xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 550ee90ac61c1f0cd987c68a9ac6c4c9833925d7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/ieee8021q.h>
28 #include <net/pkt_cls.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_common.h"
32 #include "ksz_dcb.h"
33 #include "ksz_ptp.h"
34 #include "ksz8.h"
35 #include "ksz9477.h"
36 #include "lan937x.h"
37 
38 #define MIB_COUNTER_NUM 0x20
39 
40 struct ksz_stats_raw {
41 	u64 rx_hi;
42 	u64 rx_undersize;
43 	u64 rx_fragments;
44 	u64 rx_oversize;
45 	u64 rx_jabbers;
46 	u64 rx_symbol_err;
47 	u64 rx_crc_err;
48 	u64 rx_align_err;
49 	u64 rx_mac_ctrl;
50 	u64 rx_pause;
51 	u64 rx_bcast;
52 	u64 rx_mcast;
53 	u64 rx_ucast;
54 	u64 rx_64_or_less;
55 	u64 rx_65_127;
56 	u64 rx_128_255;
57 	u64 rx_256_511;
58 	u64 rx_512_1023;
59 	u64 rx_1024_1522;
60 	u64 rx_1523_2000;
61 	u64 rx_2001;
62 	u64 tx_hi;
63 	u64 tx_late_col;
64 	u64 tx_pause;
65 	u64 tx_bcast;
66 	u64 tx_mcast;
67 	u64 tx_ucast;
68 	u64 tx_deferred;
69 	u64 tx_total_col;
70 	u64 tx_exc_col;
71 	u64 tx_single_col;
72 	u64 tx_mult_col;
73 	u64 rx_total;
74 	u64 tx_total;
75 	u64 rx_discards;
76 	u64 tx_discards;
77 };
78 
79 struct ksz88xx_stats_raw {
80 	u64 rx;
81 	u64 rx_hi;
82 	u64 rx_undersize;
83 	u64 rx_fragments;
84 	u64 rx_oversize;
85 	u64 rx_jabbers;
86 	u64 rx_symbol_err;
87 	u64 rx_crc_err;
88 	u64 rx_align_err;
89 	u64 rx_mac_ctrl;
90 	u64 rx_pause;
91 	u64 rx_bcast;
92 	u64 rx_mcast;
93 	u64 rx_ucast;
94 	u64 rx_64_or_less;
95 	u64 rx_65_127;
96 	u64 rx_128_255;
97 	u64 rx_256_511;
98 	u64 rx_512_1023;
99 	u64 rx_1024_1522;
100 	u64 tx;
101 	u64 tx_hi;
102 	u64 tx_late_col;
103 	u64 tx_pause;
104 	u64 tx_bcast;
105 	u64 tx_mcast;
106 	u64 tx_ucast;
107 	u64 tx_deferred;
108 	u64 tx_total_col;
109 	u64 tx_exc_col;
110 	u64 tx_single_col;
111 	u64 tx_mult_col;
112 	u64 rx_discards;
113 	u64 tx_discards;
114 };
115 
116 static const struct ksz_mib_names ksz88xx_mib_names[] = {
117 	{ 0x00, "rx" },
118 	{ 0x01, "rx_hi" },
119 	{ 0x02, "rx_undersize" },
120 	{ 0x03, "rx_fragments" },
121 	{ 0x04, "rx_oversize" },
122 	{ 0x05, "rx_jabbers" },
123 	{ 0x06, "rx_symbol_err" },
124 	{ 0x07, "rx_crc_err" },
125 	{ 0x08, "rx_align_err" },
126 	{ 0x09, "rx_mac_ctrl" },
127 	{ 0x0a, "rx_pause" },
128 	{ 0x0b, "rx_bcast" },
129 	{ 0x0c, "rx_mcast" },
130 	{ 0x0d, "rx_ucast" },
131 	{ 0x0e, "rx_64_or_less" },
132 	{ 0x0f, "rx_65_127" },
133 	{ 0x10, "rx_128_255" },
134 	{ 0x11, "rx_256_511" },
135 	{ 0x12, "rx_512_1023" },
136 	{ 0x13, "rx_1024_1522" },
137 	{ 0x14, "tx" },
138 	{ 0x15, "tx_hi" },
139 	{ 0x16, "tx_late_col" },
140 	{ 0x17, "tx_pause" },
141 	{ 0x18, "tx_bcast" },
142 	{ 0x19, "tx_mcast" },
143 	{ 0x1a, "tx_ucast" },
144 	{ 0x1b, "tx_deferred" },
145 	{ 0x1c, "tx_total_col" },
146 	{ 0x1d, "tx_exc_col" },
147 	{ 0x1e, "tx_single_col" },
148 	{ 0x1f, "tx_mult_col" },
149 	{ 0x100, "rx_discards" },
150 	{ 0x101, "tx_discards" },
151 };
152 
153 static const struct ksz_mib_names ksz9477_mib_names[] = {
154 	{ 0x00, "rx_hi" },
155 	{ 0x01, "rx_undersize" },
156 	{ 0x02, "rx_fragments" },
157 	{ 0x03, "rx_oversize" },
158 	{ 0x04, "rx_jabbers" },
159 	{ 0x05, "rx_symbol_err" },
160 	{ 0x06, "rx_crc_err" },
161 	{ 0x07, "rx_align_err" },
162 	{ 0x08, "rx_mac_ctrl" },
163 	{ 0x09, "rx_pause" },
164 	{ 0x0A, "rx_bcast" },
165 	{ 0x0B, "rx_mcast" },
166 	{ 0x0C, "rx_ucast" },
167 	{ 0x0D, "rx_64_or_less" },
168 	{ 0x0E, "rx_65_127" },
169 	{ 0x0F, "rx_128_255" },
170 	{ 0x10, "rx_256_511" },
171 	{ 0x11, "rx_512_1023" },
172 	{ 0x12, "rx_1024_1522" },
173 	{ 0x13, "rx_1523_2000" },
174 	{ 0x14, "rx_2001" },
175 	{ 0x15, "tx_hi" },
176 	{ 0x16, "tx_late_col" },
177 	{ 0x17, "tx_pause" },
178 	{ 0x18, "tx_bcast" },
179 	{ 0x19, "tx_mcast" },
180 	{ 0x1A, "tx_ucast" },
181 	{ 0x1B, "tx_deferred" },
182 	{ 0x1C, "tx_total_col" },
183 	{ 0x1D, "tx_exc_col" },
184 	{ 0x1E, "tx_single_col" },
185 	{ 0x1F, "tx_mult_col" },
186 	{ 0x80, "rx_total" },
187 	{ 0x81, "tx_total" },
188 	{ 0x82, "rx_discards" },
189 	{ 0x83, "tx_discards" },
190 };
191 
192 struct ksz_driver_strength_prop {
193 	const char *name;
194 	int offset;
195 	int value;
196 };
197 
198 enum ksz_driver_strength_type {
199 	KSZ_DRIVER_STRENGTH_HI,
200 	KSZ_DRIVER_STRENGTH_LO,
201 	KSZ_DRIVER_STRENGTH_IO,
202 };
203 
204 /**
205  * struct ksz_drive_strength - drive strength mapping
206  * @reg_val:	register value
207  * @microamp:	microamp value
208  */
209 struct ksz_drive_strength {
210 	u32 reg_val;
211 	u32 microamp;
212 };
213 
214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
215  *
216  * This values are not documented in KSZ9477 variants but confirmed by
217  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
218  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
219  *
220  * Documentation in KSZ8795CLX provides more information with some
221  * recommendations:
222  * - for high speed signals
223  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
224  *      2.5V or 3.3V VDDIO.
225  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
226  *      using 1.8V VDDIO.
227  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
228  *      or 3.3V VDDIO.
229  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
230  *   5. In same interface, the heavy loading should use higher one of the
231  *      drive current strength.
232  * - for low speed signals
233  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
234  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
235  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
236  *   4. If it is heavy loading, can use higher drive current strength.
237  */
238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
239 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
240 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
241 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
242 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
243 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
244 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
245 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
246 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
247 };
248 
249 /* ksz8830_drive_strengths - Drive strength mapping for KSZ8830, KSZ8873, ..
250  *			     variants.
251  * This values are documented in KSZ8873 and KSZ8863 datasheets.
252  */
253 static const struct ksz_drive_strength ksz8830_drive_strengths[] = {
254 	{ 0,  8000 },
255 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
256 };
257 
258 static void ksz8830_phylink_mac_config(struct phylink_config *config,
259 				       unsigned int mode,
260 				       const struct phylink_link_state *state);
261 static void ksz_phylink_mac_config(struct phylink_config *config,
262 				   unsigned int mode,
263 				   const struct phylink_link_state *state);
264 static void ksz_phylink_mac_link_down(struct phylink_config *config,
265 				      unsigned int mode,
266 				      phy_interface_t interface);
267 
268 static const struct phylink_mac_ops ksz8830_phylink_mac_ops = {
269 	.mac_config	= ksz8830_phylink_mac_config,
270 	.mac_link_down	= ksz_phylink_mac_link_down,
271 	.mac_link_up	= ksz8_phylink_mac_link_up,
272 };
273 
274 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
275 	.mac_config	= ksz_phylink_mac_config,
276 	.mac_link_down	= ksz_phylink_mac_link_down,
277 	.mac_link_up	= ksz8_phylink_mac_link_up,
278 };
279 
280 static const struct ksz_dev_ops ksz88x3_dev_ops = {
281 	.setup = ksz8_setup,
282 	.get_port_addr = ksz8_get_port_addr,
283 	.cfg_port_member = ksz8_cfg_port_member,
284 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
285 	.port_setup = ksz8_port_setup,
286 	.r_phy = ksz8_r_phy,
287 	.w_phy = ksz8_w_phy,
288 	.r_mib_cnt = ksz8_r_mib_cnt,
289 	.r_mib_pkt = ksz8_r_mib_pkt,
290 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
291 	.freeze_mib = ksz8_freeze_mib,
292 	.port_init_cnt = ksz8_port_init_cnt,
293 	.fdb_dump = ksz8_fdb_dump,
294 	.fdb_add = ksz8_fdb_add,
295 	.fdb_del = ksz8_fdb_del,
296 	.mdb_add = ksz8_mdb_add,
297 	.mdb_del = ksz8_mdb_del,
298 	.vlan_filtering = ksz8_port_vlan_filtering,
299 	.vlan_add = ksz8_port_vlan_add,
300 	.vlan_del = ksz8_port_vlan_del,
301 	.mirror_add = ksz8_port_mirror_add,
302 	.mirror_del = ksz8_port_mirror_del,
303 	.get_caps = ksz8_get_caps,
304 	.config_cpu_port = ksz8_config_cpu_port,
305 	.enable_stp_addr = ksz8_enable_stp_addr,
306 	.reset = ksz8_reset_switch,
307 	.init = ksz8_switch_init,
308 	.exit = ksz8_switch_exit,
309 	.change_mtu = ksz8_change_mtu,
310 	.pme_write8 = ksz8_pme_write8,
311 	.pme_pread8 = ksz8_pme_pread8,
312 	.pme_pwrite8 = ksz8_pme_pwrite8,
313 };
314 
315 static const struct ksz_dev_ops ksz87xx_dev_ops = {
316 	.setup = ksz8_setup,
317 	.get_port_addr = ksz8_get_port_addr,
318 	.cfg_port_member = ksz8_cfg_port_member,
319 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
320 	.port_setup = ksz8_port_setup,
321 	.r_phy = ksz8_r_phy,
322 	.w_phy = ksz8_w_phy,
323 	.r_mib_cnt = ksz8_r_mib_cnt,
324 	.r_mib_pkt = ksz8_r_mib_pkt,
325 	.r_mib_stat64 = ksz_r_mib_stats64,
326 	.freeze_mib = ksz8_freeze_mib,
327 	.port_init_cnt = ksz8_port_init_cnt,
328 	.fdb_dump = ksz8_fdb_dump,
329 	.fdb_add = ksz8_fdb_add,
330 	.fdb_del = ksz8_fdb_del,
331 	.mdb_add = ksz8_mdb_add,
332 	.mdb_del = ksz8_mdb_del,
333 	.vlan_filtering = ksz8_port_vlan_filtering,
334 	.vlan_add = ksz8_port_vlan_add,
335 	.vlan_del = ksz8_port_vlan_del,
336 	.mirror_add = ksz8_port_mirror_add,
337 	.mirror_del = ksz8_port_mirror_del,
338 	.get_caps = ksz8_get_caps,
339 	.config_cpu_port = ksz8_config_cpu_port,
340 	.enable_stp_addr = ksz8_enable_stp_addr,
341 	.reset = ksz8_reset_switch,
342 	.init = ksz8_switch_init,
343 	.exit = ksz8_switch_exit,
344 	.change_mtu = ksz8_change_mtu,
345 	.pme_write8 = ksz8_pme_write8,
346 	.pme_pread8 = ksz8_pme_pread8,
347 	.pme_pwrite8 = ksz8_pme_pwrite8,
348 };
349 
350 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
351 					struct phy_device *phydev,
352 					unsigned int mode,
353 					phy_interface_t interface,
354 					int speed, int duplex, bool tx_pause,
355 					bool rx_pause);
356 
357 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
358 	.mac_config	= ksz_phylink_mac_config,
359 	.mac_link_down	= ksz_phylink_mac_link_down,
360 	.mac_link_up	= ksz9477_phylink_mac_link_up,
361 };
362 
363 static const struct ksz_dev_ops ksz9477_dev_ops = {
364 	.setup = ksz9477_setup,
365 	.get_port_addr = ksz9477_get_port_addr,
366 	.cfg_port_member = ksz9477_cfg_port_member,
367 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
368 	.port_setup = ksz9477_port_setup,
369 	.set_ageing_time = ksz9477_set_ageing_time,
370 	.r_phy = ksz9477_r_phy,
371 	.w_phy = ksz9477_w_phy,
372 	.r_mib_cnt = ksz9477_r_mib_cnt,
373 	.r_mib_pkt = ksz9477_r_mib_pkt,
374 	.r_mib_stat64 = ksz_r_mib_stats64,
375 	.freeze_mib = ksz9477_freeze_mib,
376 	.port_init_cnt = ksz9477_port_init_cnt,
377 	.vlan_filtering = ksz9477_port_vlan_filtering,
378 	.vlan_add = ksz9477_port_vlan_add,
379 	.vlan_del = ksz9477_port_vlan_del,
380 	.mirror_add = ksz9477_port_mirror_add,
381 	.mirror_del = ksz9477_port_mirror_del,
382 	.get_caps = ksz9477_get_caps,
383 	.fdb_dump = ksz9477_fdb_dump,
384 	.fdb_add = ksz9477_fdb_add,
385 	.fdb_del = ksz9477_fdb_del,
386 	.mdb_add = ksz9477_mdb_add,
387 	.mdb_del = ksz9477_mdb_del,
388 	.change_mtu = ksz9477_change_mtu,
389 	.pme_write8 = ksz_write8,
390 	.pme_pread8 = ksz_pread8,
391 	.pme_pwrite8 = ksz_pwrite8,
392 	.config_cpu_port = ksz9477_config_cpu_port,
393 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
394 	.enable_stp_addr = ksz9477_enable_stp_addr,
395 	.reset = ksz9477_reset_switch,
396 	.init = ksz9477_switch_init,
397 	.exit = ksz9477_switch_exit,
398 };
399 
400 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
401 	.mac_config	= ksz_phylink_mac_config,
402 	.mac_link_down	= ksz_phylink_mac_link_down,
403 	.mac_link_up	= ksz9477_phylink_mac_link_up,
404 };
405 
406 static const struct ksz_dev_ops lan937x_dev_ops = {
407 	.setup = lan937x_setup,
408 	.teardown = lan937x_teardown,
409 	.get_port_addr = ksz9477_get_port_addr,
410 	.cfg_port_member = ksz9477_cfg_port_member,
411 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
412 	.port_setup = lan937x_port_setup,
413 	.set_ageing_time = lan937x_set_ageing_time,
414 	.r_phy = lan937x_r_phy,
415 	.w_phy = lan937x_w_phy,
416 	.r_mib_cnt = ksz9477_r_mib_cnt,
417 	.r_mib_pkt = ksz9477_r_mib_pkt,
418 	.r_mib_stat64 = ksz_r_mib_stats64,
419 	.freeze_mib = ksz9477_freeze_mib,
420 	.port_init_cnt = ksz9477_port_init_cnt,
421 	.vlan_filtering = ksz9477_port_vlan_filtering,
422 	.vlan_add = ksz9477_port_vlan_add,
423 	.vlan_del = ksz9477_port_vlan_del,
424 	.mirror_add = ksz9477_port_mirror_add,
425 	.mirror_del = ksz9477_port_mirror_del,
426 	.get_caps = lan937x_phylink_get_caps,
427 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
428 	.fdb_dump = ksz9477_fdb_dump,
429 	.fdb_add = ksz9477_fdb_add,
430 	.fdb_del = ksz9477_fdb_del,
431 	.mdb_add = ksz9477_mdb_add,
432 	.mdb_del = ksz9477_mdb_del,
433 	.change_mtu = lan937x_change_mtu,
434 	.config_cpu_port = lan937x_config_cpu_port,
435 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
436 	.enable_stp_addr = ksz9477_enable_stp_addr,
437 	.reset = lan937x_reset_switch,
438 	.init = lan937x_switch_init,
439 	.exit = lan937x_switch_exit,
440 };
441 
442 static const u16 ksz8795_regs[] = {
443 	[REG_SW_MAC_ADDR]		= 0x68,
444 	[REG_IND_CTRL_0]		= 0x6E,
445 	[REG_IND_DATA_8]		= 0x70,
446 	[REG_IND_DATA_CHECK]		= 0x72,
447 	[REG_IND_DATA_HI]		= 0x71,
448 	[REG_IND_DATA_LO]		= 0x75,
449 	[REG_IND_MIB_CHECK]		= 0x74,
450 	[REG_IND_BYTE]			= 0xA0,
451 	[P_FORCE_CTRL]			= 0x0C,
452 	[P_LINK_STATUS]			= 0x0E,
453 	[P_LOCAL_CTRL]			= 0x07,
454 	[P_NEG_RESTART_CTRL]		= 0x0D,
455 	[P_REMOTE_STATUS]		= 0x08,
456 	[P_SPEED_STATUS]		= 0x09,
457 	[S_TAIL_TAG_CTRL]		= 0x0C,
458 	[P_STP_CTRL]			= 0x02,
459 	[S_START_CTRL]			= 0x01,
460 	[S_BROADCAST_CTRL]		= 0x06,
461 	[S_MULTICAST_CTRL]		= 0x04,
462 	[P_XMII_CTRL_0]			= 0x06,
463 	[P_XMII_CTRL_1]			= 0x06,
464 	[REG_SW_PME_CTRL]		= 0x8003,
465 	[REG_PORT_PME_STATUS]		= 0x8003,
466 	[REG_PORT_PME_CTRL]		= 0x8007,
467 };
468 
469 static const u32 ksz8795_masks[] = {
470 	[PORT_802_1P_REMAPPING]		= BIT(7),
471 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
472 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
473 	[MIB_COUNTER_VALID]		= BIT(5),
474 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
475 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
476 	[VLAN_TABLE_VALID]		= BIT(12),
477 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
478 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
479 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
480 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
481 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
482 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
483 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
484 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
485 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
486 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
487 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
488 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
489 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
490 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
