xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 47cf96fbe393839b125a9b694a8cfdd3f4216baa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2024 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/ieee8021q.h>
28 #include <net/pkt_cls.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_common.h"
32 #include "ksz_dcb.h"
33 #include "ksz_ptp.h"
34 #include "ksz8.h"
35 #include "ksz9477.h"
36 #include "lan937x.h"
37 
38 #define MIB_COUNTER_NUM 0x20
39 
40 struct ksz_stats_raw {
41 	u64 rx_hi;
42 	u64 rx_undersize;
43 	u64 rx_fragments;
44 	u64 rx_oversize;
45 	u64 rx_jabbers;
46 	u64 rx_symbol_err;
47 	u64 rx_crc_err;
48 	u64 rx_align_err;
49 	u64 rx_mac_ctrl;
50 	u64 rx_pause;
51 	u64 rx_bcast;
52 	u64 rx_mcast;
53 	u64 rx_ucast;
54 	u64 rx_64_or_less;
55 	u64 rx_65_127;
56 	u64 rx_128_255;
57 	u64 rx_256_511;
58 	u64 rx_512_1023;
59 	u64 rx_1024_1522;
60 	u64 rx_1523_2000;
61 	u64 rx_2001;
62 	u64 tx_hi;
63 	u64 tx_late_col;
64 	u64 tx_pause;
65 	u64 tx_bcast;
66 	u64 tx_mcast;
67 	u64 tx_ucast;
68 	u64 tx_deferred;
69 	u64 tx_total_col;
70 	u64 tx_exc_col;
71 	u64 tx_single_col;
72 	u64 tx_mult_col;
73 	u64 rx_total;
74 	u64 tx_total;
75 	u64 rx_discards;
76 	u64 tx_discards;
77 };
78 
79 struct ksz88xx_stats_raw {
80 	u64 rx;
81 	u64 rx_hi;
82 	u64 rx_undersize;
83 	u64 rx_fragments;
84 	u64 rx_oversize;
85 	u64 rx_jabbers;
86 	u64 rx_symbol_err;
87 	u64 rx_crc_err;
88 	u64 rx_align_err;
89 	u64 rx_mac_ctrl;
90 	u64 rx_pause;
91 	u64 rx_bcast;
92 	u64 rx_mcast;
93 	u64 rx_ucast;
94 	u64 rx_64_or_less;
95 	u64 rx_65_127;
96 	u64 rx_128_255;
97 	u64 rx_256_511;
98 	u64 rx_512_1023;
99 	u64 rx_1024_1522;
100 	u64 tx;
101 	u64 tx_hi;
102 	u64 tx_late_col;
103 	u64 tx_pause;
104 	u64 tx_bcast;
105 	u64 tx_mcast;
106 	u64 tx_ucast;
107 	u64 tx_deferred;
108 	u64 tx_total_col;
109 	u64 tx_exc_col;
110 	u64 tx_single_col;
111 	u64 tx_mult_col;
112 	u64 rx_discards;
113 	u64 tx_discards;
114 };
115 
116 static const struct ksz_mib_names ksz88xx_mib_names[] = {
117 	{ 0x00, "rx" },
118 	{ 0x01, "rx_hi" },
119 	{ 0x02, "rx_undersize" },
120 	{ 0x03, "rx_fragments" },
121 	{ 0x04, "rx_oversize" },
122 	{ 0x05, "rx_jabbers" },
123 	{ 0x06, "rx_symbol_err" },
124 	{ 0x07, "rx_crc_err" },
125 	{ 0x08, "rx_align_err" },
126 	{ 0x09, "rx_mac_ctrl" },
127 	{ 0x0a, "rx_pause" },
128 	{ 0x0b, "rx_bcast" },
129 	{ 0x0c, "rx_mcast" },
130 	{ 0x0d, "rx_ucast" },
131 	{ 0x0e, "rx_64_or_less" },
132 	{ 0x0f, "rx_65_127" },
133 	{ 0x10, "rx_128_255" },
134 	{ 0x11, "rx_256_511" },
135 	{ 0x12, "rx_512_1023" },
136 	{ 0x13, "rx_1024_1522" },
137 	{ 0x14, "tx" },
138 	{ 0x15, "tx_hi" },
139 	{ 0x16, "tx_late_col" },
140 	{ 0x17, "tx_pause" },
141 	{ 0x18, "tx_bcast" },
142 	{ 0x19, "tx_mcast" },
143 	{ 0x1a, "tx_ucast" },
144 	{ 0x1b, "tx_deferred" },
145 	{ 0x1c, "tx_total_col" },
146 	{ 0x1d, "tx_exc_col" },
147 	{ 0x1e, "tx_single_col" },
148 	{ 0x1f, "tx_mult_col" },
149 	{ 0x100, "rx_discards" },
150 	{ 0x101, "tx_discards" },
151 };
152 
153 static const struct ksz_mib_names ksz9477_mib_names[] = {
154 	{ 0x00, "rx_hi" },
155 	{ 0x01, "rx_undersize" },
156 	{ 0x02, "rx_fragments" },
157 	{ 0x03, "rx_oversize" },
158 	{ 0x04, "rx_jabbers" },
159 	{ 0x05, "rx_symbol_err" },
160 	{ 0x06, "rx_crc_err" },
161 	{ 0x07, "rx_align_err" },
162 	{ 0x08, "rx_mac_ctrl" },
163 	{ 0x09, "rx_pause" },
164 	{ 0x0A, "rx_bcast" },
165 	{ 0x0B, "rx_mcast" },
166 	{ 0x0C, "rx_ucast" },
167 	{ 0x0D, "rx_64_or_less" },
168 	{ 0x0E, "rx_65_127" },
169 	{ 0x0F, "rx_128_255" },
170 	{ 0x10, "rx_256_511" },
171 	{ 0x11, "rx_512_1023" },
172 	{ 0x12, "rx_1024_1522" },
173 	{ 0x13, "rx_1523_2000" },
174 	{ 0x14, "rx_2001" },
175 	{ 0x15, "tx_hi" },
176 	{ 0x16, "tx_late_col" },
177 	{ 0x17, "tx_pause" },
178 	{ 0x18, "tx_bcast" },
179 	{ 0x19, "tx_mcast" },
180 	{ 0x1A, "tx_ucast" },
181 	{ 0x1B, "tx_deferred" },
182 	{ 0x1C, "tx_total_col" },
183 	{ 0x1D, "tx_exc_col" },
184 	{ 0x1E, "tx_single_col" },
185 	{ 0x1F, "tx_mult_col" },
186 	{ 0x80, "rx_total" },
187 	{ 0x81, "tx_total" },
188 	{ 0x82, "rx_discards" },
189 	{ 0x83, "tx_discards" },
190 };
191 
192 struct ksz_driver_strength_prop {
193 	const char *name;
194 	int offset;
195 	int value;
196 };
197 
198 enum ksz_driver_strength_type {
199 	KSZ_DRIVER_STRENGTH_HI,
200 	KSZ_DRIVER_STRENGTH_LO,
201 	KSZ_DRIVER_STRENGTH_IO,
202 };
203 
204 /**
205  * struct ksz_drive_strength - drive strength mapping
206  * @reg_val:	register value
207  * @microamp:	microamp value
208  */
209 struct ksz_drive_strength {
210 	u32 reg_val;
211 	u32 microamp;
212 };
213 
214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
215  *
216  * This values are not documented in KSZ9477 variants but confirmed by
217  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
218  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
219  *
220  * Documentation in KSZ8795CLX provides more information with some
221  * recommendations:
222  * - for high speed signals
223  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
224  *      2.5V or 3.3V VDDIO.
225  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
226  *      using 1.8V VDDIO.
227  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
228  *      or 3.3V VDDIO.
229  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
230  *   5. In same interface, the heavy loading should use higher one of the
231  *      drive current strength.
232  * - for low speed signals
233  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
234  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
235  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
236  *   4. If it is heavy loading, can use higher drive current strength.
237  */
238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
239 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
240 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
241 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
242 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
243 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
244 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
245 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
246 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
247 };
248 
249 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, ..
250  *			     variants.
251  * This values are documented in KSZ8873 and KSZ8863 datasheets.
252  */
253 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = {
254 	{ 0,  8000 },
255 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
256 };
257 
258 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
259 				       unsigned int mode,
260 				       const struct phylink_link_state *state);
261 static void ksz_phylink_mac_config(struct phylink_config *config,
262 				   unsigned int mode,
263 				   const struct phylink_link_state *state);
264 static void ksz_phylink_mac_link_down(struct phylink_config *config,
265 				      unsigned int mode,
266 				      phy_interface_t interface);
267 
268 /**
269  * ksz_phylink_mac_disable_tx_lpi() - Callback to signal LPI support (Dummy)
270  * @config: phylink config structure
271  *
272  * This function is a dummy handler. See ksz_phylink_mac_enable_tx_lpi() for
273  * a detailed explanation of EEE/LPI handling in KSZ switches.
274  */
275 static void ksz_phylink_mac_disable_tx_lpi(struct phylink_config *config)
276 {
277 }
278 
279 /**
280  * ksz_phylink_mac_enable_tx_lpi() - Callback to signal LPI support (Dummy)
281  * @config: phylink config structure
282  * @timer: timer value before entering LPI (unused)
283  * @tx_clock_stop: whether to stop the TX clock in LPI mode (unused)
284  *
285  * This function signals to phylink that the driver architecture supports
286  * LPI management, enabling phylink to control EEE advertisement during
287  * negotiation according to IEEE Std 802.3 (Clause 78).
288  *
289  * Hardware Management of EEE/LPI State:
290  * For KSZ switch ports with integrated PHYs (e.g., KSZ9893R ports 1-2),
291  * observation and testing suggest that the actual EEE / Low Power Idle (LPI)
292  * state transitions are managed autonomously by the hardware based on
293  * the auto-negotiation results. (Note: While the datasheet describes EEE
294  * operation based on negotiation, it doesn't explicitly detail the internal
295  * MAC/PHY interaction, so autonomous hardware management of the MAC state
296  * for LPI is inferred from observed behavior).
297  * This hardware control, consistent with the switch's ability to operate
298  * autonomously via strapping, means MAC-level software intervention is not
299  * required or exposed for managing the LPI state once EEE is negotiated.
300  * (Ref: KSZ9893R Data Sheet DS00002420D, primarily Section 4.7.5 explaining
301  * EEE, also Sections 4.1.7 on Auto-Negotiation and 3.2.1 on Configuration
302  * Straps).
303  *
304  * Additionally, ports configured as MAC interfaces (e.g., KSZ9893R port 3)
305  * lack documented MAC-level LPI control.
306  *
307  * Therefore, this callback performs no action and serves primarily to inform
308  * phylink of LPI awareness and to document the inferred hardware behavior.
309  *
310  * Returns: 0 (Always success)
311  */
312 static int ksz_phylink_mac_enable_tx_lpi(struct phylink_config *config,
313 					 u32 timer, bool tx_clock_stop)
314 {
315 	return 0;
316 }
317 
318 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = {
319 	.mac_config	= ksz88x3_phylink_mac_config,
320 	.mac_link_down	= ksz_phylink_mac_link_down,
321 	.mac_link_up	= ksz8_phylink_mac_link_up,
322 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
323 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
324 };
325 
326 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
327 	.mac_config	= ksz_phylink_mac_config,
328 	.mac_link_down	= ksz_phylink_mac_link_down,
329 	.mac_link_up	= ksz8_phylink_mac_link_up,
330 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
331 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
332 };
333 
334 static const struct ksz_dev_ops ksz88xx_dev_ops = {
335 	.setup = ksz8_setup,
336 	.get_port_addr = ksz8_get_port_addr,
337 	.cfg_port_member = ksz8_cfg_port_member,
338 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
339 	.port_setup = ksz8_port_setup,
340 	.r_phy = ksz8_r_phy,
341 	.w_phy = ksz8_w_phy,
342 	.r_mib_cnt = ksz8_r_mib_cnt,
343 	.r_mib_pkt = ksz8_r_mib_pkt,
344 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
345 	.freeze_mib = ksz8_freeze_mib,
346 	.port_init_cnt = ksz8_port_init_cnt,
347 	.fdb_dump = ksz8_fdb_dump,
348 	.fdb_add = ksz8_fdb_add,
349 	.fdb_del = ksz8_fdb_del,
350 	.mdb_add = ksz8_mdb_add,
351 	.mdb_del = ksz8_mdb_del,
352 	.vlan_filtering = ksz8_port_vlan_filtering,
353 	.vlan_add = ksz8_port_vlan_add,
354 	.vlan_del = ksz8_port_vlan_del,
355 	.mirror_add = ksz8_port_mirror_add,
356 	.mirror_del = ksz8_port_mirror_del,
357 	.get_caps = ksz8_get_caps,
358 	.config_cpu_port = ksz8_config_cpu_port,
359 	.enable_stp_addr = ksz8_enable_stp_addr,
360 	.reset = ksz8_reset_switch,
361 	.init = ksz8_switch_init,
362 	.exit = ksz8_switch_exit,
363 	.change_mtu = ksz8_change_mtu,
364 	.pme_write8 = ksz8_pme_write8,
365 	.pme_pread8 = ksz8_pme_pread8,
366 	.pme_pwrite8 = ksz8_pme_pwrite8,
367 };
368 
369 static const struct ksz_dev_ops ksz87xx_dev_ops = {
370 	.setup = ksz8_setup,
371 	.get_port_addr = ksz8_get_port_addr,
372 	.cfg_port_member = ksz8_cfg_port_member,
373 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
374 	.port_setup = ksz8_port_setup,
375 	.r_phy = ksz8_r_phy,
376 	.w_phy = ksz8_w_phy,
377 	.r_mib_cnt = ksz8_r_mib_cnt,
378 	.r_mib_pkt = ksz8_r_mib_pkt,
379 	.r_mib_stat64 = ksz_r_mib_stats64,
380 	.freeze_mib = ksz8_freeze_mib,
381 	.port_init_cnt = ksz8_port_init_cnt,
382 	.fdb_dump = ksz8_fdb_dump,
383 	.fdb_add = ksz8_fdb_add,
384 	.fdb_del = ksz8_fdb_del,
385 	.mdb_add = ksz8_mdb_add,
386 	.mdb_del = ksz8_mdb_del,
387 	.vlan_filtering = ksz8_port_vlan_filtering,
388 	.vlan_add = ksz8_port_vlan_add,
389 	.vlan_del = ksz8_port_vlan_del,
390 	.mirror_add = ksz8_port_mirror_add,
391 	.mirror_del = ksz8_port_mirror_del,
392 	.get_caps = ksz8_get_caps,
393 	.config_cpu_port = ksz8_config_cpu_port,
394 	.enable_stp_addr = ksz8_enable_stp_addr,
395 	.reset = ksz8_reset_switch,
396 	.init = ksz8_switch_init,
397 	.exit = ksz8_switch_exit,
398 	.change_mtu = ksz8_change_mtu,
399 	.pme_write8 = ksz8_pme_write8,
400 	.pme_pread8 = ksz8_pme_pread8,
401 	.pme_pwrite8 = ksz8_pme_pwrite8,
402 };
403 
404 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
405 					struct phy_device *phydev,
406 					unsigned int mode,
407 					phy_interface_t interface,
408 					int speed, int duplex, bool tx_pause,
409 					bool rx_pause);
410 
411 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
412 	.mac_config	= ksz_phylink_mac_config,
413 	.mac_link_down	= ksz_phylink_mac_link_down,
414 	.mac_link_up	= ksz9477_phylink_mac_link_up,
415 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
416 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
417 };
418 
419 static const struct ksz_dev_ops ksz9477_dev_ops = {
420 	.setup = ksz9477_setup,
421 	.get_port_addr = ksz9477_get_port_addr,
422 	.cfg_port_member = ksz9477_cfg_port_member,
423 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
424 	.port_setup = ksz9477_port_setup,
425 	.set_ageing_time = ksz9477_set_ageing_time,
426 	.r_phy = ksz9477_r_phy,
427 	.w_phy = ksz9477_w_phy,
428 	.r_mib_cnt = ksz9477_r_mib_cnt,
429 	.r_mib_pkt = ksz9477_r_mib_pkt,
430 	.r_mib_stat64 = ksz_r_mib_stats64,
431 	.freeze_mib = ksz9477_freeze_mib,
432 	.port_init_cnt = ksz9477_port_init_cnt,
433 	.vlan_filtering = ksz9477_port_vlan_filtering,
434 	.vlan_add = ksz9477_port_vlan_add,
435 	.vlan_del = ksz9477_port_vlan_del,
436 	.mirror_add = ksz9477_port_mirror_add,
437 	.mirror_del = ksz9477_port_mirror_del,
438 	.get_caps = ksz9477_get_caps,
439 	.fdb_dump = ksz9477_fdb_dump,
440 	.fdb_add = ksz9477_fdb_add,
441 	.fdb_del = ksz9477_fdb_del,
442 	.mdb_add = ksz9477_mdb_add,
443 	.mdb_del = ksz9477_mdb_del,
444 	.change_mtu = ksz9477_change_mtu,
445 	.pme_write8 = ksz_write8,
446 	.pme_pread8 = ksz_pread8,
447 	.pme_pwrite8 = ksz_pwrite8,
448 	.config_cpu_port = ksz9477_config_cpu_port,
449 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
450 	.enable_stp_addr = ksz9477_enable_stp_addr,
451 	.reset = ksz9477_reset_switch,
452 	.init = ksz9477_switch_init,
453 	.exit = ksz9477_switch_exit,
454 };
455 
456 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
457 	.mac_config	= ksz_phylink_mac_config,
458 	.mac_link_down	= ksz_phylink_mac_link_down,
459 	.mac_link_up	= ksz9477_phylink_mac_link_up,
460 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
461 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
462 };
463 
464 static const struct ksz_dev_ops lan937x_dev_ops = {
465 	.setup = lan937x_setup,
466 	.teardown = lan937x_teardown,
467 	.get_port_addr = ksz9477_get_port_addr,
468 	.cfg_port_member = ksz9477_cfg_port_member,
469 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
470 	.port_setup = lan937x_port_setup,
471 	.set_ageing_time = lan937x_set_ageing_time,
472 	.mdio_bus_preinit = lan937x_mdio_bus_preinit,
473 	.create_phy_addr_map = lan937x_create_phy_addr_map,
474 	.r_phy = lan937x_r_phy,
475 	.w_phy = lan937x_w_phy,
476 	.r_mib_cnt = ksz9477_r_mib_cnt,
477 	.r_mib_pkt = ksz9477_r_mib_pkt,
478 	.r_mib_stat64 = ksz_r_mib_stats64,
479 	.freeze_mib = ksz9477_freeze_mib,
480 	.port_init_cnt = ksz9477_port_init_cnt,
481 	.vlan_filtering = ksz9477_port_vlan_filtering,
482 	.vlan_add = ksz9477_port_vlan_add,
483 	.vlan_del = ksz9477_port_vlan_del,
484 	.mirror_add = ksz9477_port_mirror_add,
485 	.mirror_del = ksz9477_port_mirror_del,
486 	.get_caps = lan937x_phylink_get_caps,
487 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
488 	.fdb_dump = ksz9477_fdb_dump,
489 	.fdb_add = ksz9477_fdb_add,
490 	.fdb_del = ksz9477_fdb_del,
491 	.mdb_add = ksz9477_mdb_add,
492 	.mdb_del = ksz9477_mdb_del,
493 	.change_mtu = lan937x_change_mtu,
494 	.config_cpu_port = lan937x_config_cpu_port,
495 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
496 	.enable_stp_addr = ksz9477_enable_stp_addr,
497 	.reset = lan937x_reset_switch,
498 	.init = lan937x_switch_init,
499 	.exit = lan937x_switch_exit,
500 };
501 
502 static const u16 ksz8795_regs[] = {
503 	[REG_SW_MAC_ADDR]		= 0x68,
504 	[REG_IND_CTRL_0]		= 0x6E,
505 	[REG_IND_DATA_8]		= 0x70,
506 	[REG_IND_DATA_CHECK]		= 0x72,
507 	[REG_IND_DATA_HI]		= 0x71,
508 	[REG_IND_DATA_LO]		= 0x75,
509 	[REG_IND_MIB_CHECK]		= 0x74,
510 	[REG_IND_BYTE]			= 0xA0,
511 	[P_FORCE_CTRL]			= 0x0C,
512 	[P_LINK_STATUS]			= 0x0E,
513 	[P_LOCAL_CTRL]			= 0x07,
514 	[P_NEG_RESTART_CTRL]		= 0x0D,
515 	[P_REMOTE_STATUS]		= 0x08,
516 	[P_SPEED_STATUS]		= 0x09,
517 	[S_TAIL_TAG_CTRL]		= 0x0C,
518 	[P_STP_CTRL]			= 0x02,
519 	[S_START_CTRL]			= 0x01,
520 	[S_BROADCAST_CTRL]		= 0x06,
521 	[S_MULTICAST_CTRL]		= 0x04,
522 	[P_XMII_CTRL_0]			= 0x06,
523 	[P_XMII_CTRL_1]			= 0x06,
524 	[REG_SW_PME_CTRL]		= 0x8003,
525 	[REG_PORT_PME_STATUS]		= 0x8003,
526 	[REG_PORT_PME_CTRL]		= 0x8007,
527 };
528 
529 static const u32 ksz8795_masks[] = {
530 	[PORT_802_1P_REMAPPING]		= BIT(7),
531 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
532 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
533 	[MIB_COUNTER_VALID]		= BIT(5),
534 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
535 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
536 	[VLAN_TABLE_VALID]		= BIT(12),
537 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
538 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
539 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
540 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
541 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
542 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
543 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
544 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
545 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
546 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
547 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
