xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 5dc51ec86df6e2214d8398079c1e31736593ab53)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2024 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/ieee8021q.h>
28 #include <net/pkt_cls.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_common.h"
32 #include "ksz_dcb.h"
33 #include "ksz_ptp.h"
34 #include "ksz8.h"
35 #include "ksz9477.h"
36 #include "lan937x.h"
37 
38 #define MIB_COUNTER_NUM 0x20
39 
40 struct ksz_stats_raw {
41 	u64 rx_hi;
42 	u64 rx_undersize;
43 	u64 rx_fragments;
44 	u64 rx_oversize;
45 	u64 rx_jabbers;
46 	u64 rx_symbol_err;
47 	u64 rx_crc_err;
48 	u64 rx_align_err;
49 	u64 rx_mac_ctrl;
50 	u64 rx_pause;
51 	u64 rx_bcast;
52 	u64 rx_mcast;
53 	u64 rx_ucast;
54 	u64 rx_64_or_less;
55 	u64 rx_65_127;
56 	u64 rx_128_255;
57 	u64 rx_256_511;
58 	u64 rx_512_1023;
59 	u64 rx_1024_1522;
60 	u64 rx_1523_2000;
61 	u64 rx_2001;
62 	u64 tx_hi;
63 	u64 tx_late_col;
64 	u64 tx_pause;
65 	u64 tx_bcast;
66 	u64 tx_mcast;
67 	u64 tx_ucast;
68 	u64 tx_deferred;
69 	u64 tx_total_col;
70 	u64 tx_exc_col;
71 	u64 tx_single_col;
72 	u64 tx_mult_col;
73 	u64 rx_total;
74 	u64 tx_total;
75 	u64 rx_discards;
76 	u64 tx_discards;
77 };
78 
79 struct ksz88xx_stats_raw {
80 	u64 rx;
81 	u64 rx_hi;
82 	u64 rx_undersize;
83 	u64 rx_fragments;
84 	u64 rx_oversize;
85 	u64 rx_jabbers;
86 	u64 rx_symbol_err;
87 	u64 rx_crc_err;
88 	u64 rx_align_err;
89 	u64 rx_mac_ctrl;
90 	u64 rx_pause;
91 	u64 rx_bcast;
92 	u64 rx_mcast;
93 	u64 rx_ucast;
94 	u64 rx_64_or_less;
95 	u64 rx_65_127;
96 	u64 rx_128_255;
97 	u64 rx_256_511;
98 	u64 rx_512_1023;
99 	u64 rx_1024_1522;
100 	u64 tx;
101 	u64 tx_hi;
102 	u64 tx_late_col;
103 	u64 tx_pause;
104 	u64 tx_bcast;
105 	u64 tx_mcast;
106 	u64 tx_ucast;
107 	u64 tx_deferred;
108 	u64 tx_total_col;
109 	u64 tx_exc_col;
110 	u64 tx_single_col;
111 	u64 tx_mult_col;
112 	u64 rx_discards;
113 	u64 tx_discards;
114 };
115 
116 static const struct ksz_mib_names ksz88xx_mib_names[] = {
117 	{ 0x00, "rx" },
118 	{ 0x01, "rx_hi" },
119 	{ 0x02, "rx_undersize" },
120 	{ 0x03, "rx_fragments" },
121 	{ 0x04, "rx_oversize" },
122 	{ 0x05, "rx_jabbers" },
123 	{ 0x06, "rx_symbol_err" },
124 	{ 0x07, "rx_crc_err" },
125 	{ 0x08, "rx_align_err" },
126 	{ 0x09, "rx_mac_ctrl" },
127 	{ 0x0a, "rx_pause" },
128 	{ 0x0b, "rx_bcast" },
129 	{ 0x0c, "rx_mcast" },
130 	{ 0x0d, "rx_ucast" },
131 	{ 0x0e, "rx_64_or_less" },
132 	{ 0x0f, "rx_65_127" },
133 	{ 0x10, "rx_128_255" },
134 	{ 0x11, "rx_256_511" },
135 	{ 0x12, "rx_512_1023" },
136 	{ 0x13, "rx_1024_1522" },
137 	{ 0x14, "tx" },
138 	{ 0x15, "tx_hi" },
139 	{ 0x16, "tx_late_col" },
140 	{ 0x17, "tx_pause" },
141 	{ 0x18, "tx_bcast" },
142 	{ 0x19, "tx_mcast" },
143 	{ 0x1a, "tx_ucast" },
144 	{ 0x1b, "tx_deferred" },
145 	{ 0x1c, "tx_total_col" },
146 	{ 0x1d, "tx_exc_col" },
147 	{ 0x1e, "tx_single_col" },
148 	{ 0x1f, "tx_mult_col" },
149 	{ 0x100, "rx_discards" },
150 	{ 0x101, "tx_discards" },
151 };
152 
153 static const struct ksz_mib_names ksz9477_mib_names[] = {
154 	{ 0x00, "rx_hi" },
155 	{ 0x01, "rx_undersize" },
156 	{ 0x02, "rx_fragments" },
157 	{ 0x03, "rx_oversize" },
158 	{ 0x04, "rx_jabbers" },
159 	{ 0x05, "rx_symbol_err" },
160 	{ 0x06, "rx_crc_err" },
161 	{ 0x07, "rx_align_err" },
162 	{ 0x08, "rx_mac_ctrl" },
163 	{ 0x09, "rx_pause" },
164 	{ 0x0A, "rx_bcast" },
165 	{ 0x0B, "rx_mcast" },
166 	{ 0x0C, "rx_ucast" },
167 	{ 0x0D, "rx_64_or_less" },
168 	{ 0x0E, "rx_65_127" },
169 	{ 0x0F, "rx_128_255" },
170 	{ 0x10, "rx_256_511" },
171 	{ 0x11, "rx_512_1023" },
172 	{ 0x12, "rx_1024_1522" },
173 	{ 0x13, "rx_1523_2000" },
174 	{ 0x14, "rx_2001" },
175 	{ 0x15, "tx_hi" },
176 	{ 0x16, "tx_late_col" },
177 	{ 0x17, "tx_pause" },
178 	{ 0x18, "tx_bcast" },
179 	{ 0x19, "tx_mcast" },
180 	{ 0x1A, "tx_ucast" },
181 	{ 0x1B, "tx_deferred" },
182 	{ 0x1C, "tx_total_col" },
183 	{ 0x1D, "tx_exc_col" },
184 	{ 0x1E, "tx_single_col" },
185 	{ 0x1F, "tx_mult_col" },
186 	{ 0x80, "rx_total" },
187 	{ 0x81, "tx_total" },
188 	{ 0x82, "rx_discards" },
189 	{ 0x83, "tx_discards" },
190 };
191 
192 struct ksz_driver_strength_prop {
193 	const char *name;
194 	int offset;
195 	int value;
196 };
197 
198 enum ksz_driver_strength_type {
199 	KSZ_DRIVER_STRENGTH_HI,
200 	KSZ_DRIVER_STRENGTH_LO,
201 	KSZ_DRIVER_STRENGTH_IO,
202 };
203 
204 /**
205  * struct ksz_drive_strength - drive strength mapping
206  * @reg_val:	register value
207  * @microamp:	microamp value
208  */
209 struct ksz_drive_strength {
210 	u32 reg_val;
211 	u32 microamp;
212 };
213 
214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
215  *
216  * This values are not documented in KSZ9477 variants but confirmed by
217  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
218  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
219  *
220  * Documentation in KSZ8795CLX provides more information with some
221  * recommendations:
222  * - for high speed signals
223  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
224  *      2.5V or 3.3V VDDIO.
225  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
226  *      using 1.8V VDDIO.
227  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
228  *      or 3.3V VDDIO.
229  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
230  *   5. In same interface, the heavy loading should use higher one of the
231  *      drive current strength.
232  * - for low speed signals
233  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
234  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
235  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
236  *   4. If it is heavy loading, can use higher drive current strength.
237  */
238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
239 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
240 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
241 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
242 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
243 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
244 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
245 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
246 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
247 };
248 
249 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, ..
250  *			     variants.
251  * This values are documented in KSZ8873 and KSZ8863 datasheets.
252  */
253 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = {
254 	{ 0,  8000 },
255 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
256 };
257 
258 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
259 				       unsigned int mode,
260 				       const struct phylink_link_state *state);
261 static void ksz_phylink_mac_config(struct phylink_config *config,
262 				   unsigned int mode,
263 				   const struct phylink_link_state *state);
264 static void ksz_phylink_mac_link_down(struct phylink_config *config,
265 				      unsigned int mode,
266 				      phy_interface_t interface);
267 
268 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = {
269 	.mac_config	= ksz88x3_phylink_mac_config,
270 	.mac_link_down	= ksz_phylink_mac_link_down,
271 	.mac_link_up	= ksz8_phylink_mac_link_up,
272 };
273 
274 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
275 	.mac_config	= ksz_phylink_mac_config,
276 	.mac_link_down	= ksz_phylink_mac_link_down,
277 	.mac_link_up	= ksz8_phylink_mac_link_up,
278 };
279 
280 static const struct ksz_dev_ops ksz88xx_dev_ops = {
281 	.setup = ksz8_setup,
282 	.get_port_addr = ksz8_get_port_addr,
283 	.cfg_port_member = ksz8_cfg_port_member,
284 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
285 	.port_setup = ksz8_port_setup,
286 	.r_phy = ksz8_r_phy,
287 	.w_phy = ksz8_w_phy,
288 	.r_mib_cnt = ksz8_r_mib_cnt,
289 	.r_mib_pkt = ksz8_r_mib_pkt,
290 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
291 	.freeze_mib = ksz8_freeze_mib,
292 	.port_init_cnt = ksz8_port_init_cnt,
293 	.fdb_dump = ksz8_fdb_dump,
294 	.fdb_add = ksz8_fdb_add,
295 	.fdb_del = ksz8_fdb_del,
296 	.mdb_add = ksz8_mdb_add,
297 	.mdb_del = ksz8_mdb_del,
298 	.vlan_filtering = ksz8_port_vlan_filtering,
299 	.vlan_add = ksz8_port_vlan_add,
300 	.vlan_del = ksz8_port_vlan_del,
301 	.mirror_add = ksz8_port_mirror_add,
302 	.mirror_del = ksz8_port_mirror_del,
303 	.get_caps = ksz8_get_caps,
304 	.config_cpu_port = ksz8_config_cpu_port,
305 	.enable_stp_addr = ksz8_enable_stp_addr,
306 	.reset = ksz8_reset_switch,
307 	.init = ksz8_switch_init,
308 	.exit = ksz8_switch_exit,
309 	.change_mtu = ksz8_change_mtu,
310 	.pme_write8 = ksz8_pme_write8,
311 	.pme_pread8 = ksz8_pme_pread8,
312 	.pme_pwrite8 = ksz8_pme_pwrite8,
313 };
314 
315 static const struct ksz_dev_ops ksz87xx_dev_ops = {
316 	.setup = ksz8_setup,
317 	.get_port_addr = ksz8_get_port_addr,
318 	.cfg_port_member = ksz8_cfg_port_member,
319 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
320 	.port_setup = ksz8_port_setup,
321 	.r_phy = ksz8_r_phy,
322 	.w_phy = ksz8_w_phy,
323 	.r_mib_cnt = ksz8_r_mib_cnt,
324 	.r_mib_pkt = ksz8_r_mib_pkt,
325 	.r_mib_stat64 = ksz_r_mib_stats64,
326 	.freeze_mib = ksz8_freeze_mib,
327 	.port_init_cnt = ksz8_port_init_cnt,
328 	.fdb_dump = ksz8_fdb_dump,
329 	.fdb_add = ksz8_fdb_add,
330 	.fdb_del = ksz8_fdb_del,
331 	.mdb_add = ksz8_mdb_add,
332 	.mdb_del = ksz8_mdb_del,
333 	.vlan_filtering = ksz8_port_vlan_filtering,
334 	.vlan_add = ksz8_port_vlan_add,
335 	.vlan_del = ksz8_port_vlan_del,
336 	.mirror_add = ksz8_port_mirror_add,
337 	.mirror_del = ksz8_port_mirror_del,
338 	.get_caps = ksz8_get_caps,
339 	.config_cpu_port = ksz8_config_cpu_port,
340 	.enable_stp_addr = ksz8_enable_stp_addr,
341 	.reset = ksz8_reset_switch,
342 	.init = ksz8_switch_init,
343 	.exit = ksz8_switch_exit,
344 	.change_mtu = ksz8_change_mtu,
345 	.pme_write8 = ksz8_pme_write8,
346 	.pme_pread8 = ksz8_pme_pread8,
347 	.pme_pwrite8 = ksz8_pme_pwrite8,
348 };
349 
350 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
351 					struct phy_device *phydev,
352 					unsigned int mode,
353 					phy_interface_t interface,
354 					int speed, int duplex, bool tx_pause,
355 					bool rx_pause);
356 
357 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
358 	.mac_config	= ksz_phylink_mac_config,
359 	.mac_link_down	= ksz_phylink_mac_link_down,
360 	.mac_link_up	= ksz9477_phylink_mac_link_up,
361 };
362 
363 static const struct ksz_dev_ops ksz9477_dev_ops = {
364 	.setup = ksz9477_setup,
365 	.get_port_addr = ksz9477_get_port_addr,
366 	.cfg_port_member = ksz9477_cfg_port_member,
367 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
368 	.port_setup = ksz9477_port_setup,
369 	.set_ageing_time = ksz9477_set_ageing_time,
370 	.r_phy = ksz9477_r_phy,
371 	.w_phy = ksz9477_w_phy,
372 	.r_mib_cnt = ksz9477_r_mib_cnt,
373 	.r_mib_pkt = ksz9477_r_mib_pkt,
374 	.r_mib_stat64 = ksz_r_mib_stats64,
375 	.freeze_mib = ksz9477_freeze_mib,
376 	.port_init_cnt = ksz9477_port_init_cnt,
377 	.vlan_filtering = ksz9477_port_vlan_filtering,
378 	.vlan_add = ksz9477_port_vlan_add,
379 	.vlan_del = ksz9477_port_vlan_del,
380 	.mirror_add = ksz9477_port_mirror_add,
381 	.mirror_del = ksz9477_port_mirror_del,
382 	.get_caps = ksz9477_get_caps,
383 	.fdb_dump = ksz9477_fdb_dump,
384 	.fdb_add = ksz9477_fdb_add,
385 	.fdb_del = ksz9477_fdb_del,
386 	.mdb_add = ksz9477_mdb_add,
387 	.mdb_del = ksz9477_mdb_del,
388 	.change_mtu = ksz9477_change_mtu,
389 	.pme_write8 = ksz_write8,
390 	.pme_pread8 = ksz_pread8,
391 	.pme_pwrite8 = ksz_pwrite8,
392 	.config_cpu_port = ksz9477_config_cpu_port,
393 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
394 	.enable_stp_addr = ksz9477_enable_stp_addr,
395 	.reset = ksz9477_reset_switch,
396 	.init = ksz9477_switch_init,
397 	.exit = ksz9477_switch_exit,
398 };
399 
400 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
401 	.mac_config	= ksz_phylink_mac_config,
402 	.mac_link_down	= ksz_phylink_mac_link_down,
403 	.mac_link_up	= ksz9477_phylink_mac_link_up,
404 };
405 
406 static const struct ksz_dev_ops lan937x_dev_ops = {
407 	.setup = lan937x_setup,
408 	.teardown = lan937x_teardown,
409 	.get_port_addr = ksz9477_get_port_addr,
410 	.cfg_port_member = ksz9477_cfg_port_member,
411 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
412 	.port_setup = lan937x_port_setup,
413 	.set_ageing_time = lan937x_set_ageing_time,
414 	.mdio_bus_preinit = lan937x_mdio_bus_preinit,
415 	.create_phy_addr_map = lan937x_create_phy_addr_map,
416 	.r_phy = lan937x_r_phy,
417 	.w_phy = lan937x_w_phy,
418 	.r_mib_cnt = ksz9477_r_mib_cnt,
419 	.r_mib_pkt = ksz9477_r_mib_pkt,
420 	.r_mib_stat64 = ksz_r_mib_stats64,
421 	.freeze_mib = ksz9477_freeze_mib,
422 	.port_init_cnt = ksz9477_port_init_cnt,
423 	.vlan_filtering = ksz9477_port_vlan_filtering,
424 	.vlan_add = ksz9477_port_vlan_add,
425 	.vlan_del = ksz9477_port_vlan_del,
426 	.mirror_add = ksz9477_port_mirror_add,
427 	.mirror_del = ksz9477_port_mirror_del,
428 	.get_caps = lan937x_phylink_get_caps,
429 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
430 	.fdb_dump = ksz9477_fdb_dump,
431 	.fdb_add = ksz9477_fdb_add,
432 	.fdb_del = ksz9477_fdb_del,
433 	.mdb_add = ksz9477_mdb_add,
434 	.mdb_del = ksz9477_mdb_del,
435 	.change_mtu = lan937x_change_mtu,
436 	.config_cpu_port = lan937x_config_cpu_port,
437 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
438 	.enable_stp_addr = ksz9477_enable_stp_addr,
439 	.reset = lan937x_reset_switch,
440 	.init = lan937x_switch_init,
441 	.exit = lan937x_switch_exit,
442 };
443 
444 static const u16 ksz8795_regs[] = {
445 	[REG_SW_MAC_ADDR]		= 0x68,
446 	[REG_IND_CTRL_0]		= 0x6E,
447 	[REG_IND_DATA_8]		= 0x70,
448 	[REG_IND_DATA_CHECK]		= 0x72,
449 	[REG_IND_DATA_HI]		= 0x71,
450 	[REG_IND_DATA_LO]		= 0x75,
451 	[REG_IND_MIB_CHECK]		= 0x74,
452 	[REG_IND_BYTE]			= 0xA0,
453 	[P_FORCE_CTRL]			= 0x0C,
454 	[P_LINK_STATUS]			= 0x0E,
455 	[P_LOCAL_CTRL]			= 0x07,
456 	[P_NEG_RESTART_CTRL]		= 0x0D,
457 	[P_REMOTE_STATUS]		= 0x08,
458 	[P_SPEED_STATUS]		= 0x09,
459 	[S_TAIL_TAG_CTRL]		= 0x0C,
460 	[P_STP_CTRL]			= 0x02,
461 	[S_START_CTRL]			= 0x01,
462 	[S_BROADCAST_CTRL]		= 0x06,
463 	[S_MULTICAST_CTRL]		= 0x04,
464 	[P_XMII_CTRL_0]			= 0x06,
465 	[P_XMII_CTRL_1]			= 0x06,
466 	[REG_SW_PME_CTRL]		= 0x8003,
467 	[REG_PORT_PME_STATUS]		= 0x8003,
468 	[REG_PORT_PME_CTRL]		= 0x8007,
469 };
470 
471 static const u32 ksz8795_masks[] = {
472 	[PORT_802_1P_REMAPPING]		= BIT(7),
473 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
474 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
475 	[MIB_COUNTER_VALID]		= BIT(5),
476 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
477 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
478 	[VLAN_TABLE_VALID]		= BIT(12),
479 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
480 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
481 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
482 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
483 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
484 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
485 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
486 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
487 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
488 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
489 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
490 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
491 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
492 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
493 };
494 
495 static const u8 ksz8795_xmii_ctrl0[] = {
496 	[P_MII_100MBIT]			= 0,
497 	[P_MII_10MBIT]			= 1,
498 	[P_MII_FULL_DUPLEX]		= 0,
499 	[P_MII_HALF_DUPLEX]		= 1,
500 };
501 
502 static const u8 ksz8795_xmii_ctrl1[] = {
503 	[P_RGMII_SEL]			= 3,
504 	[P_GMII_SEL]			= 2,
505 	[P_RMII_SEL]			= 1,
506 	[P_MII_SEL]			= 0,
507 	[P_GMII_1GBIT]			= 1,
508 	[P_GMII_NOT_1GBIT]		= 0,
509 };
510 
511 static const u8 ksz8795_shifts[] = {
512 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
513 	[VLAN_TABLE]			= 16,
514 	[STATIC_MAC_FWD_PORTS]		= 16,
515 	[STATIC_MAC_FID]		= 24,
516 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
517 	[DYNAMIC_MAC_ENTRIES]		= 29,
518 	[DYNAMIC_MAC_FID]		= 16,
519 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
520 	[DYNAMIC_MAC_SRC_PORT]		= 24,
521 };
522 
523 static const u16 ksz8863_regs[] = {
524 	[REG_SW_MAC_ADDR]		= 0x70,
525 	[REG_IND_CTRL_0]		= 0x79,
526 	[REG_IND_DATA_8]		= 0x7B,
527 	[REG_IND_DATA_CHECK]		= 0x7B,
528 	[REG_IND_DATA_HI]		= 0x7C,
529 	[REG_IND_DATA_LO]		= 0x80,
530 	[REG_IND_MIB_CHECK]		= 0x80,
531 	[P_FORCE_CTRL]			= 0x0C,
532 	[P_LINK_STATUS]			= 0x0E,
533 	[P_LOCAL_CTRL]			= 0x0C,
534 	[P_NEG_RESTART_CTRL]		= 0x0D,
535 	[P_REMOTE_STATUS]		= 0x0E,
536 	[P_SPEED_STATUS]		= 0x0F,
537 	[S_TAIL_TAG_CTRL]		= 0x03,
538 	[P_STP_CTRL]			= 0x02,
539 	[S_START_CTRL]			= 0x01,
540 	[S_BROADCAST_CTRL]		= 0x06,
541 	[S_MULTICAST_CTRL]		= 0x04,
542 };
543 
544 static const u32 ksz8863_masks[] = {
545 	[PORT_802_1P_REMAPPING]		= BIT(3),
546 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
547 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
548 	[MIB_COUNTER_VALID]		= BIT(6),
549 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