491 };
492 
493 static const u8 ksz8795_xmii_ctrl0[] = {
494 	[P_MII_100MBIT]			= 0,
495 	[P_MII_10MBIT]			= 1,
496 	[P_MII_FULL_DUPLEX]		= 0,
497 	[P_MII_HALF_DUPLEX]		= 1,
498 };
499 
500 static const u8 ksz8795_xmii_ctrl1[] = {
501 	[P_RGMII_SEL]			= 3,
502 	[P_GMII_SEL]			= 2,
503 	[P_RMII_SEL]			= 1,
504 	[P_MII_SEL]			= 0,
505 	[P_GMII_1GBIT]			= 1,
506 	[P_GMII_NOT_1GBIT]		= 0,
507 };
508 
509 static const u8 ksz8795_shifts[] = {
510 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
511 	[VLAN_TABLE]			= 16,
512 	[STATIC_MAC_FWD_PORTS]		= 16,
513 	[STATIC_MAC_FID]		= 24,
514 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
515 	[DYNAMIC_MAC_ENTRIES]		= 29,
516 	[DYNAMIC_MAC_FID]		= 16,
517 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
518 	[DYNAMIC_MAC_SRC_PORT]		= 24,
519 };
520 
521 static const u16 ksz8863_regs[] = {
522 	[REG_SW_MAC_ADDR]		= 0x70,
523 	[REG_IND_CTRL_0]		= 0x79,
524 	[REG_IND_DATA_8]		= 0x7B,
525 	[REG_IND_DATA_CHECK]		= 0x7B,
526 	[REG_IND_DATA_HI]		= 0x7C,
527 	[REG_IND_DATA_LO]		= 0x80,
528 	[REG_IND_MIB_CHECK]		= 0x80,
529 	[P_FORCE_CTRL]			= 0x0C,
530 	[P_LINK_STATUS]			= 0x0E,
531 	[P_LOCAL_CTRL]			= 0x0C,
532 	[P_NEG_RESTART_CTRL]		= 0x0D,
533 	[P_REMOTE_STATUS]		= 0x0E,
534 	[P_SPEED_STATUS]		= 0x0F,
535 	[S_TAIL_TAG_CTRL]		= 0x03,
536 	[P_STP_CTRL]			= 0x02,
537 	[S_START_CTRL]			= 0x01,
538 	[S_BROADCAST_CTRL]		= 0x06,
539 	[S_MULTICAST_CTRL]		= 0x04,
540 };
541 
542 static const u32 ksz8863_masks[] = {
543 	[PORT_802_1P_REMAPPING]		= BIT(3),
544 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
545 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
546 	[MIB_COUNTER_VALID]		= BIT(6),
547 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
548 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
549 	[VLAN_TABLE_VALID]		= BIT(19),
550 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
551 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
552 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
553 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
554 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
555 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
556 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
557 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
558 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
559 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
560 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
561 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
562 };
563 
564 static u8 ksz8863_shifts[] = {
565 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
566 	[STATIC_MAC_FWD_PORTS]		= 16,
567 	[STATIC_MAC_FID]		= 22,
568 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
569 	[DYNAMIC_MAC_ENTRIES]		= 24,
570 	[DYNAMIC_MAC_FID]		= 16,
571 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
572 	[DYNAMIC_MAC_SRC_PORT]		= 20,
573 };
574 
575 static const u16 ksz9477_regs[] = {
576 	[REG_SW_MAC_ADDR]		= 0x0302,
577 	[P_STP_CTRL]			= 0x0B04,
578 	[S_START_CTRL]			= 0x0300,
579 	[S_BROADCAST_CTRL]		= 0x0332,
580 	[S_MULTICAST_CTRL]		= 0x0331,
581 	[P_XMII_CTRL_0]			= 0x0300,
582 	[P_XMII_CTRL_1]			= 0x0301,
583 	[REG_SW_PME_CTRL]		= 0x0006,
584 	[REG_PORT_PME_STATUS]		= 0x0013,
585 	[REG_PORT_PME_CTRL]		= 0x0017,
586 };
587 
588 static const u32 ksz9477_masks[] = {
589 	[ALU_STAT_WRITE]		= 0,
590 	[ALU_STAT_READ]			= 1,
591 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
592 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
593 };
594 
595 static const u8 ksz9477_shifts[] = {
596 	[ALU_STAT_INDEX]		= 16,
597 };
598 
599 static const u8 ksz9477_xmii_ctrl0[] = {
600 	[P_MII_100MBIT]			= 1,
601 	[P_MII_10MBIT]			= 0,
602 	[P_MII_FULL_DUPLEX]		= 1,
603 	[P_MII_HALF_DUPLEX]		= 0,
604 };
605 
606 static const u8 ksz9477_xmii_ctrl1[] = {
607 	[P_RGMII_SEL]			= 0,
608 	[P_RMII_SEL]			= 1,
609 	[P_GMII_SEL]			= 2,
610 	[P_MII_SEL]			= 3,
611 	[P_GMII_1GBIT]			= 0,
612 	[P_GMII_NOT_1GBIT]		= 1,
613 };
614 
615 static const u32 lan937x_masks[] = {
616 	[ALU_STAT_WRITE]		= 1,
617 	[ALU_STAT_READ]			= 2,
618 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
619 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
620 };
621 
622 static const u8 lan937x_shifts[] = {
623 	[ALU_STAT_INDEX]		= 8,
624 };
625 
626 static const struct regmap_range ksz8563_valid_regs[] = {
627 	regmap_reg_range(0x0000, 0x0003),
628 	regmap_reg_range(0x0006, 0x0006),
629 	regmap_reg_range(0x000f, 0x001f),
630 	regmap_reg_range(0x0100, 0x0100),
631 	regmap_reg_range(0x0104, 0x0107),
632 	regmap_reg_range(0x010d, 0x010d),
633 	regmap_reg_range(0x0110, 0x0113),
634 	regmap_reg_range(0x0120, 0x012b),
635 	regmap_reg_range(0x0201, 0x0201),
636 	regmap_reg_range(0x0210, 0x0213),
637 	regmap_reg_range(0x0300, 0x0300),
638 	regmap_reg_range(0x0302, 0x031b),
639 	regmap_reg_range(0x0320, 0x032b),
640 	regmap_reg_range(0x0330, 0x0336),
641 	regmap_reg_range(0x0338, 0x033e),
642 	regmap_reg_range(0x0340, 0x035f),
643 	regmap_reg_range(0x0370, 0x0370),
644 	regmap_reg_range(0x0378, 0x0378),
645 	regmap_reg_range(0x037c, 0x037d),
646 	regmap_reg_range(0x0390, 0x0393),
647 	regmap_reg_range(0x0400, 0x040e),
648 	regmap_reg_range(0x0410, 0x042f),
649 	regmap_reg_range(0x0500, 0x0519),
650 	regmap_reg_range(0x0520, 0x054b),
651 	regmap_reg_range(0x0550, 0x05b3),
652 
653 	/* port 1 */
654 	regmap_reg_range(0x1000, 0x1001),
655 	regmap_reg_range(0x1004, 0x100b),
656 	regmap_reg_range(0x1013, 0x1013),
657 	regmap_reg_range(0x1017, 0x1017),
658 	regmap_reg_range(0x101b, 0x101b),
659 	regmap_reg_range(0x101f, 0x1021),
660 	regmap_reg_range(0x1030, 0x1030),
661 	regmap_reg_range(0x1100, 0x1111),
662 	regmap_reg_range(0x111a, 0x111d),
663 	regmap_reg_range(0x1122, 0x1127),
664 	regmap_reg_range(0x112a, 0x112b),
665 	regmap_reg_range(0x1136, 0x1139),
666 	regmap_reg_range(0x113e, 0x113f),
667 	regmap_reg_range(0x1400, 0x1401),
668 	regmap_reg_range(0x1403, 0x1403),
669 	regmap_reg_range(0x1410, 0x1417),
670 	regmap_reg_range(0x1420, 0x1423),
671 	regmap_reg_range(0x1500, 0x1507),
672 	regmap_reg_range(0x1600, 0x1612),
673 	regmap_reg_range(0x1800, 0x180f),
674 	regmap_reg_range(0x1900, 0x1907),
675 	regmap_reg_range(0x1914, 0x191b),
676 	regmap_reg_range(0x1a00, 0x1a03),
677 	regmap_reg_range(0x1a04, 0x1a08),
678 	regmap_reg_range(0x1b00, 0x1b01),
679 	regmap_reg_range(0x1b04, 0x1b04),
680 	regmap_reg_range(0x1c00, 0x1c05),
681 	regmap_reg_range(0x1c08, 0x1c1b),
682 
683 	/* port 2 */
684 	regmap_reg_range(0x2000, 0x2001),
685 	regmap_reg_range(0x2004, 0x200b),
686 	regmap_reg_range(0x2013, 0x2013),
687 	regmap_reg_range(0x2017, 0x2017),
688 	regmap_reg_range(0x201b, 0x201b),
689 	regmap_reg_range(0x201f, 0x2021),
690 	regmap_reg_range(0x2030, 0x2030),
691 	regmap_reg_range(0x2100, 0x2111),
692 	regmap_reg_range(0x211a, 0x211d),
693 	regmap_reg_range(0x2122, 0x2127),
694 	regmap_reg_range(0x212a, 0x212b),
695 	regmap_reg_range(0x2136, 0x2139),
696 	regmap_reg_range(0x213e, 0x213f),
697 	regmap_reg_range(0x2400, 0x2401),
698 	regmap_reg_range(0x2403, 0x2403),
699 	regmap_reg_range(0x2410, 0x2417),
700 	regmap_reg_range(0x2420, 0x2423),
701 	regmap_reg_range(0x2500, 0x2507),
702 	regmap_reg_range(0x2600, 0x2612),
703 	regmap_reg_range(0x2800, 0x280f),
704 	regmap_reg_range(0x2900, 0x2907),
705 	regmap_reg_range(0x2914, 0x291b),
706 	regmap_reg_range(0x2a00, 0x2a03),
707 	regmap_reg_range(0x2a04, 0x2a08),
708 	regmap_reg_range(0x2b00, 0x2b01),
709 	regmap_reg_range(0x2b04, 0x2b04),
710 	regmap_reg_range(0x2c00, 0x2c05),
711 	regmap_reg_range(0x2c08, 0x2c1b),
712 
713 	/* port 3 */
714 	regmap_reg_range(0x3000, 0x3001),
715 	regmap_reg_range(0x3004, 0x300b),
716 	regmap_reg_range(0x3013, 0x3013),
717 	regmap_reg_range(0x3017, 0x3017),
718 	regmap_reg_range(0x301b, 0x301b),
719 	regmap_reg_range(0x301f, 0x3021),
720 	regmap_reg_range(0x3030, 0x3030),
721 	regmap_reg_range(0x3300, 0x3301),
722 	regmap_reg_range(0x3303, 0x3303),
723 	regmap_reg_range(0x3400, 0x3401),
724 	regmap_reg_range(0x3403, 0x3403),
725 	regmap_reg_range(0x3410, 0x3417),
726 	regmap_reg_range(0x3420, 0x3423),
727 	regmap_reg_range(0x3500, 0x3507),
728 	regmap_reg_range(0x3600, 0x3612),
729 	regmap_reg_range(0x3800, 0x380f),
730 	regmap_reg_range(0x3900, 0x3907),
731 	regmap_reg_range(0x3914, 0x391b),
732 	regmap_reg_range(0x3a00, 0x3a03),
733 	regmap_reg_range(0x3a04, 0x3a08),
734 	regmap_reg_range(0x3b00, 0x3b01),
735 	regmap_reg_range(0x3b04, 0x3b04),
736 	regmap_reg_range(0x3c00, 0x3c05),
737 	regmap_reg_range(0x3c08, 0x3c1b),
738 };
739 
740 static const struct regmap_access_table ksz8563_register_set = {
741 	.yes_ranges = ksz8563_valid_regs,
742 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
743 };
744 
745 static const struct regmap_range ksz9477_valid_regs[] = {
746 	regmap_reg_range(0x0000, 0x0003),
747 	regmap_reg_range(0x0006, 0x0006),
748 	regmap_reg_range(0x0010, 0x001f),
749 	regmap_reg_range(0x0100, 0x0100),
750 	regmap_reg_range(0x0103, 0x0107),
751 	regmap_reg_range(0x010d, 0x010d),
752 	regmap_reg_range(0x0110, 0x0113),
753 	regmap_reg_range(0x0120, 0x012b),
754 	regmap_reg_range(0x0201, 0x0201),
755 	regmap_reg_range(0x0210, 0x0213),
756 	regmap_reg_range(0x0300, 0x0300),
757 	regmap_reg_range(0x0302, 0x031b),
758 	regmap_reg_range(0x0320, 0x032b),
759 	regmap_reg_range(0x0330, 0x0336),
760 	regmap_reg_range(0x0338, 0x033b),
761 	regmap_reg_range(0x033e, 0x033e),
762 	regmap_reg_range(0x0340, 0x035f),
763 	regmap_reg_range(0x0370, 0x0370),
764 	regmap_reg_range(0x0378, 0x0378),
765 	regmap_reg_range(0x037c, 0x037d),
766 	regmap_reg_range(0x0390, 0x0393),
767 	regmap_reg_range(0x0400, 0x040e),
768 	regmap_reg_range(0x0410, 0x042f),
769 	regmap_reg_range(0x0444, 0x044b),
770 	regmap_reg_range(0x0450, 0x046f),
771 	regmap_reg_range(0x0500, 0x0519),
772 	regmap_reg_range(0x0520, 0x054b),
773 	regmap_reg_range(0x0550, 0x05b3),
774 	regmap_reg_range(0x0604, 0x060b),
775 	regmap_reg_range(0x0610, 0x0612),
776 	regmap_reg_range(0x0614, 0x062c),
777 	regmap_reg_range(0x0640, 0x0645),
778 	regmap_reg_range(0x0648, 0x064d),
779 
780 	/* port 1 */
781 	regmap_reg_range(0x1000, 0x1001),
782 	regmap_reg_range(0x1013, 0x1013),
783 	regmap_reg_range(0x1017, 0x1017),
784 	regmap_reg_range(0x101b, 0x101b),
785 	regmap_reg_range(0x101f, 0x1020),
786 	regmap_reg_range(0x1030, 0x1030),
787 	regmap_reg_range(0x1100, 0x1115),
788 	regmap_reg_range(0x111a, 0x111f),
789 	regmap_reg_range(0x1120, 0x112b),
790 	regmap_reg_range(0x1134, 0x113b),
791 	regmap_reg_range(0x113c, 0x113f),
792 	regmap_reg_range(0x1400, 0x1401),
793 	regmap_reg_range(0x1403, 0x1403),
794 	regmap_reg_range(0x1410, 0x1417),
795 	regmap_reg_range(0x1420, 0x1423),
796 	regmap_reg_range(0x1500, 0x1507),
797 	regmap_reg_range(0x1600, 0x1613),
798 	regmap_reg_range(0x1800, 0x180f),
799 	regmap_reg_range(0x1820, 0x1827),
800 	regmap_reg_range(0x1830, 0x1837),
801 	regmap_reg_range(0x1840, 0x184b),
802 	regmap_reg_range(0x1900, 0x1907),
803 	regmap_reg_range(0x1914, 0x191b),
804 	regmap_reg_range(0x1920, 0x1920),
805 	regmap_reg_range(0x1923, 0x1927),
806 	regmap_reg_range(0x1a00, 0x1a03),
807 	regmap_reg_range(0x1a04, 0x1a07),
808 	regmap_reg_range(0x1b00, 0x1b01),
809 	regmap_reg_range(0x1b04, 0x1b04),
810 	regmap_reg_range(0x1c00, 0x1c05),
811 	regmap_reg_range(0x1c08, 0x1c1b),
812 
813 	/* port 2 */
814 	regmap_reg_range(0x2000, 0x2001),
815 	regmap_reg_range(0x2013, 0x2013),
816 	regmap_reg_range(0x2017, 0x2017),
817 	regmap_reg_range(0x201b, 0x201b),
818 	regmap_reg_range(0x201f, 0x2020),
819 	regmap_reg_range(0x2030, 0x2030),
820 	regmap_reg_range(0x2100, 0x2115),
821 	regmap_reg_range(0x211a, 0x211f),
822 	regmap_reg_range(0x2120, 0x212b),
823 	regmap_reg_range(0x2134, 0x213b),
824 	regmap_reg_range(0x213c, 0x213f),
825 	regmap_reg_range(0x2400, 0x2401),
826 	regmap_reg_range(0x2403, 0x2403),
827 	regmap_reg_range(0x2410, 0x2417),
828 	regmap_reg_range(0x2420, 0x2423),
829 	regmap_reg_range(0x2500, 0x2507),
830 	regmap_reg_range(0x2600, 0x2613),
831 	regmap_reg_range(0x2800, 0x280f),
832 	regmap_reg_range(0x2820, 0x2827),
833 	regmap_reg_range(0x2830, 0x2837),
834 	regmap_reg_range(0x2840, 0x284b),
835 	regmap_reg_range(0x2900, 0x2907),
836 	regmap_reg_range(0x2914, 0x291b),
837 	regmap_reg_range(0x2920, 0x2920),
838 	regmap_reg_range(0x2923, 0x2927),
839 	regmap_reg_range(0x2a00, 0x2a03),
840 	regmap_reg_range(0x2a04, 0x2a07),
841 	regmap_reg_range(0x2b00, 0x2b01),
842 	regmap_reg_range(0x2b04, 0x2b04),
843 	regmap_reg_range(0x2c00, 0x2c05),
844 	regmap_reg_range(0x2c08, 0x2c1b),
845 
846 	/* port 3 */
847 	regmap_reg_range(0x3000, 0x3001),
848 	regmap_reg_range(0x3013, 0x3013),
849 	regmap_reg_range(0x3017, 0x3017),
850 	regmap_reg_range(0x301b, 0x301b),
851 	regmap_reg_range(0x301f, 0x3020),
852 	regmap_reg_range(0x3030, 0x3030),
853 	regmap_reg_range(0x3100, 0x3115),
854 	regmap_reg_range(0x311a, 0x311f),
855 	regmap_reg_range(0x3120, 0x312b),
856 	regmap_reg_range(0x3134, 0x313b),
857 	regmap_reg_range(0x313c, 0x313f),
858 	regmap_reg_range(0x3400, 0x3401),
859 	regmap_reg_range(0x3403, 0x3403),
860 	regmap_reg_range(0x3410, 0x3417),
861 	regmap_reg_range(0x3420, 0x3423),
862 	regmap_reg_range(0x3500, 0x3507),
863 	regmap_reg_range(0x3600, 0x3613),
864 	regmap_reg_range(0x3800, 0x380f),
865 	regmap_reg_range(0x3820, 0x3827),
866 	regmap_reg_range(0x3830, 0x3837),
867 	regmap_reg_range(0x3840, 0x384b),
868 	regmap_reg_range(0x3900, 0x3907),
869 	regmap_reg_range(0x3914, 0x391b),
870 	regmap_reg_range(0x3920, 0x3920),
871 	regmap_reg_range(0x3923, 0x3927),
872 	regmap_reg_range(0x3a00, 0x3a03),
873 	regmap_reg_range(0x3a04, 0x3a07),
874 	regmap_reg_range(0x3b00, 0x3b01),
875 	regmap_reg_range(0x3b04, 0x3b04),
876 	regmap_reg_range(0x3c00, 0x3c05),
877 	regmap_reg_range(0x3c08, 0x3c1b),
878 
879 	/* port 4 */
880 	regmap_reg_range(0x4000, 0x4001),
881 	regmap_reg_range(0x4013, 0x4013),
882 	regmap_reg_range(0x4017, 0x4017),
883 	regmap_reg_range(0x401b, 0x401b),
884 	regmap_reg_range(0x401f, 0x4020),
885 	regmap_reg_range(0x4030, 0x4030),
886 	regmap_reg_range(0x4100, 0x4115),
887 	regmap_reg_range(0x411a, 0x411f),
888 	regmap_reg_range(0x4120, 0x412b),
889 	regmap_reg_range(0x4134, 0x413b),
890 	regmap_reg_range(0x413c, 0x413f),
891 	regmap_reg_range(0x4400, 0x4401),
892 	regmap_reg_range(0x4403, 0x4403),
893 	regmap_reg_range(0x4410, 0x4417),
894 	regmap_reg_range(0x4420, 0x4423),
895 	regmap_reg_range(0x4500, 0x4507),
896 	regmap_reg_range(0x4600, 0x4613),
897 	regmap_reg_range(0x4800, 0x480f),
898 	regmap_reg_range(0x4820, 0x4827),
899 	regmap_reg_range(0x4830, 0x4837),
900 	regmap_reg_range(0x4840, 0x484b),
901 	regmap_reg_range(0x4900, 0x4907),
902 	regmap_reg_range(0x4914, 0x491b),
903 	regmap_reg_range(0x4920, 0x4920),
904 	regmap_reg_range(0x4923, 0x4927),
905 	regmap_reg_range(0x4a00, 0x4a03),
906 	regmap_reg_range(0x4a04, 0x4a07),
907 	regmap_reg_range(0x4b00, 0x4b01),
908 	regmap_reg_range(0x4b04, 0x4b04),
909 	regmap_reg_range(0x4c00, 0x4c05),
910 	regmap_reg_range(0x4c08, 0x4c1b),
911 
912 	/* port 5 */
913 	regmap_reg_range(0x5000, 0x5001),
914 	regmap_reg_range(0x5013, 0x5013),
915 	regmap_reg_range(0x5017, 0x5017),
916 	regmap_reg_range(0x501b, 0x501b),
917 	regmap_reg_range(0x501f, 0x5020),
918 	regmap_reg_range(0x5030, 0x5030),
919 	regmap_reg_range(0x5100, 0x5115),
920 	regmap_reg_range(0x511a, 0x511f),
921 	regmap_reg_range(0x5120, 0x512b),