548 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
549 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
550 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
551 };
552 
553 static const u8 ksz8795_xmii_ctrl0[] = {
554 	[P_MII_100MBIT]			= 0,
555 	[P_MII_10MBIT]			= 1,
556 	[P_MII_FULL_DUPLEX]		= 0,
557 	[P_MII_HALF_DUPLEX]		= 1,
558 };
559 
560 static const u8 ksz8795_xmii_ctrl1[] = {
561 	[P_RGMII_SEL]			= 3,
562 	[P_GMII_SEL]			= 2,
563 	[P_RMII_SEL]			= 1,
564 	[P_MII_SEL]			= 0,
565 	[P_GMII_1GBIT]			= 1,
566 	[P_GMII_NOT_1GBIT]		= 0,
567 };
568 
569 static const u8 ksz8795_shifts[] = {
570 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
571 	[VLAN_TABLE]			= 16,
572 	[STATIC_MAC_FWD_PORTS]		= 16,
573 	[STATIC_MAC_FID]		= 24,
574 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
575 	[DYNAMIC_MAC_ENTRIES]		= 29,
576 	[DYNAMIC_MAC_FID]		= 16,
577 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
578 	[DYNAMIC_MAC_SRC_PORT]		= 24,
579 };
580 
581 static const u16 ksz8863_regs[] = {
582 	[REG_SW_MAC_ADDR]		= 0x70,
583 	[REG_IND_CTRL_0]		= 0x79,
584 	[REG_IND_DATA_8]		= 0x7B,
585 	[REG_IND_DATA_CHECK]		= 0x7B,
586 	[REG_IND_DATA_HI]		= 0x7C,
587 	[REG_IND_DATA_LO]		= 0x80,
588 	[REG_IND_MIB_CHECK]		= 0x80,
589 	[P_FORCE_CTRL]			= 0x0C,
590 	[P_LINK_STATUS]			= 0x0E,
591 	[P_LOCAL_CTRL]			= 0x0C,
592 	[P_NEG_RESTART_CTRL]		= 0x0D,
593 	[P_REMOTE_STATUS]		= 0x0E,
594 	[P_SPEED_STATUS]		= 0x0F,
595 	[S_TAIL_TAG_CTRL]		= 0x03,
596 	[P_STP_CTRL]			= 0x02,
597 	[S_START_CTRL]			= 0x01,
598 	[S_BROADCAST_CTRL]		= 0x06,
599 	[S_MULTICAST_CTRL]		= 0x04,
600 };
601 
602 static const u32 ksz8863_masks[] = {
603 	[PORT_802_1P_REMAPPING]		= BIT(3),
604 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
605 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
606 	[MIB_COUNTER_VALID]		= BIT(6),
607 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
608 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
609 	[VLAN_TABLE_VALID]		= BIT(19),
610 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
611 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
612 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
613 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
614 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
615 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
616 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
617 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
618 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
619 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
620 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
621 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
622 };
623 
624 static u8 ksz8863_shifts[] = {
625 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
626 	[STATIC_MAC_FWD_PORTS]		= 16,
627 	[STATIC_MAC_FID]		= 22,
628 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
629 	[DYNAMIC_MAC_ENTRIES]		= 24,
630 	[DYNAMIC_MAC_FID]		= 16,
631 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
632 	[DYNAMIC_MAC_SRC_PORT]		= 20,
633 };
634 
635 static const u16 ksz8895_regs[] = {
636 	[REG_SW_MAC_ADDR]		= 0x68,
637 	[REG_IND_CTRL_0]		= 0x6E,
638 	[REG_IND_DATA_8]		= 0x70,
639 	[REG_IND_DATA_CHECK]		= 0x72,
640 	[REG_IND_DATA_HI]		= 0x71,
641 	[REG_IND_DATA_LO]		= 0x75,
642 	[REG_IND_MIB_CHECK]		= 0x75,
643 	[P_FORCE_CTRL]			= 0x0C,
644 	[P_LINK_STATUS]			= 0x0E,
645 	[P_LOCAL_CTRL]			= 0x0C,
646 	[P_NEG_RESTART_CTRL]		= 0x0D,
647 	[P_REMOTE_STATUS]		= 0x0E,
648 	[P_SPEED_STATUS]		= 0x09,
649 	[S_TAIL_TAG_CTRL]		= 0x0C,
650 	[P_STP_CTRL]			= 0x02,
651 	[S_START_CTRL]			= 0x01,
652 	[S_BROADCAST_CTRL]		= 0x06,
653 	[S_MULTICAST_CTRL]		= 0x04,
654 };
655 
656 static const u32 ksz8895_masks[] = {
657 	[PORT_802_1P_REMAPPING]		= BIT(7),
658 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
659 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
660 	[MIB_COUNTER_VALID]		= BIT(6),
661 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
662 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
663 	[VLAN_TABLE_VALID]		= BIT(12),
664 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
665 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
666 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
667 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
668 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
669 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
670 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
671 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
672 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
673 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
674 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
675 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
676 };
677 
678 static const u8 ksz8895_shifts[] = {
679 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
680 	[VLAN_TABLE]			= 13,
681 	[STATIC_MAC_FWD_PORTS]		= 16,
682 	[STATIC_MAC_FID]		= 24,
683 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
684 	[DYNAMIC_MAC_ENTRIES]		= 29,
685 	[DYNAMIC_MAC_FID]		= 16,
686 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
687 	[DYNAMIC_MAC_SRC_PORT]		= 24,
688 };
689 
690 static const u16 ksz9477_regs[] = {
691 	[REG_SW_MAC_ADDR]		= 0x0302,
692 	[P_STP_CTRL]			= 0x0B04,
693 	[S_START_CTRL]			= 0x0300,
694 	[S_BROADCAST_CTRL]		= 0x0332,
695 	[S_MULTICAST_CTRL]		= 0x0331,
696 	[P_XMII_CTRL_0]			= 0x0300,
697 	[P_XMII_CTRL_1]			= 0x0301,
698 	[REG_SW_PME_CTRL]		= 0x0006,
699 	[REG_PORT_PME_STATUS]		= 0x0013,
700 	[REG_PORT_PME_CTRL]		= 0x0017,
701 };
702 
703 static const u32 ksz9477_masks[] = {
704 	[ALU_STAT_WRITE]		= 0,
705 	[ALU_STAT_READ]			= 1,
706 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
707 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
708 };
709 
710 static const u8 ksz9477_shifts[] = {
711 	[ALU_STAT_INDEX]		= 16,
712 };
713 
714 static const u8 ksz9477_xmii_ctrl0[] = {
715 	[P_MII_100MBIT]			= 1,
716 	[P_MII_10MBIT]			= 0,
717 	[P_MII_FULL_DUPLEX]		= 1,
718 	[P_MII_HALF_DUPLEX]		= 0,
719 };
720 
721 static const u8 ksz9477_xmii_ctrl1[] = {
722 	[P_RGMII_SEL]			= 0,
723 	[P_RMII_SEL]			= 1,
724 	[P_GMII_SEL]			= 2,
725 	[P_MII_SEL]			= 3,
726 	[P_GMII_1GBIT]			= 0,
727 	[P_GMII_NOT_1GBIT]		= 1,
728 };
729 
730 static const u32 lan937x_masks[] = {
731 	[ALU_STAT_WRITE]		= 1,
732 	[ALU_STAT_READ]			= 2,
733 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
734 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
735 };
736 
737 static const u8 lan937x_shifts[] = {
738 	[ALU_STAT_INDEX]		= 8,
739 };
740 
741 static const struct regmap_range ksz8563_valid_regs[] = {
742 	regmap_reg_range(0x0000, 0x0003),
743 	regmap_reg_range(0x0006, 0x0006),
744 	regmap_reg_range(0x000f, 0x001f),
745 	regmap_reg_range(0x0100, 0x0100),
746 	regmap_reg_range(0x0104, 0x0107),
747 	regmap_reg_range(0x010d, 0x010d),
748 	regmap_reg_range(0x0110, 0x0113),
749 	regmap_reg_range(0x0120, 0x012b),
750 	regmap_reg_range(0x0201, 0x0201),
751 	regmap_reg_range(0x0210, 0x0213),
752 	regmap_reg_range(0x0300, 0x0300),
753 	regmap_reg_range(0x0302, 0x031b),
754 	regmap_reg_range(0x0320, 0x032b),
755 	regmap_reg_range(0x0330, 0x0336),
756 	regmap_reg_range(0x0338, 0x033e),
757 	regmap_reg_range(0x0340, 0x035f),
758 	regmap_reg_range(0x0370, 0x0370),
759 	regmap_reg_range(0x0378, 0x0378),
760 	regmap_reg_range(0x037c, 0x037d),
761 	regmap_reg_range(0x0390, 0x0393),
762 	regmap_reg_range(0x0400, 0x040e),
763 	regmap_reg_range(0x0410, 0x042f),
764 	regmap_reg_range(0x0500, 0x0519),
765 	regmap_reg_range(0x0520, 0x054b),
766 	regmap_reg_range(0x0550, 0x05b3),
767 
768 	/* port 1 */
769 	regmap_reg_range(0x1000, 0x1001),
770 	regmap_reg_range(0x1004, 0x100b),
771 	regmap_reg_range(0x1013, 0x1013),
772 	regmap_reg_range(0x1017, 0x1017),
773 	regmap_reg_range(0x101b, 0x101b),
774 	regmap_reg_range(0x101f, 0x1021),
775 	regmap_reg_range(0x1030, 0x1030),
776 	regmap_reg_range(0x1100, 0x1111),
777 	regmap_reg_range(0x111a, 0x111d),
778 	regmap_reg_range(0x1122, 0x1127),
779 	regmap_reg_range(0x112a, 0x112b),
780 	regmap_reg_range(0x1136, 0x1139),
781 	regmap_reg_range(0x113e, 0x113f),
782 	regmap_reg_range(0x1400, 0x1401),
783 	regmap_reg_range(0x1403, 0x1403),
784 	regmap_reg_range(0x1410, 0x1417),
785 	regmap_reg_range(0x1420, 0x1423),
786 	regmap_reg_range(0x1500, 0x1507),
787 	regmap_reg_range(0x1600, 0x1612),
788 	regmap_reg_range(0x1800, 0x180f),
789 	regmap_reg_range(0x1900, 0x1907),
790 	regmap_reg_range(0x1914, 0x191b),
791 	regmap_reg_range(0x1a00, 0x1a03),
792 	regmap_reg_range(0x1a04, 0x1a08),
793 	regmap_reg_range(0x1b00, 0x1b01),
794 	regmap_reg_range(0x1b04, 0x1b04),
795 	regmap_reg_range(0x1c00, 0x1c05),
796 	regmap_reg_range(0x1c08, 0x1c1b),
797 
798 	/* port 2 */
799 	regmap_reg_range(0x2000, 0x2001),
800 	regmap_reg_range(0x2004, 0x200b),
801 	regmap_reg_range(0x2013, 0x2013),
802 	regmap_reg_range(0x2017, 0x2017),
803 	regmap_reg_range(0x201b, 0x201b),
804 	regmap_reg_range(0x201f, 0x2021),
805 	regmap_reg_range(0x2030, 0x2030),
806 	regmap_reg_range(0x2100, 0x2111),
807 	regmap_reg_range(0x211a, 0x211d),
808 	regmap_reg_range(0x2122, 0x2127),
809 	regmap_reg_range(0x212a, 0x212b),
810 	regmap_reg_range(0x2136, 0x2139),
811 	regmap_reg_range(0x213e, 0x213f),
812 	regmap_reg_range(0x2400, 0x2401),
813 	regmap_reg_range(0x2403, 0x2403),
814 	regmap_reg_range(0x2410, 0x2417),
815 	regmap_reg_range(0x2420, 0x2423),
816 	regmap_reg_range(0x2500, 0x2507),
817 	regmap_reg_range(0x2600, 0x2612),
818 	regmap_reg_range(0x2800, 0x280f),
819 	regmap_reg_range(0x2900, 0x2907),
820 	regmap_reg_range(0x2914, 0x291b),
821 	regmap_reg_range(0x2a00, 0x2a03),
822 	regmap_reg_range(0x2a04, 0x2a08),
823 	regmap_reg_range(0x2b00, 0x2b01),
824 	regmap_reg_range(0x2b04, 0x2b04),
825 	regmap_reg_range(0x2c00, 0x2c05),
826 	regmap_reg_range(0x2c08, 0x2c1b),
827 
828 	/* port 3 */
829 	regmap_reg_range(0x3000, 0x3001),
830 	regmap_reg_range(0x3004, 0x300b),
831 	regmap_reg_range(0x3013, 0x3013),
832 	regmap_reg_range(0x3017, 0x3017),
833 	regmap_reg_range(0x301b, 0x301b),
834 	regmap_reg_range(0x301f, 0x3021),
835 	regmap_reg_range(0x3030, 0x3030),
836 	regmap_reg_range(0x3300, 0x3301),
837 	regmap_reg_range(0x3303, 0x3303),
838 	regmap_reg_range(0x3400, 0x3401),
839 	regmap_reg_range(0x3403, 0x3403),
840 	regmap_reg_range(0x3410, 0x3417),
841 	regmap_reg_range(0x3420, 0x3423),
842 	regmap_reg_range(0x3500, 0x3507),
843 	regmap_reg_range(0x3600, 0x3612),
844 	regmap_reg_range(0x3800, 0x380f),
845 	regmap_reg_range(0x3900, 0x3907),
846 	regmap_reg_range(0x3914, 0x391b),
847 	regmap_reg_range(0x3a00, 0x3a03),
848 	regmap_reg_range(0x3a04, 0x3a08),
849 	regmap_reg_range(0x3b00, 0x3b01),
850 	regmap_reg_range(0x3b04, 0x3b04),
851 	regmap_reg_range(0x3c00, 0x3c05),
852 	regmap_reg_range(0x3c08, 0x3c1b),
853 };
854 
855 static const struct regmap_access_table ksz8563_register_set = {
856 	.yes_ranges = ksz8563_valid_regs,
857 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
858 };
859 
860 static const struct regmap_range ksz9477_valid_regs[] = {
861 	regmap_reg_range(0x0000, 0x0003),
862 	regmap_reg_range(0x0006, 0x0006),
863 	regmap_reg_range(0x0010, 0x001f),
864 	regmap_reg_range(0x0100, 0x0100),
865 	regmap_reg_range(0x0103, 0x0107),
866 	regmap_reg_range(0x010d, 0x010d),
867 	regmap_reg_range(0x0110, 0x0113),
868 	regmap_reg_range(0x0120, 0x012b),
869 	regmap_reg_range(0x0201, 0x0201),
870 	regmap_reg_range(0x0210, 0x0213),
871 	regmap_reg_range(0x0300, 0x0300),
872 	regmap_reg_range(0x0302, 0x031b),
873 	regmap_reg_range(0x0320, 0x032b),
874 	regmap_reg_range(0x0330, 0x0336),
875 	regmap_reg_range(0x0338, 0x033b),
876 	regmap_reg_range(0x033e, 0x033e),
877 	regmap_reg_range(0x0340, 0x035f),
878 	regmap_reg_range(0x0370, 0x0370),
879 	regmap_reg_range(0x0378, 0x0378),
880 	regmap_reg_range(0x037c, 0x037d),
881 	regmap_reg_range(0x0390, 0x0393),
882 	regmap_reg_range(0x0400, 0x040e),
883 	regmap_reg_range(0x0410, 0x042f),
884 	regmap_reg_range(0x0444, 0x044b),
885 	regmap_reg_range(0x0450, 0x046f),
886 	regmap_reg_range(0x0500, 0x0519),
887 	regmap_reg_range(0x0520, 0x054b),
888 	regmap_reg_range(0x0550, 0x05b3),
889 	regmap_reg_range(0x0604, 0x060b),
890 	regmap_reg_range(0x0610, 0x0612),
891 	regmap_reg_range(0x0614, 0x062c),
892 	regmap_reg_range(0x0640, 0x0645),
893 	regmap_reg_range(0x0648, 0x064d),
894 
895 	/* port 1 */
896 	regmap_reg_range(0x1000, 0x1001),
897 	regmap_reg_range(0x1013, 0x1013),
898 	regmap_reg_range(0x1017, 0x1017),
899 	regmap_reg_range(0x101b, 0x101b),
900 	regmap_reg_range(0x101f, 0x1020),
901 	regmap_reg_range(0x1030, 0x1030),
902 	regmap_reg_range(0x1100, 0x1115),
903 	regmap_reg_range(0x111a, 0x111f),
904 	regmap_reg_range(0x1120, 0x112b),
905 	regmap_reg_range(0x1134, 0x113b),
906 	regmap_reg_range(0x113c, 0x113f),
907 	regmap_reg_range(0x1400, 0x1401),
908 	regmap_reg_range(0x1403, 0x1403),
909 	regmap_reg_range(0x1410, 0x1417),
910 	regmap_reg_range(0x1420, 0x1423),
911 	regmap_reg_range(0x1500, 0x1507),
912 	regmap_reg_range(0x1600, 0x1613),
913 	regmap_reg_range(0x1800, 0x180f),
914 	regmap_reg_range(0x1820, 0x1827),
915 	regmap_reg_range(0x1830, 0x1837),
916 	regmap_reg_range(0x1840, 0x184b),
917 	regmap_reg_range(0x1900, 0x1907),
918 	regmap_reg_range(0x1914, 0x191b),
919 	regmap_reg_range(0x1920, 0x1920),
920 	regmap_reg_range(0x1923, 0x1927),
921 	regmap_reg_range(0x1a00, 0x1a03),
922 	regmap_reg_range(0x1a04, 0x1a07),
923 	regmap_reg_range(0x1b00, 0x1b01),
924 	regmap_reg_range(0x1b04, 0x1b04),
925 	regmap_reg_range(0x1c00, 0x1c05),
926 	regmap_reg_range(0x1c08, 0x1c1b),
927 
928 	/* port 2 */
929 	regmap_reg_range(0x2000, 0x2001),
930 	regmap_reg_range(0x2013, 0x2013),
931 	regmap_reg_range(0x2017, 0x2017),
932 	regmap_reg_range(0x201b, 0x201b),
933 	regmap_reg_range(0x201f, 0x2020),
934 	regmap_reg_range(0x2030, 0x2030),
935 	regmap_reg_range(0x2100, 0x2115),
936 	regmap_reg_range(0x211a, 0x211f),
937 	regmap_reg_range(0x2120, 0x212b),
938 	regmap_reg_range(0x2134, 0x213b),
939 	regmap_reg_range(0x213c, 0x213f),
940 	regmap_reg_range(0x2400, 0x2401),
941 	regmap_reg_range(0x2403, 0x2403),
942 	regmap_reg_range(0x2410, 0x2417),
943 	regmap_reg_range(0x2420, 0x2423),
944 	regmap_reg_range(0x2500, 0x2507),
945 	regmap_reg_range(0x2600, 0x2613),
946 	regmap_reg_range(0x2800, 0x280f),
947 	regmap_reg_range(0x2820, 0x2827),
948 	regmap_reg_range(0x2830, 0x2837),
949 	regmap_reg_range(0x2840, 0x284b),
950 	regmap_reg_range(0x2900, 0x2907),
951 	regmap_reg_range(0x2914, 0x291b),
952 	regmap_reg_range(0x2920, 0x2920),
953 	regmap_reg_range(0x2923, 0x2927),
954 	regmap_reg_range(0x2a00, 0x2a03),
955 	regmap_reg_range(0x2a04, 0x2a07),
956 	regmap_reg_range(0x2b00, 0x2b01),
957 	regmap_reg_range(0x2b04, 0x2b04),
958 	regmap_reg_range(0x2c00, 0x2c05),
959 	regmap_reg_range(0x2c08, 0x2c1b),
960 
961 	/* port 3 */
962 	regmap_reg_range(0x3000, 0x3001),
963 	regmap_reg_range(0x3013, 0x3013),
964 	regmap_reg_range(0x3017, 0x3017),
965 	regmap_reg_range(0x301b, 0x301b),
966 	regmap_reg_range(0x301f, 0x3020),
967 	regmap_reg_range(0x3030, 0x3030),
968 	regmap_reg_range(0x3100, 0x3115),
969 	regmap_reg_range(0x311a, 0x311f),
970 	regmap_reg_range(0x3120, 0x312b),
971 	regmap_reg_range(0x3134, 0x313b),
972 	regmap_reg_range(0x313c, 0x313f),
973 	regmap_reg_range(0x3400, 0x3401),
974 	regmap_reg_range(0x3403, 0x3403),
975 	regmap_reg_range(0x3410, 0x3417),
976 	regmap_reg_range(0x3420, 0x3423),
977 	regmap_reg_range(0x3500, 0x3507),
978 	regmap_reg_range(0x3600, 0x3613),
979 	regmap_reg_range(0x3800, 0x380f),
980 	regmap_reg_range(0x3820, 0x3827),
981 	regmap_reg_range(0x3830, 0x3837),
982 	regmap_reg_range(0x3840, 0x384b),
983 	regmap_reg_range(0x3900, 0x3907),
984 	regmap_reg_range(0x3914, 0x391b),
985 	regmap_reg_range(0x3920, 0x3920),
986 	regmap_reg_range(0x3923, 0x3927),
987 	regmap_reg_range(0x3a00, 0x3a03),
988 	regmap_reg_range(0x3a04, 0x3a07),
989 	regmap_reg_range(0x3b00, 0x3b01),
990 	regmap_reg_range(0x3b04, 0x3b04),
991 	regmap_reg_range(0x3c00, 0x3c05),
992 	regmap_reg_range(0x3c08, 0x3c1b),
993 
994 	/* port 4 */
995 	regmap_reg_range(0x4000, 0x4001),
996 	regmap_reg_range(0x4013, 0x4013),
997 	regmap_reg_range(0x4017, 0x4017),
998 	regmap_reg_range(0x401b, 0x401b),
999 	regmap_reg_range(0x401f, 0x4020),
1000 	regmap_reg_range(0x4030, 0x4030),
1001 	regmap_reg_range(0x4100, 0x4115),
1002 	regmap_reg_range(0x411a, 0x411f),
1003 	regmap_reg_range(0x4120, 0x412b),
1004 	regmap_reg_range(0x4134, 0x413b),
1005 	regmap_reg_range(0x413c, 0x413f),
1006 	regmap_reg_range(0x4400, 0x4401),
1007 	regmap_reg_range(0x4403, 0x4403),
1008 	regmap_reg_range(0x4410, 0x4417),
1009 	regmap_reg_range(0x4420, 0x4423),
1010 	regmap_reg_range(0x4500, 0x4507),
1011 	regmap_reg_range(0x4600, 0x4613),
1012 	regmap_reg_range(0x4800, 0x480f),
1013 	regmap_reg_range(0x4820, 0x4827),
1014 	regmap_reg_range(0x4830, 0x4837),
1015 	regmap_reg_range(0x4840, 0x484b),
1016 	regmap_reg_range(0x4900, 0x4907),
1017 	regmap_reg_range(0x4914, 0x491b),
1018 	regmap_reg_range(0x4920, 0x4920),
1019 	regmap_reg_range(0x4923, 0x4927),
1020 	regmap_reg_range(0x4a00, 0x4a03),
1021 	regmap_reg_range(0x4a04, 0x4a07),
1022 	regmap_reg_range(0x4b00, 0x4b01),
1023 	regmap_reg_range(0x4b04, 0x4b04),
1024 	regmap_reg_range(0x4c00, 0x4c05),
1025 	regmap_reg_range(0x4c08, 0x4c1b),
1026 
1027 	/* port 5 */
1028 	regmap_reg_range(0x5000, 0x5001),
1029 	regmap_reg_range(0x5013, 0x5013),
1030 	regmap_reg_range(0x5017, 0x5017),
1031 	regmap_reg_range(0x501b, 0x501b),
1032 	regmap_reg_range(0x501f, 0x5020),
1033 	regmap_reg_range(0x5030, 0x5030),
1034 	regmap_reg_range(0x5100, 0x5115),
1035 	regmap_reg_range(0x511a, 0x511f),
1036 	regmap_reg_range(0x5120, 0x512b),
1037 	regmap_reg_range(0x5134, 0x513b),
1038 	regmap_reg_range(0x513c, 0x513f),
1039 	regmap_reg_range(0x5400, 0x5401),
1040 	regmap_reg_range(0x5403, 0x5403),
1041 	regmap_reg_range(0x5410, 0x5417),
1042 	regmap_reg_range(0x5420, 0x5423),
1043 	regmap_reg_range(0x5500, 0x5507),
1044 	regmap_reg_range(0x5600, 0x5613),
1045 	regmap_reg_range(0x5800, 0x580f),