550 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
551 	[VLAN_TABLE_VALID]		= BIT(19),
552 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
553 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
554 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
555 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
556 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
557 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
558 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
559 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
560 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
561 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
562 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
563 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
564 };
565 
566 static u8 ksz8863_shifts[] = {
567 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
568 	[STATIC_MAC_FWD_PORTS]		= 16,
569 	[STATIC_MAC_FID]		= 22,
570 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
571 	[DYNAMIC_MAC_ENTRIES]		= 24,
572 	[DYNAMIC_MAC_FID]		= 16,
573 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
574 	[DYNAMIC_MAC_SRC_PORT]		= 20,
575 };
576 
577 static const u16 ksz8895_regs[] = {
578 	[REG_SW_MAC_ADDR]		= 0x68,
579 	[REG_IND_CTRL_0]		= 0x6E,
580 	[REG_IND_DATA_8]		= 0x70,
581 	[REG_IND_DATA_CHECK]		= 0x72,
582 	[REG_IND_DATA_HI]		= 0x71,
583 	[REG_IND_DATA_LO]		= 0x75,
584 	[REG_IND_MIB_CHECK]		= 0x75,
585 	[P_FORCE_CTRL]			= 0x0C,
586 	[P_LINK_STATUS]			= 0x0E,
587 	[P_LOCAL_CTRL]			= 0x0C,
588 	[P_NEG_RESTART_CTRL]		= 0x0D,
589 	[P_REMOTE_STATUS]		= 0x0E,
590 	[P_SPEED_STATUS]		= 0x09,
591 	[S_TAIL_TAG_CTRL]		= 0x0C,
592 	[P_STP_CTRL]			= 0x02,
593 	[S_START_CTRL]			= 0x01,
594 	[S_BROADCAST_CTRL]		= 0x06,
595 	[S_MULTICAST_CTRL]		= 0x04,
596 };
597 
598 static const u32 ksz8895_masks[] = {
599 	[PORT_802_1P_REMAPPING]		= BIT(7),
600 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
601 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
602 	[MIB_COUNTER_VALID]		= BIT(6),
603 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
604 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
605 	[VLAN_TABLE_VALID]		= BIT(12),
606 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
607 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
608 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
609 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
610 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
611 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
612 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
613 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
614 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
615 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
616 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
617 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
618 };
619 
620 static const u8 ksz8895_shifts[] = {
621 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
622 	[VLAN_TABLE]			= 13,
623 	[STATIC_MAC_FWD_PORTS]		= 16,
624 	[STATIC_MAC_FID]		= 24,
625 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
626 	[DYNAMIC_MAC_ENTRIES]		= 29,
627 	[DYNAMIC_MAC_FID]		= 16,
628 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
629 	[DYNAMIC_MAC_SRC_PORT]		= 24,
630 };
631 
632 static const u16 ksz9477_regs[] = {
633 	[REG_SW_MAC_ADDR]		= 0x0302,
634 	[P_STP_CTRL]			= 0x0B04,
635 	[S_START_CTRL]			= 0x0300,
636 	[S_BROADCAST_CTRL]		= 0x0332,
637 	[S_MULTICAST_CTRL]		= 0x0331,
638 	[P_XMII_CTRL_0]			= 0x0300,
639 	[P_XMII_CTRL_1]			= 0x0301,
640 	[REG_SW_PME_CTRL]		= 0x0006,
641 	[REG_PORT_PME_STATUS]		= 0x0013,
642 	[REG_PORT_PME_CTRL]		= 0x0017,
643 };
644 
645 static const u32 ksz9477_masks[] = {
646 	[ALU_STAT_WRITE]		= 0,
647 	[ALU_STAT_READ]			= 1,
648 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
649 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
650 };
651 
652 static const u8 ksz9477_shifts[] = {
653 	[ALU_STAT_INDEX]		= 16,
654 };
655 
656 static const u8 ksz9477_xmii_ctrl0[] = {
657 	[P_MII_100MBIT]			= 1,
658 	[P_MII_10MBIT]			= 0,
659 	[P_MII_FULL_DUPLEX]		= 1,
660 	[P_MII_HALF_DUPLEX]		= 0,
661 };
662 
663 static const u8 ksz9477_xmii_ctrl1[] = {
664 	[P_RGMII_SEL]			= 0,
665 	[P_RMII_SEL]			= 1,
666 	[P_GMII_SEL]			= 2,
667 	[P_MII_SEL]			= 3,
668 	[P_GMII_1GBIT]			= 0,
669 	[P_GMII_NOT_1GBIT]		= 1,
670 };
671 
672 static const u32 lan937x_masks[] = {
673 	[ALU_STAT_WRITE]		= 1,
674 	[ALU_STAT_READ]			= 2,
675 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
676 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
677 };
678 
679 static const u8 lan937x_shifts[] = {
680 	[ALU_STAT_INDEX]		= 8,
681 };
682 
683 static const struct regmap_range ksz8563_valid_regs[] = {
684 	regmap_reg_range(0x0000, 0x0003),
685 	regmap_reg_range(0x0006, 0x0006),
686 	regmap_reg_range(0x000f, 0x001f),
687 	regmap_reg_range(0x0100, 0x0100),
688 	regmap_reg_range(0x0104, 0x0107),
689 	regmap_reg_range(0x010d, 0x010d),
690 	regmap_reg_range(0x0110, 0x0113),
691 	regmap_reg_range(0x0120, 0x012b),
692 	regmap_reg_range(0x0201, 0x0201),
693 	regmap_reg_range(0x0210, 0x0213),
694 	regmap_reg_range(0x0300, 0x0300),
695 	regmap_reg_range(0x0302, 0x031b),
696 	regmap_reg_range(0x0320, 0x032b),
697 	regmap_reg_range(0x0330, 0x0336),
698 	regmap_reg_range(0x0338, 0x033e),
699 	regmap_reg_range(0x0340, 0x035f),
700 	regmap_reg_range(0x0370, 0x0370),
701 	regmap_reg_range(0x0378, 0x0378),
702 	regmap_reg_range(0x037c, 0x037d),
703 	regmap_reg_range(0x0390, 0x0393),
704 	regmap_reg_range(0x0400, 0x040e),
705 	regmap_reg_range(0x0410, 0x042f),
706 	regmap_reg_range(0x0500, 0x0519),
707 	regmap_reg_range(0x0520, 0x054b),
708 	regmap_reg_range(0x0550, 0x05b3),
709 
710 	/* port 1 */
711 	regmap_reg_range(0x1000, 0x1001),
712 	regmap_reg_range(0x1004, 0x100b),
713 	regmap_reg_range(0x1013, 0x1013),
714 	regmap_reg_range(0x1017, 0x1017),
715 	regmap_reg_range(0x101b, 0x101b),
716 	regmap_reg_range(0x101f, 0x1021),
717 	regmap_reg_range(0x1030, 0x1030),
718 	regmap_reg_range(0x1100, 0x1111),
719 	regmap_reg_range(0x111a, 0x111d),
720 	regmap_reg_range(0x1122, 0x1127),
721 	regmap_reg_range(0x112a, 0x112b),
722 	regmap_reg_range(0x1136, 0x1139),
723 	regmap_reg_range(0x113e, 0x113f),
724 	regmap_reg_range(0x1400, 0x1401),
725 	regmap_reg_range(0x1403, 0x1403),
726 	regmap_reg_range(0x1410, 0x1417),
727 	regmap_reg_range(0x1420, 0x1423),
728 	regmap_reg_range(0x1500, 0x1507),
729 	regmap_reg_range(0x1600, 0x1612),
730 	regmap_reg_range(0x1800, 0x180f),
731 	regmap_reg_range(0x1900, 0x1907),
732 	regmap_reg_range(0x1914, 0x191b),
733 	regmap_reg_range(0x1a00, 0x1a03),
734 	regmap_reg_range(0x1a04, 0x1a08),
735 	regmap_reg_range(0x1b00, 0x1b01),
736 	regmap_reg_range(0x1b04, 0x1b04),
737 	regmap_reg_range(0x1c00, 0x1c05),
738 	regmap_reg_range(0x1c08, 0x1c1b),
739 
740 	/* port 2 */
741 	regmap_reg_range(0x2000, 0x2001),
742 	regmap_reg_range(0x2004, 0x200b),
743 	regmap_reg_range(0x2013, 0x2013),
744 	regmap_reg_range(0x2017, 0x2017),
745 	regmap_reg_range(0x201b, 0x201b),
746 	regmap_reg_range(0x201f, 0x2021),
747 	regmap_reg_range(0x2030, 0x2030),
748 	regmap_reg_range(0x2100, 0x2111),
749 	regmap_reg_range(0x211a, 0x211d),
750 	regmap_reg_range(0x2122, 0x2127),
751 	regmap_reg_range(0x212a, 0x212b),
752 	regmap_reg_range(0x2136, 0x2139),
753 	regmap_reg_range(0x213e, 0x213f),
754 	regmap_reg_range(0x2400, 0x2401),
755 	regmap_reg_range(0x2403, 0x2403),
756 	regmap_reg_range(0x2410, 0x2417),
757 	regmap_reg_range(0x2420, 0x2423),
758 	regmap_reg_range(0x2500, 0x2507),
759 	regmap_reg_range(0x2600, 0x2612),
760 	regmap_reg_range(0x2800, 0x280f),
761 	regmap_reg_range(0x2900, 0x2907),
762 	regmap_reg_range(0x2914, 0x291b),
763 	regmap_reg_range(0x2a00, 0x2a03),
764 	regmap_reg_range(0x2a04, 0x2a08),
765 	regmap_reg_range(0x2b00, 0x2b01),
766 	regmap_reg_range(0x2b04, 0x2b04),
767 	regmap_reg_range(0x2c00, 0x2c05),
768 	regmap_reg_range(0x2c08, 0x2c1b),
769 
770 	/* port 3 */
771 	regmap_reg_range(0x3000, 0x3001),
772 	regmap_reg_range(0x3004, 0x300b),
773 	regmap_reg_range(0x3013, 0x3013),
774 	regmap_reg_range(0x3017, 0x3017),
775 	regmap_reg_range(0x301b, 0x301b),
776 	regmap_reg_range(0x301f, 0x3021),
777 	regmap_reg_range(0x3030, 0x3030),
778 	regmap_reg_range(0x3300, 0x3301),
779 	regmap_reg_range(0x3303, 0x3303),
780 	regmap_reg_range(0x3400, 0x3401),
781 	regmap_reg_range(0x3403, 0x3403),
782 	regmap_reg_range(0x3410, 0x3417),
783 	regmap_reg_range(0x3420, 0x3423),
784 	regmap_reg_range(0x3500, 0x3507),
785 	regmap_reg_range(0x3600, 0x3612),
786 	regmap_reg_range(0x3800, 0x380f),
787 	regmap_reg_range(0x3900, 0x3907),
788 	regmap_reg_range(0x3914, 0x391b),
789 	regmap_reg_range(0x3a00, 0x3a03),
790 	regmap_reg_range(0x3a04, 0x3a08),
791 	regmap_reg_range(0x3b00, 0x3b01),
792 	regmap_reg_range(0x3b04, 0x3b04),
793 	regmap_reg_range(0x3c00, 0x3c05),
794 	regmap_reg_range(0x3c08, 0x3c1b),
795 };
796 
797 static const struct regmap_access_table ksz8563_register_set = {
798 	.yes_ranges = ksz8563_valid_regs,
799 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
800 };
801 
802 static const struct regmap_range ksz9477_valid_regs[] = {
803 	regmap_reg_range(0x0000, 0x0003),
804 	regmap_reg_range(0x0006, 0x0006),
805 	regmap_reg_range(0x0010, 0x001f),
806 	regmap_reg_range(0x0100, 0x0100),
807 	regmap_reg_range(0x0103, 0x0107),
808 	regmap_reg_range(0x010d, 0x010d),
809 	regmap_reg_range(0x0110, 0x0113),
810 	regmap_reg_range(0x0120, 0x012b),
811 	regmap_reg_range(0x0201, 0x0201),
812 	regmap_reg_range(0x0210, 0x0213),
813 	regmap_reg_range(0x0300, 0x0300),
814 	regmap_reg_range(0x0302, 0x031b),
815 	regmap_reg_range(0x0320, 0x032b),
816 	regmap_reg_range(0x0330, 0x0336),
817 	regmap_reg_range(0x0338, 0x033b),
818 	regmap_reg_range(0x033e, 0x033e),
819 	regmap_reg_range(0x0340, 0x035f),
820 	regmap_reg_range(0x0370, 0x0370),
821 	regmap_reg_range(0x0378, 0x0378),
822 	regmap_reg_range(0x037c, 0x037d),
823 	regmap_reg_range(0x0390, 0x0393),
824 	regmap_reg_range(0x0400, 0x040e),
825 	regmap_reg_range(0x0410, 0x042f),
826 	regmap_reg_range(0x0444, 0x044b),
827 	regmap_reg_range(0x0450, 0x046f),
828 	regmap_reg_range(0x0500, 0x0519),
829 	regmap_reg_range(0x0520, 0x054b),
830 	regmap_reg_range(0x0550, 0x05b3),
831 	regmap_reg_range(0x0604, 0x060b),
832 	regmap_reg_range(0x0610, 0x0612),
833 	regmap_reg_range(0x0614, 0x062c),
834 	regmap_reg_range(0x0640, 0x0645),
835 	regmap_reg_range(0x0648, 0x064d),
836 
837 	/* port 1 */
838 	regmap_reg_range(0x1000, 0x1001),
839 	regmap_reg_range(0x1013, 0x1013),
840 	regmap_reg_range(0x1017, 0x1017),
841 	regmap_reg_range(0x101b, 0x101b),
842 	regmap_reg_range(0x101f, 0x1020),
843 	regmap_reg_range(0x1030, 0x1030),
844 	regmap_reg_range(0x1100, 0x1115),
845 	regmap_reg_range(0x111a, 0x111f),
846 	regmap_reg_range(0x1120, 0x112b),
847 	regmap_reg_range(0x1134, 0x113b),
848 	regmap_reg_range(0x113c, 0x113f),
849 	regmap_reg_range(0x1400, 0x1401),
850 	regmap_reg_range(0x1403, 0x1403),
851 	regmap_reg_range(0x1410, 0x1417),
852 	regmap_reg_range(0x1420, 0x1423),
853 	regmap_reg_range(0x1500, 0x1507),
854 	regmap_reg_range(0x1600, 0x1613),
855 	regmap_reg_range(0x1800, 0x180f),
856 	regmap_reg_range(0x1820, 0x1827),
857 	regmap_reg_range(0x1830, 0x1837),
858 	regmap_reg_range(0x1840, 0x184b),
859 	regmap_reg_range(0x1900, 0x1907),
860 	regmap_reg_range(0x1914, 0x191b),
861 	regmap_reg_range(0x1920, 0x1920),
862 	regmap_reg_range(0x1923, 0x1927),
863 	regmap_reg_range(0x1a00, 0x1a03),
864 	regmap_reg_range(0x1a04, 0x1a07),
865 	regmap_reg_range(0x1b00, 0x1b01),
866 	regmap_reg_range(0x1b04, 0x1b04),
867 	regmap_reg_range(0x1c00, 0x1c05),
868 	regmap_reg_range(0x1c08, 0x1c1b),
869 
870 	/* port 2 */
871 	regmap_reg_range(0x2000, 0x2001),
872 	regmap_reg_range(0x2013, 0x2013),
873 	regmap_reg_range(0x2017, 0x2017),
874 	regmap_reg_range(0x201b, 0x201b),
875 	regmap_reg_range(0x201f, 0x2020),
876 	regmap_reg_range(0x2030, 0x2030),
877 	regmap_reg_range(0x2100, 0x2115),
878 	regmap_reg_range(0x211a, 0x211f),
879 	regmap_reg_range(0x2120, 0x212b),
880 	regmap_reg_range(0x2134, 0x213b),
881 	regmap_reg_range(0x213c, 0x213f),
882 	regmap_reg_range(0x2400, 0x2401),
883 	regmap_reg_range(0x2403, 0x2403),
884 	regmap_reg_range(0x2410, 0x2417),
885 	regmap_reg_range(0x2420, 0x2423),
886 	regmap_reg_range(0x2500, 0x2507),
887 	regmap_reg_range(0x2600, 0x2613),
888 	regmap_reg_range(0x2800, 0x280f),
889 	regmap_reg_range(0x2820, 0x2827),
890 	regmap_reg_range(0x2830, 0x2837),
891 	regmap_reg_range(0x2840, 0x284b),
892 	regmap_reg_range(0x2900, 0x2907),
893 	regmap_reg_range(0x2914, 0x291b),
894 	regmap_reg_range(0x2920, 0x2920),
895 	regmap_reg_range(0x2923, 0x2927),
896 	regmap_reg_range(0x2a00, 0x2a03),
897 	regmap_reg_range(0x2a04, 0x2a07),
898 	regmap_reg_range(0x2b00, 0x2b01),
899 	regmap_reg_range(0x2b04, 0x2b04),
900 	regmap_reg_range(0x2c00, 0x2c05),
901 	regmap_reg_range(0x2c08, 0x2c1b),
902 
903 	/* port 3 */
904 	regmap_reg_range(0x3000, 0x3001),
905 	regmap_reg_range(0x3013, 0x3013),
906 	regmap_reg_range(0x3017, 0x3017),
907 	regmap_reg_range(0x301b, 0x301b),
908 	regmap_reg_range(0x301f, 0x3020),
909 	regmap_reg_range(0x3030, 0x3030),
910 	regmap_reg_range(0x3100, 0x3115),
911 	regmap_reg_range(0x311a, 0x311f),
912 	regmap_reg_range(0x3120, 0x312b),
913 	regmap_reg_range(0x3134, 0x313b),
914 	regmap_reg_range(0x313c, 0x313f),
915 	regmap_reg_range(0x3400, 0x3401),
916 	regmap_reg_range(0x3403, 0x3403),
917 	regmap_reg_range(0x3410, 0x3417),
918 	regmap_reg_range(0x3420, 0x3423),
919 	regmap_reg_range(0x3500, 0x3507),
920 	regmap_reg_range(0x3600, 0x3613),
921 	regmap_reg_range(0x3800, 0x380f),
922 	regmap_reg_range(0x3820, 0x3827),
923 	regmap_reg_range(0x3830, 0x3837),
924 	regmap_reg_range(0x3840, 0x384b),
925 	regmap_reg_range(0x3900, 0x3907),
926 	regmap_reg_range(0x3914, 0x391b),
927 	regmap_reg_range(0x3920, 0x3920),
928 	regmap_reg_range(0x3923, 0x3927),
929 	regmap_reg_range(0x3a00, 0x3a03),
930 	regmap_reg_range(0x3a04, 0x3a07),
931 	regmap_reg_range(0x3b00, 0x3b01),
932 	regmap_reg_range(0x3b04, 0x3b04),
933 	regmap_reg_range(0x3c00, 0x3c05),
934 	regmap_reg_range(0x3c08, 0x3c1b),
935 
936 	/* port 4 */
937 	regmap_reg_range(0x4000, 0x4001),
938 	regmap_reg_range(0x4013, 0x4013),
939 	regmap_reg_range(0x4017, 0x4017),
940 	regmap_reg_range(0x401b, 0x401b),
941 	regmap_reg_range(0x401f, 0x4020),
942 	regmap_reg_range(0x4030, 0x4030),
943 	regmap_reg_range(0x4100, 0x4115),
944 	regmap_reg_range(0x411a, 0x411f),
945 	regmap_reg_range(0x4120, 0x412b),
946 	regmap_reg_range(0x4134, 0x413b),
947 	regmap_reg_range(0x413c, 0x413f),
948 	regmap_reg_range(0x4400, 0x4401),
949 	regmap_reg_range(0x4403, 0x4403),
950 	regmap_reg_range(0x4410, 0x4417),
951 	regmap_reg_range(0x4420, 0x4423),
952 	regmap_reg_range(0x4500, 0x4507),
953 	regmap_reg_range(0x4600, 0x4613),
954 	regmap_reg_range(0x4800, 0x480f),
955 	regmap_reg_range(0x4820, 0x4827),
956 	regmap_reg_range(0x4830, 0x4837),
957 	regmap_reg_range(0x4840, 0x484b),
958 	regmap_reg_range(0x4900, 0x4907),
959 	regmap_reg_range(0x4914, 0x491b),
960 	regmap_reg_range(0x4920, 0x4920),
961 	regmap_reg_range(0x4923, 0x4927),
962 	regmap_reg_range(0x4a00, 0x4a03),
963 	regmap_reg_range(0x4a04, 0x4a07),
964 	regmap_reg_range(0x4b00, 0x4b01),
965 	regmap_reg_range(0x4b04, 0x4b04),
966 	regmap_reg_range(0x4c00, 0x4c05),
967 	regmap_reg_range(0x4c08, 0x4c1b),
968 
969 	/* port 5 */
970 	regmap_reg_range(0x5000, 0x5001),
971 	regmap_reg_range(0x5013, 0x5013),
972 	regmap_reg_range(0x5017, 0x5017),
973 	regmap_reg_range(0x501b, 0x501b),
974 	regmap_reg_range(0x501f, 0x5020),
975 	regmap_reg_range(0x5030, 0x5030),
976 	regmap_reg_range(0x5100, 0x5115),
977 	regmap_reg_range(0x511a, 0x511f),
978 	regmap_reg_range(0x5120, 0x512b),
979 	regmap_reg_range(0x5134, 0x513b),
980 	regmap_reg_range(0x513c, 0x513f),
981 	regmap_reg_range(0x5400, 0x5401),
982 	regmap_reg_range(0x5403, 0x5403),
983 	regmap_reg_range(0x5410, 0x5417),
984 	regmap_reg_range(0x5420, 0x5423),
985 	regmap_reg_range(0x5500, 0x5507),
986 	regmap_reg_range(0x5600, 0x5613),
987 	regmap_reg_range(0x5800, 0x580f),
988 	regmap_reg_range(0x5820, 0x5827),
989 	regmap_reg_range(0x5830, 0x5837),
990 	regmap_reg_range(0x5840, 0x584b),
991 	regmap_reg_range(0x5900, 0x5907),
992 	regmap_reg_range(0x5914, 0x591b),
993 	regmap_reg_range(0x5920, 0x5920),
994 	regmap_reg_range(0x5923, 0x5927),
995 	regmap_reg_range(0x5a00, 0x5a03),
996 	regmap_reg_range(0x5a04, 0x5a07),
997 	regmap_reg_range(0x5b00, 0x5b01),
998 	regmap_reg_range(0x5b04, 0x5b04),
999 	regmap_reg_range(0x5c00, 0x5c05),
1000 	regmap_reg_range(0x5c08, 0x5c1b),
1001 
1002 	/* port 6 */
1003 	regmap_reg_range(0x6000, 0x6001),
1004 	regmap_reg_range(0x6013, 0x6013),
1005 	regmap_reg_range(0x6017, 0x6017),
1006 	regmap_reg_range(0x601b, 0x601b),
1007 	regmap_reg_range(0x601f, 0x6020),
1008 	regmap_reg_range(0x6030, 0x6030),
1009 	regmap_reg_range(0x6300, 0x6301),
1010 	regmap_reg_range(0x6400, 0x6401),
1011 	regmap_reg_range(0x6403, 0x6403),
1012 	regmap_reg_range(0x6410, 0x6417),
1013 	regmap_reg_range(0x6420, 0x6423),
1014 	regmap_reg_range(0x6500, 0x6507),
1015 	regmap_reg_range(0x6600, 0x6613),
1016 	regmap_reg_range(0x6800, 0x680f),
