_reg_range(0x1840, 0x184b),
859 	regmap_reg_range(0x1900, 0x1907),
860 	regmap_reg_range(0x1914, 0x191b),
861 	regmap_reg_range(0x1920, 0x1920),
862 	regmap_reg_range(0x1923, 0x1927),
863 	regmap_reg_range(0x1a00, 0x1a03),
864 	regmap_reg_range(0x1a04, 0x1a07),
865 	regmap_reg_range(0x1b00, 0x1b01),
866 	regmap_reg_range(0x1b04, 0x1b04),
867 	regmap_reg_range(0x1c00, 0x1c05),
868 	regmap_reg_range(0x1c08, 0x1c1b),
869 
870 	/* port 2 */
871 	regmap_reg_range(0x2000, 0x2001),
872 	regmap_reg_range(0x2013, 0x2013),
873 	regmap_reg_range(0x2017, 0x2017),
874 	regmap_reg_range(0x201b, 0x201b),
875 	regmap_reg_range(0x201f, 0x2020),
876 	regmap_reg_range(0x2030, 0x2030),
877 	regmap_reg_range(0x2100, 0x2115),
878 	regmap_reg_range(0x211a, 0x211f),
879 	regmap_reg_range(0x2120, 0x212b),
880 	regmap_reg_range(0x2134, 0x213b),
881 	regmap_reg_range(0x213c, 0x213f),
882 	regmap_reg_range(0x2400, 0x2401),
883 	regmap_reg_range(0x2403, 0x2403),
884 	regmap_reg_range(0x2410, 0x2417),
885 	regmap_reg_range(0x2420, 0x2423),
886 	regmap_reg_range(0x2500, 0x2507),
887 	regmap_reg_range(0x2600, 0x2613),
888 	regmap_reg_range(0x2800, 0x280f),
889 	regmap_reg_range(0x2820, 0x2827),
890 	regmap_reg_range(0x2830, 0x2837),
891 	regmap_reg_range(0x2840, 0x284b),
892 	regmap_reg_range(0x2900, 0x2907),
893 	regmap_reg_range(0x2914, 0x291b),
894 	regmap_reg_range(0x2920, 0x2920),
895 	regmap_reg_range(0x2923, 0x2927),
896 	regmap_reg_range(0x2a00, 0x2a03),
897 	regmap_reg_range(0x2a04, 0x2a07),
898 	regmap_reg_range(0x2b00, 0x2b01),
899 	regmap_reg_range(0x2b04, 0x2b04),
900 	regmap_reg_range(0x2c00, 0x2c05),
901 	regmap_reg_range(0x2c08, 0x2c1b),
902 
903 	/* port 3 */
904 	regmap_reg_range(0x3000, 0x3001),
905 	regmap_reg_range(0x3013, 0x3013),
906 	regmap_reg_range(0x3017, 0x3017),
907 	regmap_reg_range(0x301b, 0x301b),
908 	regmap_reg_range(0x301f, 0x3020),
909 	regmap_reg_range(0x3030, 0x3030),
910 	regmap_reg_range(0x3100, 0x3115),
911 	regmap_reg_range(0x311a, 0x311f),
912 	regmap_reg_range(0x3120, 0x312b),
913 	regmap_reg_range(0x3134, 0x313b),
914 	regmap_reg_range(0x313c, 0x313f),
915 	regmap_reg_range(0x3400, 0x3401),
916 	regmap_reg_range(0x3403, 0x3403),
917 	regmap_reg_range(0x3410, 0x3417),
918 	regmap_reg_range(0x3420, 0x3423),
919 	regmap_reg_range(0x3500, 0x3507),
920 	regmap_reg_range(0x3600, 0x3613),
921 	regmap_reg_range(0x3800, 0x380f),
922 	regmap_reg_range(0x3820, 0x3827),
923 	regmap_reg_range(0x3830, 0x3837),
924 	regmap_reg_range(0x3840, 0x384b),
925 	regmap_reg_range(0x3900, 0x3907),
926 	regmap_reg_range(0x3914, 0x391b),
927 	regmap_reg_range(0x3920, 0x3920),
928 	regmap_reg_range(0x3923, 0x3927),
929 	regmap_reg_range(0x3a00, 0x3a03),
930 	regmap_reg_range(0x3a04, 0x3a07),
931 	regmap_reg_range(0x3b00, 0x3b01),
932 	regmap_reg_range(0x3b04, 0x3b04),
933 	regmap_reg_range(0x3c00, 0x3c05),
934 	regmap_reg_range(0x3c08, 0x3c1b),
935 
936 	/* port 4 */
937 	regmap_reg_range(0x4000, 0x4001),
938 	regmap_reg_range(0x4013, 0x4013),
939 	regmap_reg_range(0x4017, 0x4017),
940 	regmap_reg_range(0x401b, 0x401b),
941 	regmap_reg_range(0x401f, 0x4020),
942 	regmap_reg_range(0x4030, 0x4030),
943 	regmap_reg_range(0x4100, 0x4115),
944 	regmap_reg_range(0x411a, 0x411f),
945 	regmap_reg_range(0x4120, 0x412b),
946 	regmap_reg_range(0x4134, 0x413b),
947 	regmap_reg_range(0x413c, 0x413f),
948 	regmap_reg_range(0x4400, 0x4401),
949 	regmap_reg_range(0x4403, 0x4403),
950 	regmap_reg_range(0x4410, 0x4417),
951 	regmap_reg_range(0x4420, 0x4423),
952 	regmap_reg_range(0x4500, 0x4507),
953 	regmap_reg_range(0x4600, 0x4613),
954 	regmap_reg_range(0x4800, 0x480f),
955 	regmap_reg_range(0x4820, 0x4827),
956 	regmap_reg_range(0x4830, 0x4837),
957 	regmap_reg_range(0x4840, 0x484b),
958 	regmap_reg_range(0x4900, 0x4907),
959 	regmap_reg_range(0x4914, 0x491b),
960 	regmap_reg_range(0x4920, 0x4920),
961 	regmap_reg_range(0x4923, 0x4927),
962 	regmap_reg_range(0x4a00, 0x4a03),
963 	regmap_reg_range(0x4a04, 0x4a07),
964 	regmap_reg_range(0x4b00, 0x4b01),
965 	regmap_reg_range(0x4b04, 0x4b04),
966 	regmap_reg_range(0x4c00, 0x4c05),
967 	regmap_reg_range(0x4c08, 0x4c1b),
968 
969 	/* port 5 */
970 	regmap_reg_range(0x5000, 0x5001),
971 	regmap_reg_range(0x5013, 0x5013),
972 	regmap_reg_range(0x5017, 0x5017),
973 	regmap_reg_range(0x501b, 0x501b),
974 	regmap_reg_range(0x501f, 0x5020),
975 	regmap_reg_range(0x5030, 0x5030),
976 	regmap_reg_range(0x5100, 0x5115),
977 	regmap_reg_range(0x511a, 0x511f),
978 	regmap_reg_range(0x5120, 0x512b),
979 	regmap_reg_range(0x5134, 0x513b),
980 	regmap_reg_range(0x513c, 0x513f),
981 	regmap_reg_range(0x5400, 0x5401),
982 	regmap_reg_range(0x5403, 0x5403),
983 	regmap_reg_range(0x5410, 0x5417),
984 	regmap_reg_range(0x5420, 0x5423),
985 	regmap_reg_range(0x5500, 0x5507),
986 	regmap_reg_range(0x5600, 0x5613),
987 	regmap_reg_range(0x5800, 0x580f),
988 	regmap_reg_range(0x5820, 0x5827),
989 	regmap_reg_range(0x5830, 0x5837),
990 	regmap_reg_range(0x5840, 0x584b),
991 	regmap_reg_range(0x5900, 0x5907),
992 	regmap_reg_range(0x5914, 0x591b),
993 	regmap_reg_range(0x5920, 0x5920),
994 	regmap_reg_range(0x5923, 0x5927),
995 	regmap_reg_range(0x5a00, 0x5a03),
996 	regmap_reg_range(0x5a04, 0x5a07),
997 	regmap_reg_range(0x5b00, 0x5b01),
998 	regmap_reg_range(0x5b04, 0x5b04),
999 	regmap_reg_range(0x5c00, 0x5c05),
1000 	regmap_reg_range(0x5c08, 0x5c1b),
1001 
1002 	/* port 6 */
1003 	regmap_reg_range(0x6000, 0x6001),
1004 	regmap_reg_range(0x6013, 0x6013),
1005 	regmap_reg_range(0x6017, 0x6017),
1006 	regmap_reg_range(0x601b, 0x601b),
1007 	regmap_reg_range(0x601f, 0x6020),
1008 	regmap_reg_range(0x6030, 0x6030),
1009 	regmap_reg_range(0x6300, 0x6301),
1010 	regmap_reg_range(0x6400, 0x6401),
1011 	regmap_reg_range(0x6403, 0x6403),
1012 	regmap_reg_range(0x6410, 0x6417),
1013 	regmap_reg_range(0x6420, 0x6423),
1014 	regmap_reg_range(0x6500, 0x6507),
1015 	regmap_reg_range(0x6600, 0x6613),
1016 	regmap_reg_range(0x6800, 0x680f),
1017 	regmap_reg_range(0x6820, 0x6827),
1018 	regmap_reg_range(0x6830, 0x6837),
1019 	regmap_reg_range(0x6840, 0x684b),
1020 	regmap_reg_range(0x6900, 0x6907),
1021 	regmap_reg_range(0x6914, 0x691b),
1022 	regmap_reg_range(0x6920, 0x6920),
1023 	regmap_reg_range(0x6923, 0x6927),
1024 	regmap_reg_range(0x6a00, 0x6a03),
1025 	regmap_reg_range(0x6a04, 0x6a07),
1026 	regmap_reg_range(0x6b00, 0x6b01),
1027 	regmap_reg_range(0x6b04, 0x6b04),
1028 	regmap_reg_range(0x6c00, 0x6c05),
1029 	regmap_reg_range(0x6c08, 0x6c1b),
1030 
1031 	/* port 7 */
1032 	regmap_reg_range(0x7000, 0x7001),
1033 	regmap_reg_range(0x7013, 0x7013),
1034 	regmap_reg_range(0x7017, 0x7017),
1035 	regmap_reg_range(0x701b, 0x701b),
1036 	regmap_reg_range(0x701f, 0x7020),
1037 	regmap_reg_range(0x7030, 0x7030),
1038 	regmap_reg_range(0x7200, 0x7203),
1039 	regmap_reg_range(0x7206, 0x7207),
1040 	regmap_reg_range(0x7300, 0x7301),
1041 	regmap_reg_range(0x7400, 0x7401),
1042 	regmap_reg_range(0x7403, 0x7403),
1043 	regmap_reg_range(0x7410, 0x7417),
1044 	regmap_reg_range(0x7420, 0x7423),
1045 	regmap_reg_range(0x7500, 0x7507),
1046 	regmap_reg_range(0x7600, 0x7613),
1047 	regmap_reg_range(0x7800, 0x780f),
1048 	regmap_reg_range(0x7820, 0x7827),
1049 	regmap_reg_range(0x7830, 0x7837),
1050 	regmap_reg_range(0x7840, 0x784b),
1051 	regmap_reg_range(0x7900, 0x7907),
1052 	regmap_reg_range(0x7914, 0x791b),
1053 	regmap_reg_range(0x7920, 0x7920),
1054 	regmap_reg_range(0x7923, 0x7927),
1055 	regmap_reg_range(0x7a00, 0x7a03),
1056 	regmap_reg_range(0x7a04, 0x7a07),
1057 	regmap_reg_range(0x7b00, 0x7b01),
1058 	regmap_reg_range(0x7b04, 0x7b04),
1059 	regmap_reg_range(0x7c00, 0x7c05),
1060 	regmap_reg_range(0x7c08, 0x7c1b),
1061 };
1062 
1063 static const struct regmap_access_table ksz9477_register_set = {
1064 	.yes_ranges = ksz9477_valid_regs,
1065 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1066 };
1067 
1068 static const struct regmap_range ksz9896_valid_regs[] = {
1069 	regmap_reg_range(0x0000, 0x0003),
1070 	regmap_reg_range(0x0006, 0x0006),
1071 	regmap_reg_range(0x0010, 0x001f),
1072 	regmap_reg_range(0x0100, 0x0100),
1073 	regmap_reg_range(0x0103, 0x0107),
1074 	regmap_reg_range(0x010d, 0x010d),
1075 	regmap_reg_range(0x0110, 0x0113),
1076 	regmap_reg_range(0x0120, 0x0127),
1077 	regmap_reg_range(0x0201, 0x0201),
1078 	regmap_reg_range(0x0210, 0x0213),
1079 	regmap_reg_range(0x0300, 0x0300),
1080 	regmap_reg_range(0x0302, 0x030b),
1081 	regmap_reg_range(0x0310, 0x031b),
1082 	regmap_reg_range(0x0320, 0x032b),
1083 	regmap_reg_range(0x0330, 0x0336),
1084 	regmap_reg_range(0x0338, 0x033b),
1085 	regmap_reg_range(0x033e, 0x033e),
1086 	regmap_reg_range(0x0340, 0x035f),
1087 	regmap_reg_range(0x0370, 0x0370),
1088 	regmap_reg_range(0x0378, 0x0378),
1089 	regmap_reg_range(0x037c, 0x037d),
1090 	regmap_reg_range(0x0390, 0x0393),
1091 	regmap_reg_range(0x0400, 0x040e),
1092 	regmap_reg_range(0x0410, 0x042f),
1093 
1094 	/* port 1 */
1095 	regmap_reg_range(0x1000, 0x1001),
1096 	regmap_reg_range(0x1013, 0x1013),
1097 	regmap_reg_range(0x1017, 0x1017),
1098 	regmap_reg_range(0x101b, 0x101b),
1099 	regmap_reg_range(0x101f, 0x1020),
1100 	regmap_reg_range(0x1030, 0x1030),
1101 	regmap_reg_range(0x1100, 0x1115),
1102 	regmap_reg_range(0x111a, 0x111f),
1103 	regmap_reg_range(0x1120, 0x112b),
1104 	regmap_reg_range(0x1134, 0x113b),
1105 	regmap_reg_range(0x113c, 0x113f),
1106 	regmap_reg_range(0x1400, 0x1401),
1107 	regmap_reg_range(0x1403, 0x1403),
1108 	regmap_reg_range(0x1410, 0x1417),
1109 	regmap_reg_range(0x1420, 0x1423),
1110 	regmap_reg_range(0x1500, 0x1507),
1111 	regmap_reg_range(0x1600, 0x1612),
1112 	regmap_reg_range(0x1800, 0x180f),
1113 	regmap_reg_range(0x1820, 0x1827),
1114 	regmap_reg_range(0x1830, 0x1837),
1115 	regmap_reg_range(0x1840, 0x184b),
1116 	regmap_reg_range(0x1900, 0x1907),
1117 	regmap_reg_range(0x1914, 0x1915),
1118 	regmap_reg_range(0x1a00, 0x1a03),
1119 	regmap_reg_range(0x1a04, 0x1a07),
1120 	regmap_reg_range(0x1b00, 0x1b01),
1121 	regmap_reg_range(0x1b04, 0x1b04),
1122 
1123 	/* port 2 */
1124 	regmap_reg_range(0x2000, 0x2001),
1125 	regmap_reg_range(0x2013, 0x2013),
1126 	regmap_reg_range(0x2017, 0x2017),
1127 	regmap_reg_range(0x201b, 0x201b),
1128 	regmap_reg_range(0x201f, 0x2020),
1129 	regmap_reg_range(0x2030, 0x2030),
1130 	regmap_reg_range(0x2100, 0x2115),
1131 	regmap_reg_range(0x211a, 0x211f),
1132 	regmap_reg_range(0x2120, 0x212b),
1133 	regmap_reg_range(0x2134, 0x213b),
1134 	regmap_reg_range(0x213c, 0x213f),
1135 	regmap_reg_range(0x2400, 0x2401),
1136 	regmap_reg_range(0x2403, 0x2403),
1137 	regmap_reg_range(0x2410, 0x2417),
1138 	regmap_reg_range(0x2420, 0x2423),
1139 	regmap_reg_range(0x2500, 0x2507),
1140 	regmap_reg_range(0x2600, 0x2612),
1141 	regmap_reg_range(0x2800, 0x280f),
1142 	regmap_reg_range(0x2820, 0x2827),
1143 	regmap_reg_range(0x2830, 0x2837),
1144 	regmap_reg_range(0x2840, 0x284b),
1145 	regmap_reg_range(0x2900, 0x2907),
1146 	regmap_reg_range(0x2914, 0x2915),
1147 	regmap_reg_range(0x2a00, 0x2a03),
1148 	regmap_reg_range(0x2a04, 0x2a07),
1149 	regmap_reg_range(0x2b00, 0x2b01),
1150 	regmap_reg_range(0x2b04, 0x2b04),
1151 
1152 	/* port 3 */
1153 	regmap_reg_range(0x3000, 0x3001),
1154 	regmap_reg_range(0x3013, 0x3013),
1155 	regmap_reg_range(0x3017, 0x3017),
1156 	regmap_reg_range(0x301b, 0x301b),
1157 	regmap_reg_range(0x301f, 0x3020),
1158 	regmap_reg_range(0x3030, 0x3030),
1159 	regmap_reg_range(0x3100, 0x3115),
1160 	regmap_reg_range(0x311a, 0x311f),
1161 	regmap_reg_range(0x3120, 0x312b),
1162 	regmap_reg_range(0x3134, 0x313b),
1163 	regmap_reg_range(0x313c, 0x313f),
1164 	regmap_reg_range(0x3400, 0x3401),
1165 	regmap_reg_range(0x3403, 0x3403),
1166 	regmap_reg_range(0x3410, 0x3417),
1167 	regmap_reg_range(0x3420, 0x3423),
1168 	regmap_reg_range(0x3500, 0x3507),
1169 	regmap_reg_range(0x3600, 0x3612),
1170 	regmap_reg_range(0x3800, 0x380f),
1171 	regmap_reg_range(0x3820, 0x3827),
1172 	regmap_reg_range(0x3830, 0x3837),
1173 	regmap_reg_range(0x3840, 0x384b),
1174 	regmap_reg_range(0x3900, 0x3907),
1175 	regmap_reg_range(0x3914, 0x3915),
1176 	regmap_reg_range(0x3a00, 0x3a03),
1177 	regmap_reg_range(0x3a04, 0x3a07),
1178 	regmap_reg_range(0x3b00, 0x3b01),
1179 	regmap_reg_range(0x3b04, 0x3b04),
1180 
1181 	/* port 4 */
1182 	regmap_reg_range(0x4000, 0x4001),
1183 	regmap_reg_range(0x4013, 0x4013),
1184 	regmap_reg_range(0x4017, 0x4017),
1185 	regmap_reg_range(0x401b, 0x401b),
1186 	regmap_reg_range(0x401f, 0x4020),
1187 	regmap_reg_range(0x4030, 0x4030),
1188 	regmap_reg_range(0x4100, 0x4115),
1189 	regmap_reg_range(0x411a, 0x411f),
1190 	regmap_reg_range(0x4120, 0x412b),
1191 	regmap_reg_range(0x4134, 0x413b),
1192 	regmap_reg_range(0x413c, 0x413f),
1193 	regmap_reg_range(0x4400, 0x4401),
1194 	regmap_reg_range(0x4403, 0x4403),
1195 	regmap_reg_range(0x4410, 0x4417),
1196 	regmap_reg_range(0x4420, 0x4423),
1197 	regmap_reg_range(0x4500, 0x4507),
1198 	regmap_reg_range(0x4600, 0x4612),
1199 	regmap_reg_range(0x4800, 0x480f),
1200 	regmap_reg_range(0x4820, 0x4827),
1201 	regmap_reg_range(0x4830, 0x4837),
1202 	regmap_reg_range(0x4840, 0x484b),
1203 	regmap_reg_range(0x4900, 0x4907),
1204 	regmap_reg_range(0x4914, 0x4915),
1205 	regmap_reg_range(0x4a00, 0x4a03),
1206 	regmap_reg_range(0x4a04, 0x4a07),
1207 	regmap_reg_range(0x4b00, 0x4b01),
1208 	regmap_reg_range(0x4b04, 0x4b04),
1209 
1210 	/* port 5 */
1211 	regmap_reg_range(0x5000, 0x5001),
1212 	regmap_reg_range(0x5013, 0x5013),
1213 	regmap_reg_range(0x5017, 0x5017),
1214 	regmap_reg_range(0x501b, 0x501b),
1215 	regmap_reg_range(0x501f, 0x5020),
1216 	regmap_reg_range(0x5030, 0x5030),
1217 	regmap_reg_range(0x5100, 0x5115),
1218 	regmap_reg_range(0x511a, 0x511f),
1219 	regmap_reg_range(0x5120, 0x512b),
1220 	regmap_reg_range(0x5134, 0x513b),
1221 	regmap_reg_range(0x513c, 0x513f),
1222 	regmap_reg_range(0x5400, 0x5401),
1223 	regmap_reg_range(0x5403, 0x5403),
1224 	regmap_reg_range(0x5410, 0x5417),
1225 	regmap_reg_range(0x5420, 0x5423),
1226 	regmap_reg_range(0x5500, 0x5507),
1227 	regmap_reg_range(0x5600, 0x5612),
1228 	regmap_reg_range(0x5800, 0x580f),
1229 	regmap_reg_range(0x5820, 0x5827),
1230 	regmap_reg_range(0x5830, 0x5837),
1231 	regmap_reg_range(0x5840, 0x584b),
1232 	regmap_reg_range(0x5900, 0x5907),
1233 	regmap_reg_range(0x5914, 0x5915),
1234 	regmap_reg_range(0x5a00, 0x5a03),
1235 	regmap_reg_range(0x5a04, 0x5a07),
1236 	regmap_reg_range(0x5b00, 0x5b01),
1237 	regmap_reg_range(0x5b04, 0x5b04),
1238 
1239 	/* port 6 */
1240 	regmap_reg_range(0x6000, 0x6001),
1241 	regmap_reg_range(0x6013, 0x6013),
1242 	regmap_reg_range(0x6017, 0x6017),
1243 	regmap_reg_range(0x601b, 0x601b),
1244 	regmap_reg_range(0x601f, 0x6020),
1245 	regmap_reg_range(0x6030, 0x6030),
1246 	regmap_reg_range(0x6100, 0x6115),
1247 	regmap_reg_range(0x611a, 0x611f),
1248 	regmap_reg_range(0x6120, 0x612b),
1249 	regmap_reg_range(0x6134, 0x613b),
1250 	regmap_reg_range(0x613c, 0x613f),
1251 	regmap_reg_range(0x6300, 0x6301),
1252 	regmap_reg_range(0x6400, 0x6401),
1253 	regmap_reg_range(0x6403, 0x6403),
1254 	regmap_reg_range(0x6410, 0x6417),
1255 	regmap_reg_range(0x6420, 0x6423),
1256 	regmap_reg_range(0x6500, 0x6507),
1257 	regmap_reg_range(0x6600, 0x6612),
1258 	regmap_reg_range(0x6800, 0x680f),
1259 	regmap_reg_range(0x6820, 0x6827),
1260 	regmap_reg_range(0x6830, 0x6837),
1261 	regmap_reg_range(0x6840, 0x684b),
1262 	regmap_reg_range(0x6900, 0x6907),
1263 	regmap_reg_range(0x6914, 0x6915),
1264 	regmap_reg_range(0x6a00, 0x6a03),
1265 	regmap_reg_range(0x6a04, 0x6a07),
1266 	regmap_reg_range(0x6b00, 0x6b01),
1267 	regmap_reg_range(0x6b04, 0x6b04),
1268 };
1269 
1270 static const struct regmap_access_table ksz9896_register_set = {
1271 	.yes_ranges = ksz9896_valid_regs,
1272 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1273 };
1274 
1275 static const struct regmap_range ksz8873_valid_regs[] = {