1046 	regmap_reg_range(0x5820, 0x5827),
1047 	regmap_reg_range(0x5830, 0x5837),
1048 	regmap_reg_range(0x5840, 0x584b),
1049 	regmap_reg_range(0x5900, 0x5907),
1050 	regmap_reg_range(0x5914, 0x591b),
1051 	regmap_reg_range(0x5920, 0x5920),
1052 	regmap_reg_range(0x5923, 0x5927),
1053 	regmap_reg_range(0x5a00, 0x5a03),
1054 	regmap_reg_range(0x5a04, 0x5a07),
1055 	regmap_reg_range(0x5b00, 0x5b01),
1056 	regmap_reg_range(0x5b04, 0x5b04),
1057 	regmap_reg_range(0x5c00, 0x5c05),
1058 	regmap_reg_range(0x5c08, 0x5c1b),
1059 
1060 	/* port 6 */
1061 	regmap_reg_range(0x6000, 0x6001),
1062 	regmap_reg_range(0x6013, 0x6013),
1063 	regmap_reg_range(0x6017, 0x6017),
1064 	regmap_reg_range(0x601b, 0x601b),
1065 	regmap_reg_range(0x601f, 0x6020),
1066 	regmap_reg_range(0x6030, 0x6030),
1067 	regmap_reg_range(0x6300, 0x6301),
1068 	regmap_reg_range(0x6400, 0x6401),
1069 	regmap_reg_range(0x6403, 0x6403),
1070 	regmap_reg_range(0x6410, 0x6417),
1071 	regmap_reg_range(0x6420, 0x6423),
1072 	regmap_reg_range(0x6500, 0x6507),
1073 	regmap_reg_range(0x6600, 0x6613),
1074 	regmap_reg_range(0x6800, 0x680f),
1075 	regmap_reg_range(0x6820, 0x6827),
1076 	regmap_reg_range(0x6830, 0x6837),
1077 	regmap_reg_range(0x6840, 0x684b),
1078 	regmap_reg_range(0x6900, 0x6907),
1079 	regmap_reg_range(0x6914, 0x691b),
1080 	regmap_reg_range(0x6920, 0x6920),
1081 	regmap_reg_range(0x6923, 0x6927),
1082 	regmap_reg_range(0x6a00, 0x6a03),
1083 	regmap_reg_range(0x6a04, 0x6a07),
1084 	regmap_reg_range(0x6b00, 0x6b01),
1085 	regmap_reg_range(0x6b04, 0x6b04),
1086 	regmap_reg_range(0x6c00, 0x6c05),
1087 	regmap_reg_range(0x6c08, 0x6c1b),
1088 
1089 	/* port 7 */
1090 	regmap_reg_range(0x7000, 0x7001),
1091 	regmap_reg_range(0x7013, 0x7013),
1092 	regmap_reg_range(0x7017, 0x7017),
1093 	regmap_reg_range(0x701b, 0x701b),
1094 	regmap_reg_range(0x701f, 0x7020),
1095 	regmap_reg_range(0x7030, 0x7030),
1096 	regmap_reg_range(0x7200, 0x7203),
1097 	regmap_reg_range(0x7206, 0x7207),
1098 	regmap_reg_range(0x7300, 0x7301),
1099 	regmap_reg_range(0x7400, 0x7401),
1100 	regmap_reg_range(0x7403, 0x7403),
1101 	regmap_reg_range(0x7410, 0x7417),
1102 	regmap_reg_range(0x7420, 0x7423),
1103 	regmap_reg_range(0x7500, 0x7507),
1104 	regmap_reg_range(0x7600, 0x7613),
1105 	regmap_reg_range(0x7800, 0x780f),
1106 	regmap_reg_range(0x7820, 0x7827),
1107 	regmap_reg_range(0x7830, 0x7837),
1108 	regmap_reg_range(0x7840, 0x784b),
1109 	regmap_reg_range(0x7900, 0x7907),
1110 	regmap_reg_range(0x7914, 0x791b),
1111 	regmap_reg_range(0x7920, 0x7920),
1112 	regmap_reg_range(0x7923, 0x7927),
1113 	regmap_reg_range(0x7a00, 0x7a03),
1114 	regmap_reg_range(0x7a04, 0x7a07),
1115 	regmap_reg_range(0x7b00, 0x7b01),
1116 	regmap_reg_range(0x7b04, 0x7b04),
1117 	regmap_reg_range(0x7c00, 0x7c05),
1118 	regmap_reg_range(0x7c08, 0x7c1b),
1119 };
1120 
1121 static const struct regmap_access_table ksz9477_register_set = {
1122 	.yes_ranges = ksz9477_valid_regs,
1123 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1124 };
1125 
1126 static const struct regmap_range ksz9896_valid_regs[] = {
1127 	regmap_reg_range(0x0000, 0x0003),
1128 	regmap_reg_range(0x0006, 0x0006),
1129 	regmap_reg_range(0x0010, 0x001f),
1130 	regmap_reg_range(0x0100, 0x0100),
1131 	regmap_reg_range(0x0103, 0x0107),
1132 	regmap_reg_range(0x010d, 0x010d),
1133 	regmap_reg_range(0x0110, 0x0113),
1134 	regmap_reg_range(0x0120, 0x0127),
1135 	regmap_reg_range(0x0201, 0x0201),
1136 	regmap_reg_range(0x0210, 0x0213),
1137 	regmap_reg_range(0x0300, 0x0300),
1138 	regmap_reg_range(0x0302, 0x030b),
1139 	regmap_reg_range(0x0310, 0x031b),
1140 	regmap_reg_range(0x0320, 0x032b),
1141 	regmap_reg_range(0x0330, 0x0336),
1142 	regmap_reg_range(0x0338, 0x033b),
1143 	regmap_reg_range(0x033e, 0x033e),
1144 	regmap_reg_range(0x0340, 0x035f),
1145 	regmap_reg_range(0x0370, 0x0370),
1146 	regmap_reg_range(0x0378, 0x0378),
1147 	regmap_reg_range(0x037c, 0x037d),
1148 	regmap_reg_range(0x0390, 0x0393),
1149 	regmap_reg_range(0x0400, 0x040e),
1150 	regmap_reg_range(0x0410, 0x042f),
1151 
1152 	/* port 1 */
1153 	regmap_reg_range(0x1000, 0x1001),
1154 	regmap_reg_range(0x1013, 0x1013),
1155 	regmap_reg_range(0x1017, 0x1017),
1156 	regmap_reg_range(0x101b, 0x101b),
1157 	regmap_reg_range(0x101f, 0x1020),
1158 	regmap_reg_range(0x1030, 0x1030),
1159 	regmap_reg_range(0x1100, 0x1115),
1160 	regmap_reg_range(0x111a, 0x111f),
1161 	regmap_reg_range(0x1120, 0x112b),
1162 	regmap_reg_range(0x1134, 0x113b),
1163 	regmap_reg_range(0x113c, 0x113f),
1164 	regmap_reg_range(0x1400, 0x1401),
1165 	regmap_reg_range(0x1403, 0x1403),
1166 	regmap_reg_range(0x1410, 0x1417),
1167 	regmap_reg_range(0x1420, 0x1423),
1168 	regmap_reg_range(0x1500, 0x1507),
1169 	regmap_reg_range(0x1600, 0x1612),
1170 	regmap_reg_range(0x1800, 0x180f),
1171 	regmap_reg_range(0x1820, 0x1827),
1172 	regmap_reg_range(0x1830, 0x1837),
1173 	regmap_reg_range(0x1840, 0x184b),
1174 	regmap_reg_range(0x1900, 0x1907),
1175 	regmap_reg_range(0x1914, 0x1915),
1176 	regmap_reg_range(0x1a00, 0x1a03),
1177 	regmap_reg_range(0x1a04, 0x1a07),
1178 	regmap_reg_range(0x1b00, 0x1b01),
1179 	regmap_reg_range(0x1b04, 0x1b04),
1180 
1181 	/* port 2 */
1182 	regmap_reg_range(0x2000, 0x2001),
1183 	regmap_reg_range(0x2013, 0x2013),
1184 	regmap_reg_range(0x2017, 0x2017),
1185 	regmap_reg_range(0x201b, 0x201b),
1186 	regmap_reg_range(0x201f, 0x2020),
1187 	regmap_reg_range(0x2030, 0x2030),
1188 	regmap_reg_range(0x2100, 0x2115),
1189 	regmap_reg_range(0x211a, 0x211f),
1190 	regmap_reg_range(0x2120, 0x212b),
1191 	regmap_reg_range(0x2134, 0x213b),
1192 	regmap_reg_range(0x213c, 0x213f),
1193 	regmap_reg_range(0x2400, 0x2401),
1194 	regmap_reg_range(0x2403, 0x2403),
1195 	regmap_reg_range(0x2410, 0x2417),
1196 	regmap_reg_range(0x2420, 0x2423),
1197 	regmap_reg_range(0x2500, 0x2507),
1198 	regmap_reg_range(0x2600, 0x2612),
1199 	regmap_reg_range(0x2800, 0x280f),
1200 	regmap_reg_range(0x2820, 0x2827),
1201 	regmap_reg_range(0x2830, 0x2837),
1202 	regmap_reg_range(0x2840, 0x284b),
1203 	regmap_reg_range(0x2900, 0x2907),
1204 	regmap_reg_range(0x2914, 0x2915),
1205 	regmap_reg_range(0x2a00, 0x2a03),
1206 	regmap_reg_range(0x2a04, 0x2a07),
1207 	regmap_reg_range(0x2b00, 0x2b01),
1208 	regmap_reg_range(0x2b04, 0x2b04),
1209 
1210 	/* port 3 */
1211 	regmap_reg_range(0x3000, 0x3001),
1212 	regmap_reg_range(0x3013, 0x3013),
1213 	regmap_reg_range(0x3017, 0x3017),
1214 	regmap_reg_range(0x301b, 0x301b),
1215 	regmap_reg_range(0x301f, 0x3020),
1216 	regmap_reg_range(0x3030, 0x3030),
1217 	regmap_reg_range(0x3100, 0x3115),
1218 	regmap_reg_range(0x311a, 0x311f),
1219 	regmap_reg_range(0x3120, 0x312b),
1220 	regmap_reg_range(0x3134, 0x313b),
1221 	regmap_reg_range(0x313c, 0x313f),
1222 	regmap_reg_range(0x3400, 0x3401),
1223 	regmap_reg_range(0x3403, 0x3403),
1224 	regmap_reg_range(0x3410, 0x3417),
1225 	regmap_reg_range(0x3420, 0x3423),
1226 	regmap_reg_range(0x3500, 0x3507),
1227 	regmap_reg_range(0x3600, 0x3612),
1228 	regmap_reg_range(0x3800, 0x380f),
1229 	regmap_reg_range(0x3820, 0x3827),
1230 	regmap_reg_range(0x3830, 0x3837),
1231 	regmap_reg_range(0x3840, 0x384b),
1232 	regmap_reg_range(0x3900, 0x3907),
1233 	regmap_reg_range(0x3914, 0x3915),
1234 	regmap_reg_range(0x3a00, 0x3a03),
1235 	regmap_reg_range(0x3a04, 0x3a07),
1236 	regmap_reg_range(0x3b00, 0x3b01),
1237 	regmap_reg_range(0x3b04, 0x3b04),
1238 
1239 	/* port 4 */
1240 	regmap_reg_range(0x4000, 0x4001),
1241 	regmap_reg_range(0x4013, 0x4013),
1242 	regmap_reg_range(0x4017, 0x4017),
1243 	regmap_reg_range(0x401b, 0x401b),
1244 	regmap_reg_range(0x401f, 0x4020),
1245 	regmap_reg_range(0x4030, 0x4030),
1246 	regmap_reg_range(0x4100, 0x4115),
1247 	regmap_reg_range(0x411a, 0x411f),
1248 	regmap_reg_range(0x4120, 0x412b),
1249 	regmap_reg_range(0x4134, 0x413b),
1250 	regmap_reg_range(0x413c, 0x413f),
1251 	regmap_reg_range(0x4400, 0x4401),
1252 	regmap_reg_range(0x4403, 0x4403),
1253 	regmap_reg_range(0x4410, 0x4417),
1254 	regmap_reg_range(0x4420, 0x4423),
1255 	regmap_reg_range(0x4500, 0x4507),
1256 	regmap_reg_range(0x4600, 0x4612),
1257 	regmap_reg_range(0x4800, 0x480f),
1258 	regmap_reg_range(0x4820, 0x4827),
1259 	regmap_reg_range(0x4830, 0x4837),
1260 	regmap_reg_range(0x4840, 0x484b),
1261 	regmap_reg_range(0x4900, 0x4907),
1262 	regmap_reg_range(0x4914, 0x4915),
1263 	regmap_reg_range(0x4a00, 0x4a03),
1264 	regmap_reg_range(0x4a04, 0x4a07),
1265 	regmap_reg_range(0x4b00, 0x4b01),
1266 	regmap_reg_range(0x4b04, 0x4b04),
1267 
1268 	/* port 5 */
1269 	regmap_reg_range(0x5000, 0x5001),
1270 	regmap_reg_range(0x5013, 0x5013),
1271 	regmap_reg_range(0x5017, 0x5017),
1272 	regmap_reg_range(0x501b, 0x501b),
1273 	regmap_reg_range(0x501f, 0x5020),
1274 	regmap_reg_range(0x5030, 0x5030),
1275 	regmap_reg_range(0x5100, 0x5115),
1276 	regmap_reg_range(0x511a, 0x511f),
1277 	regmap_reg_range(0x5120, 0x512b),
1278 	regmap_reg_range(0x5134, 0x513b),
1279 	regmap_reg_range(0x513c, 0x513f),
1280 	regmap_reg_range(0x5400, 0x5401),
1281 	regmap_reg_range(0x5403, 0x5403),
1282 	regmap_reg_range(0x5410, 0x5417),
1283 	regmap_reg_range(0x5420, 0x5423),
1284 	regmap_reg_range(0x5500, 0x5507),
1285 	regmap_reg_range(0x5600, 0x5612),
1286 	regmap_reg_range(0x5800, 0x580f),
1287 	regmap_reg_range(0x5820, 0x5827),
1288 	regmap_reg_range(0x5830, 0x5837),
1289 	regmap_reg_range(0x5840, 0x584b),
1290 	regmap_reg_range(0x5900, 0x5907),
1291 	regmap_reg_range(0x5914, 0x5915),
1292 	regmap_reg_range(0x5a00, 0x5a03),
1293 	regmap_reg_range(0x5a04, 0x5a07),
1294 	regmap_reg_range(0x5b00, 0x5b01),
1295 	regmap_reg_range(0x5b04, 0x5b04),
1296 
1297 	/* port 6 */
1298 	regmap_reg_range(0x6000, 0x6001),
1299 	regmap_reg_range(0x6013, 0x6013),
1300 	regmap_reg_range(0x6017, 0x6017),
1301 	regmap_reg_range(0x601b, 0x601b),
1302 	regmap_reg_range(0x601f, 0x6020),
1303 	regmap_reg_range(0x6030, 0x6030),
1304 	regmap_reg_range(0x6100, 0x6115),
1305 	regmap_reg_range(0x611a, 0x611f),
1306 	regmap_reg_range(0x6120, 0x612b),
1307 	regmap_reg_range(0x6134, 0x613b),
1308 	regmap_reg_range(0x613c, 0x613f),
1309 	regmap_reg_range(0x6300, 0x6301),
1310 	regmap_reg_range(0x6400, 0x6401),
1311 	regmap_reg_range(0x6403, 0x6403),
1312 	regmap_reg_range(0x6410, 0x6417),
1313 	regmap_reg_range(0x6420, 0x6423),
1314 	regmap_reg_range(0x6500, 0x6507),
1315 	regmap_reg_range(0x6600, 0x6612),
1316 	regmap_reg_range(0x6800, 0x680f),
1317 	regmap_reg_range(0x6820, 0x6827),
1318 	regmap_reg_range(0x6830, 0x6837),
1319 	regmap_reg_range(0x6840, 0x684b),
1320 	regmap_reg_range(0x6900, 0x6907),
1321 	regmap_reg_range(0x6914, 0x6915),
1322 	regmap_reg_range(0x6a00, 0x6a03),
1323 	regmap_reg_range(0x6a04, 0x6a07),
1324 	regmap_reg_range(0x6b00, 0x6b01),
1325 	regmap_reg_range(0x6b04, 0x6b04),
1326 };
1327 
1328 static const struct regmap_access_table ksz9896_register_set = {
1329 	.yes_ranges = ksz9896_valid_regs,
1330 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1331 };
1332 
1333 static const struct regmap_range ksz8873_valid_regs[] = {
1334 	regmap_reg_range(0x00, 0x01),
1335 	/* global control register */
1336 	regmap_reg_range(0x02, 0x0f),
1337 
1338 	/* port registers */
1339 	regmap_reg_range(0x10, 0x1d),
1340 	regmap_reg_range(0x1e, 0x1f),
1341 	regmap_reg_range(0x20, 0x2d),
1342 	regmap_reg_range(0x2e, 0x2f),
1343 	regmap_reg_range(0x30, 0x39),
1344 	regmap_reg_range(0x3f, 0x3f),
1345 
1346 	/* advanced control registers */
1347 	regmap_reg_range(0x60, 0x6f),
1348 	regmap_reg_range(0x70, 0x75),
1349 	regmap_reg_range(0x76, 0x78),
1350 	regmap_reg_range(0x79, 0x7a),
1351 	regmap_reg_range(0x7b, 0x83),
1352 	regmap_reg_range(0x8e, 0x99),
1353 	regmap_reg_range(0x9a, 0xa5),
1354 	regmap_reg_range(0xa6, 0xa6),
1355 	regmap_reg_range(0xa7, 0xaa),
1356 	regmap_reg_range(0xab, 0xae),
1357 	regmap_reg_range(0xaf, 0xba),
1358 	regmap_reg_range(0xbb, 0xbc),
1359 	regmap_reg_range(0xbd, 0xbd),
1360 	regmap_reg_range(0xc0, 0xc0),
1361 	regmap_reg_range(0xc2, 0xc2),
1362 	regmap_reg_range(0xc3, 0xc3),
1363 	regmap_reg_range(0xc4, 0xc4),
1364 	regmap_reg_range(0xc6, 0xc6),
1365 };
1366 
1367 static const struct regmap_access_table ksz8873_register_set = {
1368 	.yes_ranges = ksz8873_valid_regs,
1369 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1370 };
1371 
1372 const struct ksz_chip_data ksz_switch_chips[] = {
1373 	[KSZ8563] = {
1374 		.chip_id = KSZ8563_CHIP_ID,
1375 		.dev_name = "KSZ8563",
1376 		.num_vlans = 4096,
1377 		.num_alus = 4096,
1378 		.num_statics = 16,
1379 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1380 		.port_cnt = 3,		/* total port count */
1381 		.port_nirqs = 3,
1382 		.num_tx_queues = 4,
1383 		.num_ipms = 8,
1384 		.tc_cbs_supported = true,
1385 		.ops = &ksz9477_dev_ops,
1386 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1387 		.mib_names = ksz9477_mib_names,
1388 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1389 		.reg_mib_cnt = MIB_COUNTER_NUM,
1390 		.regs = ksz9477_regs,
1391 		.masks = ksz9477_masks,
1392 		.shifts = ksz9477_shifts,
1393 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1394 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1395 		.supports_mii = {false, false, true},
1396 		.supports_rmii = {false, false, true},
1397 		.supports_rgmii = {false, false, true},
1398 		.internal_phy = {true, true, false},
1399 		.gbit_capable = {false, false, true},
1400 		.ptp_capable = true,
1401 		.wr_table = &ksz8563_register_set,
1402 		.rd_table = &ksz8563_register_set,
1403 	},
1404 
1405 	[KSZ8795] = {
1406 		.chip_id = KSZ8795_CHIP_ID,
1407 		.dev_name = "KSZ8795",
1408 		.num_vlans = 4096,
1409 		.num_alus = 0,
1410 		.num_statics = 32,
1411 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1412 		.port_cnt = 5,		/* total cpu and user ports */
1413 		.num_tx_queues = 4,
1414 		.num_ipms = 4,
1415 		.ops = &ksz87xx_dev_ops,
1416 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1417 		.ksz87xx_eee_link_erratum = true,
1418 		.mib_names = ksz9477_mib_names,
1419 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1420 		.reg_mib_cnt = MIB_COUNTER_NUM,
1421 		.regs = ksz8795_regs,
1422 		.masks = ksz8795_masks,
1423 		.shifts = ksz8795_shifts,
1424 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1425 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1426 		.supports_mii = {false, false, false, false, true},
1427 		.supports_rmii = {false, false, false, false, true},
1428 		.supports_rgmii = {false, false, false, false, true},
1429 		.internal_phy = {true, true, true, true, false},
1430 	},
1431 
1432 	[KSZ8794] = {
1433 		/* WARNING
1434 		 * =======
1435 		 * KSZ8794 is similar to KSZ8795, except the port map
1436 		 * contains a gap between external and CPU ports, the
1437 		 * port map is NOT continuous. The per-port register
1438 		 * map is shifted accordingly too, i.e. registers at
1439 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1440 		 * used on KSZ8795 for external port 3.
1441 		 *           external  cpu
1442 		 * KSZ8794   0,1,2      4
1443 		 * KSZ8795   0,1,2,3    4
1444 		 * KSZ8765   0,1,2,3    4
1445 		 * port_cnt is configured as 5, even though it is 4
1446 		 */
1447 		.chip_id = KSZ8794_CHIP_ID,
1448 		.dev_name = "KSZ8794",
1449 		.num_vlans = 4096,
1450 		.num_alus = 0,
1451 		.num_statics = 32,
1452 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1453 		.port_cnt = 5,		/* total cpu and user ports */
1454 		.num_tx_queues = 4,
1455 		.num_ipms = 4,
1456 		.ops = &ksz87xx_dev_ops,
1457 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1458 		.ksz87xx_eee_link_erratum = true,
1459 		.mib_names = ksz9477_mib_names,
1460 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1461 		.reg_mib_cnt = MIB_COUNTER_NUM,
1462 		.regs = ksz8795_regs,
1463 		.masks = ksz8795_masks,
1464 		.shifts = ksz8795_shifts,
1465 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1466 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1467 		.supports_mii = {false, false, false, false, true},
1468 		.supports_rmii = {false, false, false, false, true},
1469 		.supports_rgmii = {false, false, false, false, true},
1470 		.internal_phy = {true, true, true, false, false},
1471 	},
1472 
1473 	[KSZ8765] = {
1474 		.chip_id = KSZ8765_CHIP_ID,
1475 		.dev_name = "KSZ8765",
1476 		.num_vlans = 4096,
1477 		.num_alus = 0,
1478 		.num_statics = 32,
1479 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1480 		.port_cnt = 5,		/* total cpu and user ports */
1481 		.num_tx_queues = 4,
1482 		.num_ipms = 4,
1483 		.ops = &ksz87xx_dev_ops,
1484 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1485 		.ksz87xx_eee_link_erratum = true,
1486 		.mib_names = ksz9477_mib_names,
1487 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1488 		.reg_mib_cnt = MIB_COUNTER_NUM,
1489 		.regs = ksz8795_regs,
1490 		.masks = ksz8795_masks,
1491 		.shifts = ksz8795_shifts,
1492 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1493 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1494 		.supports_mii = {false, false, false, false, true},
1495 		.supports_rmii = {false, false, false, false, true},
1496 		.supports_rgmii = {false, false, false, false, true},
1497 		.internal_phy = {true, true, true, true, false},
1498 	},
1499 
1500 	[KSZ88X3] = {
1501 		.chip_id = KSZ88X3_CHIP_ID,
1502 		.dev_name = "KSZ8863/KSZ8873",
1503 		.num_vlans = 16,
1504 		.num_alus = 0,
1505 		.num_statics = 8,
1506 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1507 		.port_cnt = 3,
1508 		.num_tx_queues = 4,
1509 		.num_ipms = 4,
1510 		.ops = &ksz88xx_dev_ops,
1511 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1512 		.mib_names = ksz88xx_mib_names,
1513 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1514 		.reg_mib_cnt = MIB_COUNTER_NUM,
1515 		.regs = ksz8863_regs,
1516 		.masks = ksz8863_masks,
1517 		.shifts = ksz8863_shifts,
1518 		.supports_mii = {false, false, true},
1519 		.supports_rmii = {false, false, true},
1520 		.internal_phy = {true, true, false},
1521 		.wr_table = &ksz8873_register_set,
1522 		.rd_table = &ksz8873_register_set,
1523 	},
1524 
1525 	[KSZ8864] = {
1526 		/* WARNING
1527 		 * =======
1528 		 * KSZ8864 is similar to KSZ8895, except the first port
1529 		 * does not exist.