1017 	regmap_reg_range(0x6820, 0x6827),
1018 	regmap_reg_range(0x6830, 0x6837),
1019 	regmap_reg_range(0x6840, 0x684b),
1020 	regmap_reg_range(0x6900, 0x6907),
1021 	regmap_reg_range(0x6914, 0x691b),
1022 	regmap_reg_range(0x6920, 0x6920),
1023 	regmap_reg_range(0x6923, 0x6927),
1024 	regmap_reg_range(0x6a00, 0x6a03),
1025 	regmap_reg_range(0x6a04, 0x6a07),
1026 	regmap_reg_range(0x6b00, 0x6b01),
1027 	regmap_reg_range(0x6b04, 0x6b04),
1028 	regmap_reg_range(0x6c00, 0x6c05),
1029 	regmap_reg_range(0x6c08, 0x6c1b),
1030 
1031 	/* port 7 */
1032 	regmap_reg_range(0x7000, 0x7001),
1033 	regmap_reg_range(0x7013, 0x7013),
1034 	regmap_reg_range(0x7017, 0x7017),
1035 	regmap_reg_range(0x701b, 0x701b),
1036 	regmap_reg_range(0x701f, 0x7020),
1037 	regmap_reg_range(0x7030, 0x7030),
1038 	regmap_reg_range(0x7200, 0x7203),
1039 	regmap_reg_range(0x7206, 0x7207),
1040 	regmap_reg_range(0x7300, 0x7301),
1041 	regmap_reg_range(0x7400, 0x7401),
1042 	regmap_reg_range(0x7403, 0x7403),
1043 	regmap_reg_range(0x7410, 0x7417),
1044 	regmap_reg_range(0x7420, 0x7423),
1045 	regmap_reg_range(0x7500, 0x7507),
1046 	regmap_reg_range(0x7600, 0x7613),
1047 	regmap_reg_range(0x7800, 0x780f),
1048 	regmap_reg_range(0x7820, 0x7827),
1049 	regmap_reg_range(0x7830, 0x7837),
1050 	regmap_reg_range(0x7840, 0x784b),
1051 	regmap_reg_range(0x7900, 0x7907),
1052 	regmap_reg_range(0x7914, 0x791b),
1053 	regmap_reg_range(0x7920, 0x7920),
1054 	regmap_reg_range(0x7923, 0x7927),
1055 	regmap_reg_range(0x7a00, 0x7a03),
1056 	regmap_reg_range(0x7a04, 0x7a07),
1057 	regmap_reg_range(0x7b00, 0x7b01),
1058 	regmap_reg_range(0x7b04, 0x7b04),
1059 	regmap_reg_range(0x7c00, 0x7c05),
1060 	regmap_reg_range(0x7c08, 0x7c1b),
1061 };
1062 
1063 static const struct regmap_access_table ksz9477_register_set = {
1064 	.yes_ranges = ksz9477_valid_regs,
1065 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1066 };
1067 
1068 static const struct regmap_range ksz9896_valid_regs[] = {
1069 	regmap_reg_range(0x0000, 0x0003),
1070 	regmap_reg_range(0x0006, 0x0006),
1071 	regmap_reg_range(0x0010, 0x001f),
1072 	regmap_reg_range(0x0100, 0x0100),
1073 	regmap_reg_range(0x0103, 0x0107),
1074 	regmap_reg_range(0x010d, 0x010d),
1075 	regmap_reg_range(0x0110, 0x0113),
1076 	regmap_reg_range(0x0120, 0x0127),
1077 	regmap_reg_range(0x0201, 0x0201),
1078 	regmap_reg_range(0x0210, 0x0213),
1079 	regmap_reg_range(0x0300, 0x0300),
1080 	regmap_reg_range(0x0302, 0x030b),
1081 	regmap_reg_range(0x0310, 0x031b),
1082 	regmap_reg_range(0x0320, 0x032b),
1083 	regmap_reg_range(0x0330, 0x0336),
1084 	regmap_reg_range(0x0338, 0x033b),
1085 	regmap_reg_range(0x033e, 0x033e),
1086 	regmap_reg_range(0x0340, 0x035f),
1087 	regmap_reg_range(0x0370, 0x0370),
1088 	regmap_reg_range(0x0378, 0x0378),
1089 	regmap_reg_range(0x037c, 0x037d),
1090 	regmap_reg_range(0x0390, 0x0393),
1091 	regmap_reg_range(0x0400, 0x040e),
1092 	regmap_reg_range(0x0410, 0x042f),
1093 
1094 	/* port 1 */
1095 	regmap_reg_range(0x1000, 0x1001),
1096 	regmap_reg_range(0x1013, 0x1013),
1097 	regmap_reg_range(0x1017, 0x1017),
1098 	regmap_reg_range(0x101b, 0x101b),
1099 	regmap_reg_range(0x101f, 0x1020),
1100 	regmap_reg_range(0x1030, 0x1030),
1101 	regmap_reg_range(0x1100, 0x1115),
1102 	regmap_reg_range(0x111a, 0x111f),
1103 	regmap_reg_range(0x1122, 0x1127),
1104 	regmap_reg_range(0x112a, 0x112b),
1105 	regmap_reg_range(0x1136, 0x1139),
1106 	regmap_reg_range(0x113e, 0x113f),
1107 	regmap_reg_range(0x1400, 0x1401),
1108 	regmap_reg_range(0x1403, 0x1403),
1109 	regmap_reg_range(0x1410, 0x1417),
1110 	regmap_reg_range(0x1420, 0x1423),
1111 	regmap_reg_range(0x1500, 0x1507),
1112 	regmap_reg_range(0x1600, 0x1612),
1113 	regmap_reg_range(0x1800, 0x180f),
1114 	regmap_reg_range(0x1820, 0x1827),
1115 	regmap_reg_range(0x1830, 0x1837),
1116 	regmap_reg_range(0x1840, 0x184b),
1117 	regmap_reg_range(0x1900, 0x1907),
1118 	regmap_reg_range(0x1914, 0x1915),
1119 	regmap_reg_range(0x1a00, 0x1a03),
1120 	regmap_reg_range(0x1a04, 0x1a07),
1121 	regmap_reg_range(0x1b00, 0x1b01),
1122 	regmap_reg_range(0x1b04, 0x1b04),
1123 
1124 	/* port 2 */
1125 	regmap_reg_range(0x2000, 0x2001),
1126 	regmap_reg_range(0x2013, 0x2013),
1127 	regmap_reg_range(0x2017, 0x2017),
1128 	regmap_reg_range(0x201b, 0x201b),
1129 	regmap_reg_range(0x201f, 0x2020),
1130 	regmap_reg_range(0x2030, 0x2030),
1131 	regmap_reg_range(0x2100, 0x2115),
1132 	regmap_reg_range(0x211a, 0x211f),
1133 	regmap_reg_range(0x2122, 0x2127),
1134 	regmap_reg_range(0x212a, 0x212b),
1135 	regmap_reg_range(0x2136, 0x2139),
1136 	regmap_reg_range(0x213e, 0x213f),
1137 	regmap_reg_range(0x2400, 0x2401),
1138 	regmap_reg_range(0x2403, 0x2403),
1139 	regmap_reg_range(0x2410, 0x2417),
1140 	regmap_reg_range(0x2420, 0x2423),
1141 	regmap_reg_range(0x2500, 0x2507),
1142 	regmap_reg_range(0x2600, 0x2612),
1143 	regmap_reg_range(0x2800, 0x280f),
1144 	regmap_reg_range(0x2820, 0x2827),
1145 	regmap_reg_range(0x2830, 0x2837),
1146 	regmap_reg_range(0x2840, 0x284b),
1147 	regmap_reg_range(0x2900, 0x2907),
1148 	regmap_reg_range(0x2914, 0x2915),
1149 	regmap_reg_range(0x2a00, 0x2a03),
1150 	regmap_reg_range(0x2a04, 0x2a07),
1151 	regmap_reg_range(0x2b00, 0x2b01),
1152 	regmap_reg_range(0x2b04, 0x2b04),
1153 
1154 	/* port 3 */
1155 	regmap_reg_range(0x3000, 0x3001),
1156 	regmap_reg_range(0x3013, 0x3013),
1157 	regmap_reg_range(0x3017, 0x3017),
1158 	regmap_reg_range(0x301b, 0x301b),
1159 	regmap_reg_range(0x301f, 0x3020),
1160 	regmap_reg_range(0x3030, 0x3030),
1161 	regmap_reg_range(0x3100, 0x3115),
1162 	regmap_reg_range(0x311a, 0x311f),
1163 	regmap_reg_range(0x3122, 0x3127),
1164 	regmap_reg_range(0x312a, 0x312b),
1165 	regmap_reg_range(0x3136, 0x3139),
1166 	regmap_reg_range(0x313e, 0x313f),
1167 	regmap_reg_range(0x3400, 0x3401),
1168 	regmap_reg_range(0x3403, 0x3403),
1169 	regmap_reg_range(0x3410, 0x3417),
1170 	regmap_reg_range(0x3420, 0x3423),
1171 	regmap_reg_range(0x3500, 0x3507),
1172 	regmap_reg_range(0x3600, 0x3612),
1173 	regmap_reg_range(0x3800, 0x380f),
1174 	regmap_reg_range(0x3820, 0x3827),
1175 	regmap_reg_range(0x3830, 0x3837),
1176 	regmap_reg_range(0x3840, 0x384b),
1177 	regmap_reg_range(0x3900, 0x3907),
1178 	regmap_reg_range(0x3914, 0x3915),
1179 	regmap_reg_range(0x3a00, 0x3a03),
1180 	regmap_reg_range(0x3a04, 0x3a07),
1181 	regmap_reg_range(0x3b00, 0x3b01),
1182 	regmap_reg_range(0x3b04, 0x3b04),
1183 
1184 	/* port 4 */
1185 	regmap_reg_range(0x4000, 0x4001),
1186 	regmap_reg_range(0x4013, 0x4013),
1187 	regmap_reg_range(0x4017, 0x4017),
1188 	regmap_reg_range(0x401b, 0x401b),
1189 	regmap_reg_range(0x401f, 0x4020),
1190 	regmap_reg_range(0x4030, 0x4030),
1191 	regmap_reg_range(0x4100, 0x4115),
1192 	regmap_reg_range(0x411a, 0x411f),
1193 	regmap_reg_range(0x4122, 0x4127),
1194 	regmap_reg_range(0x412a, 0x412b),
1195 	regmap_reg_range(0x4136, 0x4139),
1196 	regmap_reg_range(0x413e, 0x413f),
1197 	regmap_reg_range(0x4400, 0x4401),
1198 	regmap_reg_range(0x4403, 0x4403),
1199 	regmap_reg_range(0x4410, 0x4417),
1200 	regmap_reg_range(0x4420, 0x4423),
1201 	regmap_reg_range(0x4500, 0x4507),
1202 	regmap_reg_range(0x4600, 0x4612),
1203 	regmap_reg_range(0x4800, 0x480f),
1204 	regmap_reg_range(0x4820, 0x4827),
1205 	regmap_reg_range(0x4830, 0x4837),
1206 	regmap_reg_range(0x4840, 0x484b),
1207 	regmap_reg_range(0x4900, 0x4907),
1208 	regmap_reg_range(0x4914, 0x4915),
1209 	regmap_reg_range(0x4a00, 0x4a03),
1210 	regmap_reg_range(0x4a04, 0x4a07),
1211 	regmap_reg_range(0x4b00, 0x4b01),
1212 	regmap_reg_range(0x4b04, 0x4b04),
1213 
1214 	/* port 5 */
1215 	regmap_reg_range(0x5000, 0x5001),
1216 	regmap_reg_range(0x5013, 0x5013),
1217 	regmap_reg_range(0x5017, 0x5017),
1218 	regmap_reg_range(0x501b, 0x501b),
1219 	regmap_reg_range(0x501f, 0x5020),
1220 	regmap_reg_range(0x5030, 0x5030),
1221 	regmap_reg_range(0x5100, 0x5115),
1222 	regmap_reg_range(0x511a, 0x511f),
1223 	regmap_reg_range(0x5122, 0x5127),
1224 	regmap_reg_range(0x512a, 0x512b),
1225 	regmap_reg_range(0x5136, 0x5139),
1226 	regmap_reg_range(0x513e, 0x513f),
1227 	regmap_reg_range(0x5400, 0x5401),
1228 	regmap_reg_range(0x5403, 0x5403),
1229 	regmap_reg_range(0x5410, 0x5417),
1230 	regmap_reg_range(0x5420, 0x5423),
1231 	regmap_reg_range(0x5500, 0x5507),
1232 	regmap_reg_range(0x5600, 0x5612),
1233 	regmap_reg_range(0x5800, 0x580f),
1234 	regmap_reg_range(0x5820, 0x5827),
1235 	regmap_reg_range(0x5830, 0x5837),
1236 	regmap_reg_range(0x5840, 0x584b),
1237 	regmap_reg_range(0x5900, 0x5907),
1238 	regmap_reg_range(0x5914, 0x5915),
1239 	regmap_reg_range(0x5a00, 0x5a03),
1240 	regmap_reg_range(0x5a04, 0x5a07),
1241 	regmap_reg_range(0x5b00, 0x5b01),
1242 	regmap_reg_range(0x5b04, 0x5b04),
1243 
1244 	/* port 6 */
1245 	regmap_reg_range(0x6000, 0x6001),
1246 	regmap_reg_range(0x6013, 0x6013),
1247 	regmap_reg_range(0x6017, 0x6017),
1248 	regmap_reg_range(0x601b, 0x601b),
1249 	regmap_reg_range(0x601f, 0x6020),
1250 	regmap_reg_range(0x6030, 0x6030),
1251 	regmap_reg_range(0x6100, 0x6115),
1252 	regmap_reg_range(0x611a, 0x611f),
1253 	regmap_reg_range(0x6122, 0x6127),
1254 	regmap_reg_range(0x612a, 0x612b),
1255 	regmap_reg_range(0x6136, 0x6139),
1256 	regmap_reg_range(0x613e, 0x613f),
1257 	regmap_reg_range(0x6300, 0x6301),
1258 	regmap_reg_range(0x6400, 0x6401),
1259 	regmap_reg_range(0x6403, 0x6403),
1260 	regmap_reg_range(0x6410, 0x6417),
1261 	regmap_reg_range(0x6420, 0x6423),
1262 	regmap_reg_range(0x6500, 0x6507),
1263 	regmap_reg_range(0x6600, 0x6612),
1264 	regmap_reg_range(0x6800, 0x680f),
1265 	regmap_reg_range(0x6820, 0x6827),
1266 	regmap_reg_range(0x6830, 0x6837),
1267 	regmap_reg_range(0x6840, 0x684b),
1268 	regmap_reg_range(0x6900, 0x6907),
1269 	regmap_reg_range(0x6914, 0x6915),
1270 	regmap_reg_range(0x6a00, 0x6a03),
1271 	regmap_reg_range(0x6a04, 0x6a07),
1272 	regmap_reg_range(0x6b00, 0x6b01),
1273 	regmap_reg_range(0x6b04, 0x6b04),
1274 };
1275 
1276 static const struct regmap_access_table ksz9896_register_set = {
1277 	.yes_ranges = ksz9896_valid_regs,
1278 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1279 };
1280 
1281 static const struct regmap_range ksz8873_valid_regs[] = {
1282 	regmap_reg_range(0x00, 0x01),
1283 	/* global control register */
1284 	regmap_reg_range(0x02, 0x0f),
1285 
1286 	/* port registers */
1287 	regmap_reg_range(0x10, 0x1d),
1288 	regmap_reg_range(0x1e, 0x1f),
1289 	regmap_reg_range(0x20, 0x2d),
1290 	regmap_reg_range(0x2e, 0x2f),
1291 	regmap_reg_range(0x30, 0x39),
1292 	regmap_reg_range(0x3f, 0x3f),
1293 
1294 	/* advanced control registers */
1295 	regmap_reg_range(0x60, 0x6f),
1296 	regmap_reg_range(0x70, 0x75),
1297 	regmap_reg_range(0x76, 0x78),
1298 	regmap_reg_range(0x79, 0x7a),
1299 	regmap_reg_range(0x7b, 0x83),
1300 	regmap_reg_range(0x8e, 0x99),
1301 	regmap_reg_range(0x9a, 0xa5),
1302 	regmap_reg_range(0xa6, 0xa6),
1303 	regmap_reg_range(0xa7, 0xaa),
1304 	regmap_reg_range(0xab, 0xae),
1305 	regmap_reg_range(0xaf, 0xba),
1306 	regmap_reg_range(0xbb, 0xbc),
1307 	regmap_reg_range(0xbd, 0xbd),
1308 	regmap_reg_range(0xc0, 0xc0),
1309 	regmap_reg_range(0xc2, 0xc2),
1310 	regmap_reg_range(0xc3, 0xc3),
1311 	regmap_reg_range(0xc4, 0xc4),
1312 	regmap_reg_range(0xc6, 0xc6),
1313 };
1314 
1315 static const struct regmap_access_table ksz8873_register_set = {
1316 	.yes_ranges = ksz8873_valid_regs,
1317 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1318 };
1319 
1320 const struct ksz_chip_data ksz_switch_chips[] = {
1321 	[KSZ8563] = {
1322 		.chip_id = KSZ8563_CHIP_ID,
1323 		.dev_name = "KSZ8563",
1324 		.num_vlans = 4096,
1325 		.num_alus = 4096,
1326 		.num_statics = 16,
1327 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1328 		.port_cnt = 3,		/* total port count */
1329 		.port_nirqs = 3,
1330 		.num_tx_queues = 4,
1331 		.num_ipms = 8,
1332 		.tc_cbs_supported = true,
1333 		.ops = &ksz9477_dev_ops,
1334 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1335 		.mib_names = ksz9477_mib_names,
1336 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1337 		.reg_mib_cnt = MIB_COUNTER_NUM,
1338 		.regs = ksz9477_regs,
1339 		.masks = ksz9477_masks,
1340 		.shifts = ksz9477_shifts,
1341 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1342 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1343 		.supports_mii = {false, false, true},
1344 		.supports_rmii = {false, false, true},
1345 		.supports_rgmii = {false, false, true},
1346 		.internal_phy = {true, true, false},
1347 		.gbit_capable = {false, false, true},
1348 		.wr_table = &ksz8563_register_set,
1349 		.rd_table = &ksz8563_register_set,
1350 	},
1351 
1352 	[KSZ8795] = {
1353 		.chip_id = KSZ8795_CHIP_ID,
1354 		.dev_name = "KSZ8795",
1355 		.num_vlans = 4096,
1356 		.num_alus = 0,
1357 		.num_statics = 32,
1358 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1359 		.port_cnt = 5,		/* total cpu and user ports */
1360 		.num_tx_queues = 4,
1361 		.num_ipms = 4,
1362 		.ops = &ksz87xx_dev_ops,
1363 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1364 		.ksz87xx_eee_link_erratum = true,
1365 		.mib_names = ksz9477_mib_names,
1366 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1367 		.reg_mib_cnt = MIB_COUNTER_NUM,
1368 		.regs = ksz8795_regs,
1369 		.masks = ksz8795_masks,
1370 		.shifts = ksz8795_shifts,
1371 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1372 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1373 		.supports_mii = {false, false, false, false, true},
1374 		.supports_rmii = {false, false, false, false, true},
1375 		.supports_rgmii = {false, false, false, false, true},
1376 		.internal_phy = {true, true, true, true, false},
1377 	},
1378 
1379 	[KSZ8794] = {
1380 		/* WARNING
1381 		 * =======
1382 		 * KSZ8794 is similar to KSZ8795, except the port map
1383 		 * contains a gap between external and CPU ports, the
1384 		 * port map is NOT continuous. The per-port register
1385 		 * map is shifted accordingly too, i.e. registers at
1386 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1387 		 * used on KSZ8795 for external port 3.
1388 		 *           external  cpu
1389 		 * KSZ8794   0,1,2      4
1390 		 * KSZ8795   0,1,2,3    4
1391 		 * KSZ8765   0,1,2,3    4
1392 		 * port_cnt is configured as 5, even though it is 4
1393 		 */
1394 		.chip_id = KSZ8794_CHIP_ID,
1395 		.dev_name = "KSZ8794",
1396 		.num_vlans = 4096,
1397 		.num_alus = 0,
1398 		.num_statics = 32,
1399 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1400 		.port_cnt = 5,		/* total cpu and user ports */
1401 		.num_tx_queues = 4,
1402 		.num_ipms = 4,
1403 		.ops = &ksz87xx_dev_ops,
1404 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1405 		.ksz87xx_eee_link_erratum = true,
1406 		.mib_names = ksz9477_mib_names,
1407 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1408 		.reg_mib_cnt = MIB_COUNTER_NUM,
1409 		.regs = ksz8795_regs,
1410 		.masks = ksz8795_masks,
1411 		.shifts = ksz8795_shifts,
1412 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1413 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1414 		.supports_mii = {false, false, false, false, true},
1415 		.supports_rmii = {false, false, false, false, true},
1416 		.supports_rgmii = {false, false, false, false, true},
1417 		.internal_phy = {true, true, true, false, false},
1418 	},
1419 
1420 	[KSZ8765] = {
1421 		.chip_id = KSZ8765_CHIP_ID,
1422 		.dev_name = "KSZ8765",
1423 		.num_vlans = 4096,
1424 		.num_alus = 0,
1425 		.num_statics = 32,
1426 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1427 		.port_cnt = 5,		/* total cpu and user ports */
1428 		.num_tx_queues = 4,
1429 		.num_ipms = 4,
1430 		.ops = &ksz87xx_dev_ops,
1431 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1432 		.ksz87xx_eee_link_erratum = true,
1433 		.mib_names = ksz9477_mib_names,
1434 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1435 		.reg_mib_cnt = MIB_COUNTER_NUM,
1436 		.regs = ksz8795_regs,
1437 		.masks = ksz8795_masks,
1438 		.shifts = ksz8795_shifts,
1439 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1440 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1441 		.supports_mii = {false, false, false, false, true},
1442 		.supports_rmii = {false, false, false, false, true},
1443 		.supports_rgmii = {false, false, false, false, true},
1444 		.internal_phy = {true, true, true, true, false},
1445 	},
1446 
1447 	[KSZ88X3] = {
1448 		.chip_id = KSZ88X3_CHIP_ID,
1449 		.dev_name = "KSZ8863/KSZ8873",
1450 		.num_vlans = 16,
1451 		.num_alus = 0,
1452 		.num_statics = 8,
1453 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1454 		.port_cnt = 3,
1455 		.num_tx_queues = 4,
1456 		.num_ipms = 4,
1457 		.ops = &ksz88xx_dev_ops,
1458 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1459 		.mib_names = ksz88xx_mib_names,
1460 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1461 		.reg_mib_cnt = MIB_COUNTER_NUM,
1462 		.regs = ksz8863_regs,
1463 		.masks = ksz8863_masks,
1464 		.shifts = ksz8863_shifts,
1465 		.supports_mii = {false, false, true},
1466 		.supports_rmii = {false, false, true},
1467 		.internal_phy = {true, true, false},
1468 		.wr_table = &ksz8873_register_set,
1469 		.rd_table = &ksz8873_register_set,
1470 	},
1471 
1472 	[KSZ8864] = {
1473 		/* WARNING
1474 		 * =======
1475 		 * KSZ8864 is similar to KSZ8895, except the first port
1476 		 * does not exist.