1276 	regmap_reg_range(0x00, 0x01),
1277 	/* global control register */
1278 	regmap_reg_range(0x02, 0x0f),
1279 
1280 	/* port registers */
1281 	regmap_reg_range(0x10, 0x1d),
1282 	regmap_reg_range(0x1e, 0x1f),
1283 	regmap_reg_range(0x20, 0x2d),
1284 	regmap_reg_range(0x2e, 0x2f),
1285 	regmap_reg_range(0x30, 0x39),
1286 	regmap_reg_range(0x3f, 0x3f),
1287 
1288 	/* advanced control registers */
1289 	regmap_reg_range(0x60, 0x6f),
1290 	regmap_reg_range(0x70, 0x75),
1291 	regmap_reg_range(0x76, 0x78),
1292 	regmap_reg_range(0x79, 0x7a),
1293 	regmap_reg_range(0x7b, 0x83),
1294 	regmap_reg_range(0x8e, 0x99),
1295 	regmap_reg_range(0x9a, 0xa5),
1296 	regmap_reg_range(0xa6, 0xa6),
1297 	regmap_reg_range(0xa7, 0xaa),
1298 	regmap_reg_range(0xab, 0xae),
1299 	regmap_reg_range(0xaf, 0xba),
1300 	regmap_reg_range(0xbb, 0xbc),
1301 	regmap_reg_range(0xbd, 0xbd),
1302 	regmap_reg_range(0xc0, 0xc0),
1303 	regmap_reg_range(0xc2, 0xc2),
1304 	regmap_reg_range(0xc3, 0xc3),
1305 	regmap_reg_range(0xc4, 0xc4),
1306 	regmap_reg_range(0xc6, 0xc6),
1307 };
1308 
1309 static const struct regmap_access_table ksz8873_register_set = {
1310 	.yes_ranges = ksz8873_valid_regs,
1311 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1312 };
1313 
1314 const struct ksz_chip_data ksz_switch_chips[] = {
1315 	[KSZ8563] = {
1316 		.chip_id = KSZ8563_CHIP_ID,
1317 		.dev_name = "KSZ8563",
1318 		.num_vlans = 4096,
1319 		.num_alus = 4096,
1320 		.num_statics = 16,
1321 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1322 		.port_cnt = 3,		/* total port count */
1323 		.port_nirqs = 3,
1324 		.num_tx_queues = 4,
1325 		.num_ipms = 8,
1326 		.tc_cbs_supported = true,
1327 		.ops = &ksz9477_dev_ops,
1328 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1329 		.mib_names = ksz9477_mib_names,
1330 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1331 		.reg_mib_cnt = MIB_COUNTER_NUM,
1332 		.regs = ksz9477_regs,
1333 		.masks = ksz9477_masks,
1334 		.shifts = ksz9477_shifts,
1335 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1336 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1337 		.supports_mii = {false, false, true},
1338 		.supports_rmii = {false, false, true},
1339 		.supports_rgmii = {false, false, true},
1340 		.internal_phy = {true, true, false},
1341 		.gbit_capable = {false, false, true},
1342 		.wr_table = &ksz8563_register_set,
1343 		.rd_table = &ksz8563_register_set,
1344 	},
1345 
1346 	[KSZ8795] = {
1347 		.chip_id = KSZ8795_CHIP_ID,
1348 		.dev_name = "KSZ8795",
1349 		.num_vlans = 4096,
1350 		.num_alus = 0,
1351 		.num_statics = 32,
1352 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1353 		.port_cnt = 5,		/* total cpu and user ports */
1354 		.num_tx_queues = 4,
1355 		.num_ipms = 4,
1356 		.ops = &ksz87xx_dev_ops,
1357 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1358 		.ksz87xx_eee_link_erratum = true,
1359 		.mib_names = ksz9477_mib_names,
1360 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1361 		.reg_mib_cnt = MIB_COUNTER_NUM,
1362 		.regs = ksz8795_regs,
1363 		.masks = ksz8795_masks,
1364 		.shifts = ksz8795_shifts,
1365 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1366 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1367 		.supports_mii = {false, false, false, false, true},
1368 		.supports_rmii = {false, false, false, false, true},
1369 		.supports_rgmii = {false, false, false, false, true},
1370 		.internal_phy = {true, true, true, true, false},
1371 	},
1372 
1373 	[KSZ8794] = {
1374 		/* WARNING
1375 		 * =======
1376 		 * KSZ8794 is similar to KSZ8795, except the port map
1377 		 * contains a gap between external and CPU ports, the
1378 		 * port map is NOT continuous. The per-port register
1379 		 * map is shifted accordingly too, i.e. registers at
1380 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1381 		 * used on KSZ8795 for external port 3.
1382 		 *           external  cpu
1383 		 * KSZ8794   0,1,2      4
1384 		 * KSZ8795   0,1,2,3    4
1385 		 * KSZ8765   0,1,2,3    4
1386 		 * port_cnt is configured as 5, even though it is 4
1387 		 */
1388 		.chip_id = KSZ8794_CHIP_ID,
1389 		.dev_name = "KSZ8794",
1390 		.num_vlans = 4096,
1391 		.num_alus = 0,
1392 		.num_statics = 32,
1393 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1394 		.port_cnt = 5,		/* total cpu and user ports */
1395 		.num_tx_queues = 4,
1396 		.num_ipms = 4,
1397 		.ops = &ksz87xx_dev_ops,
1398 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1399 		.ksz87xx_eee_link_erratum = true,
1400 		.mib_names = ksz9477_mib_names,
1401 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1402 		.reg_mib_cnt = MIB_COUNTER_NUM,
1403 		.regs = ksz8795_regs,
1404 		.masks = ksz8795_masks,
1405 		.shifts = ksz8795_shifts,
1406 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1407 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1408 		.supports_mii = {false, false, false, false, true},
1409 		.supports_rmii = {false, false, false, false, true},
1410 		.supports_rgmii = {false, false, false, false, true},
1411 		.internal_phy = {true, true, true, false, false},
1412 	},
1413 
1414 	[KSZ8765] = {
1415 		.chip_id = KSZ8765_CHIP_ID,
1416 		.dev_name = "KSZ8765",
1417 		.num_vlans = 4096,
1418 		.num_alus = 0,
1419 		.num_statics = 32,
1420 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1421 		.port_cnt = 5,		/* total cpu and user ports */
1422 		.num_tx_queues = 4,
1423 		.num_ipms = 4,
1424 		.ops = &ksz87xx_dev_ops,
1425 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1426 		.ksz87xx_eee_link_erratum = true,
1427 		.mib_names = ksz9477_mib_names,
1428 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1429 		.reg_mib_cnt = MIB_COUNTER_NUM,
1430 		.regs = ksz8795_regs,
1431 		.masks = ksz8795_masks,
1432 		.shifts = ksz8795_shifts,
1433 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1434 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1435 		.supports_mii = {false, false, false, false, true},
1436 		.supports_rmii = {false, false, false, false, true},
1437 		.supports_rgmii = {false, false, false, false, true},
1438 		.internal_phy = {true, true, true, true, false},
1439 	},
1440 
1441 	[KSZ88X3] = {
1442 		.chip_id = KSZ88X3_CHIP_ID,
1443 		.dev_name = "KSZ8863/KSZ8873",
1444 		.num_vlans = 16,
1445 		.num_alus = 0,
1446 		.num_statics = 8,
1447 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1448 		.port_cnt = 3,
1449 		.num_tx_queues = 4,
1450 		.num_ipms = 4,
1451 		.ops = &ksz88xx_dev_ops,
1452 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1453 		.mib_names = ksz88xx_mib_names,
1454 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1455 		.reg_mib_cnt = MIB_COUNTER_NUM,
1456 		.regs = ksz8863_regs,
1457 		.masks = ksz8863_masks,
1458 		.shifts = ksz8863_shifts,
1459 		.supports_mii = {false, false, true},
1460 		.supports_rmii = {false, false, true},
1461 		.internal_phy = {true, true, false},
1462 		.wr_table = &ksz8873_register_set,
1463 		.rd_table = &ksz8873_register_set,
1464 	},
1465 
1466 	[KSZ8864] = {
1467 		/* WARNING
1468 		 * =======
1469 		 * KSZ8864 is similar to KSZ8895, except the first port
1470 		 * does not exist.
1471 		 *           external  cpu
1472 		 * KSZ8864   1,2,3      4
1473 		 * KSZ8895   0,1,2,3    4
1474 		 * port_cnt is configured as 5, even though it is 4
1475 		 */
1476 		.chip_id = KSZ8864_CHIP_ID,
1477 		.dev_name = "KSZ8864",
1478 		.num_vlans = 4096,
1479 		.num_alus = 0,
1480 		.num_statics = 32,
1481 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1482 		.port_cnt = 5,		/* total cpu and user ports */
1483 		.num_tx_queues = 4,
1484 		.num_ipms = 4,
1485 		.ops = &ksz88xx_dev_ops,
1486 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1487 		.mib_names = ksz88xx_mib_names,
1488 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1489 		.reg_mib_cnt = MIB_COUNTER_NUM,
1490 		.regs = ksz8895_regs,
1491 		.masks = ksz8895_masks,
1492 		.shifts = ksz8895_shifts,
1493 		.supports_mii = {false, false, false, false, true},
1494 		.supports_rmii = {false, false, false, false, true},
1495 		.internal_phy = {false, true, true, true, false},
1496 	},
1497 
1498 	[KSZ8895] = {
1499 		.chip_id = KSZ8895_CHIP_ID,
1500 		.dev_name = "KSZ8895",
1501 		.num_vlans = 4096,
1502 		.num_alus = 0,
1503 		.num_statics = 32,
1504 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1505 		.port_cnt = 5,		/* total cpu and user ports */
1506 		.num_tx_queues = 4,
1507 		.num_ipms = 4,
1508 		.ops = &ksz88xx_dev_ops,
1509 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1510 		.mib_names = ksz88xx_mib_names,
1511 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1512 		.reg_mib_cnt = MIB_COUNTER_NUM,
1513 		.regs = ksz8895_regs,
1514 		.masks = ksz8895_masks,
1515 		.shifts = ksz8895_shifts,
1516 		.supports_mii = {false, false, false, false, true},
1517 		.supports_rmii = {false, false, false, false, true},
1518 		.internal_phy = {true, true, true, true, false},
1519 	},
1520 
1521 	[KSZ9477] = {
1522 		.chip_id = KSZ9477_CHIP_ID,
1523 		.dev_name = "KSZ9477",
1524 		.num_vlans = 4096,
1525 		.num_alus = 4096,
1526 		.num_statics = 16,
1527 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1528 		.port_cnt = 7,		/* total physical port count */
1529 		.port_nirqs = 4,
1530 		.num_tx_queues = 4,
1531 		.num_ipms = 8,
1532 		.tc_cbs_supported = true,
1533 		.ops = &ksz9477_dev_ops,
1534 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1535 		.phy_errata_9477 = true,
1536 		.mib_names = ksz9477_mib_names,
1537 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1538 		.reg_mib_cnt = MIB_COUNTER_NUM,
1539 		.regs = ksz9477_regs,
1540 		.masks = ksz9477_masks,
1541 		.shifts = ksz9477_shifts,
1542 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1543 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1544 		.supports_mii	= {false, false, false, false,
1545 				   false, true, false},
1546 		.supports_rmii	= {false, false, false, false,
1547 				   false, true, false},
1548 		.supports_rgmii = {false, false, false, false,
1549 				   false, true, false},
1550 		.internal_phy	= {true, true, true, true,
1551 				   true, false, false},
1552 		.gbit_capable	= {true, true, true, true, true, true, true},
1553 		.wr_table = &ksz9477_register_set,
1554 		.rd_table = &ksz9477_register_set,
1555 	},
1556 
1557 	[KSZ9896] = {
1558 		.chip_id = KSZ9896_CHIP_ID,
1559 		.dev_name = "KSZ9896",
1560 		.num_vlans = 4096,
1561 		.num_alus = 4096,
1562 		.num_statics = 16,
1563 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1564 		.port_cnt = 6,		/* total physical port count */
1565 		.port_nirqs = 2,
1566 		.num_tx_queues = 4,
1567 		.num_ipms = 8,
1568 		.ops = &ksz9477_dev_ops,
1569 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1570 		.phy_errata_9477 = true,
1571 		.mib_names = ksz9477_mib_names,
1572 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1573 		.reg_mib_cnt = MIB_COUNTER_NUM,
1574 		.regs = ksz9477_regs,
1575 		.masks = ksz9477_masks,
1576 		.shifts = ksz9477_shifts,
1577 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1578 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1579 		.supports_mii	= {false, false, false, false,
1580 				   false, true},
1581 		.supports_rmii	= {false, false, false, false,
1582 				   false, true},
1583 		.supports_rgmii = {false, false, false, false,
1584 				   false, true},
1585 		.internal_phy	= {true, true, true, true,
1586 				   true, false},
1587 		.gbit_capable	= {true, true, true, true, true, true},
1588 		.wr_table = &ksz9896_register_set,
1589 		.rd_table = &ksz9896_register_set,
1590 	},
1591 
1592 	[KSZ9897] = {
1593 		.chip_id = KSZ9897_CHIP_ID,
1594 		.dev_name = "KSZ9897",
1595 		.num_vlans = 4096,
1596 		.num_alus = 4096,
1597 		.num_statics = 16,
1598 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1599 		.port_cnt = 7,		/* total physical port count */
1600 		.port_nirqs = 2,
1601 		.num_tx_queues = 4,
1602 		.num_ipms = 8,
1603 		.ops = &ksz9477_dev_ops,
1604 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1605 		.phy_errata_9477 = true,
1606 		.mib_names = ksz9477_mib_names,
1607 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1608 		.reg_mib_cnt = MIB_COUNTER_NUM,
1609 		.regs = ksz9477_regs,
1610 		.masks = ksz9477_masks,
1611 		.shifts = ksz9477_shifts,
1612 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1613 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1614 		.supports_mii	= {false, false, false, false,
1615 				   false, true, true},
1616 		.supports_rmii	= {false, false, false, false,
1617 				   false, true, true},
1618 		.supports_rgmii = {false, false, false, false,
1619 				   false, true, true},
1620 		.internal_phy	= {true, true, true, true,
1621 				   true, false, false},
1622 		.gbit_capable	= {true, true, true, true, true, true, true},
1623 	},
1624 
1625 	[KSZ9893] = {
1626 		.chip_id = KSZ9893_CHIP_ID,
1627 		.dev_name = "KSZ9893",
1628 		.num_vlans = 4096,
1629 		.num_alus = 4096,
1630 		.num_statics = 16,
1631 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1632 		.port_cnt = 3,		/* total port count */
1633 		.port_nirqs = 2,
1634 		.num_tx_queues = 4,
1635 		.num_ipms = 8,
1636 		.ops = &ksz9477_dev_ops,
1637 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1638 		.mib_names = ksz9477_mib_names,
1639 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1640 		.reg_mib_cnt = MIB_COUNTER_NUM,
1641 		.regs = ksz9477_regs,
1642 		.masks = ksz9477_masks,
1643 		.shifts = ksz9477_shifts,
1644 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1645 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1646 		.supports_mii = {false, false, true},
1647 		.supports_rmii = {false, false, true},
1648 		.supports_rgmii = {false, false, true},
1649 		.internal_phy = {true, true, false},
1650 		.gbit_capable = {true, true, true},
1651 	},
1652 
1653 	[KSZ9563] = {
1654 		.chip_id = KSZ9563_CHIP_ID,
1655 		.dev_name = "KSZ9563",
1656 		.num_vlans = 4096,
1657 		.num_alus = 4096,
1658 		.num_statics = 16,
1659 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1660 		.port_cnt = 3,		/* total port count */
1661 		.port_nirqs = 3,
1662 		.num_tx_queues = 4,
1663 		.num_ipms = 8,
1664 		.tc_cbs_supported = true,
1665 		.ops = &ksz9477_dev_ops,
1666 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1667 		.mib_names = ksz9477_mib_names,
1668 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1669 		.reg_mib_cnt = MIB_COUNTER_NUM,
1670 		.regs = ksz9477_regs,
1671 		.masks = ksz9477_masks,
1672 		.shifts = ksz9477_shifts,
1673 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1674 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1675 		.supports_mii = {false, false, true},
1676 		.supports_rmii = {false, false, true},
1677 		.supports_rgmii = {false, false, true},
1678 		.internal_phy = {true, true, false},
1679 		.gbit_capable = {true, true, true},
1680 	},
1681 
1682 	[KSZ8567] = {
1683 		.chip_id = KSZ8567_CHIP_ID,
1684 		.dev_name = "KSZ8567",
1685 		.num_vlans = 4096,
1686 		.num_alus = 4096,
1687 		.num_statics = 16,
1688 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1689 		.port_cnt = 7,		/* total port count */
1690 		.port_nirqs = 3,
1691 		.num_tx_queues = 4,
1692 		.num_ipms = 8,
1693 		.tc_cbs_supported = true,
1694 		.ops = &ksz9477_dev_ops,
1695 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1696 		.phy_errata_9477 = true,
1697 		.mib_names = ksz9477_mib_names,
1698 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1699 		.reg_mib_cnt = MIB_COUNTER_NUM,
1700 		.regs = ksz9477_regs,
1701 		.masks = ksz9477_masks,
1702 		.shifts = ksz9477_shifts,
1703 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1704 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1705 		.supports_mii	= {false, false, false, false,