1530 		 *           external  cpu
1531 		 * KSZ8864   1,2,3      4
1532 		 * KSZ8895   0,1,2,3    4
1533 		 * port_cnt is configured as 5, even though it is 4
1534 		 */
1535 		.chip_id = KSZ8864_CHIP_ID,
1536 		.dev_name = "KSZ8864",
1537 		.num_vlans = 4096,
1538 		.num_alus = 0,
1539 		.num_statics = 32,
1540 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1541 		.port_cnt = 5,		/* total cpu and user ports */
1542 		.num_tx_queues = 4,
1543 		.num_ipms = 4,
1544 		.ops = &ksz88xx_dev_ops,
1545 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1546 		.mib_names = ksz88xx_mib_names,
1547 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1548 		.reg_mib_cnt = MIB_COUNTER_NUM,
1549 		.regs = ksz8895_regs,
1550 		.masks = ksz8895_masks,
1551 		.shifts = ksz8895_shifts,
1552 		.supports_mii = {false, false, false, false, true},
1553 		.supports_rmii = {false, false, false, false, true},
1554 		.internal_phy = {false, true, true, true, false},
1555 	},
1556 
1557 	[KSZ8895] = {
1558 		.chip_id = KSZ8895_CHIP_ID,
1559 		.dev_name = "KSZ8895",
1560 		.num_vlans = 4096,
1561 		.num_alus = 0,
1562 		.num_statics = 32,
1563 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1564 		.port_cnt = 5,		/* total cpu and user ports */
1565 		.num_tx_queues = 4,
1566 		.num_ipms = 4,
1567 		.ops = &ksz88xx_dev_ops,
1568 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1569 		.mib_names = ksz88xx_mib_names,
1570 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1571 		.reg_mib_cnt = MIB_COUNTER_NUM,
1572 		.regs = ksz8895_regs,
1573 		.masks = ksz8895_masks,
1574 		.shifts = ksz8895_shifts,
1575 		.supports_mii = {false, false, false, false, true},
1576 		.supports_rmii = {false, false, false, false, true},
1577 		.internal_phy = {true, true, true, true, false},
1578 	},
1579 
1580 	[KSZ9477] = {
1581 		.chip_id = KSZ9477_CHIP_ID,
1582 		.dev_name = "KSZ9477",
1583 		.num_vlans = 4096,
1584 		.num_alus = 4096,
1585 		.num_statics = 16,
1586 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1587 		.port_cnt = 7,		/* total physical port count */
1588 		.port_nirqs = 4,
1589 		.num_tx_queues = 4,
1590 		.num_ipms = 8,
1591 		.tc_cbs_supported = true,
1592 		.ops = &ksz9477_dev_ops,
1593 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1594 		.phy_errata_9477 = true,
1595 		.mib_names = ksz9477_mib_names,
1596 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1597 		.reg_mib_cnt = MIB_COUNTER_NUM,
1598 		.regs = ksz9477_regs,
1599 		.masks = ksz9477_masks,
1600 		.shifts = ksz9477_shifts,
1601 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1602 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1603 		.supports_mii	= {false, false, false, false,
1604 				   false, true, false},
1605 		.supports_rmii	= {false, false, false, false,
1606 				   false, true, false},
1607 		.supports_rgmii = {false, false, false, false,
1608 				   false, true, false},
1609 		.internal_phy	= {true, true, true, true,
1610 				   true, false, false},
1611 		.gbit_capable	= {true, true, true, true, true, true, true},
1612 		.ptp_capable = true,
1613 		.wr_table = &ksz9477_register_set,
1614 		.rd_table = &ksz9477_register_set,
1615 	},
1616 
1617 	[KSZ9896] = {
1618 		.chip_id = KSZ9896_CHIP_ID,
1619 		.dev_name = "KSZ9896",
1620 		.num_vlans = 4096,
1621 		.num_alus = 4096,
1622 		.num_statics = 16,
1623 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1624 		.port_cnt = 6,		/* total physical port count */
1625 		.port_nirqs = 2,
1626 		.num_tx_queues = 4,
1627 		.num_ipms = 8,
1628 		.ops = &ksz9477_dev_ops,
1629 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1630 		.phy_errata_9477 = true,
1631 		.mib_names = ksz9477_mib_names,
1632 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1633 		.reg_mib_cnt = MIB_COUNTER_NUM,
1634 		.regs = ksz9477_regs,
1635 		.masks = ksz9477_masks,
1636 		.shifts = ksz9477_shifts,
1637 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1638 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1639 		.supports_mii	= {false, false, false, false,
1640 				   false, true},
1641 		.supports_rmii	= {false, false, false, false,
1642 				   false, true},
1643 		.supports_rgmii = {false, false, false, false,
1644 				   false, true},
1645 		.internal_phy	= {true, true, true, true,
1646 				   true, false},
1647 		.gbit_capable	= {true, true, true, true, true, true},
1648 		.wr_table = &ksz9896_register_set,
1649 		.rd_table = &ksz9896_register_set,
1650 	},
1651 
1652 	[KSZ9897] = {
1653 		.chip_id = KSZ9897_CHIP_ID,
1654 		.dev_name = "KSZ9897",
1655 		.num_vlans = 4096,
1656 		.num_alus = 4096,
1657 		.num_statics = 16,
1658 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1659 		.port_cnt = 7,		/* total physical port count */
1660 		.port_nirqs = 2,
1661 		.num_tx_queues = 4,
1662 		.num_ipms = 8,
1663 		.ops = &ksz9477_dev_ops,
1664 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1665 		.phy_errata_9477 = true,
1666 		.mib_names = ksz9477_mib_names,
1667 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1668 		.reg_mib_cnt = MIB_COUNTER_NUM,
1669 		.regs = ksz9477_regs,
1670 		.masks = ksz9477_masks,
1671 		.shifts = ksz9477_shifts,
1672 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1673 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1674 		.supports_mii	= {false, false, false, false,
1675 				   false, true, true},
1676 		.supports_rmii	= {false, false, false, false,
1677 				   false, true, true},
1678 		.supports_rgmii = {false, false, false, false,
1679 				   false, true, true},
1680 		.internal_phy	= {true, true, true, true,
1681 				   true, false, false},
1682 		.gbit_capable	= {true, true, true, true, true, true, true},
1683 	},
1684 
1685 	[KSZ9893] = {
1686 		.chip_id = KSZ9893_CHIP_ID,
1687 		.dev_name = "KSZ9893",
1688 		.num_vlans = 4096,
1689 		.num_alus = 4096,
1690 		.num_statics = 16,
1691 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1692 		.port_cnt = 3,		/* total port count */
1693 		.port_nirqs = 2,
1694 		.num_tx_queues = 4,
1695 		.num_ipms = 8,
1696 		.ops = &ksz9477_dev_ops,
1697 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1698 		.mib_names = ksz9477_mib_names,
1699 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1700 		.reg_mib_cnt = MIB_COUNTER_NUM,
1701 		.regs = ksz9477_regs,
1702 		.masks = ksz9477_masks,
1703 		.shifts = ksz9477_shifts,
1704 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1705 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1706 		.supports_mii = {false, false, true},
1707 		.supports_rmii = {false, false, true},
1708 		.supports_rgmii = {false, false, true},
1709 		.internal_phy = {true, true, false},
1710 		.gbit_capable = {true, true, true},
1711 	},
1712 
1713 	[KSZ9563] = {
1714 		.chip_id = KSZ9563_CHIP_ID,
1715 		.dev_name = "KSZ9563",
1716 		.num_vlans = 4096,
1717 		.num_alus = 4096,
1718 		.num_statics = 16,
1719 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1720 		.port_cnt = 3,		/* total port count */
1721 		.port_nirqs = 3,
1722 		.num_tx_queues = 4,
1723 		.num_ipms = 8,
1724 		.tc_cbs_supported = true,
1725 		.ops = &ksz9477_dev_ops,
1726 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1727 		.mib_names = ksz9477_mib_names,
1728 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1729 		.reg_mib_cnt = MIB_COUNTER_NUM,
1730 		.regs = ksz9477_regs,
1731 		.masks = ksz9477_masks,
1732 		.shifts = ksz9477_shifts,
1733 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1734 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1735 		.supports_mii = {false, false, true},
1736 		.supports_rmii = {false, false, true},
1737 		.supports_rgmii = {false, false, true},
1738 		.internal_phy = {true, true, false},
1739 		.gbit_capable = {true, true, true},
1740 		.ptp_capable = true,
1741 	},
1742 
1743 	[KSZ8567] = {
1744 		.chip_id = KSZ8567_CHIP_ID,
1745 		.dev_name = "KSZ8567",
1746 		.num_vlans = 4096,
1747 		.num_alus = 4096,
1748 		.num_statics = 16,
1749 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1750 		.port_cnt = 7,		/* total port count */
1751 		.port_nirqs = 3,
1752 		.num_tx_queues = 4,
1753 		.num_ipms = 8,
1754 		.tc_cbs_supported = true,
1755 		.ops = &ksz9477_dev_ops,
1756 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1757 		.phy_errata_9477 = true,
1758 		.mib_names = ksz9477_mib_names,
1759 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1760 		.reg_mib_cnt = MIB_COUNTER_NUM,
1761 		.regs = ksz9477_regs,
1762 		.masks = ksz9477_masks,
1763 		.shifts = ksz9477_shifts,
1764 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1765 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1766 		.supports_mii	= {false, false, false, false,
1767 				   false, true, true},
1768 		.supports_rmii	= {false, false, false, false,
1769 				   false, true, true},
1770 		.supports_rgmii = {false, false, false, false,
1771 				   false, true, true},
1772 		.internal_phy	= {true, true, true, true,
1773 				   true, false, false},
1774 		.gbit_capable	= {false, false, false, false, false,
1775 				   true, true},
1776 		.ptp_capable = true,
1777 	},
1778 
1779 	[KSZ9567] = {
1780 		.chip_id = KSZ9567_CHIP_ID,
1781 		.dev_name = "KSZ9567",
1782 		.num_vlans = 4096,
1783 		.num_alus = 4096,
1784 		.num_statics = 16,
1785 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1786 		.port_cnt = 7,		/* total physical port count */
1787 		.port_nirqs = 3,
1788 		.num_tx_queues = 4,
1789 		.num_ipms = 8,
1790 		.tc_cbs_supported = true,
1791 		.ops = &ksz9477_dev_ops,
1792 		.mib_names = ksz9477_mib_names,
1793 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1794 		.reg_mib_cnt = MIB_COUNTER_NUM,
1795 		.regs = ksz9477_regs,
1796 		.masks = ksz9477_masks,
1797 		.shifts = ksz9477_shifts,
1798 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1799 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1800 		.supports_mii	= {false, false, false, false,
1801 				   false, true, true},
1802 		.supports_rmii	= {false, false, false, false,
1803 				   false, true, true},
1804 		.supports_rgmii = {false, false, false, false,
1805 				   false, true, true},
1806 		.internal_phy	= {true, true, true, true,
1807 				   true, false, false},
1808 		.gbit_capable	= {true, true, true, true, true, true, true},
1809 		.ptp_capable = true,
1810 	},
1811 
1812 	[LAN9370] = {
1813 		.chip_id = LAN9370_CHIP_ID,
1814 		.dev_name = "LAN9370",
1815 		.num_vlans = 4096,
1816 		.num_alus = 1024,
1817 		.num_statics = 256,
1818 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1819 		.port_cnt = 5,		/* total physical port count */
1820 		.port_nirqs = 6,
1821 		.num_tx_queues = 8,
1822 		.num_ipms = 8,
1823 		.tc_cbs_supported = true,
1824 		.phy_side_mdio_supported = true,
1825 		.ops = &lan937x_dev_ops,
1826 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1827 		.mib_names = ksz9477_mib_names,
1828 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1829 		.reg_mib_cnt = MIB_COUNTER_NUM,
1830 		.regs = ksz9477_regs,
1831 		.masks = lan937x_masks,
1832 		.shifts = lan937x_shifts,
1833 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1834 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1835 		.supports_mii = {false, false, false, false, true},
1836 		.supports_rmii = {false, false, false, false, true},
1837 		.supports_rgmii = {false, false, false, false, true},
1838 		.internal_phy = {true, true, true, true, false},
1839 		.ptp_capable = true,
1840 	},
1841 
1842 	[LAN9371] = {
1843 		.chip_id = LAN9371_CHIP_ID,
1844 		.dev_name = "LAN9371",
1845 		.num_vlans = 4096,
1846 		.num_alus = 1024,
1847 		.num_statics = 256,
1848 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1849 		.port_cnt = 6,		/* total physical port count */
1850 		.port_nirqs = 6,
1851 		.num_tx_queues = 8,
1852 		.num_ipms = 8,
1853 		.tc_cbs_supported = true,
1854 		.phy_side_mdio_supported = true,
1855 		.ops = &lan937x_dev_ops,
1856 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1857 		.mib_names = ksz9477_mib_names,
1858 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1859 		.reg_mib_cnt = MIB_COUNTER_NUM,
1860 		.regs = ksz9477_regs,
1861 		.masks = lan937x_masks,
1862 		.shifts = lan937x_shifts,
1863 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1864 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1865 		.supports_mii = {false, false, false, false, true, true},
1866 		.supports_rmii = {false, false, false, false, true, true},
1867 		.supports_rgmii = {false, false, false, false, true, true},
1868 		.internal_phy = {true, true, true, true, false, false},
1869 		.ptp_capable = true,
1870 	},
1871 
1872 	[LAN9372] = {
1873 		.chip_id = LAN9372_CHIP_ID,
1874 		.dev_name = "LAN9372",
1875 		.num_vlans = 4096,
1876 		.num_alus = 1024,
1877 		.num_statics = 256,
1878 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1879 		.port_cnt = 8,		/* total physical port count */
1880 		.port_nirqs = 6,
1881 		.num_tx_queues = 8,
1882 		.num_ipms = 8,
1883 		.tc_cbs_supported = true,
1884 		.phy_side_mdio_supported = true,
1885 		.ops = &lan937x_dev_ops,
1886 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1887 		.mib_names = ksz9477_mib_names,
1888 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1889 		.reg_mib_cnt = MIB_COUNTER_NUM,
1890 		.regs = ksz9477_regs,
1891 		.masks = lan937x_masks,
1892 		.shifts = lan937x_shifts,
1893 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1894 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1895 		.supports_mii	= {false, false, false, false,
1896 				   true, true, false, false},
1897 		.supports_rmii	= {false, false, false, false,
1898 				   true, true, false, false},
1899 		.supports_rgmii = {false, false, false, false,
1900 				   true, true, false, false},
1901 		.internal_phy	= {true, true, true, true,
1902 				   false, false, true, true},
1903 		.ptp_capable = true,
1904 	},
1905 
1906 	[LAN9373] = {
1907 		.chip_id = LAN9373_CHIP_ID,
1908 		.dev_name = "LAN9373",
1909 		.num_vlans = 4096,
1910 		.num_alus = 1024,
1911 		.num_statics = 256,
1912 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1913 		.port_cnt = 5,		/* total physical port count */
1914 		.port_nirqs = 6,
1915 		.num_tx_queues = 8,
1916 		.num_ipms = 8,
1917 		.tc_cbs_supported = true,
1918 		.phy_side_mdio_supported = true,
1919 		.ops = &lan937x_dev_ops,
1920 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1921 		.mib_names = ksz9477_mib_names,
1922 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1923 		.reg_mib_cnt = MIB_COUNTER_NUM,
1924 		.regs = ksz9477_regs,
1925 		.masks = lan937x_masks,
1926 		.shifts = lan937x_shifts,
1927 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1928 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1929 		.supports_mii	= {false, false, false, false,
1930 				   true, true, false, false},
1931 		.supports_rmii	= {false, false, false, false,
1932 				   true, true, false, false},
1933 		.supports_rgmii = {false, false, false, false,
1934 				   true, true, false, false},
1935 		.internal_phy	= {true, true, true, false,
1936 				   false, false, true, true},
1937 		.ptp_capable = true,
1938 	},
1939 
1940 	[LAN9374] = {
1941 		.chip_id = LAN9374_CHIP_ID,
1942 		.dev_name = "LAN9374",
1943 		.num_vlans = 4096,
1944 		.num_alus = 1024,
1945 		.num_statics = 256,
1946 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1947 		.port_cnt = 8,		/* total physical port count */
1948 		.port_nirqs = 6,
1949 		.num_tx_queues = 8,
1950 		.num_ipms = 8,
1951 		.tc_cbs_supported = true,
1952 		.phy_side_mdio_supported = true,
1953 		.ops = &lan937x_dev_ops,
1954 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1955 		.mib_names = ksz9477_mib_names,
1956 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1957 		.reg_mib_cnt = MIB_COUNTER_NUM,
1958 		.regs = ksz9477_regs,
1959 		.masks = lan937x_masks,
1960 		.shifts = lan937x_shifts,
1961 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1962 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1963 		.supports_mii	= {false, false, false, false,
1964 				   true, true, false, false},
1965 		.supports_rmii	= {false, false, false, false,
1966 				   true, true, false, false},
1967 		.supports_rgmii = {false, false, false, false,
1968 				   true, true, false, false},
1969 		.internal_phy	= {true, true, true, true,
1970 				   false, false, true, true},
1971 		.ptp_capable = true,
1972 	},
1973 
1974 	[LAN9646] = {
1975 		.chip_id = LAN9646_CHIP_ID,
1976 		.dev_name = "LAN9646",
1977 		.num_vlans = 4096,
1978 		.num_alus = 4096,
1979 		.num_statics = 16,
1980 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1981 		.port_cnt = 7,		/* total physical port count */
1982 		.port_nirqs = 4,
1983 		.num_tx_queues = 4,
1984 		.num_ipms = 8,
1985 		.ops = &ksz9477_dev_ops,
1986 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1987 		.phy_errata_9477 = true,
1988 		.mib_names = ksz9477_mib_names,
1989 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1990 		.reg_mib_cnt = MIB_COUNTER_NUM,
1991 		.regs = ksz9477_regs,
1992 		.masks = ksz9477_masks,
1993 		.shifts = ksz9477_shifts,
1994 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1995 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1996 		.supports_mii	= {false, false, false, false,
1997 				   false, true, true},
1998 		.supports_rmii	= {false, false, false, false,
1999 				   false, true, true},
2000 		.supports_rgmii = {false, false, false, false,
2001 				   false, true, true},
2002 		.internal_phy	= {true, true, true, true,
2003 				   true, false, false},
2004 		.gbit_capable	= {true, true, true, true, true, true, true},
2005 		.wr_table = &ksz9477_register_set,
2006 		.rd_table = &ksz9477_register_set,
2007 	},
2008 };
2009 EXPORT_SYMBOL_GPL(ksz_switch_chips);
2010 
2011 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
2012 {
2013 	int i;
2014 
2015 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
2016 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
2017 
2018 		if (chip->chip_id == prod_num)
2019 			return chip;
2020 	}
2021 
2022 	return NULL;
2023 }
2024 
2025 static int ksz_check_device_id(struct ksz_device *dev)
2026 {
2027 	const struct ksz_chip_data *expected_chip_data;
2028 	u32 expected_chip_id;
2029 
2030 	if (dev->pdata) {
2031 		expected_chip_id = dev->pdata->chip_id;
2032 		expected_chip_data = ksz_lookup_info(expected_chip_id);
2033 		if (WARN_ON(!expected_chip_data))
2034 			return -ENODEV;
2035 	} else {
2036 		expected_chip_data = of_device_get_match_data(dev->dev);
2037 		expected_chip_id = expected_chip_data->chip_id;
2038 	}
2039 
2040 	if (expected_chip_id != dev->chip_id) {
2041 		dev_err(dev->dev,
2042 			"Device tree specifies chip %s but found %s, please fix it!\n",
2043 			expected_chip_data->dev_name, dev->info->dev_name);
2044 		return -ENODEV;
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
2051 				 struct phylink_config *config)
2052 {
2053 	struct ksz_device *dev = ds->priv;
2054 
2055 	if (dev->info->supports_mii[port])
2056 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
2057 
2058 	if (dev->info->supports_rmii[port])
2059 		__set_bit(PHY_INTERFACE_MODE_RMII,
2060 			  config->supported_interfaces);
2061 
2062 	if (dev->info->supports_rgmii[port])
2063 		phy_interface_set_rgmii(config->supported_interfaces);
2064 
2065 	if (dev->info->internal_phy[port]) {
2066 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2067 			  config->supported_interfaces);
2068 		/* Compatibility for phylib's default interface type when the
2069 		 * phy-mode property is absent
2070 		 */
2071 		__set_bit(PHY_INTERFACE_MODE_GMII,
2072 			  config->supported_interfaces);
2073 	}
2074 
2075 	if (dev->dev_ops->get_caps)
2076 		dev->dev_ops->get_caps(dev, port, config);
2077 
2078 	if (ds->ops->support_eee && ds->ops->support_eee(ds, port)) {
2079 		memcpy(config->lpi_interfaces, config->supported_interfaces,
2080 		       sizeof(config->lpi_interfaces));
2081 
2082 		config->lpi_capabilities = MAC_100FD;
2083 		if (dev->info->gbit_capable[port])
2084 			config->lpi_capabilities |= MAC_1000FD;
2085 
2086 		/* EEE is fully operational */
2087 		config->eee_enabled_default = true;
2088 	}
2089 }
2090 
2091 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
2092 {
2093 	struct ethtool_pause_stats *pstats;
2094 	struct rtnl_link_stats64 *stats;
2095 	struct ksz_stats_raw *raw;
2096 	struct ksz_port_mib *mib;
2097 	int ret;
2098 
2099 	mib = &dev->ports[port].mib;
2100 	stats = &mib->stats64;
2101 	pstats = &mib->pause_stats;
2102 	raw = (struct ksz_stats_raw *)mib->counters;
2103 
2104 	spin_lock(&mib->stats64_lock);
2105 
2106 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2107 		raw->rx_pause;
2108 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2109 		raw->tx_pause;
2110 
2111 	/* HW counters are counting bytes + FCS which is not acceptable
2112 	 * for rtnl_link_stats64 interface
2113 	 */
2114 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
2115 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
2116 
2117 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2118 		raw->rx_oversize;
2119 
2120 	stats->rx_crc_errors = raw->rx_crc_err;
2121 	stats->rx_frame_errors = raw->rx_align_err;
2122 	stats->rx_dropped = raw->rx_discards;
2123 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2124 		stats->rx_frame_errors  + stats->rx_dropped;
2125 
2126 	stats->tx_window_errors = raw->tx_late_col;
2127 	stats->tx_fifo_errors = raw->tx_discards;
2128 	stats->tx_aborted_errors = raw->tx_exc_col;
2129 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2130 		stats->tx_aborted_errors;
2131 
2132 	stats->multicast = raw->rx_mcast;
2133 	stats->collisions = raw->tx_total_col;
2134 
2135 	pstats->tx_pause_frames = raw->tx_pause;
2136 	pstats->rx_pause_frames = raw->rx_pause;
2137 
2138 	spin_unlock(&mib->stats64_lock);
2139 
2140 	if (dev->info->phy_errata_9477) {
2141 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
2142 		if (ret)
2143 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
2144 	}
2145 }
2146 
2147 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
2148 {
2149 	struct ethtool_pause_stats *pstats;
2150 	struct rtnl_link_stats64 *stats;
2151 	struct ksz88xx_stats_raw *raw;
2152 	struct ksz_port_mib *mib;
2153 
2154 	mib = &dev->ports[port].mib;
2155 	stats = &mib->stats64;
2156 	pstats = &mib->pause_stats;
2157 	raw = (struct ksz88xx_stats_raw *)mib->counters;
2158 
2159 	spin_lock(&mib->stats64_lock);
2160 
2161 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2162 		raw->rx_pause;
2163 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2164 		raw->tx_pause;
2165 
2166 	/* HW counters are counting bytes + FCS which is not acceptable
2167 	 * for rtnl_link_stats64 interface
2168 	 */
2169 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
2170 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
2171 
2172 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2173 		raw->rx_oversize;
2174 
2175 	stats->rx_crc_errors = raw->rx_crc_err;
2176 	stats->rx_frame_errors = raw->rx_align_err;
2177 	stats->rx_dropped = raw->rx_discards;
2178 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2179 		stats->rx_frame_errors  + stats->rx_dropped;
2180 
2181 	stats->tx_window_errors = raw->tx_late_col;
2182 	stats->tx_fifo_errors = raw->tx_discards;
2183 	stats->tx_aborted_errors = raw->tx_exc_col;
2184 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2185 		stats->tx_aborted_errors;
2186 
2187 	stats->multicast = raw->rx_mcast;
2188 	stats->collisions = raw->tx_total_col;
2189 
2190 	pstats->tx_pause_frames = raw->tx_pause;
2191 	pstats->rx_pause_frames = raw->rx_pause;
2192 
2193 	spin_unlock(&mib->stats64_lock);
2194 }
2195 
2196 static void ksz_get_stats64(struct dsa_switch *ds, int port,
2197 			    struct rtnl_link_stats64 *s)
2198 {
2199 	struct ksz_device *dev = ds->priv;
2200 	struct ksz_port_mib *mib;
2201 
2202 	mib = &dev->ports[port].mib;
2203 
2204 	spin_lock(&mib->stats64_lock);
2205 	memcpy(s, &mib->stats64, sizeof(*s));
2206 	spin_unlock(&mib->stats64_lock);
2207 }
2208 
2209 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
2210 				struct ethtool_pause_stats *pause_stats)
2211 {
2212 	struct ksz_device *dev = ds->priv;
2213 	struct ksz_port_mib *mib;
2214 
2215 	mib = &dev->ports[port].mib;
2216 
2217 	spin_lock(&mib->stats64_lock);
2218 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
2219 	spin_unlock(&mib->stats64_lock);
2220 }
2221 
2222 static void ksz_get_strings(struct dsa_switch *ds, int port,
2223 			    u32 stringset, uint8_t *buf)
2224 {
2225 	struct ksz_device *dev = ds->priv;
2226 	int i;
2227 
2228 	if (stringset != ETH_SS_STATS)
2229 		return;
2230 
2231 	for (i = 0; i < dev->info->mib_cnt; i++)
2232 		ethtool_puts(&buf, dev->info->mib_names[i].string);
2233 }
2234 
2235 /**
2236  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2237  *			    isolation settings.
2238  * @dev: A pointer to the struct ksz_device representing the device.
2239  * @port: The port number to adjust.