922 	regmap_reg_range(0x5134, 0x513b),
923 	regmap_reg_range(0x513c, 0x513f),
924 	regmap_reg_range(0x5400, 0x5401),
925 	regmap_reg_range(0x5403, 0x5403),
926 	regmap_reg_range(0x5410, 0x5417),
927 	regmap_reg_range(0x5420, 0x5423),
928 	regmap_reg_range(0x5500, 0x5507),
929 	regmap_reg_range(0x5600, 0x5613),
930 	regmap_reg_range(0x5800, 0x580f),
931 	regmap_reg_range(0x5820, 0x5827),
932 	regmap_reg_range(0x5830, 0x5837),
933 	regmap_reg_range(0x5840, 0x584b),
934 	regmap_reg_range(0x5900, 0x5907),
935 	regmap_reg_range(0x5914, 0x591b),
936 	regmap_reg_range(0x5920, 0x5920),
937 	regmap_reg_range(0x5923, 0x5927),
938 	regmap_reg_range(0x5a00, 0x5a03),
939 	regmap_reg_range(0x5a04, 0x5a07),
940 	regmap_reg_range(0x5b00, 0x5b01),
941 	regmap_reg_range(0x5b04, 0x5b04),
942 	regmap_reg_range(0x5c00, 0x5c05),
943 	regmap_reg_range(0x5c08, 0x5c1b),
944 
945 	/* port 6 */
946 	regmap_reg_range(0x6000, 0x6001),
947 	regmap_reg_range(0x6013, 0x6013),
948 	regmap_reg_range(0x6017, 0x6017),
949 	regmap_reg_range(0x601b, 0x601b),
950 	regmap_reg_range(0x601f, 0x6020),
951 	regmap_reg_range(0x6030, 0x6030),
952 	regmap_reg_range(0x6300, 0x6301),
953 	regmap_reg_range(0x6400, 0x6401),
954 	regmap_reg_range(0x6403, 0x6403),
955 	regmap_reg_range(0x6410, 0x6417),
956 	regmap_reg_range(0x6420, 0x6423),
957 	regmap_reg_range(0x6500, 0x6507),
958 	regmap_reg_range(0x6600, 0x6613),
959 	regmap_reg_range(0x6800, 0x680f),
960 	regmap_reg_range(0x6820, 0x6827),
961 	regmap_reg_range(0x6830, 0x6837),
962 	regmap_reg_range(0x6840, 0x684b),
963 	regmap_reg_range(0x6900, 0x6907),
964 	regmap_reg_range(0x6914, 0x691b),
965 	regmap_reg_range(0x6920, 0x6920),
966 	regmap_reg_range(0x6923, 0x6927),
967 	regmap_reg_range(0x6a00, 0x6a03),
968 	regmap_reg_range(0x6a04, 0x6a07),
969 	regmap_reg_range(0x6b00, 0x6b01),
970 	regmap_reg_range(0x6b04, 0x6b04),
971 	regmap_reg_range(0x6c00, 0x6c05),
972 	regmap_reg_range(0x6c08, 0x6c1b),
973 
974 	/* port 7 */
975 	regmap_reg_range(0x7000, 0x7001),
976 	regmap_reg_range(0x7013, 0x7013),
977 	regmap_reg_range(0x7017, 0x7017),
978 	regmap_reg_range(0x701b, 0x701b),
979 	regmap_reg_range(0x701f, 0x7020),
980 	regmap_reg_range(0x7030, 0x7030),
981 	regmap_reg_range(0x7200, 0x7203),
982 	regmap_reg_range(0x7206, 0x7207),
983 	regmap_reg_range(0x7300, 0x7301),
984 	regmap_reg_range(0x7400, 0x7401),
985 	regmap_reg_range(0x7403, 0x7403),
986 	regmap_reg_range(0x7410, 0x7417),
987 	regmap_reg_range(0x7420, 0x7423),
988 	regmap_reg_range(0x7500, 0x7507),
989 	regmap_reg_range(0x7600, 0x7613),
990 	regmap_reg_range(0x7800, 0x780f),
991 	regmap_reg_range(0x7820, 0x7827),
992 	regmap_reg_range(0x7830, 0x7837),
993 	regmap_reg_range(0x7840, 0x784b),
994 	regmap_reg_range(0x7900, 0x7907),
995 	regmap_reg_range(0x7914, 0x791b),
996 	regmap_reg_range(0x7920, 0x7920),
997 	regmap_reg_range(0x7923, 0x7927),
998 	regmap_reg_range(0x7a00, 0x7a03),
999 	regmap_reg_range(0x7a04, 0x7a07),
1000 	regmap_reg_range(0x7b00, 0x7b01),
1001 	regmap_reg_range(0x7b04, 0x7b04),
1002 	regmap_reg_range(0x7c00, 0x7c05),
1003 	regmap_reg_range(0x7c08, 0x7c1b),
1004 };
1005 
1006 static const struct regmap_access_table ksz9477_register_set = {
1007 	.yes_ranges = ksz9477_valid_regs,
1008 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1009 };
1010 
1011 static const struct regmap_range ksz9896_valid_regs[] = {
1012 	regmap_reg_range(0x0000, 0x0003),
1013 	regmap_reg_range(0x0006, 0x0006),
1014 	regmap_reg_range(0x0010, 0x001f),
1015 	regmap_reg_range(0x0100, 0x0100),
1016 	regmap_reg_range(0x0103, 0x0107),
1017 	regmap_reg_range(0x010d, 0x010d),
1018 	regmap_reg_range(0x0110, 0x0113),
1019 	regmap_reg_range(0x0120, 0x0127),
1020 	regmap_reg_range(0x0201, 0x0201),
1021 	regmap_reg_range(0x0210, 0x0213),
1022 	regmap_reg_range(0x0300, 0x0300),
1023 	regmap_reg_range(0x0302, 0x030b),
1024 	regmap_reg_range(0x0310, 0x031b),
1025 	regmap_reg_range(0x0320, 0x032b),
1026 	regmap_reg_range(0x0330, 0x0336),
1027 	regmap_reg_range(0x0338, 0x033b),
1028 	regmap_reg_range(0x033e, 0x033e),
1029 	regmap_reg_range(0x0340, 0x035f),
1030 	regmap_reg_range(0x0370, 0x0370),
1031 	regmap_reg_range(0x0378, 0x0378),
1032 	regmap_reg_range(0x037c, 0x037d),
1033 	regmap_reg_range(0x0390, 0x0393),
1034 	regmap_reg_range(0x0400, 0x040e),
1035 	regmap_reg_range(0x0410, 0x042f),
1036 
1037 	/* port 1 */
1038 	regmap_reg_range(0x1000, 0x1001),
1039 	regmap_reg_range(0x1013, 0x1013),
1040 	regmap_reg_range(0x1017, 0x1017),
1041 	regmap_reg_range(0x101b, 0x101b),
1042 	regmap_reg_range(0x101f, 0x1020),
1043 	regmap_reg_range(0x1030, 0x1030),
1044 	regmap_reg_range(0x1100, 0x1115),
1045 	regmap_reg_range(0x111a, 0x111f),
1046 	regmap_reg_range(0x1122, 0x1127),
1047 	regmap_reg_range(0x112a, 0x112b),
1048 	regmap_reg_range(0x1136, 0x1139),
1049 	regmap_reg_range(0x113e, 0x113f),
1050 	regmap_reg_range(0x1400, 0x1401),
1051 	regmap_reg_range(0x1403, 0x1403),
1052 	regmap_reg_range(0x1410, 0x1417),
1053 	regmap_reg_range(0x1420, 0x1423),
1054 	regmap_reg_range(0x1500, 0x1507),
1055 	regmap_reg_range(0x1600, 0x1612),
1056 	regmap_reg_range(0x1800, 0x180f),
1057 	regmap_reg_range(0x1820, 0x1827),
1058 	regmap_reg_range(0x1830, 0x1837),
1059 	regmap_reg_range(0x1840, 0x184b),
1060 	regmap_reg_range(0x1900, 0x1907),
1061 	regmap_reg_range(0x1914, 0x1915),
1062 	regmap_reg_range(0x1a00, 0x1a03),
1063 	regmap_reg_range(0x1a04, 0x1a07),
1064 	regmap_reg_range(0x1b00, 0x1b01),
1065 	regmap_reg_range(0x1b04, 0x1b04),
1066 
1067 	/* port 2 */
1068 	regmap_reg_range(0x2000, 0x2001),
1069 	regmap_reg_range(0x2013, 0x2013),
1070 	regmap_reg_range(0x2017, 0x2017),
1071 	regmap_reg_range(0x201b, 0x201b),
1072 	regmap_reg_range(0x201f, 0x2020),
1073 	regmap_reg_range(0x2030, 0x2030),
1074 	regmap_reg_range(0x2100, 0x2115),
1075 	regmap_reg_range(0x211a, 0x211f),
1076 	regmap_reg_range(0x2122, 0x2127),
1077 	regmap_reg_range(0x212a, 0x212b),
1078 	regmap_reg_range(0x2136, 0x2139),
1079 	regmap_reg_range(0x213e, 0x213f),
1080 	regmap_reg_range(0x2400, 0x2401),
1081 	regmap_reg_range(0x2403, 0x2403),
1082 	regmap_reg_range(0x2410, 0x2417),
1083 	regmap_reg_range(0x2420, 0x2423),
1084 	regmap_reg_range(0x2500, 0x2507),
1085 	regmap_reg_range(0x2600, 0x2612),
1086 	regmap_reg_range(0x2800, 0x280f),
1087 	regmap_reg_range(0x2820, 0x2827),
1088 	regmap_reg_range(0x2830, 0x2837),
1089 	regmap_reg_range(0x2840, 0x284b),
1090 	regmap_reg_range(0x2900, 0x2907),
1091 	regmap_reg_range(0x2914, 0x2915),
1092 	regmap_reg_range(0x2a00, 0x2a03),
1093 	regmap_reg_range(0x2a04, 0x2a07),
1094 	regmap_reg_range(0x2b00, 0x2b01),
1095 	regmap_reg_range(0x2b04, 0x2b04),
1096 
1097 	/* port 3 */
1098 	regmap_reg_range(0x3000, 0x3001),
1099 	regmap_reg_range(0x3013, 0x3013),
1100 	regmap_reg_range(0x3017, 0x3017),
1101 	regmap_reg_range(0x301b, 0x301b),
1102 	regmap_reg_range(0x301f, 0x3020),
1103 	regmap_reg_range(0x3030, 0x3030),
1104 	regmap_reg_range(0x3100, 0x3115),
1105 	regmap_reg_range(0x311a, 0x311f),
1106 	regmap_reg_range(0x3122, 0x3127),
1107 	regmap_reg_range(0x312a, 0x312b),
1108 	regmap_reg_range(0x3136, 0x3139),
1109 	regmap_reg_range(0x313e, 0x313f),
1110 	regmap_reg_range(0x3400, 0x3401),
1111 	regmap_reg_range(0x3403, 0x3403),
1112 	regmap_reg_range(0x3410, 0x3417),
1113 	regmap_reg_range(0x3420, 0x3423),
1114 	regmap_reg_range(0x3500, 0x3507),
1115 	regmap_reg_range(0x3600, 0x3612),
1116 	regmap_reg_range(0x3800, 0x380f),
1117 	regmap_reg_range(0x3820, 0x3827),
1118 	regmap_reg_range(0x3830, 0x3837),
1119 	regmap_reg_range(0x3840, 0x384b),
1120 	regmap_reg_range(0x3900, 0x3907),
1121 	regmap_reg_range(0x3914, 0x3915),
1122 	regmap_reg_range(0x3a00, 0x3a03),
1123 	regmap_reg_range(0x3a04, 0x3a07),
1124 	regmap_reg_range(0x3b00, 0x3b01),
1125 	regmap_reg_range(0x3b04, 0x3b04),
1126 
1127 	/* port 4 */
1128 	regmap_reg_range(0x4000, 0x4001),
1129 	regmap_reg_range(0x4013, 0x4013),
1130 	regmap_reg_range(0x4017, 0x4017),
1131 	regmap_reg_range(0x401b, 0x401b),
1132 	regmap_reg_range(0x401f, 0x4020),
1133 	regmap_reg_range(0x4030, 0x4030),
1134 	regmap_reg_range(0x4100, 0x4115),
1135 	regmap_reg_range(0x411a, 0x411f),
1136 	regmap_reg_range(0x4122, 0x4127),
1137 	regmap_reg_range(0x412a, 0x412b),
1138 	regmap_reg_range(0x4136, 0x4139),
1139 	regmap_reg_range(0x413e, 0x413f),
1140 	regmap_reg_range(0x4400, 0x4401),
1141 	regmap_reg_range(0x4403, 0x4403),
1142 	regmap_reg_range(0x4410, 0x4417),
1143 	regmap_reg_range(0x4420, 0x4423),
1144 	regmap_reg_range(0x4500, 0x4507),
1145 	regmap_reg_range(0x4600, 0x4612),
1146 	regmap_reg_range(0x4800, 0x480f),
1147 	regmap_reg_range(0x4820, 0x4827),
1148 	regmap_reg_range(0x4830, 0x4837),
1149 	regmap_reg_range(0x4840, 0x484b),
1150 	regmap_reg_range(0x4900, 0x4907),
1151 	regmap_reg_range(0x4914, 0x4915),
1152 	regmap_reg_range(0x4a00, 0x4a03),
1153 	regmap_reg_range(0x4a04, 0x4a07),
1154 	regmap_reg_range(0x4b00, 0x4b01),
1155 	regmap_reg_range(0x4b04, 0x4b04),
1156 
1157 	/* port 5 */
1158 	regmap_reg_range(0x5000, 0x5001),
1159 	regmap_reg_range(0x5013, 0x5013),
1160 	regmap_reg_range(0x5017, 0x5017),
1161 	regmap_reg_range(0x501b, 0x501b),
1162 	regmap_reg_range(0x501f, 0x5020),
1163 	regmap_reg_range(0x5030, 0x5030),
1164 	regmap_reg_range(0x5100, 0x5115),
1165 	regmap_reg_range(0x511a, 0x511f),
1166 	regmap_reg_range(0x5122, 0x5127),
1167 	regmap_reg_range(0x512a, 0x512b),
1168 	regmap_reg_range(0x5136, 0x5139),
1169 	regmap_reg_range(0x513e, 0x513f),
1170 	regmap_reg_range(0x5400, 0x5401),
1171 	regmap_reg_range(0x5403, 0x5403),
1172 	regmap_reg_range(0x5410, 0x5417),
1173 	regmap_reg_range(0x5420, 0x5423),
1174 	regmap_reg_range(0x5500, 0x5507),
1175 	regmap_reg_range(0x5600, 0x5612),
1176 	regmap_reg_range(0x5800, 0x580f),
1177 	regmap_reg_range(0x5820, 0x5827),
1178 	regmap_reg_range(0x5830, 0x5837),
1179 	regmap_reg_range(0x5840, 0x584b),
1180 	regmap_reg_range(0x5900, 0x5907),
1181 	regmap_reg_range(0x5914, 0x5915),
1182 	regmap_reg_range(0x5a00, 0x5a03),
1183 	regmap_reg_range(0x5a04, 0x5a07),
1184 	regmap_reg_range(0x5b00, 0x5b01),
1185 	regmap_reg_range(0x5b04, 0x5b04),
1186 
1187 	/* port 6 */
1188 	regmap_reg_range(0x6000, 0x6001),
1189 	regmap_reg_range(0x6013, 0x6013),
1190 	regmap_reg_range(0x6017, 0x6017),
1191 	regmap_reg_range(0x601b, 0x601b),
1192 	regmap_reg_range(0x601f, 0x6020),
1193 	regmap_reg_range(0x6030, 0x6030),
1194 	regmap_reg_range(0x6100, 0x6115),
1195 	regmap_reg_range(0x611a, 0x611f),
1196 	regmap_reg_range(0x6122, 0x6127),
1197 	regmap_reg_range(0x612a, 0x612b),
1198 	regmap_reg_range(0x6136, 0x6139),
1199 	regmap_reg_range(0x613e, 0x613f),
1200 	regmap_reg_range(0x6300, 0x6301),
1201 	regmap_reg_range(0x6400, 0x6401),
1202 	regmap_reg_range(0x6403, 0x6403),
1203 	regmap_reg_range(0x6410, 0x6417),
1204 	regmap_reg_range(0x6420, 0x6423),
1205 	regmap_reg_range(0x6500, 0x6507),
1206 	regmap_reg_range(0x6600, 0x6612),
1207 	regmap_reg_range(0x6800, 0x680f),
1208 	regmap_reg_range(0x6820, 0x6827),
1209 	regmap_reg_range(0x6830, 0x6837),
1210 	regmap_reg_range(0x6840, 0x684b),
1211 	regmap_reg_range(0x6900, 0x6907),
1212 	regmap_reg_range(0x6914, 0x6915),
1213 	regmap_reg_range(0x6a00, 0x6a03),
1214 	regmap_reg_range(0x6a04, 0x6a07),
1215 	regmap_reg_range(0x6b00, 0x6b01),
1216 	regmap_reg_range(0x6b04, 0x6b04),
1217 };
1218 
1219 static const struct regmap_access_table ksz9896_register_set = {
1220 	.yes_ranges = ksz9896_valid_regs,
1221 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1222 };
1223 
1224 static const struct regmap_range ksz8873_valid_regs[] = {
1225 	regmap_reg_range(0x00, 0x01),
1226 	/* global control register */
1227 	regmap_reg_range(0x02, 0x0f),
1228 
1229 	/* port registers */
1230 	regmap_reg_range(0x10, 0x1d),
1231 	regmap_reg_range(0x1e, 0x1f),
1232 	regmap_reg_range(0x20, 0x2d),
1233 	regmap_reg_range(0x2e, 0x2f),
1234 	regmap_reg_range(0x30, 0x39),
1235 	regmap_reg_range(0x3f, 0x3f),
1236 
1237 	/* advanced control registers */
1238 	regmap_reg_range(0x60, 0x6f),
1239 	regmap_reg_range(0x70, 0x75),
1240 	regmap_reg_range(0x76, 0x78),
1241 	regmap_reg_range(0x79, 0x7a),
1242 	regmap_reg_range(0x7b, 0x83),
1243 	regmap_reg_range(0x8e, 0x99),
1244 	regmap_reg_range(0x9a, 0xa5),
1245 	regmap_reg_range(0xa6, 0xa6),
1246 	regmap_reg_range(0xa7, 0xaa),
1247 	regmap_reg_range(0xab, 0xae),
1248 	regmap_reg_range(0xaf, 0xba),
1249 	regmap_reg_range(0xbb, 0xbc),
1250 	regmap_reg_range(0xbd, 0xbd),
1251 	regmap_reg_range(0xc0, 0xc0),
1252 	regmap_reg_range(0xc2, 0xc2),
1253 	regmap_reg_range(0xc3, 0xc3),
1254 	regmap_reg_range(0xc4, 0xc4),
1255 	regmap_reg_range(0xc6, 0xc6),
1256 };
1257 
1258 static const struct regmap_access_table ksz8873_register_set = {
1259 	.yes_ranges = ksz8873_valid_regs,
1260 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1261 };
1262 
1263 const struct ksz_chip_data ksz_switch_chips[] = {
1264 	[KSZ8563] = {
1265 		.chip_id = KSZ8563_CHIP_ID,
1266 		.dev_name = "KSZ8563",
1267 		.num_vlans = 4096,
1268 		.num_alus = 4096,
1269 		.num_statics = 16,
1270 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1271 		.port_cnt = 3,		/* total port count */
1272 		.port_nirqs = 3,
1273 		.num_tx_queues = 4,
1274 		.num_ipms = 8,
1275 		.tc_cbs_supported = true,
1276 		.ops = &ksz9477_dev_ops,
1277 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1278 		.mib_names = ksz9477_mib_names,
1279 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1280 		.reg_mib_cnt = MIB_COUNTER_NUM,
1281 		.regs = ksz9477_regs,
1282 		.masks = ksz9477_masks,
1283 		.shifts = ksz9477_shifts,
1284 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1285 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1286 		.supports_mii = {false, false, true},
1287 		.supports_rmii = {false, false, true},
1288 		.supports_rgmii = {false, false, true},
1289 		.internal_phy = {true, true, false},
1290 		.gbit_capable = {false, false, true},
1291 		.wr_table = &ksz8563_register_set,
1292 		.rd_table = &ksz8563_register_set,
1293 	},
1294 
1295 	[KSZ8795] = {
1296 		.chip_id = KSZ8795_CHIP_ID,
1297 		.dev_name = "KSZ8795",
1298 		.num_vlans = 4096,
1299 		.num_alus = 0,
1300 		.num_statics = 32,
1301 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1302 		.port_cnt = 5,		/* total cpu and user ports */
1303 		.num_tx_queues = 4,
1304 		.num_ipms = 4,
1305 		.ops = &ksz87xx_dev_ops,
1306 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1307 		.ksz87xx_eee_link_erratum = true,
1308 		.mib_names = ksz9477_mib_names,
1309 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1310 		.reg_mib_cnt = MIB_COUNTER_NUM,
1311 		.regs = ksz8795_regs,
1312 		.masks = ksz8795_masks,
1313 		.shifts = ksz8795_shifts,
1314 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1315 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1316 		.supports_mii = {false, false, false, false, true},
1317 		.supports_rmii = {false, false, false, false, true},
1318 		.supports_rgmii = {false, false, false, false, true},
1319 		.internal_phy = {true, true, true, true, false},
1320 	},
1321 
1322 	[KSZ8794] = {
1323 		/* WARNING
1324 		 * =======
1325 		 * KSZ8794 is similar to KSZ8795, except the port map
1326 		 * contains a gap between external and CPU ports, the
1327 		 * port map is NOT continuous. The per-port register
1328 		 * map is shifted accordingly too, i.e. registers at
1329 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1330 		 * used on KSZ8795 for external port 3.