1706 				   false, true, true},
1707 		.supports_rmii	= {false, false, false, false,
1708 				   false, true, true},
1709 		.supports_rgmii = {false, false, false, false,
1710 				   false, true, true},
1711 		.internal_phy	= {true, true, true, true,
1712 				   true, false, false},
1713 		.gbit_capable	= {false, false, false, false, false,
1714 				   true, true},
1715 	},
1716 
1717 	[KSZ9567] = {
1718 		.chip_id = KSZ9567_CHIP_ID,
1719 		.dev_name = "KSZ9567",
1720 		.num_vlans = 4096,
1721 		.num_alus = 4096,
1722 		.num_statics = 16,
1723 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1724 		.port_cnt = 7,		/* total physical port count */
1725 		.port_nirqs = 3,
1726 		.num_tx_queues = 4,
1727 		.num_ipms = 8,
1728 		.tc_cbs_supported = true,
1729 		.ops = &ksz9477_dev_ops,
1730 		.mib_names = ksz9477_mib_names,
1731 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1732 		.reg_mib_cnt = MIB_COUNTER_NUM,
1733 		.regs = ksz9477_regs,
1734 		.masks = ksz9477_masks,
1735 		.shifts = ksz9477_shifts,
1736 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1737 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1738 		.supports_mii	= {false, false, false, false,
1739 				   false, true, true},
1740 		.supports_rmii	= {false, false, false, false,
1741 				   false, true, true},
1742 		.supports_rgmii = {false, false, false, false,
1743 				   false, true, true},
1744 		.internal_phy	= {true, true, true, true,
1745 				   true, false, false},
1746 		.gbit_capable	= {true, true, true, true, true, true, true},
1747 	},
1748 
1749 	[LAN9370] = {
1750 		.chip_id = LAN9370_CHIP_ID,
1751 		.dev_name = "LAN9370",
1752 		.num_vlans = 4096,
1753 		.num_alus = 1024,
1754 		.num_statics = 256,
1755 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1756 		.port_cnt = 5,		/* total physical port count */
1757 		.port_nirqs = 6,
1758 		.num_tx_queues = 8,
1759 		.num_ipms = 8,
1760 		.tc_cbs_supported = true,
1761 		.phy_side_mdio_supported = true,
1762 		.ops = &lan937x_dev_ops,
1763 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1764 		.mib_names = ksz9477_mib_names,
1765 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1766 		.reg_mib_cnt = MIB_COUNTER_NUM,
1767 		.regs = ksz9477_regs,
1768 		.masks = lan937x_masks,
1769 		.shifts = lan937x_shifts,
1770 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1771 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1772 		.supports_mii = {false, false, false, false, true},
1773 		.supports_rmii = {false, false, false, false, true},
1774 		.supports_rgmii = {false, false, false, false, true},
1775 		.internal_phy = {true, true, true, true, false},
1776 	},
1777 
1778 	[LAN9371] = {
1779 		.chip_id = LAN9371_CHIP_ID,
1780 		.dev_name = "LAN9371",
1781 		.num_vlans = 4096,
1782 		.num_alus = 1024,
1783 		.num_statics = 256,
1784 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1785 		.port_cnt = 6,		/* total physical port count */
1786 		.port_nirqs = 6,
1787 		.num_tx_queues = 8,
1788 		.num_ipms = 8,
1789 		.tc_cbs_supported = true,
1790 		.phy_side_mdio_supported = true,
1791 		.ops = &lan937x_dev_ops,
1792 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1793 		.mib_names = ksz9477_mib_names,
1794 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1795 		.reg_mib_cnt = MIB_COUNTER_NUM,
1796 		.regs = ksz9477_regs,
1797 		.masks = lan937x_masks,
1798 		.shifts = lan937x_shifts,
1799 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1800 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1801 		.supports_mii = {false, false, false, false, true, true},
1802 		.supports_rmii = {false, false, false, false, true, true},
1803 		.supports_rgmii = {false, false, false, false, true, true},
1804 		.internal_phy = {true, true, true, true, false, false},
1805 	},
1806 
1807 	[LAN9372] = {
1808 		.chip_id = LAN9372_CHIP_ID,
1809 		.dev_name = "LAN9372",
1810 		.num_vlans = 4096,
1811 		.num_alus = 1024,
1812 		.num_statics = 256,
1813 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1814 		.port_cnt = 8,		/* total physical port count */
1815 		.port_nirqs = 6,
1816 		.num_tx_queues = 8,
1817 		.num_ipms = 8,
1818 		.tc_cbs_supported = true,
1819 		.phy_side_mdio_supported = true,
1820 		.ops = &lan937x_dev_ops,
1821 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1822 		.mib_names = ksz9477_mib_names,
1823 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1824 		.reg_mib_cnt = MIB_COUNTER_NUM,
1825 		.regs = ksz9477_regs,
1826 		.masks = lan937x_masks,
1827 		.shifts = lan937x_shifts,
1828 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1829 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1830 		.supports_mii	= {false, false, false, false,
1831 				   true, true, false, false},
1832 		.supports_rmii	= {false, false, false, false,
1833 				   true, true, false, false},
1834 		.supports_rgmii = {false, false, false, false,
1835 				   true, true, false, false},
1836 		.internal_phy	= {true, true, true, true,
1837 				   false, false, true, true},
1838 	},
1839 
1840 	[LAN9373] = {
1841 		.chip_id = LAN9373_CHIP_ID,
1842 		.dev_name = "LAN9373",
1843 		.num_vlans = 4096,
1844 		.num_alus = 1024,
1845 		.num_statics = 256,
1846 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1847 		.port_cnt = 5,		/* total physical port count */
1848 		.port_nirqs = 6,
1849 		.num_tx_queues = 8,
1850 		.num_ipms = 8,
1851 		.tc_cbs_supported = true,
1852 		.phy_side_mdio_supported = true,
1853 		.ops = &lan937x_dev_ops,
1854 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1855 		.mib_names = ksz9477_mib_names,
1856 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1857 		.reg_mib_cnt = MIB_COUNTER_NUM,
1858 		.regs = ksz9477_regs,
1859 		.masks = lan937x_masks,
1860 		.shifts = lan937x_shifts,
1861 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1862 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1863 		.supports_mii	= {false, false, false, false,
1864 				   true, true, false, false},
1865 		.supports_rmii	= {false, false, false, false,
1866 				   true, true, false, false},
1867 		.supports_rgmii = {false, false, false, false,
1868 				   true, true, false, false},
1869 		.internal_phy	= {true, true, true, false,
1870 				   false, false, true, true},
1871 	},
1872 
1873 	[LAN9374] = {
1874 		.chip_id = LAN9374_CHIP_ID,
1875 		.dev_name = "LAN9374",
1876 		.num_vlans = 4096,
1877 		.num_alus = 1024,
1878 		.num_statics = 256,
1879 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1880 		.port_cnt = 8,		/* total physical port count */
1881 		.port_nirqs = 6,
1882 		.num_tx_queues = 8,
1883 		.num_ipms = 8,
1884 		.tc_cbs_supported = true,
1885 		.phy_side_mdio_supported = true,
1886 		.ops = &lan937x_dev_ops,
1887 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1888 		.mib_names = ksz9477_mib_names,
1889 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1890 		.reg_mib_cnt = MIB_COUNTER_NUM,
1891 		.regs = ksz9477_regs,
1892 		.masks = lan937x_masks,
1893 		.shifts = lan937x_shifts,
1894 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1895 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1896 		.supports_mii	= {false, false, false, false,
1897 				   true, true, false, false},
1898 		.supports_rmii	= {false, false, false, false,
1899 				   true, true, false, false},
1900 		.supports_rgmii = {false, false, false, false,
1901 				   true, true, false, false},
1902 		.internal_phy	= {true, true, true, true,
1903 				   false, false, true, true},
1904 	},
1905 
1906 	[LAN9646] = {
1907 		.chip_id = LAN9646_CHIP_ID,
1908 		.dev_name = "LAN9646",
1909 		.num_vlans = 4096,
1910 		.num_alus = 4096,
1911 		.num_statics = 16,
1912 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1913 		.port_cnt = 7,		/* total physical port count */
1914 		.port_nirqs = 4,
1915 		.num_tx_queues = 4,
1916 		.num_ipms = 8,
1917 		.ops = &ksz9477_dev_ops,
1918 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1919 		.phy_errata_9477 = true,
1920 		.mib_names = ksz9477_mib_names,
1921 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1922 		.reg_mib_cnt = MIB_COUNTER_NUM,
1923 		.regs = ksz9477_regs,
1924 		.masks = ksz9477_masks,
1925 		.shifts = ksz9477_shifts,
1926 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1927 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1928 		.supports_mii	= {false, false, false, false,
1929 				   false, true, true},
1930 		.supports_rmii	= {false, false, false, false,
1931 				   false, true, true},
1932 		.supports_rgmii = {false, false, false, false,
1933 				   false, true, true},
1934 		.internal_phy	= {true, true, true, true,
1935 				   true, false, false},
1936 		.gbit_capable	= {true, true, true, true, true, true, true},
1937 		.wr_table = &ksz9477_register_set,
1938 		.rd_table = &ksz9477_register_set,
1939 	},
1940 };
1941 EXPORT_SYMBOL_GPL(ksz_switch_chips);
1942 
1943 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1944 {
1945 	int i;
1946 
1947 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1948 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1949 
1950 		if (chip->chip_id == prod_num)
1951 			return chip;
1952 	}
1953 
1954 	return NULL;
1955 }
1956 
1957 static int ksz_check_device_id(struct ksz_device *dev)
1958 {
1959 	const struct ksz_chip_data *expected_chip_data;
1960 	u32 expected_chip_id;
1961 
1962 	if (dev->pdata) {
1963 		expected_chip_id = dev->pdata->chip_id;
1964 		expected_chip_data = ksz_lookup_info(expected_chip_id);
1965 		if (WARN_ON(!expected_chip_data))
1966 			return -ENODEV;
1967 	} else {
1968 		expected_chip_data = of_device_get_match_data(dev->dev);
1969 		expected_chip_id = expected_chip_data->chip_id;
1970 	}
1971 
1972 	if (expected_chip_id != dev->chip_id) {
1973 		dev_err(dev->dev,
1974 			"Device tree specifies chip %s but found %s, please fix it!\n",
1975 			expected_chip_data->dev_name, dev->info->dev_name);
1976 		return -ENODEV;
1977 	}
1978 
1979 	return 0;
1980 }
1981 
1982 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1983 				 struct phylink_config *config)
1984 {
1985 	struct ksz_device *dev = ds->priv;
1986 
1987 	if (dev->info->supports_mii[port])
1988 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1989 
1990 	if (dev->info->supports_rmii[port])
1991 		__set_bit(PHY_INTERFACE_MODE_RMII,
1992 			  config->supported_interfaces);
1993 
1994 	if (dev->info->supports_rgmii[port])
1995 		phy_interface_set_rgmii(config->supported_interfaces);
1996 
1997 	if (dev->info->internal_phy[port]) {
1998 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1999 			  config->supported_interfaces);
2000 		/* Compatibility for phylib's default interface type when the
2001 		 * phy-mode property is absent
2002 		 */
2003 		__set_bit(PHY_INTERFACE_MODE_GMII,
2004 			  config->supported_interfaces);
2005 	}
2006 
2007 	if (dev->dev_ops->get_caps)
2008 		dev->dev_ops->get_caps(dev, port, config);
2009 }
2010 
2011 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
2012 {
2013 	struct ethtool_pause_stats *pstats;
2014 	struct rtnl_link_stats64 *stats;
2015 	struct ksz_stats_raw *raw;
2016 	struct ksz_port_mib *mib;
2017 	int ret;
2018 
2019 	mib = &dev->ports[port].mib;
2020 	stats = &mib->stats64;
2021 	pstats = &mib->pause_stats;
2022 	raw = (struct ksz_stats_raw *)mib->counters;
2023 
2024 	spin_lock(&mib->stats64_lock);
2025 
2026 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2027 		raw->rx_pause;
2028 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2029 		raw->tx_pause;
2030 
2031 	/* HW counters are counting bytes + FCS which is not acceptable
2032 	 * for rtnl_link_stats64 interface
2033 	 */
2034 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
2035 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
2036 
2037 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2038 		raw->rx_oversize;
2039 
2040 	stats->rx_crc_errors = raw->rx_crc_err;
2041 	stats->rx_frame_errors = raw->rx_align_err;
2042 	stats->rx_dropped = raw->rx_discards;
2043 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2044 		stats->rx_frame_errors  + stats->rx_dropped;
2045 
2046 	stats->tx_window_errors = raw->tx_late_col;
2047 	stats->tx_fifo_errors = raw->tx_discards;
2048 	stats->tx_aborted_errors = raw->tx_exc_col;
2049 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2050 		stats->tx_aborted_errors;
2051 
2052 	stats->multicast = raw->rx_mcast;
2053 	stats->collisions = raw->tx_total_col;
2054 
2055 	pstats->tx_pause_frames = raw->tx_pause;
2056 	pstats->rx_pause_frames = raw->rx_pause;
2057 
2058 	spin_unlock(&mib->stats64_lock);
2059 
2060 	if (dev->info->phy_errata_9477) {
2061 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
2062 		if (ret)
2063 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
2064 	}
2065 }
2066 
2067 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
2068 {
2069 	struct ethtool_pause_stats *pstats;
2070 	struct rtnl_link_stats64 *stats;
2071 	struct ksz88xx_stats_raw *raw;
2072 	struct ksz_port_mib *mib;
2073 
2074 	mib = &dev->ports[port].mib;
2075 	stats = &mib->stats64;
2076 	pstats = &mib->pause_stats;
2077 	raw = (struct ksz88xx_stats_raw *)mib->counters;
2078 
2079 	spin_lock(&mib->stats64_lock);
2080 
2081 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2082 		raw->rx_pause;
2083 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2084 		raw->tx_pause;
2085 
2086 	/* HW counters are counting bytes + FCS which is not acceptable
2087 	 * for rtnl_link_stats64 interface
2088 	 */
2089 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
2090 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
2091 
2092 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2093 		raw->rx_oversize;
2094 
2095 	stats->rx_crc_errors = raw->rx_crc_err;
2096 	stats->rx_frame_errors = raw->rx_align_err;
2097 	stats->rx_dropped = raw->rx_discards;
2098 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2099 		stats->rx_frame_errors  + stats->rx_dropped;
2100 
2101 	stats->tx_window_errors = raw->tx_late_col;
2102 	stats->tx_fifo_errors = raw->tx_discards;
2103 	stats->tx_aborted_errors = raw->tx_exc_col;
2104 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2105 		stats->tx_aborted_errors;
2106 
2107 	stats->multicast = raw->rx_mcast;
2108 	stats->collisions = raw->tx_total_col;
2109 
2110 	pstats->tx_pause_frames = raw->tx_pause;
2111 	pstats->rx_pause_frames = raw->rx_pause;
2112 
2113 	spin_unlock(&mib->stats64_lock);
2114 }
2115 
2116 static void ksz_get_stats64(struct dsa_switch *ds, int port,
2117 			    struct rtnl_link_stats64 *s)
2118 {
2119 	struct ksz_device *dev = ds->priv;
2120 	struct ksz_port_mib *mib;
2121 
2122 	mib = &dev->ports[port].mib;
2123 
2124 	spin_lock(&mib->stats64_lock);
2125 	memcpy(s, &mib->stats64, sizeof(*s));
2126 	spin_unlock(&mib->stats64_lock);
2127 }
2128 
2129 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
2130 				struct ethtool_pause_stats *pause_stats)
2131 {
2132 	struct ksz_device *dev = ds->priv;
2133 	struct ksz_port_mib *mib;
2134 
2135 	mib = &dev->ports[port].mib;
2136 
2137 	spin_lock(&mib->stats64_lock);
2138 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
2139 	spin_unlock(&mib->stats64_lock);
2140 }
2141 
2142 static void ksz_get_strings(struct dsa_switch *ds, int port,
2143 			    u32 stringset, uint8_t *buf)
2144 {
2145 	struct ksz_device *dev = ds->priv;
2146 	int i;
2147 
2148 	if (stringset != ETH_SS_STATS)
2149 		return;
2150 
2151 	for (i = 0; i < dev->info->mib_cnt; i++)
2152 		ethtool_puts(&buf, dev->info->mib_names[i].string);
2153 }
2154 
2155 /**
2156  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2157  *			    isolation settings.
2158  * @dev: A pointer to the struct ksz_device representing the device.