2240  *
2241  * This function dynamically adjusts the port membership configuration for a
2242  * specified port and other device ports, based on Spanning Tree Protocol (STP)
2243  * states and port isolation settings. Each port, including the CPU port, has a
2244  * membership register, represented as a bitfield, where each bit corresponds
2245  * to a port number. A set bit indicates permission to forward frames to that
2246  * port. This function iterates over all ports, updating the membership register
2247  * to reflect current forwarding permissions:
2248  *
2249  * 1. Forwards frames only to ports that are part of the same bridge group and
2250  *    in the BR_STATE_FORWARDING state.
2251  * 2. Takes into account the isolation status of ports; ports in the
2252  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2253  *    frames to each other, even if they are in the same bridge group.
2254  * 3. Ensures that the CPU port is included in the membership based on its
2255  *    upstream port configuration, allowing for management and control traffic
2256  *    to flow as required.
2257  */
2258 static void ksz_update_port_member(struct ksz_device *dev, int port)
2259 {
2260 	struct ksz_port *p = &dev->ports[port];
2261 	struct dsa_switch *ds = dev->ds;
2262 	u8 port_member = 0, cpu_port;
2263 	const struct dsa_port *dp;
2264 	int i, j;
2265 
2266 	if (!dsa_is_user_port(ds, port))
2267 		return;
2268 
2269 	dp = dsa_to_port(ds, port);
2270 	cpu_port = BIT(dsa_upstream_port(ds, port));
2271 
2272 	for (i = 0; i < ds->num_ports; i++) {
2273 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2274 		struct ksz_port *other_p = &dev->ports[i];
2275 		u8 val = 0;
2276 
2277 		if (!dsa_is_user_port(ds, i))
2278 			continue;
2279 		if (port == i)
2280 			continue;
2281 		if (!dsa_port_bridge_same(dp, other_dp))
2282 			continue;
2283 		if (other_p->stp_state != BR_STATE_FORWARDING)
2284 			continue;
2285 
2286 		/* At this point we know that "port" and "other" port [i] are in
2287 		 * the same bridge group and that "other" port [i] is in
2288 		 * forwarding stp state. If "port" is also in forwarding stp
2289 		 * state, we can allow forwarding from port [port] to port [i].
2290 		 * Except if both ports are isolated.
2291 		 */
2292 		if (p->stp_state == BR_STATE_FORWARDING &&
2293 		    !(p->isolated && other_p->isolated)) {
2294 			val |= BIT(port);
2295 			port_member |= BIT(i);
2296 		}
2297 
2298 		/* Retain port [i]'s relationship to other ports than [port] */
2299 		for (j = 0; j < ds->num_ports; j++) {
2300 			const struct dsa_port *third_dp;
2301 			struct ksz_port *third_p;
2302 
2303 			if (j == i)
2304 				continue;
2305 			if (j == port)
2306 				continue;
2307 			if (!dsa_is_user_port(ds, j))
2308 				continue;
2309 			third_p = &dev->ports[j];
2310 			if (third_p->stp_state != BR_STATE_FORWARDING)
2311 				continue;
2312 
2313 			third_dp = dsa_to_port(ds, j);
2314 
2315 			/* Now we updating relation of the "other" port [i] to
2316 			 * the "third" port [j]. We already know that "other"
2317 			 * port [i] is in forwarding stp state and that "third"
2318 			 * port [j] is in forwarding stp state too.
2319 			 * We need to check if "other" port [i] and "third" port
2320 			 * [j] are in the same bridge group and not isolated
2321 			 * before allowing forwarding from port [i] to port [j].
2322 			 */
2323 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2324 			    !(other_p->isolated && third_p->isolated))
2325 				val |= BIT(j);
2326 		}
2327 
2328 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2329 	}
2330 
2331 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2332 }
2333 
2334 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2335 {
2336 	struct ksz_device *dev = bus->priv;
2337 	u16 val;
2338 	int ret;
2339 
2340 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2341 	if (ret < 0)
2342 		return ret;
2343 
2344 	return val;
2345 }
2346 
2347 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2348 			     u16 val)
2349 {
2350 	struct ksz_device *dev = bus->priv;
2351 
2352 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2353 }
2354 
2355 /**
2356  * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus.
2357  * @bus: MDIO bus structure.
2358  * @addr: PHY address on the parent MDIO bus.
2359  * @regnum: Register number to read.
2360  *
2361  * This function provides a direct read operation on the parent MDIO bus for
2362  * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus
2363  * to retrieve data from the PHY registers at the specified address and register
2364  * number.
2365  *
2366  * Return: Value of the PHY register, or a negative error code on failure.
2367  */
2368 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum)
2369 {
2370 	struct ksz_device *dev = bus->priv;
2371 
2372 	return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum);
2373 }
2374 
2375 /**
2376  * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus.
2377  * @bus: MDIO bus structure.
2378  * @addr: PHY address on the parent MDIO bus.
2379  * @regnum: Register number to write to.
2380  * @val: Value to write to the PHY register.
2381  *
2382  * This function provides a direct write operation on the parent MDIO bus for
2383  * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus
2384  * to modify the PHY register values at the specified address.
2385  *
2386  * Return: 0 on success, or a negative error code on failure.
2387  */
2388 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum,
2389 				 u16 val)
2390 {
2391 	struct ksz_device *dev = bus->priv;
2392 
2393 	return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val);
2394 }
2395 
2396 /**
2397  * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port.
2398  * @dev: Pointer to device structure.
2399  * @addr: PHY address to map to a port.
2400  *
2401  * This function finds the corresponding switch port for a given PHY address by
2402  * iterating over all user ports on the device. It checks if a port's PHY
2403  * address in `phy_addr_map` matches the specified address and if the port
2404  * contains an internal PHY. If a match is found, the index of the port is
2405  * returned.
2406  *
2407  * Return: Port index on success, or -EINVAL if no matching port is found.
2408  */
2409 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr)
2410 {
2411 	struct dsa_switch *ds = dev->ds;
2412 	struct dsa_port *dp;
2413 
2414 	dsa_switch_for_each_user_port(dp, ds) {
2415 		if (dev->info->internal_phy[dp->index] &&
2416 		    dev->phy_addr_map[dp->index] == addr)
2417 			return dp->index;
2418 	}
2419 
2420 	return -EINVAL;
2421 }
2422 
2423 /**
2424  * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device.
2425  * @dev: Pointer to the KSZ device structure.
2426  *
2427  * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the
2428  * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in
2429  * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain.
2430  *
2431  * Return: 0 on success, or a negative error code on failure.
2432  */
2433 static int ksz_irq_phy_setup(struct ksz_device *dev)
2434 {
2435 	struct dsa_switch *ds = dev->ds;
2436 	int phy, port;
2437 	int irq;
2438 	int ret;
2439 
2440 	for (phy = 0; phy < PHY_MAX_ADDR; phy++) {
2441 		if (BIT(phy) & ds->phys_mii_mask) {
2442 			port = ksz_phy_addr_to_port(dev, phy);
2443 			if (port < 0) {
2444 				ret = port;
2445 				goto out;
2446 			}
2447 
2448 			irq = irq_find_mapping(dev->ports[port].pirq.domain,
2449 					       PORT_SRC_PHY_INT);
2450 			if (irq < 0) {
2451 				ret = irq;
2452 				goto out;
2453 			}
2454 			ds->user_mii_bus->irq[phy] = irq;
2455 		}
2456 	}
2457 	return 0;
2458 out:
2459 	while (phy--)
2460 		if (BIT(phy) & ds->phys_mii_mask)
2461 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2462 
2463 	return ret;
2464 }
2465 
2466 /**
2467  * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device.
2468  * @dev: Pointer to the KSZ device structure.
2469  *
2470  * Releases any IRQ mappings previously assigned to active PHYs in the KSZ
2471  * switch by disposing of each mapped IRQ in the `user_mii_bus` structure.
2472  */
2473 static void ksz_irq_phy_free(struct ksz_device *dev)
2474 {
2475 	struct dsa_switch *ds = dev->ds;
2476 	int phy;
2477 
2478 	for (phy = 0; phy < PHY_MAX_ADDR; phy++)
2479 		if (BIT(phy) & ds->phys_mii_mask)
2480 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2481 }
2482 
2483 /**
2484  * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT
2485  * @dev: pointer to the KSZ device structure
2486  * @bus: pointer to the MII bus structure
2487  * @mdio_np: pointer to the MDIO node in the device tree
2488  *
2489  * This function parses and validates PHY configurations for each user port
2490  * defined in the device tree for a KSZ switch device. It verifies that the
2491  * `phy-handle` properties are correctly set and that the internal PHYs match
2492  * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if
2493  * all validations pass. Logs error messages for any mismatches or missing data.
2494  *
2495  * Return: 0 on success, or a negative error code on failure.
2496  */
2497 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus,
2498 				   struct device_node *mdio_np)
2499 {
2500 	struct device_node *phy_node, *phy_parent_node;
2501 	bool phys_are_valid = true;
2502 	struct dsa_port *dp;
2503 	u32 phy_addr;
2504 	int ret;
2505 
2506 	dsa_switch_for_each_user_port(dp, dev->ds) {
2507 		if (!dev->info->internal_phy[dp->index])
2508 			continue;
2509 
2510 		phy_node = of_parse_phandle(dp->dn, "phy-handle", 0);
2511 		if (!phy_node) {
2512 			dev_err(dev->dev, "failed to parse phy-handle for port %d.\n",
2513 				dp->index);
2514 			phys_are_valid = false;
2515 			continue;
2516 		}
2517 
2518 		phy_parent_node = of_get_parent(phy_node);
2519 		if (!phy_parent_node) {
2520 			dev_err(dev->dev, "failed to get PHY-parent node for port %d\n",
2521 				dp->index);
2522 			phys_are_valid = false;
2523 		} else if (phy_parent_node != mdio_np) {
2524 			dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n",
2525 				dp->index, mdio_np, phy_parent_node);
2526 			phys_are_valid = false;
2527 		} else {
2528 			ret = of_property_read_u32(phy_node, "reg", &phy_addr);
2529 			if (ret < 0) {
2530 				dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n",
2531 					dp->index, ret);
2532 				phys_are_valid = false;
2533 			} else if (phy_addr != dev->phy_addr_map[dp->index]) {
2534 				dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n",
2535 					dp->index, dev->phy_addr_map[dp->index],
2536 					phy_addr);
2537 				phys_are_valid = false;
2538 			} else {
2539 				bus->phy_mask |= BIT(phy_addr);
2540 			}
2541 		}
2542 
2543 		of_node_put(phy_node);
2544 		of_node_put(phy_parent_node);
2545 	}
2546 
2547 	if (!phys_are_valid)
2548 		return -EINVAL;
2549 
2550 	return 0;
2551 }
2552 
2553 /**
2554  * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device.
2555  * @dev: Pointer to the KSZ device structure.
2556  *
2557  * This function sets up and registers an MDIO bus for the KSZ switch device,
2558  * allowing access to its internal PHYs. If the device supports side MDIO,
2559  * the function will configure the external MDIO controller specified by the
2560  * "mdio-parent-bus" device tree property to directly manage internal PHYs.
2561  * Otherwise, SPI or I2C access is set up for PHY access.
2562  *
2563  * Return: 0 on success, or a negative error code on failure.
2564  */
2565 static int ksz_mdio_register(struct ksz_device *dev)
2566 {
2567 	struct device_node *parent_bus_node;
2568 	struct mii_bus *parent_bus = NULL;
2569 	struct dsa_switch *ds = dev->ds;
2570 	struct device_node *mdio_np;
2571 	struct mii_bus *bus;
2572 	int ret, i;
2573 
2574 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2575 	if (!mdio_np)
2576 		return 0;
2577 
2578 	parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0);
2579 	if (parent_bus_node && !dev->info->phy_side_mdio_supported) {
2580 		dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n");
2581 		ret = -EINVAL;
2582 
2583 		goto put_mdio_node;
2584 	} else if (parent_bus_node) {
2585 		parent_bus = of_mdio_find_bus(parent_bus_node);
2586 		if (!parent_bus) {
2587 			ret = -EPROBE_DEFER;
2588 
2589 			goto put_mdio_node;
2590 		}
2591 
2592 		dev->parent_mdio_bus = parent_bus;
2593 	}
2594 
2595 	bus = devm_mdiobus_alloc(ds->dev);
2596 	if (!bus) {
2597 		ret = -ENOMEM;
2598 		goto put_mdio_node;
2599 	}
2600 
2601 	if (dev->dev_ops->mdio_bus_preinit) {
2602 		ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus);
2603 		if (ret)
2604 			goto put_mdio_node;
2605 	}
2606 
2607 	if (dev->dev_ops->create_phy_addr_map) {
2608 		ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus);
2609 		if (ret)
2610 			goto put_mdio_node;
2611 	} else {
2612 		for (i = 0; i < dev->info->port_cnt; i++)
2613 			dev->phy_addr_map[i] = i;
2614 	}
2615 
2616 	bus->priv = dev;
2617 	if (parent_bus) {
2618 		bus->read = ksz_parent_mdio_read;
2619 		bus->write = ksz_parent_mdio_write;
2620 		bus->name = "KSZ side MDIO";
2621 		snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d",
2622 			 ds->index);
2623 	} else {
2624 		bus->read = ksz_sw_mdio_read;
2625 		bus->write = ksz_sw_mdio_write;
2626 		bus->name = "ksz user smi";
2627 		if (ds->dst->index != 0) {
2628 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d-%d", ds->dst->index, ds->index);
2629 		} else {
2630 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2631 		}
2632 	}
2633 
2634 	ret = ksz_parse_dt_phy_config(dev, bus, mdio_np);
2635 	if (ret)
2636 		goto put_mdio_node;
2637 
2638 	ds->phys_mii_mask = bus->phy_mask;
2639 	bus->parent = ds->dev;
2640 
2641 	ds->user_mii_bus = bus;
2642 
2643 	if (dev->irq > 0) {
2644 		ret = ksz_irq_phy_setup(dev);
2645 		if (ret)
2646 			goto put_mdio_node;
2647 	}
2648 
2649 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2650 	if (ret) {
2651 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2652 			bus->id);
2653 		if (dev->irq > 0)
2654 			ksz_irq_phy_free(dev);
2655 	}
2656 
2657 put_mdio_node:
2658 	of_node_put(mdio_np);
2659 	of_node_put(parent_bus_node);
2660 
2661 	return ret;
2662 }
2663 
2664 static void ksz_irq_mask(struct irq_data *d)
2665 {
2666 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2667 
2668 	kirq->masked |= BIT(d->hwirq);
2669 }
2670 
2671 static void ksz_irq_unmask(struct irq_data *d)
2672 {
2673 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2674 
2675 	kirq->masked &= ~BIT(d->hwirq);
2676 }
2677 
2678 static void ksz_irq_bus_lock(struct irq_data *d)
2679 {
2680 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2681 
2682 	mutex_lock(&kirq->dev->lock_irq);
2683 }
2684 
2685 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2686 {
2687 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2688 	struct ksz_device *dev = kirq->dev;
2689 	int ret;
2690 
2691 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2692 	if (ret)
2693 		dev_err(dev->dev, "failed to change IRQ mask\n");
2694 
2695 	mutex_unlock(&dev->lock_irq);
2696 }
2697 
2698 static const struct irq_chip ksz_irq_chip = {
2699 	.name			= "ksz-irq",
2700 	.irq_mask		= ksz_irq_mask,
2701 	.irq_unmask		= ksz_irq_unmask,
2702 	.irq_bus_lock		= ksz_irq_bus_lock,
2703 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2704 };
2705 
2706 static int ksz_irq_domain_map(struct irq_domain *d,
2707 			      unsigned int irq, irq_hw_number_t hwirq)
2708 {
2709 	irq_set_chip_data(irq, d->host_data);
2710 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2711 	irq_set_noprobe(irq);
2712 
2713 	return 0;
2714 }
2715 
2716 static const struct irq_domain_ops ksz_irq_domain_ops = {
2717 	.map	= ksz_irq_domain_map,
2718 	.xlate	= irq_domain_xlate_twocell,
2719 };
2720 
2721 static void ksz_irq_free(struct ksz_irq *kirq)
2722 {
2723 	int irq, virq;
2724 
2725 	free_irq(kirq->irq_num, kirq);
2726 
2727 	for (irq = 0; irq < kirq->nirqs; irq++) {
2728 		virq = irq_find_mapping(kirq->domain, irq);
2729 		irq_dispose_mapping(virq);
2730 	}
2731 
2732 	irq_domain_remove(kirq->domain);
2733 }
2734 
2735 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2736 {
2737 	struct ksz_irq *kirq = dev_id;
2738 	unsigned int nhandled = 0;
2739 	struct ksz_device *dev;
2740 	unsigned int sub_irq;
2741 	u8 data;
2742 	int ret;
2743 	u8 n;
2744 
2745 	dev = kirq->dev;
2746 
2747 	/* Read interrupt status register */
2748 	ret = ksz_read8(dev, kirq->reg_status, &data);
2749 	if (ret)
2750 		goto out;
2751 
2752 	for (n = 0; n < kirq->nirqs; ++n) {
2753 		if (data & BIT(n)) {
2754 			sub_irq = irq_find_mapping(kirq->domain, n);
2755 			handle_nested_irq(sub_irq);
2756 			++nhandled;
2757 		}
2758 	}
2759 out:
2760 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2761 }
2762 
2763 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2764 {
2765 	int ret, n;
2766 
2767 	kirq->dev = dev;
2768 	kirq->masked = ~0;
2769 
2770 	kirq->domain = irq_domain_create_simple(of_fwnode_handle(dev->dev->of_node),
2771 						kirq->nirqs, 0,
2772 						&ksz_irq_domain_ops, kirq);
2773 	if (!kirq->domain)
2774 		return -ENOMEM;
2775 
2776 	for (n = 0; n < kirq->nirqs; n++)
2777 		irq_create_mapping(kirq->domain, n);
2778 
2779 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2780 				   IRQF_ONESHOT, kirq->name, kirq);
2781 	if (ret)
2782 		goto out;
2783 
2784 	return 0;
2785 
2786 out:
2787 	ksz_irq_free(kirq);
2788 
2789 	return ret;
2790 }
2791 
2792 static int ksz_girq_setup(struct ksz_device *dev)
2793 {
2794 	struct ksz_irq *girq = &dev->girq;
2795 
2796 	girq->nirqs = dev->info->port_cnt;
2797 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2798 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2799 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2800 
2801 	girq->irq_num = dev->irq;
2802 
2803 	return ksz_irq_common_setup(dev, girq);
2804 }
2805 
2806 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2807 {
2808 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2809 
2810 	pirq->nirqs = dev->info->port_nirqs;
2811 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2812 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2813 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2814 
2815 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2816 	if (pirq->irq_num < 0)
2817 		return pirq->irq_num;
2818 
2819 	return ksz_irq_common_setup(dev, pirq);
2820 }
2821 
2822 static int ksz_parse_drive_strength(struct ksz_device *dev);
2823 
2824 static int ksz_setup(struct dsa_switch *ds)
2825 {
2826 	struct ksz_device *dev = ds->priv;
2827 	struct dsa_port *dp;
2828 	struct ksz_port *p;
2829 	const u16 *regs;
2830 	int ret;
2831 
2832 	regs = dev->info->regs;
2833 
2834 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2835 				       dev->info->num_vlans, GFP_KERNEL);
2836 	if (!dev->vlan_cache)
2837 		return -ENOMEM;
2838 
2839 	ret = dev->dev_ops->reset(dev);
2840 	if (ret) {
2841 		dev_err(ds->dev, "failed to reset switch\n");
2842 		return ret;
2843 	}
2844 
2845 	ret = ksz_parse_drive_strength(dev);
2846 	if (ret)
2847 		return ret;
2848 
2849 	/* set broadcast storm protection 10% rate */
2850 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2851 			   BROADCAST_STORM_RATE,
2852 			   (BROADCAST_STORM_VALUE *
2853 			   BROADCAST_STORM_PROT_RATE) / 100);
2854 
2855 	dev->dev_ops->config_cpu_port(ds);
2856 
2857 	dev->dev_ops->enable_stp_addr(dev);
2858 
2859 	ds->num_tx_queues = dev->info->num_tx_queues;
2860 
2861 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2862 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2863 
2864 	ksz_init_mib_timer(dev);
2865 
2866 	ds->configure_vlan_while_not_filtering = false;
2867 	ds->dscp_prio_mapping_is_global = true;
2868 
2869 	if (dev->dev_ops->setup) {
2870 		ret = dev->dev_ops->setup(ds);
2871 		if (ret)
2872 			return ret;
2873 	}
2874 
2875 	/* Start with learning disabled on standalone user ports, and enabled
2876 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2877 	 * CPU port will avoid flooding bridge local addresses on the network
2878 	 * in some cases.
2879 	 */
2880 	p = &dev->ports[dev->cpu_port];
2881 	p->learning = true;
2882 
2883 	if (dev->irq > 0) {
2884 		ret = ksz_girq_setup(dev);
2885 		if (ret)
2886 			return ret;
2887 
2888 		dsa_switch_for_each_user_port(dp, dev->ds) {
2889 			ret = ksz_pirq_setup(dev, dp->index);
2890 			if (ret)
2891 				goto out_girq;
2892 
2893 			if (dev->info->ptp_capable) {
2894 				ret = ksz_ptp_irq_setup(ds, dp->index);
2895 				if (ret)
2896 					goto out_pirq;
2897 			}
2898 		}
2899 	}
2900 
2901 	if (dev->info->ptp_capable) {
2902 		ret = ksz_ptp_clock_register(ds);
2903 		if (ret) {
2904 			dev_err(dev->dev, "Failed to register PTP clock: %d\n",
2905 				ret);
2906 			goto out_ptpirq;
2907 		}
2908 	}
2909 
2910 	ret = ksz_mdio_register(dev);
2911 	if (ret < 0) {
2912 		dev_err(dev->dev, "failed to register the mdio");
2913 		goto out_ptp_clock_unregister;
2914 	}
2915 
2916 	ret = ksz_dcb_init(dev);
2917 	if (ret)
2918 		goto out_ptp_clock_unregister;
2919 
2920 	/* start switch */
2921 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2922 			   SW_START, SW_START);
2923 
2924 	return 0;
2925 
2926 out_ptp_clock_unregister:
2927 	if (dev->info->ptp_capable)
2928 		ksz_ptp_clock_unregister(ds);
2929 out_ptpirq:
2930 	if (dev->irq > 0 && dev->info->ptp_capable)
2931 		dsa_switch_for_each_user_port(dp, dev->ds)
2932 			ksz_ptp_irq_free(ds, dp->index);
2933 out_pirq:
2934 	if (dev->irq > 0)
2935 		dsa_switch_for_each_user_port(dp, dev->ds)
2936 			ksz_irq_free(&dev->ports[dp->index].pirq);
2937 out_girq:
2938 	if (dev->irq > 0)
2939 		ksz_irq_free(&dev->girq);
2940 
2941 	return ret;
2942 }
2943 
2944 static void ksz_teardown(struct dsa_switch *ds)
2945 {
2946 	struct ksz_device *dev = ds->priv;
2947 	struct dsa_port *dp;
2948 
2949 	if (dev->info->ptp_capable)
2950 		ksz_ptp_clock_unregister(ds);
2951 
2952 	if (dev->irq > 0) {
2953 		dsa_switch_for_each_user_port(dp, dev->ds) {
2954 			if (dev->info->ptp_capable)
2955 				ksz_ptp_irq_free(ds, dp->index);
2956 
2957 			ksz_irq_free(&dev->ports[dp->index].pirq);
2958 		}
2959 
2960 		ksz_irq_free(&dev->girq);
2961 	}
2962 
2963 	if (dev->dev_ops->teardown)
2964 		dev->dev_ops->teardown(ds);
2965 }
2966 
2967 static void port_r_cnt(struct ksz_device *dev, int port)
2968 {
2969 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2970 	u64 *dropped;
2971 
2972 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2973 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2974 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2975 					&mib->counters[mib->cnt_ptr]);
2976 		++mib->cnt_ptr;
2977 	}
2978 
2979 	/* last one in storage */
2980 	dropped = &mib->counters[dev->info->mib_cnt];
2981 
2982 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2983 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2984 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2985 					dropped, &mib->counters[mib->cnt_ptr]);
2986 		++mib->cnt_ptr;
2987 	}
2988 	mib->cnt_ptr = 0;
2989 }
2990 
2991 static void ksz_mib_read_work(struct work_struct *work)
2992 {
2993 	struct ksz_device *dev = container_of(work, struct ksz_device,
2994 					      mib_read.work);
2995 	struct ksz_port_mib *mib;
2996 	struct ksz_port *p;
2997 	int i;
2998 
2999 	for (i = 0; i < dev->info->port_cnt; i++) {
3000 		if (dsa_is_unused_port(dev->ds, i))
3001 			continue;
3002 
3003 		p = &dev->ports[i];
3004 		mib = &p->mib;
3005 		mutex_lock(&mib->cnt_mutex);
3006 
3007 		/* Only read MIB counters when the port is told to do.