1331 		 *           external  cpu
1332 		 * KSZ8794   0,1,2      4
1333 		 * KSZ8795   0,1,2,3    4
1334 		 * KSZ8765   0,1,2,3    4
1335 		 * port_cnt is configured as 5, even though it is 4
1336 		 */
1337 		.chip_id = KSZ8794_CHIP_ID,
1338 		.dev_name = "KSZ8794",
1339 		.num_vlans = 4096,
1340 		.num_alus = 0,
1341 		.num_statics = 32,
1342 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1343 		.port_cnt = 5,		/* total cpu and user ports */
1344 		.num_tx_queues = 4,
1345 		.num_ipms = 4,
1346 		.ops = &ksz87xx_dev_ops,
1347 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1348 		.ksz87xx_eee_link_erratum = true,
1349 		.mib_names = ksz9477_mib_names,
1350 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1351 		.reg_mib_cnt = MIB_COUNTER_NUM,
1352 		.regs = ksz8795_regs,
1353 		.masks = ksz8795_masks,
1354 		.shifts = ksz8795_shifts,
1355 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1356 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1357 		.supports_mii = {false, false, false, false, true},
1358 		.supports_rmii = {false, false, false, false, true},
1359 		.supports_rgmii = {false, false, false, false, true},
1360 		.internal_phy = {true, true, true, false, false},
1361 	},
1362 
1363 	[KSZ8765] = {
1364 		.chip_id = KSZ8765_CHIP_ID,
1365 		.dev_name = "KSZ8765",
1366 		.num_vlans = 4096,
1367 		.num_alus = 0,
1368 		.num_statics = 32,
1369 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1370 		.port_cnt = 5,		/* total cpu and user ports */
1371 		.num_tx_queues = 4,
1372 		.num_ipms = 4,
1373 		.ops = &ksz87xx_dev_ops,
1374 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1375 		.ksz87xx_eee_link_erratum = true,
1376 		.mib_names = ksz9477_mib_names,
1377 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1378 		.reg_mib_cnt = MIB_COUNTER_NUM,
1379 		.regs = ksz8795_regs,
1380 		.masks = ksz8795_masks,
1381 		.shifts = ksz8795_shifts,
1382 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1383 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1384 		.supports_mii = {false, false, false, false, true},
1385 		.supports_rmii = {false, false, false, false, true},
1386 		.supports_rgmii = {false, false, false, false, true},
1387 		.internal_phy = {true, true, true, true, false},
1388 	},
1389 
1390 	[KSZ8830] = {
1391 		.chip_id = KSZ8830_CHIP_ID,
1392 		.dev_name = "KSZ8863/KSZ8873",
1393 		.num_vlans = 16,
1394 		.num_alus = 0,
1395 		.num_statics = 8,
1396 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1397 		.port_cnt = 3,
1398 		.num_tx_queues = 4,
1399 		.num_ipms = 4,
1400 		.ops = &ksz88x3_dev_ops,
1401 		.phylink_mac_ops = &ksz8830_phylink_mac_ops,
1402 		.mib_names = ksz88xx_mib_names,
1403 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1404 		.reg_mib_cnt = MIB_COUNTER_NUM,
1405 		.regs = ksz8863_regs,
1406 		.masks = ksz8863_masks,
1407 		.shifts = ksz8863_shifts,
1408 		.supports_mii = {false, false, true},
1409 		.supports_rmii = {false, false, true},
1410 		.internal_phy = {true, true, false},
1411 		.wr_table = &ksz8873_register_set,
1412 		.rd_table = &ksz8873_register_set,
1413 	},
1414 
1415 	[KSZ9477] = {
1416 		.chip_id = KSZ9477_CHIP_ID,
1417 		.dev_name = "KSZ9477",
1418 		.num_vlans = 4096,
1419 		.num_alus = 4096,
1420 		.num_statics = 16,
1421 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1422 		.port_cnt = 7,		/* total physical port count */
1423 		.port_nirqs = 4,
1424 		.num_tx_queues = 4,
1425 		.num_ipms = 8,
1426 		.tc_cbs_supported = true,
1427 		.ops = &ksz9477_dev_ops,
1428 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1429 		.phy_errata_9477 = true,
1430 		.mib_names = ksz9477_mib_names,
1431 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1432 		.reg_mib_cnt = MIB_COUNTER_NUM,
1433 		.regs = ksz9477_regs,
1434 		.masks = ksz9477_masks,
1435 		.shifts = ksz9477_shifts,
1436 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1437 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1438 		.supports_mii	= {false, false, false, false,
1439 				   false, true, false},
1440 		.supports_rmii	= {false, false, false, false,
1441 				   false, true, false},
1442 		.supports_rgmii = {false, false, false, false,
1443 				   false, true, false},
1444 		.internal_phy	= {true, true, true, true,
1445 				   true, false, false},
1446 		.gbit_capable	= {true, true, true, true, true, true, true},
1447 		.wr_table = &ksz9477_register_set,
1448 		.rd_table = &ksz9477_register_set,
1449 	},
1450 
1451 	[KSZ9896] = {
1452 		.chip_id = KSZ9896_CHIP_ID,
1453 		.dev_name = "KSZ9896",
1454 		.num_vlans = 4096,
1455 		.num_alus = 4096,
1456 		.num_statics = 16,
1457 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1458 		.port_cnt = 6,		/* total physical port count */
1459 		.port_nirqs = 2,
1460 		.num_tx_queues = 4,
1461 		.num_ipms = 8,
1462 		.ops = &ksz9477_dev_ops,
1463 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1464 		.phy_errata_9477 = true,
1465 		.mib_names = ksz9477_mib_names,
1466 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1467 		.reg_mib_cnt = MIB_COUNTER_NUM,
1468 		.regs = ksz9477_regs,
1469 		.masks = ksz9477_masks,
1470 		.shifts = ksz9477_shifts,
1471 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1472 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1473 		.supports_mii	= {false, false, false, false,
1474 				   false, true},
1475 		.supports_rmii	= {false, false, false, false,
1476 				   false, true},
1477 		.supports_rgmii = {false, false, false, false,
1478 				   false, true},
1479 		.internal_phy	= {true, true, true, true,
1480 				   true, false},
1481 		.gbit_capable	= {true, true, true, true, true, true},
1482 		.wr_table = &ksz9896_register_set,
1483 		.rd_table = &ksz9896_register_set,
1484 	},
1485 
1486 	[KSZ9897] = {
1487 		.chip_id = KSZ9897_CHIP_ID,
1488 		.dev_name = "KSZ9897",
1489 		.num_vlans = 4096,
1490 		.num_alus = 4096,
1491 		.num_statics = 16,
1492 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1493 		.port_cnt = 7,		/* total physical port count */
1494 		.port_nirqs = 2,
1495 		.num_tx_queues = 4,
1496 		.num_ipms = 8,
1497 		.ops = &ksz9477_dev_ops,
1498 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1499 		.phy_errata_9477 = true,
1500 		.mib_names = ksz9477_mib_names,
1501 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1502 		.reg_mib_cnt = MIB_COUNTER_NUM,
1503 		.regs = ksz9477_regs,
1504 		.masks = ksz9477_masks,
1505 		.shifts = ksz9477_shifts,
1506 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1507 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1508 		.supports_mii	= {false, false, false, false,
1509 				   false, true, true},
1510 		.supports_rmii	= {false, false, false, false,
1511 				   false, true, true},
1512 		.supports_rgmii = {false, false, false, false,
1513 				   false, true, true},
1514 		.internal_phy	= {true, true, true, true,
1515 				   true, false, false},
1516 		.gbit_capable	= {true, true, true, true, true, true, true},
1517 	},
1518 
1519 	[KSZ9893] = {
1520 		.chip_id = KSZ9893_CHIP_ID,
1521 		.dev_name = "KSZ9893",
1522 		.num_vlans = 4096,
1523 		.num_alus = 4096,
1524 		.num_statics = 16,
1525 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1526 		.port_cnt = 3,		/* total port count */
1527 		.port_nirqs = 2,
1528 		.num_tx_queues = 4,
1529 		.num_ipms = 8,
1530 		.ops = &ksz9477_dev_ops,
1531 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1532 		.mib_names = ksz9477_mib_names,
1533 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1534 		.reg_mib_cnt = MIB_COUNTER_NUM,
1535 		.regs = ksz9477_regs,
1536 		.masks = ksz9477_masks,
1537 		.shifts = ksz9477_shifts,
1538 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1539 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1540 		.supports_mii = {false, false, true},
1541 		.supports_rmii = {false, false, true},
1542 		.supports_rgmii = {false, false, true},
1543 		.internal_phy = {true, true, false},
1544 		.gbit_capable = {true, true, true},
1545 	},
1546 
1547 	[KSZ9563] = {
1548 		.chip_id = KSZ9563_CHIP_ID,
1549 		.dev_name = "KSZ9563",
1550 		.num_vlans = 4096,
1551 		.num_alus = 4096,
1552 		.num_statics = 16,
1553 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1554 		.port_cnt = 3,		/* total port count */
1555 		.port_nirqs = 3,
1556 		.num_tx_queues = 4,
1557 		.num_ipms = 8,
1558 		.tc_cbs_supported = true,
1559 		.ops = &ksz9477_dev_ops,
1560 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1561 		.mib_names = ksz9477_mib_names,
1562 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1563 		.reg_mib_cnt = MIB_COUNTER_NUM,
1564 		.regs = ksz9477_regs,
1565 		.masks = ksz9477_masks,
1566 		.shifts = ksz9477_shifts,
1567 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1568 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1569 		.supports_mii = {false, false, true},
1570 		.supports_rmii = {false, false, true},
1571 		.supports_rgmii = {false, false, true},
1572 		.internal_phy = {true, true, false},
1573 		.gbit_capable = {true, true, true},
1574 	},
1575 
1576 	[KSZ8567] = {
1577 		.chip_id = KSZ8567_CHIP_ID,
1578 		.dev_name = "KSZ8567",
1579 		.num_vlans = 4096,
1580 		.num_alus = 4096,
1581 		.num_statics = 16,
1582 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1583 		.port_cnt = 7,		/* total port count */
1584 		.port_nirqs = 3,
1585 		.num_tx_queues = 4,
1586 		.num_ipms = 8,
1587 		.tc_cbs_supported = true,
1588 		.ops = &ksz9477_dev_ops,
1589 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1590 		.phy_errata_9477 = true,
1591 		.mib_names = ksz9477_mib_names,
1592 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1593 		.reg_mib_cnt = MIB_COUNTER_NUM,
1594 		.regs = ksz9477_regs,
1595 		.masks = ksz9477_masks,
1596 		.shifts = ksz9477_shifts,
1597 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1598 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1599 		.supports_mii	= {false, false, false, false,
1600 				   false, true, true},
1601 		.supports_rmii	= {false, false, false, false,
1602 				   false, true, true},
1603 		.supports_rgmii = {false, false, false, false,
1604 				   false, true, true},
1605 		.internal_phy	= {true, true, true, true,
1606 				   true, false, false},
1607 		.gbit_capable	= {false, false, false, false, false,
1608 				   true, true},
1609 	},
1610 
1611 	[KSZ9567] = {
1612 		.chip_id = KSZ9567_CHIP_ID,
1613 		.dev_name = "KSZ9567",
1614 		.num_vlans = 4096,
1615 		.num_alus = 4096,
1616 		.num_statics = 16,
1617 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1618 		.port_cnt = 7,		/* total physical port count */
1619 		.port_nirqs = 3,
1620 		.num_tx_queues = 4,
1621 		.num_ipms = 8,
1622 		.tc_cbs_supported = true,
1623 		.ops = &ksz9477_dev_ops,
1624 		.mib_names = ksz9477_mib_names,
1625 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1626 		.reg_mib_cnt = MIB_COUNTER_NUM,
1627 		.regs = ksz9477_regs,
1628 		.masks = ksz9477_masks,
1629 		.shifts = ksz9477_shifts,
1630 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1631 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1632 		.supports_mii	= {false, false, false, false,
1633 				   false, true, true},
1634 		.supports_rmii	= {false, false, false, false,
1635 				   false, true, true},
1636 		.supports_rgmii = {false, false, false, false,
1637 				   false, true, true},
1638 		.internal_phy	= {true, true, true, true,
1639 				   true, false, false},
1640 		.gbit_capable	= {true, true, true, true, true, true, true},
1641 	},
1642 
1643 	[LAN9370] = {
1644 		.chip_id = LAN9370_CHIP_ID,
1645 		.dev_name = "LAN9370",
1646 		.num_vlans = 4096,
1647 		.num_alus = 1024,
1648 		.num_statics = 256,
1649 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1650 		.port_cnt = 5,		/* total physical port count */
1651 		.port_nirqs = 6,
1652 		.num_tx_queues = 8,
1653 		.num_ipms = 8,
1654 		.tc_cbs_supported = true,
1655 		.ops = &lan937x_dev_ops,
1656 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1657 		.mib_names = ksz9477_mib_names,
1658 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1659 		.reg_mib_cnt = MIB_COUNTER_NUM,
1660 		.regs = ksz9477_regs,
1661 		.masks = lan937x_masks,
1662 		.shifts = lan937x_shifts,
1663 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1664 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1665 		.supports_mii = {false, false, false, false, true},
1666 		.supports_rmii = {false, false, false, false, true},
1667 		.supports_rgmii = {false, false, false, false, true},
1668 		.internal_phy = {true, true, true, true, false},
1669 	},
1670 
1671 	[LAN9371] = {
1672 		.chip_id = LAN9371_CHIP_ID,
1673 		.dev_name = "LAN9371",
1674 		.num_vlans = 4096,
1675 		.num_alus = 1024,
1676 		.num_statics = 256,
1677 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1678 		.port_cnt = 6,		/* total physical port count */
1679 		.port_nirqs = 6,
1680 		.num_tx_queues = 8,
1681 		.num_ipms = 8,
1682 		.tc_cbs_supported = true,
1683 		.ops = &lan937x_dev_ops,
1684 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1685 		.mib_names = ksz9477_mib_names,
1686 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1687 		.reg_mib_cnt = MIB_COUNTER_NUM,
1688 		.regs = ksz9477_regs,
1689 		.masks = lan937x_masks,
1690 		.shifts = lan937x_shifts,
1691 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1692 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1693 		.supports_mii = {false, false, false, false, true, true},
1694 		.supports_rmii = {false, false, false, false, true, true},
1695 		.supports_rgmii = {false, false, false, false, true, true},
1696 		.internal_phy = {true, true, true, true, false, false},
1697 	},
1698 
1699 	[LAN9372] = {
1700 		.chip_id = LAN9372_CHIP_ID,
1701 		.dev_name = "LAN9372",
1702 		.num_vlans = 4096,
1703 		.num_alus = 1024,
1704 		.num_statics = 256,
1705 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1706 		.port_cnt = 8,		/* total physical port count */
1707 		.port_nirqs = 6,
1708 		.num_tx_queues = 8,
1709 		.num_ipms = 8,
1710 		.tc_cbs_supported = true,
1711 		.ops = &lan937x_dev_ops,
1712 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1713 		.mib_names = ksz9477_mib_names,
1714 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1715 		.reg_mib_cnt = MIB_COUNTER_NUM,
1716 		.regs = ksz9477_regs,
1717 		.masks = lan937x_masks,
1718 		.shifts = lan937x_shifts,
1719 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1720 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1721 		.supports_mii	= {false, false, false, false,
1722 				   true, true, false, false},
1723 		.supports_rmii	= {false, false, false, false,
1724 				   true, true, false, false},
1725 		.supports_rgmii = {false, false, false, false,
1726 				   true, true, false, false},
1727 		.internal_phy	= {true, true, true, true,
1728 				   false, false, true, true},
1729 	},
1730 
1731 	[LAN9373] = {
1732 		.chip_id = LAN9373_CHIP_ID,
1733 		.dev_name = "LAN9373",
1734 		.num_vlans = 4096,
1735 		.num_alus = 1024,
1736 		.num_statics = 256,
1737 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1738 		.port_cnt = 5,		/* total physical port count */
1739 		.port_nirqs = 6,
1740 		.num_tx_queues = 8,
1741 		.num_ipms = 8,
1742 		.tc_cbs_supported = true,
1743 		.ops = &lan937x_dev_ops,
1744 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1745 		.mib_names = ksz9477_mib_names,
1746 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1747 		.reg_mib_cnt = MIB_COUNTER_NUM,
1748 		.regs = ksz9477_regs,
1749 		.masks = lan937x_masks,
1750 		.shifts = lan937x_shifts,
1751 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1752 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1753 		.supports_mii	= {false, false, false, false,
1754 				   true, true, false, false},
1755 		.supports_rmii	= {false, false, false, false,
1756 				   true, true, false, false},
1757 		.supports_rgmii = {false, false, false, false,
1758 				   true, true, false, false},
1759 		.internal_phy	= {true, true, true, false,
1760 				   false, false, true, true},
1761 	},
1762 
1763 	[LAN9374] = {
1764 		.chip_id = LAN9374_CHIP_ID,
1765 		.dev_name = "LAN9374",
1766 		.num_vlans = 4096,
1767 		.num_alus = 1024,
1768 		.num_statics = 256,
1769 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1770 		.port_cnt = 8,		/* total physical port count */
1771 		.port_nirqs = 6,
1772 		.num_tx_queues = 8,
1773 		.num_ipms = 8,
1774 		.tc_cbs_supported = true,
1775 		.ops = &lan937x_dev_ops,
1776 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1777 		.mib_names = ksz9477_mib_names,
1778 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1779 		.reg_mib_cnt = MIB_COUNTER_NUM,
1780 		.regs = ksz9477_regs,
1781 		.masks = lan937x_masks,
1782 		.shifts = lan937x_shifts,
1783 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1784 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1785 		.supports_mii	= {false, false, false, false,
1786 				   true, true, false, false},
1787 		.supports_rmii	= {false, false, false, false,
1788 				   true, true, false, false},
1789 		.supports_rgmii = {false, false, false, false,
1790 				   true, true, false, false},
1791 		.internal_phy	= {true, true, true, true,
1792 				   false, false, true, true},
1793 	},
1794 };
1795 EXPORT_SYMBOL_GPL(ksz_switch_chips);
1796 
1797 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1798 {
1799 	int i;
1800 
1801 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1802 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1803 
1804 		if (chip->chip_id == prod_num)
1805 			return chip;
1806 	}
1807 
1808 	return NULL;
1809 }
1810 
1811 static int ksz_check_device_id(struct ksz_device *dev)
1812 {
1813 	const struct ksz_chip_data *expected_chip_data;
1814 	u32 expected_chip_id;
1815 
1816 	if (dev->pdata) {
1817 		expected_chip_id = dev->pdata->chip_id;
1818 		expected_chip_data = ksz_lookup_info(expected_chip_id);
1819 		if (WARN_ON(!expected_chip_data))
1820 			return -ENODEV;
1821 	} else {
1822 		expected_chip_data = of_device_get_match_data(dev->dev);
1823 		expected_chip_id = expected_chip_data->chip_id;
1824 	}
1825 
1826 	if (expected_chip_id != dev->chip_id) {
1827 		dev_err(dev->dev,
1828 			"Device tree specifies chip %s but found %s, please fix it!\n",
1829 			expected_chip_data->dev_name, dev->info->dev_name);
1830 		return -ENODEV;
1831 	}
1832 
1833 	return 0;
1834 }
1835 
1836 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1837 				 struct phylink_config *config)
1838 {
1839 	struct ksz_device *dev = ds->priv;
1840 
1841 	if (dev->info->supports_mii[port])
1842 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1843 
1844 	if (dev->info->supports_rmii[port])
1845 		__set_bit(PHY_INTERFACE_MODE_RMII,
1846 			  config->supported_interfaces);
1847 
1848 	if (dev->info->supports_rgmii[port])
1849 		phy_interface_set_rgmii(config->supported_interfaces);
1850 
1851 	if (dev->info->internal_phy[port]) {
1852 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1853 			  config->supported_interfaces);
1854 		/* Compatibility for phylib's default interface type when the
1855 		 * phy-mode property is absent
1856 		 */
1857 		__set_bit(PHY_INTERFACE_MODE_GMII,
1858 			  config->supported_interfaces);
1859 	}
1860 
1861 	if (dev->dev_ops->get_caps)
1862 		dev->dev_ops->get_caps(dev, port, config);
1863 }
1864 
1865 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
1866 {
1867 	struct ethtool_pause_stats *pstats;
1868 	struct rtnl_link_stats64 *stats;
1869 	struct ksz_stats_raw *raw;
1870 	struct ksz_port_mib *mib;
1871 	int ret;
1872 
1873 	mib = &dev->ports[port].mib;
1874 	stats = &mib->stats64;
1875 	pstats = &mib->pause_stats;
1876 	raw = (struct ksz_stats_raw *)mib->counters;
1877 
1878 	spin_lock(&mib->stats64_lock);
1879 
1880 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1881 		raw->rx_pause;
1882 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1883 		raw->tx_pause;
1884 
1885 	/* HW counters are counting bytes + FCS which is not acceptable
1886 	 * for rtnl_link_stats64 interface
1887 	 */
1888 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
1889 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
1890 
1891 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1892 		raw->rx_oversize;
1893 
1894 	stats->rx_crc_errors = raw->rx_crc_err;
1895 	stats->rx_frame_errors = raw->rx_align_err;
1896 	stats->rx_dropped = raw->rx_discards;
1897 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1898 		stats->rx_frame_errors  + stats->rx_dropped;
1899 
1900 	stats->tx_window_errors = raw->tx_late_col;
1901 	stats->tx_fifo_errors = raw->tx_discards;
1902 	stats->tx_aborted_errors = raw->tx_exc_col;
1903 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1904 		stats->tx_aborted_errors;
1905 
1906 	stats->multicast = raw->rx_mcast;
1907 	stats->collisions = raw->tx_total_col;
1908 
1909 	pstats->tx_pause_frames = raw->tx_pause;
1910 	pstats->rx_pause_frames = raw->rx_pause;
1911 
1912 	spin_unlock(&mib->stats64_lock);
1913 
1914 	if (dev->info->phy_errata_9477) {
1915 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
1916 		if (ret)
1917 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
1918 	}
1919 }
1920 
1921 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
1922 {
1923 	struct ethtool_pause_stats *pstats;
1924 	struct rtnl_link_stats64 *stats;
1925 	struct ksz88xx_stats_raw *raw;
1926 	struct ksz_port_mib *mib;
1927 
1928 	mib = &dev->ports[port].mib;
1929 	stats = &mib->stats64;
1930 	pstats = &mib->pause_stats;
1931 	raw = (struct ksz88xx_stats_raw *)mib->counters;
1932 
1933 	spin_lock(&mib->stats64_lock);
1934 
1935 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1936 		raw->rx_pause;
1937 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1938 		raw->tx_pause;
1939 
1940 	/* HW counters are counting bytes + FCS which is not acceptable
1941 	 * for rtnl_link_stats64 interface
1942 	 */
1943 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
1944 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
1945 
1946 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1947 		raw->rx_oversize;
1948 
1949 	stats->rx_crc_errors = raw->rx_crc_err;
1950 	stats->rx_frame_errors = raw->rx_align_err;
1951 	stats->rx_dropped = raw->rx_discards;
1952 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1953 		stats->rx_frame_errors  + stats->rx_dropped;
1954 
1955 	stats->tx_window_errors = raw->tx_late_col;
1956 	stats->tx_fifo_errors = raw->tx_discards;
1957 	stats->tx_aborted_errors = raw->tx_exc_col;
1958 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1959 		stats->tx_aborted_errors;
1960 
1961 	stats->multicast = raw->rx_mcast;
1962 	stats->collisions = raw->tx_total_col;
1963 
1964 	pstats->tx_pause_frames = raw->tx_pause;
1965 	pstats->rx_pause_frames = raw->rx_pause;
1966 
1967 	spin_unlock(&mib->stats64_lock);
1968 }
1969 
1970 static void ksz_get_stats64(struct dsa_switch *ds, int port,
1971 			    struct rtnl_link_stats64 *s)
1972 {
1973 	struct ksz_device *dev = ds->priv;
1974 	struct ksz_port_mib *mib;
1975 
1976 	mib = &dev->ports[port].mib;
1977 
1978 	spin_lock(&mib->stats64_lock);
1979 	memcpy(s, &mib->stats64, sizeof(*s));
1980 	spin_unlock(&mib->stats64_lock);
1981 }
1982 
1983 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
1984 				struct ethtool_pause_stats *pause_stats)
1985 {
1986 	struct ksz_device *dev = ds->priv;
1987 	struct ksz_port_mib *mib;
1988 
1989 	mib = &dev->ports[port].mib;
1990 
1991 	spin_lock(&mib->stats64_lock);
1992 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
1993 	spin_unlock(&mib->stats64_lock);
1994 }
1995 
1996 static void ksz_get_strings(struct dsa_switch *ds, int port,
1997 			    u32 stringset, uint8_t *buf)
1998 {
1999 	struct ksz_device *dev = ds->priv;
2000 	int i;
2001 
2002 	if (stringset != ETH_SS_STATS)
2003 		return;
2004 
2005 	for (i = 0; i < dev->info->mib_cnt; i++) {
2006 		memcpy(buf + i * ETH_GSTRING_LEN,
2007 		       dev->info->mib_names[i].string, ETH_GSTRING_LEN);
2008 	}
2009 }
2010 
2011 /**
2012  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2013  *			    isolation settings.