1477 		 *           external  cpu
1478 		 * KSZ8864   1,2,3      4
1479 		 * KSZ8895   0,1,2,3    4
1480 		 * port_cnt is configured as 5, even though it is 4
1481 		 */
1482 		.chip_id = KSZ8864_CHIP_ID,
1483 		.dev_name = "KSZ8864",
1484 		.num_vlans = 4096,
1485 		.num_alus = 0,
1486 		.num_statics = 32,
1487 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1488 		.port_cnt = 5,		/* total cpu and user ports */
1489 		.num_tx_queues = 4,
1490 		.num_ipms = 4,
1491 		.ops = &ksz88xx_dev_ops,
1492 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1493 		.mib_names = ksz88xx_mib_names,
1494 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1495 		.reg_mib_cnt = MIB_COUNTER_NUM,
1496 		.regs = ksz8895_regs,
1497 		.masks = ksz8895_masks,
1498 		.shifts = ksz8895_shifts,
1499 		.supports_mii = {false, false, false, false, true},
1500 		.supports_rmii = {false, false, false, false, true},
1501 		.internal_phy = {false, true, true, true, false},
1502 	},
1503 
1504 	[KSZ8895] = {
1505 		.chip_id = KSZ8895_CHIP_ID,
1506 		.dev_name = "KSZ8895",
1507 		.num_vlans = 4096,
1508 		.num_alus = 0,
1509 		.num_statics = 32,
1510 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1511 		.port_cnt = 5,		/* total cpu and user ports */
1512 		.num_tx_queues = 4,
1513 		.num_ipms = 4,
1514 		.ops = &ksz88xx_dev_ops,
1515 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1516 		.mib_names = ksz88xx_mib_names,
1517 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1518 		.reg_mib_cnt = MIB_COUNTER_NUM,
1519 		.regs = ksz8895_regs,
1520 		.masks = ksz8895_masks,
1521 		.shifts = ksz8895_shifts,
1522 		.supports_mii = {false, false, false, false, true},
1523 		.supports_rmii = {false, false, false, false, true},
1524 		.internal_phy = {true, true, true, true, false},
1525 	},
1526 
1527 	[KSZ9477] = {
1528 		.chip_id = KSZ9477_CHIP_ID,
1529 		.dev_name = "KSZ9477",
1530 		.num_vlans = 4096,
1531 		.num_alus = 4096,
1532 		.num_statics = 16,
1533 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1534 		.port_cnt = 7,		/* total physical port count */
1535 		.port_nirqs = 4,
1536 		.num_tx_queues = 4,
1537 		.num_ipms = 8,
1538 		.tc_cbs_supported = true,
1539 		.ops = &ksz9477_dev_ops,
1540 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1541 		.phy_errata_9477 = true,
1542 		.mib_names = ksz9477_mib_names,
1543 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1544 		.reg_mib_cnt = MIB_COUNTER_NUM,
1545 		.regs = ksz9477_regs,
1546 		.masks = ksz9477_masks,
1547 		.shifts = ksz9477_shifts,
1548 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1549 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1550 		.supports_mii	= {false, false, false, false,
1551 				   false, true, false},
1552 		.supports_rmii	= {false, false, false, false,
1553 				   false, true, false},
1554 		.supports_rgmii = {false, false, false, false,
1555 				   false, true, false},
1556 		.internal_phy	= {true, true, true, true,
1557 				   true, false, false},
1558 		.gbit_capable	= {true, true, true, true, true, true, true},
1559 		.wr_table = &ksz9477_register_set,
1560 		.rd_table = &ksz9477_register_set,
1561 	},
1562 
1563 	[KSZ9896] = {
1564 		.chip_id = KSZ9896_CHIP_ID,
1565 		.dev_name = "KSZ9896",
1566 		.num_vlans = 4096,
1567 		.num_alus = 4096,
1568 		.num_statics = 16,
1569 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1570 		.port_cnt = 6,		/* total physical port count */
1571 		.port_nirqs = 2,
1572 		.num_tx_queues = 4,
1573 		.num_ipms = 8,
1574 		.ops = &ksz9477_dev_ops,
1575 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1576 		.phy_errata_9477 = true,
1577 		.mib_names = ksz9477_mib_names,
1578 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1579 		.reg_mib_cnt = MIB_COUNTER_NUM,
1580 		.regs = ksz9477_regs,
1581 		.masks = ksz9477_masks,
1582 		.shifts = ksz9477_shifts,
1583 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1584 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1585 		.supports_mii	= {false, false, false, false,
1586 				   false, true},
1587 		.supports_rmii	= {false, false, false, false,
1588 				   false, true},
1589 		.supports_rgmii = {false, false, false, false,
1590 				   false, true},
1591 		.internal_phy	= {true, true, true, true,
1592 				   true, false},
1593 		.gbit_capable	= {true, true, true, true, true, true},
1594 		.wr_table = &ksz9896_register_set,
1595 		.rd_table = &ksz9896_register_set,
1596 	},
1597 
1598 	[KSZ9897] = {
1599 		.chip_id = KSZ9897_CHIP_ID,
1600 		.dev_name = "KSZ9897",
1601 		.num_vlans = 4096,
1602 		.num_alus = 4096,
1603 		.num_statics = 16,
1604 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1605 		.port_cnt = 7,		/* total physical port count */
1606 		.port_nirqs = 2,
1607 		.num_tx_queues = 4,
1608 		.num_ipms = 8,
1609 		.ops = &ksz9477_dev_ops,
1610 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1611 		.phy_errata_9477 = true,
1612 		.mib_names = ksz9477_mib_names,
1613 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1614 		.reg_mib_cnt = MIB_COUNTER_NUM,
1615 		.regs = ksz9477_regs,
1616 		.masks = ksz9477_masks,
1617 		.shifts = ksz9477_shifts,
1618 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1619 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1620 		.supports_mii	= {false, false, false, false,
1621 				   false, true, true},
1622 		.supports_rmii	= {false, false, false, false,
1623 				   false, true, true},
1624 		.supports_rgmii = {false, false, false, false,
1625 				   false, true, true},
1626 		.internal_phy	= {true, true, true, true,
1627 				   true, false, false},
1628 		.gbit_capable	= {true, true, true, true, true, true, true},
1629 	},
1630 
1631 	[KSZ9893] = {
1632 		.chip_id = KSZ9893_CHIP_ID,
1633 		.dev_name = "KSZ9893",
1634 		.num_vlans = 4096,
1635 		.num_alus = 4096,
1636 		.num_statics = 16,
1637 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1638 		.port_cnt = 3,		/* total port count */
1639 		.port_nirqs = 2,
1640 		.num_tx_queues = 4,
1641 		.num_ipms = 8,
1642 		.ops = &ksz9477_dev_ops,
1643 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1644 		.mib_names = ksz9477_mib_names,
1645 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1646 		.reg_mib_cnt = MIB_COUNTER_NUM,
1647 		.regs = ksz9477_regs,
1648 		.masks = ksz9477_masks,
1649 		.shifts = ksz9477_shifts,
1650 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1651 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1652 		.supports_mii = {false, false, true},
1653 		.supports_rmii = {false, false, true},
1654 		.supports_rgmii = {false, false, true},
1655 		.internal_phy = {true, true, false},
1656 		.gbit_capable = {true, true, true},
1657 	},
1658 
1659 	[KSZ9563] = {
1660 		.chip_id = KSZ9563_CHIP_ID,
1661 		.dev_name = "KSZ9563",
1662 		.num_vlans = 4096,
1663 		.num_alus = 4096,
1664 		.num_statics = 16,
1665 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1666 		.port_cnt = 3,		/* total port count */
1667 		.port_nirqs = 3,
1668 		.num_tx_queues = 4,
1669 		.num_ipms = 8,
1670 		.tc_cbs_supported = true,
1671 		.ops = &ksz9477_dev_ops,
1672 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1673 		.mib_names = ksz9477_mib_names,
1674 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1675 		.reg_mib_cnt = MIB_COUNTER_NUM,
1676 		.regs = ksz9477_regs,
1677 		.masks = ksz9477_masks,
1678 		.shifts = ksz9477_shifts,
1679 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1680 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1681 		.supports_mii = {false, false, true},
1682 		.supports_rmii = {false, false, true},
1683 		.supports_rgmii = {false, false, true},
1684 		.internal_phy = {true, true, false},
1685 		.gbit_capable = {true, true, true},
1686 	},
1687 
1688 	[KSZ8567] = {
1689 		.chip_id = KSZ8567_CHIP_ID,
1690 		.dev_name = "KSZ8567",
1691 		.num_vlans = 4096,
1692 		.num_alus = 4096,
1693 		.num_statics = 16,
1694 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1695 		.port_cnt = 7,		/* total port count */
1696 		.port_nirqs = 3,
1697 		.num_tx_queues = 4,
1698 		.num_ipms = 8,
1699 		.tc_cbs_supported = true,
1700 		.ops = &ksz9477_dev_ops,
1701 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1702 		.phy_errata_9477 = true,
1703 		.mib_names = ksz9477_mib_names,
1704 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1705 		.reg_mib_cnt = MIB_COUNTER_NUM,
1706 		.regs = ksz9477_regs,
1707 		.masks = ksz9477_masks,
1708 		.shifts = ksz9477_shifts,
1709 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1710 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1711 		.supports_mii	= {false, false, false, false,
1712 				   false, true, true},
1713 		.supports_rmii	= {false, false, false, false,
1714 				   false, true, true},
1715 		.supports_rgmii = {false, false, false, false,
1716 				   false, true, true},
1717 		.internal_phy	= {true, true, true, true,
1718 				   true, false, false},
1719 		.gbit_capable	= {false, false, false, false, false,
1720 				   true, true},
1721 	},
1722 
1723 	[KSZ9567] = {
1724 		.chip_id = KSZ9567_CHIP_ID,
1725 		.dev_name = "KSZ9567",
1726 		.num_vlans = 4096,
1727 		.num_alus = 4096,
1728 		.num_statics = 16,
1729 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1730 		.port_cnt = 7,		/* total physical port count */
1731 		.port_nirqs = 3,
1732 		.num_tx_queues = 4,
1733 		.num_ipms = 8,
1734 		.tc_cbs_supported = true,
1735 		.ops = &ksz9477_dev_ops,
1736 		.mib_names = ksz9477_mib_names,
1737 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1738 		.reg_mib_cnt = MIB_COUNTER_NUM,
1739 		.regs = ksz9477_regs,
1740 		.masks = ksz9477_masks,
1741 		.shifts = ksz9477_shifts,
1742 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1743 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1744 		.supports_mii	= {false, false, false, false,
1745 				   false, true, true},
1746 		.supports_rmii	= {false, false, false, false,
1747 				   false, true, true},
1748 		.supports_rgmii = {false, false, false, false,
1749 				   false, true, true},
1750 		.internal_phy	= {true, true, true, true,
1751 				   true, false, false},
1752 		.gbit_capable	= {true, true, true, true, true, true, true},
1753 	},
1754 
1755 	[LAN9370] = {
1756 		.chip_id = LAN9370_CHIP_ID,
1757 		.dev_name = "LAN9370",
1758 		.num_vlans = 4096,
1759 		.num_alus = 1024,
1760 		.num_statics = 256,
1761 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1762 		.port_cnt = 5,		/* total physical port count */
1763 		.port_nirqs = 6,
1764 		.num_tx_queues = 8,
1765 		.num_ipms = 8,
1766 		.tc_cbs_supported = true,
1767 		.phy_side_mdio_supported = true,
1768 		.ops = &lan937x_dev_ops,
1769 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1770 		.mib_names = ksz9477_mib_names,
1771 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1772 		.reg_mib_cnt = MIB_COUNTER_NUM,
1773 		.regs = ksz9477_regs,
1774 		.masks = lan937x_masks,
1775 		.shifts = lan937x_shifts,
1776 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1777 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1778 		.supports_mii = {false, false, false, false, true},
1779 		.supports_rmii = {false, false, false, false, true},
1780 		.supports_rgmii = {false, false, false, false, true},
1781 		.internal_phy = {true, true, true, true, false},
1782 	},
1783 
1784 	[LAN9371] = {
1785 		.chip_id = LAN9371_CHIP_ID,
1786 		.dev_name = "LAN9371",
1787 		.num_vlans = 4096,
1788 		.num_alus = 1024,
1789 		.num_statics = 256,
1790 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1791 		.port_cnt = 6,		/* total physical port count */
1792 		.port_nirqs = 6,
1793 		.num_tx_queues = 8,
1794 		.num_ipms = 8,
1795 		.tc_cbs_supported = true,
1796 		.phy_side_mdio_supported = true,
1797 		.ops = &lan937x_dev_ops,
1798 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1799 		.mib_names = ksz9477_mib_names,
1800 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1801 		.reg_mib_cnt = MIB_COUNTER_NUM,
1802 		.regs = ksz9477_regs,
1803 		.masks = lan937x_masks,
1804 		.shifts = lan937x_shifts,
1805 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1806 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1807 		.supports_mii = {false, false, false, false, true, true},
1808 		.supports_rmii = {false, false, false, false, true, true},
1809 		.supports_rgmii = {false, false, false, false, true, true},
1810 		.internal_phy = {true, true, true, true, false, false},
1811 	},
1812 
1813 	[LAN9372] = {
1814 		.chip_id = LAN9372_CHIP_ID,
1815 		.dev_name = "LAN9372",
1816 		.num_vlans = 4096,
1817 		.num_alus = 1024,
1818 		.num_statics = 256,
1819 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1820 		.port_cnt = 8,		/* total physical port count */
1821 		.port_nirqs = 6,
1822 		.num_tx_queues = 8,
1823 		.num_ipms = 8,
1824 		.tc_cbs_supported = true,
1825 		.phy_side_mdio_supported = true,
1826 		.ops = &lan937x_dev_ops,
1827 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1828 		.mib_names = ksz9477_mib_names,
1829 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1830 		.reg_mib_cnt = MIB_COUNTER_NUM,
1831 		.regs = ksz9477_regs,
1832 		.masks = lan937x_masks,
1833 		.shifts = lan937x_shifts,
1834 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1835 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1836 		.supports_mii	= {false, false, false, false,
1837 				   true, true, false, false},
1838 		.supports_rmii	= {false, false, false, false,
1839 				   true, true, false, false},
1840 		.supports_rgmii = {false, false, false, false,
1841 				   true, true, false, false},
1842 		.internal_phy	= {true, true, true, true,
1843 				   false, false, true, true},
1844 	},
1845 
1846 	[LAN9373] = {
1847 		.chip_id = LAN9373_CHIP_ID,
1848 		.dev_name = "LAN9373",
1849 		.num_vlans = 4096,
1850 		.num_alus = 1024,
1851 		.num_statics = 256,
1852 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1853 		.port_cnt = 5,		/* total physical port count */
1854 		.port_nirqs = 6,
1855 		.num_tx_queues = 8,
1856 		.num_ipms = 8,
1857 		.tc_cbs_supported = true,
1858 		.phy_side_mdio_supported = true,
1859 		.ops = &lan937x_dev_ops,
1860 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1861 		.mib_names = ksz9477_mib_names,
1862 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1863 		.reg_mib_cnt = MIB_COUNTER_NUM,
1864 		.regs = ksz9477_regs,
1865 		.masks = lan937x_masks,
1866 		.shifts = lan937x_shifts,
1867 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1868 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1869 		.supports_mii	= {false, false, false, false,
1870 				   true, true, false, false},
1871 		.supports_rmii	= {false, false, false, false,
1872 				   true, true, false, false},
1873 		.supports_rgmii = {false, false, false, false,
1874 				   true, true, false, false},
1875 		.internal_phy	= {true, true, true, false,
1876 				   false, false, true, true},
1877 	},
1878 
1879 	[LAN9374] = {
1880 		.chip_id = LAN9374_CHIP_ID,
1881 		.dev_name = "LAN9374",
1882 		.num_vlans = 4096,
1883 		.num_alus = 1024,
1884 		.num_statics = 256,
1885 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1886 		.port_cnt = 8,		/* total physical port count */
1887 		.port_nirqs = 6,
1888 		.num_tx_queues = 8,
1889 		.num_ipms = 8,
1890 		.tc_cbs_supported = true,
1891 		.phy_side_mdio_supported = true,
1892 		.ops = &lan937x_dev_ops,
1893 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1894 		.mib_names = ksz9477_mib_names,
1895 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1896 		.reg_mib_cnt = MIB_COUNTER_NUM,
1897 		.regs = ksz9477_regs,
1898 		.masks = lan937x_masks,
1899 		.shifts = lan937x_shifts,
1900 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1901 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1902 		.supports_mii	= {false, false, false, false,
1903 				   true, true, false, false},
1904 		.supports_rmii	= {false, false, false, false,
1905 				   true, true, false, false},
1906 		.supports_rgmii = {false, false, false, false,
1907 				   true, true, false, false},
1908 		.internal_phy	= {true, true, true, true,
1909 				   false, false, true, true},
1910 	},
1911 };
1912 EXPORT_SYMBOL_GPL(ksz_switch_chips);
1913 
1914 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1915 {
1916 	int i;
1917 
1918 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1919 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1920 
1921 		if (chip->chip_id == prod_num)
1922 			return chip;
1923 	}
1924 
1925 	return NULL;
1926 }
1927 
1928 static int ksz_check_device_id(struct ksz_device *dev)
1929 {
1930 	const struct ksz_chip_data *expected_chip_data;
1931 	u32 expected_chip_id;
1932 
1933 	if (dev->pdata) {
1934 		expected_chip_id = dev->pdata->chip_id;
1935 		expected_chip_data = ksz_lookup_info(expected_chip_id);
1936 		if (WARN_ON(!expected_chip_data))
1937 			return -ENODEV;
1938 	} else {
1939 		expected_chip_data = of_device_get_match_data(dev->dev);
1940 		expected_chip_id = expected_chip_data->chip_id;
1941 	}
1942 
1943 	if (expected_chip_id != dev->chip_id) {
1944 		dev_err(dev->dev,
1945 			"Device tree specifies chip %s but found %s, please fix it!\n",
1946 			expected_chip_data->dev_name, dev->info->dev_name);
1947 		return -ENODEV;
1948 	}
1949 
1950 	return 0;
1951 }
1952 
1953 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1954 				 struct phylink_config *config)
1955 {
1956 	struct ksz_device *dev = ds->priv;
1957 
1958 	if (dev->info->supports_mii[port])
1959 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1960 
1961 	if (dev->info->supports_rmii[port])
1962 		__set_bit(PHY_INTERFACE_MODE_RMII,
1963 			  config->supported_interfaces);
1964 
1965 	if (dev->info->supports_rgmii[port])
1966 		phy_interface_set_rgmii(config->supported_interfaces);
1967 
1968 	if (dev->info->internal_phy[port]) {
1969 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1970 			  config->supported_interfaces);
1971 		/* Compatibility for phylib's default interface type when the
1972 		 * phy-mode property is absent
1973 		 */
1974 		__set_bit(PHY_INTERFACE_MODE_GMII,
1975 			  config->supported_interfaces);
1976 	}
1977 
1978 	if (dev->dev_ops->get_caps)
1979 		dev->dev_ops->get_caps(dev, port, config);
1980 }
1981 
1982 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
1983 {
1984 	struct ethtool_pause_stats *pstats;
1985 	struct rtnl_link_stats64 *stats;
1986 	struct ksz_stats_raw *raw;
1987 	struct ksz_port_mib *mib;
1988 	int ret;
1989 
1990 	mib = &dev->ports[port].mib;
1991 	stats = &mib->stats64;
1992 	pstats = &mib->pause_stats;
1993 	raw = (struct ksz_stats_raw *)mib->counters;
1994 
1995 	spin_lock(&mib->stats64_lock);
1996 
1997 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1998 		raw->rx_pause;
1999 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2000 		raw->tx_pause;
2001 
2002 	/* HW counters are counting bytes + FCS which is not acceptable
2003 	 * for rtnl_link_stats64 interface
2004 	 */
2005 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
2006 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
2007 
2008 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2009 		raw->rx_oversize;
2010 
2011 	stats->rx_crc_errors = raw->rx_crc_err;
2012 	stats->rx_frame_errors = raw->rx_align_err;
2013 	stats->rx_dropped = raw->rx_discards;
2014 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2015 		stats->rx_frame_errors  + stats->rx_dropped;
2016 
2017 	stats->tx_window_errors = raw->tx_late_col;
2018 	stats->tx_fifo_errors = raw->tx_discards;
2019 	stats->tx_aborted_errors = raw->tx_exc_col;
2020 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2021 		stats->tx_aborted_errors;
2022 
2023 	stats->multicast = raw->rx_mcast;
2024 	stats->collisions = raw->tx_total_col;
2025 
2026 	pstats->tx_pause_frames = raw->tx_pause;
2027 	pstats->rx_pause_frames = raw->rx_pause;
2028 
2029 	spin_unlock(&mib->stats64_lock);
2030 
2031 	if (dev->info->phy_errata_9477) {
2032 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
2033 		if (ret)
2034 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
2035 	}
2036 }
2037 
2038 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
2039 {
2040 	struct ethtool_pause_stats *pstats;
2041 	struct rtnl_link_stats64 *stats;
2042 	struct ksz88xx_stats_raw *raw;
2043 	struct ksz_port_mib *mib;
2044 
2045 	mib = &dev->ports[port].mib;
2046 	stats = &mib->stats64;
2047 	pstats = &mib->pause_stats;
2048 	raw = (struct ksz88xx_stats_raw *)mib->counters;
2049 
2050 	spin_lock(&mib->stats64_lock);
2051 
2052 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2053 		raw->rx_pause;
2054 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2055 		raw->tx_pause;
2056 
2057 	/* HW counters are counting bytes + FCS which is not acceptable
2058 	 * for rtnl_link_stats64 interface
2059 	 */
2060 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
2061 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
2062 
2063 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2064 		raw->rx_oversize;
2065 
2066 	stats->rx_crc_errors = raw->rx_crc_err;
2067 	stats->rx_frame_errors = raw->rx_align_err;
2068 	stats->rx_dropped = raw->rx_discards;
2069 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2070 		stats->rx_frame_errors  + stats->rx_dropped;
2071 
2072 	stats->tx_window_errors = raw->tx_late_col;
2073 	stats->tx_fifo_errors = raw->tx_discards;
2074 	stats->tx_aborted_errors = raw->tx_exc_col;
2075 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2076 		stats->tx_aborted_errors;
2077 
2078 	stats->multicast = raw->rx_mcast;
2079 	stats->collisions = raw->tx_total_col;
2080 
2081 	pstats->tx_pause_frames = raw->tx_pause;
2082 	pstats->rx_pause_frames = raw->rx_pause;
2083 
2084 	spin_unlock(&mib->stats64_lock);
2085 }
2086 
2087 static void ksz_get_stats64(struct dsa_switch *ds, int port,
2088 			    struct rtnl_link_stats64 *s)
2089 {
2090 	struct ksz_device *dev = ds->priv;
2091 	struct ksz_port_mib *mib;
2092 
2093 	mib = &dev->ports[port].mib;
2094 
2095 	spin_lock(&mib->stats64_lock);
2096 	memcpy(s, &mib->stats64, sizeof(*s));
2097 	spin_unlock(&mib->stats64_lock);
2098 }
2099 
2100 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
2101 				struct ethtool_pause_stats *pause_stats)
2102 {
2103 	struct ksz_device *dev = ds->priv;
2104 	struct ksz_port_mib *mib;
2105 
2106 	mib = &dev->ports[port].mib;
2107 
2108 	spin_lock(&mib->stats64_lock);
2109 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
2110 	spin_unlock(&mib->stats64_lock);
2111 }
2112 
2113 static void ksz_get_strings(struct dsa_switch *ds, int port,
2114 			    u32 stringset, uint8_t *buf)
2115 {
2116 	struct ksz_device *dev = ds->priv;
2117 	int i;
2118 
2119 	if (stringset != ETH_SS_STATS)
2120 		return;
2121 
2122 	for (i = 0; i < dev->info->mib_cnt; i++)
2123 		ethtool_puts(&buf, dev->info->mib_names[i].string);
2124 }
2125 
2126 /**
2127  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2128  *			    isolation settings.
2129  * @dev: A pointer to the struct ksz_device representing the device.
2130  * @port: The port number to adjust.
2131  *
2132  * This function dynamically adjusts the port membership configuration for a
2133  * specified port and other device ports, based on Spanning Tree Protocol (STP)
2134  * states and port isolation settings. Each port, including the CPU port, has a
2135  * membership register, represented as a bitfield, where each bit corresponds
2136  * to a port number. A set bit indicates permission to forward frames to that
2137  * port. This function iterates over all ports, updating the membership register
2138  * to reflect current forwarding permissions:
2139  *
2140  * 1. Forwards frames only to ports that are part of the same bridge group and
2141  *    in the BR_STATE_FORWARDING state.
2142  * 2. Takes into account the isolation status of ports; ports in the
2143  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2144  *    frames to each other, even if they are in the same bridge group.
2145  * 3. Ensures that the CPU port is included in the membership based on its
2146  *    upstream port configuration, allowing for management and control traffic
2147  *    to flow as required.