3008 		 * If not, read only dropped counters when link is not up.
3009 		 */
3010 		if (!p->read) {
3011 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
3012 
3013 			if (!netif_carrier_ok(dp->user))
3014 				mib->cnt_ptr = dev->info->reg_mib_cnt;
3015 		}
3016 		port_r_cnt(dev, i);
3017 		p->read = false;
3018 
3019 		if (dev->dev_ops->r_mib_stat64)
3020 			dev->dev_ops->r_mib_stat64(dev, i);
3021 
3022 		mutex_unlock(&mib->cnt_mutex);
3023 	}
3024 
3025 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
3026 }
3027 
3028 void ksz_init_mib_timer(struct ksz_device *dev)
3029 {
3030 	int i;
3031 
3032 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
3033 
3034 	for (i = 0; i < dev->info->port_cnt; i++) {
3035 		struct ksz_port_mib *mib = &dev->ports[i].mib;
3036 
3037 		dev->dev_ops->port_init_cnt(dev, i);
3038 
3039 		mib->cnt_ptr = 0;
3040 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
3041 	}
3042 }
3043 
3044 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
3045 {
3046 	struct ksz_device *dev = ds->priv;
3047 	u16 val = 0xffff;
3048 	int ret;
3049 
3050 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
3051 	if (ret)
3052 		return ret;
3053 
3054 	return val;
3055 }
3056 
3057 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
3058 {
3059 	struct ksz_device *dev = ds->priv;
3060 	int ret;
3061 
3062 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
3063 	if (ret)
3064 		return ret;
3065 
3066 	return 0;
3067 }
3068 
3069 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
3070 {
3071 	struct ksz_device *dev = ds->priv;
3072 
3073 	switch (dev->chip_id) {
3074 	case KSZ88X3_CHIP_ID:
3075 		/* Silicon Errata Sheet (DS80000830A):
3076 		 * Port 1 does not work with LinkMD Cable-Testing.
3077 		 * Port 1 does not respond to received PAUSE control frames.
3078 		 */
3079 		if (!port)
3080 			return MICREL_KSZ8_P1_ERRATA;
3081 		break;
3082 	}
3083 
3084 	return 0;
3085 }
3086 
3087 static void ksz_phylink_mac_link_down(struct phylink_config *config,
3088 				      unsigned int mode,
3089 				      phy_interface_t interface)
3090 {
3091 	struct dsa_port *dp = dsa_phylink_to_port(config);
3092 	struct ksz_device *dev = dp->ds->priv;
3093 
3094 	/* Read all MIB counters when the link is going down. */
3095 	dev->ports[dp->index].read = true;
3096 	/* timer started */
3097 	if (dev->mib_read_interval)
3098 		schedule_delayed_work(&dev->mib_read, 0);
3099 }
3100 
3101 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
3102 {
3103 	struct ksz_device *dev = ds->priv;
3104 
3105 	if (sset != ETH_SS_STATS)
3106 		return 0;
3107 
3108 	return dev->info->mib_cnt;
3109 }
3110 
3111 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
3112 				  uint64_t *buf)
3113 {
3114 	const struct dsa_port *dp = dsa_to_port(ds, port);
3115 	struct ksz_device *dev = ds->priv;
3116 	struct ksz_port_mib *mib;
3117 
3118 	mib = &dev->ports[port].mib;
3119 	mutex_lock(&mib->cnt_mutex);
3120 
3121 	/* Only read dropped counters if no link. */
3122 	if (!netif_carrier_ok(dp->user))
3123 		mib->cnt_ptr = dev->info->reg_mib_cnt;
3124 	port_r_cnt(dev, port);
3125 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
3126 	mutex_unlock(&mib->cnt_mutex);
3127 }
3128 
3129 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
3130 				struct dsa_bridge bridge,
3131 				bool *tx_fwd_offload,
3132 				struct netlink_ext_ack *extack)
3133 {
3134 	/* port_stp_state_set() will be called after to put the port in
3135 	 * appropriate state so there is no need to do anything.
3136 	 */
3137 
3138 	return 0;
3139 }
3140 
3141 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
3142 				  struct dsa_bridge bridge)
3143 {
3144 	/* port_stp_state_set() will be called after to put the port in
3145 	 * forwarding state so there is no need to do anything.
3146 	 */
3147 }
3148 
3149 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
3150 {
3151 	struct ksz_device *dev = ds->priv;
3152 
3153 	dev->dev_ops->flush_dyn_mac_table(dev, port);
3154 }
3155 
3156 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
3157 {
3158 	struct ksz_device *dev = ds->priv;
3159 
3160 	if (!dev->dev_ops->set_ageing_time)
3161 		return -EOPNOTSUPP;
3162 
3163 	return dev->dev_ops->set_ageing_time(dev, msecs);
3164 }
3165 
3166 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
3167 			    const unsigned char *addr, u16 vid,
3168 			    struct dsa_db db)
3169 {
3170 	struct ksz_device *dev = ds->priv;
3171 
3172 	if (!dev->dev_ops->fdb_add)
3173 		return -EOPNOTSUPP;
3174 
3175 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
3176 }
3177 
3178 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
3179 			    const unsigned char *addr,
3180 			    u16 vid, struct dsa_db db)
3181 {
3182 	struct ksz_device *dev = ds->priv;
3183 
3184 	if (!dev->dev_ops->fdb_del)
3185 		return -EOPNOTSUPP;
3186 
3187 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
3188 }
3189 
3190 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
3191 			     dsa_fdb_dump_cb_t *cb, void *data)
3192 {
3193 	struct ksz_device *dev = ds->priv;
3194 
3195 	if (!dev->dev_ops->fdb_dump)
3196 		return -EOPNOTSUPP;
3197 
3198 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
3199 }
3200 
3201 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
3202 			    const struct switchdev_obj_port_mdb *mdb,
3203 			    struct dsa_db db)
3204 {
3205 	struct ksz_device *dev = ds->priv;
3206 
3207 	if (!dev->dev_ops->mdb_add)
3208 		return -EOPNOTSUPP;
3209 
3210 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
3211 }
3212 
3213 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
3214 			    const struct switchdev_obj_port_mdb *mdb,
3215 			    struct dsa_db db)
3216 {
3217 	struct ksz_device *dev = ds->priv;
3218 
3219 	if (!dev->dev_ops->mdb_del)
3220 		return -EOPNOTSUPP;
3221 
3222 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
3223 }
3224 
3225 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
3226 						  int port)
3227 {
3228 	u32 queue_map = 0;
3229 	int ipm;
3230 
3231 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
3232 		int queue;
3233 
3234 		/* Traffic Type (TT) is corresponding to the Internal Priority
3235 		 * Map (IPM) in the switch. Traffic Class (TC) is
3236 		 * corresponding to the queue in the switch.
3237 		 */
3238 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
3239 		if (queue < 0)
3240 			return queue;
3241 
3242 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
3243 	}
3244 
3245 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3246 }
3247 
3248 static int ksz_port_setup(struct dsa_switch *ds, int port)
3249 {
3250 	struct ksz_device *dev = ds->priv;
3251 	int ret;
3252 
3253 	if (!dsa_is_user_port(ds, port))
3254 		return 0;
3255 
3256 	/* setup user port */
3257 	dev->dev_ops->port_setup(dev, port, false);
3258 
3259 	if (!is_ksz8(dev)) {
3260 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
3261 		if (ret)
3262 			return ret;
3263 	}
3264 
3265 	/* port_stp_state_set() will be called after to enable the port so
3266 	 * there is no need to do anything.
3267 	 */
3268 
3269 	return ksz_dcb_init_port(dev, port);
3270 }
3271 
3272 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
3273 {
3274 	struct ksz_device *dev = ds->priv;
3275 	struct ksz_port *p;
3276 	const u16 *regs;
3277 	u8 data;
3278 
3279 	regs = dev->info->regs;
3280 
3281 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
3282 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3283 
3284 	p = &dev->ports[port];
3285 
3286 	switch (state) {
3287 	case BR_STATE_DISABLED:
3288 		data |= PORT_LEARN_DISABLE;
3289 		break;
3290 	case BR_STATE_LISTENING:
3291 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3292 		break;
3293 	case BR_STATE_LEARNING:
3294 		data |= PORT_RX_ENABLE;
3295 		if (!p->learning)
3296 			data |= PORT_LEARN_DISABLE;
3297 		break;
3298 	case BR_STATE_FORWARDING:
3299 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
3300 		if (!p->learning)
3301 			data |= PORT_LEARN_DISABLE;
3302 		break;
3303 	case BR_STATE_BLOCKING:
3304 		data |= PORT_LEARN_DISABLE;
3305 		break;
3306 	default:
3307 		dev_err(ds->dev, "invalid STP state: %d\n", state);
3308 		return;
3309 	}
3310 
3311 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
3312 
3313 	p->stp_state = state;
3314 
3315 	ksz_update_port_member(dev, port);
3316 }
3317 
3318 static void ksz_port_teardown(struct dsa_switch *ds, int port)
3319 {
3320 	struct ksz_device *dev = ds->priv;
3321 
3322 	switch (dev->chip_id) {
3323 	case KSZ8563_CHIP_ID:
3324 	case KSZ8567_CHIP_ID:
3325 	case KSZ9477_CHIP_ID:
3326 	case KSZ9563_CHIP_ID:
3327 	case KSZ9567_CHIP_ID:
3328 	case KSZ9893_CHIP_ID:
3329 	case KSZ9896_CHIP_ID:
3330 	case KSZ9897_CHIP_ID:
3331 	case LAN9646_CHIP_ID:
3332 		if (dsa_is_user_port(ds, port))
3333 			ksz9477_port_acl_free(dev, port);
3334 	}
3335 }
3336 
3337 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3338 				     struct switchdev_brport_flags flags,
3339 				     struct netlink_ext_ack *extack)
3340 {
3341 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
3342 		return -EINVAL;
3343 
3344 	return 0;
3345 }
3346 
3347 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
3348 				 struct switchdev_brport_flags flags,
3349 				 struct netlink_ext_ack *extack)
3350 {
3351 	struct ksz_device *dev = ds->priv;
3352 	struct ksz_port *p = &dev->ports[port];
3353 
3354 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
3355 		if (flags.mask & BR_LEARNING)
3356 			p->learning = !!(flags.val & BR_LEARNING);
3357 
3358 		if (flags.mask & BR_ISOLATED)
3359 			p->isolated = !!(flags.val & BR_ISOLATED);
3360 
3361 		/* Make the change take effect immediately */
3362 		ksz_port_stp_state_set(ds, port, p->stp_state);
3363 	}
3364 
3365 	return 0;
3366 }
3367 
3368 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
3369 						  int port,
3370 						  enum dsa_tag_protocol mp)
3371 {
3372 	struct ksz_device *dev = ds->priv;
3373 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
3374 
3375 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
3376 		proto = DSA_TAG_PROTO_KSZ8795;
3377 
3378 	if (dev->chip_id == KSZ88X3_CHIP_ID ||
3379 	    dev->chip_id == KSZ8563_CHIP_ID ||
3380 	    dev->chip_id == KSZ9893_CHIP_ID ||
3381 	    dev->chip_id == KSZ9563_CHIP_ID)
3382 		proto = DSA_TAG_PROTO_KSZ9893;
3383 
3384 	if (dev->chip_id == KSZ8567_CHIP_ID ||
3385 	    dev->chip_id == KSZ9477_CHIP_ID ||
3386 	    dev->chip_id == KSZ9896_CHIP_ID ||
3387 	    dev->chip_id == KSZ9897_CHIP_ID ||
3388 	    dev->chip_id == KSZ9567_CHIP_ID ||
3389 	    dev->chip_id == LAN9646_CHIP_ID)
3390 		proto = DSA_TAG_PROTO_KSZ9477;
3391 
3392 	if (is_lan937x(dev))
3393 		proto = DSA_TAG_PROTO_LAN937X;
3394 
3395 	return proto;
3396 }
3397 
3398 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
3399 				    enum dsa_tag_protocol proto)
3400 {
3401 	struct ksz_tagger_data *tagger_data;
3402 
3403 	switch (proto) {
3404 	case DSA_TAG_PROTO_KSZ8795:
3405 		return 0;
3406 	case DSA_TAG_PROTO_KSZ9893:
3407 	case DSA_TAG_PROTO_KSZ9477:
3408 	case DSA_TAG_PROTO_LAN937X:
3409 		tagger_data = ksz_tagger_data(ds);
3410 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
3411 		return 0;
3412 	default:
3413 		return -EPROTONOSUPPORT;
3414 	}
3415 }
3416 
3417 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
3418 				   bool flag, struct netlink_ext_ack *extack)
3419 {
3420 	struct ksz_device *dev = ds->priv;
3421 
3422 	if (!dev->dev_ops->vlan_filtering)
3423 		return -EOPNOTSUPP;
3424 
3425 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
3426 }
3427 
3428 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
3429 			     const struct switchdev_obj_port_vlan *vlan,
3430 			     struct netlink_ext_ack *extack)
3431 {
3432 	struct ksz_device *dev = ds->priv;
3433 
3434 	if (!dev->dev_ops->vlan_add)
3435 		return -EOPNOTSUPP;
3436 
3437 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
3438 }
3439 
3440 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3441 			     const struct switchdev_obj_port_vlan *vlan)
3442 {
3443 	struct ksz_device *dev = ds->priv;
3444 
3445 	if (!dev->dev_ops->vlan_del)
3446 		return -EOPNOTSUPP;
3447 
3448 	return dev->dev_ops->vlan_del(dev, port, vlan);
3449 }
3450 
3451 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3452 			       struct dsa_mall_mirror_tc_entry *mirror,
3453 			       bool ingress, struct netlink_ext_ack *extack)
3454 {
3455 	struct ksz_device *dev = ds->priv;
3456 
3457 	if (!dev->dev_ops->mirror_add)
3458 		return -EOPNOTSUPP;
3459 
3460 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3461 }
3462 
3463 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3464 				struct dsa_mall_mirror_tc_entry *mirror)
3465 {
3466 	struct ksz_device *dev = ds->priv;
3467 
3468 	if (dev->dev_ops->mirror_del)
3469 		dev->dev_ops->mirror_del(dev, port, mirror);
3470 }
3471 
3472 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3473 {
3474 	struct ksz_device *dev = ds->priv;
3475 
3476 	if (!dev->dev_ops->change_mtu)
3477 		return -EOPNOTSUPP;
3478 
3479 	return dev->dev_ops->change_mtu(dev, port, mtu);
3480 }
3481 
3482 static int ksz_max_mtu(struct dsa_switch *ds, int port)
3483 {
3484 	struct ksz_device *dev = ds->priv;
3485 
3486 	switch (dev->chip_id) {
3487 	case KSZ8795_CHIP_ID:
3488 	case KSZ8794_CHIP_ID:
3489 	case KSZ8765_CHIP_ID:
3490 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3491 	case KSZ88X3_CHIP_ID:
3492 	case KSZ8864_CHIP_ID:
3493 	case KSZ8895_CHIP_ID:
3494 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3495 	case KSZ8563_CHIP_ID:
3496 	case KSZ8567_CHIP_ID:
3497 	case KSZ9477_CHIP_ID:
3498 	case KSZ9563_CHIP_ID:
3499 	case KSZ9567_CHIP_ID:
3500 	case KSZ9893_CHIP_ID:
3501 	case KSZ9896_CHIP_ID:
3502 	case KSZ9897_CHIP_ID:
3503 	case LAN9370_CHIP_ID:
3504 	case LAN9371_CHIP_ID:
3505 	case LAN9372_CHIP_ID:
3506 	case LAN9373_CHIP_ID:
3507 	case LAN9374_CHIP_ID:
3508 	case LAN9646_CHIP_ID:
3509 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3510 	}
3511 
3512 	return -EOPNOTSUPP;
3513 }
3514 
3515 /**
3516  * ksz_support_eee - Determine Energy Efficient Ethernet (EEE) support for a
3517  *                   port
3518  * @ds: Pointer to the DSA switch structure
3519  * @port: Port number to check
3520  *
3521  * This function also documents devices where EEE was initially advertised but
3522  * later withdrawn due to reliability issues, as described in official errata
3523  * documents. These devices are explicitly listed to record known limitations,
3524  * even if there is no technical necessity for runtime checks.
3525  *
3526  * Returns: true if the internal PHY on the given port supports fully
3527  * operational EEE, false otherwise.
3528  */
3529 static bool ksz_support_eee(struct dsa_switch *ds, int port)
3530 {
3531 	struct ksz_device *dev = ds->priv;
3532 
3533 	if (!dev->info->internal_phy[port])
3534 		return false;
3535 
3536 	switch (dev->chip_id) {
3537 	case KSZ8563_CHIP_ID:
3538 	case KSZ9563_CHIP_ID:
3539 	case KSZ9893_CHIP_ID:
3540 		return true;
3541 	case KSZ8567_CHIP_ID:
3542 		/* KSZ8567R Errata DS80000752C Module 4 */
3543 	case KSZ8765_CHIP_ID:
3544 	case KSZ8794_CHIP_ID:
3545 	case KSZ8795_CHIP_ID:
3546 		/* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */
3547 	case KSZ9477_CHIP_ID:
3548 		/* KSZ9477S Errata DS80000754A Module 4 */
3549 	case KSZ9567_CHIP_ID:
3550 		/* KSZ9567S Errata DS80000756A Module 4 */
3551 	case KSZ9896_CHIP_ID:
3552 		/* KSZ9896C Errata DS80000757A Module 3 */
3553 	case KSZ9897_CHIP_ID:
3554 	case LAN9646_CHIP_ID:
3555 		/* KSZ9897R Errata DS80000758C Module 4 */
3556 		/* Energy Efficient Ethernet (EEE) feature select must be
3557 		 * manually disabled
3558 		 *   The EEE feature is enabled by default, but it is not fully
3559 		 *   operational. It must be manually disabled through register
3560 		 *   controls. If not disabled, the PHY ports can auto-negotiate
3561 		 *   to enable EEE, and this feature can cause link drops when
3562 		 *   linked to another device supporting EEE.
3563 		 *
3564 		 * The same item appears in the errata for all switches above.