2014  * @dev: A pointer to the struct ksz_device representing the device.
2015  * @port: The port number to adjust.
2016  *
2017  * This function dynamically adjusts the port membership configuration for a
2018  * specified port and other device ports, based on Spanning Tree Protocol (STP)
2019  * states and port isolation settings. Each port, including the CPU port, has a
2020  * membership register, represented as a bitfield, where each bit corresponds
2021  * to a port number. A set bit indicates permission to forward frames to that
2022  * port. This function iterates over all ports, updating the membership register
2023  * to reflect current forwarding permissions:
2024  *
2025  * 1. Forwards frames only to ports that are part of the same bridge group and
2026  *    in the BR_STATE_FORWARDING state.
2027  * 2. Takes into account the isolation status of ports; ports in the
2028  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2029  *    frames to each other, even if they are in the same bridge group.
2030  * 3. Ensures that the CPU port is included in the membership based on its
2031  *    upstream port configuration, allowing for management and control traffic
2032  *    to flow as required.
2033  */
2034 static void ksz_update_port_member(struct ksz_device *dev, int port)
2035 {
2036 	struct ksz_port *p = &dev->ports[port];
2037 	struct dsa_switch *ds = dev->ds;
2038 	u8 port_member = 0, cpu_port;
2039 	const struct dsa_port *dp;
2040 	int i, j;
2041 
2042 	if (!dsa_is_user_port(ds, port))
2043 		return;
2044 
2045 	dp = dsa_to_port(ds, port);
2046 	cpu_port = BIT(dsa_upstream_port(ds, port));
2047 
2048 	for (i = 0; i < ds->num_ports; i++) {
2049 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2050 		struct ksz_port *other_p = &dev->ports[i];
2051 		u8 val = 0;
2052 
2053 		if (!dsa_is_user_port(ds, i))
2054 			continue;
2055 		if (port == i)
2056 			continue;
2057 		if (!dsa_port_bridge_same(dp, other_dp))
2058 			continue;
2059 		if (other_p->stp_state != BR_STATE_FORWARDING)
2060 			continue;
2061 
2062 		/* At this point we know that "port" and "other" port [i] are in
2063 		 * the same bridge group and that "other" port [i] is in
2064 		 * forwarding stp state. If "port" is also in forwarding stp
2065 		 * state, we can allow forwarding from port [port] to port [i].
2066 		 * Except if both ports are isolated.
2067 		 */
2068 		if (p->stp_state == BR_STATE_FORWARDING &&
2069 		    !(p->isolated && other_p->isolated)) {
2070 			val |= BIT(port);
2071 			port_member |= BIT(i);
2072 		}
2073 
2074 		/* Retain port [i]'s relationship to other ports than [port] */
2075 		for (j = 0; j < ds->num_ports; j++) {
2076 			const struct dsa_port *third_dp;
2077 			struct ksz_port *third_p;
2078 
2079 			if (j == i)
2080 				continue;
2081 			if (j == port)
2082 				continue;
2083 			if (!dsa_is_user_port(ds, j))
2084 				continue;
2085 			third_p = &dev->ports[j];
2086 			if (third_p->stp_state != BR_STATE_FORWARDING)
2087 				continue;
2088 
2089 			third_dp = dsa_to_port(ds, j);
2090 
2091 			/* Now we updating relation of the "other" port [i] to
2092 			 * the "third" port [j]. We already know that "other"
2093 			 * port [i] is in forwarding stp state and that "third"
2094 			 * port [j] is in forwarding stp state too.
2095 			 * We need to check if "other" port [i] and "third" port
2096 			 * [j] are in the same bridge group and not isolated
2097 			 * before allowing forwarding from port [i] to port [j].
2098 			 */
2099 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2100 			    !(other_p->isolated && third_p->isolated))
2101 				val |= BIT(j);
2102 		}
2103 
2104 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2105 	}
2106 
2107 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2108 }
2109 
2110 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2111 {
2112 	struct ksz_device *dev = bus->priv;
2113 	u16 val;
2114 	int ret;
2115 
2116 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2117 	if (ret < 0)
2118 		return ret;
2119 
2120 	return val;
2121 }
2122 
2123 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2124 			     u16 val)
2125 {
2126 	struct ksz_device *dev = bus->priv;
2127 
2128 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2129 }
2130 
2131 static int ksz_irq_phy_setup(struct ksz_device *dev)
2132 {
2133 	struct dsa_switch *ds = dev->ds;
2134 	int phy;
2135 	int irq;
2136 	int ret;
2137 
2138 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) {
2139 		if (BIT(phy) & ds->phys_mii_mask) {
2140 			irq = irq_find_mapping(dev->ports[phy].pirq.domain,
2141 					       PORT_SRC_PHY_INT);
2142 			if (irq < 0) {
2143 				ret = irq;
2144 				goto out;
2145 			}
2146 			ds->user_mii_bus->irq[phy] = irq;
2147 		}
2148 	}
2149 	return 0;
2150 out:
2151 	while (phy--)
2152 		if (BIT(phy) & ds->phys_mii_mask)
2153 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2154 
2155 	return ret;
2156 }
2157 
2158 static void ksz_irq_phy_free(struct ksz_device *dev)
2159 {
2160 	struct dsa_switch *ds = dev->ds;
2161 	int phy;
2162 
2163 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++)
2164 		if (BIT(phy) & ds->phys_mii_mask)
2165 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2166 }
2167 
2168 static int ksz_mdio_register(struct ksz_device *dev)
2169 {
2170 	struct dsa_switch *ds = dev->ds;
2171 	struct device_node *mdio_np;
2172 	struct mii_bus *bus;
2173 	int ret;
2174 
2175 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2176 	if (!mdio_np)
2177 		return 0;
2178 
2179 	bus = devm_mdiobus_alloc(ds->dev);
2180 	if (!bus) {
2181 		of_node_put(mdio_np);
2182 		return -ENOMEM;
2183 	}
2184 
2185 	bus->priv = dev;
2186 	bus->read = ksz_sw_mdio_read;
2187 	bus->write = ksz_sw_mdio_write;
2188 	bus->name = "ksz user smi";
2189 	snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2190 	bus->parent = ds->dev;
2191 	bus->phy_mask = ~ds->phys_mii_mask;
2192 
2193 	ds->user_mii_bus = bus;
2194 
2195 	if (dev->irq > 0) {
2196 		ret = ksz_irq_phy_setup(dev);
2197 		if (ret) {
2198 			of_node_put(mdio_np);
2199 			return ret;
2200 		}
2201 	}
2202 
2203 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2204 	if (ret) {
2205 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2206 			bus->id);
2207 		if (dev->irq > 0)
2208 			ksz_irq_phy_free(dev);
2209 	}
2210 
2211 	of_node_put(mdio_np);
2212 
2213 	return ret;
2214 }
2215 
2216 static void ksz_irq_mask(struct irq_data *d)
2217 {
2218 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2219 
2220 	kirq->masked |= BIT(d->hwirq);
2221 }
2222 
2223 static void ksz_irq_unmask(struct irq_data *d)
2224 {
2225 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2226 
2227 	kirq->masked &= ~BIT(d->hwirq);
2228 }
2229 
2230 static void ksz_irq_bus_lock(struct irq_data *d)
2231 {
2232 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2233 
2234 	mutex_lock(&kirq->dev->lock_irq);
2235 }
2236 
2237 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2238 {
2239 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2240 	struct ksz_device *dev = kirq->dev;
2241 	int ret;
2242 
2243 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2244 	if (ret)
2245 		dev_err(dev->dev, "failed to change IRQ mask\n");
2246 
2247 	mutex_unlock(&dev->lock_irq);
2248 }
2249 
2250 static const struct irq_chip ksz_irq_chip = {
2251 	.name			= "ksz-irq",
2252 	.irq_mask		= ksz_irq_mask,
2253 	.irq_unmask		= ksz_irq_unmask,
2254 	.irq_bus_lock		= ksz_irq_bus_lock,
2255 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2256 };
2257 
2258 static int ksz_irq_domain_map(struct irq_domain *d,
2259 			      unsigned int irq, irq_hw_number_t hwirq)
2260 {
2261 	irq_set_chip_data(irq, d->host_data);
2262 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2263 	irq_set_noprobe(irq);
2264 
2265 	return 0;
2266 }
2267 
2268 static const struct irq_domain_ops ksz_irq_domain_ops = {
2269 	.map	= ksz_irq_domain_map,
2270 	.xlate	= irq_domain_xlate_twocell,
2271 };
2272 
2273 static void ksz_irq_free(struct ksz_irq *kirq)
2274 {
2275 	int irq, virq;
2276 
2277 	free_irq(kirq->irq_num, kirq);
2278 
2279 	for (irq = 0; irq < kirq->nirqs; irq++) {
2280 		virq = irq_find_mapping(kirq->domain, irq);
2281 		irq_dispose_mapping(virq);
2282 	}
2283 
2284 	irq_domain_remove(kirq->domain);
2285 }
2286 
2287 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2288 {
2289 	struct ksz_irq *kirq = dev_id;
2290 	unsigned int nhandled = 0;
2291 	struct ksz_device *dev;
2292 	unsigned int sub_irq;
2293 	u8 data;
2294 	int ret;
2295 	u8 n;
2296 
2297 	dev = kirq->dev;
2298 
2299 	/* Read interrupt status register */
2300 	ret = ksz_read8(dev, kirq->reg_status, &data);
2301 	if (ret)
2302 		goto out;
2303 
2304 	for (n = 0; n < kirq->nirqs; ++n) {
2305 		if (data & BIT(n)) {
2306 			sub_irq = irq_find_mapping(kirq->domain, n);
2307 			handle_nested_irq(sub_irq);
2308 			++nhandled;
2309 		}
2310 	}
2311 out:
2312 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2313 }
2314 
2315 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2316 {
2317 	int ret, n;
2318 
2319 	kirq->dev = dev;
2320 	kirq->masked = ~0;
2321 
2322 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2323 					     &ksz_irq_domain_ops, kirq);
2324 	if (!kirq->domain)
2325 		return -ENOMEM;
2326 
2327 	for (n = 0; n < kirq->nirqs; n++)
2328 		irq_create_mapping(kirq->domain, n);
2329 
2330 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2331 				   IRQF_ONESHOT, kirq->name, kirq);
2332 	if (ret)
2333 		goto out;
2334 
2335 	return 0;
2336 
2337 out:
2338 	ksz_irq_free(kirq);
2339 
2340 	return ret;
2341 }
2342 
2343 static int ksz_girq_setup(struct ksz_device *dev)
2344 {
2345 	struct ksz_irq *girq = &dev->girq;
2346 
2347 	girq->nirqs = dev->info->port_cnt;
2348 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2349 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2350 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2351 
2352 	girq->irq_num = dev->irq;
2353 
2354 	return ksz_irq_common_setup(dev, girq);
2355 }
2356 
2357 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2358 {
2359 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2360 
2361 	pirq->nirqs = dev->info->port_nirqs;
2362 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2363 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2364 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2365 
2366 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2367 	if (pirq->irq_num < 0)
2368 		return pirq->irq_num;
2369 
2370 	return ksz_irq_common_setup(dev, pirq);
2371 }
2372 
2373 static int ksz_parse_drive_strength(struct ksz_device *dev);
2374 
2375 static int ksz_setup(struct dsa_switch *ds)
2376 {
2377 	struct ksz_device *dev = ds->priv;
2378 	struct dsa_port *dp;
2379 	struct ksz_port *p;
2380 	const u16 *regs;
2381 	int ret;
2382 
2383 	regs = dev->info->regs;
2384 
2385 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2386 				       dev->info->num_vlans, GFP_KERNEL);
2387 	if (!dev->vlan_cache)
2388 		return -ENOMEM;
2389 
2390 	ret = dev->dev_ops->reset(dev);
2391 	if (ret) {
2392 		dev_err(ds->dev, "failed to reset switch\n");
2393 		return ret;
2394 	}
2395 
2396 	ret = ksz_parse_drive_strength(dev);
2397 	if (ret)
2398 		return ret;
2399 
2400 	/* set broadcast storm protection 10% rate */
2401 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2402 			   BROADCAST_STORM_RATE,
2403 			   (BROADCAST_STORM_VALUE *
2404 			   BROADCAST_STORM_PROT_RATE) / 100);
2405 
2406 	dev->dev_ops->config_cpu_port(ds);
2407 
2408 	dev->dev_ops->enable_stp_addr(dev);
2409 
2410 	ds->num_tx_queues = dev->info->num_tx_queues;
2411 
2412 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2413 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2414 
2415 	ksz_init_mib_timer(dev);
2416 
2417 	ds->configure_vlan_while_not_filtering = false;
2418 	ds->dscp_prio_mapping_is_global = true;
2419 
2420 	if (dev->dev_ops->setup) {
2421 		ret = dev->dev_ops->setup(ds);
2422 		if (ret)
2423 			return ret;
2424 	}
2425 
2426 	/* Start with learning disabled on standalone user ports, and enabled
2427 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2428 	 * CPU port will avoid flooding bridge local addresses on the network
2429 	 * in some cases.
2430 	 */
2431 	p = &dev->ports[dev->cpu_port];
2432 	p->learning = true;
2433 
2434 	if (dev->irq > 0) {
2435 		ret = ksz_girq_setup(dev);
2436 		if (ret)
2437 			return ret;
2438 
2439 		dsa_switch_for_each_user_port(dp, dev->ds) {
2440 			ret = ksz_pirq_setup(dev, dp->index);
2441 			if (ret)
2442 				goto out_girq;
2443 
2444 			ret = ksz_ptp_irq_setup(ds, dp->index);
2445 			if (ret)
2446 				goto out_pirq;
2447 		}
2448 	}
2449 
2450 	ret = ksz_ptp_clock_register(ds);
2451 	if (ret) {
2452 		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2453 		goto out_ptpirq;
2454 	}
2455 
2456 	ret = ksz_mdio_register(dev);
2457 	if (ret < 0) {
2458 		dev_err(dev->dev, "failed to register the mdio");
2459 		goto out_ptp_clock_unregister;
2460 	}
2461 
2462 	ret = ksz_dcb_init(dev);
2463 	if (ret)
2464 		goto out_ptp_clock_unregister;
2465 
2466 	/* start switch */
2467 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2468 			   SW_START, SW_START);
2469 
2470 	return 0;
2471 
2472 out_ptp_clock_unregister:
2473 	ksz_ptp_clock_unregister(ds);
2474 out_ptpirq:
2475 	if (dev->irq > 0)
2476 		dsa_switch_for_each_user_port(dp, dev->ds)
2477 			ksz_ptp_irq_free(ds, dp->index);
2478 out_pirq:
2479 	if (dev->irq > 0)
2480 		dsa_switch_for_each_user_port(dp, dev->ds)
2481 			ksz_irq_free(&dev->ports[dp->index].pirq);
2482 out_girq:
2483 	if (dev->irq > 0)
2484 		ksz_irq_free(&dev->girq);
2485 
2486 	return ret;
2487 }
2488 
2489 static void ksz_teardown(struct dsa_switch *ds)
2490 {
2491 	struct ksz_device *dev = ds->priv;
2492 	struct dsa_port *dp;
2493 
2494 	ksz_ptp_clock_unregister(ds);
2495 
2496 	if (dev->irq > 0) {
2497 		dsa_switch_for_each_user_port(dp, dev->ds) {
2498 			ksz_ptp_irq_free(ds, dp->index);
2499 
2500 			ksz_irq_free(&dev->ports[dp->index].pirq);
2501 		}
2502 
2503 		ksz_irq_free(&dev->girq);
2504 	}
2505 
2506 	if (dev->dev_ops->teardown)
2507 		dev->dev_ops->teardown(ds);
2508 }
2509 
2510 static void port_r_cnt(struct ksz_device *dev, int port)
2511 {
2512 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2513 	u64 *dropped;
2514 
2515 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2516 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2517 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2518 					&mib->counters[mib->cnt_ptr]);
2519 		++mib->cnt_ptr;
2520 	}
2521 
2522 	/* last one in storage */
2523 	dropped = &mib->counters[dev->info->mib_cnt];
2524 
2525 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2526 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2527 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2528 					dropped, &mib->counters[mib->cnt_ptr]);
2529 		++mib->cnt_ptr;
2530 	}
2531 	mib->cnt_ptr = 0;
2532 }
2533 
2534 static void ksz_mib_read_work(struct work_struct *work)
2535 {
2536 	struct ksz_device *dev = container_of(work, struct ksz_device,
2537 					      mib_read.work);
2538 	struct ksz_port_mib *mib;
2539 	struct ksz_port *p;
2540 	int i;
2541 
2542 	for (i = 0; i < dev->info->port_cnt; i++) {
2543 		if (dsa_is_unused_port(dev->ds, i))
2544 			continue;
2545 
2546 		p = &dev->ports[i];
2547 		mib = &p->mib;
2548 		mutex_lock(&mib->cnt_mutex);
2549 
2550 		/* Only read MIB counters when the port is told to do.
2551 		 * If not, read only dropped counters when link is not up.
2552 		 */
2553 		if (!p->read) {
2554 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2555 
2556 			if (!netif_carrier_ok(dp->user))
2557 				mib->cnt_ptr = dev->info->reg_mib_cnt;
2558 		}
2559 		port_r_cnt(dev, i);
2560 		p->read = false;
2561 
2562 		if (dev->dev_ops->r_mib_stat64)
2563 			dev->dev_ops->r_mib_stat64(dev, i);
2564 
2565 		mutex_unlock(&mib->cnt_mutex);
2566 	}
2567 
2568 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2569 }
2570 
2571 void ksz_init_mib_timer(struct ksz_device *dev)
2572 {
2573 	int i;
2574 
2575 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2576 
2577 	for (i = 0; i < dev->info->port_cnt; i++) {
2578 		struct ksz_port_mib *mib = &dev->ports[i].mib;
2579 
2580 		dev->dev_ops->port_init_cnt(dev, i);
2581 
2582 		mib->cnt_ptr = 0;
2583 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2584 	}
2585 }
2586 
2587 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2588 {
2589 	struct ksz_device *dev = ds->priv;
2590 	u16 val = 0xffff;
2591 	int ret;
2592 
2593 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2594 	if (ret)
2595 		return ret;
2596 
2597 	return val;
2598 }
2599 
2600 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2601 {
2602 	struct ksz_device *dev = ds->priv;
2603 	int ret;
2604 
2605 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2606 	if (ret)
2607 		return ret;
2608 
2609 	return 0;
2610 }
2611 
2612 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2613 {
2614 	struct ksz_device *dev = ds->priv;
2615 
2616 	switch (dev->chip_id) {
2617 	case KSZ8830_CHIP_ID:
2618 		/* Silicon Errata Sheet (DS80000830A):
2619 		 * Port 1 does not work with LinkMD Cable-Testing.
2620 		 * Port 1 does not respond to received PAUSE control frames.
2621 		 */
2622 		if (!port)
2623 			return MICREL_KSZ8_P1_ERRATA;
2624 		break;
2625 	case KSZ8567_CHIP_ID:
2626 	case KSZ9477_CHIP_ID:
2627 	case KSZ9567_CHIP_ID:
2628 	case KSZ9896_CHIP_ID:
2629 	case KSZ9897_CHIP_ID:
2630 		/* KSZ9477 Errata DS80000754C
2631 		 *
2632 		 * Module 4: Energy Efficient Ethernet (EEE) feature select must
2633 		 * be manually disabled
2634 		 *   The EEE feature is enabled by default, but it is not fully
2635 		 *   operational. It must be manually disabled through register
2636 		 *   controls. If not disabled, the PHY ports can auto-negotiate
2637 		 *   to enable EEE, and this feature can cause link drops when
2638 		 *   linked to another device supporting EEE.
2639 		 *
2640 		 * The same item appears in the errata for the KSZ9567, KSZ9896,
2641 		 * and KSZ9897.
2642 		 *
2643 		 * A similar item appears in the errata for the KSZ8567, but
2644 		 * provides an alternative workaround. For now, use the simple
2645 		 * workaround of disabling the EEE feature for this device too.
2646 		 */
2647 		return MICREL_NO_EEE;
2648 	}
2649 
2650 	return 0;
2651 }
2652 
2653 static void ksz_phylink_mac_link_down(struct phylink_config *config,
2654 				      unsigned int mode,
2655 				      phy_interface_t interface)
2656 {
2657 	struct dsa_port *dp = dsa_phylink_to_port(config);
2658 	struct ksz_device *dev = dp->ds->priv;
2659 
2660 	/* Read all MIB counters when the link is going down. */
2661 	dev->ports[dp->index].read = true;
2662 	/* timer started */
2663 	if (dev->mib_read_interval)
2664 		schedule_delayed_work(&dev->mib_read, 0);
2665 }
2666 
2667 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
2668 {
2669 	struct ksz_device *dev = ds->priv;
2670 
2671 	if (sset != ETH_SS_STATS)
2672 		return 0;
2673 
2674 	return dev->info->mib_cnt;
2675 }
2676 
2677 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
2678 				  uint64_t *buf)
2679 {
2680 	const struct dsa_port *dp = dsa_to_port(ds, port);
2681 	struct ksz_device *dev = ds->priv;
2682 	struct ksz_port_mib *mib;
2683 
2684 	mib = &dev->ports[port].mib;
2685 	mutex_lock(&mib->cnt_mutex);
2686 
2687 	/* Only read dropped counters if no link. */
2688 	if (!netif_carrier_ok(dp->user))
2689 		mib->cnt_ptr = dev->info->reg_mib_cnt;
2690 	port_r_cnt(dev, port);
2691 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
2692 	mutex_unlock(&mib->cnt_mutex);
2693 }
2694 
2695 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
2696 				struct dsa_bridge bridge,
2697 				bool *tx_fwd_offload,
2698 				struct netlink_ext_ack *extack)
2699 {
2700 	/* port_stp_state_set() will be called after to put the port in
2701 	 * appropriate state so there is no need to do anything.
