xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 385f186aba3d2f7122b71d6d4c7e236b9d4e8003)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2024 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/ieee8021q.h>
28 #include <net/pkt_cls.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_common.h"
32 #include "ksz_dcb.h"
33 #include "ksz_ptp.h"
34 #include "ksz8.h"
35 #include "ksz9477.h"
36 #include "lan937x.h"
37 
38 #define MIB_COUNTER_NUM 0x20
39 
40 struct ksz_stats_raw {
41 	u64 rx_hi;
42 	u64 rx_undersize;
43 	u64 rx_fragments;
44 	u64 rx_oversize;
45 	u64 rx_jabbers;
46 	u64 rx_symbol_err;
47 	u64 rx_crc_err;
48 	u64 rx_align_err;
49 	u64 rx_mac_ctrl;
50 	u64 rx_pause;
51 	u64 rx_bcast;
52 	u64 rx_mcast;
53 	u64 rx_ucast;
54 	u64 rx_64_or_less;
55 	u64 rx_65_127;
56 	u64 rx_128_255;
57 	u64 rx_256_511;
58 	u64 rx_512_1023;
59 	u64 rx_1024_1522;
60 	u64 rx_1523_2000;
61 	u64 rx_2001;
62 	u64 tx_hi;
63 	u64 tx_late_col;
64 	u64 tx_pause;
65 	u64 tx_bcast;
66 	u64 tx_mcast;
67 	u64 tx_ucast;
68 	u64 tx_deferred;
69 	u64 tx_total_col;
70 	u64 tx_exc_col;
71 	u64 tx_single_col;
72 	u64 tx_mult_col;
73 	u64 rx_total;
74 	u64 tx_total;
75 	u64 rx_discards;
76 	u64 tx_discards;
77 };
78 
79 struct ksz88xx_stats_raw {
80 	u64 rx;
81 	u64 rx_hi;
82 	u64 rx_undersize;
83 	u64 rx_fragments;
84 	u64 rx_oversize;
85 	u64 rx_jabbers;
86 	u64 rx_symbol_err;
87 	u64 rx_crc_err;
88 	u64 rx_align_err;
89 	u64 rx_mac_ctrl;
90 	u64 rx_pause;
91 	u64 rx_bcast;
92 	u64 rx_mcast;
93 	u64 rx_ucast;
94 	u64 rx_64_or_less;
95 	u64 rx_65_127;
96 	u64 rx_128_255;
97 	u64 rx_256_511;
98 	u64 rx_512_1023;
99 	u64 rx_1024_1522;
100 	u64 tx;
101 	u64 tx_hi;
102 	u64 tx_late_col;
103 	u64 tx_pause;
104 	u64 tx_bcast;
105 	u64 tx_mcast;
106 	u64 tx_ucast;
107 	u64 tx_deferred;
108 	u64 tx_total_col;
109 	u64 tx_exc_col;
110 	u64 tx_single_col;
111 	u64 tx_mult_col;
112 	u64 rx_discards;
113 	u64 tx_discards;
114 };
115 
116 static const struct ksz_mib_names ksz88xx_mib_names[] = {
117 	{ 0x00, "rx" },
118 	{ 0x01, "rx_hi" },
119 	{ 0x02, "rx_undersize" },
120 	{ 0x03, "rx_fragments" },
121 	{ 0x04, "rx_oversize" },
122 	{ 0x05, "rx_jabbers" },
123 	{ 0x06, "rx_symbol_err" },
124 	{ 0x07, "rx_crc_err" },
125 	{ 0x08, "rx_align_err" },
126 	{ 0x09, "rx_mac_ctrl" },
127 	{ 0x0a, "rx_pause" },
128 	{ 0x0b, "rx_bcast" },
129 	{ 0x0c, "rx_mcast" },
130 	{ 0x0d, "rx_ucast" },
131 	{ 0x0e, "rx_64_or_less" },
132 	{ 0x0f, "rx_65_127" },
133 	{ 0x10, "rx_128_255" },
134 	{ 0x11, "rx_256_511" },
135 	{ 0x12, "rx_512_1023" },
136 	{ 0x13, "rx_1024_1522" },
137 	{ 0x14, "tx" },
138 	{ 0x15, "tx_hi" },
139 	{ 0x16, "tx_late_col" },
140 	{ 0x17, "tx_pause" },
141 	{ 0x18, "tx_bcast" },
142 	{ 0x19, "tx_mcast" },
143 	{ 0x1a, "tx_ucast" },
144 	{ 0x1b, "tx_deferred" },
145 	{ 0x1c, "tx_total_col" },
146 	{ 0x1d, "tx_exc_col" },
147 	{ 0x1e, "tx_single_col" },
148 	{ 0x1f, "tx_mult_col" },
149 	{ 0x100, "rx_discards" },
150 	{ 0x101, "tx_discards" },
151 };
152 
153 static const struct ksz_mib_names ksz9477_mib_names[] = {
154 	{ 0x00, "rx_hi" },
155 	{ 0x01, "rx_undersize" },
156 	{ 0x02, "rx_fragments" },
157 	{ 0x03, "rx_oversize" },
158 	{ 0x04, "rx_jabbers" },
159 	{ 0x05, "rx_symbol_err" },
160 	{ 0x06, "rx_crc_err" },
161 	{ 0x07, "rx_align_err" },
162 	{ 0x08, "rx_mac_ctrl" },
163 	{ 0x09, "rx_pause" },
164 	{ 0x0A, "rx_bcast" },
165 	{ 0x0B, "rx_mcast" },
166 	{ 0x0C, "rx_ucast" },
167 	{ 0x0D, "rx_64_or_less" },
168 	{ 0x0E, "rx_65_127" },
169 	{ 0x0F, "rx_128_255" },
170 	{ 0x10, "rx_256_511" },
171 	{ 0x11, "rx_512_1023" },
172 	{ 0x12, "rx_1024_1522" },
173 	{ 0x13, "rx_1523_2000" },
174 	{ 0x14, "rx_2001" },
175 	{ 0x15, "tx_hi" },
176 	{ 0x16, "tx_late_col" },
177 	{ 0x17, "tx_pause" },
178 	{ 0x18, "tx_bcast" },
179 	{ 0x19, "tx_mcast" },
180 	{ 0x1A, "tx_ucast" },
181 	{ 0x1B, "tx_deferred" },
182 	{ 0x1C, "tx_total_col" },
183 	{ 0x1D, "tx_exc_col" },
184 	{ 0x1E, "tx_single_col" },
185 	{ 0x1F, "tx_mult_col" },
186 	{ 0x80, "rx_total" },
187 	{ 0x81, "tx_total" },
188 	{ 0x82, "rx_discards" },
189 	{ 0x83, "tx_discards" },
190 };
191 
192 struct ksz_driver_strength_prop {
193 	const char *name;
194 	int offset;
195 	int value;
196 };
197 
198 enum ksz_driver_strength_type {
199 	KSZ_DRIVER_STRENGTH_HI,
200 	KSZ_DRIVER_STRENGTH_LO,
201 	KSZ_DRIVER_STRENGTH_IO,
202 };
203 
204 /**
205  * struct ksz_drive_strength - drive strength mapping
206  * @reg_val:	register value
207  * @microamp:	microamp value
208  */
209 struct ksz_drive_strength {
210 	u32 reg_val;
211 	u32 microamp;
212 };
213 
214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
215  *
216  * This values are not documented in KSZ9477 variants but confirmed by
217  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
218  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
219  *
220  * Documentation in KSZ8795CLX provides more information with some
221  * recommendations:
222  * - for high speed signals
223  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
224  *      2.5V or 3.3V VDDIO.
225  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
226  *      using 1.8V VDDIO.
227  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
228  *      or 3.3V VDDIO.
229  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
230  *   5. In same interface, the heavy loading should use higher one of the
231  *      drive current strength.
232  * - for low speed signals
233  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
234  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
235  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
236  *   4. If it is heavy loading, can use higher drive current strength.
237  */
238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
239 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
240 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
241 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
242 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
243 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
244 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
245 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
246 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
247 };
248 
249 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, ..
250  *			     variants.
251  * This values are documented in KSZ8873 and KSZ8863 datasheets.
252  */
253 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = {
254 	{ 0,  8000 },
255 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
256 };
257 
258 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
259 				       unsigned int mode,
260 				       const struct phylink_link_state *state);
261 static void ksz_phylink_mac_config(struct phylink_config *config,
262 				   unsigned int mode,
263 				   const struct phylink_link_state *state);
264 static void ksz_phylink_mac_link_down(struct phylink_config *config,
265 				      unsigned int mode,
266 				      phy_interface_t interface);
267 
268 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = {
269 	.mac_config	= ksz88x3_phylink_mac_config,
270 	.mac_link_down	= ksz_phylink_mac_link_down,
271 	.mac_link_up	= ksz8_phylink_mac_link_up,
272 };
273 
274 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
275 	.mac_config	= ksz_phylink_mac_config,
276 	.mac_link_down	= ksz_phylink_mac_link_down,
277 	.mac_link_up	= ksz8_phylink_mac_link_up,
278 };
279 
280 static const struct ksz_dev_ops ksz88xx_dev_ops = {
281 	.setup = ksz8_setup,
282 	.get_port_addr = ksz8_get_port_addr,
283 	.cfg_port_member = ksz8_cfg_port_member,
284 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
285 	.port_setup = ksz8_port_setup,
286 	.r_phy = ksz8_r_phy,
287 	.w_phy = ksz8_w_phy,
288 	.r_mib_cnt = ksz8_r_mib_cnt,
289 	.r_mib_pkt = ksz8_r_mib_pkt,
290 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
291 	.freeze_mib = ksz8_freeze_mib,
292 	.port_init_cnt = ksz8_port_init_cnt,
293 	.fdb_dump = ksz8_fdb_dump,
294 	.fdb_add = ksz8_fdb_add,
295 	.fdb_del = ksz8_fdb_del,
296 	.mdb_add = ksz8_mdb_add,
297 	.mdb_del = ksz8_mdb_del,
298 	.vlan_filtering = ksz8_port_vlan_filtering,
299 	.vlan_add = ksz8_port_vlan_add,
300 	.vlan_del = ksz8_port_vlan_del,
301 	.mirror_add = ksz8_port_mirror_add,
302 	.mirror_del = ksz8_port_mirror_del,
303 	.get_caps = ksz8_get_caps,
304 	.config_cpu_port = ksz8_config_cpu_port,
305 	.enable_stp_addr = ksz8_enable_stp_addr,
306 	.reset = ksz8_reset_switch,
307 	.init = ksz8_switch_init,
308 	.exit = ksz8_switch_exit,
309 	.change_mtu = ksz8_change_mtu,
310 	.pme_write8 = ksz8_pme_write8,
311 	.pme_pread8 = ksz8_pme_pread8,
312 	.pme_pwrite8 = ksz8_pme_pwrite8,
313 };
314 
315 static const struct ksz_dev_ops ksz87xx_dev_ops = {
316 	.setup = ksz8_setup,
317 	.get_port_addr = ksz8_get_port_addr,
318 	.cfg_port_member = ksz8_cfg_port_member,
319 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
320 	.port_setup = ksz8_port_setup,
321 	.r_phy = ksz8_r_phy,
322 	.w_phy = ksz8_w_phy,
323 	.r_mib_cnt = ksz8_r_mib_cnt,
324 	.r_mib_pkt = ksz8_r_mib_pkt,
325 	.r_mib_stat64 = ksz_r_mib_stats64,
326 	.freeze_mib = ksz8_freeze_mib,
327 	.port_init_cnt = ksz8_port_init_cnt,
328 	.fdb_dump = ksz8_fdb_dump,
329 	.fdb_add = ksz8_fdb_add,
330 	.fdb_del = ksz8_fdb_del,
331 	.mdb_add = ksz8_mdb_add,
332 	.mdb_del = ksz8_mdb_del,
333 	.vlan_filtering = ksz8_port_vlan_filtering,
334 	.vlan_add = ksz8_port_vlan_add,
335 	.vlan_del = ksz8_port_vlan_del,
336 	.mirror_add = ksz8_port_mirror_add,
337 	.mirror_del = ksz8_port_mirror_del,
338 	.get_caps = ksz8_get_caps,
339 	.config_cpu_port = ksz8_config_cpu_port,
340 	.enable_stp_addr = ksz8_enable_stp_addr,
341 	.reset = ksz8_reset_switch,
342 	.init = ksz8_switch_init,
343 	.exit = ksz8_switch_exit,
344 	.change_mtu = ksz8_change_mtu,
345 	.pme_write8 = ksz8_pme_write8,
346 	.pme_pread8 = ksz8_pme_pread8,
347 	.pme_pwrite8 = ksz8_pme_pwrite8,
348 };
349 
350 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
351 					struct phy_device *phydev,
352 					unsigned int mode,
353 					phy_interface_t interface,
354 					int speed, int duplex, bool tx_pause,
355 					bool rx_pause);
356 
357 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
358 	.mac_config	= ksz_phylink_mac_config,
359 	.mac_link_down	= ksz_phylink_mac_link_down,
360 	.mac_link_up	= ksz9477_phylink_mac_link_up,
361 };
362 
363 static const struct ksz_dev_ops ksz9477_dev_ops = {
364 	.setup = ksz9477_setup,
365 	.get_port_addr = ksz9477_get_port_addr,
366 	.cfg_port_member = ksz9477_cfg_port_member,
367 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
368 	.port_setup = ksz9477_port_setup,
369 	.set_ageing_time = ksz9477_set_ageing_time,
370 	.r_phy = ksz9477_r_phy,
371 	.w_phy = ksz9477_w_phy,
372 	.r_mib_cnt = ksz9477_r_mib_cnt,
373 	.r_mib_pkt = ksz9477_r_mib_pkt,
374 	.r_mib_stat64 = ksz_r_mib_stats64,
375 	.freeze_mib = ksz9477_freeze_mib,
376 	.port_init_cnt = ksz9477_port_init_cnt,
377 	.vlan_filtering = ksz9477_port_vlan_filtering,
378 	.vlan_add = ksz9477_port_vlan_add,
379 	.vlan_del = ksz9477_port_vlan_del,
380 	.mirror_add = ksz9477_port_mirror_add,
381 	.mirror_del = ksz9477_port_mirror_del,
382 	.get_caps = ksz9477_get_caps,
383 	.fdb_dump = ksz9477_fdb_dump,
384 	.fdb_add = ksz9477_fdb_add,
385 	.fdb_del = ksz9477_fdb_del,
386 	.mdb_add = ksz9477_mdb_add,
387 	.mdb_del = ksz9477_mdb_del,
388 	.change_mtu = ksz9477_change_mtu,
389 	.pme_write8 = ksz_write8,
390 	.pme_pread8 = ksz_pread8,
391 	.pme_pwrite8 = ksz_pwrite8,
392 	.config_cpu_port = ksz9477_config_cpu_port,
393 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
394 	.enable_stp_addr = ksz9477_enable_stp_addr,
395 	.reset = ksz9477_reset_switch,
396 	.init = ksz9477_switch_init,
397 	.exit = ksz9477_switch_exit,
398 };
399 
400 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
401 	.mac_config	= ksz_phylink_mac_config,
402 	.mac_link_down	= ksz_phylink_mac_link_down,
403 	.mac_link_up	= ksz9477_phylink_mac_link_up,
404 };
405 
406 static const struct ksz_dev_ops lan937x_dev_ops = {
407 	.setup = lan937x_setup,
408 	.teardown = lan937x_teardown,
409 	.get_port_addr = ksz9477_get_port_addr,
410 	.cfg_port_member = ksz9477_cfg_port_member,
411 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
412 	.port_setup = lan937x_port_setup,
413 	.set_ageing_time = lan937x_set_ageing_time,
414 	.mdio_bus_preinit = lan937x_mdio_bus_preinit,
415 	.create_phy_addr_map = lan937x_create_phy_addr_map,
416 	.r_phy = lan937x_r_phy,
417 	.w_phy = lan937x_w_phy,
418 	.r_mib_cnt = ksz9477_r_mib_cnt,
419 	.r_mib_pkt = ksz9477_r_mib_pkt,
420 	.r_mib_stat64 = ksz_r_mib_stats64,
421 	.freeze_mib = ksz9477_freeze_mib,
422 	.port_init_cnt = ksz9477_port_init_cnt,
423 	.vlan_filtering = ksz9477_port_vlan_filtering,
424 	.vlan_add = ksz9477_port_vlan_add,
425 	.vlan_del = ksz9477_port_vlan_del,
426 	.mirror_add = ksz9477_port_mirror_add,
427 	.mirror_del = ksz9477_port_mirror_del,
428 	.get_caps = lan937x_phylink_get_caps,
429 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
430 	.fdb_dump = ksz9477_fdb_dump,
431 	.fdb_add = ksz9477_fdb_add,
432 	.fdb_del = ksz9477_fdb_del,
433 	.mdb_add = ksz9477_mdb_add,
434 	.mdb_del = ksz9477_mdb_del,
435 	.change_mtu = lan937x_change_mtu,
436 	.config_cpu_port = lan937x_config_cpu_port,
437 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
438 	.enable_stp_addr = ksz9477_enable_stp_addr,
439 	.reset = lan937x_reset_switch,
440 	.init = lan937x_switch_init,
441 	.exit = lan937x_switch_exit,
442 };
443 
444 static const u16 ksz8795_regs[] = {
445 	[REG_SW_MAC_ADDR]		= 0x68,
446 	[REG_IND_CTRL_0]		= 0x6E,
447 	[REG_IND_DATA_8]		= 0x70,
448 	[REG_IND_DATA_CHECK]		= 0x72,
449 	[REG_IND_DATA_HI]		= 0x71,
450 	[REG_IND_DATA_LO]		= 0x75,
451 	[REG_IND_MIB_CHECK]		= 0x74,
452 	[REG_IND_BYTE]			= 0xA0,
453 	[P_FORCE_CTRL]			= 0x0C,
454 	[P_LINK_STATUS]			= 0x0E,
455 	[P_LOCAL_CTRL]			= 0x07,
456 	[P_NEG_RESTART_CTRL]		= 0x0D,
457 	[P_REMOTE_STATUS]		= 0x08,
458 	[P_SPEED_STATUS]		= 0x09,
459 	[S_TAIL_TAG_CTRL]		= 0x0C,
460 	[P_STP_CTRL]			= 0x02,
461 	[S_START_CTRL]			= 0x01,
462 	[S_BROADCAST_CTRL]		= 0x06,
463 	[S_MULTICAST_CTRL]		= 0x04,
464 	[P_XMII_CTRL_0]			= 0x06,
465 	[P_XMII_CTRL_1]			= 0x06,
466 	[REG_SW_PME_CTRL]		= 0x8003,
467 	[REG_PORT_PME_STATUS]		= 0x8003,
468 	[REG_PORT_PME_CTRL]		= 0x8007,
469 };
470 
471 static const u32 ksz8795_masks[] = {
472 	[PORT_802_1P_REMAPPING]		= BIT(7),
473 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
474 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
475 	[MIB_COUNTER_VALID]		= BIT(5),
476 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
477 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
478 	[VLAN_TABLE_VALID]		= BIT(12),
479 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
480 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
481 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
482 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
483 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
484 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
485 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
486 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
487 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
488 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
489 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
490 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
491 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
492 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
493 };
494 
495 static const u8 ksz8795_xmii_ctrl0[] = {
496 	[P_MII_100MBIT]			= 0,
497 	[P_MII_10MBIT]			= 1,
498 	[P_MII_FULL_DUPLEX]		= 0,
499 	[P_MII_HALF_DUPLEX]		= 1,
500 };
501 
502 static const u8 ksz8795_xmii_ctrl1[] = {
503 	[P_RGMII_SEL]			= 3,
504 	[P_GMII_SEL]			= 2,
505 	[P_RMII_SEL]			= 1,
506 	[P_MII_SEL]			= 0,
507 	[P_GMII_1GBIT]			= 1,
508 	[P_GMII_NOT_1GBIT]		= 0,
509 };
510 
511 static const u8 ksz8795_shifts[] = {
512 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
513 	[VLAN_TABLE]			= 16,
514 	[STATIC_MAC_FWD_PORTS]		= 16,