2159  * @port: The port number to adjust.
2160  *
2161  * This function dynamically adjusts the port membership configuration for a
2162  * specified port and other device ports, based on Spanning Tree Protocol (STP)
2163  * states and port isolation settings. Each port, including the CPU port, has a
2164  * membership register, represented as a bitfield, where each bit corresponds
2165  * to a port number. A set bit indicates permission to forward frames to that
2166  * port. This function iterates over all ports, updating the membership register
2167  * to reflect current forwarding permissions:
2168  *
2169  * 1. Forwards frames only to ports that are part of the same bridge group and
2170  *    in the BR_STATE_FORWARDING state.
2171  * 2. Takes into account the isolation status of ports; ports in the
2172  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2173  *    frames to each other, even if they are in the same bridge group.
2174  * 3. Ensures that the CPU port is included in the membership based on its
2175  *    upstream port configuration, allowing for management and control traffic
2176  *    to flow as required.
2177  */
2178 static void ksz_update_port_member(struct ksz_device *dev, int port)
2179 {
2180 	struct ksz_port *p = &dev->ports[port];
2181 	struct dsa_switch *ds = dev->ds;
2182 	u8 port_member = 0, cpu_port;
2183 	const struct dsa_port *dp;
2184 	int i, j;
2185 
2186 	if (!dsa_is_user_port(ds, port))
2187 		return;
2188 
2189 	dp = dsa_to_port(ds, port);
2190 	cpu_port = BIT(dsa_upstream_port(ds, port));
2191 
2192 	for (i = 0; i < ds->num_ports; i++) {
2193 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2194 		struct ksz_port *other_p = &dev->ports[i];
2195 		u8 val = 0;
2196 
2197 		if (!dsa_is_user_port(ds, i))
2198 			continue;
2199 		if (port == i)
2200 			continue;
2201 		if (!dsa_port_bridge_same(dp, other_dp))
2202 			continue;
2203 		if (other_p->stp_state != BR_STATE_FORWARDING)
2204 			continue;
2205 
2206 		/* At this point we know that "port" and "other" port [i] are in
2207 		 * the same bridge group and that "other" port [i] is in
2208 		 * forwarding stp state. If "port" is also in forwarding stp
2209 		 * state, we can allow forwarding from port [port] to port [i].
2210 		 * Except if both ports are isolated.
2211 		 */
2212 		if (p->stp_state == BR_STATE_FORWARDING &&
2213 		    !(p->isolated && other_p->isolated)) {
2214 			val |= BIT(port);
2215 			port_member |= BIT(i);
2216 		}
2217 
2218 		/* Retain port [i]'s relationship to other ports than [port] */
2219 		for (j = 0; j < ds->num_ports; j++) {
2220 			const struct dsa_port *third_dp;
2221 			struct ksz_port *third_p;
2222 
2223 			if (j == i)
2224 				continue;
2225 			if (j == port)
2226 				continue;
2227 			if (!dsa_is_user_port(ds, j))
2228 				continue;
2229 			third_p = &dev->ports[j];
2230 			if (third_p->stp_state != BR_STATE_FORWARDING)
2231 				continue;
2232 
2233 			third_dp = dsa_to_port(ds, j);
2234 
2235 			/* Now we updating relation of the "other" port [i] to
2236 			 * the "third" port [j]. We already know that "other"
2237 			 * port [i] is in forwarding stp state and that "third"
2238 			 * port [j] is in forwarding stp state too.
2239 			 * We need to check if "other" port [i] and "third" port
2240 			 * [j] are in the same bridge group and not isolated
2241 			 * before allowing forwarding from port [i] to port [j].
2242 			 */
2243 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2244 			    !(other_p->isolated && third_p->isolated))
2245 				val |= BIT(j);
2246 		}
2247 
2248 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2249 	}
2250 
2251 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2252 }
2253 
2254 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2255 {
2256 	struct ksz_device *dev = bus->priv;
2257 	u16 val;
2258 	int ret;
2259 
2260 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2261 	if (ret < 0)
2262 		return ret;
2263 
2264 	return val;
2265 }
2266 
2267 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2268 			     u16 val)
2269 {
2270 	struct ksz_device *dev = bus->priv;
2271 
2272 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2273 }
2274 
2275 /**
2276  * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus.
2277  * @bus: MDIO bus structure.
2278  * @addr: PHY address on the parent MDIO bus.
2279  * @regnum: Register number to read.
2280  *
2281  * This function provides a direct read operation on the parent MDIO bus for
2282  * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus
2283  * to retrieve data from the PHY registers at the specified address and register
2284  * number.
2285  *
2286  * Return: Value of the PHY register, or a negative error code on failure.
2287  */
2288 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum)
2289 {
2290 	struct ksz_device *dev = bus->priv;
2291 
2292 	return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum);
2293 }
2294 
2295 /**
2296  * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus.
2297  * @bus: MDIO bus structure.
2298  * @addr: PHY address on the parent MDIO bus.
2299  * @regnum: Register number to write to.
2300  * @val: Value to write to the PHY register.
2301  *
2302  * This function provides a direct write operation on the parent MDIO bus for
2303  * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus
2304  * to modify the PHY register values at the specified address.
2305  *
2306  * Return: 0 on success, or a negative error code on failure.
2307  */
2308 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum,
2309 				 u16 val)
2310 {
2311 	struct ksz_device *dev = bus->priv;
2312 
2313 	return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val);
2314 }
2315 
2316 /**
2317  * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port.
2318  * @dev: Pointer to device structure.
2319  * @addr: PHY address to map to a port.
2320  *
2321  * This function finds the corresponding switch port for a given PHY address by
2322  * iterating over all user ports on the device. It checks if a port's PHY
2323  * address in `phy_addr_map` matches the specified address and if the port
2324  * contains an internal PHY. If a match is found, the index of the port is
2325  * returned.
2326  *
2327  * Return: Port index on success, or -EINVAL if no matching port is found.
2328  */
2329 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr)
2330 {
2331 	struct dsa_switch *ds = dev->ds;
2332 	struct dsa_port *dp;
2333 
2334 	dsa_switch_for_each_user_port(dp, ds) {
2335 		if (dev->info->internal_phy[dp->index] &&
2336 		    dev->phy_addr_map[dp->index] == addr)
2337 			return dp->index;
2338 	}
2339 
2340 	return -EINVAL;
2341 }
2342 
2343 /**
2344  * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device.
2345  * @dev: Pointer to the KSZ device structure.
2346  *
2347  * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the
2348  * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in
2349  * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain.
2350  *
2351  * Return: 0 on success, or a negative error code on failure.
2352  */
2353 static int ksz_irq_phy_setup(struct ksz_device *dev)
2354 {
2355 	struct dsa_switch *ds = dev->ds;
2356 	int phy, port;
2357 	int irq;
2358 	int ret;
2359 
2360 	for (phy = 0; phy < PHY_MAX_ADDR; phy++) {
2361 		if (BIT(phy) & ds->phys_mii_mask) {
2362 			port = ksz_phy_addr_to_port(dev, phy);
2363 			if (port < 0) {
2364 				ret = port;
2365 				goto out;
2366 			}
2367 
2368 			irq = irq_find_mapping(dev->ports[port].pirq.domain,
2369 					       PORT_SRC_PHY_INT);
2370 			if (irq < 0) {
2371 				ret = irq;
2372 				goto out;
2373 			}
2374 			ds->user_mii_bus->irq[phy] = irq;
2375 		}
2376 	}
2377 	return 0;
2378 out:
2379 	while (phy--)
2380 		if (BIT(phy) & ds->phys_mii_mask)
2381 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2382 
2383 	return ret;
2384 }
2385 
2386 /**
2387  * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device.
2388  * @dev: Pointer to the KSZ device structure.
2389  *
2390  * Releases any IRQ mappings previously assigned to active PHYs in the KSZ
2391  * switch by disposing of each mapped IRQ in the `user_mii_bus` structure.
2392  */
2393 static void ksz_irq_phy_free(struct ksz_device *dev)
2394 {
2395 	struct dsa_switch *ds = dev->ds;
2396 	int phy;
2397 
2398 	for (phy = 0; phy < PHY_MAX_ADDR; phy++)
2399 		if (BIT(phy) & ds->phys_mii_mask)
2400 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2401 }
2402 
2403 /**
2404  * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT
2405  * @dev: pointer to the KSZ device structure
2406  * @bus: pointer to the MII bus structure
2407  * @mdio_np: pointer to the MDIO node in the device tree
2408  *
2409  * This function parses and validates PHY configurations for each user port
2410  * defined in the device tree for a KSZ switch device. It verifies that the
2411  * `phy-handle` properties are correctly set and that the internal PHYs match
2412  * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if
2413  * all validations pass. Logs error messages for any mismatches or missing data.
2414  *
2415  * Return: 0 on success, or a negative error code on failure.
2416  */
2417 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus,
2418 				   struct device_node *mdio_np)
2419 {
2420 	struct device_node *phy_node, *phy_parent_node;
2421 	bool phys_are_valid = true;
2422 	struct dsa_port *dp;
2423 	u32 phy_addr;
2424 	int ret;
2425 
2426 	dsa_switch_for_each_user_port(dp, dev->ds) {
2427 		if (!dev->info->internal_phy[dp->index])
2428 			continue;
2429 
2430 		phy_node = of_parse_phandle(dp->dn, "phy-handle", 0);
2431 		if (!phy_node) {
2432 			dev_err(dev->dev, "failed to parse phy-handle for port %d.\n",
2433 				dp->index);
2434 			phys_are_valid = false;
2435 			continue;
2436 		}
2437 
2438 		phy_parent_node = of_get_parent(phy_node);
2439 		if (!phy_parent_node) {
2440 			dev_err(dev->dev, "failed to get PHY-parent node for port %d\n",
2441 				dp->index);
2442 			phys_are_valid = false;
2443 		} else if (phy_parent_node != mdio_np) {
2444 			dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n",
2445 				dp->index, mdio_np, phy_parent_node);
2446 			phys_are_valid = false;
2447 		} else {
2448 			ret = of_property_read_u32(phy_node, "reg", &phy_addr);
2449 			if (ret < 0) {
2450 				dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n",
2451 					dp->index, ret);
2452 				phys_are_valid = false;
2453 			} else if (phy_addr != dev->phy_addr_map[dp->index]) {
2454 				dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n",
2455 					dp->index, dev->phy_addr_map[dp->index],
2456 					phy_addr);
2457 				phys_are_valid = false;
2458 			} else {
2459 				bus->phy_mask |= BIT(phy_addr);
2460 			}
2461 		}
2462 
2463 		of_node_put(phy_node);
2464 		of_node_put(phy_parent_node);
2465 	}
2466 
2467 	if (!phys_are_valid)
2468 		return -EINVAL;
2469 
2470 	return 0;
2471 }
2472 
2473 /**
2474  * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device.
2475  * @dev: Pointer to the KSZ device structure.
2476  *
2477  * This function sets up and registers an MDIO bus for the KSZ switch device,
2478  * allowing access to its internal PHYs. If the device supports side MDIO,
2479  * the function will configure the external MDIO controller specified by the
2480  * "mdio-parent-bus" device tree property to directly manage internal PHYs.
2481  * Otherwise, SPI or I2C access is set up for PHY access.
2482  *
2483  * Return: 0 on success, or a negative error code on failure.
2484  */
2485 static int ksz_mdio_register(struct ksz_device *dev)
2486 {
2487 	struct device_node *parent_bus_node;
2488 	struct mii_bus *parent_bus = NULL;
2489 	struct dsa_switch *ds = dev->ds;
2490 	struct device_node *mdio_np;
2491 	struct mii_bus *bus;
2492 	int ret, i;
2493 
2494 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2495 	if (!mdio_np)
2496 		return 0;
2497 
2498 	parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0);
2499 	if (parent_bus_node && !dev->info->phy_side_mdio_supported) {
2500 		dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n");
2501 		ret = -EINVAL;
2502 
2503 		goto put_mdio_node;
2504 	} else if (parent_bus_node) {
2505 		parent_bus = of_mdio_find_bus(parent_bus_node);
2506 		if (!parent_bus) {
2507 			ret = -EPROBE_DEFER;
2508 
2509 			goto put_mdio_node;
2510 		}
2511 
2512 		dev->parent_mdio_bus = parent_bus;
2513 	}
2514 
2515 	bus = devm_mdiobus_alloc(ds->dev);
2516 	if (!bus) {
2517 		ret = -ENOMEM;
2518 		goto put_mdio_node;
2519 	}
2520 
2521 	if (dev->dev_ops->mdio_bus_preinit) {
2522 		ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus);
2523 		if (ret)
2524 			goto put_mdio_node;
2525 	}
2526 
2527 	if (dev->dev_ops->create_phy_addr_map) {
2528 		ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus);
2529 		if (ret)
2530 			goto put_mdio_node;
2531 	} else {
2532 		for (i = 0; i < dev->info->port_cnt; i++)
2533 			dev->phy_addr_map[i] = i;
2534 	}
2535 
2536 	bus->priv = dev;
2537 	if (parent_bus) {
2538 		bus->read = ksz_parent_mdio_read;
2539 		bus->write = ksz_parent_mdio_write;
2540 		bus->name = "KSZ side MDIO";
2541 		snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d",
2542 			 ds->index);
2543 	} else {
2544 		bus->read = ksz_sw_mdio_read;
2545 		bus->write = ksz_sw_mdio_write;
2546 		bus->name = "ksz user smi";
2547 		snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2548 	}
2549 
2550 	ret = ksz_parse_dt_phy_config(dev, bus, mdio_np);
2551 	if (ret)
2552 		goto put_mdio_node;
2553 
2554 	ds->phys_mii_mask = bus->phy_mask;
2555 	bus->parent = ds->dev;
2556 
2557 	ds->user_mii_bus = bus;
2558 
2559 	if (dev->irq > 0) {
2560 		ret = ksz_irq_phy_setup(dev);
2561 		if (ret)
2562 			goto put_mdio_node;
2563 	}
2564 
2565 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2566 	if (ret) {
2567 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2568 			bus->id);
2569 		if (dev->irq > 0)
2570 			ksz_irq_phy_free(dev);
2571 	}
2572 
2573 put_mdio_node:
2574 	of_node_put(mdio_np);
2575 	of_node_put(parent_bus_node);
2576 
2577 	return ret;
2578 }
2579 
2580 static void ksz_irq_mask(struct irq_data *d)
2581 {
2582 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2583 
2584 	kirq->masked |= BIT(d->hwirq);
2585 }
2586 
2587 static void ksz_irq_unmask(struct irq_data *d)
2588 {
2589 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2590 
2591 	kirq->masked &= ~BIT(d->hwirq);
2592 }
2593 
2594 static void ksz_irq_bus_lock(struct irq_data *d)
2595 {
2596 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2597 
2598 	mutex_lock(&kirq->dev->lock_irq);
2599 }
2600 
2601 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2602 {
2603 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2604 	struct ksz_device *dev = kirq->dev;
2605 	int ret;
2606 
2607 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2608 	if (ret)
2609 		dev_err(dev->dev, "failed to change IRQ mask\n");
2610 
2611 	mutex_unlock(&dev->lock_irq);
2612 }
2613 
2614 static const struct irq_chip ksz_irq_chip = {
2615 	.name			= "ksz-irq",
2616 	.irq_mask		= ksz_irq_mask,
2617 	.irq_unmask		= ksz_irq_unmask,
2618 	.irq_bus_lock		= ksz_irq_bus_lock,
2619 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2620 };
2621 
2622 static int ksz_irq_domain_map(struct irq_domain *d,
2623 			      unsigned int irq, irq_hw_number_t hwirq)
2624 {
2625 	irq_set_chip_data(irq, d->host_data);
2626 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2627 	irq_set_noprobe(irq);
2628 
2629 	return 0;
2630 }
2631 
2632 static const struct irq_domain_ops ksz_irq_domain_ops = {
2633 	.map	= ksz_irq_domain_map,
2634 	.xlate	= irq_domain_xlate_twocell,
2635 };
2636 
2637 static void ksz_irq_free(struct ksz_irq *kirq)
2638 {
2639 	int irq, virq;
2640 
2641 	free_irq(kirq->irq_num, kirq);
2642 
2643 	for (irq = 0; irq < kirq->nirqs; irq++) {
2644 		virq = irq_find_mapping(kirq->domain, irq);
2645 		irq_dispose_mapping(virq);
2646 	}
2647 
2648 	irq_domain_remove(kirq->domain);
2649 }
2650 
2651 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2652 {
2653 	struct ksz_irq *kirq = dev_id;
2654 	unsigned int nhandled = 0;
2655 	struct ksz_device *dev;
2656 	unsigned int sub_irq;
2657 	u8 data;
2658 	int ret;
2659 	u8 n;
2660 
2661 	dev = kirq->dev;
2662 
2663 	/* Read interrupt status register */
2664 	ret = ksz_read8(dev, kirq->reg_status, &data);
2665 	if (ret)
2666 		goto out;
2667 
2668 	for (n = 0; n < kirq->nirqs; ++n) {
2669 		if (data & BIT(n)) {
2670 			sub_irq = irq_find_mapping(kirq->domain, n);
2671 			handle_nested_irq(sub_irq);
2672 			++nhandled;
2673 		}
2674 	}
2675 out:
2676 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2677 }
2678 
2679 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2680 {
2681 	int ret, n;
2682 
2683 	kirq->dev = dev;
2684 	kirq->masked = ~0;
2685 
2686 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2687 					     &ksz_irq_domain_ops, kirq);
2688 	if (!kirq->domain)
2689 		return -ENOMEM;
2690 
2691 	for (n = 0; n < kirq->nirqs; n++)
2692 		irq_create_mapping(kirq->domain, n);
2693 
2694 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2695 				   IRQF_ONESHOT, kirq->name, kirq);
2696 	if (ret)
2697 		goto out;
2698 
2699 	return 0;
2700 
2701 out:
2702 	ksz_irq_free(kirq);
2703 
2704 	return ret;
2705 }
2706 
2707 static int ksz_girq_setup(struct ksz_device *dev)
2708 {
2709 	struct ksz_irq *girq = &dev->girq;
2710 
2711 	girq->nirqs = dev->info->port_cnt;
2712 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2713 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2714 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2715 
2716 	girq->irq_num = dev->irq;
2717 
2718 	return ksz_irq_common_setup(dev, girq);
2719 }
2720 
2721 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2722 {
2723 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2724 
2725 	pirq->nirqs = dev->info->port_nirqs;
2726 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2727 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2728 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2729 
2730 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2731 	if (pirq->irq_num < 0)
2732 		return pirq->irq_num;
2733 
2734 	return ksz_irq_common_setup(dev, pirq);
2735 }
2736 
2737 static int ksz_parse_drive_strength(struct ksz_device *dev);
2738 
2739 static int ksz_setup(struct dsa_switch *ds)
2740 {
2741 	struct ksz_device *dev = ds->priv;
2742 	struct dsa_port *dp;
2743 	struct ksz_port *p;
2744 	const u16 *regs;
2745 	int ret;
2746 
2747 	regs = dev->info->regs;
2748 
2749 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2750 				       dev->info->num_vlans, GFP_KERNEL);
2751 	if (!dev->vlan_cache)
2752 		return -ENOMEM;
2753 
2754 	ret = dev->dev_ops->reset(dev);
2755 	if (ret) {
2756 		dev_err(ds->dev, "failed to reset switch\n");
2757 		return ret;
2758 	}
2759 
2760 	ret = ksz_parse_drive_strength(dev);
2761 	if (ret)
2762 		return ret;
2763 
2764 	/* set broadcast storm protection 10% rate */
2765 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2766 			   BROADCAST_STORM_RATE,
2767 			   (BROADCAST_STORM_VALUE *
2768 			   BROADCAST_STORM_PROT_RATE) / 100);
2769 
2770 	dev->dev_ops->config_cpu_port(ds);
2771 
2772 	dev->dev_ops->enable_stp_addr(dev);
2773 
2774 	ds->num_tx_queues = dev->info->num_tx_queues;
2775 
2776 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2777 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2778 
2779 	ksz_init_mib_timer(dev);
2780 
2781 	ds->configure_vlan_while_not_filtering = false;
2782 	ds->dscp_prio_mapping_is_global = true;
2783 
2784 	if (dev->dev_ops->setup) {
2785 		ret = dev->dev_ops->setup(ds);
2786 		if (ret)
2787 			return ret;
2788 	}
2789 
2790 	/* Start with learning disabled on standalone user ports, and enabled
2791 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2792 	 * CPU port will avoid flooding bridge local addresses on the network
2793 	 * in some cases.