2702 	 */
2703 
2704 	return 0;
2705 }
2706 
2707 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
2708 				  struct dsa_bridge bridge)
2709 {
2710 	/* port_stp_state_set() will be called after to put the port in
2711 	 * forwarding state so there is no need to do anything.
2712 	 */
2713 }
2714 
2715 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
2716 {
2717 	struct ksz_device *dev = ds->priv;
2718 
2719 	dev->dev_ops->flush_dyn_mac_table(dev, port);
2720 }
2721 
2722 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
2723 {
2724 	struct ksz_device *dev = ds->priv;
2725 
2726 	if (!dev->dev_ops->set_ageing_time)
2727 		return -EOPNOTSUPP;
2728 
2729 	return dev->dev_ops->set_ageing_time(dev, msecs);
2730 }
2731 
2732 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
2733 			    const unsigned char *addr, u16 vid,
2734 			    struct dsa_db db)
2735 {
2736 	struct ksz_device *dev = ds->priv;
2737 
2738 	if (!dev->dev_ops->fdb_add)
2739 		return -EOPNOTSUPP;
2740 
2741 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
2742 }
2743 
2744 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
2745 			    const unsigned char *addr,
2746 			    u16 vid, struct dsa_db db)
2747 {
2748 	struct ksz_device *dev = ds->priv;
2749 
2750 	if (!dev->dev_ops->fdb_del)
2751 		return -EOPNOTSUPP;
2752 
2753 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
2754 }
2755 
2756 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
2757 			     dsa_fdb_dump_cb_t *cb, void *data)
2758 {
2759 	struct ksz_device *dev = ds->priv;
2760 
2761 	if (!dev->dev_ops->fdb_dump)
2762 		return -EOPNOTSUPP;
2763 
2764 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
2765 }
2766 
2767 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
2768 			    const struct switchdev_obj_port_mdb *mdb,
2769 			    struct dsa_db db)
2770 {
2771 	struct ksz_device *dev = ds->priv;
2772 
2773 	if (!dev->dev_ops->mdb_add)
2774 		return -EOPNOTSUPP;
2775 
2776 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
2777 }
2778 
2779 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
2780 			    const struct switchdev_obj_port_mdb *mdb,
2781 			    struct dsa_db db)
2782 {
2783 	struct ksz_device *dev = ds->priv;
2784 
2785 	if (!dev->dev_ops->mdb_del)
2786 		return -EOPNOTSUPP;
2787 
2788 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
2789 }
2790 
2791 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
2792 						  int port)
2793 {
2794 	u32 queue_map = 0;
2795 	int ipm;
2796 
2797 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
2798 		int queue;
2799 
2800 		/* Traffic Type (TT) is corresponding to the Internal Priority
2801 		 * Map (IPM) in the switch. Traffic Class (TC) is
2802 		 * corresponding to the queue in the switch.
2803 		 */
2804 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
2805 		if (queue < 0)
2806 			return queue;
2807 
2808 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
2809 	}
2810 
2811 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
2812 }
2813 
2814 static int ksz_port_setup(struct dsa_switch *ds, int port)
2815 {
2816 	struct ksz_device *dev = ds->priv;
2817 	int ret;
2818 
2819 	if (!dsa_is_user_port(ds, port))
2820 		return 0;
2821 
2822 	/* setup user port */
2823 	dev->dev_ops->port_setup(dev, port, false);
2824 
2825 	if (!is_ksz8(dev)) {
2826 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
2827 		if (ret)
2828 			return ret;
2829 	}
2830 
2831 	/* port_stp_state_set() will be called after to enable the port so
2832 	 * there is no need to do anything.
2833 	 */
2834 
2835 	return ksz_dcb_init_port(dev, port);
2836 }
2837 
2838 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
2839 {
2840 	struct ksz_device *dev = ds->priv;
2841 	struct ksz_port *p;
2842 	const u16 *regs;
2843 	u8 data;
2844 
2845 	regs = dev->info->regs;
2846 
2847 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
2848 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2849 
2850 	p = &dev->ports[port];
2851 
2852 	switch (state) {
2853 	case BR_STATE_DISABLED:
2854 		data |= PORT_LEARN_DISABLE;
2855 		break;
2856 	case BR_STATE_LISTENING:
2857 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2858 		break;
2859 	case BR_STATE_LEARNING:
2860 		data |= PORT_RX_ENABLE;
2861 		if (!p->learning)
2862 			data |= PORT_LEARN_DISABLE;
2863 		break;
2864 	case BR_STATE_FORWARDING:
2865 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2866 		if (!p->learning)
2867 			data |= PORT_LEARN_DISABLE;
2868 		break;
2869 	case BR_STATE_BLOCKING:
2870 		data |= PORT_LEARN_DISABLE;
2871 		break;
2872 	default:
2873 		dev_err(ds->dev, "invalid STP state: %d\n", state);
2874 		return;
2875 	}
2876 
2877 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
2878 
2879 	p->stp_state = state;
2880 
2881 	ksz_update_port_member(dev, port);
2882 }
2883 
2884 static void ksz_port_teardown(struct dsa_switch *ds, int port)
2885 {
2886 	struct ksz_device *dev = ds->priv;
2887 
2888 	switch (dev->chip_id) {
2889 	case KSZ8563_CHIP_ID:
2890 	case KSZ8567_CHIP_ID:
2891 	case KSZ9477_CHIP_ID:
2892 	case KSZ9563_CHIP_ID:
2893 	case KSZ9567_CHIP_ID:
2894 	case KSZ9893_CHIP_ID:
2895 	case KSZ9896_CHIP_ID:
2896 	case KSZ9897_CHIP_ID:
2897 		if (dsa_is_user_port(ds, port))
2898 			ksz9477_port_acl_free(dev, port);
2899 	}
2900 }
2901 
2902 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
2903 				     struct switchdev_brport_flags flags,
2904 				     struct netlink_ext_ack *extack)
2905 {
2906 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
2907 		return -EINVAL;
2908 
2909 	return 0;
2910 }
2911 
2912 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
2913 				 struct switchdev_brport_flags flags,
2914 				 struct netlink_ext_ack *extack)
2915 {
2916 	struct ksz_device *dev = ds->priv;
2917 	struct ksz_port *p = &dev->ports[port];
2918 
2919 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
2920 		if (flags.mask & BR_LEARNING)
2921 			p->learning = !!(flags.val & BR_LEARNING);
2922 
2923 		if (flags.mask & BR_ISOLATED)
2924 			p->isolated = !!(flags.val & BR_ISOLATED);
2925 
2926 		/* Make the change take effect immediately */
2927 		ksz_port_stp_state_set(ds, port, p->stp_state);
2928 	}
2929 
2930 	return 0;
2931 }
2932 
2933 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
2934 						  int port,
2935 						  enum dsa_tag_protocol mp)
2936 {
2937 	struct ksz_device *dev = ds->priv;
2938 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
2939 
2940 	if (dev->chip_id == KSZ8795_CHIP_ID ||
2941 	    dev->chip_id == KSZ8794_CHIP_ID ||
2942 	    dev->chip_id == KSZ8765_CHIP_ID)
2943 		proto = DSA_TAG_PROTO_KSZ8795;
2944 
2945 	if (dev->chip_id == KSZ8830_CHIP_ID ||
2946 	    dev->chip_id == KSZ8563_CHIP_ID ||
2947 	    dev->chip_id == KSZ9893_CHIP_ID ||
2948 	    dev->chip_id == KSZ9563_CHIP_ID)
2949 		proto = DSA_TAG_PROTO_KSZ9893;
2950 
2951 	if (dev->chip_id == KSZ8567_CHIP_ID ||
2952 	    dev->chip_id == KSZ9477_CHIP_ID ||
2953 	    dev->chip_id == KSZ9896_CHIP_ID ||
2954 	    dev->chip_id == KSZ9897_CHIP_ID ||
2955 	    dev->chip_id == KSZ9567_CHIP_ID)
2956 		proto = DSA_TAG_PROTO_KSZ9477;
2957 
2958 	if (is_lan937x(dev))
2959 		proto = DSA_TAG_PROTO_LAN937X;
2960 
2961 	return proto;
2962 }
2963 
2964 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
2965 				    enum dsa_tag_protocol proto)
2966 {
2967 	struct ksz_tagger_data *tagger_data;
2968 
2969 	switch (proto) {
2970 	case DSA_TAG_PROTO_KSZ8795:
2971 		return 0;
2972 	case DSA_TAG_PROTO_KSZ9893:
2973 	case DSA_TAG_PROTO_KSZ9477:
2974 	case DSA_TAG_PROTO_LAN937X:
2975 		tagger_data = ksz_tagger_data(ds);
2976 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
2977 		return 0;
2978 	default:
2979 		return -EPROTONOSUPPORT;
2980 	}
2981 }
2982 
2983 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
2984 				   bool flag, struct netlink_ext_ack *extack)
2985 {
2986 	struct ksz_device *dev = ds->priv;
2987 
2988 	if (!dev->dev_ops->vlan_filtering)
2989 		return -EOPNOTSUPP;
2990 
2991 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
2992 }
2993 
2994 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
2995 			     const struct switchdev_obj_port_vlan *vlan,
2996 			     struct netlink_ext_ack *extack)
2997 {
2998 	struct ksz_device *dev = ds->priv;
2999 
3000 	if (!dev->dev_ops->vlan_add)
3001 		return -EOPNOTSUPP;
3002 
3003 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
3004 }
3005 
3006 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3007 			     const struct switchdev_obj_port_vlan *vlan)
3008 {
3009 	struct ksz_device *dev = ds->priv;
3010 
3011 	if (!dev->dev_ops->vlan_del)
3012 		return -EOPNOTSUPP;
3013 
3014 	return dev->dev_ops->vlan_del(dev, port, vlan);
3015 }
3016 
3017 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3018 			       struct dsa_mall_mirror_tc_entry *mirror,
3019 			       bool ingress, struct netlink_ext_ack *extack)
3020 {
3021 	struct ksz_device *dev = ds->priv;
3022 
3023 	if (!dev->dev_ops->mirror_add)
3024 		return -EOPNOTSUPP;
3025 
3026 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3027 }
3028 
3029 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3030 				struct dsa_mall_mirror_tc_entry *mirror)
3031 {
3032 	struct ksz_device *dev = ds->priv;
3033 
3034 	if (dev->dev_ops->mirror_del)
3035 		dev->dev_ops->mirror_del(dev, port, mirror);
3036 }
3037 
3038 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3039 {
3040 	struct ksz_device *dev = ds->priv;
3041 
3042 	if (!dev->dev_ops->change_mtu)
3043 		return -EOPNOTSUPP;
3044 
3045 	return dev->dev_ops->change_mtu(dev, port, mtu);
3046 }
3047 
3048 static int ksz_max_mtu(struct dsa_switch *ds, int port)
3049 {
3050 	struct ksz_device *dev = ds->priv;
3051 
3052 	switch (dev->chip_id) {
3053 	case KSZ8795_CHIP_ID:
3054 	case KSZ8794_CHIP_ID:
3055 	case KSZ8765_CHIP_ID:
3056 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3057 	case KSZ8830_CHIP_ID:
3058 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3059 	case KSZ8563_CHIP_ID:
3060 	case KSZ8567_CHIP_ID:
3061 	case KSZ9477_CHIP_ID:
3062 	case KSZ9563_CHIP_ID:
3063 	case KSZ9567_CHIP_ID:
3064 	case KSZ9893_CHIP_ID:
3065 	case KSZ9896_CHIP_ID:
3066 	case KSZ9897_CHIP_ID:
3067 	case LAN9370_CHIP_ID:
3068 	case LAN9371_CHIP_ID:
3069 	case LAN9372_CHIP_ID:
3070 	case LAN9373_CHIP_ID:
3071 	case LAN9374_CHIP_ID:
3072 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3073 	}
3074 
3075 	return -EOPNOTSUPP;
3076 }
3077 
3078 static int ksz_validate_eee(struct dsa_switch *ds, int port)
3079 {
3080 	struct ksz_device *dev = ds->priv;
3081 
3082 	if (!dev->info->internal_phy[port])
3083 		return -EOPNOTSUPP;
3084 
3085 	switch (dev->chip_id) {
3086 	case KSZ8563_CHIP_ID:
3087 	case KSZ8567_CHIP_ID:
3088 	case KSZ9477_CHIP_ID:
3089 	case KSZ9563_CHIP_ID:
3090 	case KSZ9567_CHIP_ID:
3091 	case KSZ9893_CHIP_ID:
3092 	case KSZ9896_CHIP_ID:
3093 	case KSZ9897_CHIP_ID:
3094 		return 0;
3095 	}
3096 
3097 	return -EOPNOTSUPP;
3098 }
3099 
3100 static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
3101 			   struct ethtool_keee *e)
3102 {
3103 	int ret;
3104 
3105 	ret = ksz_validate_eee(ds, port);
3106 	if (ret)
3107 		return ret;
3108 
3109 	/* There is no documented control of Tx LPI configuration. */
3110 	e->tx_lpi_enabled = true;
3111 
3112 	/* There is no documented control of Tx LPI timer. According to tests
3113 	 * Tx LPI timer seems to be set by default to minimal value.
3114 	 */
3115 	e->tx_lpi_timer = 0;
3116 
3117 	return 0;
3118 }
3119 
3120 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3121 			   struct ethtool_keee *e)
3122 {
3123 	struct ksz_device *dev = ds->priv;
3124 	int ret;
3125 
3126 	ret = ksz_validate_eee(ds, port);
3127 	if (ret)
3128 		return ret;
3129 
3130 	if (!e->tx_lpi_enabled) {
3131 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3132 		return -EINVAL;
3133 	}
3134 
3135 	if (e->tx_lpi_timer) {
3136 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3137 		return -EINVAL;
3138 	}
3139 
3140 	return 0;
3141 }
3142 
3143 static void ksz_set_xmii(struct ksz_device *dev, int port,
3144 			 phy_interface_t interface)
3145 {
3146 	const u8 *bitval = dev->info->xmii_ctrl1;
3147 	struct ksz_port *p = &dev->ports[port];
3148 	const u16 *regs = dev->info->regs;
3149 	u8 data8;
3150 
3151 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3152 
3153 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3154 		   P_RGMII_ID_EG_ENABLE);
3155 
3156 	switch (interface) {
3157 	case PHY_INTERFACE_MODE_MII:
3158 		data8 |= bitval[P_MII_SEL];
3159 		break;
3160 	case PHY_INTERFACE_MODE_RMII:
3161 		data8 |= bitval[P_RMII_SEL];
3162 		break;
3163 	case PHY_INTERFACE_MODE_GMII:
3164 		data8 |= bitval[P_GMII_SEL];
3165 		break;
3166 	case PHY_INTERFACE_MODE_RGMII:
3167 	case PHY_INTERFACE_MODE_RGMII_ID:
3168 	case PHY_INTERFACE_MODE_RGMII_TXID:
3169 	case PHY_INTERFACE_MODE_RGMII_RXID:
3170 		data8 |= bitval[P_RGMII_SEL];
3171 		/* On KSZ9893, disable RGMII in-band status support */
3172 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3173 		    dev->chip_id == KSZ8563_CHIP_ID ||
3174 		    dev->chip_id == KSZ9563_CHIP_ID ||
3175 		    is_lan937x(dev))
3176 			data8 &= ~P_MII_MAC_MODE;
3177 		break;
3178 	default:
3179 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3180 			phy_modes(interface), port);
3181 		return;
3182 	}
3183 
3184 	if (p->rgmii_tx_val)
3185 		data8 |= P_RGMII_ID_EG_ENABLE;
3186 
3187 	if (p->rgmii_rx_val)
3188 		data8 |= P_RGMII_ID_IG_ENABLE;
3189 
3190 	/* Write the updated value */
3191 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3192 }
3193 
3194 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3195 {
3196 	const u8 *bitval = dev->info->xmii_ctrl1;
3197 	const u16 *regs = dev->info->regs;
3198 	phy_interface_t interface;
3199 	u8 data8;
3200 	u8 val;
3201 
3202 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3203 
3204 	val = FIELD_GET(P_MII_SEL_M, data8);
3205 
3206 	if (val == bitval[P_MII_SEL]) {
3207 		if (gbit)
3208 			interface = PHY_INTERFACE_MODE_GMII;
3209 		else
3210 			interface = PHY_INTERFACE_MODE_MII;
3211 	} else if (val == bitval[P_RMII_SEL]) {
3212 		interface = PHY_INTERFACE_MODE_RMII;
3213 	} else {
3214 		interface = PHY_INTERFACE_MODE_RGMII;
3215 		if (data8 & P_RGMII_ID_EG_ENABLE)
3216 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3217 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3218 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3219 			if (data8 & P_RGMII_ID_EG_ENABLE)
3220 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3221 		}
3222 	}
3223 
3224 	return interface;
3225 }
3226 
3227 static void ksz8830_phylink_mac_config(struct phylink_config *config,
3228 				       unsigned int mode,
3229 				       const struct phylink_link_state *state)
3230 {
3231 	struct dsa_port *dp = dsa_phylink_to_port(config);
3232 	struct ksz_device *dev = dp->ds->priv;
3233 
3234 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3235 }
3236 
3237 static void ksz_phylink_mac_config(struct phylink_config *config,
3238 				   unsigned int mode,
3239 				   const struct phylink_link_state *state)
3240 {
3241 	struct dsa_port *dp = dsa_phylink_to_port(config);
3242 	struct ksz_device *dev = dp->ds->priv;
3243 	int port = dp->index;
3244 
3245 	/* Internal PHYs */
3246 	if (dev->info->internal_phy[port])
3247 		return;
3248 
3249 	if (phylink_autoneg_inband(mode)) {
3250 		dev_err(dev->dev, "In-band AN not supported!\n");
3251 		return;
3252 	}
3253 
3254 	ksz_set_xmii(dev, port, state->interface);
3255 
3256 	if (dev->dev_ops->setup_rgmii_delay)
3257 		dev->dev_ops->setup_rgmii_delay(dev, port);
3258 }
3259 
3260 bool ksz_get_gbit(struct ksz_device *dev, int port)
3261 {
3262 	const u8 *bitval = dev->info->xmii_ctrl1;
3263 	const u16 *regs = dev->info->regs;
3264 	bool gbit = false;
3265 	u8 data8;
3266 	bool val;
3267 
3268 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3269 
3270 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3271 
3272 	if (val == bitval[P_GMII_1GBIT])
3273 		gbit = true;
3274 
3275 	return gbit;
3276 }
3277 
3278 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3279 {
3280 	const u8 *bitval = dev->info->xmii_ctrl1;
3281 	const u16 *regs = dev->info->regs;
3282 	u8 data8;
3283 
3284 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3285 
3286 	data8 &= ~P_GMII_1GBIT_M;
3287 
3288 	if (gbit)
3289 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3290 	else
3291 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3292 
3293 	/* Write the updated value */
3294 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3295 }
3296 
3297 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3298 {
3299 	const u8 *bitval = dev->info->xmii_ctrl0;
3300 	const u16 *regs = dev->info->regs;
3301 	u8 data8;
3302 
3303 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3304 
3305 	data8 &= ~P_MII_100MBIT_M;
3306 
3307 	if (speed == SPEED_100)
3308 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3309 	else
3310 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3311 
3312 	/* Write the updated value */
3313 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3314 }
3315 
3316 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3317 {
3318 	if (speed == SPEED_1000)
3319 		ksz_set_gbit(dev, port, true);
3320 	else
3321 		ksz_set_gbit(dev, port, false);
3322 
3323 	if (speed == SPEED_100 || speed == SPEED_10)
3324 		ksz_set_100_10mbit(dev, port, speed);
3325 }
3326 
3327 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3328 				bool tx_pause, bool rx_pause)
3329 {
3330 	const u8 *bitval = dev->info->xmii_ctrl0;
3331 	const u32 *masks = dev->info->masks;
3332 	const u16 *regs = dev->info->regs;
3333 	u8 mask;
3334 	u8 val;
3335 
3336 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3337 	       masks[P_MII_RX_FLOW_CTRL];
3338 
3339 	if (duplex == DUPLEX_FULL)
3340 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3341 	else
3342 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3343 
3344 	if (tx_pause)
3345 		val |= masks[P_MII_TX_FLOW_CTRL];
3346 
3347 	if (rx_pause)
3348 		val |= masks[P_MII_RX_FLOW_CTRL];
3349 
3350 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3351 }
3352 
3353 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3354 					struct phy_device *phydev,
3355 					unsigned int mode,
3356 					phy_interface_t interface,
3357 					int speed, int duplex, bool tx_pause,
3358 					bool rx_pause)
3359 {
3360 	struct dsa_port *dp = dsa_phylink_to_port(config);
3361 	struct ksz_device *dev = dp->ds->priv;
3362 	int port = dp->index;
3363 	struct ksz_port *p;
3364 
3365 	p = &dev->ports[port];
3366 
3367 	/* Internal PHYs */
3368 	if (dev->info->internal_phy[port])
3369 		return;
3370 
3371 	p->phydev.speed = speed;
3372 
3373 	ksz_port_set_xmii_speed(dev, port, speed);
3374 
3375 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3376 }
3377 
3378 static int ksz_switch_detect(struct ksz_device *dev)
3379 {
3380 	u8 id1, id2, id4;
3381 	u16 id16;
3382 	u32 id32;
3383 	int ret;
3384 
3385 	/* read chip id */
3386 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3387 	if (ret)
3388 		return ret;
3389 
3390 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3391 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3392 
3393 	switch (id1) {
3394 	case KSZ87_FAMILY_ID:
3395 		if (id2 == KSZ87_CHIP_ID_95) {
3396 			u8 val;
3397 
3398 			dev->chip_id = KSZ8795_CHIP_ID;
3399 
3400 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3401 			if (val & KSZ8_PORT_FIBER_MODE)
3402 				dev->chip_id = KSZ8765_CHIP_ID;
3403 		} else if (id2 == KSZ87_CHIP_ID_94) {
3404 			dev->chip_id = KSZ8794_CHIP_ID;
3405 		} else {
3406 			return -ENODEV;
3407 		}
3408 		break;
3409 	case KSZ88_FAMILY_ID:
3410 		if (id2 == KSZ88_CHIP_ID_63)
3411 			dev->chip_id = KSZ8830_CHIP_ID;
3412 		else
3413 			return -ENODEV;
3414 		break;
3415 	default:
3416 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3417 		if (ret)
3418 			return ret;
3419 
3420 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3421 		id32 &= ~0xFF;
3422 
3423 		switch (id32) {
3424 		case KSZ9477_CHIP_ID:
3425 		case KSZ9896_CHIP_ID:
3426 		case KSZ9897_CHIP_ID:
3427 		case KSZ9567_CHIP_ID:
3428 		case KSZ8567_CHIP_ID:
3429 		case LAN9370_CHIP_ID:
3430 		case LAN9371_CHIP_ID:
3431 		case LAN9372_CHIP_ID:
3432 		case LAN9373_CHIP_ID:
3433 		case LAN9374_CHIP_ID:
3434 			dev->chip_id = id32;
3435 			break;
3436 		case KSZ9893_CHIP_ID:
3437 			ret = ksz_read8(dev, REG_CHIP_ID4,
3438 					&id4);
3439 			if (ret)
3440 				return ret;
3441 
3442 			if (id4 == SKU_ID_KSZ8563)
3443 				dev->chip_id = KSZ8563_CHIP_ID;
3444 			else if (id4 == SKU_ID_KSZ9563)
3445 				dev->chip_id = KSZ9563_CHIP_ID;
3446 			else
3447 				dev->chip_id = KSZ9893_CHIP_ID;
3448 
3449 			break;
3450 		default:
3451 			dev_err(dev->dev,
3452 				"unsupported switch detected %x)\n", id32);
3453 			return -ENODEV;
3454 		}
3455 	}
3456 	return 0;
3457 }
3458 
3459 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3460 			      struct flow_cls_offload *cls, bool ingress)
3461 {
3462 	struct ksz_device *dev = ds->priv;
3463 
3464 	switch (dev->chip_id) {
3465 	case KSZ8563_CHIP_ID:
3466 	case KSZ8567_CHIP_ID:
3467 	case KSZ9477_CHIP_ID:
3468 	case KSZ9563_CHIP_ID:
3469 	case KSZ9567_CHIP_ID:
3470 	case KSZ9893_CHIP_ID:
3471 	case KSZ9896_CHIP_ID:
3472 	case KSZ9897_CHIP_ID:
3473 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3474 	}
3475 
3476 	return -EOPNOTSUPP;
3477 }
3478 
3479 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3480 			      struct flow_cls_offload *cls, bool ingress)
3481 {
3482 	struct ksz_device *dev = ds->priv;
3483 
3484 	switch (dev->chip_id) {
3485 	case KSZ8563_CHIP_ID:
3486 	case KSZ8567_CHIP_ID:
3487 	case KSZ9477_CHIP_ID:
3488 	case KSZ9563_CHIP_ID:
3489 	case KSZ9567_CHIP_ID:
3490 	case KSZ9893_CHIP_ID:
3491 	case KSZ9896_CHIP_ID:
3492 	case KSZ9897_CHIP_ID:
3493 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3494 	}
3495 
3496 	return -EOPNOTSUPP;
3497 }
3498 
3499 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3500  * is converted to Hex-decimal using the successive multiplication method. On
3501  * every step, integer part is taken and decimal part is carry forwarded.