2148  */
2149 static void ksz_update_port_member(struct ksz_device *dev, int port)
2150 {
2151 	struct ksz_port *p = &dev->ports[port];
2152 	struct dsa_switch *ds = dev->ds;
2153 	u8 port_member = 0, cpu_port;
2154 	const struct dsa_port *dp;
2155 	int i, j;
2156 
2157 	if (!dsa_is_user_port(ds, port))
2158 		return;
2159 
2160 	dp = dsa_to_port(ds, port);
2161 	cpu_port = BIT(dsa_upstream_port(ds, port));
2162 
2163 	for (i = 0; i < ds->num_ports; i++) {
2164 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2165 		struct ksz_port *other_p = &dev->ports[i];
2166 		u8 val = 0;
2167 
2168 		if (!dsa_is_user_port(ds, i))
2169 			continue;
2170 		if (port == i)
2171 			continue;
2172 		if (!dsa_port_bridge_same(dp, other_dp))
2173 			continue;
2174 		if (other_p->stp_state != BR_STATE_FORWARDING)
2175 			continue;
2176 
2177 		/* At this point we know that "port" and "other" port [i] are in
2178 		 * the same bridge group and that "other" port [i] is in
2179 		 * forwarding stp state. If "port" is also in forwarding stp
2180 		 * state, we can allow forwarding from port [port] to port [i].
2181 		 * Except if both ports are isolated.
2182 		 */
2183 		if (p->stp_state == BR_STATE_FORWARDING &&
2184 		    !(p->isolated && other_p->isolated)) {
2185 			val |= BIT(port);
2186 			port_member |= BIT(i);
2187 		}
2188 
2189 		/* Retain port [i]'s relationship to other ports than [port] */
2190 		for (j = 0; j < ds->num_ports; j++) {
2191 			const struct dsa_port *third_dp;
2192 			struct ksz_port *third_p;
2193 
2194 			if (j == i)
2195 				continue;
2196 			if (j == port)
2197 				continue;
2198 			if (!dsa_is_user_port(ds, j))
2199 				continue;
2200 			third_p = &dev->ports[j];
2201 			if (third_p->stp_state != BR_STATE_FORWARDING)
2202 				continue;
2203 
2204 			third_dp = dsa_to_port(ds, j);
2205 
2206 			/* Now we updating relation of the "other" port [i] to
2207 			 * the "third" port [j]. We already know that "other"
2208 			 * port [i] is in forwarding stp state and that "third"
2209 			 * port [j] is in forwarding stp state too.
2210 			 * We need to check if "other" port [i] and "third" port
2211 			 * [j] are in the same bridge group and not isolated
2212 			 * before allowing forwarding from port [i] to port [j].
2213 			 */
2214 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2215 			    !(other_p->isolated && third_p->isolated))
2216 				val |= BIT(j);
2217 		}
2218 
2219 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2220 	}
2221 
2222 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2223 }
2224 
2225 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2226 {
2227 	struct ksz_device *dev = bus->priv;
2228 	u16 val;
2229 	int ret;
2230 
2231 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2232 	if (ret < 0)
2233 		return ret;
2234 
2235 	return val;
2236 }
2237 
2238 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2239 			     u16 val)
2240 {
2241 	struct ksz_device *dev = bus->priv;
2242 
2243 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2244 }
2245 
2246 /**
2247  * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus.
2248  * @bus: MDIO bus structure.
2249  * @addr: PHY address on the parent MDIO bus.
2250  * @regnum: Register number to read.
2251  *
2252  * This function provides a direct read operation on the parent MDIO bus for
2253  * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus
2254  * to retrieve data from the PHY registers at the specified address and register
2255  * number.
2256  *
2257  * Return: Value of the PHY register, or a negative error code on failure.
2258  */
2259 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum)
2260 {
2261 	struct ksz_device *dev = bus->priv;
2262 
2263 	return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum);
2264 }
2265 
2266 /**
2267  * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus.
2268  * @bus: MDIO bus structure.
2269  * @addr: PHY address on the parent MDIO bus.
2270  * @regnum: Register number to write to.
2271  * @val: Value to write to the PHY register.
2272  *
2273  * This function provides a direct write operation on the parent MDIO bus for
2274  * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus
2275  * to modify the PHY register values at the specified address.
2276  *
2277  * Return: 0 on success, or a negative error code on failure.
2278  */
2279 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum,
2280 				 u16 val)
2281 {
2282 	struct ksz_device *dev = bus->priv;
2283 
2284 	return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val);
2285 }
2286 
2287 /**
2288  * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port.
2289  * @dev: Pointer to device structure.
2290  * @addr: PHY address to map to a port.
2291  *
2292  * This function finds the corresponding switch port for a given PHY address by
2293  * iterating over all user ports on the device. It checks if a port's PHY
2294  * address in `phy_addr_map` matches the specified address and if the port
2295  * contains an internal PHY. If a match is found, the index of the port is
2296  * returned.
2297  *
2298  * Return: Port index on success, or -EINVAL if no matching port is found.
2299  */
2300 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr)
2301 {
2302 	struct dsa_switch *ds = dev->ds;
2303 	struct dsa_port *dp;
2304 
2305 	dsa_switch_for_each_user_port(dp, ds) {
2306 		if (dev->info->internal_phy[dp->index] &&
2307 		    dev->phy_addr_map[dp->index] == addr)
2308 			return dp->index;
2309 	}
2310 
2311 	return -EINVAL;
2312 }
2313 
2314 /**
2315  * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device.
2316  * @dev: Pointer to the KSZ device structure.
2317  *
2318  * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the
2319  * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in
2320  * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain.
2321  *
2322  * Return: 0 on success, or a negative error code on failure.
2323  */
2324 static int ksz_irq_phy_setup(struct ksz_device *dev)
2325 {
2326 	struct dsa_switch *ds = dev->ds;
2327 	int phy, port;
2328 	int irq;
2329 	int ret;
2330 
2331 	for (phy = 0; phy < PHY_MAX_ADDR; phy++) {
2332 		if (BIT(phy) & ds->phys_mii_mask) {
2333 			port = ksz_phy_addr_to_port(dev, phy);
2334 			if (port < 0) {
2335 				ret = port;
2336 				goto out;
2337 			}
2338 
2339 			irq = irq_find_mapping(dev->ports[port].pirq.domain,
2340 					       PORT_SRC_PHY_INT);
2341 			if (irq < 0) {
2342 				ret = irq;
2343 				goto out;
2344 			}
2345 			ds->user_mii_bus->irq[phy] = irq;
2346 		}
2347 	}
2348 	return 0;
2349 out:
2350 	while (phy--)
2351 		if (BIT(phy) & ds->phys_mii_mask)
2352 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2353 
2354 	return ret;
2355 }
2356 
2357 /**
2358  * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device.
2359  * @dev: Pointer to the KSZ device structure.
2360  *
2361  * Releases any IRQ mappings previously assigned to active PHYs in the KSZ
2362  * switch by disposing of each mapped IRQ in the `user_mii_bus` structure.
2363  */
2364 static void ksz_irq_phy_free(struct ksz_device *dev)
2365 {
2366 	struct dsa_switch *ds = dev->ds;
2367 	int phy;
2368 
2369 	for (phy = 0; phy < PHY_MAX_ADDR; phy++)
2370 		if (BIT(phy) & ds->phys_mii_mask)
2371 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2372 }
2373 
2374 /**
2375  * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT
2376  * @dev: pointer to the KSZ device structure
2377  * @bus: pointer to the MII bus structure
2378  * @mdio_np: pointer to the MDIO node in the device tree
2379  *
2380  * This function parses and validates PHY configurations for each user port
2381  * defined in the device tree for a KSZ switch device. It verifies that the
2382  * `phy-handle` properties are correctly set and that the internal PHYs match
2383  * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if
2384  * all validations pass. Logs error messages for any mismatches or missing data.
2385  *
2386  * Return: 0 on success, or a negative error code on failure.
2387  */
2388 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus,
2389 				   struct device_node *mdio_np)
2390 {
2391 	struct device_node *phy_node, *phy_parent_node;
2392 	bool phys_are_valid = true;
2393 	struct dsa_port *dp;
2394 	u32 phy_addr;
2395 	int ret;
2396 
2397 	dsa_switch_for_each_user_port(dp, dev->ds) {
2398 		if (!dev->info->internal_phy[dp->index])
2399 			continue;
2400 
2401 		phy_node = of_parse_phandle(dp->dn, "phy-handle", 0);
2402 		if (!phy_node) {
2403 			dev_err(dev->dev, "failed to parse phy-handle for port %d.\n",
2404 				dp->index);
2405 			phys_are_valid = false;
2406 			continue;
2407 		}
2408 
2409 		phy_parent_node = of_get_parent(phy_node);
2410 		if (!phy_parent_node) {
2411 			dev_err(dev->dev, "failed to get PHY-parent node for port %d\n",
2412 				dp->index);
2413 			phys_are_valid = false;
2414 		} else if (phy_parent_node != mdio_np) {
2415 			dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n",
2416 				dp->index, mdio_np, phy_parent_node);
2417 			phys_are_valid = false;
2418 		} else {
2419 			ret = of_property_read_u32(phy_node, "reg", &phy_addr);
2420 			if (ret < 0) {
2421 				dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n",
2422 					dp->index, ret);
2423 				phys_are_valid = false;
2424 			} else if (phy_addr != dev->phy_addr_map[dp->index]) {
2425 				dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n",
2426 					dp->index, dev->phy_addr_map[dp->index],
2427 					phy_addr);
2428 				phys_are_valid = false;
2429 			} else {
2430 				bus->phy_mask |= BIT(phy_addr);
2431 			}
2432 		}
2433 
2434 		of_node_put(phy_node);
2435 		of_node_put(phy_parent_node);
2436 	}
2437 
2438 	if (!phys_are_valid)
2439 		return -EINVAL;
2440 
2441 	return 0;
2442 }
2443 
2444 /**
2445  * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device.
2446  * @dev: Pointer to the KSZ device structure.
2447  *
2448  * This function sets up and registers an MDIO bus for the KSZ switch device,
2449  * allowing access to its internal PHYs. If the device supports side MDIO,
2450  * the function will configure the external MDIO controller specified by the
2451  * "mdio-parent-bus" device tree property to directly manage internal PHYs.
2452  * Otherwise, SPI or I2C access is set up for PHY access.
2453  *
2454  * Return: 0 on success, or a negative error code on failure.
2455  */
2456 static int ksz_mdio_register(struct ksz_device *dev)
2457 {
2458 	struct device_node *parent_bus_node;
2459 	struct mii_bus *parent_bus = NULL;
2460 	struct dsa_switch *ds = dev->ds;
2461 	struct device_node *mdio_np;
2462 	struct mii_bus *bus;
2463 	int ret, i;
2464 
2465 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2466 	if (!mdio_np)
2467 		return 0;
2468 
2469 	parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0);
2470 	if (parent_bus_node && !dev->info->phy_side_mdio_supported) {
2471 		dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n");
2472 		ret = -EINVAL;
2473 
2474 		goto put_mdio_node;
2475 	} else if (parent_bus_node) {
2476 		parent_bus = of_mdio_find_bus(parent_bus_node);
2477 		if (!parent_bus) {
2478 			ret = -EPROBE_DEFER;
2479 
2480 			goto put_mdio_node;
2481 		}
2482 
2483 		dev->parent_mdio_bus = parent_bus;
2484 	}
2485 
2486 	bus = devm_mdiobus_alloc(ds->dev);
2487 	if (!bus) {
2488 		ret = -ENOMEM;
2489 		goto put_mdio_node;
2490 	}
2491 
2492 	if (dev->dev_ops->mdio_bus_preinit) {
2493 		ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus);
2494 		if (ret)
2495 			goto put_mdio_node;
2496 	}
2497 
2498 	if (dev->dev_ops->create_phy_addr_map) {
2499 		ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus);
2500 		if (ret)
2501 			goto put_mdio_node;
2502 	} else {
2503 		for (i = 0; i < dev->info->port_cnt; i++)
2504 			dev->phy_addr_map[i] = i;
2505 	}
2506 
2507 	bus->priv = dev;
2508 	if (parent_bus) {
2509 		bus->read = ksz_parent_mdio_read;
2510 		bus->write = ksz_parent_mdio_write;
2511 		bus->name = "KSZ side MDIO";
2512 		snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d",
2513 			 ds->index);
2514 	} else {
2515 		bus->read = ksz_sw_mdio_read;
2516 		bus->write = ksz_sw_mdio_write;
2517 		bus->name = "ksz user smi";
2518 		snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2519 	}
2520 
2521 	ret = ksz_parse_dt_phy_config(dev, bus, mdio_np);
2522 	if (ret)
2523 		goto put_mdio_node;
2524 
2525 	ds->phys_mii_mask = bus->phy_mask;
2526 	bus->parent = ds->dev;
2527 
2528 	ds->user_mii_bus = bus;
2529 
2530 	if (dev->irq > 0) {
2531 		ret = ksz_irq_phy_setup(dev);
2532 		if (ret)
2533 			goto put_mdio_node;
2534 	}
2535 
2536 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2537 	if (ret) {
2538 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2539 			bus->id);
2540 		if (dev->irq > 0)
2541 			ksz_irq_phy_free(dev);
2542 	}
2543 
2544 put_mdio_node:
2545 	of_node_put(mdio_np);
2546 	of_node_put(parent_bus_node);
2547 
2548 	return ret;
2549 }
2550 
2551 static void ksz_irq_mask(struct irq_data *d)
2552 {
2553 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2554 
2555 	kirq->masked |= BIT(d->hwirq);
2556 }
2557 
2558 static void ksz_irq_unmask(struct irq_data *d)
2559 {
2560 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2561 
2562 	kirq->masked &= ~BIT(d->hwirq);
2563 }
2564 
2565 static void ksz_irq_bus_lock(struct irq_data *d)
2566 {
2567 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2568 
2569 	mutex_lock(&kirq->dev->lock_irq);
2570 }
2571 
2572 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2573 {
2574 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2575 	struct ksz_device *dev = kirq->dev;
2576 	int ret;
2577 
2578 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2579 	if (ret)
2580 		dev_err(dev->dev, "failed to change IRQ mask\n");
2581 
2582 	mutex_unlock(&dev->lock_irq);
2583 }
2584 
2585 static const struct irq_chip ksz_irq_chip = {
2586 	.name			= "ksz-irq",
2587 	.irq_mask		= ksz_irq_mask,
2588 	.irq_unmask		= ksz_irq_unmask,
2589 	.irq_bus_lock		= ksz_irq_bus_lock,
2590 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2591 };
2592 
2593 static int ksz_irq_domain_map(struct irq_domain *d,
2594 			      unsigned int irq, irq_hw_number_t hwirq)
2595 {
2596 	irq_set_chip_data(irq, d->host_data);
2597 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2598 	irq_set_noprobe(irq);
2599 
2600 	return 0;
2601 }
2602 
2603 static const struct irq_domain_ops ksz_irq_domain_ops = {
2604 	.map	= ksz_irq_domain_map,
2605 	.xlate	= irq_domain_xlate_twocell,
2606 };
2607 
2608 static void ksz_irq_free(struct ksz_irq *kirq)
2609 {
2610 	int irq, virq;
2611 
2612 	free_irq(kirq->irq_num, kirq);
2613 
2614 	for (irq = 0; irq < kirq->nirqs; irq++) {
2615 		virq = irq_find_mapping(kirq->domain, irq);
2616 		irq_dispose_mapping(virq);
2617 	}
2618 
2619 	irq_domain_remove(kirq->domain);
2620 }
2621 
2622 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2623 {
2624 	struct ksz_irq *kirq = dev_id;
2625 	unsigned int nhandled = 0;
2626 	struct ksz_device *dev;
2627 	unsigned int sub_irq;
2628 	u8 data;
2629 	int ret;
2630 	u8 n;
2631 
2632 	dev = kirq->dev;
2633 
2634 	/* Read interrupt status register */
2635 	ret = ksz_read8(dev, kirq->reg_status, &data);
2636 	if (ret)
2637 		goto out;
2638 
2639 	for (n = 0; n < kirq->nirqs; ++n) {
2640 		if (data & BIT(n)) {
2641 			sub_irq = irq_find_mapping(kirq->domain, n);
2642 			handle_nested_irq(sub_irq);
2643 			++nhandled;
2644 		}
2645 	}
2646 out:
2647 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2648 }
2649 
2650 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2651 {
2652 	int ret, n;
2653 
2654 	kirq->dev = dev;
2655 	kirq->masked = ~0;
2656 
2657 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2658 					     &ksz_irq_domain_ops, kirq);
2659 	if (!kirq->domain)
2660 		return -ENOMEM;
2661 
2662 	for (n = 0; n < kirq->nirqs; n++)
2663 		irq_create_mapping(kirq->domain, n);
2664 
2665 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2666 				   IRQF_ONESHOT, kirq->name, kirq);
2667 	if (ret)
2668 		goto out;
2669 
2670 	return 0;
2671 
2672 out:
2673 	ksz_irq_free(kirq);
2674 
2675 	return ret;
2676 }
2677 
2678 static int ksz_girq_setup(struct ksz_device *dev)
2679 {
2680 	struct ksz_irq *girq = &dev->girq;
2681 
2682 	girq->nirqs = dev->info->port_cnt;
2683 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2684 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2685 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2686 
2687 	girq->irq_num = dev->irq;
2688 
2689 	return ksz_irq_common_setup(dev, girq);
2690 }
2691 
2692 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2693 {
2694 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2695 
2696 	pirq->nirqs = dev->info->port_nirqs;
2697 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2698 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2699 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2700 
2701 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2702 	if (pirq->irq_num < 0)
2703 		return pirq->irq_num;
2704 
2705 	return ksz_irq_common_setup(dev, pirq);
2706 }
2707 
2708 static int ksz_parse_drive_strength(struct ksz_device *dev);
2709 
2710 static int ksz_setup(struct dsa_switch *ds)
2711 {
2712 	struct ksz_device *dev = ds->priv;
2713 	struct dsa_port *dp;
2714 	struct ksz_port *p;
2715 	const u16 *regs;
2716 	int ret;
2717 
2718 	regs = dev->info->regs;
2719 
2720 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2721 				       dev->info->num_vlans, GFP_KERNEL);
2722 	if (!dev->vlan_cache)
2723 		return -ENOMEM;
2724 
2725 	ret = dev->dev_ops->reset(dev);
2726 	if (ret) {
2727 		dev_err(ds->dev, "failed to reset switch\n");
2728 		return ret;
2729 	}
2730 
2731 	ret = ksz_parse_drive_strength(dev);
2732 	if (ret)
2733 		return ret;
2734 
2735 	/* set broadcast storm protection 10% rate */
2736 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2737 			   BROADCAST_STORM_RATE,
2738 			   (BROADCAST_STORM_VALUE *
2739 			   BROADCAST_STORM_PROT_RATE) / 100);
2740 
2741 	dev->dev_ops->config_cpu_port(ds);
2742 
2743 	dev->dev_ops->enable_stp_addr(dev);
2744 
2745 	ds->num_tx_queues = dev->info->num_tx_queues;
2746 
2747 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2748 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2749 
2750 	ksz_init_mib_timer(dev);
2751 
2752 	ds->configure_vlan_while_not_filtering = false;
2753 	ds->dscp_prio_mapping_is_global = true;
2754 
2755 	if (dev->dev_ops->setup) {
2756 		ret = dev->dev_ops->setup(ds);
2757 		if (ret)
2758 			return ret;
2759 	}
2760 
2761 	/* Start with learning disabled on standalone user ports, and enabled
2762 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2763 	 * CPU port will avoid flooding bridge local addresses on the network
2764 	 * in some cases.
2765 	 */
2766 	p = &dev->ports[dev->cpu_port];
2767 	p->learning = true;
2768 
2769 	if (dev->irq > 0) {
2770 		ret = ksz_girq_setup(dev);
2771 		if (ret)
2772 			return ret;
2773 
2774 		dsa_switch_for_each_user_port(dp, dev->ds) {
2775 			ret = ksz_pirq_setup(dev, dp->index);
2776 			if (ret)
2777 				goto out_girq;
2778 
2779 			ret = ksz_ptp_irq_setup(ds, dp->index);
2780 			if (ret)
2781 				goto out_pirq;
2782 		}
2783 	}
2784 
2785 	ret = ksz_ptp_clock_register(ds);
2786 	if (ret) {
2787 		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2788 		goto out_ptpirq;
2789 	}
2790 
2791 	ret = ksz_mdio_register(dev);
2792 	if (ret < 0) {
2793 		dev_err(dev->dev, "failed to register the mdio");
2794 		goto out_ptp_clock_unregister;
2795 	}
2796 
2797 	ret = ksz_dcb_init(dev);
2798 	if (ret)
2799 		goto out_ptp_clock_unregister;
2800 
2801 	/* start switch */
2802 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2803 			   SW_START, SW_START);
2804 
2805 	return 0;
2806 
2807 out_ptp_clock_unregister:
2808 	ksz_ptp_clock_unregister(ds);
2809 out_ptpirq:
2810 	if (dev->irq > 0)
2811 		dsa_switch_for_each_user_port(dp, dev->ds)
2812 			ksz_ptp_irq_free(ds, dp->index);
2813 out_pirq:
2814 	if (dev->irq > 0)
2815 		dsa_switch_for_each_user_port(dp, dev->ds)
2816 			ksz_irq_free(&dev->ports[dp->index].pirq);
2817 out_girq:
2818 	if (dev->irq > 0)
2819 		ksz_irq_free(&dev->girq);
2820 
2821 	return ret;
2822 }
2823 
2824 static void ksz_teardown(struct dsa_switch *ds)
2825 {
2826 	struct ksz_device *dev = ds->priv;
2827 	struct dsa_port *dp;
2828 
2829 	ksz_ptp_clock_unregister(ds);
2830 
2831 	if (dev->irq > 0) {
2832 		dsa_switch_for_each_user_port(dp, dev->ds) {
2833 			ksz_ptp_irq_free(ds, dp->index);
2834 
2835 			ksz_irq_free(&dev->ports[dp->index].pirq);
2836 		}
2837 
2838 		ksz_irq_free(&dev->girq);
2839 	}
2840 
2841 	if (dev->dev_ops->teardown)
2842 		dev->dev_ops->teardown(ds);
2843 }
2844 
2845 static void port_r_cnt(struct ksz_device *dev, int port)
2846 {
2847 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2848 	u64 *dropped;
2849 
2850 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2851 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2852 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2853 					&mib->counters[mib->cnt_ptr]);
2854 		++mib->cnt_ptr;
2855 	}
2856 
2857 	/* last one in storage */
2858 	dropped = &mib->counters[dev->info->mib_cnt];
2859 
2860 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2861 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2862 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2863 					dropped, &mib->counters[mib->cnt_ptr]);
2864 		++mib->cnt_ptr;
2865 	}
2866 	mib->cnt_ptr = 0;
2867 }
2868 
2869 static void ksz_mib_read_work(struct work_struct *work)
2870 {
2871 	struct ksz_device *dev = container_of(work, struct ksz_device,
2872 					      mib_read.work);
2873 	struct ksz_port_mib *mib;
2874 	struct ksz_port *p;
2875 	int i;
2876 
2877 	for (i = 0; i < dev->info->port_cnt; i++) {
2878 		if (dsa_is_unused_port(dev->ds, i))
2879 			continue;
2880 
2881 		p = &dev->ports[i];
2882 		mib = &p->mib;
2883 		mutex_lock(&mib->cnt_mutex);
2884 
2885 		/* Only read MIB counters when the port is told to do.
2886 		 * If not, read only dropped counters when link is not up.