2794 	 */
2795 	p = &dev->ports[dev->cpu_port];
2796 	p->learning = true;
2797 
2798 	if (dev->irq > 0) {
2799 		ret = ksz_girq_setup(dev);
2800 		if (ret)
2801 			return ret;
2802 
2803 		dsa_switch_for_each_user_port(dp, dev->ds) {
2804 			ret = ksz_pirq_setup(dev, dp->index);
2805 			if (ret)
2806 				goto out_girq;
2807 
2808 			ret = ksz_ptp_irq_setup(ds, dp->index);
2809 			if (ret)
2810 				goto out_pirq;
2811 		}
2812 	}
2813 
2814 	ret = ksz_ptp_clock_register(ds);
2815 	if (ret) {
2816 		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2817 		goto out_ptpirq;
2818 	}
2819 
2820 	ret = ksz_mdio_register(dev);
2821 	if (ret < 0) {
2822 		dev_err(dev->dev, "failed to register the mdio");
2823 		goto out_ptp_clock_unregister;
2824 	}
2825 
2826 	ret = ksz_dcb_init(dev);
2827 	if (ret)
2828 		goto out_ptp_clock_unregister;
2829 
2830 	/* start switch */
2831 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2832 			   SW_START, SW_START);
2833 
2834 	return 0;
2835 
2836 out_ptp_clock_unregister:
2837 	ksz_ptp_clock_unregister(ds);
2838 out_ptpirq:
2839 	if (dev->irq > 0)
2840 		dsa_switch_for_each_user_port(dp, dev->ds)
2841 			ksz_ptp_irq_free(ds, dp->index);
2842 out_pirq:
2843 	if (dev->irq > 0)
2844 		dsa_switch_for_each_user_port(dp, dev->ds)
2845 			ksz_irq_free(&dev->ports[dp->index].pirq);
2846 out_girq:
2847 	if (dev->irq > 0)
2848 		ksz_irq_free(&dev->girq);
2849 
2850 	return ret;
2851 }
2852 
2853 static void ksz_teardown(struct dsa_switch *ds)
2854 {
2855 	struct ksz_device *dev = ds->priv;
2856 	struct dsa_port *dp;
2857 
2858 	ksz_ptp_clock_unregister(ds);
2859 
2860 	if (dev->irq > 0) {
2861 		dsa_switch_for_each_user_port(dp, dev->ds) {
2862 			ksz_ptp_irq_free(ds, dp->index);
2863 
2864 			ksz_irq_free(&dev->ports[dp->index].pirq);
2865 		}
2866 
2867 		ksz_irq_free(&dev->girq);
2868 	}
2869 
2870 	if (dev->dev_ops->teardown)
2871 		dev->dev_ops->teardown(ds);
2872 }
2873 
2874 static void port_r_cnt(struct ksz_device *dev, int port)
2875 {
2876 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2877 	u64 *dropped;
2878 
2879 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2880 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2881 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2882 					&mib->counters[mib->cnt_ptr]);
2883 		++mib->cnt_ptr;
2884 	}
2885 
2886 	/* last one in storage */
2887 	dropped = &mib->counters[dev->info->mib_cnt];
2888 
2889 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2890 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2891 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2892 					dropped, &mib->counters[mib->cnt_ptr]);
2893 		++mib->cnt_ptr;
2894 	}
2895 	mib->cnt_ptr = 0;
2896 }
2897 
2898 static void ksz_mib_read_work(struct work_struct *work)
2899 {
2900 	struct ksz_device *dev = container_of(work, struct ksz_device,
2901 					      mib_read.work);
2902 	struct ksz_port_mib *mib;
2903 	struct ksz_port *p;
2904 	int i;
2905 
2906 	for (i = 0; i < dev->info->port_cnt; i++) {
2907 		if (dsa_is_unused_port(dev->ds, i))
2908 			continue;
2909 
2910 		p = &dev->ports[i];
2911 		mib = &p->mib;
2912 		mutex_lock(&mib->cnt_mutex);
2913 
2914 		/* Only read MIB counters when the port is told to do.
2915 		 * If not, read only dropped counters when link is not up.
2916 		 */
2917 		if (!p->read) {
2918 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2919 
2920 			if (!netif_carrier_ok(dp->user))
2921 				mib->cnt_ptr = dev->info->reg_mib_cnt;
2922 		}
2923 		port_r_cnt(dev, i);
2924 		p->read = false;
2925 
2926 		if (dev->dev_ops->r_mib_stat64)
2927 			dev->dev_ops->r_mib_stat64(dev, i);
2928 
2929 		mutex_unlock(&mib->cnt_mutex);
2930 	}
2931 
2932 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2933 }
2934 
2935 void ksz_init_mib_timer(struct ksz_device *dev)
2936 {
2937 	int i;
2938 
2939 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2940 
2941 	for (i = 0; i < dev->info->port_cnt; i++) {
2942 		struct ksz_port_mib *mib = &dev->ports[i].mib;
2943 
2944 		dev->dev_ops->port_init_cnt(dev, i);
2945 
2946 		mib->cnt_ptr = 0;
2947 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2948 	}
2949 }
2950 
2951 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2952 {
2953 	struct ksz_device *dev = ds->priv;
2954 	u16 val = 0xffff;
2955 	int ret;
2956 
2957 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2958 	if (ret)
2959 		return ret;
2960 
2961 	return val;
2962 }
2963 
2964 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2965 {
2966 	struct ksz_device *dev = ds->priv;
2967 	int ret;
2968 
2969 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2970 	if (ret)
2971 		return ret;
2972 
2973 	return 0;
2974 }
2975 
2976 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2977 {
2978 	struct ksz_device *dev = ds->priv;
2979 
2980 	switch (dev->chip_id) {
2981 	case KSZ88X3_CHIP_ID:
2982 		/* Silicon Errata Sheet (DS80000830A):
2983 		 * Port 1 does not work with LinkMD Cable-Testing.
2984 		 * Port 1 does not respond to received PAUSE control frames.
2985 		 */
2986 		if (!port)
2987 			return MICREL_KSZ8_P1_ERRATA;
2988 		break;
2989 	case KSZ8567_CHIP_ID:
2990 		/* KSZ8567R Errata DS80000752C Module 4 */
2991 	case KSZ8765_CHIP_ID:
2992 	case KSZ8794_CHIP_ID:
2993 	case KSZ8795_CHIP_ID:
2994 		/* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */
2995 	case KSZ9477_CHIP_ID:
2996 		/* KSZ9477S Errata DS80000754A Module 4 */
2997 	case KSZ9567_CHIP_ID:
2998 		/* KSZ9567S Errata DS80000756A Module 4 */
2999 	case KSZ9896_CHIP_ID:
3000 		/* KSZ9896C Errata DS80000757A Module 3 */
3001 	case KSZ9897_CHIP_ID:
3002 	case LAN9646_CHIP_ID:
3003 		/* KSZ9897R Errata DS80000758C Module 4 */
3004 		/* Energy Efficient Ethernet (EEE) feature select must be manually disabled
3005 		 *   The EEE feature is enabled by default, but it is not fully
3006 		 *   operational. It must be manually disabled through register
3007 		 *   controls. If not disabled, the PHY ports can auto-negotiate
3008 		 *   to enable EEE, and this feature can cause link drops when
3009 		 *   linked to another device supporting EEE.
3010 		 *
3011 		 * The same item appears in the errata for all switches above.
3012 		 */
3013 		return MICREL_NO_EEE;
3014 	}
3015 
3016 	return 0;
3017 }
3018 
3019 static void ksz_phylink_mac_link_down(struct phylink_config *config,
3020 				      unsigned int mode,
3021 				      phy_interface_t interface)
3022 {
3023 	struct dsa_port *dp = dsa_phylink_to_port(config);
3024 	struct ksz_device *dev = dp->ds->priv;
3025 
3026 	/* Read all MIB counters when the link is going down. */
3027 	dev->ports[dp->index].read = true;
3028 	/* timer started */
3029 	if (dev->mib_read_interval)
3030 		schedule_delayed_work(&dev->mib_read, 0);
3031 }
3032 
3033 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
3034 {
3035 	struct ksz_device *dev = ds->priv;
3036 
3037 	if (sset != ETH_SS_STATS)
3038 		return 0;
3039 
3040 	return dev->info->mib_cnt;
3041 }
3042 
3043 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
3044 				  uint64_t *buf)
3045 {
3046 	const struct dsa_port *dp = dsa_to_port(ds, port);
3047 	struct ksz_device *dev = ds->priv;
3048 	struct ksz_port_mib *mib;
3049 
3050 	mib = &dev->ports[port].mib;
3051 	mutex_lock(&mib->cnt_mutex);
3052 
3053 	/* Only read dropped counters if no link. */
3054 	if (!netif_carrier_ok(dp->user))
3055 		mib->cnt_ptr = dev->info->reg_mib_cnt;
3056 	port_r_cnt(dev, port);
3057 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
3058 	mutex_unlock(&mib->cnt_mutex);
3059 }
3060 
3061 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
3062 				struct dsa_bridge bridge,
3063 				bool *tx_fwd_offload,
3064 				struct netlink_ext_ack *extack)
3065 {
3066 	/* port_stp_state_set() will be called after to put the port in
3067 	 * appropriate state so there is no need to do anything.
3068 	 */
3069 
3070 	return 0;
3071 }
3072 
3073 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
3074 				  struct dsa_bridge bridge)
3075 {
3076 	/* port_stp_state_set() will be called after to put the port in
3077 	 * forwarding state so there is no need to do anything.
3078 	 */
3079 }
3080 
3081 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
3082 {
3083 	struct ksz_device *dev = ds->priv;
3084 
3085 	dev->dev_ops->flush_dyn_mac_table(dev, port);
3086 }
3087 
3088 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
3089 {
3090 	struct ksz_device *dev = ds->priv;
3091 
3092 	if (!dev->dev_ops->set_ageing_time)
3093 		return -EOPNOTSUPP;
3094 
3095 	return dev->dev_ops->set_ageing_time(dev, msecs);
3096 }
3097 
3098 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
3099 			    const unsigned char *addr, u16 vid,
3100 			    struct dsa_db db)
3101 {
3102 	struct ksz_device *dev = ds->priv;
3103 
3104 	if (!dev->dev_ops->fdb_add)
3105 		return -EOPNOTSUPP;
3106 
3107 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
3108 }
3109 
3110 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
3111 			    const unsigned char *addr,
3112 			    u16 vid, struct dsa_db db)
3113 {
3114 	struct ksz_device *dev = ds->priv;
3115 
3116 	if (!dev->dev_ops->fdb_del)
3117 		return -EOPNOTSUPP;
3118 
3119 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
3120 }
3121 
3122 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
3123 			     dsa_fdb_dump_cb_t *cb, void *data)
3124 {
3125 	struct ksz_device *dev = ds->priv;
3126 
3127 	if (!dev->dev_ops->fdb_dump)
3128 		return -EOPNOTSUPP;
3129 
3130 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
3131 }
3132 
3133 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
3134 			    const struct switchdev_obj_port_mdb *mdb,
3135 			    struct dsa_db db)
3136 {
3137 	struct ksz_device *dev = ds->priv;
3138 
3139 	if (!dev->dev_ops->mdb_add)
3140 		return -EOPNOTSUPP;
3141 
3142 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
3143 }
3144 
3145 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
3146 			    const struct switchdev_obj_port_mdb *mdb,
3147 			    struct dsa_db db)
3148 {
3149 	struct ksz_device *dev = ds->priv;
3150 
3151 	if (!dev->dev_ops->mdb_del)
3152 		return -EOPNOTSUPP;
3153 
3154 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
3155 }
3156 
3157 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
3158 						  int port)
3159 {
3160 	u32 queue_map = 0;
3161 	int ipm;
3162 
3163 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
3164 		int queue;
3165 
3166 		/* Traffic Type (TT) is corresponding to the Internal Priority
3167 		 * Map (IPM) in the switch. Traffic Class (TC) is
3168 		 * corresponding to the queue in the switch.
3169 		 */
3170 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
3171 		if (queue < 0)
3172 			return queue;
3173 
3174 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
3175 	}
3176 
3177 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3178 }
3179 
3180 static int ksz_port_setup(struct dsa_switch *ds, int port)
3181 {
3182 	struct ksz_device *dev = ds->priv;
3183 	int ret;
3184 
3185 	if (!dsa_is_user_port(ds, port))
3186 		return 0;
3187 
3188 	/* setup user port */
3189 	dev->dev_ops->port_setup(dev, port, false);
3190 
3191 	if (!is_ksz8(dev)) {
3192 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
3193 		if (ret)
3194 			return ret;
3195 	}
3196 
3197 	/* port_stp_state_set() will be called after to enable the port so
3198 	 * there is no need to do anything.
3199 	 */
3200 
3201 	return ksz_dcb_init_port(dev, port);
3202 }
3203 
3204 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
3205 {
3206 	struct ksz_device *dev = ds->priv;
3207 	struct ksz_port *p;
3208 	const u16 *regs;
3209 	u8 data;
3210 
3211 	regs = dev->info->regs;
3212 
3213 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
3214 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3215 
3216 	p = &dev->ports[port];
3217 
3218 	switch (state) {
3219 	case BR_STATE_DISABLED:
3220 		data |= PORT_LEARN_DISABLE;
3221 		break;
3222 	case BR_STATE_LISTENING:
3223 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3224 		break;
3225 	case BR_STATE_LEARNING:
3226 		data |= PORT_RX_ENABLE;
3227 		if (!p->learning)
3228 			data |= PORT_LEARN_DISABLE;
3229 		break;
3230 	case BR_STATE_FORWARDING:
3231 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
3232 		if (!p->learning)
3233 			data |= PORT_LEARN_DISABLE;
3234 		break;
3235 	case BR_STATE_BLOCKING:
3236 		data |= PORT_LEARN_DISABLE;
3237 		break;
3238 	default:
3239 		dev_err(ds->dev, "invalid STP state: %d\n", state);
3240 		return;
3241 	}
3242 
3243 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
3244 
3245 	p->stp_state = state;
3246 
3247 	ksz_update_port_member(dev, port);
3248 }
3249 
3250 static void ksz_port_teardown(struct dsa_switch *ds, int port)
3251 {
3252 	struct ksz_device *dev = ds->priv;
3253 
3254 	switch (dev->chip_id) {
3255 	case KSZ8563_CHIP_ID:
3256 	case KSZ8567_CHIP_ID:
3257 	case KSZ9477_CHIP_ID:
3258 	case KSZ9563_CHIP_ID:
3259 	case KSZ9567_CHIP_ID:
3260 	case KSZ9893_CHIP_ID:
3261 	case KSZ9896_CHIP_ID:
3262 	case KSZ9897_CHIP_ID:
3263 	case LAN9646_CHIP_ID:
3264 		if (dsa_is_user_port(ds, port))
3265 			ksz9477_port_acl_free(dev, port);
3266 	}
3267 }
3268 
3269 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3270 				     struct switchdev_brport_flags flags,
3271 				     struct netlink_ext_ack *extack)
3272 {
3273 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
3274 		return -EINVAL;
3275 
3276 	return 0;
3277 }
3278 
3279 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
3280 				 struct switchdev_brport_flags flags,
3281 				 struct netlink_ext_ack *extack)
3282 {
3283 	struct ksz_device *dev = ds->priv;
3284 	struct ksz_port *p = &dev->ports[port];
3285 
3286 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
3287 		if (flags.mask & BR_LEARNING)
3288 			p->learning = !!(flags.val & BR_LEARNING);
3289 
3290 		if (flags.mask & BR_ISOLATED)
3291 			p->isolated = !!(flags.val & BR_ISOLATED);
3292 
3293 		/* Make the change take effect immediately */
3294 		ksz_port_stp_state_set(ds, port, p->stp_state);
3295 	}
3296 
3297 	return 0;
3298 }
3299 
3300 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
3301 						  int port,
3302 						  enum dsa_tag_protocol mp)
3303 {
3304 	struct ksz_device *dev = ds->priv;
3305 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
3306 
3307 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
3308 		proto = DSA_TAG_PROTO_KSZ8795;
3309 
3310 	if (dev->chip_id == KSZ88X3_CHIP_ID ||
3311 	    dev->chip_id == KSZ8563_CHIP_ID ||
3312 	    dev->chip_id == KSZ9893_CHIP_ID ||
3313 	    dev->chip_id == KSZ9563_CHIP_ID)
3314 		proto = DSA_TAG_PROTO_KSZ9893;
3315 
3316 	if (dev->chip_id == KSZ8567_CHIP_ID ||
3317 	    dev->chip_id == KSZ9477_CHIP_ID ||
3318 	    dev->chip_id == KSZ9896_CHIP_ID ||
3319 	    dev->chip_id == KSZ9897_CHIP_ID ||
3320 	    dev->chip_id == KSZ9567_CHIP_ID ||
3321 	    dev->chip_id == LAN9646_CHIP_ID)
3322 		proto = DSA_TAG_PROTO_KSZ9477;
3323 
3324 	if (is_lan937x(dev))
3325 		proto = DSA_TAG_PROTO_LAN937X;
3326 
3327 	return proto;
3328 }
3329 
3330 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
3331 				    enum dsa_tag_protocol proto)
3332 {
3333 	struct ksz_tagger_data *tagger_data;
3334 
3335 	switch (proto) {
3336 	case DSA_TAG_PROTO_KSZ8795:
3337 		return 0;
3338 	case DSA_TAG_PROTO_KSZ9893:
3339 	case DSA_TAG_PROTO_KSZ9477:
3340 	case DSA_TAG_PROTO_LAN937X:
3341 		tagger_data = ksz_tagger_data(ds);
3342 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
3343 		return 0;
3344 	default:
3345 		return -EPROTONOSUPPORT;
3346 	}
3347 }
3348 
3349 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
3350 				   bool flag, struct netlink_ext_ack *extack)
3351 {
3352 	struct ksz_device *dev = ds->priv;
3353 
3354 	if (!dev->dev_ops->vlan_filtering)
3355 		return -EOPNOTSUPP;
3356 
3357 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
3358 }
3359 
3360 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
3361 			     const struct switchdev_obj_port_vlan *vlan,
3362 			     struct netlink_ext_ack *extack)
3363 {
3364 	struct ksz_device *dev = ds->priv;
3365 
3366 	if (!dev->dev_ops->vlan_add)
3367 		return -EOPNOTSUPP;
3368 
3369 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
3370 }
3371 
3372 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3373 			     const struct switchdev_obj_port_vlan *vlan)
3374 {
3375 	struct ksz_device *dev = ds->priv;
3376 
3377 	if (!dev->dev_ops->vlan_del)
3378 		return -EOPNOTSUPP;
3379 
3380 	return dev->dev_ops->vlan_del(dev, port, vlan);
3381 }
3382 
3383 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3384 			       struct dsa_mall_mirror_tc_entry *mirror,
3385 			       bool ingress, struct netlink_ext_ack *extack)
3386 {
3387 	struct ksz_device *dev = ds->priv;
3388 
3389 	if (!dev->dev_ops->mirror_add)
3390 		return -EOPNOTSUPP;
3391 
3392 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3393 }
3394 
3395 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3396 				struct dsa_mall_mirror_tc_entry *mirror)
3397 {
3398 	struct ksz_device *dev = ds->priv;
3399 
3400 	if (dev->dev_ops->mirror_del)
3401 		dev->dev_ops->mirror_del(dev, port, mirror);
3402 }
3403 
3404 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3405 {
3406 	struct ksz_device *dev = ds->priv;
3407 
3408 	if (!dev->dev_ops->change_mtu)
3409 		return -EOPNOTSUPP;
3410 
3411 	return dev->dev_ops->change_mtu(dev, port, mtu);
3412 }
3413 
3414 static int ksz_max_mtu(struct dsa_switch *ds, int port)
3415 {
3416 	struct ksz_device *dev = ds->priv;
3417 
3418 	switch (dev->chip_id) {
3419 	case KSZ8795_CHIP_ID:
3420 	case KSZ8794_CHIP_ID:
3421 	case KSZ8765_CHIP_ID:
3422 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3423 	case KSZ88X3_CHIP_ID:
3424 	case KSZ8864_CHIP_ID:
3425 	case KSZ8895_CHIP_ID:
3426 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3427 	case KSZ8563_CHIP_ID:
3428 	case KSZ8567_CHIP_ID:
3429 	case KSZ9477_CHIP_ID:
3430 	case KSZ9563_CHIP_ID:
3431 	case KSZ9567_CHIP_ID:
3432 	case KSZ9893_CHIP_ID:
3433 	case KSZ9896_CHIP_ID:
3434 	case KSZ9897_CHIP_ID:
3435 	case LAN9370_CHIP_ID:
3436 	case LAN9371_CHIP_ID:
3437 	case LAN9372_CHIP_ID:
3438 	case LAN9373_CHIP_ID:
3439 	case LAN9374_CHIP_ID:
3440 	case LAN9646_CHIP_ID:
3441 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3442 	}
3443 
3444 	return -EOPNOTSUPP;
3445 }
3446 
3447 static int ksz_validate_eee(struct dsa_switch *ds, int port)
3448 {
3449 	struct ksz_device *dev = ds->priv;
3450 
3451 	if (!dev->info->internal_phy[port])
3452 		return -EOPNOTSUPP;
3453 
3454 	switch (dev->chip_id) {
3455 	case KSZ8563_CHIP_ID:
3456 	case KSZ8567_CHIP_ID:
3457 	case KSZ9477_CHIP_ID:
3458 	case KSZ9563_CHIP_ID:
3459 	case KSZ9567_CHIP_ID:
3460 	case KSZ9893_CHIP_ID:
3461 	case KSZ9896_CHIP_ID:
3462 	case KSZ9897_CHIP_ID:
3463 	case LAN9646_CHIP_ID:
3464 		return 0;
3465 	}
3466 
3467 	return -EOPNOTSUPP;
3468 }
3469 
3470 static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
3471 			   struct ethtool_keee *e)
3472 {
3473 	int ret;
3474 
3475 	ret = ksz_validate_eee(ds, port);
3476 	if (ret)
3477 		return ret;
3478 
3479 	/* There is no documented control of Tx LPI configuration. */
3480 	e->tx_lpi_enabled = true;
3481 
3482 	/* There is no documented control of Tx LPI timer. According to tests
3483 	 * Tx LPI timer seems to be set by default to minimal value.