3502  */
3503 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3504 {
3505 	u32 cinc = 0;
3506 	u32 txrate;
3507 	u32 rate;
3508 	u8 temp;
3509 	u8 i;
3510 
3511 	txrate = idle_slope - send_slope;
3512 
3513 	if (!txrate)
3514 		return -EINVAL;
3515 
3516 	rate = idle_slope;
3517 
3518 	/* 24 bit register */
3519 	for (i = 0; i < 6; i++) {
3520 		rate = rate * 16;
3521 
3522 		temp = rate / txrate;
3523 
3524 		rate %= txrate;
3525 
3526 		cinc = ((cinc << 4) | temp);
3527 	}
3528 
3529 	*bw = cinc;
3530 
3531 	return 0;
3532 }
3533 
3534 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3535 			     u8 shaper)
3536 {
3537 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3538 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3539 			   FIELD_PREP(MTI_SHAPING_M, shaper));
3540 }
3541 
3542 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3543 			    struct tc_cbs_qopt_offload *qopt)
3544 {
3545 	struct ksz_device *dev = ds->priv;
3546 	int ret;
3547 	u32 bw;
3548 
3549 	if (!dev->info->tc_cbs_supported)
3550 		return -EOPNOTSUPP;
3551 
3552 	if (qopt->queue > dev->info->num_tx_queues)
3553 		return -EINVAL;
3554 
3555 	/* Queue Selection */
3556 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3557 	if (ret)
3558 		return ret;
3559 
3560 	if (!qopt->enable)
3561 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3562 					 MTI_SHAPING_OFF);
3563 
3564 	/* High Credit */
3565 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3566 			   qopt->hicredit);
3567 	if (ret)
3568 		return ret;
3569 
3570 	/* Low Credit */
3571 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3572 			   qopt->locredit);
3573 	if (ret)
3574 		return ret;
3575 
3576 	/* Credit Increment Register */
3577 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3578 	if (ret)
3579 		return ret;
3580 
3581 	if (dev->dev_ops->tc_cbs_set_cinc) {
3582 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3583 		if (ret)
3584 			return ret;
3585 	}
3586 
3587 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3588 				 MTI_SHAPING_SRP);
3589 }
3590 
3591 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3592 {
3593 	int queue, ret;
3594 
3595 	/* Configuration will not take effect until the last Port Queue X
3596 	 * Egress Limit Control Register is written.
3597 	 */
3598 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3599 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3600 				  KSZ9477_OUT_RATE_NO_LIMIT);
3601 		if (ret)
3602 			return ret;
3603 	}
3604 
3605 	return 0;
3606 }
3607 
3608 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
3609 				 int band)
3610 {
3611 	/* Compared to queues, bands prioritize packets differently. In strict
3612 	 * priority mode, the lowest priority is assigned to Queue 0 while the
3613 	 * highest priority is given to Band 0.
3614 	 */
3615 	return p->bands - 1 - band;
3616 }
3617 
3618 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
3619 {
3620 	int ret;
3621 
3622 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3623 	if (ret)
3624 		return ret;
3625 
3626 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3627 				 MTI_SHAPING_OFF);
3628 }
3629 
3630 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
3631 			     int weight)
3632 {
3633 	int ret;
3634 
3635 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3636 	if (ret)
3637 		return ret;
3638 
3639 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3640 				MTI_SHAPING_OFF);
3641 	if (ret)
3642 		return ret;
3643 
3644 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
3645 }
3646 
3647 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
3648 			  struct tc_ets_qopt_offload_replace_params *p)
3649 {
3650 	int ret, band, tc_prio;
3651 	u32 queue_map = 0;
3652 
3653 	/* In order to ensure proper prioritization, it is necessary to set the
3654 	 * rate limit for the related queue to zero. Otherwise strict priority
3655 	 * or WRR mode will not work. This is a hardware limitation.
3656 	 */
3657 	ret = ksz_disable_egress_rate_limit(dev, port);
3658 	if (ret)
3659 		return ret;
3660 
3661 	/* Configure queue scheduling mode for all bands. Currently only strict
3662 	 * prio mode is supported.
3663 	 */
3664 	for (band = 0; band < p->bands; band++) {
3665 		int queue = ksz_ets_band_to_queue(p, band);
3666 
3667 		ret = ksz_queue_set_strict(dev, port, queue);
3668 		if (ret)
3669 			return ret;
3670 	}
3671 
3672 	/* Configure the mapping between traffic classes and queues. Note:
3673 	 * priomap variable support 16 traffic classes, but the chip can handle
3674 	 * only 8 classes.
3675 	 */
3676 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
3677 		int queue;
3678 
3679 		if (tc_prio >= dev->info->num_ipms)
3680 			break;
3681 
3682 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
3683 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3684 	}
3685 
3686 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3687 }
3688 
3689 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
3690 {
3691 	int ret, queue;
3692 
3693 	/* To restore the default chip configuration, set all queues to use the
3694 	 * WRR scheduler with a weight of 1.
3695 	 */
3696 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3697 		ret = ksz_queue_set_wrr(dev, port, queue,
3698 					KSZ9477_DEFAULT_WRR_WEIGHT);
3699 		if (ret)
3700 			return ret;
3701 	}
3702 
3703 	/* Revert the queue mapping for TC-priority to its default setting on
3704 	 * the chip.
3705 	 */
3706 	return ksz9477_set_default_prio_queue_mapping(dev, port);
3707 }
3708 
3709 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
3710 			       struct tc_ets_qopt_offload_replace_params *p)
3711 {
3712 	int band;
3713 
3714 	/* Since it is not feasible to share one port among multiple qdisc,
3715 	 * the user must configure all available queues appropriately.
3716 	 */
3717 	if (p->bands != dev->info->num_tx_queues) {
3718 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
3719 			dev->info->num_tx_queues);
3720 		return -EOPNOTSUPP;
3721 	}
3722 
3723 	for (band = 0; band < p->bands; ++band) {
3724 		/* The KSZ switches utilize a weighted round robin configuration
3725 		 * where a certain number of packets can be transmitted from a
3726 		 * queue before the next queue is serviced. For more information
3727 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
3728 		 * documentation on the Port Transmit Queue Control 1 Register.
3729 		 * However, the current ETS Qdisc implementation (as of February
3730 		 * 2023) assigns a weight to each queue based on the number of
3731 		 * bytes or extrapolated bandwidth in percentages. Since this
3732 		 * differs from the KSZ switches' method and we don't want to
3733 		 * fake support by converting bytes to packets, it is better to
3734 		 * return an error instead.
3735 		 */
3736 		if (p->quanta[band]) {
3737 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
3738 			return -EOPNOTSUPP;
3739 		}
3740 	}
3741 
3742 	return 0;
3743 }
3744 
3745 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
3746 				  struct tc_ets_qopt_offload *qopt)
3747 {
3748 	struct ksz_device *dev = ds->priv;
3749 	int ret;
3750 
3751 	if (is_ksz8(dev))
3752 		return -EOPNOTSUPP;
3753 
3754 	if (qopt->parent != TC_H_ROOT) {
3755 		dev_err(dev->dev, "Parent should be \"root\"\n");
3756 		return -EOPNOTSUPP;
3757 	}
3758 
3759 	switch (qopt->command) {
3760 	case TC_ETS_REPLACE:
3761 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
3762 		if (ret)
3763 			return ret;
3764 
3765 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
3766 	case TC_ETS_DESTROY:
3767 		return ksz_tc_ets_del(dev, port);
3768 	case TC_ETS_STATS:
3769 	case TC_ETS_GRAFT:
3770 		return -EOPNOTSUPP;
3771 	}
3772 
3773 	return -EOPNOTSUPP;
3774 }
3775 
3776 static int ksz_setup_tc(struct dsa_switch *ds, int port,
3777 			enum tc_setup_type type, void *type_data)
3778 {
3779 	switch (type) {
3780 	case TC_SETUP_QDISC_CBS:
3781 		return ksz_setup_tc_cbs(ds, port, type_data);
3782 	case TC_SETUP_QDISC_ETS:
3783 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
3784 	default:
3785 		return -EOPNOTSUPP;
3786 	}
3787 }
3788 
3789 /**
3790  * ksz_handle_wake_reason - Handle wake reason on a specified port.
3791  * @dev: The device structure.
3792  * @port: The port number.
3793  *
3794  * This function reads the PME (Power Management Event) status register of a
3795  * specified port to determine the wake reason. If there is no wake event, it
3796  * returns early. Otherwise, it logs the wake reason which could be due to a
3797  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
3798  * is then cleared to acknowledge the handling of the wake event.
3799  *
3800  * Return: 0 on success, or an error code on failure.
3801  */
3802 int ksz_handle_wake_reason(struct ksz_device *dev, int port)
3803 {
3804 	const struct ksz_dev_ops *ops = dev->dev_ops;
3805 	const u16 *regs = dev->info->regs;
3806 	u8 pme_status;
3807 	int ret;
3808 
3809 	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
3810 			      &pme_status);
3811 	if (ret)
3812 		return ret;
3813 
3814 	if (!pme_status)
3815 		return 0;
3816 
3817 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
3818 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
3819 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
3820 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
3821 
3822 	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
3823 				pme_status);
3824 }
3825 
3826 /**
3827  * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
3828  * @ds: The dsa_switch structure.
3829  * @port: The port number.
3830  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
3831  *
3832  * This function checks the device PME wakeup_source flag and chip_id.
3833  * If enabled and supported, it sets the supported and active WoL
3834  * flags.
3835  */
3836 static void ksz_get_wol(struct dsa_switch *ds, int port,
3837 			struct ethtool_wolinfo *wol)
3838 {
3839 	struct ksz_device *dev = ds->priv;
3840 	const u16 *regs = dev->info->regs;
3841 	u8 pme_ctrl;
3842 	int ret;
3843 
3844 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
3845 		return;
3846 
3847 	if (!dev->wakeup_source)
3848 		return;
3849 
3850 	wol->supported = WAKE_PHY;
3851 
3852 	/* Check if the current MAC address on this port can be set
3853 	 * as global for WAKE_MAGIC support. The result may vary
3854 	 * dynamically based on other ports configurations.
3855 	 */
3856 	if (ksz_is_port_mac_global_usable(dev->ds, port))
3857 		wol->supported |= WAKE_MAGIC;
3858 
3859 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
3860 				       &pme_ctrl);
3861 	if (ret)
3862 		return;
3863 
3864 	if (pme_ctrl & PME_WOL_MAGICPKT)
3865 		wol->wolopts |= WAKE_MAGIC;
3866 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
3867 		wol->wolopts |= WAKE_PHY;
3868 }
3869 
3870 /**
3871  * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
3872  * @ds: The dsa_switch structure.
3873  * @port: The port number.
3874  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
3875  *
3876  * This function configures Wake-on-LAN (WoL) settings for a specified
3877  * port. It validates the provided WoL options, checks if PME is
3878  * enabled and supported, clears any previous wake reasons, and sets
3879  * the Magic Packet flag in the port's PME control register if
3880  * specified.
3881  *
3882  * Return: 0 on success, or other error codes on failure.
3883  */
3884 static int ksz_set_wol(struct dsa_switch *ds, int port,
3885 		       struct ethtool_wolinfo *wol)
3886 {
3887 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
3888 	struct ksz_device *dev = ds->priv;
3889 	const u16 *regs = dev->info->regs;
3890 	bool magic_switched_off;
3891 	bool magic_switched_on;
3892 	int ret;
3893 
3894 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
3895 		return -EINVAL;
3896 
3897 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
3898 		return -EOPNOTSUPP;
3899 
3900 	if (!dev->wakeup_source)
3901 		return -EOPNOTSUPP;
3902 
3903 	ret = ksz_handle_wake_reason(dev, port);
3904 	if (ret)
3905 		return ret;
3906 
3907 	if (wol->wolopts & WAKE_MAGIC)
3908 		pme_ctrl |= PME_WOL_MAGICPKT;
3909 	if (wol->wolopts & WAKE_PHY)
3910 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
3911 
3912 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
3913 				       &pme_ctrl_old);
3914 	if (ret)
3915 		return ret;
3916 
3917 	if (pme_ctrl_old == pme_ctrl)
3918 		return 0;
3919 
3920 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
3921 			    !(pme_ctrl & PME_WOL_MAGICPKT);
3922 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
3923 			    (pme_ctrl & PME_WOL_MAGICPKT);
3924 
3925 	/* To keep reference count of MAC address, we should do this
3926 	 * operation only on change of WOL settings.
3927 	 */
3928 	if (magic_switched_on) {
3929 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
3930 		if (ret)
3931 			return ret;
3932 	} else if (magic_switched_off) {
3933 		ksz_switch_macaddr_put(dev->ds);
3934 	}
3935 
3936 	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
3937 					pme_ctrl);
3938 	if (ret) {
3939 		if (magic_switched_on)
3940 			ksz_switch_macaddr_put(dev->ds);
3941 		return ret;
3942 	}
3943 
3944 	return 0;
3945 }
3946 
3947 /**
3948  * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
3949  *                        considering Wake-on-LAN (WoL) settings.
3950  * @dev: The switch device structure.
3951  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
3952  *               enabled on any port.
3953  *
3954  * This function prepares the switch device for a safe shutdown while taking
3955  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
3956  * the wol_enabled flag accordingly to reflect whether WoL is active on any
3957  * port.
3958  */
3959 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
3960 {
3961 	const struct ksz_dev_ops *ops = dev->dev_ops;
3962 	const u16 *regs = dev->info->regs;
3963 	u8 pme_pin_en = PME_ENABLE;
3964 	struct dsa_port *dp;
3965 	int ret;
3966 
3967 	*wol_enabled = false;
3968 
3969 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
3970 		return;
3971 
3972 	if (!dev->wakeup_source)
3973 		return;
3974 
3975 	dsa_switch_for_each_user_port(dp, dev->ds) {
3976 		u8 pme_ctrl = 0;
3977 
3978 		ret = ops->pme_pread8(dev, dp->index,
3979 				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
3980 		if (!ret && pme_ctrl)
3981 			*wol_enabled = true;
3982 
3983 		/* make sure there are no pending wake events which would
3984 		 * prevent the device from going to sleep/shutdown.
3985 		 */
3986 		ksz_handle_wake_reason(dev, dp->index);
3987 	}
3988 
3989 	/* Now we are save to enable PME pin. */
3990 	if (*wol_enabled) {
3991 		if (dev->pme_active_high)
3992 			pme_pin_en |= PME_POLARITY;
3993 		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
3994 		if (ksz_is_ksz87xx(dev))
3995 			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
3996 	}
3997 }
3998 
3999 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4000 				    const unsigned char *addr)
4001 {
4002 	struct dsa_port *dp = dsa_to_port(ds, port);
4003 	struct ethtool_wolinfo wol;
4004 
4005 	if (dp->hsr_dev) {
4006 		dev_err(ds->dev,
4007 			"Cannot change MAC address on port %d with active HSR offload\n",
4008 			port);
4009 		return -EBUSY;
4010 	}
4011 
4012 	/* Need to initialize variable as the code to fill in settings may
4013 	 * not be executed.
4014 	 */
4015 	wol.wolopts = 0;
4016 
4017 	ksz_get_wol(ds, dp->index, &wol);
4018 	if (wol.wolopts & WAKE_MAGIC) {
4019 		dev_err(ds->dev,
4020 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4021 			port);
4022 		return -EBUSY;
4023 	}
4024 
4025 	return 0;
4026 }
4027 
4028 /**
4029  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4030  *                                 can be used as a global address.
4031  * @ds: Pointer to the DSA switch structure.
4032  * @port: The port number on which the MAC address is to be checked.
4033  *
4034  * This function examines the MAC address set on the specified port and
4035  * determines if it can be used as a global address for the switch.
4036  *
4037  * Return: true if the port's MAC address can be used as a global address, false
4038  * otherwise.
4039  */
4040 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4041 {
4042 	struct net_device *user = dsa_to_port(ds, port)->user;
4043 	const unsigned char *addr = user->dev_addr;
4044 	struct ksz_switch_macaddr *switch_macaddr;
4045 	struct ksz_device *dev = ds->priv;
4046 
4047 	ASSERT_RTNL();
4048 
4049 	switch_macaddr = dev->switch_macaddr;
4050 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4051 		return false;
4052 
4053 	return true;
4054 }
4055 
4056 /**
4057  * ksz_switch_macaddr_get - Program the switch's MAC address register.
4058  * @ds: DSA switch instance.
4059  * @port: Port number.
4060  * @extack: Netlink extended acknowledgment.
4061  *
4062  * This function programs the switch's MAC address register with the MAC address
4063  * of the requesting user port. This single address is used by the switch for
4064  * multiple features like HSR self-address filtering and WoL. Other user ports
4065  * can share ownership of this address as long as their MAC address is the same.
4066  * The MAC addresses of user ports must not change while they have ownership of
4067  * the switch MAC address.
4068  *
4069  * Return: 0 on success, or other error codes on failure.