2887 		 */
2888 		if (!p->read) {
2889 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2890 
2891 			if (!netif_carrier_ok(dp->user))
2892 				mib->cnt_ptr = dev->info->reg_mib_cnt;
2893 		}
2894 		port_r_cnt(dev, i);
2895 		p->read = false;
2896 
2897 		if (dev->dev_ops->r_mib_stat64)
2898 			dev->dev_ops->r_mib_stat64(dev, i);
2899 
2900 		mutex_unlock(&mib->cnt_mutex);
2901 	}
2902 
2903 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2904 }
2905 
2906 void ksz_init_mib_timer(struct ksz_device *dev)
2907 {
2908 	int i;
2909 
2910 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2911 
2912 	for (i = 0; i < dev->info->port_cnt; i++) {
2913 		struct ksz_port_mib *mib = &dev->ports[i].mib;
2914 
2915 		dev->dev_ops->port_init_cnt(dev, i);
2916 
2917 		mib->cnt_ptr = 0;
2918 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2919 	}
2920 }
2921 
2922 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2923 {
2924 	struct ksz_device *dev = ds->priv;
2925 	u16 val = 0xffff;
2926 	int ret;
2927 
2928 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2929 	if (ret)
2930 		return ret;
2931 
2932 	return val;
2933 }
2934 
2935 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2936 {
2937 	struct ksz_device *dev = ds->priv;
2938 	int ret;
2939 
2940 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2941 	if (ret)
2942 		return ret;
2943 
2944 	return 0;
2945 }
2946 
2947 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2948 {
2949 	struct ksz_device *dev = ds->priv;
2950 
2951 	switch (dev->chip_id) {
2952 	case KSZ88X3_CHIP_ID:
2953 		/* Silicon Errata Sheet (DS80000830A):
2954 		 * Port 1 does not work with LinkMD Cable-Testing.
2955 		 * Port 1 does not respond to received PAUSE control frames.
2956 		 */
2957 		if (!port)
2958 			return MICREL_KSZ8_P1_ERRATA;
2959 		break;
2960 	case KSZ8567_CHIP_ID:
2961 		/* KSZ8567R Errata DS80000752C Module 4 */
2962 	case KSZ8765_CHIP_ID:
2963 	case KSZ8794_CHIP_ID:
2964 	case KSZ8795_CHIP_ID:
2965 		/* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */
2966 	case KSZ9477_CHIP_ID:
2967 		/* KSZ9477S Errata DS80000754A Module 4 */
2968 	case KSZ9567_CHIP_ID:
2969 		/* KSZ9567S Errata DS80000756A Module 4 */
2970 	case KSZ9896_CHIP_ID:
2971 		/* KSZ9896C Errata DS80000757A Module 3 */
2972 	case KSZ9897_CHIP_ID:
2973 		/* KSZ9897R Errata DS80000758C Module 4 */
2974 		/* Energy Efficient Ethernet (EEE) feature select must be manually disabled
2975 		 *   The EEE feature is enabled by default, but it is not fully
2976 		 *   operational. It must be manually disabled through register
2977 		 *   controls. If not disabled, the PHY ports can auto-negotiate
2978 		 *   to enable EEE, and this feature can cause link drops when
2979 		 *   linked to another device supporting EEE.
2980 		 *
2981 		 * The same item appears in the errata for all switches above.
2982 		 */
2983 		return MICREL_NO_EEE;
2984 	}
2985 
2986 	return 0;
2987 }
2988 
2989 static void ksz_phylink_mac_link_down(struct phylink_config *config,
2990 				      unsigned int mode,
2991 				      phy_interface_t interface)
2992 {
2993 	struct dsa_port *dp = dsa_phylink_to_port(config);
2994 	struct ksz_device *dev = dp->ds->priv;
2995 
2996 	/* Read all MIB counters when the link is going down. */
2997 	dev->ports[dp->index].read = true;
2998 	/* timer started */
2999 	if (dev->mib_read_interval)
3000 		schedule_delayed_work(&dev->mib_read, 0);
3001 }
3002 
3003 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
3004 {
3005 	struct ksz_device *dev = ds->priv;
3006 
3007 	if (sset != ETH_SS_STATS)
3008 		return 0;
3009 
3010 	return dev->info->mib_cnt;
3011 }
3012 
3013 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
3014 				  uint64_t *buf)
3015 {
3016 	const struct dsa_port *dp = dsa_to_port(ds, port);
3017 	struct ksz_device *dev = ds->priv;
3018 	struct ksz_port_mib *mib;
3019 
3020 	mib = &dev->ports[port].mib;
3021 	mutex_lock(&mib->cnt_mutex);
3022 
3023 	/* Only read dropped counters if no link. */
3024 	if (!netif_carrier_ok(dp->user))
3025 		mib->cnt_ptr = dev->info->reg_mib_cnt;
3026 	port_r_cnt(dev, port);
3027 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
3028 	mutex_unlock(&mib->cnt_mutex);
3029 }
3030 
3031 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
3032 				struct dsa_bridge bridge,
3033 				bool *tx_fwd_offload,
3034 				struct netlink_ext_ack *extack)
3035 {
3036 	/* port_stp_state_set() will be called after to put the port in
3037 	 * appropriate state so there is no need to do anything.
3038 	 */
3039 
3040 	return 0;
3041 }
3042 
3043 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
3044 				  struct dsa_bridge bridge)
3045 {
3046 	/* port_stp_state_set() will be called after to put the port in
3047 	 * forwarding state so there is no need to do anything.
3048 	 */
3049 }
3050 
3051 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
3052 {
3053 	struct ksz_device *dev = ds->priv;
3054 
3055 	dev->dev_ops->flush_dyn_mac_table(dev, port);
3056 }
3057 
3058 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
3059 {
3060 	struct ksz_device *dev = ds->priv;
3061 
3062 	if (!dev->dev_ops->set_ageing_time)
3063 		return -EOPNOTSUPP;
3064 
3065 	return dev->dev_ops->set_ageing_time(dev, msecs);
3066 }
3067 
3068 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
3069 			    const unsigned char *addr, u16 vid,
3070 			    struct dsa_db db)
3071 {
3072 	struct ksz_device *dev = ds->priv;
3073 
3074 	if (!dev->dev_ops->fdb_add)
3075 		return -EOPNOTSUPP;
3076 
3077 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
3078 }
3079 
3080 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
3081 			    const unsigned char *addr,
3082 			    u16 vid, struct dsa_db db)
3083 {
3084 	struct ksz_device *dev = ds->priv;
3085 
3086 	if (!dev->dev_ops->fdb_del)
3087 		return -EOPNOTSUPP;
3088 
3089 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
3090 }
3091 
3092 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
3093 			     dsa_fdb_dump_cb_t *cb, void *data)
3094 {
3095 	struct ksz_device *dev = ds->priv;
3096 
3097 	if (!dev->dev_ops->fdb_dump)
3098 		return -EOPNOTSUPP;
3099 
3100 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
3101 }
3102 
3103 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
3104 			    const struct switchdev_obj_port_mdb *mdb,
3105 			    struct dsa_db db)
3106 {
3107 	struct ksz_device *dev = ds->priv;
3108 
3109 	if (!dev->dev_ops->mdb_add)
3110 		return -EOPNOTSUPP;
3111 
3112 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
3113 }
3114 
3115 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
3116 			    const struct switchdev_obj_port_mdb *mdb,
3117 			    struct dsa_db db)
3118 {
3119 	struct ksz_device *dev = ds->priv;
3120 
3121 	if (!dev->dev_ops->mdb_del)
3122 		return -EOPNOTSUPP;
3123 
3124 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
3125 }
3126 
3127 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
3128 						  int port)
3129 {
3130 	u32 queue_map = 0;
3131 	int ipm;
3132 
3133 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
3134 		int queue;
3135 
3136 		/* Traffic Type (TT) is corresponding to the Internal Priority
3137 		 * Map (IPM) in the switch. Traffic Class (TC) is
3138 		 * corresponding to the queue in the switch.
3139 		 */
3140 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
3141 		if (queue < 0)
3142 			return queue;
3143 
3144 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
3145 	}
3146 
3147 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3148 }
3149 
3150 static int ksz_port_setup(struct dsa_switch *ds, int port)
3151 {
3152 	struct ksz_device *dev = ds->priv;
3153 	int ret;
3154 
3155 	if (!dsa_is_user_port(ds, port))
3156 		return 0;
3157 
3158 	/* setup user port */
3159 	dev->dev_ops->port_setup(dev, port, false);
3160 
3161 	if (!is_ksz8(dev)) {
3162 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
3163 		if (ret)
3164 			return ret;
3165 	}
3166 
3167 	/* port_stp_state_set() will be called after to enable the port so
3168 	 * there is no need to do anything.
3169 	 */
3170 
3171 	return ksz_dcb_init_port(dev, port);
3172 }
3173 
3174 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
3175 {
3176 	struct ksz_device *dev = ds->priv;
3177 	struct ksz_port *p;
3178 	const u16 *regs;
3179 	u8 data;
3180 
3181 	regs = dev->info->regs;
3182 
3183 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
3184 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3185 
3186 	p = &dev->ports[port];
3187 
3188 	switch (state) {
3189 	case BR_STATE_DISABLED:
3190 		data |= PORT_LEARN_DISABLE;
3191 		break;
3192 	case BR_STATE_LISTENING:
3193 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3194 		break;
3195 	case BR_STATE_LEARNING:
3196 		data |= PORT_RX_ENABLE;
3197 		if (!p->learning)
3198 			data |= PORT_LEARN_DISABLE;
3199 		break;
3200 	case BR_STATE_FORWARDING:
3201 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
3202 		if (!p->learning)
3203 			data |= PORT_LEARN_DISABLE;
3204 		break;
3205 	case BR_STATE_BLOCKING:
3206 		data |= PORT_LEARN_DISABLE;
3207 		break;
3208 	default:
3209 		dev_err(ds->dev, "invalid STP state: %d\n", state);
3210 		return;
3211 	}
3212 
3213 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
3214 
3215 	p->stp_state = state;
3216 
3217 	ksz_update_port_member(dev, port);
3218 }
3219 
3220 static void ksz_port_teardown(struct dsa_switch *ds, int port)
3221 {
3222 	struct ksz_device *dev = ds->priv;
3223 
3224 	switch (dev->chip_id) {
3225 	case KSZ8563_CHIP_ID:
3226 	case KSZ8567_CHIP_ID:
3227 	case KSZ9477_CHIP_ID:
3228 	case KSZ9563_CHIP_ID:
3229 	case KSZ9567_CHIP_ID:
3230 	case KSZ9893_CHIP_ID:
3231 	case KSZ9896_CHIP_ID:
3232 	case KSZ9897_CHIP_ID:
3233 		if (dsa_is_user_port(ds, port))
3234 			ksz9477_port_acl_free(dev, port);
3235 	}
3236 }
3237 
3238 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3239 				     struct switchdev_brport_flags flags,
3240 				     struct netlink_ext_ack *extack)
3241 {
3242 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
3243 		return -EINVAL;
3244 
3245 	return 0;
3246 }
3247 
3248 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
3249 				 struct switchdev_brport_flags flags,
3250 				 struct netlink_ext_ack *extack)
3251 {
3252 	struct ksz_device *dev = ds->priv;
3253 	struct ksz_port *p = &dev->ports[port];
3254 
3255 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
3256 		if (flags.mask & BR_LEARNING)
3257 			p->learning = !!(flags.val & BR_LEARNING);
3258 
3259 		if (flags.mask & BR_ISOLATED)
3260 			p->isolated = !!(flags.val & BR_ISOLATED);
3261 
3262 		/* Make the change take effect immediately */
3263 		ksz_port_stp_state_set(ds, port, p->stp_state);
3264 	}
3265 
3266 	return 0;
3267 }
3268 
3269 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
3270 						  int port,
3271 						  enum dsa_tag_protocol mp)
3272 {
3273 	struct ksz_device *dev = ds->priv;
3274 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
3275 
3276 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
3277 		proto = DSA_TAG_PROTO_KSZ8795;
3278 
3279 	if (dev->chip_id == KSZ88X3_CHIP_ID ||
3280 	    dev->chip_id == KSZ8563_CHIP_ID ||
3281 	    dev->chip_id == KSZ9893_CHIP_ID ||
3282 	    dev->chip_id == KSZ9563_CHIP_ID)
3283 		proto = DSA_TAG_PROTO_KSZ9893;
3284 
3285 	if (dev->chip_id == KSZ8567_CHIP_ID ||
3286 	    dev->chip_id == KSZ9477_CHIP_ID ||
3287 	    dev->chip_id == KSZ9896_CHIP_ID ||
3288 	    dev->chip_id == KSZ9897_CHIP_ID ||
3289 	    dev->chip_id == KSZ9567_CHIP_ID)
3290 		proto = DSA_TAG_PROTO_KSZ9477;
3291 
3292 	if (is_lan937x(dev))
3293 		proto = DSA_TAG_PROTO_LAN937X;
3294 
3295 	return proto;
3296 }
3297 
3298 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
3299 				    enum dsa_tag_protocol proto)
3300 {
3301 	struct ksz_tagger_data *tagger_data;
3302 
3303 	switch (proto) {
3304 	case DSA_TAG_PROTO_KSZ8795:
3305 		return 0;
3306 	case DSA_TAG_PROTO_KSZ9893:
3307 	case DSA_TAG_PROTO_KSZ9477:
3308 	case DSA_TAG_PROTO_LAN937X:
3309 		tagger_data = ksz_tagger_data(ds);
3310 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
3311 		return 0;
3312 	default:
3313 		return -EPROTONOSUPPORT;
3314 	}
3315 }
3316 
3317 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
3318 				   bool flag, struct netlink_ext_ack *extack)
3319 {
3320 	struct ksz_device *dev = ds->priv;
3321 
3322 	if (!dev->dev_ops->vlan_filtering)
3323 		return -EOPNOTSUPP;
3324 
3325 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
3326 }
3327 
3328 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
3329 			     const struct switchdev_obj_port_vlan *vlan,
3330 			     struct netlink_ext_ack *extack)
3331 {
3332 	struct ksz_device *dev = ds->priv;
3333 
3334 	if (!dev->dev_ops->vlan_add)
3335 		return -EOPNOTSUPP;
3336 
3337 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
3338 }
3339 
3340 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3341 			     const struct switchdev_obj_port_vlan *vlan)
3342 {
3343 	struct ksz_device *dev = ds->priv;
3344 
3345 	if (!dev->dev_ops->vlan_del)
3346 		return -EOPNOTSUPP;
3347 
3348 	return dev->dev_ops->vlan_del(dev, port, vlan);
3349 }
3350 
3351 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3352 			       struct dsa_mall_mirror_tc_entry *mirror,
3353 			       bool ingress, struct netlink_ext_ack *extack)
3354 {
3355 	struct ksz_device *dev = ds->priv;
3356 
3357 	if (!dev->dev_ops->mirror_add)
3358 		return -EOPNOTSUPP;
3359 
3360 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3361 }
3362 
3363 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3364 				struct dsa_mall_mirror_tc_entry *mirror)
3365 {
3366 	struct ksz_device *dev = ds->priv;
3367 
3368 	if (dev->dev_ops->mirror_del)
3369 		dev->dev_ops->mirror_del(dev, port, mirror);
3370 }
3371 
3372 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3373 {
3374 	struct ksz_device *dev = ds->priv;
3375 
3376 	if (!dev->dev_ops->change_mtu)
3377 		return -EOPNOTSUPP;
3378 
3379 	return dev->dev_ops->change_mtu(dev, port, mtu);
3380 }
3381 
3382 static int ksz_max_mtu(struct dsa_switch *ds, int port)
3383 {
3384 	struct ksz_device *dev = ds->priv;
3385 
3386 	switch (dev->chip_id) {
3387 	case KSZ8795_CHIP_ID:
3388 	case KSZ8794_CHIP_ID:
3389 	case KSZ8765_CHIP_ID:
3390 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3391 	case KSZ88X3_CHIP_ID:
3392 	case KSZ8864_CHIP_ID:
3393 	case KSZ8895_CHIP_ID:
3394 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3395 	case KSZ8563_CHIP_ID:
3396 	case KSZ8567_CHIP_ID:
3397 	case KSZ9477_CHIP_ID:
3398 	case KSZ9563_CHIP_ID:
3399 	case KSZ9567_CHIP_ID:
3400 	case KSZ9893_CHIP_ID:
3401 	case KSZ9896_CHIP_ID:
3402 	case KSZ9897_CHIP_ID:
3403 	case LAN9370_CHIP_ID:
3404 	case LAN9371_CHIP_ID:
3405 	case LAN9372_CHIP_ID:
3406 	case LAN9373_CHIP_ID:
3407 	case LAN9374_CHIP_ID:
3408 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3409 	}
3410 
3411 	return -EOPNOTSUPP;
3412 }
3413 
3414 static int ksz_validate_eee(struct dsa_switch *ds, int port)
3415 {
3416 	struct ksz_device *dev = ds->priv;
3417 
3418 	if (!dev->info->internal_phy[port])
3419 		return -EOPNOTSUPP;
3420 
3421 	switch (dev->chip_id) {
3422 	case KSZ8563_CHIP_ID:
3423 	case KSZ8567_CHIP_ID:
3424 	case KSZ9477_CHIP_ID:
3425 	case KSZ9563_CHIP_ID:
3426 	case KSZ9567_CHIP_ID:
3427 	case KSZ9893_CHIP_ID:
3428 	case KSZ9896_CHIP_ID:
3429 	case KSZ9897_CHIP_ID:
3430 		return 0;
3431 	}
3432 
3433 	return -EOPNOTSUPP;
3434 }
3435 
3436 static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
3437 			   struct ethtool_keee *e)
3438 {
3439 	int ret;
3440 
3441 	ret = ksz_validate_eee(ds, port);
3442 	if (ret)
3443 		return ret;
3444 
3445 	/* There is no documented control of Tx LPI configuration. */
3446 	e->tx_lpi_enabled = true;
3447 
3448 	/* There is no documented control of Tx LPI timer. According to tests
3449 	 * Tx LPI timer seems to be set by default to minimal value.