3484 	 */
3485 	e->tx_lpi_timer = 0;
3486 
3487 	return 0;
3488 }
3489 
3490 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3491 			   struct ethtool_keee *e)
3492 {
3493 	struct ksz_device *dev = ds->priv;
3494 	int ret;
3495 
3496 	ret = ksz_validate_eee(ds, port);
3497 	if (ret)
3498 		return ret;
3499 
3500 	if (!e->tx_lpi_enabled) {
3501 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3502 		return -EINVAL;
3503 	}
3504 
3505 	if (e->tx_lpi_timer) {
3506 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3507 		return -EINVAL;
3508 	}
3509 
3510 	return 0;
3511 }
3512 
3513 static void ksz_set_xmii(struct ksz_device *dev, int port,
3514 			 phy_interface_t interface)
3515 {
3516 	const u8 *bitval = dev->info->xmii_ctrl1;
3517 	struct ksz_port *p = &dev->ports[port];
3518 	const u16 *regs = dev->info->regs;
3519 	u8 data8;
3520 
3521 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3522 
3523 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3524 		   P_RGMII_ID_EG_ENABLE);
3525 
3526 	switch (interface) {
3527 	case PHY_INTERFACE_MODE_MII:
3528 		data8 |= bitval[P_MII_SEL];
3529 		break;
3530 	case PHY_INTERFACE_MODE_RMII:
3531 		data8 |= bitval[P_RMII_SEL];
3532 		break;
3533 	case PHY_INTERFACE_MODE_GMII:
3534 		data8 |= bitval[P_GMII_SEL];
3535 		break;
3536 	case PHY_INTERFACE_MODE_RGMII:
3537 	case PHY_INTERFACE_MODE_RGMII_ID:
3538 	case PHY_INTERFACE_MODE_RGMII_TXID:
3539 	case PHY_INTERFACE_MODE_RGMII_RXID:
3540 		data8 |= bitval[P_RGMII_SEL];
3541 		/* On KSZ9893, disable RGMII in-band status support */
3542 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3543 		    dev->chip_id == KSZ8563_CHIP_ID ||
3544 		    dev->chip_id == KSZ9563_CHIP_ID ||
3545 		    is_lan937x(dev))
3546 			data8 &= ~P_MII_MAC_MODE;
3547 		break;
3548 	default:
3549 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3550 			phy_modes(interface), port);
3551 		return;
3552 	}
3553 
3554 	if (p->rgmii_tx_val)
3555 		data8 |= P_RGMII_ID_EG_ENABLE;
3556 
3557 	if (p->rgmii_rx_val)
3558 		data8 |= P_RGMII_ID_IG_ENABLE;
3559 
3560 	/* Write the updated value */
3561 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3562 }
3563 
3564 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3565 {
3566 	const u8 *bitval = dev->info->xmii_ctrl1;
3567 	const u16 *regs = dev->info->regs;
3568 	phy_interface_t interface;
3569 	u8 data8;
3570 	u8 val;
3571 
3572 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3573 
3574 	val = FIELD_GET(P_MII_SEL_M, data8);
3575 
3576 	if (val == bitval[P_MII_SEL]) {
3577 		if (gbit)
3578 			interface = PHY_INTERFACE_MODE_GMII;
3579 		else
3580 			interface = PHY_INTERFACE_MODE_MII;
3581 	} else if (val == bitval[P_RMII_SEL]) {
3582 		interface = PHY_INTERFACE_MODE_RMII;
3583 	} else {
3584 		interface = PHY_INTERFACE_MODE_RGMII;
3585 		if (data8 & P_RGMII_ID_EG_ENABLE)
3586 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3587 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3588 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3589 			if (data8 & P_RGMII_ID_EG_ENABLE)
3590 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3591 		}
3592 	}
3593 
3594 	return interface;
3595 }
3596 
3597 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
3598 				       unsigned int mode,
3599 				       const struct phylink_link_state *state)
3600 {
3601 	struct dsa_port *dp = dsa_phylink_to_port(config);
3602 	struct ksz_device *dev = dp->ds->priv;
3603 
3604 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3605 }
3606 
3607 static void ksz_phylink_mac_config(struct phylink_config *config,
3608 				   unsigned int mode,
3609 				   const struct phylink_link_state *state)
3610 {
3611 	struct dsa_port *dp = dsa_phylink_to_port(config);
3612 	struct ksz_device *dev = dp->ds->priv;
3613 	int port = dp->index;
3614 
3615 	/* Internal PHYs */
3616 	if (dev->info->internal_phy[port])
3617 		return;
3618 
3619 	if (phylink_autoneg_inband(mode)) {
3620 		dev_err(dev->dev, "In-band AN not supported!\n");
3621 		return;
3622 	}
3623 
3624 	ksz_set_xmii(dev, port, state->interface);
3625 
3626 	if (dev->dev_ops->setup_rgmii_delay)
3627 		dev->dev_ops->setup_rgmii_delay(dev, port);
3628 }
3629 
3630 bool ksz_get_gbit(struct ksz_device *dev, int port)
3631 {
3632 	const u8 *bitval = dev->info->xmii_ctrl1;
3633 	const u16 *regs = dev->info->regs;
3634 	bool gbit = false;
3635 	u8 data8;
3636 	bool val;
3637 
3638 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3639 
3640 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3641 
3642 	if (val == bitval[P_GMII_1GBIT])
3643 		gbit = true;
3644 
3645 	return gbit;
3646 }
3647 
3648 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3649 {
3650 	const u8 *bitval = dev->info->xmii_ctrl1;
3651 	const u16 *regs = dev->info->regs;
3652 	u8 data8;
3653 
3654 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3655 
3656 	data8 &= ~P_GMII_1GBIT_M;
3657 
3658 	if (gbit)
3659 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3660 	else
3661 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3662 
3663 	/* Write the updated value */
3664 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3665 }
3666 
3667 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3668 {
3669 	const u8 *bitval = dev->info->xmii_ctrl0;
3670 	const u16 *regs = dev->info->regs;
3671 	u8 data8;
3672 
3673 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3674 
3675 	data8 &= ~P_MII_100MBIT_M;
3676 
3677 	if (speed == SPEED_100)
3678 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3679 	else
3680 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3681 
3682 	/* Write the updated value */
3683 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3684 }
3685 
3686 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3687 {
3688 	if (speed == SPEED_1000)
3689 		ksz_set_gbit(dev, port, true);
3690 	else
3691 		ksz_set_gbit(dev, port, false);
3692 
3693 	if (speed == SPEED_100 || speed == SPEED_10)
3694 		ksz_set_100_10mbit(dev, port, speed);
3695 }
3696 
3697 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3698 				bool tx_pause, bool rx_pause)
3699 {
3700 	const u8 *bitval = dev->info->xmii_ctrl0;
3701 	const u32 *masks = dev->info->masks;
3702 	const u16 *regs = dev->info->regs;
3703 	u8 mask;
3704 	u8 val;
3705 
3706 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3707 	       masks[P_MII_RX_FLOW_CTRL];
3708 
3709 	if (duplex == DUPLEX_FULL)
3710 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3711 	else
3712 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3713 
3714 	if (tx_pause)
3715 		val |= masks[P_MII_TX_FLOW_CTRL];
3716 
3717 	if (rx_pause)
3718 		val |= masks[P_MII_RX_FLOW_CTRL];
3719 
3720 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3721 }
3722 
3723 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3724 					struct phy_device *phydev,
3725 					unsigned int mode,
3726 					phy_interface_t interface,
3727 					int speed, int duplex, bool tx_pause,
3728 					bool rx_pause)
3729 {
3730 	struct dsa_port *dp = dsa_phylink_to_port(config);
3731 	struct ksz_device *dev = dp->ds->priv;
3732 	int port = dp->index;
3733 	struct ksz_port *p;
3734 
3735 	p = &dev->ports[port];
3736 
3737 	/* Internal PHYs */
3738 	if (dev->info->internal_phy[port])
3739 		return;
3740 
3741 	p->phydev.speed = speed;
3742 
3743 	ksz_port_set_xmii_speed(dev, port, speed);
3744 
3745 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3746 }
3747 
3748 static int ksz_switch_detect(struct ksz_device *dev)
3749 {
3750 	u8 id1, id2, id4;
3751 	u16 id16;
3752 	u32 id32;
3753 	int ret;
3754 
3755 	/* read chip id */
3756 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3757 	if (ret)
3758 		return ret;
3759 
3760 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3761 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3762 
3763 	switch (id1) {
3764 	case KSZ87_FAMILY_ID:
3765 		if (id2 == KSZ87_CHIP_ID_95) {
3766 			u8 val;
3767 
3768 			dev->chip_id = KSZ8795_CHIP_ID;
3769 
3770 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3771 			if (val & KSZ8_PORT_FIBER_MODE)
3772 				dev->chip_id = KSZ8765_CHIP_ID;
3773 		} else if (id2 == KSZ87_CHIP_ID_94) {
3774 			dev->chip_id = KSZ8794_CHIP_ID;
3775 		} else {
3776 			return -ENODEV;
3777 		}
3778 		break;
3779 	case KSZ88_FAMILY_ID:
3780 		if (id2 == KSZ88_CHIP_ID_63)
3781 			dev->chip_id = KSZ88X3_CHIP_ID;
3782 		else
3783 			return -ENODEV;
3784 		break;
3785 	case KSZ8895_FAMILY_ID:
3786 		if (id2 == KSZ8895_CHIP_ID_95 ||
3787 		    id2 == KSZ8895_CHIP_ID_95R)
3788 			dev->chip_id = KSZ8895_CHIP_ID;
3789 		else
3790 			return -ENODEV;
3791 		ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4);
3792 		if (ret)
3793 			return ret;
3794 		if (id4 & SW_KSZ8864)
3795 			dev->chip_id = KSZ8864_CHIP_ID;
3796 		break;
3797 	default:
3798 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3799 		if (ret)
3800 			return ret;
3801 
3802 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3803 		id32 &= ~0xFF;
3804 
3805 		switch (id32) {
3806 		case KSZ9477_CHIP_ID:
3807 		case KSZ9896_CHIP_ID:
3808 		case KSZ9897_CHIP_ID:
3809 		case KSZ9567_CHIP_ID:
3810 		case KSZ8567_CHIP_ID:
3811 		case LAN9370_CHIP_ID:
3812 		case LAN9371_CHIP_ID:
3813 		case LAN9372_CHIP_ID:
3814 		case LAN9373_CHIP_ID:
3815 		case LAN9374_CHIP_ID:
3816 
3817 			/* LAN9646 does not have its own chip id. */
3818 			if (dev->chip_id != LAN9646_CHIP_ID)
3819 				dev->chip_id = id32;
3820 			break;
3821 		case KSZ9893_CHIP_ID:
3822 			ret = ksz_read8(dev, REG_CHIP_ID4,
3823 					&id4);
3824 			if (ret)
3825 				return ret;
3826 
3827 			if (id4 == SKU_ID_KSZ8563)
3828 				dev->chip_id = KSZ8563_CHIP_ID;
3829 			else if (id4 == SKU_ID_KSZ9563)
3830 				dev->chip_id = KSZ9563_CHIP_ID;
3831 			else
3832 				dev->chip_id = KSZ9893_CHIP_ID;
3833 
3834 			break;
3835 		default:
3836 			dev_err(dev->dev,
3837 				"unsupported switch detected %x)\n", id32);
3838 			return -ENODEV;
3839 		}
3840 	}
3841 	return 0;
3842 }
3843 
3844 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3845 			      struct flow_cls_offload *cls, bool ingress)
3846 {
3847 	struct ksz_device *dev = ds->priv;
3848 
3849 	switch (dev->chip_id) {
3850 	case KSZ8563_CHIP_ID:
3851 	case KSZ8567_CHIP_ID:
3852 	case KSZ9477_CHIP_ID:
3853 	case KSZ9563_CHIP_ID:
3854 	case KSZ9567_CHIP_ID:
3855 	case KSZ9893_CHIP_ID:
3856 	case KSZ9896_CHIP_ID:
3857 	case KSZ9897_CHIP_ID:
3858 	case LAN9646_CHIP_ID:
3859 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3860 	}
3861 
3862 	return -EOPNOTSUPP;
3863 }
3864 
3865 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3866 			      struct flow_cls_offload *cls, bool ingress)
3867 {
3868 	struct ksz_device *dev = ds->priv;
3869 
3870 	switch (dev->chip_id) {
3871 	case KSZ8563_CHIP_ID:
3872 	case KSZ8567_CHIP_ID:
3873 	case KSZ9477_CHIP_ID:
3874 	case KSZ9563_CHIP_ID:
3875 	case KSZ9567_CHIP_ID:
3876 	case KSZ9893_CHIP_ID:
3877 	case KSZ9896_CHIP_ID:
3878 	case KSZ9897_CHIP_ID:
3879 	case LAN9646_CHIP_ID:
3880 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3881 	}
3882 
3883 	return -EOPNOTSUPP;
3884 }
3885 
3886 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3887  * is converted to Hex-decimal using the successive multiplication method. On
3888  * every step, integer part is taken and decimal part is carry forwarded.
3889  */
3890 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3891 {
3892 	u32 cinc = 0;
3893 	u32 txrate;
3894 	u32 rate;
3895 	u8 temp;
3896 	u8 i;
3897 
3898 	txrate = idle_slope - send_slope;
3899 
3900 	if (!txrate)
3901 		return -EINVAL;
3902 
3903 	rate = idle_slope;
3904 
3905 	/* 24 bit register */
3906 	for (i = 0; i < 6; i++) {
3907 		rate = rate * 16;
3908 
3909 		temp = rate / txrate;
3910 
3911 		rate %= txrate;
3912 
3913 		cinc = ((cinc << 4) | temp);
3914 	}
3915 
3916 	*bw = cinc;
3917 
3918 	return 0;
3919 }
3920 
3921 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3922 			     u8 shaper)
3923 {
3924 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3925 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3926 			   FIELD_PREP(MTI_SHAPING_M, shaper));
3927 }
3928 
3929 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3930 			    struct tc_cbs_qopt_offload *qopt)
3931 {
3932 	struct ksz_device *dev = ds->priv;
3933 	int ret;
3934 	u32 bw;
3935 
3936 	if (!dev->info->tc_cbs_supported)
3937 		return -EOPNOTSUPP;
3938 
3939 	if (qopt->queue > dev->info->num_tx_queues)
3940 		return -EINVAL;
3941 
3942 	/* Queue Selection */
3943 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3944 	if (ret)
3945 		return ret;
3946 
3947 	if (!qopt->enable)
3948 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3949 					 MTI_SHAPING_OFF);
3950 
3951 	/* High Credit */
3952 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3953 			   qopt->hicredit);
3954 	if (ret)
3955 		return ret;
3956 
3957 	/* Low Credit */
3958 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3959 			   qopt->locredit);
3960 	if (ret)
3961 		return ret;
3962 
3963 	/* Credit Increment Register */
3964 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3965 	if (ret)
3966 		return ret;
3967 
3968 	if (dev->dev_ops->tc_cbs_set_cinc) {
3969 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3970 		if (ret)
3971 			return ret;
3972 	}
3973 
3974 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3975 				 MTI_SHAPING_SRP);
3976 }
3977 
3978 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3979 {
3980 	int queue, ret;
3981 
3982 	/* Configuration will not take effect until the last Port Queue X
3983 	 * Egress Limit Control Register is written.