515 	[STATIC_MAC_FID]		= 24,
516 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
517 	[DYNAMIC_MAC_ENTRIES]		= 29,
518 	[DYNAMIC_MAC_FID]		= 16,
519 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
520 	[DYNAMIC_MAC_SRC_PORT]		= 24,
521 };
522 
523 static const u16 ksz8863_regs[] = {
524 	[REG_SW_MAC_ADDR]		= 0x70,
525 	[REG_IND_CTRL_0]		= 0x79,
526 	[REG_IND_DATA_8]		= 0x7B,
527 	[REG_IND_DATA_CHECK]		= 0x7B,
528 	[REG_IND_DATA_HI]		= 0x7C,
529 	[REG_IND_DATA_LO]		= 0x80,
530 	[REG_IND_MIB_CHECK]		= 0x80,
531 	[P_FORCE_CTRL]			= 0x0C,
532 	[P_LINK_STATUS]			= 0x0E,
533 	[P_LOCAL_CTRL]			= 0x0C,
534 	[P_NEG_RESTART_CTRL]		= 0x0D,
535 	[P_REMOTE_STATUS]		= 0x0E,
536 	[P_SPEED_STATUS]		= 0x0F,
537 	[S_TAIL_TAG_CTRL]		= 0x03,
538 	[P_STP_CTRL]			= 0x02,
539 	[S_START_CTRL]			= 0x01,
540 	[S_BROADCAST_CTRL]		= 0x06,
541 	[S_MULTICAST_CTRL]		= 0x04,
542 };
543 
544 static const u32 ksz8863_masks[] = {
545 	[PORT_802_1P_REMAPPING]		= BIT(3),
546 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
547 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
548 	[MIB_COUNTER_VALID]		= BIT(6),
549 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
550 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
551 	[VLAN_TABLE_VALID]		= BIT(19),
552 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
553 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
554 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
555 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
556 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
557 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
558 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
559 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
560 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
561 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
562 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
563 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
564 };
565 
566 static u8 ksz8863_shifts[] = {
567 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
568 	[STATIC_MAC_FWD_PORTS]		= 16,
569 	[STATIC_MAC_FID]		= 22,
570 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
571 	[DYNAMIC_MAC_ENTRIES]		= 24,
572 	[DYNAMIC_MAC_FID]		= 16,
573 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
574 	[DYNAMIC_MAC_SRC_PORT]		= 20,
575 };
576 
577 static const u16 ksz8895_regs[] = {
578 	[REG_SW_MAC_ADDR]		= 0x68,
579 	[REG_IND_CTRL_0]		= 0x6E,
580 	[REG_IND_DATA_8]		= 0x70,
581 	[REG_IND_DATA_CHECK]		= 0x72,
582 	[REG_IND_DATA_HI]		= 0x71,
583 	[REG_IND_DATA_LO]		= 0x75,
584 	[REG_IND_MIB_CHECK]		= 0x75,
585 	[P_FORCE_CTRL]			= 0x0C,
586 	[P_LINK_STATUS]			= 0x0E,
587 	[P_LOCAL_CTRL]			= 0x0C,
588 	[P_NEG_RESTART_CTRL]		= 0x0D,
589 	[P_REMOTE_STATUS]		= 0x0E,
590 	[P_SPEED_STATUS]		= 0x09,
591 	[S_TAIL_TAG_CTRL]		= 0x0C,
592 	[P_STP_CTRL]			= 0x02,
593 	[S_START_CTRL]			= 0x01,
594 	[S_BROADCAST_CTRL]		= 0x06,
595 	[S_MULTICAST_CTRL]		= 0x04,
596 };
597 
598 static const u32 ksz8895_masks[] = {
599 	[PORT_802_1P_REMAPPING]		= BIT(7),
600 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
601 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
602 	[MIB_COUNTER_VALID]		= BIT(6),
603 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
604 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
605 	[VLAN_TABLE_VALID]		= BIT(12),
606 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
607 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
608 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
609 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
610 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
611 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
612 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
613 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
614 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
615 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
616 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
617 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
618 };
619 
620 static const u8 ksz8895_shifts[] = {
621 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
622 	[VLAN_TABLE]			= 13,
623 	[STATIC_MAC_FWD_PORTS]		= 16,
624 	[STATIC_MAC_FID]		= 24,
625 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
626 	[DYNAMIC_MAC_ENTRIES]		= 29,
627 	[DYNAMIC_MAC_FID]		= 16,
628 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
629 	[DYNAMIC_MAC_SRC_PORT]		= 24,
630 };
631 
632 static const u16 ksz9477_regs[] = {
633 	[REG_SW_MAC_ADDR]		= 0x0302,
634 	[P_STP_CTRL]			= 0x0B04,
635 	[S_START_CTRL]			= 0x0300,
636 	[S_BROADCAST_CTRL]		= 0x0332,
637 	[S_MULTICAST_CTRL]		= 0x0331,
638 	[P_XMII_CTRL_0]			= 0x0300,
639 	[P_XMII_CTRL_1]			= 0x0301,
640 	[REG_SW_PME_CTRL]		= 0x0006,
641 	[REG_PORT_PME_STATUS]		= 0x0013,
642 	[REG_PORT_PME_CTRL]		= 0x0017,
643 };
644 
645 static const u32 ksz9477_masks[] = {
646 	[ALU_STAT_WRITE]		= 0,
647 	[ALU_STAT_READ]			= 1,
648 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
649 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
650 };
651 
652 static const u8 ksz9477_shifts[] = {
653 	[ALU_STAT_INDEX]		= 16,
654 };
655 
656 static const u8 ksz9477_xmii_ctrl0[] = {
657 	[P_MII_100MBIT]			= 1,
658 	[P_MII_10MBIT]			= 0,
659 	[P_MII_FULL_DUPLEX]		= 1,
660 	[P_MII_HALF_DUPLEX]		= 0,
661 };
662 
663 static const u8 ksz9477_xmii_ctrl1[] = {
664 	[P_RGMII_SEL]			= 0,
665 	[P_RMII_SEL]			= 1,
666 	[P_GMII_SEL]			= 2,
667 	[P_MII_SEL]			= 3,
668 	[P_GMII_1GBIT]			= 0,
669 	[P_GMII_NOT_1GBIT]		= 1,
670 };
671 
672 static const u32 lan937x_masks[] = {
673 	[ALU_STAT_WRITE]		= 1,
674 	[ALU_STAT_READ]			= 2,
675 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
676 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
677 };
678 
679 static const u8 lan937x_shifts[] = {
680 	[ALU_STAT_INDEX]		= 8,
681 };
682 
683 static const struct regmap_range ksz8563_valid_regs[] = {
684 	regmap_reg_range(0x0000, 0x0003),
685 	regmap_reg_range(0x0006, 0x0006),
686 	regmap_reg_range(0x000f, 0x001f),
687 	regmap_reg_range(0x0100, 0x0100),
688 	regmap_reg_range(0x0104, 0x0107),
689 	regmap_reg_range(0x010d, 0x010d),
690 	regmap_reg_range(0x0110, 0x0113),
691 	regmap_reg_range(0x0120, 0x012b),
692 	regmap_reg_range(0x0201, 0x0201),
693 	regmap_reg_range(0x0210, 0x0213),
694 	regmap_reg_range(0x0300, 0x0300),
695 	regmap_reg_range(0x0302, 0x031b),
696 	regmap_reg_range(0x0320, 0x032b),
697 	regmap_reg_range(0x0330, 0x0336),
698 	regmap_reg_range(0x0338, 0x033e),
699 	regmap_reg_range(0x0340, 0x035f),
700 	regmap_reg_range(0x0370, 0x0370),
701 	regmap_reg_range(0x0378, 0x0378),
702 	regmap_reg_range(0x037c, 0x037d),
703 	regmap_reg_range(0x0390, 0x0393),
704 	regmap_reg_range(0x0400, 0x040e),
705 	regmap_reg_range(0x0410, 0x042f),
706 	regmap_reg_range(0x0500, 0x0519),
707 	regmap_reg_range(0x0520, 0x054b),
708 	regmap_reg_range(0x0550, 0x05b3),
709 
710 	/* port 1 */
711 	regmap_reg_range(0x1000, 0x1001),
712 	regmap_reg_range(0x1004, 0x100b),
713 	regmap_reg_range(0x1013, 0x1013),
714 	regmap_reg_range(0x1017, 0x1017),
715 	regmap_reg_range(0x101b, 0x101b),
716 	regmap_reg_range(0x101f, 0x1021),
717 	regmap_reg_range(0x1030, 0x1030),
718 	regmap_reg_range(0x1100, 0x1111),
719 	regmap_reg_range(0x111a, 0x111d),
720 	regmap_reg_range(0x1122, 0x1127),
721 	regmap_reg_range(0x112a, 0x112b),
722 	regmap_reg_range(0x1136, 0x1139),
723 	regmap_reg_range(0x113e, 0x113f),
724 	regmap_reg_range(0x1400, 0x1401),
725 	regmap_reg_range(0x1403, 0x1403),
726 	regmap_reg_range(0x1410, 0x1417),
727 	regmap_reg_range(0x1420, 0x1423),
728 	regmap_reg_range(0x1500, 0x1507),
729 	regmap_reg_range(0x1600, 0x1612),
730 	regmap_reg_range(0x1800, 0x180f),
731 	regmap_reg_range(0x1900, 0x1907),
732 	regmap_reg_range(0x1914, 0x191b),
733 	regmap_reg_range(0x1a00, 0x1a03),
734 	regmap_reg_range(0x1a04, 0x1a08),
735 	regmap_reg_range(0x1b00, 0x1b01),
736 	regmap_reg_range(0x1b04, 0x1b04),
737 	regmap_reg_range(0x1c00, 0x1c05),
738 	regmap_reg_range(0x1c08, 0x1c1b),
739 
740 	/* port 2 */
741 	regmap_reg_range(0x2000, 0x2001),
742 	regmap_reg_range(0x2004, 0x200b),
743 	regmap_reg_range(0x2013, 0x2013),
744 	regmap_reg_range(0x2017, 0x2017),
745 	regmap_reg_range(0x201b, 0x201b),
746 	regmap_reg_range(0x201f, 0x2021),
747 	regmap_reg_range(0x2030, 0x2030),
748 	regmap_reg_range(0x2100, 0x2111),
749 	regmap_reg_range(0x211a, 0x211d),
750 	regmap_reg_range(0x2122, 0x2127),
751 	regmap_reg_range(0x212a, 0x212b),
752 	regmap_reg_range(0x2136, 0x2139),
753 	regmap_reg_range(0x213e, 0x213f),
754 	regmap_reg_range(0x2400, 0x2401),
755 	regmap_reg_range(0x2403, 0x2403),
756 	regmap_reg_range(0x2410, 0x2417),
757 	regmap_reg_range(0x2420, 0x2423),
758 	regmap_reg_range(0x2500, 0x2507),
759 	regmap_reg_range(0x2600, 0x2612),
760 	regmap_reg_range(0x2800, 0x280f),
761 	regmap_reg_range(0x2900, 0x2907),
762 	regmap_reg_range(0x2914, 0x291b),
763 	regmap_reg_range(0x2a00, 0x2a03),
764 	regmap_reg_range(0x2a04, 0x2a08),
765 	regmap_reg_range(0x2b00, 0x2b01),
766 	regmap_reg_range(0x2b04, 0x2b04),
767 	regmap_reg_range(0x2c00, 0x2c05),
768 	regmap_reg_range(0x2c08, 0x2c1b),
769 
770 	/* port 3 */
771 	regmap_reg_range(0x3000, 0x3001),
772 	regmap_reg_range(0x3004, 0x300b),
773 	regmap_reg_range(0x3013, 0x3013),
774 	regmap_reg_range(0x3017, 0x3017),
775 	regmap_reg_range(0x301b, 0x301b),
776 	regmap_reg_range(0x301f, 0x3021),
777 	regmap_reg_range(0x3030, 0x3030),
778 	regmap_reg_range(0x3300, 0x3301),
779 	regmap_reg_range(0x3303, 0x3303),
780 	regmap_reg_range(0x3400, 0x3401),
781 	regmap_reg_range(0x3403, 0x3403),
782 	regmap_reg_range(0x3410, 0x3417),
783 	regmap_reg_range(0x3420, 0x3423),
784 	regmap_reg_range(0x3500, 0x3507),
785 	regmap_reg_range(0x3600, 0x3612),
786 	regmap_reg_range(0x3800, 0x380f),
787 	regmap_reg_range(0x3900, 0x3907),
788 	regmap_reg_range(0x3914, 0x391b),
789 	regmap_reg_range(0x3a00, 0x3a03),
790 	regmap_reg_range(0x3a04, 0x3a08),
791 	regmap_reg_range(0x3b00, 0x3b01),
792 	regmap_reg_range(0x3b04, 0x3b04),
793 	regmap_reg_range(0x3c00, 0x3c05),
794 	regmap_reg_range(0x3c08, 0x3c1b),
795 };
796 
797 static const struct regmap_access_table ksz8563_register_set = {
798 	.yes_ranges = ksz8563_valid_regs,
799 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
800 };
801 
802 static const struct regmap_range ksz9477_valid_regs[] = {
803 	regmap_reg_range(0x0000, 0x0003),
804 	regmap_reg_range(0x0006, 0x0006),
805 	regmap_reg_range(0x0010, 0x001f),
806 	regmap_reg_range(0x0100, 0x0100),
807 	regmap_reg_range(0x0103, 0x0107),
808 	regmap_reg_range(0x010d, 0x010d),
809 	regmap_reg_range(0x0110, 0x0113),
810 	regmap_reg_range(0x0120, 0x012b),
811 	regmap_reg_range(0x0201, 0x0201),
812 	regmap_reg_range(0x0210, 0x0213),
813 	regmap_reg_range(0x0300, 0x0300),
814 	regmap_reg_range(0x0302, 0x031b),
815 	regmap_reg_range(0x0320, 0x032b),
816 	regmap_reg_range(0x0330, 0x0336),
817 	regmap_reg_range(0x0338, 0x033b),
818 	regmap_reg_range(0x033e, 0x033e),
819 	regmap_reg_range(0x0340, 0x035f),
820 	regmap_reg_range(0x0370, 0x0370),
821 	regmap_reg_range(0x0378, 0x0378),
822 	regmap_reg_range(0x037c, 0x037d),
823 	regmap_reg_range(0x0390, 0x0393),
824 	regmap_reg_range(0x0400, 0x040e),
825 	regmap_reg_range(0x0410, 0x042f),
826 	regmap_reg_range(0x0444, 0x044b),
827 	regmap_reg_range(0x0450, 0x046f),
828 	regmap_reg_range(0x0500, 0x0519),
829 	regmap_reg_range(0x0520, 0x054b),
830 	regmap_reg_range(0x0550, 0x05b3),
831 	regmap_reg_range(0x0604, 0x060b),
832 	regmap_reg_range(0x0610, 0x0612),
833 	regmap_reg_range(0x0614, 0x062c),
834 	regmap_reg_range(0x0640, 0x0645),
835 	regmap_reg_range(0x0648, 0x064d),
836 
837 	/* port 1 */
838 	regmap_reg_range(0x1000, 0x1001),
839 	regmap_reg_range(0x1013, 0x1013),
840 	regmap_reg_range(0x1017, 0x1017),
841 	regmap_reg_range(0x101b, 0x101b),
842 	regmap_reg_range(0x101f, 0x1020),
843 	regmap_reg_range(0x1030, 0x1030),
844 	regmap_reg_range(0x1100, 0x1115),
845 	regmap_reg_range(0x111a, 0x111f),
846 	regmap_reg_range(0x1120, 0x112b),
847 	regmap_reg_range(0x1134, 0x113b),
848 	regmap_reg_range(0x113c, 0x113f),
849 	regmap_reg_range(0x1400, 0x1401),
850 	regmap_reg_range(0x1403, 0x1403),
851 	regmap_reg_range(0x1410, 0x1417),
852 	regmap_reg_range(0x1420, 0x1423),
853 	regmap_reg_range(0x1500, 0x1507),
854 	regmap_reg_range(0x1600, 0x1613),
855 	regmap_reg_range(0x1800, 0x180f),
856 	regmap_reg_range(0x1820, 0x1827),
857 	regmap_reg_range(0x1830, 0x1837),
858 	regmap_reg_range(0x1840, 0x184b),
859 	regmap_reg_range(0x1900, 0x1907),
860 	regmap_reg_range(0x1914, 0x191b),
861 	regmap_reg_range(0x1920, 0x1920),
862 	regmap_reg_range(0x1923, 0x1927),
863 	regmap_reg_range(0x1a00, 0x1a03),
864 	regmap_reg_range(0x1a04, 0x1a07),
865 	regmap_reg_range(0x1b00, 0x1b01),
866 	regmap_reg_range(0x1b04, 0x1b04),
867 	regmap_reg_range(0x1c00, 0x1c05),
868 	regmap_reg_range(0x1c08, 0x1c1b),
869 
870 	/* port 2 */
871 	regmap_reg_range(0x2000, 0x2001),
872 	regmap_reg_range(0x2013, 0x2013),
873 	regmap_reg_range(0x2017, 0x2017),
874 	regmap_reg_range(0x201b, 0x201b),
875 	regmap_reg_range(0x201f, 0x2020),
876 	regmap_reg_range(0x2030, 0x2030),
877 	regmap_reg_range(0x2100, 0x2115),
878 	regmap_reg_range(0x211a, 0x211f),
879 	regmap_reg_range(0x2120, 0x212b),
880 	regmap_reg_range(0x2134, 0x213b),
881 	regmap_reg_range(0x213c, 0x213f),
882 	regmap_reg_range(0x2400, 0x2401),
883 	regmap_reg_range(0x2403, 0x2403),
884 	regmap_reg_range(0x2410, 0x2417),
885 	regmap_reg_range(0x2420, 0x2423),
886 	regmap_reg_range(0x2500, 0x2507),
887 	regmap_reg_range(0x2600, 0x2613),
888 	regmap_reg_range(0x2800, 0x280f),
889 	regmap_reg_range(0x2820, 0x2827),
890 	regmap_reg_range(0x2830, 0x2837),
891 	regmap_reg_range(0x2840, 0x284b),
892 	regmap_reg_range(0x2900, 0x2907),
893 	regmap_reg_range(0x2914, 0x291b),
894 	regmap_reg_range(0x2920, 0x2920),
895 	regmap_reg_range(0x2923, 0x2927),
896 	regmap_reg_range(0x2a00, 0x2a03),
897 	regmap_reg_range(0x2a04, 0x2a07),
898 	regmap_reg_range(0x2b00, 0x2b01),
899 	regmap_reg_range(0x2b04, 0x2b04),
900 	regmap_reg_range(0x2c00, 0x2c05),
901 	regmap_reg_range(0x2c08, 0x2c1b),
902 
903 	/* port 3 */
904 	regmap_reg_range(0x3000, 0x3001),
905 	regmap_reg_range(0x3013, 0x3013),
906 	regmap_reg_range(0x3017, 0x3017),
907 	regmap_reg_range(0x301b, 0x301b),
908 	regmap_reg_range(0x301f, 0x3020),
909 	regmap_reg_range(0x3030, 0x3030),
910 	regmap_reg_range(0x3100, 0x3115),
911 	regmap_reg_range(0x311a, 0x311f),
912 	regmap_reg_range(0x3120, 0x312b),
913 	regmap_reg_range(0x3134, 0x313b),
914 	regmap_reg_range(0x313c, 0x313f),
915 	regmap_reg_range(0x3400, 0x3401),
916 	regmap_reg_range(0x3403, 0x3403),
917 	regmap_reg_range(0x3410, 0x3417),
918 	regmap_reg_range(0x3420, 0x3423),
919 	regmap_reg_range(0x3500, 0x3507),
920 	regmap_reg_range(0x3600, 0x3613),
921 	regmap_reg_range(0x3800, 0x380f),
922 	regmap_reg_range(0x3820, 0x3827),
923 	regmap_reg_range(0x3830, 0x3837),
924 	regmap_reg_range(0x3840, 0x384b),
925 	regmap_reg_range(0x3900, 0x3907),
926 	regmap_reg_range(0x3914, 0x391b),
927 	regmap_reg_range(0x3920, 0x3920),
928 	regmap_reg_range(0x3923, 0x3927),
929 	regmap_reg_range(0x3a00, 0x3a03),
930 	regmap_reg_range(0x3a04, 0x3a07),
931 	regmap_reg_range(0x3b00, 0x3b01),
932 	regmap_reg_range(0x3b04, 0x3b04),
933 	regmap_reg_range(0x3c00, 0x3c05),
934 	regmap_reg_range(0x3c08, 0x3c1b),
935 
936 	/* port 4 */
937 	regmap_reg_range(0x4000, 0x4001),
938 	regmap_reg_range(0x4013, 0x4013),
939 	regmap_reg_range(0x4017, 0x4017),
940 	regmap_reg_range(0x401b, 0x401b),
941 	regmap_reg_range(0x401f, 0x4020),
942 	regmap_reg_range(0x4030, 0x4030),
943 	regmap_reg_range(0x4100, 0x4115),
944 	regmap_reg_range(0x411a, 0x411f),
945 	regmap_reg_range(0x4120, 0x412b),
946 	regmap_reg_range(0x4134, 0x413b),
947 	regmap_reg_range(0x413c, 0x413f),
948 	regmap_reg_range(0x4400, 0x4401),
949 	regmap_reg_range(0x4403, 0x4403),
950 	regmap_reg_range(0x4410, 0x4417),
951 	regmap_reg_range(0x4420, 0x4423),
952 	regmap_reg_range(0x4500, 0x4507),
953 	regmap_reg_range(0x4600, 0x4613),
954 	regmap_reg_range(0x4800, 0x480f),