3450 	 */
3451 	e->tx_lpi_timer = 0;
3452 
3453 	return 0;
3454 }
3455 
3456 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3457 			   struct ethtool_keee *e)
3458 {
3459 	struct ksz_device *dev = ds->priv;
3460 	int ret;
3461 
3462 	ret = ksz_validate_eee(ds, port);
3463 	if (ret)
3464 		return ret;
3465 
3466 	if (!e->tx_lpi_enabled) {
3467 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3468 		return -EINVAL;
3469 	}
3470 
3471 	if (e->tx_lpi_timer) {
3472 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3473 		return -EINVAL;
3474 	}
3475 
3476 	return 0;
3477 }
3478 
3479 static void ksz_set_xmii(struct ksz_device *dev, int port,
3480 			 phy_interface_t interface)
3481 {
3482 	const u8 *bitval = dev->info->xmii_ctrl1;
3483 	struct ksz_port *p = &dev->ports[port];
3484 	const u16 *regs = dev->info->regs;
3485 	u8 data8;
3486 
3487 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3488 
3489 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3490 		   P_RGMII_ID_EG_ENABLE);
3491 
3492 	switch (interface) {
3493 	case PHY_INTERFACE_MODE_MII:
3494 		data8 |= bitval[P_MII_SEL];
3495 		break;
3496 	case PHY_INTERFACE_MODE_RMII:
3497 		data8 |= bitval[P_RMII_SEL];
3498 		break;
3499 	case PHY_INTERFACE_MODE_GMII:
3500 		data8 |= bitval[P_GMII_SEL];
3501 		break;
3502 	case PHY_INTERFACE_MODE_RGMII:
3503 	case PHY_INTERFACE_MODE_RGMII_ID:
3504 	case PHY_INTERFACE_MODE_RGMII_TXID:
3505 	case PHY_INTERFACE_MODE_RGMII_RXID:
3506 		data8 |= bitval[P_RGMII_SEL];
3507 		/* On KSZ9893, disable RGMII in-band status support */
3508 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3509 		    dev->chip_id == KSZ8563_CHIP_ID ||
3510 		    dev->chip_id == KSZ9563_CHIP_ID ||
3511 		    is_lan937x(dev))
3512 			data8 &= ~P_MII_MAC_MODE;
3513 		break;
3514 	default:
3515 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3516 			phy_modes(interface), port);
3517 		return;
3518 	}
3519 
3520 	if (p->rgmii_tx_val)
3521 		data8 |= P_RGMII_ID_EG_ENABLE;
3522 
3523 	if (p->rgmii_rx_val)
3524 		data8 |= P_RGMII_ID_IG_ENABLE;
3525 
3526 	/* Write the updated value */
3527 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3528 }
3529 
3530 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3531 {
3532 	const u8 *bitval = dev->info->xmii_ctrl1;
3533 	const u16 *regs = dev->info->regs;
3534 	phy_interface_t interface;
3535 	u8 data8;
3536 	u8 val;
3537 
3538 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3539 
3540 	val = FIELD_GET(P_MII_SEL_M, data8);
3541 
3542 	if (val == bitval[P_MII_SEL]) {
3543 		if (gbit)
3544 			interface = PHY_INTERFACE_MODE_GMII;
3545 		else
3546 			interface = PHY_INTERFACE_MODE_MII;
3547 	} else if (val == bitval[P_RMII_SEL]) {
3548 		interface = PHY_INTERFACE_MODE_RMII;
3549 	} else {
3550 		interface = PHY_INTERFACE_MODE_RGMII;
3551 		if (data8 & P_RGMII_ID_EG_ENABLE)
3552 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3553 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3554 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3555 			if (data8 & P_RGMII_ID_EG_ENABLE)
3556 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3557 		}
3558 	}
3559 
3560 	return interface;
3561 }
3562 
3563 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
3564 				       unsigned int mode,
3565 				       const struct phylink_link_state *state)
3566 {
3567 	struct dsa_port *dp = dsa_phylink_to_port(config);
3568 	struct ksz_device *dev = dp->ds->priv;
3569 
3570 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3571 }
3572 
3573 static void ksz_phylink_mac_config(struct phylink_config *config,
3574 				   unsigned int mode,
3575 				   const struct phylink_link_state *state)
3576 {
3577 	struct dsa_port *dp = dsa_phylink_to_port(config);
3578 	struct ksz_device *dev = dp->ds->priv;
3579 	int port = dp->index;
3580 
3581 	/* Internal PHYs */
3582 	if (dev->info->internal_phy[port])
3583 		return;
3584 
3585 	if (phylink_autoneg_inband(mode)) {
3586 		dev_err(dev->dev, "In-band AN not supported!\n");
3587 		return;
3588 	}
3589 
3590 	ksz_set_xmii(dev, port, state->interface);
3591 
3592 	if (dev->dev_ops->setup_rgmii_delay)
3593 		dev->dev_ops->setup_rgmii_delay(dev, port);
3594 }
3595 
3596 bool ksz_get_gbit(struct ksz_device *dev, int port)
3597 {
3598 	const u8 *bitval = dev->info->xmii_ctrl1;
3599 	const u16 *regs = dev->info->regs;
3600 	bool gbit = false;
3601 	u8 data8;
3602 	bool val;
3603 
3604 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3605 
3606 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3607 
3608 	if (val == bitval[P_GMII_1GBIT])
3609 		gbit = true;
3610 
3611 	return gbit;
3612 }
3613 
3614 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3615 {
3616 	const u8 *bitval = dev->info->xmii_ctrl1;
3617 	const u16 *regs = dev->info->regs;
3618 	u8 data8;
3619 
3620 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3621 
3622 	data8 &= ~P_GMII_1GBIT_M;
3623 
3624 	if (gbit)
3625 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3626 	else
3627 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3628 
3629 	/* Write the updated value */
3630 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3631 }
3632 
3633 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3634 {
3635 	const u8 *bitval = dev->info->xmii_ctrl0;
3636 	const u16 *regs = dev->info->regs;
3637 	u8 data8;
3638 
3639 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3640 
3641 	data8 &= ~P_MII_100MBIT_M;
3642 
3643 	if (speed == SPEED_100)
3644 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3645 	else
3646 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3647 
3648 	/* Write the updated value */
3649 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3650 }
3651 
3652 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3653 {
3654 	if (speed == SPEED_1000)
3655 		ksz_set_gbit(dev, port, true);
3656 	else
3657 		ksz_set_gbit(dev, port, false);
3658 
3659 	if (speed == SPEED_100 || speed == SPEED_10)
3660 		ksz_set_100_10mbit(dev, port, speed);
3661 }
3662 
3663 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3664 				bool tx_pause, bool rx_pause)
3665 {
3666 	const u8 *bitval = dev->info->xmii_ctrl0;
3667 	const u32 *masks = dev->info->masks;
3668 	const u16 *regs = dev->info->regs;
3669 	u8 mask;
3670 	u8 val;
3671 
3672 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3673 	       masks[P_MII_RX_FLOW_CTRL];
3674 
3675 	if (duplex == DUPLEX_FULL)
3676 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3677 	else
3678 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3679 
3680 	if (tx_pause)
3681 		val |= masks[P_MII_TX_FLOW_CTRL];
3682 
3683 	if (rx_pause)
3684 		val |= masks[P_MII_RX_FLOW_CTRL];
3685 
3686 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3687 }
3688 
3689 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3690 					struct phy_device *phydev,
3691 					unsigned int mode,
3692 					phy_interface_t interface,
3693 					int speed, int duplex, bool tx_pause,
3694 					bool rx_pause)
3695 {
3696 	struct dsa_port *dp = dsa_phylink_to_port(config);
3697 	struct ksz_device *dev = dp->ds->priv;
3698 	int port = dp->index;
3699 	struct ksz_port *p;
3700 
3701 	p = &dev->ports[port];
3702 
3703 	/* Internal PHYs */
3704 	if (dev->info->internal_phy[port])
3705 		return;
3706 
3707 	p->phydev.speed = speed;
3708 
3709 	ksz_port_set_xmii_speed(dev, port, speed);
3710 
3711 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3712 }
3713 
3714 static int ksz_switch_detect(struct ksz_device *dev)
3715 {
3716 	u8 id1, id2, id4;
3717 	u16 id16;
3718 	u32 id32;
3719 	int ret;
3720 
3721 	/* read chip id */
3722 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3723 	if (ret)
3724 		return ret;
3725 
3726 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3727 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3728 
3729 	switch (id1) {
3730 	case KSZ87_FAMILY_ID:
3731 		if (id2 == KSZ87_CHIP_ID_95) {
3732 			u8 val;
3733 
3734 			dev->chip_id = KSZ8795_CHIP_ID;
3735 
3736 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3737 			if (val & KSZ8_PORT_FIBER_MODE)
3738 				dev->chip_id = KSZ8765_CHIP_ID;
3739 		} else if (id2 == KSZ87_CHIP_ID_94) {
3740 			dev->chip_id = KSZ8794_CHIP_ID;
3741 		} else {
3742 			return -ENODEV;
3743 		}
3744 		break;
3745 	case KSZ88_FAMILY_ID:
3746 		if (id2 == KSZ88_CHIP_ID_63)
3747 			dev->chip_id = KSZ88X3_CHIP_ID;
3748 		else
3749 			return -ENODEV;
3750 		break;
3751 	case KSZ8895_FAMILY_ID:
3752 		if (id2 == KSZ8895_CHIP_ID_95 ||
3753 		    id2 == KSZ8895_CHIP_ID_95R)
3754 			dev->chip_id = KSZ8895_CHIP_ID;
3755 		else
3756 			return -ENODEV;
3757 		ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4);
3758 		if (ret)
3759 			return ret;
3760 		if (id4 & SW_KSZ8864)
3761 			dev->chip_id = KSZ8864_CHIP_ID;
3762 		break;
3763 	default:
3764 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3765 		if (ret)
3766 			return ret;
3767 
3768 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3769 		id32 &= ~0xFF;
3770 
3771 		switch (id32) {
3772 		case KSZ9477_CHIP_ID:
3773 		case KSZ9896_CHIP_ID:
3774 		case KSZ9897_CHIP_ID:
3775 		case KSZ9567_CHIP_ID:
3776 		case KSZ8567_CHIP_ID:
3777 		case LAN9370_CHIP_ID:
3778 		case LAN9371_CHIP_ID:
3779 		case LAN9372_CHIP_ID:
3780 		case LAN9373_CHIP_ID:
3781 		case LAN9374_CHIP_ID:
3782 			dev->chip_id = id32;
3783 			break;
3784 		case KSZ9893_CHIP_ID:
3785 			ret = ksz_read8(dev, REG_CHIP_ID4,
3786 					&id4);
3787 			if (ret)
3788 				return ret;
3789 
3790 			if (id4 == SKU_ID_KSZ8563)
3791 				dev->chip_id = KSZ8563_CHIP_ID;
3792 			else if (id4 == SKU_ID_KSZ9563)
3793 				dev->chip_id = KSZ9563_CHIP_ID;
3794 			else
3795 				dev->chip_id = KSZ9893_CHIP_ID;
3796 
3797 			break;
3798 		default:
3799 			dev_err(dev->dev,
3800 				"unsupported switch detected %x)\n", id32);
3801 			return -ENODEV;
3802 		}
3803 	}
3804 	return 0;
3805 }
3806 
3807 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3808 			      struct flow_cls_offload *cls, bool ingress)
3809 {
3810 	struct ksz_device *dev = ds->priv;
3811 
3812 	switch (dev->chip_id) {
3813 	case KSZ8563_CHIP_ID:
3814 	case KSZ8567_CHIP_ID:
3815 	case KSZ9477_CHIP_ID:
3816 	case KSZ9563_CHIP_ID:
3817 	case KSZ9567_CHIP_ID:
3818 	case KSZ9893_CHIP_ID:
3819 	case KSZ9896_CHIP_ID:
3820 	case KSZ9897_CHIP_ID:
3821 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3822 	}
3823 
3824 	return -EOPNOTSUPP;
3825 }
3826 
3827 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3828 			      struct flow_cls_offload *cls, bool ingress)
3829 {
3830 	struct ksz_device *dev = ds->priv;
3831 
3832 	switch (dev->chip_id) {
3833 	case KSZ8563_CHIP_ID:
3834 	case KSZ8567_CHIP_ID:
3835 	case KSZ9477_CHIP_ID:
3836 	case KSZ9563_CHIP_ID:
3837 	case KSZ9567_CHIP_ID:
3838 	case KSZ9893_CHIP_ID:
3839 	case KSZ9896_CHIP_ID:
3840 	case KSZ9897_CHIP_ID:
3841 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3842 	}
3843 
3844 	return -EOPNOTSUPP;
3845 }
3846 
3847 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3848  * is converted to Hex-decimal using the successive multiplication method. On
3849  * every step, integer part is taken and decimal part is carry forwarded.
3850  */
3851 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3852 {
3853 	u32 cinc = 0;
3854 	u32 txrate;
3855 	u32 rate;
3856 	u8 temp;
3857 	u8 i;
3858 
3859 	txrate = idle_slope - send_slope;
3860 
3861 	if (!txrate)
3862 		return -EINVAL;
3863 
3864 	rate = idle_slope;
3865 
3866 	/* 24 bit register */
3867 	for (i = 0; i < 6; i++) {
3868 		rate = rate * 16;
3869 
3870 		temp = rate / txrate;
3871 
3872 		rate %= txrate;
3873 
3874 		cinc = ((cinc << 4) | temp);
3875 	}
3876 
3877 	*bw = cinc;
3878 
3879 	return 0;
3880 }
3881 
3882 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3883 			     u8 shaper)
3884 {
3885 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3886 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3887 			   FIELD_PREP(MTI_SHAPING_M, shaper));
3888 }
3889 
3890 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3891 			    struct tc_cbs_qopt_offload *qopt)
3892 {
3893 	struct ksz_device *dev = ds->priv;
3894 	int ret;
3895 	u32 bw;
3896 
3897 	if (!dev->info->tc_cbs_supported)
3898 		return -EOPNOTSUPP;
3899 
3900 	if (qopt->queue > dev->info->num_tx_queues)
3901 		return -EINVAL;
3902 
3903 	/* Queue Selection */
3904 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3905 	if (ret)
3906 		return ret;
3907 
3908 	if (!qopt->enable)
3909 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3910 					 MTI_SHAPING_OFF);
3911 
3912 	/* High Credit */
3913 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3914 			   qopt->hicredit);
3915 	if (ret)
3916 		return ret;
3917 
3918 	/* Low Credit */
3919 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3920 			   qopt->locredit);
3921 	if (ret)
3922 		return ret;
3923 
3924 	/* Credit Increment Register */
3925 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3926 	if (ret)
3927 		return ret;
3928 
3929 	if (dev->dev_ops->tc_cbs_set_cinc) {
3930 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3931 		if (ret)
3932 			return ret;
3933 	}
3934 
3935 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3936 				 MTI_SHAPING_SRP);
3937 }
3938 
3939 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3940 {
3941 	int queue, ret;
3942 
3943 	/* Configuration will not take effect until the last Port Queue X
3944 	 * Egress Limit Control Register is written.
3945 	 */
3946 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3947 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3948 				  KSZ9477_OUT_RATE_NO_LIMIT);
3949 		if (ret)
3950 			return ret;
3951 	}
3952 
3953 	return 0;
3954 }
3955 
3956 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
3957 				 int band)
3958 {
3959 	/* Compared to queues, bands prioritize packets differently. In strict
3960 	 * priority mode, the lowest priority is assigned to Queue 0 while the
3961 	 * highest priority is given to Band 0.
3962 	 */
3963 	return p->bands - 1 - band;
3964 }
3965 
3966 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
3967 {
3968 	int ret;
3969 
3970 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3971 	if (ret)
3972 		return ret;
3973 
3974 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3975 				 MTI_SHAPING_OFF);
3976 }
3977 
3978 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
3979 			     int weight)
3980 {
3981 	int ret;
3982 
3983 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3984 	if (ret)
3985 		return ret;
3986 
3987 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3988 				MTI_SHAPING_OFF);
3989 	if (ret)
3990 		return ret;
3991 
3992 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
3993 }
3994 
3995 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
3996 			  struct tc_ets_qopt_offload_replace_params *p)
3997 {
3998 	int ret, band, tc_prio;
3999 	u32 queue_map = 0;
4000 
4001 	/* In order to ensure proper prioritization, it is necessary to set the
4002 	 * rate limit for the related queue to zero. Otherwise strict priority
4003 	 * or WRR mode will not work. This is a hardware limitation.
4004 	 */
4005 	ret = ksz_disable_egress_rate_limit(dev, port);
4006 	if (ret)
4007 		return ret;
4008 
4009 	/* Configure queue scheduling mode for all bands. Currently only strict
4010 	 * prio mode is supported.
4011 	 */
4012 	for (band = 0; band < p->bands; band++) {
4013 		int queue = ksz_ets_band_to_queue(p, band);
4014 
4015 		ret = ksz_queue_set_strict(dev, port, queue);
4016 		if (ret)
4017 			return ret;
4018 	}
4019 
4020 	/* Configure the mapping between traffic classes and queues. Note:
4021 	 * priomap variable support 16 traffic classes, but the chip can handle
4022 	 * only 8 classes.
4023 	 */
4024 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
4025 		int queue;
4026 
4027 		if (tc_prio >= dev->info->num_ipms)
4028 			break;
4029 
4030 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
4031 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
4032 	}
4033 
4034 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
4035 }
4036 
4037 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
4038 {
4039 	int ret, queue;
4040 
4041 	/* To restore the default chip configuration, set all queues to use the
4042 	 * WRR scheduler with a weight of 1.
4043 	 */
4044 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4045 		ret = ksz_queue_set_wrr(dev, port, queue,
4046 					KSZ9477_DEFAULT_WRR_WEIGHT);
4047 		if (ret)
4048 			return ret;
4049 	}
4050 
4051 	/* Revert the queue mapping for TC-priority to its default setting on
4052 	 * the chip.
4053 	 */
4054 	return ksz9477_set_default_prio_queue_mapping(dev, port);
4055 }
4056 
4057 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
4058 			       struct tc_ets_qopt_offload_replace_params *p)
4059 {
4060 	int band;
4061 
4062 	/* Since it is not feasible to share one port among multiple qdisc,
4063 	 * the user must configure all available queues appropriately.
4064 	 */
4065 	if (p->bands != dev->info->num_tx_queues) {
4066 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
4067 			dev->info->num_tx_queues);
4068 		return -EOPNOTSUPP;
4069 	}
4070 
4071 	for (band = 0; band < p->bands; ++band) {
4072 		/* The KSZ switches utilize a weighted round robin configuration
4073 		 * where a certain number of packets can be transmitted from a
4074 		 * queue before the next queue is serviced. For more information
4075 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
4076 		 * documentation on the Port Transmit Queue Control 1 Register.
4077 		 * However, the current ETS Qdisc implementation (as of February
4078 		 * 2023) assigns a weight to each queue based on the number of
4079 		 * bytes or extrapolated bandwidth in percentages. Since this
4080 		 * differs from the KSZ switches' method and we don't want to
4081 		 * fake support by converting bytes to packets, it is better to
4082 		 * return an error instead.
4083 		 */
4084 		if (p->quanta[band]) {
4085 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
4086 			return -EOPNOTSUPP;
4087 		}
4088 	}
4089 
4090 	return 0;
4091 }
4092 
4093 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
4094 				  struct tc_ets_qopt_offload *qopt)
4095 {
4096 	struct ksz_device *dev = ds->priv;
4097 	int ret;
4098 
4099 	if (is_ksz8(dev))
4100 		return -EOPNOTSUPP;
4101 
4102 	if (qopt->parent != TC_H_ROOT) {
4103 		dev_err(dev->dev, "Parent should be \"root\"\n");
4104 		return -EOPNOTSUPP;
4105 	}
4106 
4107 	switch (qopt->command) {
4108 	case TC_ETS_REPLACE:
4109 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
4110 		if (ret)
4111 			return ret;
4112 
4113 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
4114 	case TC_ETS_DESTROY:
4115 		return ksz_tc_ets_del(dev, port);
4116 	case TC_ETS_STATS:
4117 	case TC_ETS_GRAFT:
4118 		return -EOPNOTSUPP;
4119 	}
4120 
4121 	return -EOPNOTSUPP;
4122 }
4123 
4124 static int ksz_setup_tc(struct dsa_switch *ds, int port,
4125 			enum tc_setup_type type, void *type_data)
4126 {
4127 	switch (type) {
4128 	case TC_SETUP_QDISC_CBS:
4129 		return ksz_setup_tc_cbs(ds, port, type_data);
4130 	case TC_SETUP_QDISC_ETS:
4131 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
4132 	default:
4133 		return -EOPNOTSUPP;
4134 	}
4135 }
4136 
4137 /**
4138  * ksz_handle_wake_reason - Handle wake reason on a specified port.
4139  * @dev: The device structure.
4140  * @port: The port number.
4141  *
4142  * This function reads the PME (Power Management Event) status register of a
4143  * specified port to determine the wake reason. If there is no wake event, it
4144  * returns early. Otherwise, it logs the wake reason which could be due to a
4145  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
4146  * is then cleared to acknowledge the handling of the wake event.
4147  *
4148  * Return: 0 on success, or an error code on failure.
4149  */
4150 int ksz_handle_wake_reason(struct ksz_device *dev, int port)
4151 {
4152 	const struct ksz_dev_ops *ops = dev->dev_ops;
4153 	const u16 *regs = dev->info->regs;
4154 	u8 pme_status;
4155 	int ret;
4156 
4157 	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
4158 			      &pme_status);
4159 	if (ret)
4160 		return ret;
4161 
4162 	if (!pme_status)
4163 		return 0;
4164 
4165 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
4166 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
4167 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
4168 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
4169 
4170 	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
4171 				pme_status);
4172 }
4173 
4174 /**
4175  * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
4176  * @ds: The dsa_switch structure.
4177  * @port: The port number.
4178  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4179  *
4180  * This function checks the device PME wakeup_source flag and chip_id.
4181  * If enabled and supported, it sets the supported and active WoL
4182  * flags.
4183  */
4184 static void ksz_get_wol(struct dsa_switch *ds, int port,
4185 			struct ethtool_wolinfo *wol)
4186 {
4187 	struct ksz_device *dev = ds->priv;
4188 	const u16 *regs = dev->info->regs;
4189 	u8 pme_ctrl;
4190 	int ret;
4191 
4192 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4193 		return;
4194 
4195 	if (!dev->wakeup_source)
4196 		return;
4197 
4198 	wol->supported = WAKE_PHY;
4199 
4200 	/* Check if the current MAC address on this port can be set
4201 	 * as global for WAKE_MAGIC support. The result may vary
4202 	 * dynamically based on other ports configurations.
4203 	 */
4204 	if (ksz_is_port_mac_global_usable(dev->ds, port))
4205 		wol->supported |= WAKE_MAGIC;
4206 
4207 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4208 				       &pme_ctrl);
4209 	if (ret)
4210 		return;
4211 
4212 	if (pme_ctrl & PME_WOL_MAGICPKT)
4213 		wol->wolopts |= WAKE_MAGIC;
4214 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
4215 		wol->wolopts |= WAKE_PHY;
4216 }
4217 
4218 /**
4219  * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
4220  * @ds: The dsa_switch structure.
4221  * @port: The port number.
4222  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4223  *
4224  * This function configures Wake-on-LAN (WoL) settings for a specified
4225  * port. It validates the provided WoL options, checks if PME is
4226  * enabled and supported, clears any previous wake reasons, and sets
4227  * the Magic Packet flag in the port's PME control register if
4228  * specified.
4229  *
4230  * Return: 0 on success, or other error codes on failure.
4231  */
4232 static int ksz_set_wol(struct dsa_switch *ds, int port,
4233 		       struct ethtool_wolinfo *wol)
4234 {
4235 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
4236 	struct ksz_device *dev = ds->priv;
4237 	const u16 *regs = dev->info->regs;
4238 	bool magic_switched_off;
4239 	bool magic_switched_on;
4240 	int ret;
4241 
4242 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
4243 		return -EINVAL;
4244 
4245 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4246 		return -EOPNOTSUPP;
4247 
4248 	if (!dev->wakeup_source)
4249 		return -EOPNOTSUPP;
4250 
4251 	ret = ksz_handle_wake_reason(dev, port);
4252 	if (ret)
4253 		return ret;
4254 
4255 	if (wol->wolopts & WAKE_MAGIC)
4256 		pme_ctrl |= PME_WOL_MAGICPKT;
4257 	if (wol->wolopts & WAKE_PHY)
4258 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
4259 
4260 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4261 				       &pme_ctrl_old);
4262 	if (ret)
4263 		return ret;
4264 
4265 	if (pme_ctrl_old == pme_ctrl)
4266 		return 0;
4267 
4268 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
4269 			    !(pme_ctrl & PME_WOL_MAGICPKT);
4270 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
4271 			    (pme_ctrl & PME_WOL_MAGICPKT);
4272 
4273 	/* To keep reference count of MAC address, we should do this
4274 	 * operation only on change of WOL settings.
4275 	 */
4276 	if (magic_switched_on) {
4277 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
4278 		if (ret)
4279 			return ret;
4280 	} else if (magic_switched_off) {
4281 		ksz_switch_macaddr_put(dev->ds);
4282 	}
4283 
4284 	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
4285 					pme_ctrl);
4286 	if (ret) {
4287 		if (magic_switched_on)
4288 			ksz_switch_macaddr_put(dev->ds);
4289 		return ret;
4290 	}
4291 
4292 	return 0;
4293 }
4294 
4295 /**
4296  * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
4297  *                        considering Wake-on-LAN (WoL) settings.
4298  * @dev: The switch device structure.
4299  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
4300  *               enabled on any port.
4301  *
4302  * This function prepares the switch device for a safe shutdown while taking
4303  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
4304  * the wol_enabled flag accordingly to reflect whether WoL is active on any
4305  * port.
4306  */
4307 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
4308 {
4309 	const struct ksz_dev_ops *ops = dev->dev_ops;
4310 	const u16 *regs = dev->info->regs;
4311 	u8 pme_pin_en = PME_ENABLE;
4312 	struct dsa_port *dp;
4313 	int ret;
4314 
4315 	*wol_enabled = false;
4316 
4317 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4318 		return;
4319 
4320 	if (!dev->wakeup_source)
4321 		return;
4322 
4323 	dsa_switch_for_each_user_port(dp, dev->ds) {
4324 		u8 pme_ctrl = 0;
4325 
4326 		ret = ops->pme_pread8(dev, dp->index,
4327 				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
4328 		if (!ret && pme_ctrl)
4329 			*wol_enabled = true;
4330 
4331 		/* make sure there are no pending wake events which would
4332 		 * prevent the device from going to sleep/shutdown.
4333 		 */
4334 		ksz_handle_wake_reason(dev, dp->index);
4335 	}
4336 
4337 	/* Now we are save to enable PME pin. */
4338 	if (*wol_enabled) {
4339 		if (dev->pme_active_high)
4340 			pme_pin_en |= PME_POLARITY;
4341 		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
4342 		if (ksz_is_ksz87xx(dev))
4343 			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
4344 	}
4345 }
4346 
4347 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4348 				    const unsigned char *addr)
4349 {
4350 	struct dsa_port *dp = dsa_to_port(ds, port);
4351 	struct ethtool_wolinfo wol;
4352 
4353 	if (dp->hsr_dev) {
4354 		dev_err(ds->dev,
4355 			"Cannot change MAC address on port %d with active HSR offload\n",
4356 			port);
4357 		return -EBUSY;
4358 	}
4359 
4360 	/* Need to initialize variable as the code to fill in settings may
4361 	 * not be executed.
4362 	 */
4363 	wol.wolopts = 0;
4364 
4365 	ksz_get_wol(ds, dp->index, &wol);
4366 	if (wol.wolopts & WAKE_MAGIC) {
4367 		dev_err(ds->dev,
4368 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4369 			port);
4370 		return -EBUSY;
4371 	}
4372 
4373 	return 0;
4374 }
4375 
4376 /**
4377  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4378  *                                 can be used as a global address.
4379  * @ds: Pointer to the DSA switch structure.
4380  * @port: The port number on which the MAC address is to be checked.
4381  *
4382  * This function examines the MAC address set on the specified port and
4383  * determines if it can be used as a global address for the switch.
4384  *
4385  * Return: true if the port's MAC address can be used as a global address, false
4386  * otherwise.
4387  */
4388 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4389 {
4390 	struct net_device *user = dsa_to_port(ds, port)->user;
4391 	const unsigned char *addr = user->dev_addr;
4392 	struct ksz_switch_macaddr *switch_macaddr;
4393 	struct ksz_device *dev = ds->priv;
4394 
4395 	ASSERT_RTNL();
4396 
4397 	switch_macaddr = dev->switch_macaddr;
4398 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4399 		return false;
4400 
4401 	return true;
4402 }
4403 
4404 /**
4405  * ksz_switch_macaddr_get - Program the switch's MAC address register.
4406  * @ds: DSA switch instance.
4407  * @port: Port number.
4408  * @extack: Netlink extended acknowledgment.
4409  *
4410  * This function programs the switch's MAC address register with the MAC address
4411  * of the requesting user port. This single address is used by the switch for
4412  * multiple features like HSR self-address filtering and WoL. Other user ports
4413  * can share ownership of this address as long as their MAC address is the same.