3984 	 */
3985 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3986 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3987 				  KSZ9477_OUT_RATE_NO_LIMIT);
3988 		if (ret)
3989 			return ret;
3990 	}
3991 
3992 	return 0;
3993 }
3994 
3995 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
3996 				 int band)
3997 {
3998 	/* Compared to queues, bands prioritize packets differently. In strict
3999 	 * priority mode, the lowest priority is assigned to Queue 0 while the
4000 	 * highest priority is given to Band 0.
4001 	 */
4002 	return p->bands - 1 - band;
4003 }
4004 
4005 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
4006 {
4007 	int ret;
4008 
4009 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4010 	if (ret)
4011 		return ret;
4012 
4013 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4014 				 MTI_SHAPING_OFF);
4015 }
4016 
4017 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
4018 			     int weight)
4019 {
4020 	int ret;
4021 
4022 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4023 	if (ret)
4024 		return ret;
4025 
4026 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4027 				MTI_SHAPING_OFF);
4028 	if (ret)
4029 		return ret;
4030 
4031 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
4032 }
4033 
4034 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
4035 			  struct tc_ets_qopt_offload_replace_params *p)
4036 {
4037 	int ret, band, tc_prio;
4038 	u32 queue_map = 0;
4039 
4040 	/* In order to ensure proper prioritization, it is necessary to set the
4041 	 * rate limit for the related queue to zero. Otherwise strict priority
4042 	 * or WRR mode will not work. This is a hardware limitation.
4043 	 */
4044 	ret = ksz_disable_egress_rate_limit(dev, port);
4045 	if (ret)
4046 		return ret;
4047 
4048 	/* Configure queue scheduling mode for all bands. Currently only strict
4049 	 * prio mode is supported.
4050 	 */
4051 	for (band = 0; band < p->bands; band++) {
4052 		int queue = ksz_ets_band_to_queue(p, band);
4053 
4054 		ret = ksz_queue_set_strict(dev, port, queue);
4055 		if (ret)
4056 			return ret;
4057 	}
4058 
4059 	/* Configure the mapping between traffic classes and queues. Note:
4060 	 * priomap variable support 16 traffic classes, but the chip can handle
4061 	 * only 8 classes.
4062 	 */
4063 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
4064 		int queue;
4065 
4066 		if (tc_prio >= dev->info->num_ipms)
4067 			break;
4068 
4069 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
4070 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
4071 	}
4072 
4073 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
4074 }
4075 
4076 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
4077 {
4078 	int ret, queue;
4079 
4080 	/* To restore the default chip configuration, set all queues to use the
4081 	 * WRR scheduler with a weight of 1.
4082 	 */
4083 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4084 		ret = ksz_queue_set_wrr(dev, port, queue,
4085 					KSZ9477_DEFAULT_WRR_WEIGHT);
4086 		if (ret)
4087 			return ret;
4088 	}
4089 
4090 	/* Revert the queue mapping for TC-priority to its default setting on
4091 	 * the chip.
4092 	 */
4093 	return ksz9477_set_default_prio_queue_mapping(dev, port);
4094 }
4095 
4096 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
4097 			       struct tc_ets_qopt_offload_replace_params *p)
4098 {
4099 	int band;
4100 
4101 	/* Since it is not feasible to share one port among multiple qdisc,
4102 	 * the user must configure all available queues appropriately.
4103 	 */
4104 	if (p->bands != dev->info->num_tx_queues) {
4105 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
4106 			dev->info->num_tx_queues);
4107 		return -EOPNOTSUPP;
4108 	}
4109 
4110 	for (band = 0; band < p->bands; ++band) {
4111 		/* The KSZ switches utilize a weighted round robin configuration
4112 		 * where a certain number of packets can be transmitted from a
4113 		 * queue before the next queue is serviced. For more information
4114 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
4115 		 * documentation on the Port Transmit Queue Control 1 Register.
4116 		 * However, the current ETS Qdisc implementation (as of February
4117 		 * 2023) assigns a weight to each queue based on the number of
4118 		 * bytes or extrapolated bandwidth in percentages. Since this
4119 		 * differs from the KSZ switches' method and we don't want to
4120 		 * fake support by converting bytes to packets, it is better to
4121 		 * return an error instead.
4122 		 */
4123 		if (p->quanta[band]) {
4124 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
4125 			return -EOPNOTSUPP;
4126 		}
4127 	}
4128 
4129 	return 0;
4130 }
4131 
4132 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
4133 				  struct tc_ets_qopt_offload *qopt)
4134 {
4135 	struct ksz_device *dev = ds->priv;
4136 	int ret;
4137 
4138 	if (is_ksz8(dev))
4139 		return -EOPNOTSUPP;
4140 
4141 	if (qopt->parent != TC_H_ROOT) {
4142 		dev_err(dev->dev, "Parent should be \"root\"\n");
4143 		return -EOPNOTSUPP;
4144 	}
4145 
4146 	switch (qopt->command) {
4147 	case TC_ETS_REPLACE:
4148 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
4149 		if (ret)
4150 			return ret;
4151 
4152 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
4153 	case TC_ETS_DESTROY:
4154 		return ksz_tc_ets_del(dev, port);
4155 	case TC_ETS_STATS:
4156 	case TC_ETS_GRAFT:
4157 		return -EOPNOTSUPP;
4158 	}
4159 
4160 	return -EOPNOTSUPP;
4161 }
4162 
4163 static int ksz_setup_tc(struct dsa_switch *ds, int port,
4164 			enum tc_setup_type type, void *type_data)
4165 {
4166 	switch (type) {
4167 	case TC_SETUP_QDISC_CBS:
4168 		return ksz_setup_tc_cbs(ds, port, type_data);
4169 	case TC_SETUP_QDISC_ETS:
4170 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
4171 	default:
4172 		return -EOPNOTSUPP;
4173 	}
4174 }
4175 
4176 /**
4177  * ksz_handle_wake_reason - Handle wake reason on a specified port.
4178  * @dev: The device structure.
4179  * @port: The port number.
4180  *
4181  * This function reads the PME (Power Management Event) status register of a
4182  * specified port to determine the wake reason. If there is no wake event, it
4183  * returns early. Otherwise, it logs the wake reason which could be due to a
4184  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
4185  * is then cleared to acknowledge the handling of the wake event.
4186  *
4187  * Return: 0 on success, or an error code on failure.
4188  */
4189 int ksz_handle_wake_reason(struct ksz_device *dev, int port)
4190 {
4191 	const struct ksz_dev_ops *ops = dev->dev_ops;
4192 	const u16 *regs = dev->info->regs;
4193 	u8 pme_status;
4194 	int ret;
4195 
4196 	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
4197 			      &pme_status);
4198 	if (ret)
4199 		return ret;
4200 
4201 	if (!pme_status)
4202 		return 0;
4203 
4204 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
4205 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
4206 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
4207 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
4208 
4209 	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
4210 				pme_status);
4211 }
4212 
4213 /**
4214  * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
4215  * @ds: The dsa_switch structure.
4216  * @port: The port number.
4217  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4218  *
4219  * This function checks the device PME wakeup_source flag and chip_id.
4220  * If enabled and supported, it sets the supported and active WoL
4221  * flags.
4222  */
4223 static void ksz_get_wol(struct dsa_switch *ds, int port,
4224 			struct ethtool_wolinfo *wol)
4225 {
4226 	struct ksz_device *dev = ds->priv;
4227 	const u16 *regs = dev->info->regs;
4228 	u8 pme_ctrl;
4229 	int ret;
4230 
4231 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4232 		return;
4233 
4234 	if (!dev->wakeup_source)
4235 		return;
4236 
4237 	wol->supported = WAKE_PHY;
4238 
4239 	/* Check if the current MAC address on this port can be set
4240 	 * as global for WAKE_MAGIC support. The result may vary
4241 	 * dynamically based on other ports configurations.
4242 	 */
4243 	if (ksz_is_port_mac_global_usable(dev->ds, port))
4244 		wol->supported |= WAKE_MAGIC;
4245 
4246 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4247 				       &pme_ctrl);
4248 	if (ret)
4249 		return;
4250 
4251 	if (pme_ctrl & PME_WOL_MAGICPKT)
4252 		wol->wolopts |= WAKE_MAGIC;
4253 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
4254 		wol->wolopts |= WAKE_PHY;
4255 }
4256 
4257 /**
4258  * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
4259  * @ds: The dsa_switch structure.
4260  * @port: The port number.
4261  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4262  *
4263  * This function configures Wake-on-LAN (WoL) settings for a specified
4264  * port. It validates the provided WoL options, checks if PME is
4265  * enabled and supported, clears any previous wake reasons, and sets
4266  * the Magic Packet flag in the port's PME control register if
4267  * specified.
4268  *
4269  * Return: 0 on success, or other error codes on failure.
4270  */
4271 static int ksz_set_wol(struct dsa_switch *ds, int port,
4272 		       struct ethtool_wolinfo *wol)
4273 {
4274 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
4275 	struct ksz_device *dev = ds->priv;
4276 	const u16 *regs = dev->info->regs;
4277 	bool magic_switched_off;
4278 	bool magic_switched_on;
4279 	int ret;
4280 
4281 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
4282 		return -EINVAL;
4283 
4284 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4285 		return -EOPNOTSUPP;
4286 
4287 	if (!dev->wakeup_source)
4288 		return -EOPNOTSUPP;
4289 
4290 	ret = ksz_handle_wake_reason(dev, port);
4291 	if (ret)
4292 		return ret;
4293 
4294 	if (wol->wolopts & WAKE_MAGIC)
4295 		pme_ctrl |= PME_WOL_MAGICPKT;
4296 	if (wol->wolopts & WAKE_PHY)
4297 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
4298 
4299 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4300 				       &pme_ctrl_old);
4301 	if (ret)
4302 		return ret;
4303 
4304 	if (pme_ctrl_old == pme_ctrl)
4305 		return 0;
4306 
4307 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
4308 			    !(pme_ctrl & PME_WOL_MAGICPKT);
4309 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
4310 			    (pme_ctrl & PME_WOL_MAGICPKT);
4311 
4312 	/* To keep reference count of MAC address, we should do this
4313 	 * operation only on change of WOL settings.
4314 	 */
4315 	if (magic_switched_on) {
4316 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
4317 		if (ret)
4318 			return ret;
4319 	} else if (magic_switched_off) {
4320 		ksz_switch_macaddr_put(dev->ds);
4321 	}
4322 
4323 	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
4324 					pme_ctrl);
4325 	if (ret) {
4326 		if (magic_switched_on)
4327 			ksz_switch_macaddr_put(dev->ds);
4328 		return ret;
4329 	}
4330 
4331 	return 0;
4332 }
4333 
4334 /**
4335  * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
4336  *                        considering Wake-on-LAN (WoL) settings.
4337  * @dev: The switch device structure.
4338  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
4339  *               enabled on any port.
4340  *
4341  * This function prepares the switch device for a safe shutdown while taking
4342  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
4343  * the wol_enabled flag accordingly to reflect whether WoL is active on any
4344  * port.
4345  */
4346 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
4347 {
4348 	const struct ksz_dev_ops *ops = dev->dev_ops;
4349 	const u16 *regs = dev->info->regs;
4350 	u8 pme_pin_en = PME_ENABLE;
4351 	struct dsa_port *dp;
4352 	int ret;
4353 
4354 	*wol_enabled = false;
4355 
4356 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4357 		return;
4358 
4359 	if (!dev->wakeup_source)
4360 		return;
4361 
4362 	dsa_switch_for_each_user_port(dp, dev->ds) {
4363 		u8 pme_ctrl = 0;
4364 
4365 		ret = ops->pme_pread8(dev, dp->index,
4366 				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
4367 		if (!ret && pme_ctrl)
4368 			*wol_enabled = true;
4369 
4370 		/* make sure there are no pending wake events which would
4371 		 * prevent the device from going to sleep/shutdown.
4372 		 */
4373 		ksz_handle_wake_reason(dev, dp->index);
4374 	}
4375 
4376 	/* Now we are save to enable PME pin. */
4377 	if (*wol_enabled) {
4378 		if (dev->pme_active_high)
4379 			pme_pin_en |= PME_POLARITY;
4380 		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
4381 		if (ksz_is_ksz87xx(dev))
4382 			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
4383 	}
4384 }
4385 
4386 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4387 				    const unsigned char *addr)
4388 {
4389 	struct dsa_port *dp = dsa_to_port(ds, port);
4390 	struct ethtool_wolinfo wol;
4391 
4392 	if (dp->hsr_dev) {
4393 		dev_err(ds->dev,
4394 			"Cannot change MAC address on port %d with active HSR offload\n",
4395 			port);
4396 		return -EBUSY;
4397 	}
4398 
4399 	/* Need to initialize variable as the code to fill in settings may
4400 	 * not be executed.
4401 	 */
4402 	wol.wolopts = 0;
4403 
4404 	ksz_get_wol(ds, dp->index, &wol);
4405 	if (wol.wolopts & WAKE_MAGIC) {
4406 		dev_err(ds->dev,
4407 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4408 			port);
4409 		return -EBUSY;
4410 	}
4411 
4412 	return 0;
4413 }
4414 
4415 /**
4416  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4417  *                                 can be used as a global address.
4418  * @ds: Pointer to the DSA switch structure.
4419  * @port: The port number on which the MAC address is to be checked.
4420  *
4421  * This function examines the MAC address set on the specified port and
4422  * determines if it can be used as a global address for the switch.
4423  *
4424  * Return: true if the port's MAC address can be used as a global address, false
4425  * otherwise.
4426  */
4427 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4428 {
4429 	struct net_device *user = dsa_to_port(ds, port)->user;
4430 	const unsigned char *addr = user->dev_addr;
4431 	struct ksz_switch_macaddr *switch_macaddr;
4432 	struct ksz_device *dev = ds->priv;
4433 
4434 	ASSERT_RTNL();
4435 
4436 	switch_macaddr = dev->switch_macaddr;
4437 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4438 		return false;
4439 
4440 	return true;
4441 }
4442 
4443 /**
4444  * ksz_switch_macaddr_get - Program the switch's MAC address register.
4445  * @ds: DSA switch instance.
4446  * @port: Port number.
4447  * @extack: Netlink extended acknowledgment.
4448  *
4449  * This function programs the switch's MAC address register with the MAC address
4450  * of the requesting user port. This single address is used by the switch for
4451  * multiple features like HSR self-address filtering and WoL. Other user ports
4452  * can share ownership of this address as long as their MAC address is the same.
4453  * The MAC addresses of user ports must not change while they have ownership of
4454  * the switch MAC address.
4455  *
4456  * Return: 0 on success, or other error codes on failure.
4457  */
4458 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4459 			   struct netlink_ext_ack *extack)
4460 {
4461 	struct net_device *user = dsa_to_port(ds, port)->user;
4462 	const unsigned char *addr = user->dev_addr;
4463 	struct ksz_switch_macaddr *switch_macaddr;
4464 	struct ksz_device *dev = ds->priv;
4465 	const u16 *regs = dev->info->regs;
4466 	int i, ret;
4467 
4468 	/* Make sure concurrent MAC address changes are blocked */
4469 	ASSERT_RTNL();
4470 
4471 	switch_macaddr = dev->switch_macaddr;
4472 	if (switch_macaddr) {
4473 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4474 			NL_SET_ERR_MSG_FMT_MOD(extack,
4475 					       "Switch already configured for MAC address %pM",
4476 					       switch_macaddr->addr);
4477 			return -EBUSY;
4478 		}
4479 
4480 		refcount_inc(&switch_macaddr->refcount);
4481 		return 0;
4482 	}
4483 
4484 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4485 	if (!switch_macaddr)
4486 		return -ENOMEM;
4487 
4488 	ether_addr_copy(switch_macaddr->addr, addr);
4489 	refcount_set(&switch_macaddr->refcount, 1);
4490 	dev->switch_macaddr = switch_macaddr;
4491 
4492 	/* Program the switch MAC address to hardware */
4493 	for (i = 0; i < ETH_ALEN; i++) {
4494 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
4495 		if (ret)
4496 			goto macaddr_drop;
4497 	}
4498 
4499 	return 0;
4500 
4501 macaddr_drop:
4502 	dev->switch_macaddr = NULL;
4503 	refcount_set(&switch_macaddr->refcount, 0);
4504 	kfree(switch_macaddr);
4505 
4506 	return ret;
4507 }
4508 
4509 void ksz_switch_macaddr_put(struct dsa_switch *ds)
4510 {
4511 	struct ksz_switch_macaddr *switch_macaddr;
4512 	struct ksz_device *dev = ds->priv;
4513 	const u16 *regs = dev->info->regs;
4514 	int i;
4515 
4516 	/* Make sure concurrent MAC address changes are blocked */
4517 	ASSERT_RTNL();
4518 
4519 	switch_macaddr = dev->switch_macaddr;
4520 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4521 		return;
4522 
4523 	for (i = 0; i < ETH_ALEN; i++)
4524 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4525 
4526 	dev->switch_macaddr = NULL;
4527 	kfree(switch_macaddr);
4528 }
4529 
4530 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4531 			struct netlink_ext_ack *extack)
4532 {
4533 	struct ksz_device *dev = ds->priv;
4534 	enum hsr_version ver;
4535 	int ret;
4536 
4537 	ret = hsr_get_version(hsr, &ver);
4538 	if (ret)
4539 		return ret;
4540 
4541 	if (dev->chip_id != KSZ9477_CHIP_ID) {
4542 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4543 		return -EOPNOTSUPP;
4544 	}
4545 
4546 	/* KSZ9477 can support HW offloading of only 1 HSR device */
4547 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4548 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4549 		return -EOPNOTSUPP;
4550 	}
4551 
4552 	/* KSZ9477 only supports HSR v0 and v1 */
4553 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4554 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4555 		return -EOPNOTSUPP;
4556 	}
4557 
4558 	/* KSZ9477 can only perform HSR offloading for up to two ports */
4559 	if (hweight8(dev->hsr_ports) >= 2) {
4560 		NL_SET_ERR_MSG_MOD(extack,
4561 				   "Cannot offload more than two ports - using software HSR");
4562 		return -EOPNOTSUPP;
4563 	}
4564 
4565 	/* Self MAC address filtering, to avoid frames traversing
4566 	 * the HSR ring more than once.