955 	regmap_reg_range(0x4820, 0x4827),
956 	regmap_reg_range(0x4830, 0x4837),
957 	regmap_reg_range(0x4840, 0x484b),
958 	regmap_reg_range(0x4900, 0x4907),
959 	regmap_reg_range(0x4914, 0x491b),
960 	regmap_reg_range(0x4920, 0x4920),
961 	regmap_reg_range(0x4923, 0x4927),
962 	regmap_reg_range(0x4a00, 0x4a03),
963 	regmap_reg_range(0x4a04, 0x4a07),
964 	regmap_reg_range(0x4b00, 0x4b01),
965 	regmap_reg_range(0x4b04, 0x4b04),
966 	regmap_reg_range(0x4c00, 0x4c05),
967 	regmap_reg_range(0x4c08, 0x4c1b),
968 
969 	/* port 5 */
970 	regmap_reg_range(0x5000, 0x5001),
971 	regmap_reg_range(0x5013, 0x5013),
972 	regmap_reg_range(0x5017, 0x5017),
973 	regmap_reg_range(0x501b, 0x501b),
974 	regmap_reg_range(0x501f, 0x5020),
975 	regmap_reg_range(0x5030, 0x5030),
976 	regmap_reg_range(0x5100, 0x5115),
977 	regmap_reg_range(0x511a, 0x511f),
978 	regmap_reg_range(0x5120, 0x512b),
979 	regmap_reg_range(0x5134, 0x513b),
980 	regmap_reg_range(0x513c, 0x513f),
981 	regmap_reg_range(0x5400, 0x5401),
982 	regmap_reg_range(0x5403, 0x5403),
983 	regmap_reg_range(0x5410, 0x5417),
984 	regmap_reg_range(0x5420, 0x5423),
985 	regmap_reg_range(0x5500, 0x5507),
986 	regmap_reg_range(0x5600, 0x5613),
987 	regmap_reg_range(0x5800, 0x580f),
988 	regmap_reg_range(0x5820, 0x5827),
989 	regmap_reg_range(0x5830, 0x5837),
990 	regmap_reg_range(0x5840, 0x584b),
991 	regmap_reg_range(0x5900, 0x5907),
992 	regmap_reg_range(0x5914, 0x591b),
993 	regmap_reg_range(0x5920, 0x5920),
994 	regmap_reg_range(0x5923, 0x5927),
995 	regmap_reg_range(0x5a00, 0x5a03),
996 	regmap_reg_range(0x5a04, 0x5a07),
997 	regmap_reg_range(0x5b00, 0x5b01),
998 	regmap_reg_range(0x5b04, 0x5b04),
999 	regmap_reg_range(0x5c00, 0x5c05),
1000 	regmap_reg_range(0x5c08, 0x5c1b),
1001 
1002 	/* port 6 */
1003 	regmap_reg_range(0x6000, 0x6001),
1004 	regmap_reg_range(0x6013, 0x6013),
1005 	regmap_reg_range(0x6017, 0x6017),
1006 	regmap_reg_range(0x601b, 0x601b),
1007 	regmap_reg_range(0x601f, 0x6020),
1008 	regmap_reg_range(0x6030, 0x6030),
1009 	regmap_reg_range(0x6300, 0x6301),
1010 	regmap_reg_range(0x6400, 0x6401),
1011 	regmap_reg_range(0x6403, 0x6403),
1012 	regmap_reg_range(0x6410, 0x6417),
1013 	regmap_reg_range(0x6420, 0x6423),
1014 	regmap_reg_range(0x6500, 0x6507),
1015 	regmap_reg_range(0x6600, 0x6613),
1016 	regmap_reg_range(0x6800, 0x680f),
1017 	regmap_reg_range(0x6820, 0x6827),
1018 	regmap_reg_range(0x6830, 0x6837),
1019 	regmap_reg_range(0x6840, 0x684b),
1020 	regmap_reg_range(0x6900, 0x6907),
1021 	regmap_reg_range(0x6914, 0x691b),
1022 	regmap_reg_range(0x6920, 0x6920),
1023 	regmap_reg_range(0x6923, 0x6927),
1024 	regmap_reg_range(0x6a00, 0x6a03),
1025 	regmap_reg_range(0x6a04, 0x6a07),
1026 	regmap_reg_range(0x6b00, 0x6b01),
1027 	regmap_reg_range(0x6b04, 0x6b04),
1028 	regmap_reg_range(0x6c00, 0x6c05),
1029 	regmap_reg_range(0x6c08, 0x6c1b),
1030 
1031 	/* port 7 */
1032 	regmap_reg_range(0x7000, 0x7001),
1033 	regmap_reg_range(0x7013, 0x7013),
1034 	regmap_reg_range(0x7017, 0x7017),
1035 	regmap_reg_range(0x701b, 0x701b),
1036 	regmap_reg_range(0x701f, 0x7020),
1037 	regmap_reg_range(0x7030, 0x7030),
1038 	regmap_reg_range(0x7200, 0x7203),
1039 	regmap_reg_range(0x7206, 0x7207),
1040 	regmap_reg_range(0x7300, 0x7301),
1041 	regmap_reg_range(0x7400, 0x7401),
1042 	regmap_reg_range(0x7403, 0x7403),
1043 	regmap_reg_range(0x7410, 0x7417),
1044 	regmap_reg_range(0x7420, 0x7423),
1045 	regmap_reg_range(0x7500, 0x7507),
1046 	regmap_reg_range(0x7600, 0x7613),
1047 	regmap_reg_range(0x7800, 0x780f),
1048 	regmap_reg_range(0x7820, 0x7827),
1049 	regmap_reg_range(0x7830, 0x7837),
1050 	regmap_reg_range(0x7840, 0x784b),
1051 	regmap_reg_range(0x7900, 0x7907),
1052 	regmap_reg_range(0x7914, 0x791b),
1053 	regmap_reg_range(0x7920, 0x7920),
1054 	regmap_reg_range(0x7923, 0x7927),
1055 	regmap_reg_range(0x7a00, 0x7a03),
1056 	regmap_reg_range(0x7a04, 0x7a07),
1057 	regmap_reg_range(0x7b00, 0x7b01),
1058 	regmap_reg_range(0x7b04, 0x7b04),
1059 	regmap_reg_range(0x7c00, 0x7c05),
1060 	regmap_reg_range(0x7c08, 0x7c1b),
1061 };
1062 
1063 static const struct regmap_access_table ksz9477_register_set = {
1064 	.yes_ranges = ksz9477_valid_regs,
1065 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1066 };
1067 
1068 static const struct regmap_range ksz9896_valid_regs[] = {
1069 	regmap_reg_range(0x0000, 0x0003),
1070 	regmap_reg_range(0x0006, 0x0006),
1071 	regmap_reg_range(0x0010, 0x001f),
1072 	regmap_reg_range(0x0100, 0x0100),
1073 	regmap_reg_range(0x0103, 0x0107),
1074 	regmap_reg_range(0x010d, 0x010d),
1075 	regmap_reg_range(0x0110, 0x0113),
1076 	regmap_reg_range(0x0120, 0x0127),
1077 	regmap_reg_range(0x0201, 0x0201),
1078 	regmap_reg_range(0x0210, 0x0213),
1079 	regmap_reg_range(0x0300, 0x0300),
1080 	regmap_reg_range(0x0302, 0x030b),
1081 	regmap_reg_range(0x0310, 0x031b),
1082 	regmap_reg_range(0x0320, 0x032b),
1083 	regmap_reg_range(0x0330, 0x0336),
1084 	regmap_reg_range(0x0338, 0x033b),
1085 	regmap_reg_range(0x033e, 0x033e),
1086 	regmap_reg_range(0x0340, 0x035f),
1087 	regmap_reg_range(0x0370, 0x0370),
1088 	regmap_reg_range(0x0378, 0x0378),
1089 	regmap_reg_range(0x037c, 0x037d),
1090 	regmap_reg_range(0x0390, 0x0393),
1091 	regmap_reg_range(0x0400, 0x040e),
1092 	regmap_reg_range(0x0410, 0x042f),
1093 
1094 	/* port 1 */
1095 	regmap_reg_range(0x1000, 0x1001),
1096 	regmap_reg_range(0x1013, 0x1013),
1097 	regmap_reg_range(0x1017, 0x1017),
1098 	regmap_reg_range(0x101b, 0x101b),
1099 	regmap_reg_range(0x101f, 0x1020),
1100 	regmap_reg_range(0x1030, 0x1030),
1101 	regmap_reg_range(0x1100, 0x1115),
1102 	regmap_reg_range(0x111a, 0x111f),
1103 	regmap_reg_range(0x1120, 0x112b),
1104 	regmap_reg_range(0x1134, 0x113b),
1105 	regmap_reg_range(0x113c, 0x113f),
1106 	regmap_reg_range(0x1400, 0x1401),
1107 	regmap_reg_range(0x1403, 0x1403),
1108 	regmap_reg_range(0x1410, 0x1417),
1109 	regmap_reg_range(0x1420, 0x1423),
1110 	regmap_reg_range(0x1500, 0x1507),
1111 	regmap_reg_range(0x1600, 0x1612),
1112 	regmap_reg_range(0x1800, 0x180f),
1113 	regmap_reg_range(0x1820, 0x1827),
1114 	regmap_reg_range(0x1830, 0x1837),
1115 	regmap_reg_range(0x1840, 0x184b),
1116 	regmap_reg_range(0x1900, 0x1907),
1117 	regmap_reg_range(0x1914, 0x1915),
1118 	regmap_reg_range(0x1a00, 0x1a03),
1119 	regmap_reg_range(0x1a04, 0x1a07),
1120 	regmap_reg_range(0x1b00, 0x1b01),
1121 	regmap_reg_range(0x1b04, 0x1b04),
1122 
1123 	/* port 2 */
1124 	regmap_reg_range(0x2000, 0x2001),
1125 	regmap_reg_range(0x2013, 0x2013),
1126 	regmap_reg_range(0x2017, 0x2017),
1127 	regmap_reg_range(0x201b, 0x201b),
1128 	regmap_reg_range(0x201f, 0x2020),
1129 	regmap_reg_range(0x2030, 0x2030),
1130 	regmap_reg_range(0x2100, 0x2115),
1131 	regmap_reg_range(0x211a, 0x211f),
1132 	regmap_reg_range(0x2120, 0x212b),
1133 	regmap_reg_range(0x2134, 0x213b),
1134 	regmap_reg_range(0x213c, 0x213f),
1135 	regmap_reg_range(0x2400, 0x2401),
1136 	regmap_reg_range(0x2403, 0x2403),
1137 	regmap_reg_range(0x2410, 0x2417),
1138 	regmap_reg_range(0x2420, 0x2423),
1139 	regmap_reg_range(0x2500, 0x2507),
1140 	regmap_reg_range(0x2600, 0x2612),
1141 	regmap_reg_range(0x2800, 0x280f),
1142 	regmap_reg_range(0x2820, 0x2827),
1143 	regmap_reg_range(0x2830, 0x2837),
1144 	regmap_reg_range(0x2840, 0x284b),
1145 	regmap_reg_range(0x2900, 0x2907),
1146 	regmap_reg_range(0x2914, 0x2915),
1147 	regmap_reg_range(0x2a00, 0x2a03),
1148 	regmap_reg_range(0x2a04, 0x2a07),
1149 	regmap_reg_range(0x2b00, 0x2b01),
1150 	regmap_reg_range(0x2b04, 0x2b04),
1151 
1152 	/* port 3 */
1153 	regmap_reg_range(0x3000, 0x3001),
1154 	regmap_reg_range(0x3013, 0x3013),
1155 	regmap_reg_range(0x3017, 0x3017),
1156 	regmap_reg_range(0x301b, 0x301b),
1157 	regmap_reg_range(0x301f, 0x3020),
1158 	regmap_reg_range(0x3030, 0x3030),
1159 	regmap_reg_range(0x3100, 0x3115),
1160 	regmap_reg_range(0x311a, 0x311f),
1161 	regmap_reg_range(0x3120, 0x312b),
1162 	regmap_reg_range(0x3134, 0x313b),
1163 	regmap_reg_range(0x313c, 0x313f),
1164 	regmap_reg_range(0x3400, 0x3401),
1165 	regmap_reg_range(0x3403, 0x3403),
1166 	regmap_reg_range(0x3410, 0x3417),
1167 	regmap_reg_range(0x3420, 0x3423),
1168 	regmap_reg_range(0x3500, 0x3507),
1169 	regmap_reg_range(0x3600, 0x3612),
1170 	regmap_reg_range(0x3800, 0x380f),
1171 	regmap_reg_range(0x3820, 0x3827),
1172 	regmap_reg_range(0x3830, 0x3837),
1173 	regmap_reg_range(0x3840, 0x384b),
1174 	regmap_reg_range(0x3900, 0x3907),
1175 	regmap_reg_range(0x3914, 0x3915),
1176 	regmap_reg_range(0x3a00, 0x3a03),
1177 	regmap_reg_range(0x3a04, 0x3a07),
1178 	regmap_reg_range(0x3b00, 0x3b01),
1179 	regmap_reg_range(0x3b04, 0x3b04),
1180 
1181 	/* port 4 */
1182 	regmap_reg_range(0x4000, 0x4001),
1183 	regmap_reg_range(0x4013, 0x4013),
1184 	regmap_reg_range(0x4017, 0x4017),
1185 	regmap_reg_range(0x401b, 0x401b),
1186 	regmap_reg_range(0x401f, 0x4020),
1187 	regmap_reg_range(0x4030, 0x4030),
1188 	regmap_reg_range(0x4100, 0x4115),
1189 	regmap_reg_range(0x411a, 0x411f),
1190 	regmap_reg_range(0x4120, 0x412b),
1191 	regmap_reg_range(0x4134, 0x413b),
1192 	regmap_reg_range(0x413c, 0x413f),
1193 	regmap_reg_range(0x4400, 0x4401),
1194 	regmap_reg_range(0x4403, 0x4403),
1195 	regmap_reg_range(0x4410, 0x4417),
1196 	regmap_reg_range(0x4420, 0x4423),
1197 	regmap_reg_range(0x4500, 0x4507),
1198 	regmap_reg_range(0x4600, 0x4612),
1199 	regmap_reg_range(0x4800, 0x480f),
1200 	regmap_reg_range(0x4820, 0x4827),
1201 	regmap_reg_range(0x4830, 0x4837),
1202 	regmap_reg_range(0x4840, 0x484b),
1203 	regmap_reg_range(0x4900, 0x4907),
1204 	regmap_reg_range(0x4914, 0x4915),
1205 	regmap_reg_range(0x4a00, 0x4a03),
1206 	regmap_reg_range(0x4a04, 0x4a07),
1207 	regmap_reg_range(0x4b00, 0x4b01),
1208 	regmap_reg_range(0x4b04, 0x4b04),
1209 
1210 	/* port 5 */
1211 	regmap_reg_range(0x5000, 0x5001),
1212 	regmap_reg_range(0x5013, 0x5013),
1213 	regmap_reg_range(0x5017, 0x5017),
1214 	regmap_reg_range(0x501b, 0x501b),
1215 	regmap_reg_range(0x501f, 0x5020),
1216 	regmap_reg_range(0x5030, 0x5030),
1217 	regmap_reg_range(0x5100, 0x5115),
1218 	regmap_reg_range(0x511a, 0x511f),
1219 	regmap_reg_range(0x5120, 0x512b),
1220 	regmap_reg_range(0x5134, 0x513b),
1221 	regmap_reg_range(0x513c, 0x513f),
1222 	regmap_reg_range(0x5400, 0x5401),
1223 	regmap_reg_range(0x5403, 0x5403),
1224 	regmap_reg_range(0x5410, 0x5417),
1225 	regmap_reg_range(0x5420, 0x5423),
1226 	regmap_reg_range(0x5500, 0x5507),
1227 	regmap_reg_range(0x5600, 0x5612),
1228 	regmap_reg_range(0x5800, 0x580f),
1229 	regmap_reg_range(0x5820, 0x5827),
1230 	regmap_reg_range(0x5830, 0x5837),
1231 	regmap_reg_range(0x5840, 0x584b),
1232 	regmap_reg_range(0x5900, 0x5907),
1233 	regmap_reg_range(0x5914, 0x5915),
1234 	regmap_reg_range(0x5a00, 0x5a03),
1235 	regmap_reg_range(0x5a04, 0x5a07),
1236 	regmap_reg_range(0x5b00, 0x5b01),
1237 	regmap_reg_range(0x5b04, 0x5b04),
1238 
1239 	/* port 6 */
1240 	regmap_reg_range(0x6000, 0x6001),
1241 	regmap_reg_range(0x6013, 0x6013),
1242 	regmap_reg_range(0x6017, 0x6017),
1243 	regmap_reg_range(0x601b, 0x601b),
1244 	regmap_reg_range(0x601f, 0x6020),
1245 	regmap_reg_range(0x6030, 0x6030),
1246 	regmap_reg_range(0x6100, 0x6115),
1247 	regmap_reg_range(0x611a, 0x611f),
1248 	regmap_reg_range(0x6120, 0x612b),
1249 	regmap_reg_range(0x6134, 0x613b),
1250 	regmap_reg_range(0x613c, 0x613f),
1251 	regmap_reg_range(0x6300, 0x6301),
1252 	regmap_reg_range(0x6400, 0x6401),
1253 	regmap_reg_range(0x6403, 0x6403),
1254 	regmap_reg_range(0x6410, 0x6417),
1255 	regmap_reg_range(0x6420, 0x6423),
1256 	regmap_reg_range(0x6500, 0x6507),
1257 	regmap_reg_range(0x6600, 0x6612),
1258 	regmap_reg_range(0x6800, 0x680f),
1259 	regmap_reg_range(0x6820, 0x6827),
1260 	regmap_reg_range(0x6830, 0x6837),
1261 	regmap_reg_range(0x6840, 0x684b),
1262 	regmap_reg_range(0x6900, 0x6907),
1263 	regmap_reg_range(0x6914, 0x6915),
1264 	regmap_reg_range(0x6a00, 0x6a03),
1265 	regmap_reg_range(0x6a04, 0x6a07),
1266 	regmap_reg_range(0x6b00, 0x6b01),
1267 	regmap_reg_range(0x6b04, 0x6b04),
1268 };
1269 
1270 static const struct regmap_access_table ksz9896_register_set = {
1271 	.yes_ranges = ksz9896_valid_regs,
1272 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1273 };
1274 
1275 static const struct regmap_range ksz8873_valid_regs[] = {
1276 	regmap_reg_range(0x00, 0x01),
1277 	/* global control register */
1278 	regmap_reg_range(0x02, 0x0f),
1279 
1280 	/* port registers */
1281 	regmap_reg_range(0x10, 0x1d),
1282 	regmap_reg_range(0x1e, 0x1f),
1283 	regmap_reg_range(0x20, 0x2d),
1284 	regmap_reg_range(0x2e, 0x2f),
1285 	regmap_reg_range(0x30, 0x39),
1286 	regmap_reg_range(0x3f, 0x3f),
1287 
1288 	/* advanced control registers */
1289 	regmap_reg_range(0x60, 0x6f),
1290 	regmap_reg_range(0x70, 0x75),
1291 	regmap_reg_range(0x76, 0x78),
1292 	regmap_reg_range(0x79, 0x7a),
1293 	regmap_reg_range(0x7b, 0x83),
1294 	regmap_reg_range(0x8e, 0x99),
1295 	regmap_reg_range(0x9a, 0xa5),
1296 	regmap_reg_range(0xa6, 0xa6),
1297 	regmap_reg_range(0xa7, 0xaa),
1298 	regmap_reg_range(0xab, 0xae),
1299 	regmap_reg_range(0xaf, 0xba),
1300 	regmap_reg_range(0xbb, 0xbc),
1301 	regmap_reg_range(0xbd, 0xbd),
1302 	regmap_reg_range(0xc0, 0xc0),
1303 	regmap_reg_range(0xc2, 0xc2),
1304 	regmap_reg_range(0xc3, 0xc3),
1305 	regmap_reg_range(0xc4, 0xc4),
1306 	regmap_reg_range(0xc6, 0xc6),
1307 };
1308 
1309 static const struct regmap_access_table ksz8873_register_set = {
1310 	.yes_ranges = ksz8873_valid_regs,
1311 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1312 };
1313 
1314 const struct ksz_chip_data ksz_switch_chips[] = {
1315 	[KSZ8563] = {
1316 		.chip_id = KSZ8563_CHIP_ID,
1317 		.dev_name = "KSZ8563",
1318 		.num_vlans = 4096,
1319 		.num_alus = 4096,
1320 		.num_statics = 16,
1321 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1322 		.port_cnt = 3,		/* total port count */
1323 		.port_nirqs = 3,
1324 		.num_tx_queues = 4,
1325 		.num_ipms = 8,
1326 		.tc_cbs_supported = true,
1327 		.ops = &ksz9477_dev_ops,
1328 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1329 		.mib_names = ksz9477_mib_names,
1330 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1331 		.reg_mib_cnt = MIB_COUNTER_NUM,
1332 		.regs = ksz9477_regs,
1333 		.masks = ksz9477_masks,
1334 		.shifts = ksz9477_shifts,
1335 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1336 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1337 		.supports_mii = {false, false, true},
1338 		.supports_rmii = {false, false, true},
1339 		.supports_rgmii = {false, false, true},
1340 		.internal_phy = {true, true, false},
1341 		.gbit_capable = {false, false, true},
1342 		.ptp_capable = true,
1343 		.wr_table = &ksz8563_register_set,
1344 		.rd_table = &ksz8563_register_set,
1345 	},
1346 
1347 	[KSZ8795] = {
1348 		.chip_id = KSZ8795_CHIP_ID,
1349 		.dev_name = "KSZ8795",
1350 		.num_vlans = 4096,
1351 		.num_alus = 0,
1352 		.num_statics = 32,
1353 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1354 		.port_cnt = 5,		/* total cpu and user ports */
1355 		.num_tx_queues = 4,
1356 		.num_ipms = 4,
1357 		.ops = &ksz87xx_dev_ops,
1358 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1359 		.ksz87xx_eee_link_erratum = true,
1360 		.mib_names = ksz9477_mib_names,
1361 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1362 		.reg_mib_cnt = MIB_COUNTER_NUM,
1363 		.regs = ksz8795_regs,
1364 		.masks = ksz8795_masks,
1365 		.shifts = ksz8795_shifts,
1366 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1367 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1368 		.supports_mii = {false, false, false, false, true},
1369 		.supports_rmii = {false, false, false, false, true},
1370 		.supports_rgmii = {false, false, false, false, true},
1371 		.internal_phy = {true, true, true, true, false},
1372 	},
1373 
1374 	[KSZ8794] = {
1375 		/* WARNING
1376 		 * =======
1377 		 * KSZ8794 is similar to KSZ8795, except the port map
1378 		 * contains a gap between external and CPU ports, the
1379 		 * port map is NOT continuous. The per-port register
1380 		 * map is shifted accordingly too, i.e. registers at
1381 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1382 		 * used on KSZ8795 for external port 3.