4414  * The MAC addresses of user ports must not change while they have ownership of
4415  * the switch MAC address.
4416  *
4417  * Return: 0 on success, or other error codes on failure.
4418  */
4419 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4420 			   struct netlink_ext_ack *extack)
4421 {
4422 	struct net_device *user = dsa_to_port(ds, port)->user;
4423 	const unsigned char *addr = user->dev_addr;
4424 	struct ksz_switch_macaddr *switch_macaddr;
4425 	struct ksz_device *dev = ds->priv;
4426 	const u16 *regs = dev->info->regs;
4427 	int i, ret;
4428 
4429 	/* Make sure concurrent MAC address changes are blocked */
4430 	ASSERT_RTNL();
4431 
4432 	switch_macaddr = dev->switch_macaddr;
4433 	if (switch_macaddr) {
4434 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4435 			NL_SET_ERR_MSG_FMT_MOD(extack,
4436 					       "Switch already configured for MAC address %pM",
4437 					       switch_macaddr->addr);
4438 			return -EBUSY;
4439 		}
4440 
4441 		refcount_inc(&switch_macaddr->refcount);
4442 		return 0;
4443 	}
4444 
4445 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4446 	if (!switch_macaddr)
4447 		return -ENOMEM;
4448 
4449 	ether_addr_copy(switch_macaddr->addr, addr);
4450 	refcount_set(&switch_macaddr->refcount, 1);
4451 	dev->switch_macaddr = switch_macaddr;
4452 
4453 	/* Program the switch MAC address to hardware */
4454 	for (i = 0; i < ETH_ALEN; i++) {
4455 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
4456 		if (ret)
4457 			goto macaddr_drop;
4458 	}
4459 
4460 	return 0;
4461 
4462 macaddr_drop:
4463 	dev->switch_macaddr = NULL;
4464 	refcount_set(&switch_macaddr->refcount, 0);
4465 	kfree(switch_macaddr);
4466 
4467 	return ret;
4468 }
4469 
4470 void ksz_switch_macaddr_put(struct dsa_switch *ds)
4471 {
4472 	struct ksz_switch_macaddr *switch_macaddr;
4473 	struct ksz_device *dev = ds->priv;
4474 	const u16 *regs = dev->info->regs;
4475 	int i;
4476 
4477 	/* Make sure concurrent MAC address changes are blocked */
4478 	ASSERT_RTNL();
4479 
4480 	switch_macaddr = dev->switch_macaddr;
4481 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4482 		return;
4483 
4484 	for (i = 0; i < ETH_ALEN; i++)
4485 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4486 
4487 	dev->switch_macaddr = NULL;
4488 	kfree(switch_macaddr);
4489 }
4490 
4491 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4492 			struct netlink_ext_ack *extack)
4493 {
4494 	struct ksz_device *dev = ds->priv;
4495 	enum hsr_version ver;
4496 	int ret;
4497 
4498 	ret = hsr_get_version(hsr, &ver);
4499 	if (ret)
4500 		return ret;
4501 
4502 	if (dev->chip_id != KSZ9477_CHIP_ID) {
4503 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4504 		return -EOPNOTSUPP;
4505 	}
4506 
4507 	/* KSZ9477 can support HW offloading of only 1 HSR device */
4508 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4509 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4510 		return -EOPNOTSUPP;
4511 	}
4512 
4513 	/* KSZ9477 only supports HSR v0 and v1 */
4514 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4515 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4516 		return -EOPNOTSUPP;
4517 	}
4518 
4519 	/* KSZ9477 can only perform HSR offloading for up to two ports */
4520 	if (hweight8(dev->hsr_ports) >= 2) {
4521 		NL_SET_ERR_MSG_MOD(extack,
4522 				   "Cannot offload more than two ports - using software HSR");
4523 		return -EOPNOTSUPP;
4524 	}
4525 
4526 	/* Self MAC address filtering, to avoid frames traversing
4527 	 * the HSR ring more than once.
4528 	 */
4529 	ret = ksz_switch_macaddr_get(ds, port, extack);
4530 	if (ret)
4531 		return ret;
4532 
4533 	ksz9477_hsr_join(ds, port, hsr);
4534 	dev->hsr_dev = hsr;
4535 	dev->hsr_ports |= BIT(port);
4536 
4537 	return 0;
4538 }
4539 
4540 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4541 			 struct net_device *hsr)
4542 {
4543 	struct ksz_device *dev = ds->priv;
4544 
4545 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4546 
4547 	ksz9477_hsr_leave(ds, port, hsr);
4548 	dev->hsr_ports &= ~BIT(port);
4549 	if (!dev->hsr_ports)
4550 		dev->hsr_dev = NULL;
4551 
4552 	ksz_switch_macaddr_put(ds);
4553 
4554 	return 0;
4555 }
4556 
4557 static const struct dsa_switch_ops ksz_switch_ops = {
4558 	.get_tag_protocol	= ksz_get_tag_protocol,
4559 	.connect_tag_protocol   = ksz_connect_tag_protocol,
4560 	.get_phy_flags		= ksz_get_phy_flags,
4561 	.setup			= ksz_setup,
4562 	.teardown		= ksz_teardown,
4563 	.phy_read		= ksz_phy_read16,
4564 	.phy_write		= ksz_phy_write16,
4565 	.phylink_get_caps	= ksz_phylink_get_caps,
4566 	.port_setup		= ksz_port_setup,
4567 	.set_ageing_time	= ksz_set_ageing_time,
4568 	.get_strings		= ksz_get_strings,
4569 	.get_ethtool_stats	= ksz_get_ethtool_stats,
4570 	.get_sset_count		= ksz_sset_count,
4571 	.port_bridge_join	= ksz_port_bridge_join,
4572 	.port_bridge_leave	= ksz_port_bridge_leave,
4573 	.port_hsr_join		= ksz_hsr_join,
4574 	.port_hsr_leave		= ksz_hsr_leave,
4575 	.port_set_mac_address	= ksz_port_set_mac_address,
4576 	.port_stp_state_set	= ksz_port_stp_state_set,
4577 	.port_teardown		= ksz_port_teardown,
4578 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4579 	.port_bridge_flags	= ksz_port_bridge_flags,
4580 	.port_fast_age		= ksz_port_fast_age,
4581 	.port_vlan_filtering	= ksz_port_vlan_filtering,
4582 	.port_vlan_add		= ksz_port_vlan_add,
4583 	.port_vlan_del		= ksz_port_vlan_del,
4584 	.port_fdb_dump		= ksz_port_fdb_dump,
4585 	.port_fdb_add		= ksz_port_fdb_add,
4586 	.port_fdb_del		= ksz_port_fdb_del,
4587 	.port_mdb_add           = ksz_port_mdb_add,
4588 	.port_mdb_del           = ksz_port_mdb_del,
4589 	.port_mirror_add	= ksz_port_mirror_add,
4590 	.port_mirror_del	= ksz_port_mirror_del,
4591 	.get_stats64		= ksz_get_stats64,
4592 	.get_pause_stats	= ksz_get_pause_stats,
4593 	.port_change_mtu	= ksz_change_mtu,
4594 	.port_max_mtu		= ksz_max_mtu,
4595 	.get_wol		= ksz_get_wol,
4596 	.set_wol		= ksz_set_wol,
4597 	.get_ts_info		= ksz_get_ts_info,
4598 	.port_hwtstamp_get	= ksz_hwtstamp_get,
4599 	.port_hwtstamp_set	= ksz_hwtstamp_set,
4600 	.port_txtstamp		= ksz_port_txtstamp,
4601 	.port_rxtstamp		= ksz_port_rxtstamp,
4602 	.cls_flower_add		= ksz_cls_flower_add,
4603 	.cls_flower_del		= ksz_cls_flower_del,
4604 	.port_setup_tc		= ksz_setup_tc,
4605 	.get_mac_eee		= ksz_get_mac_eee,
4606 	.set_mac_eee		= ksz_set_mac_eee,
4607 	.port_get_default_prio	= ksz_port_get_default_prio,
4608 	.port_set_default_prio	= ksz_port_set_default_prio,
4609 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
4610 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
4611 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
4612 	.port_get_apptrust	= ksz_port_get_apptrust,
4613 	.port_set_apptrust	= ksz_port_set_apptrust,
4614 };
4615 
4616 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
4617 {
4618 	struct dsa_switch *ds;
4619 	struct ksz_device *swdev;
4620 
4621 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
4622 	if (!ds)
4623 		return NULL;
4624 
4625 	ds->dev = base;
4626 	ds->num_ports = DSA_MAX_PORTS;
4627 	ds->ops = &ksz_switch_ops;
4628 
4629 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
4630 	if (!swdev)
4631 		return NULL;
4632 
4633 	ds->priv = swdev;
4634 	swdev->dev = base;
4635 
4636 	swdev->ds = ds;
4637 	swdev->priv = priv;
4638 
4639 	return swdev;
4640 }
4641 EXPORT_SYMBOL(ksz_switch_alloc);
4642 
4643 /**
4644  * ksz_switch_shutdown - Shutdown routine for the switch device.
4645  * @dev: The switch device structure.
4646  *
4647  * This function is responsible for initiating a shutdown sequence for the
4648  * switch device. It invokes the reset operation defined in the device
4649  * operations, if available, to reset the switch. Subsequently, it calls the
4650  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
4651  * switch.
4652  */
4653 void ksz_switch_shutdown(struct ksz_device *dev)
4654 {
4655 	bool wol_enabled = false;
4656 
4657 	ksz_wol_pre_shutdown(dev, &wol_enabled);
4658 
4659 	if (dev->dev_ops->reset && !wol_enabled)
4660 		dev->dev_ops->reset(dev);
4661 
4662 	dsa_switch_shutdown(dev->ds);
4663 }
4664 EXPORT_SYMBOL(ksz_switch_shutdown);
4665 
4666 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
4667 				  struct device_node *port_dn)
4668 {
4669 	phy_interface_t phy_mode = dev->ports[port_num].interface;
4670 	int rx_delay = -1, tx_delay = -1;
4671 
4672 	if (!phy_interface_mode_is_rgmii(phy_mode))
4673 		return;
4674 
4675 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
4676 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
4677 
4678 	if (rx_delay == -1 && tx_delay == -1) {
4679 		dev_warn(dev->dev,
4680 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
4681 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
4682 			 "\"tx-internal-delay-ps\"",
4683 			 port_num);
4684 
4685 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4686 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4687 			rx_delay = 2000;
4688 
4689 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4690 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4691 			tx_delay = 2000;
4692 	}
4693 
4694 	if (rx_delay < 0)
4695 		rx_delay = 0;
4696 	if (tx_delay < 0)
4697 		tx_delay = 0;
4698 
4699 	dev->ports[port_num].rgmii_rx_val = rx_delay;
4700 	dev->ports[port_num].rgmii_tx_val = tx_delay;
4701 }
4702 
4703 /**
4704  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4705  *				 register value.
4706  * @array:	The array of drive strength values to search.
4707  * @array_size:	The size of the array.
4708  * @microamp:	The drive strength value in microamp to be converted.
4709  *
4710  * This function searches the array of drive strength values for the given
4711  * microamp value and returns the corresponding register value for that drive.
4712  *
4713  * Returns: If found, the corresponding register value for that drive strength
4714  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4715  */
4716 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4717 				     size_t array_size, int microamp)
4718 {
4719 	int i;
4720 
4721 	for (i = 0; i < array_size; i++) {
4722 		if (array[i].microamp == microamp)
4723 			return array[i].reg_val;
4724 	}
4725 
4726 	return -EINVAL;
4727 }
4728 
4729 /**
4730  * ksz_drive_strength_error() - Report invalid drive strength value
4731  * @dev:	ksz device
4732  * @array:	The array of drive strength values to search.
4733  * @array_size:	The size of the array.
4734  * @microamp:	Invalid drive strength value in microamp
4735  *
4736  * This function logs an error message when an unsupported drive strength value
4737  * is detected. It lists out all the supported drive strength values for
4738  * reference in the error message.
4739  */
4740 static void ksz_drive_strength_error(struct ksz_device *dev,
4741 				     const struct ksz_drive_strength *array,
4742 				     size_t array_size, int microamp)
4743 {
4744 	char supported_values[100];
4745 	size_t remaining_size;
4746 	int added_len;
4747 	char *ptr;
4748 	int i;
4749 
4750 	remaining_size = sizeof(supported_values);
4751 	ptr = supported_values;
4752 
4753 	for (i = 0; i < array_size; i++) {
4754 		added_len = snprintf(ptr, remaining_size,
4755 				     i == 0 ? "%d" : ", %d", array[i].microamp);
4756 
4757 		if (added_len >= remaining_size)
4758 			break;
4759 
4760 		ptr += added_len;
4761 		remaining_size -= added_len;
4762 	}
4763 
4764 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
4765 		microamp, supported_values);
4766 }
4767 
4768 /**
4769  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
4770  *				    chip variants.
4771  * @dev:       ksz device
4772  * @props:     Array of drive strength properties to be applied
4773  * @num_props: Number of properties in the array
4774  *
4775  * This function configures the drive strength for various KSZ9477 chip variants
4776  * based on the provided properties. It handles chip-specific nuances and
4777  * ensures only valid drive strengths are written to the respective chip.
4778  *
4779  * Return: 0 on successful configuration, a negative error code on failure.
4780  */
4781 static int ksz9477_drive_strength_write(struct ksz_device *dev,
4782 					struct ksz_driver_strength_prop *props,
4783 					int num_props)
4784 {
4785 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4786 	int i, ret, reg;
4787 	u8 mask = 0;
4788 	u8 val = 0;
4789 
4790 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4791 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4792 			 props[KSZ_DRIVER_STRENGTH_IO].name);
4793 
4794 	if (dev->chip_id == KSZ8795_CHIP_ID ||
4795 	    dev->chip_id == KSZ8794_CHIP_ID ||
4796 	    dev->chip_id == KSZ8765_CHIP_ID)
4797 		reg = KSZ8795_REG_SW_CTRL_20;
4798 	else
4799 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4800 
4801 	for (i = 0; i < num_props; i++) {
4802 		if (props[i].value == -1)
4803 			continue;
4804 
4805 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4806 						array_size, props[i].value);
4807 		if (ret < 0) {
4808 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4809 						 array_size, props[i].value);
4810 			return ret;
4811 		}
4812 
4813 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4814 		val |= ret << props[i].offset;
4815 	}
4816 
4817 	return ksz_rmw8(dev, reg, mask, val);
4818 }
4819 
4820 /**
4821  * ksz88x3_drive_strength_write() - Set the drive strength configuration for
4822  *				    KSZ8863 compatible chip variants.
4823  * @dev:       ksz device
4824  * @props:     Array of drive strength properties to be set
4825  * @num_props: Number of properties in the array
4826  *
4827  * This function applies the specified drive strength settings to KSZ88X3 chip
4828  * variants (KSZ8873, KSZ8863).
4829  * It ensures the configurations align with what the chip variant supports and
4830  * warns or errors out on unsupported settings.
4831  *
4832  * Return: 0 on success, error code otherwise
4833  */
4834 static int ksz88x3_drive_strength_write(struct ksz_device *dev,
4835 					struct ksz_driver_strength_prop *props,
4836 					int num_props)
4837 {
4838 	size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths);
4839 	int microamp;
4840 	int i, ret;
4841 
4842 	for (i = 0; i < num_props; i++) {
4843 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4844 			continue;
4845 
4846 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4847 			 props[i].name);
4848 	}
4849 
4850 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4851 	ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size,
4852 					microamp);
4853 	if (ret < 0) {
4854 		ksz_drive_strength_error(dev, ksz88x3_drive_strengths,
4855 					 array_size, microamp);
4856 		return ret;
4857 	}
4858 
4859 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4860 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4861 }
4862 
4863 /**
4864  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4865  *				from device tree properties.
4866  * @dev:	ksz device
4867  *
4868  * This function reads the specified drive strength properties from the
4869  * device tree, validates against the supported chip variants, and sets
4870  * them accordingly. An error should be critical here, as the drive strength
4871  * settings are crucial for EMI compliance.
4872  *
4873  * Return: 0 on success, error code otherwise
4874  */
4875 static int ksz_parse_drive_strength(struct ksz_device *dev)
4876 {
4877 	struct ksz_driver_strength_prop of_props[] = {
4878 		[KSZ_DRIVER_STRENGTH_HI] = {
4879 			.name = "microchip,hi-drive-strength-microamp",
4880 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4881 			.value = -1,
4882 		},
4883 		[KSZ_DRIVER_STRENGTH_LO] = {
4884 			.name = "microchip,lo-drive-strength-microamp",
4885 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4886 			.value = -1,
4887 		},
4888 		[KSZ_DRIVER_STRENGTH_IO] = {
4889 			.name = "microchip,io-drive-strength-microamp",
4890 			.offset = 0, /* don't care */
4891 			.value = -1,
4892 		},
4893 	};
4894 	struct device_node *np = dev->dev->of_node;
4895 	bool have_any_prop = false;
4896 	int i, ret;
4897 
4898 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4899 		ret = of_property_read_u32(np, of_props[i].name,
4900 					   &of_props[i].value);
4901 		if (ret && ret != -EINVAL)
4902 			dev_warn(dev->dev, "Failed to read %s\n",
4903 				 of_props[i].name);
4904 		if (ret)
4905 			continue;
4906 
4907 		have_any_prop = true;
4908 	}
4909 
4910 	if (!have_any_prop)
4911 		return 0;
4912 
4913 	switch (dev->chip_id) {
4914 	case KSZ88X3_CHIP_ID:
4915 		return ksz88x3_drive_strength_write(dev, of_props,
4916 						    ARRAY_SIZE(of_props));
4917 	case KSZ8795_CHIP_ID:
4918 	case KSZ8794_CHIP_ID:
4919 	case KSZ8765_CHIP_ID:
4920 	case KSZ8563_CHIP_ID:
4921 	case KSZ8567_CHIP_ID:
4922 	case KSZ9477_CHIP_ID:
4923 	case KSZ9563_CHIP_ID:
4924 	case KSZ9567_CHIP_ID:
4925 	case KSZ9893_CHIP_ID:
4926 	case KSZ9896_CHIP_ID:
4927 	case KSZ9897_CHIP_ID:
4928 		return ksz9477_drive_strength_write(dev, of_props,
4929 						    ARRAY_SIZE(of_props));
4930 	default:
4931 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4932 			if (of_props[i].value == -1)
4933 				continue;
4934 
4935 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4936 				 of_props[i].name);
4937 		}
4938 	}
4939 
4940 	return 0;
4941 }
4942 
4943 int ksz_switch_register(struct ksz_device *dev)
4944 {
4945 	const struct ksz_chip_data *info;
4946 	struct device_node *ports;
4947 	phy_interface_t interface;
4948 	unsigned int port_num;
4949 	int ret;
4950 	int i;
4951 
4952 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4953 						  GPIOD_OUT_LOW);
4954 	if (IS_ERR(dev->reset_gpio))
4955 		return PTR_ERR(dev->reset_gpio);
4956 
4957 	if (dev->reset_gpio) {
4958 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4959 		usleep_range(10000, 12000);
4960 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
4961 		msleep(100);
4962 	}
4963 
4964 	mutex_init(&dev->dev_mutex);
4965 	mutex_init(&dev->regmap_mutex);
4966 	mutex_init(&dev->alu_mutex);
4967 	mutex_init(&dev->vlan_mutex);
4968 
4969 	ret = ksz_switch_detect(dev);
4970 	if (ret)
4971 		return ret;
4972 
4973 	info = ksz_lookup_info(dev->chip_id);
4974 	if (!info)
4975 		return -ENODEV;
4976 
4977 	/* Update the compatible info with the probed one */
4978 	dev->info = info;
4979 
4980 	dev_info(dev->dev, "found switch: %s, rev %i\n",
4981 		 dev->info->dev_name, dev->chip_rev);
4982 
4983 	ret = ksz_check_device_id(dev);
4984 	if (ret)
4985 		return ret;
4986 
4987 	dev->dev_ops = dev->info->ops;
4988 
4989 	ret = dev->dev_ops->init(dev);
4990 	if (ret)
4991 		return ret;
4992 
4993 	dev->ports = devm_kzalloc(dev->dev,
4994 				  dev->info->port_cnt * sizeof(struct ksz_port),
4995 				  GFP_KERNEL);
4996 	if (!dev->ports)
4997 		return -ENOMEM;
4998 
4999 	for (i = 0; i < dev->info->port_cnt; i++) {
5000 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
5001 		mutex_init(&dev->ports[i].mib.cnt_mutex);
5002 		dev->ports[i].mib.counters =
5003 			devm_kzalloc(dev->dev,
5004 				     sizeof(u64) * (dev->info->mib_cnt + 1),
5005 				     GFP_KERNEL);
5006 		if (!dev->ports[i].mib.counters)
5007 			return -ENOMEM;
5008 
5009 		dev->ports[i].ksz_dev = dev;
5010 		dev->ports[i].num = i;
5011 	}
5012 
5013 	/* set the real number of ports */
5014 	dev->ds->num_ports = dev->info->port_cnt;
5015 
5016 	/* set the phylink ops */
5017 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
5018 
5019 	/* Host port interface will be self detected, or specifically set in
5020 	 * device tree.
5021 	 */
5022 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
5023 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
5024 	if (dev->dev->of_node) {
5025 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
5026 		if (ret == 0)
5027 			dev->compat_interface = interface;
5028 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
5029 		if (!ports)
5030 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
5031 		if (ports) {
5032 			for_each_available_child_of_node_scoped(ports, port) {
5033 				if (of_property_read_u32(port, "reg",
5034 							 &port_num))
5035 					continue;
5036 				if (!(dev->port_mask & BIT(port_num))) {
5037 					of_node_put(ports);
5038 					return -EINVAL;
5039 				}
5040 				of_get_phy_mode(port,
5041 						&dev->ports[port_num].interface);
5042 
5043 				ksz_parse_rgmii_delay(dev, port_num, port);
5044 			}
5045 			of_node_put(ports);
5046 		}
5047 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
5048 							 "microchip,synclko-125");
5049 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
5050 							     "microchip,synclko-disable");
5051 		if (dev->synclko_125 && dev->synclko_disable) {
5052 			dev_err(dev->dev, "inconsistent synclko settings\n");
5053 			return -EINVAL;
5054 		}
5055 
5056 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
5057 							   "wakeup-source");
5058 		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
5059 							     "microchip,pme-active-high");
5060 	}
5061 
5062 	ret = dsa_register_switch(dev->ds);
5063 	if (ret) {
5064 		dev->dev_ops->exit(dev);
5065 		return ret;
5066 	}
5067 
5068 	/* Read MIB counters every 30 seconds to avoid overflow. */
5069 	dev->mib_read_interval = msecs_to_jiffies(5000);
5070 
5071 	/* Start the MIB timer. */
5072 	schedule_delayed_work(&dev->mib_read, 0);
5073 
5074 	return ret;
5075 }
5076 EXPORT_SYMBOL(ksz_switch_register);
5077 
5078 void ksz_switch_remove(struct ksz_device *dev)
5079 {
5080 	/* timer started */
5081 	if (dev->mib_read_interval) {
5082 		dev->mib_read_interval = 0;
5083 		cancel_delayed_work_sync(&dev->mib_read);
5084 	}
5085 
5086 	dev->dev_ops->exit(dev);
5087 	dsa_unregister_switch(dev->ds);
5088 
5089 	if (dev->reset_gpio)
5090 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5091 
5092 }
5093 EXPORT_SYMBOL(ksz_switch_remove);
5094 
5095 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
5096 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
5097 MODULE_LICENSE("GPL");
5098