4070  */
4071 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4072 			   struct netlink_ext_ack *extack)
4073 {
4074 	struct net_device *user = dsa_to_port(ds, port)->user;
4075 	const unsigned char *addr = user->dev_addr;
4076 	struct ksz_switch_macaddr *switch_macaddr;
4077 	struct ksz_device *dev = ds->priv;
4078 	const u16 *regs = dev->info->regs;
4079 	int i, ret;
4080 
4081 	/* Make sure concurrent MAC address changes are blocked */
4082 	ASSERT_RTNL();
4083 
4084 	switch_macaddr = dev->switch_macaddr;
4085 	if (switch_macaddr) {
4086 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4087 			NL_SET_ERR_MSG_FMT_MOD(extack,
4088 					       "Switch already configured for MAC address %pM",
4089 					       switch_macaddr->addr);
4090 			return -EBUSY;
4091 		}
4092 
4093 		refcount_inc(&switch_macaddr->refcount);
4094 		return 0;
4095 	}
4096 
4097 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4098 	if (!switch_macaddr)
4099 		return -ENOMEM;
4100 
4101 	ether_addr_copy(switch_macaddr->addr, addr);
4102 	refcount_set(&switch_macaddr->refcount, 1);
4103 	dev->switch_macaddr = switch_macaddr;
4104 
4105 	/* Program the switch MAC address to hardware */
4106 	for (i = 0; i < ETH_ALEN; i++) {
4107 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
4108 		if (ret)
4109 			goto macaddr_drop;
4110 	}
4111 
4112 	return 0;
4113 
4114 macaddr_drop:
4115 	dev->switch_macaddr = NULL;
4116 	refcount_set(&switch_macaddr->refcount, 0);
4117 	kfree(switch_macaddr);
4118 
4119 	return ret;
4120 }
4121 
4122 void ksz_switch_macaddr_put(struct dsa_switch *ds)
4123 {
4124 	struct ksz_switch_macaddr *switch_macaddr;
4125 	struct ksz_device *dev = ds->priv;
4126 	const u16 *regs = dev->info->regs;
4127 	int i;
4128 
4129 	/* Make sure concurrent MAC address changes are blocked */
4130 	ASSERT_RTNL();
4131 
4132 	switch_macaddr = dev->switch_macaddr;
4133 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4134 		return;
4135 
4136 	for (i = 0; i < ETH_ALEN; i++)
4137 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4138 
4139 	dev->switch_macaddr = NULL;
4140 	kfree(switch_macaddr);
4141 }
4142 
4143 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4144 			struct netlink_ext_ack *extack)
4145 {
4146 	struct ksz_device *dev = ds->priv;
4147 	enum hsr_version ver;
4148 	int ret;
4149 
4150 	ret = hsr_get_version(hsr, &ver);
4151 	if (ret)
4152 		return ret;
4153 
4154 	if (dev->chip_id != KSZ9477_CHIP_ID) {
4155 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4156 		return -EOPNOTSUPP;
4157 	}
4158 
4159 	/* KSZ9477 can support HW offloading of only 1 HSR device */
4160 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4161 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4162 		return -EOPNOTSUPP;
4163 	}
4164 
4165 	/* KSZ9477 only supports HSR v0 and v1 */
4166 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4167 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4168 		return -EOPNOTSUPP;
4169 	}
4170 
4171 	/* KSZ9477 can only perform HSR offloading for up to two ports */
4172 	if (hweight8(dev->hsr_ports) >= 2) {
4173 		NL_SET_ERR_MSG_MOD(extack,
4174 				   "Cannot offload more than two ports - using software HSR");
4175 		return -EOPNOTSUPP;
4176 	}
4177 
4178 	/* Self MAC address filtering, to avoid frames traversing
4179 	 * the HSR ring more than once.
4180 	 */
4181 	ret = ksz_switch_macaddr_get(ds, port, extack);
4182 	if (ret)
4183 		return ret;
4184 
4185 	ksz9477_hsr_join(ds, port, hsr);
4186 	dev->hsr_dev = hsr;
4187 	dev->hsr_ports |= BIT(port);
4188 
4189 	return 0;
4190 }
4191 
4192 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4193 			 struct net_device *hsr)
4194 {
4195 	struct ksz_device *dev = ds->priv;
4196 
4197 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4198 
4199 	ksz9477_hsr_leave(ds, port, hsr);
4200 	dev->hsr_ports &= ~BIT(port);
4201 	if (!dev->hsr_ports)
4202 		dev->hsr_dev = NULL;
4203 
4204 	ksz_switch_macaddr_put(ds);
4205 
4206 	return 0;
4207 }
4208 
4209 static const struct dsa_switch_ops ksz_switch_ops = {
4210 	.get_tag_protocol	= ksz_get_tag_protocol,
4211 	.connect_tag_protocol   = ksz_connect_tag_protocol,
4212 	.get_phy_flags		= ksz_get_phy_flags,
4213 	.setup			= ksz_setup,
4214 	.teardown		= ksz_teardown,
4215 	.phy_read		= ksz_phy_read16,
4216 	.phy_write		= ksz_phy_write16,
4217 	.phylink_get_caps	= ksz_phylink_get_caps,
4218 	.port_setup		= ksz_port_setup,
4219 	.set_ageing_time	= ksz_set_ageing_time,
4220 	.get_strings		= ksz_get_strings,
4221 	.get_ethtool_stats	= ksz_get_ethtool_stats,
4222 	.get_sset_count		= ksz_sset_count,
4223 	.port_bridge_join	= ksz_port_bridge_join,
4224 	.port_bridge_leave	= ksz_port_bridge_leave,
4225 	.port_hsr_join		= ksz_hsr_join,
4226 	.port_hsr_leave		= ksz_hsr_leave,
4227 	.port_set_mac_address	= ksz_port_set_mac_address,
4228 	.port_stp_state_set	= ksz_port_stp_state_set,
4229 	.port_teardown		= ksz_port_teardown,
4230 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4231 	.port_bridge_flags	= ksz_port_bridge_flags,
4232 	.port_fast_age		= ksz_port_fast_age,
4233 	.port_vlan_filtering	= ksz_port_vlan_filtering,
4234 	.port_vlan_add		= ksz_port_vlan_add,
4235 	.port_vlan_del		= ksz_port_vlan_del,
4236 	.port_fdb_dump		= ksz_port_fdb_dump,
4237 	.port_fdb_add		= ksz_port_fdb_add,
4238 	.port_fdb_del		= ksz_port_fdb_del,
4239 	.port_mdb_add           = ksz_port_mdb_add,
4240 	.port_mdb_del           = ksz_port_mdb_del,
4241 	.port_mirror_add	= ksz_port_mirror_add,
4242 	.port_mirror_del	= ksz_port_mirror_del,
4243 	.get_stats64		= ksz_get_stats64,
4244 	.get_pause_stats	= ksz_get_pause_stats,
4245 	.port_change_mtu	= ksz_change_mtu,
4246 	.port_max_mtu		= ksz_max_mtu,
4247 	.get_wol		= ksz_get_wol,
4248 	.set_wol		= ksz_set_wol,
4249 	.get_ts_info		= ksz_get_ts_info,
4250 	.port_hwtstamp_get	= ksz_hwtstamp_get,
4251 	.port_hwtstamp_set	= ksz_hwtstamp_set,
4252 	.port_txtstamp		= ksz_port_txtstamp,
4253 	.port_rxtstamp		= ksz_port_rxtstamp,
4254 	.cls_flower_add		= ksz_cls_flower_add,
4255 	.cls_flower_del		= ksz_cls_flower_del,
4256 	.port_setup_tc		= ksz_setup_tc,
4257 	.get_mac_eee		= ksz_get_mac_eee,
4258 	.set_mac_eee		= ksz_set_mac_eee,
4259 	.port_get_default_prio	= ksz_port_get_default_prio,
4260 	.port_set_default_prio	= ksz_port_set_default_prio,
4261 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
4262 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
4263 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
4264 	.port_get_apptrust	= ksz_port_get_apptrust,
4265 	.port_set_apptrust	= ksz_port_set_apptrust,
4266 };
4267 
4268 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
4269 {
4270 	struct dsa_switch *ds;
4271 	struct ksz_device *swdev;
4272 
4273 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
4274 	if (!ds)
4275 		return NULL;
4276 
4277 	ds->dev = base;
4278 	ds->num_ports = DSA_MAX_PORTS;
4279 	ds->ops = &ksz_switch_ops;
4280 
4281 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
4282 	if (!swdev)
4283 		return NULL;
4284 
4285 	ds->priv = swdev;
4286 	swdev->dev = base;
4287 
4288 	swdev->ds = ds;
4289 	swdev->priv = priv;
4290 
4291 	return swdev;
4292 }
4293 EXPORT_SYMBOL(ksz_switch_alloc);
4294 
4295 /**
4296  * ksz_switch_shutdown - Shutdown routine for the switch device.
4297  * @dev: The switch device structure.
4298  *
4299  * This function is responsible for initiating a shutdown sequence for the
4300  * switch device. It invokes the reset operation defined in the device
4301  * operations, if available, to reset the switch. Subsequently, it calls the
4302  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
4303  * switch.
4304  */
4305 void ksz_switch_shutdown(struct ksz_device *dev)
4306 {
4307 	bool wol_enabled = false;
4308 
4309 	ksz_wol_pre_shutdown(dev, &wol_enabled);
4310 
4311 	if (dev->dev_ops->reset && !wol_enabled)
4312 		dev->dev_ops->reset(dev);
4313 
4314 	dsa_switch_shutdown(dev->ds);
4315 }
4316 EXPORT_SYMBOL(ksz_switch_shutdown);
4317 
4318 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
4319 				  struct device_node *port_dn)
4320 {
4321 	phy_interface_t phy_mode = dev->ports[port_num].interface;
4322 	int rx_delay = -1, tx_delay = -1;
4323 
4324 	if (!phy_interface_mode_is_rgmii(phy_mode))
4325 		return;
4326 
4327 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
4328 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
4329 
4330 	if (rx_delay == -1 && tx_delay == -1) {
4331 		dev_warn(dev->dev,
4332 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
4333 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
4334 			 "\"tx-internal-delay-ps\"",
4335 			 port_num);
4336 
4337 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4338 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4339 			rx_delay = 2000;
4340 
4341 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4342 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4343 			tx_delay = 2000;
4344 	}
4345 
4346 	if (rx_delay < 0)
4347 		rx_delay = 0;
4348 	if (tx_delay < 0)
4349 		tx_delay = 0;
4350 
4351 	dev->ports[port_num].rgmii_rx_val = rx_delay;
4352 	dev->ports[port_num].rgmii_tx_val = tx_delay;
4353 }
4354 
4355 /**
4356  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4357  *				 register value.
4358  * @array:	The array of drive strength values to search.
4359  * @array_size:	The size of the array.
4360  * @microamp:	The drive strength value in microamp to be converted.
4361  *
4362  * This function searches the array of drive strength values for the given
4363  * microamp value and returns the corresponding register value for that drive.
4364  *
4365  * Returns: If found, the corresponding register value for that drive strength
4366  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4367  */
4368 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4369 				     size_t array_size, int microamp)
4370 {
4371 	int i;
4372 
4373 	for (i = 0; i < array_size; i++) {
4374 		if (array[i].microamp == microamp)
4375 			return array[i].reg_val;
4376 	}
4377 
4378 	return -EINVAL;
4379 }
4380 
4381 /**
4382  * ksz_drive_strength_error() - Report invalid drive strength value
4383  * @dev:	ksz device
4384  * @array:	The array of drive strength values to search.
4385  * @array_size:	The size of the array.
4386  * @microamp:	Invalid drive strength value in microamp
4387  *
4388  * This function logs an error message when an unsupported drive strength value
4389  * is detected. It lists out all the supported drive strength values for
4390  * reference in the error message.
4391  */
4392 static void ksz_drive_strength_error(struct ksz_device *dev,
4393 				     const struct ksz_drive_strength *array,
4394 				     size_t array_size, int microamp)
4395 {
4396 	char supported_values[100];
4397 	size_t remaining_size;
4398 	int added_len;
4399 	char *ptr;
4400 	int i;
4401 
4402 	remaining_size = sizeof(supported_values);
4403 	ptr = supported_values;
4404 
4405 	for (i = 0; i < array_size; i++) {
4406 		added_len = snprintf(ptr, remaining_size,
4407 				     i == 0 ? "%d" : ", %d", array[i].microamp);
4408 
4409 		if (added_len >= remaining_size)
4410 			break;
4411 
4412 		ptr += added_len;
4413 		remaining_size -= added_len;
4414 	}
4415 
4416 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
4417 		microamp, supported_values);
4418 }
4419 
4420 /**
4421  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
4422  *				    chip variants.
4423  * @dev:       ksz device
4424  * @props:     Array of drive strength properties to be applied
4425  * @num_props: Number of properties in the array
4426  *
4427  * This function configures the drive strength for various KSZ9477 chip variants
4428  * based on the provided properties. It handles chip-specific nuances and
4429  * ensures only valid drive strengths are written to the respective chip.
4430  *
4431  * Return: 0 on successful configuration, a negative error code on failure.
4432  */
4433 static int ksz9477_drive_strength_write(struct ksz_device *dev,
4434 					struct ksz_driver_strength_prop *props,
4435 					int num_props)
4436 {
4437 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4438 	int i, ret, reg;
4439 	u8 mask = 0;
4440 	u8 val = 0;
4441 
4442 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4443 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4444 			 props[KSZ_DRIVER_STRENGTH_IO].name);
4445 
4446 	if (dev->chip_id == KSZ8795_CHIP_ID ||
4447 	    dev->chip_id == KSZ8794_CHIP_ID ||
4448 	    dev->chip_id == KSZ8765_CHIP_ID)
4449 		reg = KSZ8795_REG_SW_CTRL_20;
4450 	else
4451 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4452 
4453 	for (i = 0; i < num_props; i++) {
4454 		if (props[i].value == -1)
4455 			continue;
4456 
4457 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4458 						array_size, props[i].value);
4459 		if (ret < 0) {
4460 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4461 						 array_size, props[i].value);
4462 			return ret;
4463 		}
4464 
4465 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4466 		val |= ret << props[i].offset;
4467 	}
4468 
4469 	return ksz_rmw8(dev, reg, mask, val);
4470 }
4471 
4472 /**
4473  * ksz8830_drive_strength_write() - Set the drive strength configuration for
4474  *				    KSZ8830 compatible chip variants.
4475  * @dev:       ksz device
4476  * @props:     Array of drive strength properties to be set
4477  * @num_props: Number of properties in the array
4478  *
4479  * This function applies the specified drive strength settings to KSZ8830 chip
4480  * variants (KSZ8873, KSZ8863).
4481  * It ensures the configurations align with what the chip variant supports and
4482  * warns or errors out on unsupported settings.
4483  *
4484  * Return: 0 on success, error code otherwise
4485  */
4486 static int ksz8830_drive_strength_write(struct ksz_device *dev,
4487 					struct ksz_driver_strength_prop *props,
4488 					int num_props)
4489 {
4490 	size_t array_size = ARRAY_SIZE(ksz8830_drive_strengths);
4491 	int microamp;
4492 	int i, ret;
4493 
4494 	for (i = 0; i < num_props; i++) {
4495 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4496 			continue;
4497 
4498 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4499 			 props[i].name);
4500 	}
4501 
4502 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4503 	ret = ksz_drive_strength_to_reg(ksz8830_drive_strengths, array_size,
4504 					microamp);
4505 	if (ret < 0) {
4506 		ksz_drive_strength_error(dev, ksz8830_drive_strengths,
4507 					 array_size, microamp);
4508 		return ret;
4509 	}
4510 
4511 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4512 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4513 }
4514 
4515 /**
4516  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4517  *				from device tree properties.
4518  * @dev:	ksz device
4519  *
4520  * This function reads the specified drive strength properties from the
4521  * device tree, validates against the supported chip variants, and sets
4522  * them accordingly. An error should be critical here, as the drive strength
4523  * settings are crucial for EMI compliance.
4524  *
4525  * Return: 0 on success, error code otherwise
4526  */
4527 static int ksz_parse_drive_strength(struct ksz_device *dev)
4528 {
4529 	struct ksz_driver_strength_prop of_props[] = {
4530 		[KSZ_DRIVER_STRENGTH_HI] = {
4531 			.name = "microchip,hi-drive-strength-microamp",
4532 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4533 			.value = -1,
4534 		},
4535 		[KSZ_DRIVER_STRENGTH_LO] = {
4536 			.name = "microchip,lo-drive-strength-microamp",
4537 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4538 			.value = -1,
4539 		},
4540 		[KSZ_DRIVER_STRENGTH_IO] = {
4541 			.name = "microchip,io-drive-strength-microamp",
4542 			.offset = 0, /* don't care */
4543 			.value = -1,
4544 		},
4545 	};
4546 	struct device_node *np = dev->dev->of_node;
4547 	bool have_any_prop = false;
4548 	int i, ret;
4549 
4550 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4551 		ret = of_property_read_u32(np, of_props[i].name,
4552 					   &of_props[i].value);
4553 		if (ret && ret != -EINVAL)
4554 			dev_warn(dev->dev, "Failed to read %s\n",
4555 				 of_props[i].name);
4556 		if (ret)
4557 			continue;
4558 
4559 		have_any_prop = true;
4560 	}
4561 
4562 	if (!have_any_prop)
4563 		return 0;
4564 
4565 	switch (dev->chip_id) {
4566 	case KSZ8830_CHIP_ID:
4567 		return ksz8830_drive_strength_write(dev, of_props,
4568 						    ARRAY_SIZE(of_props));
4569 	case KSZ8795_CHIP_ID:
4570 	case KSZ8794_CHIP_ID:
4571 	case KSZ8765_CHIP_ID:
4572 	case KSZ8563_CHIP_ID:
4573 	case KSZ8567_CHIP_ID:
4574 	case KSZ9477_CHIP_ID:
4575 	case KSZ9563_CHIP_ID:
4576 	case KSZ9567_CHIP_ID:
4577 	case KSZ9893_CHIP_ID:
4578 	case KSZ9896_CHIP_ID:
4579 	case KSZ9897_CHIP_ID:
4580 		return ksz9477_drive_strength_write(dev, of_props,
4581 						    ARRAY_SIZE(of_props));
4582 	default:
4583 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4584 			if (of_props[i].value == -1)
4585 				continue;
4586 
4587 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4588 				 of_props[i].name);
4589 		}
4590 	}
4591 
4592 	return 0;
4593 }
4594 
4595 int ksz_switch_register(struct ksz_device *dev)
4596 {
4597 	const struct ksz_chip_data *info;
4598 	struct device_node *port, *ports;
4599 	phy_interface_t interface;
4600 	unsigned int port_num;
4601 	int ret;
4602 	int i;
4603 
4604 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4605 						  GPIOD_OUT_LOW);
4606 	if (IS_ERR(dev->reset_gpio))
4607 		return PTR_ERR(dev->reset_gpio);
4608 
4609 	if (dev->reset_gpio) {
4610 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4611 		usleep_range(10000, 12000);
4612 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
4613 		msleep(100);
4614 	}
4615 
4616 	mutex_init(&dev->dev_mutex);
4617 	mutex_init(&dev->regmap_mutex);
4618 	mutex_init(&dev->alu_mutex);
4619 	mutex_init(&dev->vlan_mutex);
4620 
4621 	ret = ksz_switch_detect(dev);
4622 	if (ret)
4623 		return ret;
4624 
4625 	info = ksz_lookup_info(dev->chip_id);
4626 	if (!info)
4627 		return -ENODEV;
4628 
4629 	/* Update the compatible info with the probed one */
4630 	dev->info = info;
4631 
4632 	dev_info(dev->dev, "found switch: %s, rev %i\n",
4633 		 dev->info->dev_name, dev->chip_rev);
4634 
4635 	ret = ksz_check_device_id(dev);
4636 	if (ret)
4637 		return ret;
4638 
4639 	dev->dev_ops = dev->info->ops;
4640 
4641 	ret = dev->dev_ops->init(dev);
4642 	if (ret)
4643 		return ret;
4644 
4645 	dev->ports = devm_kzalloc(dev->dev,
4646 				  dev->info->port_cnt * sizeof(struct ksz_port),
4647 				  GFP_KERNEL);
4648 	if (!dev->ports)
4649 		return -ENOMEM;
4650 
4651 	for (i = 0; i < dev->info->port_cnt; i++) {
4652 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
4653 		mutex_init(&dev->ports[i].mib.cnt_mutex);
4654 		dev->ports[i].mib.counters =
4655 			devm_kzalloc(dev->dev,
4656 				     sizeof(u64) * (dev->info->mib_cnt + 1),
4657 				     GFP_KERNEL);
4658 		if (!dev->ports[i].mib.counters)
4659 			return -ENOMEM;
4660 
4661 		dev->ports[i].ksz_dev = dev;
4662 		dev->ports[i].num = i;
4663 	}
4664 
4665 	/* set the real number of ports */
4666 	dev->ds->num_ports = dev->info->port_cnt;
4667 
4668 	/* set the phylink ops */
4669 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
4670 
4671 	/* Host port interface will be self detected, or specifically set in
4672 	 * device tree.
4673 	 */
4674 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
4675 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
4676 	if (dev->dev->of_node) {
4677 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
4678 		if (ret == 0)
4679 			dev->compat_interface = interface;
4680 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
4681 		if (!ports)
4682 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
4683 		if (ports) {
4684 			for_each_available_child_of_node(ports, port) {
4685 				if (of_property_read_u32(port, "reg",
4686 							 &port_num))
4687 					continue;
4688 				if (!(dev->port_mask & BIT(port_num))) {
4689 					of_node_put(port);
4690 					of_node_put(ports);
4691 					return -EINVAL;
4692 				}
4693 				of_get_phy_mode(port,
4694 						&dev->ports[port_num].interface);
4695 
4696 				ksz_parse_rgmii_delay(dev, port_num, port);
4697 			}
4698 			of_node_put(ports);
4699 		}
4700 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
4701 							 "microchip,synclko-125");
4702 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
4703 							     "microchip,synclko-disable");
4704 		if (dev->synclko_125 && dev->synclko_disable) {
4705 			dev_err(dev->dev, "inconsistent synclko settings\n");
4706 			return -EINVAL;
4707 		}
4708 
4709 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
4710 							   "wakeup-source");
4711 		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
4712 							     "microchip,pme-active-high");
4713 	}
4714 
4715 	ret = dsa_register_switch(dev->ds);
4716 	if (ret) {
4717 		dev->dev_ops->exit(dev);
4718 		return ret;
4719 	}
4720 
4721 	/* Read MIB counters every 30 seconds to avoid overflow. */
4722 	dev->mib_read_interval = msecs_to_jiffies(5000);
4723 
4724 	/* Start the MIB timer. */
4725 	schedule_delayed_work(&dev->mib_read, 0);
4726 
4727 	return ret;
4728 }
4729 EXPORT_SYMBOL(ksz_switch_register);
4730 
4731 void ksz_switch_remove(struct ksz_device *dev)
4732 {
4733 	/* timer started */
4734 	if (dev->mib_read_interval) {
4735 		dev->mib_read_interval = 0;
4736 		cancel_delayed_work_sync(&dev->mib_read);
4737 	}
4738 
4739 	dev->dev_ops->exit(dev);
4740 	dsa_unregister_switch(dev->ds);
4741 
4742 	if (dev->reset_gpio)
4743 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4744 
4745 }
4746 EXPORT_SYMBOL(ksz_switch_remove);
4747 
4748 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
4749 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
4750 MODULE_LICENSE("GPL");
4751