1383 		 *           external  cpu
1384 		 * KSZ8794   0,1,2      4
1385 		 * KSZ8795   0,1,2,3    4
1386 		 * KSZ8765   0,1,2,3    4
1387 		 * port_cnt is configured as 5, even though it is 4
1388 		 */
1389 		.chip_id = KSZ8794_CHIP_ID,
1390 		.dev_name = "KSZ8794",
1391 		.num_vlans = 4096,
1392 		.num_alus = 0,
1393 		.num_statics = 32,
1394 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1395 		.port_cnt = 5,		/* total cpu and user ports */
1396 		.num_tx_queues = 4,
1397 		.num_ipms = 4,
1398 		.ops = &ksz87xx_dev_ops,
1399 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1400 		.ksz87xx_eee_link_erratum = true,
1401 		.mib_names = ksz9477_mib_names,
1402 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1403 		.reg_mib_cnt = MIB_COUNTER_NUM,
1404 		.regs = ksz8795_regs,
1405 		.masks = ksz8795_masks,
1406 		.shifts = ksz8795_shifts,
1407 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1408 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1409 		.supports_mii = {false, false, false, false, true},
1410 		.supports_rmii = {false, false, false, false, true},
1411 		.supports_rgmii = {false, false, false, false, true},
1412 		.internal_phy = {true, true, true, false, false},
1413 	},
1414 
1415 	[KSZ8765] = {
1416 		.chip_id = KSZ8765_CHIP_ID,
1417 		.dev_name = "KSZ8765",
1418 		.num_vlans = 4096,
1419 		.num_alus = 0,
1420 		.num_statics = 32,
1421 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1422 		.port_cnt = 5,		/* total cpu and user ports */
1423 		.num_tx_queues = 4,
1424 		.num_ipms = 4,
1425 		.ops = &ksz87xx_dev_ops,
1426 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1427 		.ksz87xx_eee_link_erratum = true,
1428 		.mib_names = ksz9477_mib_names,
1429 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1430 		.reg_mib_cnt = MIB_COUNTER_NUM,
1431 		.regs = ksz8795_regs,
1432 		.masks = ksz8795_masks,
1433 		.shifts = ksz8795_shifts,
1434 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1435 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1436 		.supports_mii = {false, false, false, false, true},
1437 		.supports_rmii = {false, false, false, false, true},
1438 		.supports_rgmii = {false, false, false, false, true},
1439 		.internal_phy = {true, true, true, true, false},
1440 	},
1441 
1442 	[KSZ88X3] = {
1443 		.chip_id = KSZ88X3_CHIP_ID,
1444 		.dev_name = "KSZ8863/KSZ8873",
1445 		.num_vlans = 16,
1446 		.num_alus = 0,
1447 		.num_statics = 8,
1448 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1449 		.port_cnt = 3,
1450 		.num_tx_queues = 4,
1451 		.num_ipms = 4,
1452 		.ops = &ksz88xx_dev_ops,
1453 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1454 		.mib_names = ksz88xx_mib_names,
1455 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1456 		.reg_mib_cnt = MIB_COUNTER_NUM,
1457 		.regs = ksz8863_regs,
1458 		.masks = ksz8863_masks,
1459 		.shifts = ksz8863_shifts,
1460 		.supports_mii = {false, false, true},
1461 		.supports_rmii = {false, false, true},
1462 		.internal_phy = {true, true, false},
1463 		.wr_table = &ksz8873_register_set,
1464 		.rd_table = &ksz8873_register_set,
1465 	},
1466 
1467 	[KSZ8864] = {
1468 		/* WARNING
1469 		 * =======
1470 		 * KSZ8864 is similar to KSZ8895, except the first port
1471 		 * does not exist.
1472 		 *           external  cpu
1473 		 * KSZ8864   1,2,3      4
1474 		 * KSZ8895   0,1,2,3    4
1475 		 * port_cnt is configured as 5, even though it is 4
1476 		 */
1477 		.chip_id = KSZ8864_CHIP_ID,
1478 		.dev_name = "KSZ8864",
1479 		.num_vlans = 4096,
1480 		.num_alus = 0,
1481 		.num_statics = 32,
1482 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1483 		.port_cnt = 5,		/* total cpu and user ports */
1484 		.num_tx_queues = 4,
1485 		.num_ipms = 4,
1486 		.ops = &ksz88xx_dev_ops,
1487 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1488 		.mib_names = ksz88xx_mib_names,
1489 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1490 		.reg_mib_cnt = MIB_COUNTER_NUM,
1491 		.regs = ksz8895_regs,
1492 		.masks = ksz8895_masks,
1493 		.shifts = ksz8895_shifts,
1494 		.supports_mii = {false, false, false, false, true},
1495 		.supports_rmii = {false, false, false, false, true},
1496 		.internal_phy = {false, true, true, true, false},
1497 	},
1498 
1499 	[KSZ8895] = {
1500 		.chip_id = KSZ8895_CHIP_ID,
1501 		.dev_name = "KSZ8895",
1502 		.num_vlans = 4096,
1503 		.num_alus = 0,
1504 		.num_statics = 32,
1505 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1506 		.port_cnt = 5,		/* total cpu and user ports */
1507 		.num_tx_queues = 4,
1508 		.num_ipms = 4,
1509 		.ops = &ksz88xx_dev_ops,
1510 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1511 		.mib_names = ksz88xx_mib_names,
1512 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1513 		.reg_mib_cnt = MIB_COUNTER_NUM,
1514 		.regs = ksz8895_regs,
1515 		.masks = ksz8895_masks,
1516 		.shifts = ksz8895_shifts,
1517 		.supports_mii = {false, false, false, false, true},
1518 		.supports_rmii = {false, false, false, false, true},
1519 		.internal_phy = {true, true, true, true, false},
1520 	},
1521 
1522 	[KSZ9477] = {
1523 		.chip_id = KSZ9477_CHIP_ID,
1524 		.dev_name = "KSZ9477",
1525 		.num_vlans = 4096,
1526 		.num_alus = 4096,
1527 		.num_statics = 16,
1528 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1529 		.port_cnt = 7,		/* total physical port count */
1530 		.port_nirqs = 4,
1531 		.num_tx_queues = 4,
1532 		.num_ipms = 8,
1533 		.tc_cbs_supported = true,
1534 		.ops = &ksz9477_dev_ops,
1535 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1536 		.phy_errata_9477 = true,
1537 		.mib_names = ksz9477_mib_names,
1538 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1539 		.reg_mib_cnt = MIB_COUNTER_NUM,
1540 		.regs = ksz9477_regs,
1541 		.masks = ksz9477_masks,
1542 		.shifts = ksz9477_shifts,
1543 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1544 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1545 		.supports_mii	= {false, false, false, false,
1546 				   false, true, false},
1547 		.supports_rmii	= {false, false, false, false,
1548 				   false, true, false},
1549 		.supports_rgmii = {false, false, false, false,
1550 				   false, true, false},
1551 		.internal_phy	= {true, true, true, true,
1552 				   true, false, false},
1553 		.gbit_capable	= {true, true, true, true, true, true, true},
1554 		.ptp_capable = true,
1555 		.wr_table = &ksz9477_register_set,
1556 		.rd_table = &ksz9477_register_set,
1557 	},
1558 
1559 	[KSZ9896] = {
1560 		.chip_id = KSZ9896_CHIP_ID,
1561 		.dev_name = "KSZ9896",
1562 		.num_vlans = 4096,
1563 		.num_alus = 4096,
1564 		.num_statics = 16,
1565 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1566 		.port_cnt = 6,		/* total physical port count */
1567 		.port_nirqs = 2,
1568 		.num_tx_queues = 4,
1569 		.num_ipms = 8,
1570 		.ops = &ksz9477_dev_ops,
1571 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1572 		.phy_errata_9477 = true,
1573 		.mib_names = ksz9477_mib_names,
1574 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1575 		.reg_mib_cnt = MIB_COUNTER_NUM,
1576 		.regs = ksz9477_regs,
1577 		.masks = ksz9477_masks,
1578 		.shifts = ksz9477_shifts,
1579 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1580 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1581 		.supports_mii	= {false, false, false, false,
1582 				   false, true},
1583 		.supports_rmii	= {false, false, false, false,
1584 				   false, true},
1585 		.supports_rgmii = {false, false, false, false,
1586 				   false, true},
1587 		.internal_phy	= {true, true, true, true,
1588 				   true, false},
1589 		.gbit_capable	= {true, true, true, true, true, true},
1590 		.wr_table = &ksz9896_register_set,
1591 		.rd_table = &ksz9896_register_set,
1592 	},
1593 
1594 	[KSZ9897] = {
1595 		.chip_id = KSZ9897_CHIP_ID,
1596 		.dev_name = "KSZ9897",
1597 		.num_vlans = 4096,
1598 		.num_alus = 4096,
1599 		.num_statics = 16,
1600 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1601 		.port_cnt = 7,		/* total physical port count */
1602 		.port_nirqs = 2,
1603 		.num_tx_queues = 4,
1604 		.num_ipms = 8,
1605 		.ops = &ksz9477_dev_ops,
1606 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1607 		.phy_errata_9477 = true,
1608 		.mib_names = ksz9477_mib_names,
1609 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1610 		.reg_mib_cnt = MIB_COUNTER_NUM,
1611 		.regs = ksz9477_regs,
1612 		.masks = ksz9477_masks,
1613 		.shifts = ksz9477_shifts,
1614 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1615 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1616 		.supports_mii	= {false, false, false, false,
1617 				   false, true, true},
1618 		.supports_rmii	= {false, false, false, false,
1619 				   false, true, true},
1620 		.supports_rgmii = {false, false, false, false,
1621 				   false, true, true},
1622 		.internal_phy	= {true, true, true, true,
1623 				   true, false, false},
1624 		.gbit_capable	= {true, true, true, true, true, true, true},
1625 	},
1626 
1627 	[KSZ9893] = {
1628 		.chip_id = KSZ9893_CHIP_ID,
1629 		.dev_name = "KSZ9893",
1630 		.num_vlans = 4096,
1631 		.num_alus = 4096,
1632 		.num_statics = 16,
1633 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1634 		.port_cnt = 3,		/* total port count */
1635 		.port_nirqs = 2,
1636 		.num_tx_queues = 4,
1637 		.num_ipms = 8,
1638 		.ops = &ksz9477_dev_ops,
1639 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1640 		.mib_names = ksz9477_mib_names,
1641 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1642 		.reg_mib_cnt = MIB_COUNTER_NUM,
1643 		.regs = ksz9477_regs,
1644 		.masks = ksz9477_masks,
1645 		.shifts = ksz9477_shifts,
1646 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1647 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1648 		.supports_mii = {false, false, true},
1649 		.supports_rmii = {false, false, true},
1650 		.supports_rgmii = {false, false, true},
1651 		.internal_phy = {true, true, false},
1652 		.gbit_capable = {true, true, true},
1653 	},
1654 
1655 	[KSZ9563] = {
1656 		.chip_id = KSZ9563_CHIP_ID,
1657 		.dev_name = "KSZ9563",
1658 		.num_vlans = 4096,
1659 		.num_alus = 4096,
1660 		.num_statics = 16,
1661 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1662 		.port_cnt = 3,		/* total port count */
1663 		.port_nirqs = 3,
1664 		.num_tx_queues = 4,
1665 		.num_ipms = 8,
1666 		.tc_cbs_supported = true,
1667 		.ops = &ksz9477_dev_ops,
1668 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1669 		.mib_names = ksz9477_mib_names,
1670 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1671 		.reg_mib_cnt = MIB_COUNTER_NUM,
1672 		.regs = ksz9477_regs,
1673 		.masks = ksz9477_masks,
1674 		.shifts = ksz9477_shifts,
1675 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1676 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1677 		.supports_mii = {false, false, true},
1678 		.supports_rmii = {false, false, true},
1679 		.supports_rgmii = {false, false, true},
1680 		.internal_phy = {true, true, false},
1681 		.gbit_capable = {true, true, true},
1682 		.ptp_capable = true,
1683 	},
1684 
1685 	[KSZ8567] = {
1686 		.chip_id = KSZ8567_CHIP_ID,
1687 		.dev_name = "KSZ8567",
1688 		.num_vlans = 4096,
1689 		.num_alus = 4096,
1690 		.num_statics = 16,
1691 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1692 		.port_cnt = 7,		/* total port count */
1693 		.port_nirqs = 3,
1694 		.num_tx_queues = 4,
1695 		.num_ipms = 8,
1696 		.tc_cbs_supported = true,
1697 		.ops = &ksz9477_dev_ops,
1698 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1699 		.phy_errata_9477 = true,
1700 		.mib_names = ksz9477_mib_names,
1701 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1702 		.reg_mib_cnt = MIB_COUNTER_NUM,
1703 		.regs = ksz9477_regs,
1704 		.masks = ksz9477_masks,
1705 		.shifts = ksz9477_shifts,
1706 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1707 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1708 		.supports_mii	= {false, false, false, false,
1709 				   false, true, true},
1710 		.supports_rmii	= {false, false, false, false,
1711 				   false, true, true},
1712 		.supports_rgmii = {false, false, false, false,
1713 				   false, true, true},
1714 		.internal_phy	= {true, true, true, true,
1715 				   true, false, false},
1716 		.gbit_capable	= {false, false, false, false, false,
1717 				   true, true},
1718 		.ptp_capable = true,
1719 	},
1720 
1721 	[KSZ9567] = {
1722 		.chip_id = KSZ9567_CHIP_ID,
1723 		.dev_name = "KSZ9567",
1724 		.num_vlans = 4096,
1725 		.num_alus = 4096,
1726 		.num_statics = 16,
1727 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1728 		.port_cnt = 7,		/* total physical port count */
1729 		.port_nirqs = 3,
1730 		.num_tx_queues = 4,
1731 		.num_ipms = 8,
1732 		.tc_cbs_supported = true,
1733 		.ops = &ksz9477_dev_ops,
1734 		.mib_names = ksz9477_mib_names,
1735 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1736 		.reg_mib_cnt = MIB_COUNTER_NUM,
1737 		.regs = ksz9477_regs,
1738 		.masks = ksz9477_masks,
1739 		.shifts = ksz9477_shifts,
1740 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1741 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1742 		.supports_mii	= {false, false, false, false,
1743 				   false, true, true},
1744 		.supports_rmii	= {false, false, false, false,
1745 				   false, true, true},
1746 		.supports_rgmii = {false, false, false, false,
1747 				   false, true, true},
1748 		.internal_phy	= {true, true, true, true,
1749 				   true, false, false},
1750 		.gbit_capable	= {true, true, true, true, true, true, true},
1751 		.ptp_capable = true,
1752 	},
1753 
1754 	[LAN9370] = {
1755 		.chip_id = LAN9370_CHIP_ID,
1756 		.dev_name = "LAN9370",
1757 		.num_vlans = 4096,
1758 		.num_alus = 1024,
1759 		.num_statics = 256,
1760 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1761 		.port_cnt = 5,		/* total physical port count */
1762 		.port_nirqs = 6,
1763 		.num_tx_queues = 8,
1764 		.num_ipms = 8,
1765 		.tc_cbs_supported = true,
1766 		.phy_side_mdio_supported = true,
1767 		.ops = &lan937x_dev_ops,
1768 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1769 		.mib_names = ksz9477_mib_names,
1770 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1771 		.reg_mib_cnt = MIB_COUNTER_NUM,
1772 		.regs = ksz9477_regs,
1773 		.masks = lan937x_masks,
1774 		.shifts = lan937x_shifts,
1775 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1776 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1777 		.supports_mii = {false, false, false, false, true},
1778 		.supports_rmii = {false, false, false, false, true},
1779 		.supports_rgmii = {false, false, false, false, true},
1780 		.internal_phy = {true, true, true, true, false},
1781 		.ptp_capable = true,
1782 	},
1783 
1784 	[LAN9371] = {
1785 		.chip_id = LAN9371_CHIP_ID,
1786 		.dev_name = "LAN9371",
1787 		.num_vlans = 4096,
1788 		.num_alus = 1024,
1789 		.num_statics = 256,
1790 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1791 		.port_cnt = 6,		/* total physical port count */
1792 		.port_nirqs = 6,
1793 		.num_tx_queues = 8,
1794 		.num_ipms = 8,
1795 		.tc_cbs_supported = true,
1796 		.phy_side_mdio_supported = true,
1797 		.ops = &lan937x_dev_ops,
1798 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1799 		.mib_names = ksz9477_mib_names,
1800 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1801 		.reg_mib_cnt = MIB_COUNTER_NUM,
1802 		.regs = ksz9477_regs,
1803 		.masks = lan937x_masks,
1804 		.shifts = lan937x_shifts,
1805 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1806 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1807 		.supports_mii = {false, false, false, false, true, true},
1808 		.supports_rmii = {false, false, false, false, true, true},
1809 		.supports_rgmii = {false, false, false, false, true, true},
1810 		.internal_phy = {true, true, true, true, false, false},
1811 		.ptp_capable = true,
1812 	},
1813 
1814 	[LAN9372] = {
1815 		.chip_id = LAN9372_CHIP_ID,
1816 		.dev_name = "LAN9372",
1817 		.num_vlans = 4096,
1818 		.num_alus = 1024,
1819 		.num_statics = 256,
1820 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1821 		.port_cnt = 8,		/* total physical port count */
1822 		.port_nirqs = 6,
1823 		.num_tx_queues = 8,
1824 		.num_ipms = 8,
1825 		.tc_cbs_supported = true,
1826 		.phy_side_mdio_supported = true,
1827 		.ops = &lan937x_dev_ops,
1828 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1829 		.mib_names = ksz9477_mib_names,
1830 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1831 		.reg_mib_cnt = MIB_COUNTER_NUM,
1832 		.regs = ksz9477_regs,
1833 		.masks = lan937x_masks,
1834 		.shifts = lan937x_shifts,
1835 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1836 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1837 		.supports_mii	= {false, false, false, false,
1838 				   true, true, false, false},
1839 		.supports_rmii	= {false, false, false, false,
1840 				   true, true, false, false},
1841 		.supports_rgmii = {false, false, false, false,
1842 				   true, true, false, false},
1843 		.internal_phy	= {true, true, true, true,
1844 				   false, false, true, true},
1845 		.ptp_capable = true,
1846 	},
1847 
1848 	[LAN9373] = {
1849 		.chip_id = LAN9373_CHIP_ID,
1850 		.dev_name = "LAN9373",
1851 		.num_vlans = 4096,
1852 		.num_alus = 1024,
1853 		.num_statics = 256,
1854 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1855 		.port_cnt = 5,		/* total physical port count */
1856 		.port_nirqs = 6,
1857 		.num_tx_queues = 8,
1858 		.num_ipms = 8,
1859 		.tc_cbs_supported = true,
1860 		.phy_side_mdio_supported = true,
1861 		.ops = &lan937x_dev_ops,
1862 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1863 		.mib_names = ksz9477_mib_names,
1864 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1865 		.reg_mib_cnt = MIB_COUNTER_NUM,
1866 		.regs = ksz9477_regs,
1867 		.masks = lan937x_masks,
1868 		.shifts = lan937x_shifts,
1869 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1870 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1871 		.supports_mii	= {false, false, false, false,
1872 				   true, true, false, false},
1873 		.supports_rmii	= {false, false, false, false,
1874 				   true, true, false, false},
1875 		.supports_rgmii = {false, false, false, false,
1876 				   true, true, false, false},
1877 		.internal_phy	= {true, true, true, false,
1878 				   false, false, true, true},
1879 		.ptp_capable = true,
1880 	},
1881 
1882 	[LAN9374] = {
1883 		.chip_id = LAN9374_CHIP_ID,
1884 		.dev_name = "LAN9374",
1885 		.num_vlans = 4096,
1886 		.num_alus = 1024,
1887 		.num_statics = 256,
1888 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1889 		.port_cnt = 8,		/* total physical port count */
1890 		.port_nirqs = 6,
1891 		.num_tx_queues = 8,
1892 		.num_ipms = 8,
1893 		.tc_cbs_supported = true,
1894 		.phy_side_mdio_supported = true,
1895 		.ops = &lan937x_dev_ops,
1896 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1897 		.mib_names = ksz9477_mib_names,
1898 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1899 		.reg_mib_cnt = MIB_COUNTER_NUM,
1900 		.regs = ksz9477_regs,
1901 		.masks = lan937x_masks,
1902 		.shifts = lan937x_shifts,
1903 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1904 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1905 		.supports_mii	= {false, false, false, false,
1906 				   true, true, false, false},
1907 		.supports_rmii	= {false, false, false, false,
1908 				   true, true, false, false},
1909 		.supports_rgmii = {false, false, false, false,
1910 				   true, true, false, false},
1911 		.internal_phy	= {true, true, true, true,
1912 				   false, false, true, true},
1913 		.ptp_capable = true,
1914 	},
1915 
1916 	[LAN9646] = {