3565 		 */
3566 		break;
3567 	}
3568 
3569 	return false;
3570 }
3571 
3572 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3573 			   struct ethtool_keee *e)
3574 {
3575 	struct ksz_device *dev = ds->priv;
3576 
3577 	if (!e->tx_lpi_enabled) {
3578 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3579 		return -EINVAL;
3580 	}
3581 
3582 	if (e->tx_lpi_timer) {
3583 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3584 		return -EINVAL;
3585 	}
3586 
3587 	return 0;
3588 }
3589 
3590 static void ksz_set_xmii(struct ksz_device *dev, int port,
3591 			 phy_interface_t interface)
3592 {
3593 	const u8 *bitval = dev->info->xmii_ctrl1;
3594 	struct ksz_port *p = &dev->ports[port];
3595 	const u16 *regs = dev->info->regs;
3596 	u8 data8;
3597 
3598 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3599 
3600 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3601 		   P_RGMII_ID_EG_ENABLE);
3602 
3603 	switch (interface) {
3604 	case PHY_INTERFACE_MODE_MII:
3605 		data8 |= bitval[P_MII_SEL];
3606 		break;
3607 	case PHY_INTERFACE_MODE_RMII:
3608 		data8 |= bitval[P_RMII_SEL];
3609 		break;
3610 	case PHY_INTERFACE_MODE_GMII:
3611 		data8 |= bitval[P_GMII_SEL];
3612 		break;
3613 	case PHY_INTERFACE_MODE_RGMII:
3614 	case PHY_INTERFACE_MODE_RGMII_ID:
3615 	case PHY_INTERFACE_MODE_RGMII_TXID:
3616 	case PHY_INTERFACE_MODE_RGMII_RXID:
3617 		data8 |= bitval[P_RGMII_SEL];
3618 		/* On KSZ9893, disable RGMII in-band status support */
3619 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3620 		    dev->chip_id == KSZ8563_CHIP_ID ||
3621 		    dev->chip_id == KSZ9563_CHIP_ID ||
3622 		    is_lan937x(dev))
3623 			data8 &= ~P_MII_MAC_MODE;
3624 		break;
3625 	default:
3626 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3627 			phy_modes(interface), port);
3628 		return;
3629 	}
3630 
3631 	if (p->rgmii_tx_val)
3632 		data8 |= P_RGMII_ID_EG_ENABLE;
3633 
3634 	if (p->rgmii_rx_val)
3635 		data8 |= P_RGMII_ID_IG_ENABLE;
3636 
3637 	/* Write the updated value */
3638 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3639 }
3640 
3641 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3642 {
3643 	const u8 *bitval = dev->info->xmii_ctrl1;
3644 	const u16 *regs = dev->info->regs;
3645 	phy_interface_t interface;
3646 	u8 data8;
3647 	u8 val;
3648 
3649 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3650 
3651 	val = FIELD_GET(P_MII_SEL_M, data8);
3652 
3653 	if (val == bitval[P_MII_SEL]) {
3654 		if (gbit)
3655 			interface = PHY_INTERFACE_MODE_GMII;
3656 		else
3657 			interface = PHY_INTERFACE_MODE_MII;
3658 	} else if (val == bitval[P_RMII_SEL]) {
3659 		interface = PHY_INTERFACE_MODE_RMII;
3660 	} else {
3661 		interface = PHY_INTERFACE_MODE_RGMII;
3662 		if (data8 & P_RGMII_ID_EG_ENABLE)
3663 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3664 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3665 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3666 			if (data8 & P_RGMII_ID_EG_ENABLE)
3667 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3668 		}
3669 	}
3670 
3671 	return interface;
3672 }
3673 
3674 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
3675 				       unsigned int mode,
3676 				       const struct phylink_link_state *state)
3677 {
3678 	struct dsa_port *dp = dsa_phylink_to_port(config);
3679 	struct ksz_device *dev = dp->ds->priv;
3680 
3681 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3682 }
3683 
3684 static void ksz_phylink_mac_config(struct phylink_config *config,
3685 				   unsigned int mode,
3686 				   const struct phylink_link_state *state)
3687 {
3688 	struct dsa_port *dp = dsa_phylink_to_port(config);
3689 	struct ksz_device *dev = dp->ds->priv;
3690 	int port = dp->index;
3691 
3692 	/* Internal PHYs */
3693 	if (dev->info->internal_phy[port])
3694 		return;
3695 
3696 	if (phylink_autoneg_inband(mode)) {
3697 		dev_err(dev->dev, "In-band AN not supported!\n");
3698 		return;
3699 	}
3700 
3701 	ksz_set_xmii(dev, port, state->interface);
3702 
3703 	if (dev->dev_ops->setup_rgmii_delay)
3704 		dev->dev_ops->setup_rgmii_delay(dev, port);
3705 }
3706 
3707 bool ksz_get_gbit(struct ksz_device *dev, int port)
3708 {
3709 	const u8 *bitval = dev->info->xmii_ctrl1;
3710 	const u16 *regs = dev->info->regs;
3711 	bool gbit = false;
3712 	u8 data8;
3713 	bool val;
3714 
3715 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3716 
3717 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3718 
3719 	if (val == bitval[P_GMII_1GBIT])
3720 		gbit = true;
3721 
3722 	return gbit;
3723 }
3724 
3725 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3726 {
3727 	const u8 *bitval = dev->info->xmii_ctrl1;
3728 	const u16 *regs = dev->info->regs;
3729 	u8 data8;
3730 
3731 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3732 
3733 	data8 &= ~P_GMII_1GBIT_M;
3734 
3735 	if (gbit)
3736 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3737 	else
3738 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3739 
3740 	/* Write the updated value */
3741 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3742 }
3743 
3744 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3745 {
3746 	const u8 *bitval = dev->info->xmii_ctrl0;
3747 	const u16 *regs = dev->info->regs;
3748 	u8 data8;
3749 
3750 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3751 
3752 	data8 &= ~P_MII_100MBIT_M;
3753 
3754 	if (speed == SPEED_100)
3755 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3756 	else
3757 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3758 
3759 	/* Write the updated value */
3760 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3761 }
3762 
3763 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3764 {
3765 	if (speed == SPEED_1000)
3766 		ksz_set_gbit(dev, port, true);
3767 	else
3768 		ksz_set_gbit(dev, port, false);
3769 
3770 	if (speed == SPEED_100 || speed == SPEED_10)
3771 		ksz_set_100_10mbit(dev, port, speed);
3772 }
3773 
3774 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3775 				bool tx_pause, bool rx_pause)
3776 {
3777 	const u8 *bitval = dev->info->xmii_ctrl0;
3778 	const u32 *masks = dev->info->masks;
3779 	const u16 *regs = dev->info->regs;
3780 	u8 mask;
3781 	u8 val;
3782 
3783 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3784 	       masks[P_MII_RX_FLOW_CTRL];
3785 
3786 	if (duplex == DUPLEX_FULL)
3787 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3788 	else
3789 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3790 
3791 	if (tx_pause)
3792 		val |= masks[P_MII_TX_FLOW_CTRL];
3793 
3794 	if (rx_pause)
3795 		val |= masks[P_MII_RX_FLOW_CTRL];
3796 
3797 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3798 }
3799 
3800 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3801 					struct phy_device *phydev,
3802 					unsigned int mode,
3803 					phy_interface_t interface,
3804 					int speed, int duplex, bool tx_pause,
3805 					bool rx_pause)
3806 {
3807 	struct dsa_port *dp = dsa_phylink_to_port(config);
3808 	struct ksz_device *dev = dp->ds->priv;
3809 	int port = dp->index;
3810 	struct ksz_port *p;
3811 
3812 	p = &dev->ports[port];
3813 
3814 	/* Internal PHYs */
3815 	if (dev->info->internal_phy[port])
3816 		return;
3817 
3818 	p->phydev.speed = speed;
3819 
3820 	ksz_port_set_xmii_speed(dev, port, speed);
3821 
3822 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3823 }
3824 
3825 static int ksz_switch_detect(struct ksz_device *dev)
3826 {
3827 	u8 id1, id2, id4;
3828 	u16 id16;
3829 	u32 id32;
3830 	int ret;
3831 
3832 	/* read chip id */
3833 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3834 	if (ret)
3835 		return ret;
3836 
3837 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3838 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3839 
3840 	switch (id1) {
3841 	case KSZ87_FAMILY_ID:
3842 		if (id2 == KSZ87_CHIP_ID_95) {
3843 			u8 val;
3844 
3845 			dev->chip_id = KSZ8795_CHIP_ID;
3846 
3847 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3848 			if (val & KSZ8_PORT_FIBER_MODE)
3849 				dev->chip_id = KSZ8765_CHIP_ID;
3850 		} else if (id2 == KSZ87_CHIP_ID_94) {
3851 			dev->chip_id = KSZ8794_CHIP_ID;
3852 		} else {
3853 			return -ENODEV;
3854 		}
3855 		break;
3856 	case KSZ88_FAMILY_ID:
3857 		if (id2 == KSZ88_CHIP_ID_63)
3858 			dev->chip_id = KSZ88X3_CHIP_ID;
3859 		else
3860 			return -ENODEV;
3861 		break;
3862 	case KSZ8895_FAMILY_ID:
3863 		if (id2 == KSZ8895_CHIP_ID_95 ||
3864 		    id2 == KSZ8895_CHIP_ID_95R)
3865 			dev->chip_id = KSZ8895_CHIP_ID;
3866 		else
3867 			return -ENODEV;
3868 		ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4);
3869 		if (ret)
3870 			return ret;
3871 		if (id4 & SW_KSZ8864)
3872 			dev->chip_id = KSZ8864_CHIP_ID;
3873 		break;
3874 	default:
3875 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3876 		if (ret)
3877 			return ret;
3878 
3879 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3880 		id32 &= ~0xFF;
3881 
3882 		switch (id32) {
3883 		case KSZ9477_CHIP_ID:
3884 		case KSZ9896_CHIP_ID:
3885 		case KSZ9897_CHIP_ID:
3886 		case KSZ9567_CHIP_ID:
3887 		case KSZ8567_CHIP_ID:
3888 		case LAN9370_CHIP_ID:
3889 		case LAN9371_CHIP_ID:
3890 		case LAN9372_CHIP_ID:
3891 		case LAN9373_CHIP_ID:
3892 		case LAN9374_CHIP_ID:
3893 
3894 			/* LAN9646 does not have its own chip id. */
3895 			if (dev->chip_id != LAN9646_CHIP_ID)
3896 				dev->chip_id = id32;
3897 			break;
3898 		case KSZ9893_CHIP_ID:
3899 			ret = ksz_read8(dev, REG_CHIP_ID4,
3900 					&id4);
3901 			if (ret)
3902 				return ret;
3903 
3904 			if (id4 == SKU_ID_KSZ8563)
3905 				dev->chip_id = KSZ8563_CHIP_ID;
3906 			else if (id4 == SKU_ID_KSZ9563)
3907 				dev->chip_id = KSZ9563_CHIP_ID;
3908 			else
3909 				dev->chip_id = KSZ9893_CHIP_ID;
3910 
3911 			break;
3912 		default:
3913 			dev_err(dev->dev,
3914 				"unsupported switch detected %x)\n", id32);
3915 			return -ENODEV;
3916 		}
3917 	}
3918 	return 0;
3919 }
3920 
3921 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3922 			      struct flow_cls_offload *cls, bool ingress)
3923 {
3924 	struct ksz_device *dev = ds->priv;
3925 
3926 	switch (dev->chip_id) {
3927 	case KSZ8563_CHIP_ID:
3928 	case KSZ8567_CHIP_ID:
3929 	case KSZ9477_CHIP_ID:
3930 	case KSZ9563_CHIP_ID:
3931 	case KSZ9567_CHIP_ID:
3932 	case KSZ9893_CHIP_ID:
3933 	case KSZ9896_CHIP_ID:
3934 	case KSZ9897_CHIP_ID:
3935 	case LAN9646_CHIP_ID:
3936 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3937 	}
3938 
3939 	return -EOPNOTSUPP;
3940 }
3941 
3942 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3943 			      struct flow_cls_offload *cls, bool ingress)
3944 {
3945 	struct ksz_device *dev = ds->priv;
3946 
3947 	switch (dev->chip_id) {
3948 	case KSZ8563_CHIP_ID:
3949 	case KSZ8567_CHIP_ID:
3950 	case KSZ9477_CHIP_ID:
3951 	case KSZ9563_CHIP_ID:
3952 	case KSZ9567_CHIP_ID:
3953 	case KSZ9893_CHIP_ID:
3954 	case KSZ9896_CHIP_ID:
3955 	case KSZ9897_CHIP_ID:
3956 	case LAN9646_CHIP_ID:
3957 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3958 	}
3959 
3960 	return -EOPNOTSUPP;
3961 }
3962 
3963 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3964  * is converted to Hex-decimal using the successive multiplication method. On
3965  * every step, integer part is taken and decimal part is carry forwarded.
3966  */
3967 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3968 {
3969 	u32 cinc = 0;
3970 	u32 txrate;
3971 	u32 rate;
3972 	u8 temp;
3973 	u8 i;
3974 
3975 	txrate = idle_slope - send_slope;
3976 
3977 	if (!txrate)
3978 		return -EINVAL;
3979 
3980 	rate = idle_slope;
3981 
3982 	/* 24 bit register */
3983 	for (i = 0; i < 6; i++) {
3984 		rate = rate * 16;
3985 
3986 		temp = rate / txrate;
3987 
3988 		rate %= txrate;
3989 
3990 		cinc = ((cinc << 4) | temp);
3991 	}
3992 
3993 	*bw = cinc;
3994 
3995 	return 0;
3996 }
3997 
3998 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3999 			     u8 shaper)
4000 {
4001 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
4002 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
4003 			   FIELD_PREP(MTI_SHAPING_M, shaper));
4004 }
4005 
4006 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
4007 			    struct tc_cbs_qopt_offload *qopt)
4008 {
4009 	struct ksz_device *dev = ds->priv;
4010 	int ret;
4011 	u32 bw;
4012 
4013 	if (!dev->info->tc_cbs_supported)
4014 		return -EOPNOTSUPP;
4015 
4016 	if (qopt->queue > dev->info->num_tx_queues)
4017 		return -EINVAL;
4018 
4019 	/* Queue Selection */
4020 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
4021 	if (ret)
4022 		return ret;
4023 
4024 	if (!qopt->enable)
4025 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4026 					 MTI_SHAPING_OFF);
4027 
4028 	/* High Credit */
4029 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
4030 			   qopt->hicredit);
4031 	if (ret)
4032 		return ret;
4033 
4034 	/* Low Credit */
4035 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
4036 			   qopt->locredit);
4037 	if (ret)
4038 		return ret;
4039 
4040 	/* Credit Increment Register */
4041 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
4042 	if (ret)
4043 		return ret;
4044 
4045 	if (dev->dev_ops->tc_cbs_set_cinc) {
4046 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
4047 		if (ret)
4048 			return ret;
4049 	}
4050 
4051 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4052 				 MTI_SHAPING_SRP);
4053 }
4054 
4055 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
4056 {
4057 	int queue, ret;
4058 
4059 	/* Configuration will not take effect until the last Port Queue X
4060 	 * Egress Limit Control Register is written.
4061 	 */
4062 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4063 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
4064 				  KSZ9477_OUT_RATE_NO_LIMIT);
4065 		if (ret)
4066 			return ret;
4067 	}
4068 
4069 	return 0;
4070 }
4071 
4072 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
4073 				 int band)
4074 {
4075 	/* Compared to queues, bands prioritize packets differently. In strict
4076 	 * priority mode, the lowest priority is assigned to Queue 0 while the
4077 	 * highest priority is given to Band 0.
4078 	 */
4079 	return p->bands - 1 - band;
4080 }
4081 
4082 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
4083 {
4084 	int ret;
4085 
4086 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4087 	if (ret)
4088 		return ret;
4089 
4090 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4091 				 MTI_SHAPING_OFF);
4092 }
4093 
4094 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
4095 			     int weight)
4096 {
4097 	int ret;
4098 
4099 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4100 	if (ret)
4101 		return ret;
4102 
4103 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4104 				MTI_SHAPING_OFF);
4105 	if (ret)
4106 		return ret;
4107 
4108 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
4109 }
4110 
4111 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
4112 			  struct tc_ets_qopt_offload_replace_params *p)
4113 {
4114 	int ret, band, tc_prio;
4115 	u32 queue_map = 0;
4116 
4117 	/* In order to ensure proper prioritization, it is necessary to set the
4118 	 * rate limit for the related queue to zero. Otherwise strict priority
4119 	 * or WRR mode will not work. This is a hardware limitation.
4120 	 */
4121 	ret = ksz_disable_egress_rate_limit(dev, port);
4122 	if (ret)
4123 		return ret;
4124 
4125 	/* Configure queue scheduling mode for all bands. Currently only strict
4126 	 * prio mode is supported.
4127 	 */
4128 	for (band = 0; band < p->bands; band++) {
4129 		int queue = ksz_ets_band_to_queue(p, band);
4130 
4131 		ret = ksz_queue_set_strict(dev, port, queue);
4132 		if (ret)
4133 			return ret;
4134 	}
4135 
4136 	/* Configure the mapping between traffic classes and queues. Note:
4137 	 * priomap variable support 16 traffic classes, but the chip can handle
4138 	 * only 8 classes.
4139 	 */
4140 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
4141 		int queue;
4142 
4143 		if (tc_prio >= dev->info->num_ipms)
4144 			break;
4145 
4146 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
4147 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
4148 	}
4149 
4150 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
4151 }
4152 
4153 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
4154 {
4155 	int ret, queue;
4156 
4157 	/* To restore the default chip configuration, set all queues to use the
4158 	 * WRR scheduler with a weight of 1.
4159 	 */
4160 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4161 		ret = ksz_queue_set_wrr(dev, port, queue,
4162 					KSZ9477_DEFAULT_WRR_WEIGHT);
4163 		if (ret)
4164 			return ret;
4165 	}
4166 
4167 	/* Revert the queue mapping for TC-priority to its default setting on
4168 	 * the chip.
4169 	 */
4170 	return ksz9477_set_default_prio_queue_mapping(dev, port);
4171 }
4172 
4173 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
4174 			       struct tc_ets_qopt_offload_replace_params *p)
4175 {
4176 	int band;
4177 
4178 	/* Since it is not feasible to share one port among multiple qdisc,
4179 	 * the user must configure all available queues appropriately.
4180 	 */
4181 	if (p->bands != dev->info->num_tx_queues) {
4182 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
4183 			dev->info->num_tx_queues);
4184 		return -EOPNOTSUPP;
4185 	}
4186 
4187 	for (band = 0; band < p->bands; ++band) {
4188 		/* The KSZ switches utilize a weighted round robin configuration
4189 		 * where a certain number of packets can be transmitted from a
4190 		 * queue before the next queue is serviced. For more information
4191 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
4192 		 * documentation on the Port Transmit Queue Control 1 Register.
4193 		 * However, the current ETS Qdisc implementation (as of February
4194 		 * 2023) assigns a weight to each queue based on the number of
4195 		 * bytes or extrapolated bandwidth in percentages. Since this
4196 		 * differs from the KSZ switches' method and we don't want to
4197 		 * fake support by converting bytes to packets, it is better to
4198 		 * return an error instead.
4199 		 */
4200 		if (p->quanta[band]) {
4201 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
4202 			return -EOPNOTSUPP;
4203 		}
4204 	}
4205 
4206 	return 0;
4207 }
4208 
4209 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
4210 				  struct tc_ets_qopt_offload *qopt)
4211 {
4212 	struct ksz_device *dev = ds->priv;
4213 	int ret;
4214 
4215 	if (is_ksz8(dev))
4216 		return -EOPNOTSUPP;
4217 
4218 	if (qopt->parent != TC_H_ROOT) {
4219 		dev_err(dev->dev, "Parent should be \"root\"\n");
4220 		return -EOPNOTSUPP;
4221 	}
4222 
4223 	switch (qopt->command) {
4224 	case TC_ETS_REPLACE:
4225 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
4226 		if (ret)
4227 			return ret;
4228 
4229 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
4230 	case TC_ETS_DESTROY:
4231 		return ksz_tc_ets_del(dev, port);
4232 	case TC_ETS_STATS:
4233 	case TC_ETS_GRAFT:
4234 		return -EOPNOTSUPP;
4235 	}
4236 
4237 	return -EOPNOTSUPP;
4238 }
4239 
4240 static int ksz_setup_tc(struct dsa_switch *ds, int port,
4241 			enum tc_setup_type type, void *type_data)
4242 {
4243 	switch (type) {
4244 	case TC_SETUP_QDISC_CBS:
4245 		return ksz_setup_tc_cbs(ds, port, type_data);
4246 	case TC_SETUP_QDISC_ETS:
4247 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
4248 	default:
4249 		return -EOPNOTSUPP;
4250 	}
4251 }
4252 
4253 /**
4254  * ksz_handle_wake_reason - Handle wake reason on a specified port.
4255  * @dev: The device structure.
4256  * @port: The port number.
4257  *
4258  * This function reads the PME (Power Management Event) status register of a
4259  * specified port to determine the wake reason. If there is no wake event, it
4260  * returns early. Otherwise, it logs the wake reason which could be due to a
4261  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
4262  * is then cleared to acknowledge the handling of the wake event.
4263  *
4264  * Return: 0 on success, or an error code on failure.
4265  */
4266 int ksz_handle_wake_reason(struct ksz_device *dev, int port)
4267 {
4268 	const struct ksz_dev_ops *ops = dev->dev_ops;
4269 	const u16 *regs = dev->info->regs;
4270 	u8 pme_status;
4271 	int ret;
4272 
4273 	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
4274 			      &pme_status);
4275 	if (ret)
4276 		return ret;
4277 
4278 	if (!pme_status)
4279 		return 0;
4280 
4281 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
4282 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
4283 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
4284 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
4285 
4286 	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
4287 				pme_status);
4288 }
4289 
4290 /**
4291  * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
4292  * @ds: The dsa_switch structure.
4293  * @port: The port number.
4294  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4295  *
4296  * This function checks the device PME wakeup_source flag and chip_id.
4297  * If enabled and supported, it sets the supported and active WoL
4298  * flags.
4299  */
4300 static void ksz_get_wol(struct dsa_switch *ds, int port,
4301 			struct ethtool_wolinfo *wol)
4302 {
4303 	struct ksz_device *dev = ds->priv;
4304 	const u16 *regs = dev->info->regs;
4305 	u8 pme_ctrl;
4306 	int ret;
4307 
4308 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4309 		return;
4310 
4311 	if (!dev->wakeup_source)
4312 		return;
4313 
4314 	wol->supported = WAKE_PHY;
4315 
4316 	/* Check if the current MAC address on this port can be set
4317 	 * as global for WAKE_MAGIC support. The result may vary
4318 	 * dynamically based on other ports configurations.
4319 	 */
4320 	if (ksz_is_port_mac_global_usable(dev->ds, port))
4321 		wol->supported |= WAKE_MAGIC;
4322 
4323 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4324 				       &pme_ctrl);
4325 	if (ret)
4326 		return;
4327 
4328 	if (pme_ctrl & PME_WOL_MAGICPKT)
4329 		wol->wolopts |= WAKE_MAGIC;
4330 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
4331 		wol->wolopts |= WAKE_PHY;
4332 }
4333 
4334 /**
4335  * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
4336  * @ds: The dsa_switch structure.
4337  * @port: The port number.
4338  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4339  *
4340  * This function configures Wake-on-LAN (WoL) settings for a specified
4341  * port. It validates the provided WoL options, checks if PME is
4342  * enabled and supported, clears any previous wake reasons, and sets
4343  * the Magic Packet flag in the port's PME control register if
4344  * specified.
4345  *
4346  * Return: 0 on success, or other error codes on failure.
4347  */
4348 static int ksz_set_wol(struct dsa_switch *ds, int port,
4349 		       struct ethtool_wolinfo *wol)
4350 {
4351 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
4352 	struct ksz_device *dev = ds->priv;
4353 	const u16 *regs = dev->info->regs;
4354 	bool magic_switched_off;
4355 	bool magic_switched_on;
4356 	int ret;
4357 
4358 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
4359 		return -EINVAL;
4360 
4361 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4362 		return -EOPNOTSUPP;
4363 
4364 	if (!dev->wakeup_source)
4365 		return -EOPNOTSUPP;
4366 
4367 	ret = ksz_handle_wake_reason(dev, port);
4368 	if (ret)
4369 		return ret;
4370 
4371 	if (wol->wolopts & WAKE_MAGIC)
4372 		pme_ctrl |= PME_WOL_MAGICPKT;
4373 	if (wol->wolopts & WAKE_PHY)
4374 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
4375 
4376 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4377 				       &pme_ctrl_old);
4378 	if (ret)
4379 		return ret;
4380 
4381 	if (pme_ctrl_old == pme_ctrl)
4382 		return 0;
4383 
4384 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
4385 			    !(pme_ctrl & PME_WOL_MAGICPKT);
4386 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
4387 			    (pme_ctrl & PME_WOL_MAGICPKT);
4388 
4389 	/* To keep reference count of MAC address, we should do this
4390 	 * operation only on change of WOL settings.
4391 	 */
4392 	if (magic_switched_on) {
4393 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
4394 		if (ret)
4395 			return ret;
4396 	} else if (magic_switched_off) {
4397 		ksz_switch_macaddr_put(dev->ds);
4398 	}
4399 
4400 	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
4401 					pme_ctrl);
4402 	if (ret) {
4403 		if (magic_switched_on)
4404 			ksz_switch_macaddr_put(dev->ds);
4405 		return ret;
4406 	}
4407 
4408 	return 0;
4409 }
4410 
4411 /**
4412  * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
4413  *                        considering Wake-on-LAN (WoL) settings.
4414  * @dev: The switch device structure.
4415  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
4416  *               enabled on any port.
4417  *
4418  * This function prepares the switch device for a safe shutdown while taking
4419  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
4420  * the wol_enabled flag accordingly to reflect whether WoL is active on any
4421  * port.
4422  */
4423 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
4424 {
4425 	const struct ksz_dev_ops *ops = dev->dev_ops;
4426 	const u16 *regs = dev->info->regs;
4427 	u8 pme_pin_en = PME_ENABLE;
4428 	struct dsa_port *dp;
4429 	int ret;
4430 
4431 	*wol_enabled = false;
4432 
4433 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4434 		return;
4435 
4436 	if (!dev->wakeup_source)
4437 		return;
4438 
4439 	dsa_switch_for_each_user_port(dp, dev->ds) {
4440 		u8 pme_ctrl = 0;
4441 
4442 		ret = ops->pme_pread8(dev, dp->index,
4443 				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
4444 		if (!ret && pme_ctrl)
4445 			*wol_enabled = true;
4446 
4447 		/* make sure there are no pending wake events which would
4448 		 * prevent the device from going to sleep/shutdown.
4449 		 */
4450 		ksz_handle_wake_reason(dev, dp->index);
4451 	}
4452 
4453 	/* Now we are save to enable PME pin. */
4454 	if (*wol_enabled) {
4455 		if (dev->pme_active_high)
4456 			pme_pin_en |= PME_POLARITY;
4457 		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
4458 		if (ksz_is_ksz87xx(dev))
4459 			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
4460 	}
4461 }
4462 
4463 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4464 				    const unsigned char *addr)
4465 {
4466 	struct dsa_port *dp = dsa_to_port(ds, port);
4467 	struct ethtool_wolinfo wol;
4468 
4469 	if (dp->hsr_dev) {
4470 		dev_err(ds->dev,
4471 			"Cannot change MAC address on port %d with active HSR offload\n",
4472 			port);
4473 		return -EBUSY;
4474 	}
4475 
4476 	/* Need to initialize variable as the code to fill in settings may
4477 	 * not be executed.
4478 	 */
4479 	wol.wolopts = 0;
4480 
4481 	ksz_get_wol(ds, dp->index, &wol);
4482 	if (wol.wolopts & WAKE_MAGIC) {
4483 		dev_err(ds->dev,
4484 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4485 			port);
4486 		return -EBUSY;
4487 	}
4488 
4489 	return 0;
4490 }
4491 
4492 /**
4493  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4494  *                                 can be used as a global address.
4495  * @ds: Pointer to the DSA switch structure.
4496  * @port: The port number on which the MAC address is to be checked.
4497  *
4498  * This function examines the MAC address set on the specified port and
4499  * determines if it can be used as a global address for the switch.
4500  *
4501  * Return: true if the port's MAC address can be used as a global address, false
4502  * otherwise.
4503  */
4504 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4505 {
4506 	struct net_device *user = dsa_to_port(ds, port)->user;
4507 	const unsigned char *addr = user->dev_addr;
4508 	struct ksz_switch_macaddr *switch_macaddr;
4509 	struct ksz_device *dev = ds->priv;
4510 
4511 	ASSERT_RTNL();
4512 
4513 	switch_macaddr = dev->switch_macaddr;
4514 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4515 		return false;
4516 
4517 	return true;
4518 }
4519 
4520 /**
4521  * ksz_switch_macaddr_get - Program the switch's MAC address register.
4522  * @ds: DSA switch instance.
4523  * @port: Port number.
4524  * @extack: Netlink extended acknowledgment.
4525  *
4526  * This function programs the switch's MAC address register with the MAC address
4527  * of the requesting user port. This single address is used by the switch for
4528  * multiple features like HSR self-address filtering and WoL. Other user ports
4529  * can share ownership of this address as long as their MAC address is the same.
4530  * The MAC addresses of user ports must not change while they have ownership of
4531  * the switch MAC address.
4532  *
4533  * Return: 0 on success, or other error codes on failure.