4567 	 */
4568 	ret = ksz_switch_macaddr_get(ds, port, extack);
4569 	if (ret)
4570 		return ret;
4571 
4572 	ksz9477_hsr_join(ds, port, hsr);
4573 	dev->hsr_dev = hsr;
4574 	dev->hsr_ports |= BIT(port);
4575 
4576 	return 0;
4577 }
4578 
4579 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4580 			 struct net_device *hsr)
4581 {
4582 	struct ksz_device *dev = ds->priv;
4583 
4584 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4585 
4586 	ksz9477_hsr_leave(ds, port, hsr);
4587 	dev->hsr_ports &= ~BIT(port);
4588 	if (!dev->hsr_ports)
4589 		dev->hsr_dev = NULL;
4590 
4591 	ksz_switch_macaddr_put(ds);
4592 
4593 	return 0;
4594 }
4595 
4596 static const struct dsa_switch_ops ksz_switch_ops = {
4597 	.get_tag_protocol	= ksz_get_tag_protocol,
4598 	.connect_tag_protocol   = ksz_connect_tag_protocol,
4599 	.get_phy_flags		= ksz_get_phy_flags,
4600 	.setup			= ksz_setup,
4601 	.teardown		= ksz_teardown,
4602 	.phy_read		= ksz_phy_read16,
4603 	.phy_write		= ksz_phy_write16,
4604 	.phylink_get_caps	= ksz_phylink_get_caps,
4605 	.port_setup		= ksz_port_setup,
4606 	.set_ageing_time	= ksz_set_ageing_time,
4607 	.get_strings		= ksz_get_strings,
4608 	.get_ethtool_stats	= ksz_get_ethtool_stats,
4609 	.get_sset_count		= ksz_sset_count,
4610 	.port_bridge_join	= ksz_port_bridge_join,
4611 	.port_bridge_leave	= ksz_port_bridge_leave,
4612 	.port_hsr_join		= ksz_hsr_join,
4613 	.port_hsr_leave		= ksz_hsr_leave,
4614 	.port_set_mac_address	= ksz_port_set_mac_address,
4615 	.port_stp_state_set	= ksz_port_stp_state_set,
4616 	.port_teardown		= ksz_port_teardown,
4617 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4618 	.port_bridge_flags	= ksz_port_bridge_flags,
4619 	.port_fast_age		= ksz_port_fast_age,
4620 	.port_vlan_filtering	= ksz_port_vlan_filtering,
4621 	.port_vlan_add		= ksz_port_vlan_add,
4622 	.port_vlan_del		= ksz_port_vlan_del,
4623 	.port_fdb_dump		= ksz_port_fdb_dump,
4624 	.port_fdb_add		= ksz_port_fdb_add,
4625 	.port_fdb_del		= ksz_port_fdb_del,
4626 	.port_mdb_add           = ksz_port_mdb_add,
4627 	.port_mdb_del           = ksz_port_mdb_del,
4628 	.port_mirror_add	= ksz_port_mirror_add,
4629 	.port_mirror_del	= ksz_port_mirror_del,
4630 	.get_stats64		= ksz_get_stats64,
4631 	.get_pause_stats	= ksz_get_pause_stats,
4632 	.port_change_mtu	= ksz_change_mtu,
4633 	.port_max_mtu		= ksz_max_mtu,
4634 	.get_wol		= ksz_get_wol,
4635 	.set_wol		= ksz_set_wol,
4636 	.get_ts_info		= ksz_get_ts_info,
4637 	.port_hwtstamp_get	= ksz_hwtstamp_get,
4638 	.port_hwtstamp_set	= ksz_hwtstamp_set,
4639 	.port_txtstamp		= ksz_port_txtstamp,
4640 	.port_rxtstamp		= ksz_port_rxtstamp,
4641 	.cls_flower_add		= ksz_cls_flower_add,
4642 	.cls_flower_del		= ksz_cls_flower_del,
4643 	.port_setup_tc		= ksz_setup_tc,
4644 	.get_mac_eee		= ksz_get_mac_eee,
4645 	.set_mac_eee		= ksz_set_mac_eee,
4646 	.port_get_default_prio	= ksz_port_get_default_prio,
4647 	.port_set_default_prio	= ksz_port_set_default_prio,
4648 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
4649 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
4650 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
4651 	.port_get_apptrust	= ksz_port_get_apptrust,
4652 	.port_set_apptrust	= ksz_port_set_apptrust,
4653 };
4654 
4655 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
4656 {
4657 	struct dsa_switch *ds;
4658 	struct ksz_device *swdev;
4659 
4660 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
4661 	if (!ds)
4662 		return NULL;
4663 
4664 	ds->dev = base;
4665 	ds->num_ports = DSA_MAX_PORTS;
4666 	ds->ops = &ksz_switch_ops;
4667 
4668 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
4669 	if (!swdev)
4670 		return NULL;
4671 
4672 	ds->priv = swdev;
4673 	swdev->dev = base;
4674 
4675 	swdev->ds = ds;
4676 	swdev->priv = priv;
4677 
4678 	return swdev;
4679 }
4680 EXPORT_SYMBOL(ksz_switch_alloc);
4681 
4682 /**
4683  * ksz_switch_shutdown - Shutdown routine for the switch device.
4684  * @dev: The switch device structure.
4685  *
4686  * This function is responsible for initiating a shutdown sequence for the
4687  * switch device. It invokes the reset operation defined in the device
4688  * operations, if available, to reset the switch. Subsequently, it calls the
4689  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
4690  * switch.
4691  */
4692 void ksz_switch_shutdown(struct ksz_device *dev)
4693 {
4694 	bool wol_enabled = false;
4695 
4696 	ksz_wol_pre_shutdown(dev, &wol_enabled);
4697 
4698 	if (dev->dev_ops->reset && !wol_enabled)
4699 		dev->dev_ops->reset(dev);
4700 
4701 	dsa_switch_shutdown(dev->ds);
4702 }
4703 EXPORT_SYMBOL(ksz_switch_shutdown);
4704 
4705 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
4706 				  struct device_node *port_dn)
4707 {
4708 	phy_interface_t phy_mode = dev->ports[port_num].interface;
4709 	int rx_delay = -1, tx_delay = -1;
4710 
4711 	if (!phy_interface_mode_is_rgmii(phy_mode))
4712 		return;
4713 
4714 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
4715 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
4716 
4717 	if (rx_delay == -1 && tx_delay == -1) {
4718 		dev_warn(dev->dev,
4719 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
4720 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
4721 			 "\"tx-internal-delay-ps\"",
4722 			 port_num);
4723 
4724 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4725 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4726 			rx_delay = 2000;
4727 
4728 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4729 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4730 			tx_delay = 2000;
4731 	}
4732 
4733 	if (rx_delay < 0)
4734 		rx_delay = 0;
4735 	if (tx_delay < 0)
4736 		tx_delay = 0;
4737 
4738 	dev->ports[port_num].rgmii_rx_val = rx_delay;
4739 	dev->ports[port_num].rgmii_tx_val = tx_delay;
4740 }
4741 
4742 /**
4743  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4744  *				 register value.
4745  * @array:	The array of drive strength values to search.
4746  * @array_size:	The size of the array.
4747  * @microamp:	The drive strength value in microamp to be converted.
4748  *
4749  * This function searches the array of drive strength values for the given
4750  * microamp value and returns the corresponding register value for that drive.
4751  *
4752  * Returns: If found, the corresponding register value for that drive strength
4753  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4754  */
4755 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4756 				     size_t array_size, int microamp)
4757 {
4758 	int i;
4759 
4760 	for (i = 0; i < array_size; i++) {
4761 		if (array[i].microamp == microamp)
4762 			return array[i].reg_val;
4763 	}
4764 
4765 	return -EINVAL;
4766 }
4767 
4768 /**
4769  * ksz_drive_strength_error() - Report invalid drive strength value
4770  * @dev:	ksz device
4771  * @array:	The array of drive strength values to search.
4772  * @array_size:	The size of the array.
4773  * @microamp:	Invalid drive strength value in microamp
4774  *
4775  * This function logs an error message when an unsupported drive strength value
4776  * is detected. It lists out all the supported drive strength values for
4777  * reference in the error message.
4778  */
4779 static void ksz_drive_strength_error(struct ksz_device *dev,
4780 				     const struct ksz_drive_strength *array,
4781 				     size_t array_size, int microamp)
4782 {
4783 	char supported_values[100];
4784 	size_t remaining_size;
4785 	int added_len;
4786 	char *ptr;
4787 	int i;
4788 
4789 	remaining_size = sizeof(supported_values);
4790 	ptr = supported_values;
4791 
4792 	for (i = 0; i < array_size; i++) {
4793 		added_len = snprintf(ptr, remaining_size,
4794 				     i == 0 ? "%d" : ", %d", array[i].microamp);
4795 
4796 		if (added_len >= remaining_size)
4797 			break;
4798 
4799 		ptr += added_len;
4800 		remaining_size -= added_len;
4801 	}
4802 
4803 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
4804 		microamp, supported_values);
4805 }
4806 
4807 /**
4808  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
4809  *				    chip variants.
4810  * @dev:       ksz device
4811  * @props:     Array of drive strength properties to be applied
4812  * @num_props: Number of properties in the array
4813  *
4814  * This function configures the drive strength for various KSZ9477 chip variants
4815  * based on the provided properties. It handles chip-specific nuances and
4816  * ensures only valid drive strengths are written to the respective chip.
4817  *
4818  * Return: 0 on successful configuration, a negative error code on failure.
4819  */
4820 static int ksz9477_drive_strength_write(struct ksz_device *dev,
4821 					struct ksz_driver_strength_prop *props,
4822 					int num_props)
4823 {
4824 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4825 	int i, ret, reg;
4826 	u8 mask = 0;
4827 	u8 val = 0;
4828 
4829 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4830 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4831 			 props[KSZ_DRIVER_STRENGTH_IO].name);
4832 
4833 	if (dev->chip_id == KSZ8795_CHIP_ID ||
4834 	    dev->chip_id == KSZ8794_CHIP_ID ||
4835 	    dev->chip_id == KSZ8765_CHIP_ID)
4836 		reg = KSZ8795_REG_SW_CTRL_20;
4837 	else
4838 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4839 
4840 	for (i = 0; i < num_props; i++) {
4841 		if (props[i].value == -1)
4842 			continue;
4843 
4844 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4845 						array_size, props[i].value);
4846 		if (ret < 0) {
4847 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4848 						 array_size, props[i].value);
4849 			return ret;
4850 		}
4851 
4852 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4853 		val |= ret << props[i].offset;
4854 	}
4855 
4856 	return ksz_rmw8(dev, reg, mask, val);
4857 }
4858 
4859 /**
4860  * ksz88x3_drive_strength_write() - Set the drive strength configuration for
4861  *				    KSZ8863 compatible chip variants.
4862  * @dev:       ksz device
4863  * @props:     Array of drive strength properties to be set
4864  * @num_props: Number of properties in the array
4865  *
4866  * This function applies the specified drive strength settings to KSZ88X3 chip
4867  * variants (KSZ8873, KSZ8863).
4868  * It ensures the configurations align with what the chip variant supports and
4869  * warns or errors out on unsupported settings.
4870  *
4871  * Return: 0 on success, error code otherwise
4872  */
4873 static int ksz88x3_drive_strength_write(struct ksz_device *dev,
4874 					struct ksz_driver_strength_prop *props,
4875 					int num_props)
4876 {
4877 	size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths);
4878 	int microamp;
4879 	int i, ret;
4880 
4881 	for (i = 0; i < num_props; i++) {
4882 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4883 			continue;
4884 
4885 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4886 			 props[i].name);
4887 	}
4888 
4889 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4890 	ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size,
4891 					microamp);
4892 	if (ret < 0) {
4893 		ksz_drive_strength_error(dev, ksz88x3_drive_strengths,
4894 					 array_size, microamp);
4895 		return ret;
4896 	}
4897 
4898 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4899 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4900 }
4901 
4902 /**
4903  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4904  *				from device tree properties.
4905  * @dev:	ksz device
4906  *
4907  * This function reads the specified drive strength properties from the
4908  * device tree, validates against the supported chip variants, and sets
4909  * them accordingly. An error should be critical here, as the drive strength
4910  * settings are crucial for EMI compliance.
4911  *
4912  * Return: 0 on success, error code otherwise
4913  */
4914 static int ksz_parse_drive_strength(struct ksz_device *dev)
4915 {
4916 	struct ksz_driver_strength_prop of_props[] = {
4917 		[KSZ_DRIVER_STRENGTH_HI] = {
4918 			.name = "microchip,hi-drive-strength-microamp",
4919 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4920 			.value = -1,
4921 		},
4922 		[KSZ_DRIVER_STRENGTH_LO] = {
4923 			.name = "microchip,lo-drive-strength-microamp",
4924 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4925 			.value = -1,
4926 		},
4927 		[KSZ_DRIVER_STRENGTH_IO] = {
4928 			.name = "microchip,io-drive-strength-microamp",
4929 			.offset = 0, /* don't care */
4930 			.value = -1,
4931 		},
4932 	};
4933 	struct device_node *np = dev->dev->of_node;
4934 	bool have_any_prop = false;
4935 	int i, ret;
4936 
4937 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4938 		ret = of_property_read_u32(np, of_props[i].name,
4939 					   &of_props[i].value);
4940 		if (ret && ret != -EINVAL)
4941 			dev_warn(dev->dev, "Failed to read %s\n",
4942 				 of_props[i].name);
4943 		if (ret)
4944 			continue;
4945 
4946 		have_any_prop = true;
4947 	}
4948 
4949 	if (!have_any_prop)
4950 		return 0;
4951 
4952 	switch (dev->chip_id) {
4953 	case KSZ88X3_CHIP_ID:
4954 		return ksz88x3_drive_strength_write(dev, of_props,
4955 						    ARRAY_SIZE(of_props));
4956 	case KSZ8795_CHIP_ID:
4957 	case KSZ8794_CHIP_ID:
4958 	case KSZ8765_CHIP_ID:
4959 	case KSZ8563_CHIP_ID:
4960 	case KSZ8567_CHIP_ID:
4961 	case KSZ9477_CHIP_ID:
4962 	case KSZ9563_CHIP_ID:
4963 	case KSZ9567_CHIP_ID:
4964 	case KSZ9893_CHIP_ID:
4965 	case KSZ9896_CHIP_ID:
4966 	case KSZ9897_CHIP_ID:
4967 	case LAN9646_CHIP_ID:
4968 		return ksz9477_drive_strength_write(dev, of_props,
4969 						    ARRAY_SIZE(of_props));
4970 	default:
4971 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4972 			if (of_props[i].value == -1)
4973 				continue;
4974 
4975 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4976 				 of_props[i].name);
4977 		}
4978 	}
4979 
4980 	return 0;
4981 }
4982 
4983 int ksz_switch_register(struct ksz_device *dev)
4984 {
4985 	const struct ksz_chip_data *info;
4986 	struct device_node *ports;
4987 	phy_interface_t interface;
4988 	unsigned int port_num;
4989 	int ret;
4990 	int i;
4991 
4992 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4993 						  GPIOD_OUT_LOW);
4994 	if (IS_ERR(dev->reset_gpio))
4995 		return PTR_ERR(dev->reset_gpio);
4996 
4997 	if (dev->reset_gpio) {
4998 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4999 		usleep_range(10000, 12000);
5000 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
5001 		msleep(100);
5002 	}
5003 
5004 	mutex_init(&dev->dev_mutex);
5005 	mutex_init(&dev->regmap_mutex);
5006 	mutex_init(&dev->alu_mutex);
5007 	mutex_init(&dev->vlan_mutex);
5008 
5009 	ret = ksz_switch_detect(dev);
5010 	if (ret)
5011 		return ret;
5012 
5013 	info = ksz_lookup_info(dev->chip_id);
5014 	if (!info)
5015 		return -ENODEV;
5016 
5017 	/* Update the compatible info with the probed one */
5018 	dev->info = info;
5019 
5020 	dev_info(dev->dev, "found switch: %s, rev %i\n",
5021 		 dev->info->dev_name, dev->chip_rev);
5022 
5023 	ret = ksz_check_device_id(dev);
5024 	if (ret)
5025 		return ret;
5026 
5027 	dev->dev_ops = dev->info->ops;
5028 
5029 	ret = dev->dev_ops->init(dev);
5030 	if (ret)
5031 		return ret;
5032 
5033 	dev->ports = devm_kzalloc(dev->dev,
5034 				  dev->info->port_cnt * sizeof(struct ksz_port),
5035 				  GFP_KERNEL);
5036 	if (!dev->ports)
5037 		return -ENOMEM;
5038 
5039 	for (i = 0; i < dev->info->port_cnt; i++) {
5040 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
5041 		mutex_init(&dev->ports[i].mib.cnt_mutex);
5042 		dev->ports[i].mib.counters =
5043 			devm_kzalloc(dev->dev,
5044 				     sizeof(u64) * (dev->info->mib_cnt + 1),
5045 				     GFP_KERNEL);
5046 		if (!dev->ports[i].mib.counters)
5047 			return -ENOMEM;
5048 
5049 		dev->ports[i].ksz_dev = dev;
5050 		dev->ports[i].num = i;
5051 	}
5052 
5053 	/* set the real number of ports */
5054 	dev->ds->num_ports = dev->info->port_cnt;
5055 
5056 	/* set the phylink ops */
5057 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
5058 
5059 	/* Host port interface will be self detected, or specifically set in
5060 	 * device tree.
5061 	 */
5062 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
5063 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
5064 	if (dev->dev->of_node) {
5065 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
5066 		if (ret == 0)
5067 			dev->compat_interface = interface;
5068 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
5069 		if (!ports)
5070 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
5071 		if (ports) {
5072 			for_each_available_child_of_node_scoped(ports, port) {
5073 				if (of_property_read_u32(port, "reg",
5074 							 &port_num))
5075 					continue;
5076 				if (!(dev->port_mask & BIT(port_num))) {
5077 					of_node_put(ports);
5078 					return -EINVAL;
5079 				}
5080 				of_get_phy_mode(port,
5081 						&dev->ports[port_num].interface);
5082 
5083 				ksz_parse_rgmii_delay(dev, port_num, port);
5084 			}
5085 			of_node_put(ports);
5086 		}
5087 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
5088 							 "microchip,synclko-125");
5089 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
5090 							     "microchip,synclko-disable");
5091 		if (dev->synclko_125 && dev->synclko_disable) {
5092 			dev_err(dev->dev, "inconsistent synclko settings\n");
5093 			return -EINVAL;
5094 		}
5095 
5096 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
5097 							   "wakeup-source");
5098 		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
5099 							     "microchip,pme-active-high");
5100 	}
5101 
5102 	ret = dsa_register_switch(dev->ds);
5103 	if (ret) {
5104 		dev->dev_ops->exit(dev);
5105 		return ret;
5106 	}
5107 
5108 	/* Read MIB counters every 30 seconds to avoid overflow. */
5109 	dev->mib_read_interval = msecs_to_jiffies(5000);
5110 
5111 	/* Start the MIB timer. */
5112 	schedule_delayed_work(&dev->mib_read, 0);
5113 
5114 	return ret;
5115 }
5116 EXPORT_SYMBOL(ksz_switch_register);
5117 
5118 void ksz_switch_remove(struct ksz_device *dev)
5119 {
5120 	/* timer started */
5121 	if (dev->mib_read_interval) {
5122 		dev->mib_read_interval = 0;
5123 		cancel_delayed_work_sync(&dev->mib_read);
5124 	}
5125 
5126 	dev->dev_ops->exit(dev);
5127 	dsa_unregister_switch(dev->ds);
5128 
5129 	if (dev->reset_gpio)
5130 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5131 
5132 }
5133 EXPORT_SYMBOL(ksz_switch_remove);
5134 
5135 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
5136 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
5137 MODULE_LICENSE("GPL");
5138