1917 		.chip_id = LAN9646_CHIP_ID,
1918 		.dev_name = "LAN9646",
1919 		.num_vlans = 4096,
1920 		.num_alus = 4096,
1921 		.num_statics = 16,
1922 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1923 		.port_cnt = 7,		/* total physical port count */
1924 		.port_nirqs = 4,
1925 		.num_tx_queues = 4,
1926 		.num_ipms = 8,
1927 		.ops = &ksz9477_dev_ops,
1928 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1929 		.phy_errata_9477 = true,
1930 		.mib_names = ksz9477_mib_names,
1931 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1932 		.reg_mib_cnt = MIB_COUNTER_NUM,
1933 		.regs = ksz9477_regs,
1934 		.masks = ksz9477_masks,
1935 		.shifts = ksz9477_shifts,
1936 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1937 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1938 		.supports_mii	= {false, false, false, false,
1939 				   false, true, true},
1940 		.supports_rmii	= {false, false, false, false,
1941 				   false, true, true},
1942 		.supports_rgmii = {false, false, false, false,
1943 				   false, true, true},
1944 		.internal_phy	= {true, true, true, true,
1945 				   true, false, false},
1946 		.gbit_capable	= {true, true, true, true, true, true, true},
1947 		.wr_table = &ksz9477_register_set,
1948 		.rd_table = &ksz9477_register_set,
1949 	},
1950 };
1951 EXPORT_SYMBOL_GPL(ksz_switch_chips);
1952 
1953 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1954 {
1955 	int i;
1956 
1957 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1958 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1959 
1960 		if (chip->chip_id == prod_num)
1961 			return chip;
1962 	}
1963 
1964 	return NULL;
1965 }
1966 
1967 static int ksz_check_device_id(struct ksz_device *dev)
1968 {
1969 	const struct ksz_chip_data *expected_chip_data;
1970 	u32 expected_chip_id;
1971 
1972 	if (dev->pdata) {
1973 		expected_chip_id = dev->pdata->chip_id;
1974 		expected_chip_data = ksz_lookup_info(expected_chip_id);
1975 		if (WARN_ON(!expected_chip_data))
1976 			return -ENODEV;
1977 	} else {
1978 		expected_chip_data = of_device_get_match_data(dev->dev);
1979 		expected_chip_id = expected_chip_data->chip_id;
1980 	}
1981 
1982 	if (expected_chip_id != dev->chip_id) {
1983 		dev_err(dev->dev,
1984 			"Device tree specifies chip %s but found %s, please fix it!\n",
1985 			expected_chip_data->dev_name, dev->info->dev_name);
1986 		return -ENODEV;
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1993 				 struct phylink_config *config)
1994 {
1995 	struct ksz_device *dev = ds->priv;
1996 
1997 	if (dev->info->supports_mii[port])
1998 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1999 
2000 	if (dev->info->supports_rmii[port])
2001 		__set_bit(PHY_INTERFACE_MODE_RMII,
2002 			  config->supported_interfaces);
2003 
2004 	if (dev->info->supports_rgmii[port])
2005 		phy_interface_set_rgmii(config->supported_interfaces);
2006 
2007 	if (dev->info->internal_phy[port]) {
2008 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2009 			  config->supported_interfaces);
2010 		/* Compatibility for phylib's default interface type when the
2011 		 * phy-mode property is absent
2012 		 */
2013 		__set_bit(PHY_INTERFACE_MODE_GMII,
2014 			  config->supported_interfaces);
2015 	}
2016 
2017 	if (dev->dev_ops->get_caps)
2018 		dev->dev_ops->get_caps(dev, port, config);
2019 }
2020 
2021 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
2022 {
2023 	struct ethtool_pause_stats *pstats;
2024 	struct rtnl_link_stats64 *stats;
2025 	struct ksz_stats_raw *raw;
2026 	struct ksz_port_mib *mib;
2027 	int ret;
2028 
2029 	mib = &dev->ports[port].mib;
2030 	stats = &mib->stats64;
2031 	pstats = &mib->pause_stats;
2032 	raw = (struct ksz_stats_raw *)mib->counters;
2033 
2034 	spin_lock(&mib->stats64_lock);
2035 
2036 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2037 		raw->rx_pause;
2038 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2039 		raw->tx_pause;
2040 
2041 	/* HW counters are counting bytes + FCS which is not acceptable
2042 	 * for rtnl_link_stats64 interface
2043 	 */
2044 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
2045 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
2046 
2047 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2048 		raw->rx_oversize;
2049 
2050 	stats->rx_crc_errors = raw->rx_crc_err;
2051 	stats->rx_frame_errors = raw->rx_align_err;
2052 	stats->rx_dropped = raw->rx_discards;
2053 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2054 		stats->rx_frame_errors  + stats->rx_dropped;
2055 
2056 	stats->tx_window_errors = raw->tx_late_col;
2057 	stats->tx_fifo_errors = raw->tx_discards;
2058 	stats->tx_aborted_errors = raw->tx_exc_col;
2059 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2060 		stats->tx_aborted_errors;
2061 
2062 	stats->multicast = raw->rx_mcast;
2063 	stats->collisions = raw->tx_total_col;
2064 
2065 	pstats->tx_pause_frames = raw->tx_pause;
2066 	pstats->rx_pause_frames = raw->rx_pause;
2067 
2068 	spin_unlock(&mib->stats64_lock);
2069 
2070 	if (dev->info->phy_errata_9477) {
2071 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
2072 		if (ret)
2073 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
2074 	}
2075 }
2076 
2077 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
2078 {
2079 	struct ethtool_pause_stats *pstats;
2080 	struct rtnl_link_stats64 *stats;
2081 	struct ksz88xx_stats_raw *raw;
2082 	struct ksz_port_mib *mib;
2083 
2084 	mib = &dev->ports[port].mib;
2085 	stats = &mib->stats64;
2086 	pstats = &mib->pause_stats;
2087 	raw = (struct ksz88xx_stats_raw *)mib->counters;
2088 
2089 	spin_lock(&mib->stats64_lock);
2090 
2091 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2092 		raw->rx_pause;
2093 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2094 		raw->tx_pause;
2095 
2096 	/* HW counters are counting bytes + FCS which is not acceptable
2097 	 * for rtnl_link_stats64 interface
2098 	 */
2099 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
2100 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
2101 
2102 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2103 		raw->rx_oversize;
2104 
2105 	stats->rx_crc_errors = raw->rx_crc_err;
2106 	stats->rx_frame_errors = raw->rx_align_err;
2107 	stats->rx_dropped = raw->rx_discards;
2108 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2109 		stats->rx_frame_errors  + stats->rx_dropped;
2110 
2111 	stats->tx_window_errors = raw->tx_late_col;
2112 	stats->tx_fifo_errors = raw->tx_discards;
2113 	stats->tx_aborted_errors = raw->tx_exc_col;
2114 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2115 		stats->tx_aborted_errors;
2116 
2117 	stats->multicast = raw->rx_mcast;
2118 	stats->collisions = raw->tx_total_col;
2119 
2120 	pstats->tx_pause_frames = raw->tx_pause;
2121 	pstats->rx_pause_frames = raw->rx_pause;
2122 
2123 	spin_unlock(&mib->stats64_lock);
2124 }
2125 
2126 static void ksz_get_stats64(struct dsa_switch *ds, int port,
2127 			    struct rtnl_link_stats64 *s)
2128 {
2129 	struct ksz_device *dev = ds->priv;
2130 	struct ksz_port_mib *mib;
2131 
2132 	mib = &dev->ports[port].mib;
2133 
2134 	spin_lock(&mib->stats64_lock);
2135 	memcpy(s, &mib->stats64, sizeof(*s));
2136 	spin_unlock(&mib->stats64_lock);
2137 }
2138 
2139 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
2140 				struct ethtool_pause_stats *pause_stats)
2141 {
2142 	struct ksz_device *dev = ds->priv;
2143 	struct ksz_port_mib *mib;
2144 
2145 	mib = &dev->ports[port].mib;
2146 
2147 	spin_lock(&mib->stats64_lock);
2148 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
2149 	spin_unlock(&mib->stats64_lock);
2150 }
2151 
2152 static void ksz_get_strings(struct dsa_switch *ds, int port,
2153 			    u32 stringset, uint8_t *buf)
2154 {
2155 	struct ksz_device *dev = ds->priv;
2156 	int i;
2157 
2158 	if (stringset != ETH_SS_STATS)
2159 		return;
2160 
2161 	for (i = 0; i < dev->info->mib_cnt; i++)
2162 		ethtool_puts(&buf, dev->info->mib_names[i].string);
2163 }
2164 
2165 /**
2166  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2167  *			    isolation settings.
2168  * @dev: A pointer to the struct ksz_device representing the device.
2169  * @port: The port number to adjust.
2170  *
2171  * This function dynamically adjusts the port membership configuration for a
2172  * specified port and other device ports, based on Spanning Tree Protocol (STP)
2173  * states and port isolation settings. Each port, including the CPU port, has a
2174  * membership register, represented as a bitfield, where each bit corresponds
2175  * to a port number. A set bit indicates permission to forward frames to that
2176  * port. This function iterates over all ports, updating the membership register
2177  * to reflect current forwarding permissions:
2178  *
2179  * 1. Forwards frames only to ports that are part of the same bridge group and
2180  *    in the BR_STATE_FORWARDING state.
2181  * 2. Takes into account the isolation status of ports; ports in the
2182  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2183  *    frames to each other, even if they are in the same bridge group.
2184  * 3. Ensures that the CPU port is included in the membership based on its
2185  *    upstream port configuration, allowing for management and control traffic
2186  *    to flow as required.
2187  */
2188 static void ksz_update_port_member(struct ksz_device *dev, int port)
2189 {
2190 	struct ksz_port *p = &dev->ports[port];
2191 	struct dsa_switch *ds = dev->ds;
2192 	u8 port_member = 0, cpu_port;
2193 	const struct dsa_port *dp;
2194 	int i, j;
2195 
2196 	if (!dsa_is_user_port(ds, port))
2197 		return;
2198 
2199 	dp = dsa_to_port(ds, port);
2200 	cpu_port = BIT(dsa_upstream_port(ds, port));
2201 
2202 	for (i = 0; i < ds->num_ports; i++) {
2203 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2204 		struct ksz_port *other_p = &dev->ports[i];
2205 		u8 val = 0;
2206 
2207 		if (!dsa_is_user_port(ds, i))
2208 			continue;
2209 		if (port == i)
2210 			continue;
2211 		if (!dsa_port_bridge_same(dp, other_dp))
2212 			continue;
2213 		if (other_p->stp_state != BR_STATE_FORWARDING)
2214 			continue;
2215 
2216 		/* At this point we know that "port" and "other" port [i] are in
2217 		 * the same bridge group and that "other" port [i] is in
2218 		 * forwarding stp state. If "port" is also in forwarding stp
2219 		 * state, we can allow forwarding from port [port] to port [i].
2220 		 * Except if both ports are isolated.
2221 		 */
2222 		if (p->stp_state == BR_STATE_FORWARDING &&
2223 		    !(p->isolated && other_p->isolated)) {
2224 			val |= BIT(port);
2225 			port_member |= BIT(i);
2226 		}
2227 
2228 		/* Retain port [i]'s relationship to other ports than [port] */
2229 		for (j = 0; j < ds->num_ports; j++) {
2230 			const struct dsa_port *third_dp;
2231 			struct ksz_port *third_p;
2232 
2233 			if (j == i)
2234 				continue;
2235 			if (j == port)
2236 				continue;
2237 			if (!dsa_is_user_port(ds, j))
2238 				continue;
2239 			third_p = &dev->ports[j];
2240 			if (third_p->stp_state != BR_STATE_FORWARDING)
2241 				continue;
2242 
2243 			third_dp = dsa_to_port(ds, j);
2244 
2245 			/* Now we updating relation of the "other" port [i] to
2246 			 * the "third" port [j]. We already know that "other"
2247 			 * port [i] is in forwarding stp state and that "third"
2248 			 * port [j] is in forwarding stp state too.
2249 			 * We need to check if "other" port [i] and "third" port
2250 			 * [j] are in the same bridge group and not isolated
2251 			 * before allowing forwarding from port [i] to port [j].
2252 			 */
2253 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2254 			    !(other_p->isolated && third_p->isolated))
2255 				val |= BIT(j);
2256 		}
2257 
2258 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2259 	}
2260 
2261 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2262 }
2263 
2264 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2265 {
2266 	struct ksz_device *dev = bus->priv;
2267 	u16 val;
2268 	int ret;
2269 
2270 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2271 	if (ret < 0)
2272 		return ret;
2273 
2274 	return val;
2275 }
2276 
2277 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2278 			     u16 val)
2279 {
2280 	struct ksz_device *dev = bus->priv;
2281 
2282 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2283 }
2284 
2285 /**
2286  * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus.
2287  * @bus: MDIO bus structure.
2288  * @addr: PHY address on the parent MDIO bus.
2289  * @regnum: Register number to read.
2290  *
2291  * This function provides a direct read operation on the parent MDIO bus for
2292  * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus
2293  * to retrieve data from the PHY registers at the specified address and register
2294  * number.
2295  *
2296  * Return: Value of the PHY register, or a negative error code on failure.
2297  */
2298 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum)
2299 {
2300 	struct ksz_device *dev = bus->priv;
2301 
2302 	return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum);
2303 }
2304 
2305 /**
2306  * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus.
2307  * @bus: MDIO bus structure.
2308  * @addr: PHY address on the parent MDIO bus.
2309  * @regnum: Register number to write to.
2310  * @val: Value to write to the PHY register.
2311  *
2312  * This function provides a direct write operation on the parent MDIO bus for
2313  * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus
2314  * to modify the PHY register values at the specified address.
2315  *
2316  * Return: 0 on success, or a negative error code on failure.
2317  */
2318 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum,
2319 				 u16 val)
2320 {
2321 	struct ksz_device *dev = bus->priv;
2322 
2323 	return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val);
2324 }
2325 
2326 /**
2327  * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port.
2328  * @dev: Pointer to device structure.
2329  * @addr: PHY address to map to a port.
2330  *
2331  * This function finds the corresponding switch port for a given PHY address by
2332  * iterating over all user ports on the device. It checks if a port's PHY
2333  * address in `phy_addr_map` matches the specified address and if the port
2334  * contains an internal PHY. If a match is found, the index of the port is
2335  * returned.
2336  *
2337  * Return: Port index on success, or -EINVAL if no matching port is found.
2338  */
2339 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr)
2340 {
2341 	struct dsa_switch *ds = dev->ds;
2342 	struct dsa_port *dp;
2343 
2344 	dsa_switch_for_each_user_port(dp, ds) {
2345 		if (dev->info->internal_phy[dp->index] &&
2346 		    dev->phy_addr_map[dp->index] == addr)
2347 			return dp->index;
2348 	}
2349 
2350 	return -EINVAL;
2351 }
2352 
2353 /**
2354  * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device.
2355  * @dev: Pointer to the KSZ device structure.
2356  *
2357  * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the
2358  * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in
2359  * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain.
2360  *
2361  * Return: 0 on success, or a negative error code on failure.
2362  */
2363 static int ksz_irq_phy_setup(struct ksz_device *dev)
2364 {
2365 	struct dsa_switch *ds = dev->ds;
2366 	int phy, port;
2367 	int irq;
2368 	int ret;
2369 
2370 	for (phy = 0; phy < PHY_MAX_ADDR; phy++) {
2371 		if (BIT(phy) & ds->phys_mii_mask) {
2372 			port = ksz_phy_addr_to_port(dev, phy);
2373 			if (port < 0) {
2374 				ret = port;
2375 				goto out;
2376 			}
2377 
2378 			irq = irq_find_mapping(dev->ports[port].pirq.domain,
2379 					       PORT_SRC_PHY_INT);
2380 			if (irq < 0) {
2381 				ret = irq;
2382 				goto out;
2383 			}
2384 			ds->user_mii_bus->irq[phy] = irq;
2385 		}
2386 	}
2387 	return 0;
2388 out:
2389 	while (phy--)
2390 		if (BIT(phy) & ds->phys_mii_mask)
2391 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2392 
2393 	return ret;
2394 }
2395 
2396 /**
2397  * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device.
2398  * @dev: Pointer to the KSZ device structure.
2399  *
2400  * Releases any IRQ mappings previously assigned to active PHYs in the KSZ
2401  * switch by disposing of each mapped IRQ in the `user_mii_bus` structure.
2402  */
2403 static void ksz_irq_phy_free(struct ksz_device *dev)
2404 {
2405 	struct dsa_switch *ds = dev->ds;
2406 	int phy;
2407 
2408 	for (phy = 0; phy < PHY_MAX_ADDR; phy++)
2409 		if (BIT(phy) & ds->phys_mii_mask)
2410 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2411 }
2412 
2413 /**
2414  * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT
2415  * @dev: pointer to the KSZ device structure
2416  * @bus: pointer to the MII bus structure
2417  * @mdio_np: pointer to the MDIO node in the device tree
2418  *
2419  * This function parses and validates PHY configurations for each user port
2420  * defined in the device tree for a KSZ switch device. It verifies that the
2421  * `phy-handle` properties are correctly set and that the internal PHYs match
2422  * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if
2423  * all validations pass. Logs error messages for any mismatches or missing data.
2424  *
2425  * Return: 0 on success, or a negative error code on failure.
2426  */
2427 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus,
2428 				   struct device_node *mdio_np)
2429 {
2430 	struct device_node *phy_node, *phy_parent_node;
2431 	bool phys_are_valid = true;
2432 	struct dsa_port *dp;
2433 	u32 phy_addr;
2434 	int ret;
2435 
2436 	dsa_switch_for_each_user_port(dp, dev->ds) {
2437 		if (!dev->info->internal_phy[dp->index])
2438 			continue;
2439 
2440 		phy_node = of_parse_phandle(dp->dn, "phy-handle", 0);
2441 		if (!phy_node) {
2442 			dev_err(dev->dev, "failed to parse phy-handle for port %d.\n",
2443 				dp->index);
2444 			phys_are_valid = false;
2445 			continue;
2446 		}
2447 
2448 		phy_parent_node = of_get_parent(phy_node);
2449 		if (!phy_parent_node) {
2450 			dev_err(dev->dev, "failed to get PHY-parent node for port %d\n",
2451 				dp->index);
2452 			phys_are_valid = false;
2453 		} else if (phy_parent_node != mdio_np) {
2454 			dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n",
2455 				dp->index, mdio_np, phy_parent_node);
2456 			phys_are_valid = false;
2457 		} else {
2458 			ret = of_property_read_u32(phy_node, "reg", &phy_addr);
2459 			if (ret < 0) {
2460 				dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n",
2461 					dp->index, ret);
2462 				phys_are_valid = false;
2463 			} else if (phy_addr != dev->phy_addr_map[dp->index]) {
2464 				dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n",
2465 					dp->index, dev->phy_addr_map[dp->index],
2466 					phy_addr);
2467 				phys_are_valid = false;
2468 			} else {
2469 				bus->phy_mask |= BIT(phy_addr);
2470 			}
2471 		}
2472 
2473 		of_node_put(phy_node);
2474 		of_node_put(phy_parent_node);
2475 	}
2476 
2477 	if (!phys_are_valid)
2478 		return -EINVAL;
2479 
2480 	return 0;
2481 }
2482 
2483 /**
2484  * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device.
2485  * @dev: Pointer to the KSZ device structure.
2486  *
2487  * This function sets up and registers an MDIO bus for the KSZ switch device,
2488  * allowing access to its internal PHYs. If the device supports side MDIO,
2489  * the function will configure the external MDIO controller specified by the
2490  * "mdio-parent-bus" device tree property to directly manage internal PHYs.
2491  * Otherwise, SPI or I2C access is set up for PHY access.
2492  *
2493  * Return: 0 on success, or a negative error code on failure.