4534  */
4535 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4536 			   struct netlink_ext_ack *extack)
4537 {
4538 	struct net_device *user = dsa_to_port(ds, port)->user;
4539 	const unsigned char *addr = user->dev_addr;
4540 	struct ksz_switch_macaddr *switch_macaddr;
4541 	struct ksz_device *dev = ds->priv;
4542 	const u16 *regs = dev->info->regs;
4543 	int i, ret;
4544 
4545 	/* Make sure concurrent MAC address changes are blocked */
4546 	ASSERT_RTNL();
4547 
4548 	switch_macaddr = dev->switch_macaddr;
4549 	if (switch_macaddr) {
4550 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4551 			NL_SET_ERR_MSG_FMT_MOD(extack,
4552 					       "Switch already configured for MAC address %pM",
4553 					       switch_macaddr->addr);
4554 			return -EBUSY;
4555 		}
4556 
4557 		refcount_inc(&switch_macaddr->refcount);
4558 		return 0;
4559 	}
4560 
4561 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4562 	if (!switch_macaddr)
4563 		return -ENOMEM;
4564 
4565 	ether_addr_copy(switch_macaddr->addr, addr);
4566 	refcount_set(&switch_macaddr->refcount, 1);
4567 	dev->switch_macaddr = switch_macaddr;
4568 
4569 	/* Program the switch MAC address to hardware */
4570 	for (i = 0; i < ETH_ALEN; i++) {
4571 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
4572 		if (ret)
4573 			goto macaddr_drop;
4574 	}
4575 
4576 	return 0;
4577 
4578 macaddr_drop:
4579 	dev->switch_macaddr = NULL;
4580 	refcount_set(&switch_macaddr->refcount, 0);
4581 	kfree(switch_macaddr);
4582 
4583 	return ret;
4584 }
4585 
4586 void ksz_switch_macaddr_put(struct dsa_switch *ds)
4587 {
4588 	struct ksz_switch_macaddr *switch_macaddr;
4589 	struct ksz_device *dev = ds->priv;
4590 	const u16 *regs = dev->info->regs;
4591 	int i;
4592 
4593 	/* Make sure concurrent MAC address changes are blocked */
4594 	ASSERT_RTNL();
4595 
4596 	switch_macaddr = dev->switch_macaddr;
4597 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4598 		return;
4599 
4600 	for (i = 0; i < ETH_ALEN; i++)
4601 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4602 
4603 	dev->switch_macaddr = NULL;
4604 	kfree(switch_macaddr);
4605 }
4606 
4607 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4608 			struct netlink_ext_ack *extack)
4609 {
4610 	struct ksz_device *dev = ds->priv;
4611 	enum hsr_version ver;
4612 	int ret;
4613 
4614 	ret = hsr_get_version(hsr, &ver);
4615 	if (ret)
4616 		return ret;
4617 
4618 	if (dev->chip_id != KSZ9477_CHIP_ID) {
4619 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4620 		return -EOPNOTSUPP;
4621 	}
4622 
4623 	/* KSZ9477 can support HW offloading of only 1 HSR device */
4624 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4625 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4626 		return -EOPNOTSUPP;
4627 	}
4628 
4629 	/* KSZ9477 only supports HSR v0 and v1 */
4630 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4631 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4632 		return -EOPNOTSUPP;
4633 	}
4634 
4635 	/* KSZ9477 can only perform HSR offloading for up to two ports */
4636 	if (hweight8(dev->hsr_ports) >= 2) {
4637 		NL_SET_ERR_MSG_MOD(extack,
4638 				   "Cannot offload more than two ports - using software HSR");
4639 		return -EOPNOTSUPP;
4640 	}
4641 
4642 	/* Self MAC address filtering, to avoid frames traversing
4643 	 * the HSR ring more than once.
4644 	 */
4645 	ret = ksz_switch_macaddr_get(ds, port, extack);
4646 	if (ret)
4647 		return ret;
4648 
4649 	ksz9477_hsr_join(ds, port, hsr);
4650 	dev->hsr_dev = hsr;
4651 	dev->hsr_ports |= BIT(port);
4652 
4653 	return 0;
4654 }
4655 
4656 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4657 			 struct net_device *hsr)
4658 {
4659 	struct ksz_device *dev = ds->priv;
4660 
4661 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4662 
4663 	ksz9477_hsr_leave(ds, port, hsr);
4664 	dev->hsr_ports &= ~BIT(port);
4665 	if (!dev->hsr_ports)
4666 		dev->hsr_dev = NULL;
4667 
4668 	ksz_switch_macaddr_put(ds);
4669 
4670 	return 0;
4671 }
4672 
4673 static int ksz_suspend(struct dsa_switch *ds)
4674 {
4675 	struct ksz_device *dev = ds->priv;
4676 
4677 	cancel_delayed_work_sync(&dev->mib_read);
4678 	return 0;
4679 }
4680 
4681 static int ksz_resume(struct dsa_switch *ds)
4682 {
4683 	struct ksz_device *dev = ds->priv;
4684 
4685 	if (dev->mib_read_interval)
4686 		schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
4687 	return 0;
4688 }
4689 
4690 static const struct dsa_switch_ops ksz_switch_ops = {
4691 	.get_tag_protocol	= ksz_get_tag_protocol,
4692 	.connect_tag_protocol   = ksz_connect_tag_protocol,
4693 	.get_phy_flags		= ksz_get_phy_flags,
4694 	.setup			= ksz_setup,
4695 	.teardown		= ksz_teardown,
4696 	.phy_read		= ksz_phy_read16,
4697 	.phy_write		= ksz_phy_write16,
4698 	.phylink_get_caps	= ksz_phylink_get_caps,
4699 	.port_setup		= ksz_port_setup,
4700 	.set_ageing_time	= ksz_set_ageing_time,
4701 	.get_strings		= ksz_get_strings,
4702 	.get_ethtool_stats	= ksz_get_ethtool_stats,
4703 	.get_sset_count		= ksz_sset_count,
4704 	.port_bridge_join	= ksz_port_bridge_join,
4705 	.port_bridge_leave	= ksz_port_bridge_leave,
4706 	.port_hsr_join		= ksz_hsr_join,
4707 	.port_hsr_leave		= ksz_hsr_leave,
4708 	.port_set_mac_address	= ksz_port_set_mac_address,
4709 	.port_stp_state_set	= ksz_port_stp_state_set,
4710 	.port_teardown		= ksz_port_teardown,
4711 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4712 	.port_bridge_flags	= ksz_port_bridge_flags,
4713 	.port_fast_age		= ksz_port_fast_age,
4714 	.port_vlan_filtering	= ksz_port_vlan_filtering,
4715 	.port_vlan_add		= ksz_port_vlan_add,
4716 	.port_vlan_del		= ksz_port_vlan_del,
4717 	.port_fdb_dump		= ksz_port_fdb_dump,
4718 	.port_fdb_add		= ksz_port_fdb_add,
4719 	.port_fdb_del		= ksz_port_fdb_del,
4720 	.port_mdb_add           = ksz_port_mdb_add,
4721 	.port_mdb_del           = ksz_port_mdb_del,
4722 	.port_mirror_add	= ksz_port_mirror_add,
4723 	.port_mirror_del	= ksz_port_mirror_del,
4724 	.get_stats64		= ksz_get_stats64,
4725 	.get_pause_stats	= ksz_get_pause_stats,
4726 	.port_change_mtu	= ksz_change_mtu,
4727 	.port_max_mtu		= ksz_max_mtu,
4728 	.get_wol		= ksz_get_wol,
4729 	.set_wol		= ksz_set_wol,
4730 	.suspend		= ksz_suspend,
4731 	.resume			= ksz_resume,
4732 	.get_ts_info		= ksz_get_ts_info,
4733 	.port_hwtstamp_get	= ksz_hwtstamp_get,
4734 	.port_hwtstamp_set	= ksz_hwtstamp_set,
4735 	.port_txtstamp		= ksz_port_txtstamp,
4736 	.port_rxtstamp		= ksz_port_rxtstamp,
4737 	.cls_flower_add		= ksz_cls_flower_add,
4738 	.cls_flower_del		= ksz_cls_flower_del,
4739 	.port_setup_tc		= ksz_setup_tc,
4740 	.support_eee		= ksz_support_eee,
4741 	.set_mac_eee		= ksz_set_mac_eee,
4742 	.port_get_default_prio	= ksz_port_get_default_prio,
4743 	.port_set_default_prio	= ksz_port_set_default_prio,
4744 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
4745 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
4746 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
4747 	.port_get_apptrust	= ksz_port_get_apptrust,
4748 	.port_set_apptrust	= ksz_port_set_apptrust,
4749 };
4750 
4751 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
4752 {
4753 	struct dsa_switch *ds;
4754 	struct ksz_device *swdev;
4755 
4756 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
4757 	if (!ds)
4758 		return NULL;
4759 
4760 	ds->dev = base;
4761 	ds->num_ports = DSA_MAX_PORTS;
4762 	ds->ops = &ksz_switch_ops;
4763 
4764 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
4765 	if (!swdev)
4766 		return NULL;
4767 
4768 	ds->priv = swdev;
4769 	swdev->dev = base;
4770 
4771 	swdev->ds = ds;
4772 	swdev->priv = priv;
4773 
4774 	return swdev;
4775 }
4776 EXPORT_SYMBOL(ksz_switch_alloc);
4777 
4778 /**
4779  * ksz_switch_shutdown - Shutdown routine for the switch device.
4780  * @dev: The switch device structure.
4781  *
4782  * This function is responsible for initiating a shutdown sequence for the
4783  * switch device. It invokes the reset operation defined in the device
4784  * operations, if available, to reset the switch. Subsequently, it calls the
4785  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
4786  * switch.
4787  */
4788 void ksz_switch_shutdown(struct ksz_device *dev)
4789 {
4790 	bool wol_enabled = false;
4791 
4792 	ksz_wol_pre_shutdown(dev, &wol_enabled);
4793 
4794 	if (dev->dev_ops->reset && !wol_enabled)
4795 		dev->dev_ops->reset(dev);
4796 
4797 	dsa_switch_shutdown(dev->ds);
4798 }
4799 EXPORT_SYMBOL(ksz_switch_shutdown);
4800 
4801 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
4802 				  struct device_node *port_dn)
4803 {
4804 	phy_interface_t phy_mode = dev->ports[port_num].interface;
4805 	int rx_delay = -1, tx_delay = -1;
4806 
4807 	if (!phy_interface_mode_is_rgmii(phy_mode))
4808 		return;
4809 
4810 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
4811 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
4812 
4813 	if (rx_delay == -1 && tx_delay == -1) {
4814 		dev_warn(dev->dev,
4815 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
4816 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
4817 			 "\"tx-internal-delay-ps\"",
4818 			 port_num);
4819 
4820 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4821 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4822 			rx_delay = 2000;
4823 
4824 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4825 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4826 			tx_delay = 2000;
4827 	}
4828 
4829 	if (rx_delay < 0)
4830 		rx_delay = 0;
4831 	if (tx_delay < 0)
4832 		tx_delay = 0;
4833 
4834 	dev->ports[port_num].rgmii_rx_val = rx_delay;
4835 	dev->ports[port_num].rgmii_tx_val = tx_delay;
4836 }
4837 
4838 /**
4839  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4840  *				 register value.
4841  * @array:	The array of drive strength values to search.
4842  * @array_size:	The size of the array.
4843  * @microamp:	The drive strength value in microamp to be converted.
4844  *
4845  * This function searches the array of drive strength values for the given
4846  * microamp value and returns the corresponding register value for that drive.
4847  *
4848  * Returns: If found, the corresponding register value for that drive strength
4849  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4850  */
4851 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4852 				     size_t array_size, int microamp)
4853 {
4854 	int i;
4855 
4856 	for (i = 0; i < array_size; i++) {
4857 		if (array[i].microamp == microamp)
4858 			return array[i].reg_val;
4859 	}
4860 
4861 	return -EINVAL;
4862 }
4863 
4864 /**
4865  * ksz_drive_strength_error() - Report invalid drive strength value
4866  * @dev:	ksz device
4867  * @array:	The array of drive strength values to search.
4868  * @array_size:	The size of the array.
4869  * @microamp:	Invalid drive strength value in microamp
4870  *
4871  * This function logs an error message when an unsupported drive strength value
4872  * is detected. It lists out all the supported drive strength values for
4873  * reference in the error message.
4874  */
4875 static void ksz_drive_strength_error(struct ksz_device *dev,
4876 				     const struct ksz_drive_strength *array,
4877 				     size_t array_size, int microamp)
4878 {
4879 	char supported_values[100];
4880 	size_t remaining_size;
4881 	int added_len;
4882 	char *ptr;
4883 	int i;
4884 
4885 	remaining_size = sizeof(supported_values);
4886 	ptr = supported_values;
4887 
4888 	for (i = 0; i < array_size; i++) {
4889 		added_len = snprintf(ptr, remaining_size,
4890 				     i == 0 ? "%d" : ", %d", array[i].microamp);
4891 
4892 		if (added_len >= remaining_size)
4893 			break;
4894 
4895 		ptr += added_len;
4896 		remaining_size -= added_len;
4897 	}
4898 
4899 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
4900 		microamp, supported_values);
4901 }
4902 
4903 /**
4904  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
4905  *				    chip variants.
4906  * @dev:       ksz device
4907  * @props:     Array of drive strength properties to be applied
4908  * @num_props: Number of properties in the array
4909  *
4910  * This function configures the drive strength for various KSZ9477 chip variants
4911  * based on the provided properties. It handles chip-specific nuances and
4912  * ensures only valid drive strengths are written to the respective chip.
4913  *
4914  * Return: 0 on successful configuration, a negative error code on failure.
4915  */
4916 static int ksz9477_drive_strength_write(struct ksz_device *dev,
4917 					struct ksz_driver_strength_prop *props,
4918 					int num_props)
4919 {
4920 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4921 	int i, ret, reg;
4922 	u8 mask = 0;
4923 	u8 val = 0;
4924 
4925 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4926 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4927 			 props[KSZ_DRIVER_STRENGTH_IO].name);
4928 
4929 	if (dev->chip_id == KSZ8795_CHIP_ID ||
4930 	    dev->chip_id == KSZ8794_CHIP_ID ||
4931 	    dev->chip_id == KSZ8765_CHIP_ID)
4932 		reg = KSZ8795_REG_SW_CTRL_20;
4933 	else
4934 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4935 
4936 	for (i = 0; i < num_props; i++) {
4937 		if (props[i].value == -1)
4938 			continue;
4939 
4940 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4941 						array_size, props[i].value);
4942 		if (ret < 0) {
4943 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4944 						 array_size, props[i].value);
4945 			return ret;
4946 		}
4947 
4948 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4949 		val |= ret << props[i].offset;
4950 	}
4951 
4952 	return ksz_rmw8(dev, reg, mask, val);
4953 }
4954 
4955 /**
4956  * ksz88x3_drive_strength_write() - Set the drive strength configuration for
4957  *				    KSZ8863 compatible chip variants.
4958  * @dev:       ksz device
4959  * @props:     Array of drive strength properties to be set
4960  * @num_props: Number of properties in the array
4961  *
4962  * This function applies the specified drive strength settings to KSZ88X3 chip
4963  * variants (KSZ8873, KSZ8863).
4964  * It ensures the configurations align with what the chip variant supports and
4965  * warns or errors out on unsupported settings.
4966  *
4967  * Return: 0 on success, error code otherwise
4968  */
4969 static int ksz88x3_drive_strength_write(struct ksz_device *dev,
4970 					struct ksz_driver_strength_prop *props,
4971 					int num_props)
4972 {
4973 	size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths);
4974 	int microamp;
4975 	int i, ret;
4976 
4977 	for (i = 0; i < num_props; i++) {
4978 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4979 			continue;
4980 
4981 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4982 			 props[i].name);
4983 	}
4984 
4985 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4986 	ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size,
4987 					microamp);
4988 	if (ret < 0) {
4989 		ksz_drive_strength_error(dev, ksz88x3_drive_strengths,
4990 					 array_size, microamp);
4991 		return ret;
4992 	}
4993 
4994 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4995 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4996 }
4997 
4998 /**
4999  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
5000  *				from device tree properties.
5001  * @dev:	ksz device
5002  *
5003  * This function reads the specified drive strength properties from the
5004  * device tree, validates against the supported chip variants, and sets
5005  * them accordingly. An error should be critical here, as the drive strength
5006  * settings are crucial for EMI compliance.
5007  *
5008  * Return: 0 on success, error code otherwise
5009  */
5010 static int ksz_parse_drive_strength(struct ksz_device *dev)
5011 {
5012 	struct ksz_driver_strength_prop of_props[] = {
5013 		[KSZ_DRIVER_STRENGTH_HI] = {
5014 			.name = "microchip,hi-drive-strength-microamp",
5015 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
5016 			.value = -1,
5017 		},
5018 		[KSZ_DRIVER_STRENGTH_LO] = {
5019 			.name = "microchip,lo-drive-strength-microamp",
5020 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
5021 			.value = -1,
5022 		},
5023 		[KSZ_DRIVER_STRENGTH_IO] = {
5024 			.name = "microchip,io-drive-strength-microamp",
5025 			.offset = 0, /* don't care */
5026 			.value = -1,
5027 		},
5028 	};
5029 	struct device_node *np = dev->dev->of_node;
5030 	bool have_any_prop = false;
5031 	int i, ret;
5032 
5033 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5034 		ret = of_property_read_u32(np, of_props[i].name,
5035 					   &of_props[i].value);
5036 		if (ret && ret != -EINVAL)
5037 			dev_warn(dev->dev, "Failed to read %s\n",
5038 				 of_props[i].name);
5039 		if (ret)
5040 			continue;
5041 
5042 		have_any_prop = true;
5043 	}
5044 
5045 	if (!have_any_prop)
5046 		return 0;
5047 
5048 	switch (dev->chip_id) {
5049 	case KSZ88X3_CHIP_ID:
5050 		return ksz88x3_drive_strength_write(dev, of_props,
5051 						    ARRAY_SIZE(of_props));
5052 	case KSZ8795_CHIP_ID:
5053 	case KSZ8794_CHIP_ID:
5054 	case KSZ8765_CHIP_ID:
5055 	case KSZ8563_CHIP_ID:
5056 	case KSZ8567_CHIP_ID:
5057 	case KSZ9477_CHIP_ID:
5058 	case KSZ9563_CHIP_ID:
5059 	case KSZ9567_CHIP_ID:
5060 	case KSZ9893_CHIP_ID:
5061 	case KSZ9896_CHIP_ID:
5062 	case KSZ9897_CHIP_ID:
5063 	case LAN9646_CHIP_ID:
5064 		return ksz9477_drive_strength_write(dev, of_props,
5065 						    ARRAY_SIZE(of_props));
5066 	default:
5067 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5068 			if (of_props[i].value == -1)
5069 				continue;
5070 
5071 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5072 				 of_props[i].name);
5073 		}
5074 	}
5075 
5076 	return 0;
5077 }
5078 
5079 int ksz_switch_register(struct ksz_device *dev)
5080 {
5081 	const struct ksz_chip_data *info;
5082 	struct device_node *ports;
5083 	phy_interface_t interface;
5084 	unsigned int port_num;
5085 	int ret;
5086 	int i;
5087 
5088 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
5089 						  GPIOD_OUT_LOW);
5090 	if (IS_ERR(dev->reset_gpio))
5091 		return PTR_ERR(dev->reset_gpio);
5092 
5093 	if (dev->reset_gpio) {
5094 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5095 		usleep_range(10000, 12000);
5096 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
5097 		msleep(100);
5098 	}
5099 
5100 	mutex_init(&dev->dev_mutex);
5101 	mutex_init(&dev->regmap_mutex);
5102 	mutex_init(&dev->alu_mutex);
5103 	mutex_init(&dev->vlan_mutex);
5104 
5105 	ret = ksz_switch_detect(dev);
5106 	if (ret)
5107 		return ret;
5108 
5109 	info = ksz_lookup_info(dev->chip_id);
5110 	if (!info)
5111 		return -ENODEV;
5112 
5113 	/* Update the compatible info with the probed one */
5114 	dev->info = info;
5115 
5116 	dev_info(dev->dev, "found switch: %s, rev %i\n",
5117 		 dev->info->dev_name, dev->chip_rev);
5118 
5119 	ret = ksz_check_device_id(dev);
5120 	if (ret)
5121 		return ret;
5122 
5123 	dev->dev_ops = dev->info->ops;
5124 
5125 	ret = dev->dev_ops->init(dev);
5126 	if (ret)
5127 		return ret;
5128 
5129 	dev->ports = devm_kzalloc(dev->dev,
5130 				  dev->info->port_cnt * sizeof(struct ksz_port),
5131 				  GFP_KERNEL);
5132 	if (!dev->ports)
5133 		return -ENOMEM;
5134 
5135 	for (i = 0; i < dev->info->port_cnt; i++) {
5136 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
5137 		mutex_init(&dev->ports[i].mib.cnt_mutex);
5138 		dev->ports[i].mib.counters =
5139 			devm_kzalloc(dev->dev,
5140 				     sizeof(u64) * (dev->info->mib_cnt + 1),
5141 				     GFP_KERNEL);
5142 		if (!dev->ports[i].mib.counters)
5143 			return -ENOMEM;
5144 
5145 		dev->ports[i].ksz_dev = dev;
5146 		dev->ports[i].num = i;
5147 	}
5148 
5149 	/* set the real number of ports */
5150 	dev->ds->num_ports = dev->info->port_cnt;
5151 
5152 	/* set the phylink ops */
5153 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
5154 
5155 	/* Host port interface will be self detected, or specifically set in
5156 	 * device tree.
5157 	 */
5158 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
5159 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
5160 	if (dev->dev->of_node) {
5161 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
5162 		if (ret == 0)
5163 			dev->compat_interface = interface;
5164 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
5165 		if (!ports)
5166 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
5167 		if (ports) {
5168 			for_each_available_child_of_node_scoped(ports, port) {
5169 				if (of_property_read_u32(port, "reg",
5170 							 &port_num))
5171 					continue;
5172 				if (!(dev->port_mask & BIT(port_num))) {
5173 					of_node_put(ports);
5174 					return -EINVAL;
5175 				}
5176 				of_get_phy_mode(port,
5177 						&dev->ports[port_num].interface);
5178 
5179 				ksz_parse_rgmii_delay(dev, port_num, port);
5180 			}
5181 			of_node_put(ports);
5182 		}
5183 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
5184 							 "microchip,synclko-125");
5185 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
5186 							     "microchip,synclko-disable");
5187 		if (dev->synclko_125 && dev->synclko_disable) {
5188 			dev_err(dev->dev, "inconsistent synclko settings\n");
5189 			return -EINVAL;
5190 		}
5191 
5192 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
5193 							   "wakeup-source");
5194 		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
5195 							     "microchip,pme-active-high");
5196 	}
5197 
5198 	ret = dsa_register_switch(dev->ds);
5199 	if (ret) {
5200 		dev->dev_ops->exit(dev);
5201 		return ret;
5202 	}
5203 
5204 	/* Read MIB counters every 30 seconds to avoid overflow. */
5205 	dev->mib_read_interval = msecs_to_jiffies(5000);
5206 
5207 	/* Start the MIB timer. */
5208 	schedule_delayed_work(&dev->mib_read, 0);
5209 
5210 	return ret;
5211 }
5212 EXPORT_SYMBOL(ksz_switch_register);
5213 
5214 void ksz_switch_remove(struct ksz_device *dev)
5215 {
5216 	/* timer started */
5217 	if (dev->mib_read_interval) {
5218 		dev->mib_read_interval = 0;
5219 		cancel_delayed_work_sync(&dev->mib_read);
5220 	}
5221 
5222 	dev->dev_ops->exit(dev);
5223 	dsa_unregister_switch(dev->ds);
5224 
5225 	if (dev->reset_gpio)
5226 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5227 
5228 }
5229 EXPORT_SYMBOL(ksz_switch_remove);
5230 
5231 #ifdef CONFIG_PM_SLEEP
5232 int ksz_switch_suspend(struct device *dev)
5233 {
5234 	struct ksz_device *priv = dev_get_drvdata(dev);
5235 
5236 	return dsa_switch_suspend(priv->ds);
5237 }
5238 EXPORT_SYMBOL(ksz_switch_suspend);
5239 
5240 int ksz_switch_resume(struct device *dev)
5241 {
5242 	struct ksz_device *priv = dev_get_drvdata(dev);
5243 
5244 	return dsa_switch_resume(priv->ds);
5245 }
5246 EXPORT_SYMBOL(ksz_switch_resume);
5247 #endif
5248 
5249 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
5250 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
5251 MODULE_LICENSE("GPL");
5252