2494  */
2495 static int ksz_mdio_register(struct ksz_device *dev)
2496 {
2497 	struct device_node *parent_bus_node;
2498 	struct mii_bus *parent_bus = NULL;
2499 	struct dsa_switch *ds = dev->ds;
2500 	struct device_node *mdio_np;
2501 	struct mii_bus *bus;
2502 	int ret, i;
2503 
2504 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2505 	if (!mdio_np)
2506 		return 0;
2507 
2508 	parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0);
2509 	if (parent_bus_node && !dev->info->phy_side_mdio_supported) {
2510 		dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n");
2511 		ret = -EINVAL;
2512 
2513 		goto put_mdio_node;
2514 	} else if (parent_bus_node) {
2515 		parent_bus = of_mdio_find_bus(parent_bus_node);
2516 		if (!parent_bus) {
2517 			ret = -EPROBE_DEFER;
2518 
2519 			goto put_mdio_node;
2520 		}
2521 
2522 		dev->parent_mdio_bus = parent_bus;
2523 	}
2524 
2525 	bus = devm_mdiobus_alloc(ds->dev);
2526 	if (!bus) {
2527 		ret = -ENOMEM;
2528 		goto put_mdio_node;
2529 	}
2530 
2531 	if (dev->dev_ops->mdio_bus_preinit) {
2532 		ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus);
2533 		if (ret)
2534 			goto put_mdio_node;
2535 	}
2536 
2537 	if (dev->dev_ops->create_phy_addr_map) {
2538 		ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus);
2539 		if (ret)
2540 			goto put_mdio_node;
2541 	} else {
2542 		for (i = 0; i < dev->info->port_cnt; i++)
2543 			dev->phy_addr_map[i] = i;
2544 	}
2545 
2546 	bus->priv = dev;
2547 	if (parent_bus) {
2548 		bus->read = ksz_parent_mdio_read;
2549 		bus->write = ksz_parent_mdio_write;
2550 		bus->name = "KSZ side MDIO";
2551 		snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d",
2552 			 ds->index);
2553 	} else {
2554 		bus->read = ksz_sw_mdio_read;
2555 		bus->write = ksz_sw_mdio_write;
2556 		bus->name = "ksz user smi";
2557 		if (ds->dst->index != 0) {
2558 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d-%d", ds->dst->index, ds->index);
2559 		} else {
2560 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2561 		}
2562 	}
2563 
2564 	ret = ksz_parse_dt_phy_config(dev, bus, mdio_np);
2565 	if (ret)
2566 		goto put_mdio_node;
2567 
2568 	ds->phys_mii_mask = bus->phy_mask;
2569 	bus->parent = ds->dev;
2570 
2571 	ds->user_mii_bus = bus;
2572 
2573 	if (dev->irq > 0) {
2574 		ret = ksz_irq_phy_setup(dev);
2575 		if (ret)
2576 			goto put_mdio_node;
2577 	}
2578 
2579 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2580 	if (ret) {
2581 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2582 			bus->id);
2583 		if (dev->irq > 0)
2584 			ksz_irq_phy_free(dev);
2585 	}
2586 
2587 put_mdio_node:
2588 	of_node_put(mdio_np);
2589 	of_node_put(parent_bus_node);
2590 
2591 	return ret;
2592 }
2593 
2594 static void ksz_irq_mask(struct irq_data *d)
2595 {
2596 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2597 
2598 	kirq->masked |= BIT(d->hwirq);
2599 }
2600 
2601 static void ksz_irq_unmask(struct irq_data *d)
2602 {
2603 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2604 
2605 	kirq->masked &= ~BIT(d->hwirq);
2606 }
2607 
2608 static void ksz_irq_bus_lock(struct irq_data *d)
2609 {
2610 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2611 
2612 	mutex_lock(&kirq->dev->lock_irq);
2613 }
2614 
2615 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2616 {
2617 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2618 	struct ksz_device *dev = kirq->dev;
2619 	int ret;
2620 
2621 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2622 	if (ret)
2623 		dev_err(dev->dev, "failed to change IRQ mask\n");
2624 
2625 	mutex_unlock(&dev->lock_irq);
2626 }
2627 
2628 static const struct irq_chip ksz_irq_chip = {
2629 	.name			= "ksz-irq",
2630 	.irq_mask		= ksz_irq_mask,
2631 	.irq_unmask		= ksz_irq_unmask,
2632 	.irq_bus_lock		= ksz_irq_bus_lock,
2633 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2634 };
2635 
2636 static int ksz_irq_domain_map(struct irq_domain *d,
2637 			      unsigned int irq, irq_hw_number_t hwirq)
2638 {
2639 	irq_set_chip_data(irq, d->host_data);
2640 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2641 	irq_set_noprobe(irq);
2642 
2643 	return 0;
2644 }
2645 
2646 static const struct irq_domain_ops ksz_irq_domain_ops = {
2647 	.map	= ksz_irq_domain_map,
2648 	.xlate	= irq_domain_xlate_twocell,
2649 };
2650 
2651 static void ksz_irq_free(struct ksz_irq *kirq)
2652 {
2653 	int irq, virq;
2654 
2655 	free_irq(kirq->irq_num, kirq);
2656 
2657 	for (irq = 0; irq < kirq->nirqs; irq++) {
2658 		virq = irq_find_mapping(kirq->domain, irq);
2659 		irq_dispose_mapping(virq);
2660 	}
2661 
2662 	irq_domain_remove(kirq->domain);
2663 }
2664 
2665 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2666 {
2667 	struct ksz_irq *kirq = dev_id;
2668 	unsigned int nhandled = 0;
2669 	struct ksz_device *dev;
2670 	unsigned int sub_irq;
2671 	u8 data;
2672 	int ret;
2673 	u8 n;
2674 
2675 	dev = kirq->dev;
2676 
2677 	/* Read interrupt status register */
2678 	ret = ksz_read8(dev, kirq->reg_status, &data);
2679 	if (ret)
2680 		goto out;
2681 
2682 	for (n = 0; n < kirq->nirqs; ++n) {
2683 		if (data & BIT(n)) {
2684 			sub_irq = irq_find_mapping(kirq->domain, n);
2685 			handle_nested_irq(sub_irq);
2686 			++nhandled;
2687 		}
2688 	}
2689 out:
2690 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2691 }
2692 
2693 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2694 {
2695 	int ret, n;
2696 
2697 	kirq->dev = dev;
2698 	kirq->masked = ~0;
2699 
2700 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2701 					     &ksz_irq_domain_ops, kirq);
2702 	if (!kirq->domain)
2703 		return -ENOMEM;
2704 
2705 	for (n = 0; n < kirq->nirqs; n++)
2706 		irq_create_mapping(kirq->domain, n);
2707 
2708 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2709 				   IRQF_ONESHOT, kirq->name, kirq);
2710 	if (ret)
2711 		goto out;
2712 
2713 	return 0;
2714 
2715 out:
2716 	ksz_irq_free(kirq);
2717 
2718 	return ret;
2719 }
2720 
2721 static int ksz_girq_setup(struct ksz_device *dev)
2722 {
2723 	struct ksz_irq *girq = &dev->girq;
2724 
2725 	girq->nirqs = dev->info->port_cnt;
2726 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2727 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2728 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2729 
2730 	girq->irq_num = dev->irq;
2731 
2732 	return ksz_irq_common_setup(dev, girq);
2733 }
2734 
2735 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2736 {
2737 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2738 
2739 	pirq->nirqs = dev->info->port_nirqs;
2740 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2741 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2742 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2743 
2744 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2745 	if (pirq->irq_num < 0)
2746 		return pirq->irq_num;
2747 
2748 	return ksz_irq_common_setup(dev, pirq);
2749 }
2750 
2751 static int ksz_parse_drive_strength(struct ksz_device *dev);
2752 
2753 static int ksz_setup(struct dsa_switch *ds)
2754 {
2755 	struct ksz_device *dev = ds->priv;
2756 	struct dsa_port *dp;
2757 	struct ksz_port *p;
2758 	const u16 *regs;
2759 	int ret;
2760 
2761 	regs = dev->info->regs;
2762 
2763 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2764 				       dev->info->num_vlans, GFP_KERNEL);
2765 	if (!dev->vlan_cache)
2766 		return -ENOMEM;
2767 
2768 	ret = dev->dev_ops->reset(dev);
2769 	if (ret) {
2770 		dev_err(ds->dev, "failed to reset switch\n");
2771 		return ret;
2772 	}
2773 
2774 	ret = ksz_parse_drive_strength(dev);
2775 	if (ret)
2776 		return ret;
2777 
2778 	/* set broadcast storm protection 10% rate */
2779 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2780 			   BROADCAST_STORM_RATE,
2781 			   (BROADCAST_STORM_VALUE *
2782 			   BROADCAST_STORM_PROT_RATE) / 100);
2783 
2784 	dev->dev_ops->config_cpu_port(ds);
2785 
2786 	dev->dev_ops->enable_stp_addr(dev);
2787 
2788 	ds->num_tx_queues = dev->info->num_tx_queues;
2789 
2790 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2791 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2792 
2793 	ksz_init_mib_timer(dev);
2794 
2795 	ds->configure_vlan_while_not_filtering = false;
2796 	ds->dscp_prio_mapping_is_global = true;
2797 
2798 	if (dev->dev_ops->setup) {
2799 		ret = dev->dev_ops->setup(ds);
2800 		if (ret)
2801 			return ret;
2802 	}
2803 
2804 	/* Start with learning disabled on standalone user ports, and enabled
2805 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2806 	 * CPU port will avoid flooding bridge local addresses on the network
2807 	 * in some cases.
2808 	 */
2809 	p = &dev->ports[dev->cpu_port];
2810 	p->learning = true;
2811 
2812 	if (dev->irq > 0) {
2813 		ret = ksz_girq_setup(dev);
2814 		if (ret)
2815 			return ret;
2816 
2817 		dsa_switch_for_each_user_port(dp, dev->ds) {
2818 			ret = ksz_pirq_setup(dev, dp->index);
2819 			if (ret)
2820 				goto out_girq;
2821 
2822 			if (dev->info->ptp_capable) {
2823 				ret = ksz_ptp_irq_setup(ds, dp->index);
2824 				if (ret)
2825 					goto out_pirq;
2826 			}
2827 		}
2828 	}
2829 
2830 	if (dev->info->ptp_capable) {
2831 		ret = ksz_ptp_clock_register(ds);
2832 		if (ret) {
2833 			dev_err(dev->dev, "Failed to register PTP clock: %d\n",
2834 				ret);
2835 			goto out_ptpirq;
2836 		}
2837 	}
2838 
2839 	ret = ksz_mdio_register(dev);
2840 	if (ret < 0) {
2841 		dev_err(dev->dev, "failed to register the mdio");
2842 		goto out_ptp_clock_unregister;
2843 	}
2844 
2845 	ret = ksz_dcb_init(dev);
2846 	if (ret)
2847 		goto out_ptp_clock_unregister;
2848 
2849 	/* start switch */
2850 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2851 			   SW_START, SW_START);
2852 
2853 	return 0;
2854 
2855 out_ptp_clock_unregister:
2856 	if (dev->info->ptp_capable)
2857 		ksz_ptp_clock_unregister(ds);
2858 out_ptpirq:
2859 	if (dev->irq > 0 && dev->info->ptp_capable)
2860 		dsa_switch_for_each_user_port(dp, dev->ds)
2861 			ksz_ptp_irq_free(ds, dp->index);
2862 out_pirq:
2863 	if (dev->irq > 0)
2864 		dsa_switch_for_each_user_port(dp, dev->ds)
2865 			ksz_irq_free(&dev->ports[dp->index].pirq);
2866 out_girq:
2867 	if (dev->irq > 0)
2868 		ksz_irq_free(&dev->girq);
2869 
2870 	return ret;
2871 }
2872 
2873 static void ksz_teardown(struct dsa_switch *ds)
2874 {
2875 	struct ksz_device *dev = ds->priv;
2876 	struct dsa_port *dp;
2877 
2878 	if (dev->info->ptp_capable)
2879 		ksz_ptp_clock_unregister(ds);
2880 
2881 	if (dev->irq > 0) {
2882 		dsa_switch_for_each_user_port(dp, dev->ds) {
2883 			if (dev->info->ptp_capable)
2884 				ksz_ptp_irq_free(ds, dp->index);
2885 
2886 			ksz_irq_free(&dev->ports[dp->index].pirq);
2887 		}
2888 
2889 		ksz_irq_free(&dev->girq);
2890 	}
2891 
2892 	if (dev->dev_ops->teardown)
2893 		dev->dev_ops->teardown(ds);
2894 }
2895 
2896 static void port_r_cnt(struct ksz_device *dev, int port)
2897 {
2898 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2899 	u64 *dropped;
2900 
2901 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2902 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2903 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2904 					&mib->counters[mib->cnt_ptr]);
2905 		++mib->cnt_ptr;
2906 	}
2907 
2908 	/* last one in storage */
2909 	dropped = &mib->counters[dev->info->mib_cnt];
2910 
2911 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2912 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2913 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2914 					dropped, &mib->counters[mib->cnt_ptr]);
2915 		++mib->cnt_ptr;
2916 	}
2917 	mib->cnt_ptr = 0;
2918 }
2919 
2920 static void ksz_mib_read_work(struct work_struct *work)
2921 {
2922 	struct ksz_device *dev = container_of(work, struct ksz_device,
2923 					      mib_read.work);
2924 	struct ksz_port_mib *mib;
2925 	struct ksz_port *p;
2926 	int i;
2927 
2928 	for (i = 0; i < dev->info->port_cnt; i++) {
2929 		if (dsa_is_unused_port(dev->ds, i))
2930 			continue;
2931 
2932 		p = &dev->ports[i];
2933 		mib = &p->mib;
2934 		mutex_lock(&mib->cnt_mutex);
2935 
2936 		/* Only read MIB counters when the port is told to do.
2937 		 * If not, read only dropped counters when link is not up.
2938 		 */
2939 		if (!p->read) {
2940 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2941 
2942 			if (!netif_carrier_ok(dp->user))
2943 				mib->cnt_ptr = dev->info->reg_mib_cnt;
2944 		}
2945 		port_r_cnt(dev, i);
2946 		p->read = false;
2947 
2948 		if (dev->dev_ops->r_mib_stat64)
2949 			dev->dev_ops->r_mib_stat64(dev, i);
2950 
2951 		mutex_unlock(&mib->cnt_mutex);
2952 	}
2953 
2954 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2955 }
2956 
2957 void ksz_init_mib_timer(struct ksz_device *dev)
2958 {
2959 	int i;
2960 
2961 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2962 
2963 	for (i = 0; i < dev->info->port_cnt; i++) {
2964 		struct ksz_port_mib *mib = &dev->ports[i].mib;
2965 
2966 		dev->dev_ops->port_init_cnt(dev, i);
2967 
2968 		mib->cnt_ptr = 0;
2969 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2970 	}
2971 }
2972 
2973 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2974 {
2975 	struct ksz_device *dev = ds->priv;
2976 	u16 val = 0xffff;
2977 	int ret;
2978 
2979 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2980 	if (ret)
2981 		return ret;
2982 
2983 	return val;
2984 }
2985 
2986 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2987 {
2988 	struct ksz_device *dev = ds->priv;
2989 	int ret;
2990 
2991 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2992 	if (ret)
2993 		return ret;
2994 
2995 	return 0;
2996 }
2997 
2998 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2999 {
3000 	struct ksz_device *dev = ds->priv;
3001 
3002 	switch (dev->chip_id) {
3003 	case KSZ88X3_CHIP_ID:
3004 		/* Silicon Errata Sheet (DS80000830A):
3005 		 * Port 1 does not work with LinkMD Cable-Testing.
3006 		 * Port 1 does not respond to received PAUSE control frames.
3007 		 */
3008 		if (!port)
3009 			return MICREL_KSZ8_P1_ERRATA;
3010 		break;
3011 	case KSZ8567_CHIP_ID:
3012 		/* KSZ8567R Errata DS80000752C Module 4 */
3013 	case KSZ8765_CHIP_ID:
3014 	case KSZ8794_CHIP_ID:
3015 	case KSZ8795_CHIP_ID:
3016 		/* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */
3017 	case KSZ9477_CHIP_ID:
3018 		/* KSZ9477S Errata DS80000754A Module 4 */
3019 	case KSZ9567_CHIP_ID:
3020 		/* KSZ9567S Errata DS80000756A Module 4 */
3021 	case KSZ9896_CHIP_ID:
3022 		/* KSZ9896C Errata DS80000757A Module 3 */
3023 	case KSZ9897_CHIP_ID:
3024 	case LAN9646_CHIP_ID:
3025 		/* KSZ9897R Errata DS80000758C Module 4 */
3026 		/* Energy Efficient Ethernet (EEE) feature select must be manually disabled
3027 		 *   The EEE feature is enabled by default, but it is not fully
3028 		 *   operational. It must be manually disabled through register
3029 		 *   controls. If not disabled, the PHY ports can auto-negotiate
3030 		 *   to enable EEE, and this feature can cause link drops when
3031 		 *   linked to another device supporting EEE.
3032 		 *
3033 		 * The same item appears in the errata for all switches above.
3034 		 */
3035 		return MICREL_NO_EEE;
3036 	}
3037 
3038 	return 0;
3039 }
3040 
3041 static void ksz_phylink_mac_link_down(struct phylink_config *config,
3042 				      unsigned int mode,
3043 				      phy_interface_t interface)
3044 {
3045 	struct dsa_port *dp = dsa_phylink_to_port(config);
3046 	struct ksz_device *dev = dp->ds->priv;
3047 
3048 	/* Read all MIB counters when the link is going down. */
3049 	dev->ports[dp->index].read = true;
3050 	/* timer started */
3051 	if (dev->mib_read_interval)
3052 		schedule_delayed_work(&dev->mib_read, 0);
3053 }
3054 
3055 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
3056 {
3057 	struct ksz_device *dev = ds->priv;
3058 
3059 	if (sset != ETH_SS_STATS)
3060 		return 0;
3061 
3062 	return dev->info->mib_cnt;
3063 }
3064 
3065 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
3066 				  uint64_t *buf)
3067 {
3068 	const struct dsa_port *dp = dsa_to_port(ds, port);
3069 	struct ksz_device *dev = ds->priv;
3070 	struct ksz_port_mib *mib;
3071 
3072 	mib = &dev->ports[port].mib;
3073 	mutex_lock(&mib->cnt_mutex);
3074 
3075 	/* Only read dropped counters if no link. */
3076 	if (!netif_carrier_ok(dp->user))
3077 		mib->cnt_ptr = dev->info->reg_mib_cnt;
3078 	port_r_cnt(dev, port);
3079 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
3080 	mutex_unlock(&mib->cnt_mutex);
3081 }
3082 
3083 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
3084 				struct dsa_bridge bridge,
3085 				bool *tx_fwd_offload,
3086 				struct netlink_ext_ack *extack)
3087 {
3088 	/* port_stp_state_set() will be called after to put the port in
3089 	 * appropriate state so there is no need to do anything.
3090 	 */
3091 
3092 	return 0;
3093 }
3094 
3095 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
3096 				  struct dsa_bridge bridge)
3097 {
3098 	/* port_stp_state_set() will be called after to put the port in
3099 	 * forwarding state so there is no need to do anything.
3100 	 */
3101 }
3102 
3103 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
3104 {
3105 	struct ksz_device *dev = ds->priv;
3106 
3107 	dev->dev_ops->flush_dyn_mac_table(dev, port);
3108 }
3109 
3110 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
3111 {
3112 	struct ksz_device *dev = ds->priv;
3113 
3114 	if (!dev->dev_ops->set_ageing_time)
3115 		return -EOPNOTSUPP;
3116 
3117 	return dev->dev_ops->set_ageing_time(dev, msecs);
3118 }
3119 
3120 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
3121 			    const unsigned char *addr, u16 vid,
3122 			    struct dsa_db db)
3123 {
3124 	struct ksz_device *dev = ds->priv;
3125 
3126 	if (!dev->dev_ops->fdb_add)
3127 		return -EOPNOTSUPP;
3128 
3129 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
3130 }
3131 
3132 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
3133 			    const unsigned char *addr,
3134 			    u16 vid, struct dsa_db db)
3135 {
3136 	struct ksz_device *dev = ds->priv;
3137 
3138 	if (!dev->dev_ops->fdb_del)
3139 		return -EOPNOTSUPP;
3140 
3141 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
3142 }
3143 
3144 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
3145 			     dsa_fdb_dump_cb_t *cb, void *data)
3146 {
3147 	struct ksz_device *dev = ds->priv;
3148 
3149 	if (!dev->dev_ops->fdb_dump)
3150 		return -EOPNOTSUPP;
3151 
3152 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
3153 }
3154 
3155 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
3156 			    const struct switchdev_obj_port_mdb *mdb,
3157 			    struct dsa_db db)
3158 {
3159 	struct ksz_device *dev = ds->priv;
3160 
3161 	if (!dev->dev_ops->mdb_add)
3162 		return -EOPNOTSUPP;
3163 
3164 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
3165 }
3166 
3167 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
3168 			    const struct switchdev_obj_port_mdb *mdb,
3169 			    struct dsa_db db)
3170 {
3171 	struct ksz_device *dev = ds->priv;
3172 
3173 	if (!dev->dev_ops->mdb_del)
3174 		return -EOPNOTSUPP;
3175 
3176 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
3177 }
3178 
3179 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
3180 						  int port)
3181 {
3182 	u32 queue_map = 0;
3183 	int ipm;
3184 
3185 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
3186 		int queue;
3187 
3188 		/* Traffic Type (TT) is corresponding to the Internal Priority
3189 		 * Map (IPM) in the switch. Traffic Class (TC) is
3190 		 * corresponding to the queue in the switch.
3191 		 */
3192 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
3193 		if (queue < 0)
3194 			return queue;
3195 
3196 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
3197 	}
3198 
3199 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3200 }
3201 
3202 static int ksz_port_setup(struct dsa_switch *ds, int port)
3203 {
3204 	struct ksz_device *dev = ds->priv;
3205 	int ret;
3206 
3207 	if (!dsa_is_user_port(ds, port))
3208 		return 0;
3209 
3210 	/* setup user port */
3211 	dev->dev_ops->port_setup(dev, port, false);
3212 
3213 	if (!is_ksz8(dev)) {
3214 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
3215 		if (ret)
3216 			return ret;
3217 	}
3218 
3219 	/* port_stp_state_set() will be called after to enable the port so
3220 	 * there is no need to do anything.
3221 	 */
3222 
3223 	return ksz_dcb_init_port(dev, port);
3224 }
3225 
3226 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
3227 {
3228 	struct ksz_device *dev = ds->priv;
3229 	struct ksz_port *p;
3230 	const u16 *regs;
3231 	u8 data;
3232 
3233 	regs = dev->info->regs;
3234 
3235 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
3236 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3237 
3238 	p = &dev->ports[port];
3239 
3240 	switch (state) {
3241 	case BR_STATE_DISABLED:
3242 		data |= PORT_LEARN_DISABLE;
3243 		break;
3244 	case BR_STATE_LISTENING:
3245 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3246 		break;
3247 	case BR_STATE_LEARNING:
3248 		data |= PORT_RX_ENABLE;
3249 		if (!p->learning)
3250 			data |= PORT_LEARN_DISABLE;
3251 		break;
3252 	case BR_STATE_FORWARDING:
3253 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
3254 		if (!p->learning)
3255 			data |= PORT_LEARN_DISABLE;
3256 		break;
3257 	case BR_STATE_BLOCKING:
3258 		data |= PORT_LEARN_DISABLE;
3259 		break;
3260 	default:
3261 		dev_err(ds->dev, "invalid STP state: %d\n", state);
3262 		return;
3263 	}
3264 
3265 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
3266 
3267 	p->stp_state = state;
3268 
3269 	ksz_update_port_member(dev, port);
3270 }
3271 
3272 static void ksz_port_teardown(struct dsa_switch *ds, int port)
3273 {
3274 	struct ksz_device *dev = ds->priv;
3275 
3276 	switch (dev->chip_id) {
3277 	case KSZ8563_CHIP_ID:
3278 	case KSZ8567_CHIP_ID:
3279 	case KSZ9477_CHIP_ID:
3280 	case KSZ9563_CHIP_ID:
3281 	case KSZ9567_CHIP_ID:
3282 	case KSZ9893_CHIP_ID:
3283 	case KSZ9896_CHIP_ID:
3284 	case KSZ9897_CHIP_ID:
3285 	case LAN9646_CHIP_ID:
3286 		if (dsa_is_user_port(ds, port))
3287 			ksz9477_port_acl_free(dev, port);
3288 	}
3289 }
3290 
3291 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3292 				     struct switchdev_brport_flags flags,
3293 				     struct netlink_ext_ack *extack)
3294 {
3295 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
3296 		return -EINVAL;
3297 
3298 	return 0;
3299 }
3300 
3301 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
3302 				 struct switchdev_brport_flags flags,
3303 				 struct netlink_ext_ack *extack)
3304 {
3305 	struct ksz_device *dev = ds->priv;
3306 	struct ksz_port *p = &dev->ports[port];
3307 
3308 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
3309 		if (flags.mask & BR_LEARNING)
3310 			p->learning = !!(flags.val & BR_LEARNING);
3311 
3312 		if (flags.mask & BR_ISOLATED)
3313 			p->isolated = !!(flags.val & BR_ISOLATED);
3314 
3315 		/* Make the change take effect immediately */
3316 		ksz_port_stp_state_set(ds, port, p->stp_state);
3317 	}
3318 
3319 	return 0;
3320 }
3321 
3322 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
3323 						  int port,
3324 						  enum dsa_tag_protocol mp)
3325 {
3326 	struct ksz_device *dev = ds->priv;
3327 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
3328 
3329 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
3330 		proto = DSA_TAG_PROTO_KSZ8795;
3331 
3332 	if (dev->chip_id == KSZ88X3_CHIP_ID ||
3333 	    dev->chip_id == KSZ8563_CHIP_ID ||
3334 	    dev->chip_id == KSZ9893_CHIP_ID ||
3335 	    dev->chip_id == KSZ9563_CHIP_ID)
3336 		proto = DSA_TAG_PROTO_KSZ9893;
3337 
3338 	if (dev->chip_id == KSZ8567_CHIP_ID ||
3339 	    dev->chip_id == KSZ9477_CHIP_ID ||
3340 	    dev->chip_id == KSZ9896_CHIP_ID ||
3341 	    dev->chip_id == KSZ9897_CHIP_ID ||
3342 	    dev->chip_id == KSZ9567_CHIP_ID ||
3343 	    dev->chip_id == LAN9646_CHIP_ID)
3344 		proto = DSA_TAG_PROTO_KSZ9477;
3345 
3346 	if (is_lan937x(dev))
3347 		proto = DSA_TAG_PROTO_LAN937X;
3348 
3349 	return proto;
3350 }
3351 
3352 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
3353 				    enum dsa_tag_protocol proto)
3354 {
3355 	struct ksz_tagger_data *tagger_data;
3356 
3357 	switch (proto) {
3358 	case DSA_TAG_PROTO_KSZ8795:
3359 		return 0;
3360 	case DSA_TAG_PROTO_KSZ9893:
3361 	case DSA_TAG_PROTO_KSZ9477:
3362 	case DSA_TAG_PROTO_LAN937X:
3363 		tagger_data = ksz_tagger_data(ds);
3364 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
3365 		return 0;
3366 	default:
3367 		return -EPROTONOSUPPORT;
3368 	}
3369 }
3370 
3371 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
3372 				   bool flag, struct netlink_ext_ack *extack)
3373 {
3374 	struct ksz_device *dev = ds->priv;
3375 
3376 	if (!dev->dev_ops->vlan_filtering)
3377 		return -EOPNOTSUPP;
3378 
3379 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
3380 }
3381 
3382 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
3383 			     const struct switchdev_obj_port_vlan *vlan,
3384 			     struct netlink_ext_ack *extack)
3385 {
3386 	struct ksz_device *dev = ds->priv;
3387 
3388 	if (!dev->dev_ops->vlan_add)
3389 		return -EOPNOTSUPP;
3390 
3391 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
3392 }
3393 
3394 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3395 			     const struct switchdev_obj_port_vlan *vlan)
3396 {
3397 	struct ksz_device *dev = ds->priv;
3398 
3399 	if (!dev->dev_ops->vlan_del)
3400 		return -EOPNOTSUPP;
3401 
3402 	return dev->dev_ops->vlan_del(dev, port, vlan);
3403 }
3404 
3405 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3406 			       struct dsa_mall_mirror_tc_entry *mirror,
3407 			       bool ingress, struct netlink_ext_ack *extack)
3408 {
3409 	struct ksz_device *dev = ds->priv;
3410 
3411 	if (!dev->dev_ops->mirror_add)
3412 		return -EOPNOTSUPP;
3413 
3414 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3415 }
3416 
3417 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3418 				struct dsa_mall_mirror_tc_entry *mirror)
3419 {
3420 	struct ksz_device *dev = ds->priv;
3421 
3422 	if (dev->dev_ops->mirror_del)
3423 		dev->dev_ops->mirror_del(dev, port, mirror);
3424 }
3425 
3426 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3427 {
3428 	struct ksz_device *dev = ds->priv;
3429 
3430 	if (!dev->dev_ops->change_mtu)
3431 		return -EOPNOTSUPP;
3432 
3433 	return dev->dev_ops->change_mtu(dev, port, mtu);
3434 }
3435 
3436 static int ksz_max_mtu(struct dsa_switch *ds, int port)
3437 {
3438 	struct ksz_device *dev = ds->priv;
3439 
3440 	switch (dev->chip_id) {
3441 	case KSZ8795_CHIP_ID:
3442 	case KSZ8794_CHIP_ID:
3443 	case KSZ8765_CHIP_ID:
3444 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3445 	case KSZ88X3_CHIP_ID:
3446 	case KSZ8864_CHIP_ID:
3447 	case KSZ8895_CHIP_ID:
3448 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3449 	case KSZ8563_CHIP_ID:
3450 	case KSZ8567_CHIP_ID:
3451 	case KSZ9477_CHIP_ID:
3452 	case KSZ9563_CHIP_ID:
3453 	case KSZ9567_CHIP_ID:
3454 	case KSZ9893_CHIP_ID:
3455 	case KSZ9896_CHIP_ID:
3456 	case KSZ9897_CHIP_ID:
3457 	case LAN9370_CHIP_ID:
3458 	case LAN9371_CHIP_ID:
3459 	case LAN9372_CHIP_ID:
3460 	case LAN9373_CHIP_ID:
3461 	case LAN9374_CHIP_ID:
3462 	case LAN9646_CHIP_ID:
3463 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3464 	}
3465 
3466 	return -EOPNOTSUPP;
3467 }
3468 
3469 static bool ksz_support_eee(struct dsa_switch *ds, int port)
3470 {
3471 	struct ksz_device *dev = ds->priv;
3472 
3473 	if (!dev->info->internal_phy[port])
3474 		return false;
3475 
3476 	switch (dev->chip_id) {
3477 	case KSZ8563_CHIP_ID:
3478 	case KSZ8567_CHIP_ID:
3479 	case KSZ9477_CHIP_ID:
3480 	case KSZ9563_CHIP_ID:
3481 	case KSZ9567_CHIP_ID:
3482 	case KSZ9893_CHIP_ID:
3483 	case KSZ9896_CHIP_ID:
3484 	case KSZ9897_CHIP_ID:
3485 	case LAN9646_CHIP_ID:
3486 		return true;
3487 	}
3488 
3489 	return false;
3490 }
3491 
3492 static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
3493 			   struct ethtool_keee *e)
3494 {
3495 	/* There is no documented control of Tx LPI configuration. */
3496 	e->tx_lpi_enabled = true;
3497 
3498 	/* There is no documented control of Tx LPI timer. According to tests
3499 	 * Tx LPI timer seems to be set by default to minimal value.
3500 	 */
3501 	e->tx_lpi_timer = 0;
3502 
3503 	return 0;
3504 }
3505 
3506 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3507 			   struct ethtool_keee *e)
3508 {
3509 	struct ksz_device *dev = ds->priv;
3510 
3511 	if (!e->tx_lpi_enabled) {
3512 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3513 		return -EINVAL;
3514 	}
3515 
3516 	if (e->tx_lpi_timer) {
3517 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3518 		return -EINVAL;
3519 	}
3520 
3521 	return 0;
3522 }
3523 
3524 static void ksz_set_xmii(struct ksz_device *dev, int port,
3525 			 phy_interface_t interface)
3526 {
3527 	const u8 *bitval = dev->info->xmii_ctrl1;
3528 	struct ksz_port *p = &dev->ports[port];
3529 	const u16 *regs = dev->info->regs;
3530 	u8 data8;
3531 
3532 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3533 
3534 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3535 		   P_RGMII_ID_EG_ENABLE);
3536 
3537 	switch (interface) {
3538 	case PHY_INTERFACE_MODE_MII:
3539 		data8 |= bitval[P_MII_SEL];
3540 		break;
3541 	case PHY_INTERFACE_MODE_RMII:
3542 		data8 |= bitval[P_RMII_SEL];
3543 		break;
3544 	case PHY_INTERFACE_MODE_GMII:
3545 		data8 |= bitval[P_GMII_SEL];
3546 		break;
3547 	case PHY_INTERFACE_MODE_RGMII:
3548 	case PHY_INTERFACE_MODE_RGMII_ID:
3549 	case PHY_INTERFACE_MODE_RGMII_TXID:
3550 	case PHY_INTERFACE_MODE_RGMII_RXID:
3551 		data8 |= bitval[P_RGMII_SEL];
3552 		/* On KSZ9893, disable RGMII in-band status support */
3553 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3554 		    dev->chip_id == KSZ8563_CHIP_ID ||
3555 		    dev->chip_id == KSZ9563_CHIP_ID ||
3556 		    is_lan937x(dev))
3557 			data8 &= ~P_MII_MAC_MODE;
3558 		break;
3559 	default:
3560 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3561 			phy_modes(interface), port);
3562 		return;
3563 	}
3564 
3565 	if (p->rgmii_tx_val)
3566 		data8 |= P_RGMII_ID_EG_ENABLE;
3567 
3568 	if (p->rgmii_rx_val)
3569 		data8 |= P_RGMII_ID_IG_ENABLE;
3570 
3571 	/* Write the updated value */
3572 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3573 }
3574 
3575 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3576 {
3577 	const u8 *bitval = dev->info->xmii_ctrl1;
3578 	const u16 *regs = dev->info->regs;
3579 	phy_interface_t interface;
3580 	u8 data8;
3581 	u8 val;
3582 
3583 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3584 
3585 	val = FIELD_GET(P_MII_SEL_M, data8);
3586 
3587 	if (val == bitval[P_MII_SEL]) {
3588 		if (gbit)
3589 			interface = PHY_INTERFACE_MODE_GMII;
3590 		else
3591 			interface = PHY_INTERFACE_MODE_MII;
3592 	} else if (val == bitval[P_RMII_SEL]) {
3593 		interface = PHY_INTERFACE_MODE_RMII;
3594 	} else {
3595 		interface = PHY_INTERFACE_MODE_RGMII;
3596 		if (data8 & P_RGMII_ID_EG_ENABLE)
3597 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3598 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3599 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3600 			if (data8 & P_RGMII_ID_EG_ENABLE)
3601 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3602 		}
3603 	}
3604 
3605 	return interface;
3606 }
3607 
3608 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
3609 				       unsigned int mode,
3610 				       const struct phylink_link_state *state)
3611 {
3612 	struct dsa_port *dp = dsa_phylink_to_port(config);
3613 	struct ksz_device *dev = dp->ds->priv;
3614 
3615 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3616 }
3617 
3618 static void ksz_phylink_mac_config(struct phylink_config *config,
3619 				   unsigned int mode,
3620 				   const struct phylink_link_state *state)
3621 {
3622 	struct dsa_port *dp = dsa_phylink_to_port(config);
3623 	struct ksz_device *dev = dp->ds->priv;
3624 	int port = dp->index;
3625 
3626 	/* Internal PHYs */
3627 	if (dev->info->internal_phy[port])
3628 		return;
3629 
3630 	if (phylink_autoneg_inband(mode)) {
3631 		dev_err(dev->dev, "In-band AN not supported!\n");
3632 		return;
3633 	}
3634 
3635 	ksz_set_xmii(dev, port, state->interface);
3636 
3637 	if (dev->dev_ops->setup_rgmii_delay)
3638 		dev->dev_ops->setup_rgmii_delay(dev, port);
3639 }
3640 
3641 bool ksz_get_gbit(struct ksz_device *dev, int port)
3642 {
3643 	const u8 *bitval = dev->info->xmii_ctrl1;
3644 	const u16 *regs = dev->info->regs;
3645 	bool gbit = false;
3646 	u8 data8;
3647 	bool val;
3648 
3649 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3650 
3651 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3652 
3653 	if (val == bitval[P_GMII_1GBIT])
3654 		gbit = true;
3655 
3656 	return gbit;
3657 }
3658 
3659 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3660 {
3661 	const u8 *bitval = dev->info->xmii_ctrl1;
3662 	const u16 *regs = dev->info->regs;
3663 	u8 data8;
3664 
3665 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3666 
3667 	data8 &= ~P_GMII_1GBIT_M;
3668 
3669 	if (gbit)
3670 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3671 	else
3672 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3673 
3674 	/* Write the updated value */
3675 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3676 }
3677 
3678 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3679 {
3680 	const u8 *bitval = dev->info->xmii_ctrl0;
3681 	const u16 *regs = dev->info->regs;
3682 	u8 data8;
3683 
3684 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3685 
3686 	data8 &= ~P_MII_100MBIT_M;
3687 
3688 	if (speed == SPEED_100)
3689 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3690 	else
3691 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3692 
3693 	/* Write the updated value */
3694 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3695 }
3696 
3697 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3698 {
3699 	if (speed == SPEED_1000)
3700 		ksz_set_gbit(dev, port, true);
3701 	else
3702 		ksz_set_gbit(dev, port, false);
3703 
3704 	if (speed == SPEED_100 || speed == SPEED_10)
3705 		ksz_set_100_10mbit(dev, port, speed);
3706 }
3707 
3708 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3709 				bool tx_pause, bool rx_pause)
3710 {
3711 	const u8 *bitval = dev->info->xmii_ctrl0;
3712 	const u32 *masks = dev->info->masks;
3713 	const u16 *regs = dev->info->regs;
3714 	u8 mask;
3715 	u8 val;
3716 
3717 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3718 	       masks[P_MII_RX_FLOW_CTRL];
3719 
3720 	if (duplex == DUPLEX_FULL)
3721 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3722 	else
3723 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3724 
3725 	if (tx_pause)
3726 		val |= masks[P_MII_TX_FLOW_CTRL];
3727 
3728 	if (rx_pause)
3729 		val |= masks[P_MII_RX_FLOW_CTRL];
3730 
3731 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3732 }
3733 
3734 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3735 					struct phy_device *phydev,
3736 					unsigned int mode,
3737 					phy_interface_t interface,
3738 					int speed, int duplex, bool tx_pause,
3739 					bool rx_pause)
3740 {
3741 	struct dsa_port *dp = dsa_phylink_to_port(config);
3742 	struct ksz_device *dev = dp->ds->priv;
3743 	int port = dp->index;
3744 	struct ksz_port *p;
3745 
3746 	p = &dev->ports[port];
3747 
3748 	/* Internal PHYs */
3749 	if (dev->info->internal_phy[port])
3750 		return;
3751 
3752 	p->phydev.speed = speed;
3753 
3754 	ksz_port_set_xmii_speed(dev, port, speed);
3755 
3756 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3757 }
3758 
3759 static int ksz_switch_detect(struct ksz_device *dev)
3760 {
3761 	u8 id1, id2, id4;
3762 	u16 id16;
3763 	u32 id32;
3764 	int ret;
3765 
3766 	/* read chip id */
3767 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3768 	if (ret)
3769 		return ret;
3770 
3771 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3772 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3773 
3774 	switch (id1) {
3775 	case KSZ87_FAMILY_ID:
3776 		if (id2 == KSZ87_CHIP_ID_95) {
3777 			u8 val;
3778 
3779 			dev->chip_id = KSZ8795_CHIP_ID;
3780 
3781 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3782 			if (val & KSZ8_PORT_FIBER_MODE)
3783 				dev->chip_id = KSZ8765_CHIP_ID;
3784 		} else if (id2 == KSZ87_CHIP_ID_94) {
3785 			dev->chip_id = KSZ8794_CHIP_ID;
3786 		} else {
3787 			return -ENODEV;
3788 		}
3789 		break;
3790 	case KSZ88_FAMILY_ID:
3791 		if (id2 == KSZ88_CHIP_ID_63)
3792 			dev->chip_id = KSZ88X3_CHIP_ID;
3793 		else
3794 			return -ENODEV;
3795 		break;
3796 	case KSZ8895_FAMILY_ID:
3797 		if (id2 == KSZ8895_CHIP_ID_95 ||
3798 		    id2 == KSZ8895_CHIP_ID_95R)
3799 			dev->chip_id = KSZ8895_CHIP_ID;
3800 		else
3801 			return -ENODEV;
3802 		ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4);
3803 		if (ret)
3804 			return ret;
3805 		if (id4 & SW_KSZ8864)
3806 			dev->chip_id = KSZ8864_CHIP_ID;
3807 		break;
3808 	default:
3809 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3810 		if (ret)
3811 			return ret;
3812 
3813 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3814 		id32 &= ~0xFF;
3815 
3816 		switch (id32) {
3817 		case KSZ9477_CHIP_ID:
3818 		case KSZ9896_CHIP_ID:
3819 		case KSZ9897_CHIP_ID:
3820 		case KSZ9567_CHIP_ID:
3821 		case KSZ8567_CHIP_ID:
3822 		case LAN9370_CHIP_ID:
3823 		case LAN9371_CHIP_ID:
3824 		case LAN9372_CHIP_ID:
3825 		case LAN9373_CHIP_ID:
3826 		case LAN9374_CHIP_ID:
3827 
3828 			/* LAN9646 does not have its own chip id. */
3829 			if (dev->chip_id != LAN9646_CHIP_ID)
3830 				dev->chip_id = id32;
3831 			break;
3832 		case KSZ9893_CHIP_ID:
3833 			ret = ksz_read8(dev, REG_CHIP_ID4,
3834 					&id4);
3835 			if (ret)
3836 				return ret;
3837 
3838 			if (id4 == SKU_ID_KSZ8563)
3839 				dev->chip_id = KSZ8563_CHIP_ID;
3840 			else if (id4 == SKU_ID_KSZ9563)
3841 				dev->chip_id = KSZ9563_CHIP_ID;
3842 			else
3843 				dev->chip_id = KSZ9893_CHIP_ID;
3844 
3845 			break;
3846 		default:
3847 			dev_err(dev->dev,
3848 				"unsupported switch detected %x)\n", id32);
3849 			return -ENODEV;
3850 		}
3851 	}
3852 	return 0;
3853 }
3854 
3855 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3856 			      struct flow_cls_offload *cls, bool ingress)
3857 {
3858 	struct ksz_device *dev = ds->priv;
3859 
3860 	switch (dev->chip_id) {
3861 	case KSZ8563_CHIP_ID:
3862 	case KSZ8567_CHIP_ID:
3863 	case KSZ9477_CHIP_ID:
3864 	case KSZ9563_CHIP_ID:
3865 	case KSZ9567_CHIP_ID:
3866 	case KSZ9893_CHIP_ID:
3867 	case KSZ9896_CHIP_ID:
3868 	case KSZ9897_CHIP_ID:
3869 	case LAN9646_CHIP_ID:
3870 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3871 	}
3872 
3873 	return -EOPNOTSUPP;
3874 }
3875 
3876 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3877 			      struct flow_cls_offload *cls, bool ingress)
3878 {
3879 	struct ksz_device *dev = ds->priv;
3880 
3881 	switch (dev->chip_id) {
3882 	case KSZ8563_CHIP_ID:
3883 	case KSZ8567_CHIP_ID:
3884 	case KSZ9477_CHIP_ID:
3885 	case KSZ9563_CHIP_ID:
3886 	case KSZ9567_CHIP_ID:
3887 	case KSZ9893_CHIP_ID:
3888 	case KSZ9896_CHIP_ID:
3889 	case KSZ9897_CHIP_ID:
3890 	case LAN9646_CHIP_ID:
3891 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3892 	}
3893 
3894 	return -EOPNOTSUPP;
3895 }
3896 
3897 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3898  * is converted to Hex-decimal using the successive multiplication method. On
3899  * every step, integer part is taken and decimal part is carry forwarded.
3900  */
3901 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3902 {
3903 	u32 cinc = 0;
3904 	u32 txrate;
3905 	u32 rate;
3906 	u8 temp;
3907 	u8 i;
3908 
3909 	txrate = idle_slope - send_slope;
3910 
3911 	if (!txrate)
3912 		return -EINVAL;
3913 
3914 	rate = idle_slope;
3915 
3916 	/* 24 bit register */
3917 	for (i = 0; i < 6; i++) {
3918 		rate = rate * 16;
3919 
3920 		temp = rate / txrate;
3921 
3922 		rate %= txrate;
3923 
3924 		cinc = ((cinc << 4) | temp);
3925 	}
3926 
3927 	*bw = cinc;
3928 
3929 	return 0;
3930 }
3931 
3932 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3933 			     u8 shaper)
3934 {
3935 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3936 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3937 			   FIELD_PREP(MTI_SHAPING_M, shaper));
3938 }
3939 
3940 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3941 			    struct tc_cbs_qopt_offload *qopt)
3942 {
3943 	struct ksz_device *dev = ds->priv;
3944 	int ret;
3945 	u32 bw;
3946 
3947 	if (!dev->info->tc_cbs_supported)
3948 		return -EOPNOTSUPP;
3949 
3950 	if (qopt->queue > dev->info->num_tx_queues)
3951 		return -EINVAL;
3952 
3953 	/* Queue Selection */
3954 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3955 	if (ret)
3956 		return ret;
3957 
3958 	if (!qopt->enable)
3959 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3960 					 MTI_SHAPING_OFF);
3961 
3962 	/* High Credit */
3963 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3964 			   qopt->hicredit);
3965 	if (ret)
3966 		return ret;
3967 
3968 	/* Low Credit */
3969 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3970 			   qopt->locredit);
3971 	if (ret)
3972 		return ret;
3973 
3974 	/* Credit Increment Register */
3975 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3976 	if (ret)
3977 		return ret;
3978 
3979 	if (dev->dev_ops->tc_cbs_set_cinc) {
3980 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3981 		if (ret)
3982 			return ret;
3983 	}
3984 
3985 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3986 				 MTI_SHAPING_SRP);
3987 }
3988 
3989 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3990 {
3991 	int queue, ret;
3992 
3993 	/* Configuration will not take effect until the last Port Queue X
3994 	 * Egress Limit Control Register is written.
3995 	 */
3996 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3997 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3998 				  KSZ9477_OUT_RATE_NO_LIMIT);
3999 		if (ret)
4000 			return ret;
4001 	}
4002 
4003 	return 0;
4004 }
4005 
4006 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
4007 				 int band)
4008 {
4009 	/* Compared to queues, bands prioritize packets differently. In strict
4010 	 * priority mode, the lowest priority is assigned to Queue 0 while the
4011 	 * highest priority is given to Band 0.
4012 	 */
4013 	return p->bands - 1 - band;
4014 }
4015 
4016 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
4017 {
4018 	int ret;
4019 
4020 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4021 	if (ret)
4022 		return ret;
4023 
4024 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4025 				 MTI_SHAPING_OFF);
4026 }
4027 
4028 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
4029 			     int weight)
4030 {
4031 	int ret;
4032 
4033 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4034 	if (ret)
4035 		return ret;
4036 
4037 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4038 				MTI_SHAPING_OFF);
4039 	if (ret)
4040 		return ret;
4041 
4042 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
4043 }
4044 
4045 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
4046 			  struct tc_ets_qopt_offload_replace_params *p)
4047 {
4048 	int ret, band, tc_prio;
4049 	u32 queue_map = 0;
4050 
4051 	/* In order to ensure proper prioritization, it is necessary to set the
4052 	 * rate limit for the related queue to zero. Otherwise strict priority
4053 	 * or WRR mode will not work. This is a hardware limitation.
4054 	 */
4055 	ret = ksz_disable_egress_rate_limit(dev, port);
4056 	if (ret)
4057 		return ret;
4058 
4059 	/* Configure queue scheduling mode for all bands. Currently only strict
4060 	 * prio mode is supported.
4061 	 */
4062 	for (band = 0; band < p->bands; band++) {
4063 		int queue = ksz_ets_band_to_queue(p, band);
4064 
4065 		ret = ksz_queue_set_strict(dev, port, queue);
4066 		if (ret)
4067 			return ret;
4068 	}
4069 
4070 	/* Configure the mapping between traffic classes and queues. Note:
4071 	 * priomap variable support 16 traffic classes, but the chip can handle
4072 	 * only 8 classes.
4073 	 */
4074 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
4075 		int queue;
4076 
4077 		if (tc_prio >= dev->info->num_ipms)
4078 			break;
4079 
4080 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
4081 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
4082 	}
4083 
4084 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
4085 }
4086 
4087 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
4088 {
4089 	int ret, queue;
4090 
4091 	/* To restore the default chip configuration, set all queues to use the
4092 	 * WRR scheduler with a weight of 1.
4093 	 */
4094 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4095 		ret = ksz_queue_set_wrr(dev, port, queue,
4096 					KSZ9477_DEFAULT_WRR_WEIGHT);
4097 		if (ret)
4098 			return ret;
4099 	}
4100 
4101 	/* Revert the queue mapping for TC-priority to its default setting on
4102 	 * the chip.
4103 	 */
4104 	return ksz9477_set_default_prio_queue_mapping(dev, port);
4105 }
4106 
4107 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
4108 			       struct tc_ets_qopt_offload_replace_params *p)
4109 {
4110 	int band;
4111 
4112 	/* Since it is not feasible to share one port among multiple qdisc,
4113 	 * the user must configure all available queues appropriately.
4114 	 */
4115 	if (p->bands != dev->info->num_tx_queues) {
4116 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
4117 			dev->info->num_tx_queues);
4118 		return -EOPNOTSUPP;
4119 	}
4120 
4121 	for (band = 0; band < p->bands; ++band) {
4122 		/* The KSZ switches utilize a weighted round robin configuration
4123 		 * where a certain number of packets can be transmitted from a
4124 		 * queue before the next queue is serviced. For more information
4125 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
4126 		 * documentation on the Port Transmit Queue Control 1 Register.
4127 		 * However, the current ETS Qdisc implementation (as of February
4128 		 * 2023) assigns a weight to each queue based on the number of
4129 		 * bytes or extrapolated bandwidth in percentages. Since this
4130 		 * differs from the KSZ switches' method and we don't want to
4131 		 * fake support by converting bytes to packets, it is better to
4132 		 * return an error instead.
4133 		 */
4134 		if (p->quanta[band]) {
4135 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
4136 			return -EOPNOTSUPP;
4137 		}
4138 	}
4139 
4140 	return 0;
4141 }
4142 
4143 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
4144 				  struct tc_ets_qopt_offload *qopt)
4145 {
4146 	struct ksz_device *dev = ds->priv;
4147 	int ret;
4148 
4149 	if (is_ksz8(dev))
4150 		return -EOPNOTSUPP;
4151 
4152 	if (qopt->parent != TC_H_ROOT) {
4153 		dev_err(dev->dev, "Parent should be \"root\"\n");
4154 		return -EOPNOTSUPP;
4155 	}
4156 
4157 	switch (qopt->command) {
4158 	case TC_ETS_REPLACE:
4159 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
4160 		if (ret)
4161 			return ret;
4162 
4163 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
4164 	case TC_ETS_DESTROY:
4165 		return ksz_tc_ets_del(dev, port);
4166 	case TC_ETS_STATS:
4167 	case TC_ETS_GRAFT:
4168 		return -EOPNOTSUPP;
4169 	}
4170 
4171 	return -EOPNOTSUPP;
4172 }
4173 
4174 static int ksz_setup_tc(struct dsa_switch *ds, int port,
4175 			enum tc_setup_type type, void *type_data)
4176 {
4177 	switch (type) {
4178 	case TC_SETUP_QDISC_CBS:
4179 		return ksz_setup_tc_cbs(ds, port, type_data);
4180 	case TC_SETUP_QDISC_ETS:
4181 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
4182 	default:
4183 		return -EOPNOTSUPP;
4184 	}
4185 }
4186 
4187 /**
4188  * ksz_handle_wake_reason - Handle wake reason on a specified port.
4189  * @dev: The device structure.
4190  * @port: The port number.
4191  *
4192  * This function reads the PME (Power Management Event) status register of a
4193  * specified port to determine the wake reason. If there is no wake event, it
4194  * returns early. Otherwise, it logs the wake reason which could be due to a
4195  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
4196  * is then cleared to acknowledge the handling of the wake event.
4197  *
4198  * Return: 0 on success, or an error code on failure.
4199  */
4200 int ksz_handle_wake_reason(struct ksz_device *dev, int port)
4201 {
4202 	const struct ksz_dev_ops *ops = dev->dev_ops;
4203 	const u16 *regs = dev->info->regs;
4204 	u8 pme_status;
4205 	int ret;
4206 
4207 	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
4208 			      &pme_status);
4209 	if (ret)
4210 		return ret;
4211 
4212 	if (!pme_status)
4213 		return 0;
4214 
4215 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
4216 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
4217 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
4218 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
4219 
4220 	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
4221 				pme_status);
4222 }
4223 
4224 /**
4225  * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
4226  * @ds: The dsa_switch structure.
4227  * @port: The port number.
4228  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4229  *
4230  * This function checks the device PME wakeup_source flag and chip_id.
4231  * If enabled and supported, it sets the supported and active WoL
4232  * flags.
4233  */
4234 static void ksz_get_wol(struct dsa_switch *ds, int port,
4235 			struct ethtool_wolinfo *wol)
4236 {
4237 	struct ksz_device *dev = ds->priv;
4238 	const u16 *regs = dev->info->regs;
4239 	u8 pme_ctrl;
4240 	int ret;
4241 
4242 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4243 		return;
4244 
4245 	if (!dev->wakeup_source)
4246 		return;
4247 
4248 	wol->supported = WAKE_PHY;
4249 
4250 	/* Check if the current MAC address on this port can be set
4251 	 * as global for WAKE_MAGIC support. The result may vary
4252 	 * dynamically based on other ports configurations.
4253 	 */
4254 	if (ksz_is_port_mac_global_usable(dev->ds, port))
4255 		wol->supported |= WAKE_MAGIC;
4256 
4257 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4258 				       &pme_ctrl);
4259 	if (ret)
4260 		return;
4261 
4262 	if (pme_ctrl & PME_WOL_MAGICPKT)
4263 		wol->wolopts |= WAKE_MAGIC;
4264 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
4265 		wol->wolopts |= WAKE_PHY;
4266 }
4267 
4268 /**
4269  * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
4270  * @ds: The dsa_switch structure.
4271  * @port: The port number.
4272  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4273  *
4274  * This function configures Wake-on-LAN (WoL) settings for a specified
4275  * port. It validates the provided WoL options, checks if PME is
4276  * enabled and supported, clears any previous wake reasons, and sets
4277  * the Magic Packet flag in the port's PME control register if
4278  * specified.
4279  *
4280  * Return: 0 on success, or other error codes on failure.
4281  */
4282 static int ksz_set_wol(struct dsa_switch *ds, int port,
4283 		       struct ethtool_wolinfo *wol)
4284 {
4285 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
4286 	struct ksz_device *dev = ds->priv;
4287 	const u16 *regs = dev->info->regs;
4288 	bool magic_switched_off;
4289 	bool magic_switched_on;
4290 	int ret;
4291 
4292 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
4293 		return -EINVAL;
4294 
4295 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4296 		return -EOPNOTSUPP;
4297 
4298 	if (!dev->wakeup_source)
4299 		return -EOPNOTSUPP;
4300 
4301 	ret = ksz_handle_wake_reason(dev, port);
4302 	if (ret)
4303 		return ret;
4304 
4305 	if (wol->wolopts & WAKE_MAGIC)
4306 		pme_ctrl |= PME_WOL_MAGICPKT;
4307 	if (wol->wolopts & WAKE_PHY)
4308 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
4309 
4310 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4311 				       &pme_ctrl_old);
4312 	if (ret)
4313 		return ret;
4314 
4315 	if (pme_ctrl_old == pme_ctrl)
4316 		return 0;
4317 
4318 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
4319 			    !(pme_ctrl & PME_WOL_MAGICPKT);
4320 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
4321 			    (pme_ctrl & PME_WOL_MAGICPKT);
4322 
4323 	/* To keep reference count of MAC address, we should do this
4324 	 * operation only on change of WOL settings.
4325 	 */
4326 	if (magic_switched_on) {
4327 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
4328 		if (ret)
4329 			return ret;
4330 	} else if (magic_switched_off) {
4331 		ksz_switch_macaddr_put(dev->ds);
4332 	}
4333 
4334 	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
4335 					pme_ctrl);
4336 	if (ret) {
4337 		if (magic_switched_on)
4338 			ksz_switch_macaddr_put(dev->ds);
4339 		return ret;
4340 	}
4341 
4342 	return 0;
4343 }
4344 
4345 /**
4346  * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
4347  *                        considering Wake-on-LAN (WoL) settings.
4348  * @dev: The switch device structure.
4349  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
4350  *               enabled on any port.
4351  *
4352  * This function prepares the switch device for a safe shutdown while taking
4353  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
4354  * the wol_enabled flag accordingly to reflect whether WoL is active on any
4355  * port.
4356  */
4357 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
4358 {
4359 	const struct ksz_dev_ops *ops = dev->dev_ops;
4360 	const u16 *regs = dev->info->regs;
4361 	u8 pme_pin_en = PME_ENABLE;
4362 	struct dsa_port *dp;
4363 	int ret;
4364 
4365 	*wol_enabled = false;
4366 
4367 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4368 		return;
4369 
4370 	if (!dev->wakeup_source)
4371 		return;
4372 
4373 	dsa_switch_for_each_user_port(dp, dev->ds) {
4374 		u8 pme_ctrl = 0;
4375 
4376 		ret = ops->pme_pread8(dev, dp->index,
4377 				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
4378 		if (!ret && pme_ctrl)
4379 			*wol_enabled = true;
4380 
4381 		/* make sure there are no pending wake events which would
4382 		 * prevent the device from going to sleep/shutdown.
4383 		 */
4384 		ksz_handle_wake_reason(dev, dp->index);
4385 	}
4386 
4387 	/* Now we are save to enable PME pin. */
4388 	if (*wol_enabled) {
4389 		if (dev->pme_active_high)
4390 			pme_pin_en |= PME_POLARITY;
4391 		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
4392 		if (ksz_is_ksz87xx(dev))
4393 			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
4394 	}
4395 }
4396 
4397 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4398 				    const unsigned char *addr)
4399 {
4400 	struct dsa_port *dp = dsa_to_port(ds, port);
4401 	struct ethtool_wolinfo wol;
4402 
4403 	if (dp->hsr_dev) {
4404 		dev_err(ds->dev,
4405 			"Cannot change MAC address on port %d with active HSR offload\n",
4406 			port);
4407 		return -EBUSY;
4408 	}
4409 
4410 	/* Need to initialize variable as the code to fill in settings may
4411 	 * not be executed.
4412 	 */
4413 	wol.wolopts = 0;
4414 
4415 	ksz_get_wol(ds, dp->index, &wol);
4416 	if (wol.wolopts & WAKE_MAGIC) {
4417 		dev_err(ds->dev,
4418 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4419 			port);
4420 		return -EBUSY;
4421 	}
4422 
4423 	return 0;
4424 }
4425 
4426 /**
4427  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4428  *                                 can be used as a global address.
4429  * @ds: Pointer to the DSA switch structure.
4430  * @port: The port number on which the MAC address is to be checked.
4431  *
4432  * This function examines the MAC address set on the specified port and
4433  * determines if it can be used as a global address for the switch.
4434  *
4435  * Return: true if the port's MAC address can be used as a global address, false
4436  * otherwise.
4437  */
4438 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4439 {
4440 	struct net_device *user = dsa_to_port(ds, port)->user;
4441 	const unsigned char *addr = user->dev_addr;
4442 	struct ksz_switch_macaddr *switch_macaddr;
4443 	struct ksz_device *dev = ds->priv;
4444 
4445 	ASSERT_RTNL();
4446 
4447 	switch_macaddr = dev->switch_macaddr;
4448 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4449 		return false;
4450 
4451 	return true;
4452 }
4453 
4454 /**
4455  * ksz_switch_macaddr_get - Program the switch's MAC address register.
4456  * @ds: DSA switch instance.
4457  * @port: Port number.
4458  * @extack: Netlink extended acknowledgment.
4459  *
4460  * This function programs the switch's MAC address register with the MAC address
4461  * of the requesting user port. This single address is used by the switch for
4462  * multiple features like HSR self-address filtering and WoL. Other user ports
4463  * can share ownership of this address as long as their MAC address is the same.
4464  * The MAC addresses of user ports must not change while they have ownership of
4465  * the switch MAC address.
4466  *
4467  * Return: 0 on success, or other error codes on failure.
4468  */
4469 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4470 			   struct netlink_ext_ack *extack)
4471 {
4472 	struct net_device *user = dsa_to_port(ds, port)->user;
4473 	const unsigned char *addr = user->dev_addr;
4474 	struct ksz_switch_macaddr *switch_macaddr;
4475 	struct ksz_device *dev = ds->priv;
4476 	const u16 *regs = dev->info->regs;
4477 	int i, ret;
4478 
4479 	/* Make sure concurrent MAC address changes are blocked */
4480 	ASSERT_RTNL();
4481 
4482 	switch_macaddr = dev->switch_macaddr;
4483 	if (switch_macaddr) {
4484 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4485 			NL_SET_ERR_MSG_FMT_MOD(extack,
4486 					       "Switch already configured for MAC address %pM",
4487 					       switch_macaddr->addr);
4488 			return -EBUSY;
4489 		}
4490 
4491 		refcount_inc(&switch_macaddr->refcount);
4492 		return 0;
4493 	}
4494 
4495 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4496 	if (!switch_macaddr)
4497 		return -ENOMEM;
4498 
4499 	ether_addr_copy(switch_macaddr->addr, addr);
4500 	refcount_set(&switch_macaddr->refcount, 1);
4501 	dev->switch_macaddr = switch_macaddr;
4502 
4503 	/* Program the switch MAC address to hardware */
4504 	for (i = 0; i < ETH_ALEN; i++) {
4505 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
4506 		if (ret)
4507 			goto macaddr_drop;
4508 	}
4509 
4510 	return 0;
4511 
4512 macaddr_drop:
4513 	dev->switch_macaddr = NULL;
4514 	refcount_set(&switch_macaddr->refcount, 0);
4515 	kfree(switch_macaddr);
4516 
4517 	return ret;
4518 }
4519 
4520 void ksz_switch_macaddr_put(struct dsa_switch *ds)
4521 {
4522 	struct ksz_switch_macaddr *switch_macaddr;
4523 	struct ksz_device *dev = ds->priv;
4524 	const u16 *regs = dev->info->regs;
4525 	int i;
4526 
4527 	/* Make sure concurrent MAC address changes are blocked */
4528 	ASSERT_RTNL();
4529 
4530 	switch_macaddr = dev->switch_macaddr;
4531 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4532 		return;
4533 
4534 	for (i = 0; i < ETH_ALEN; i++)
4535 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4536 
4537 	dev->switch_macaddr = NULL;
4538 	kfree(switch_macaddr);
4539 }
4540 
4541 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4542 			struct netlink_ext_ack *extack)
4543 {
4544 	struct ksz_device *dev = ds->priv;
4545 	enum hsr_version ver;
4546 	int ret;
4547 
4548 	ret = hsr_get_version(hsr, &ver);
4549 	if (ret)
4550 		return ret;
4551 
4552 	if (dev->chip_id != KSZ9477_CHIP_ID) {
4553 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4554 		return -EOPNOTSUPP;
4555 	}
4556 
4557 	/* KSZ9477 can support HW offloading of only 1 HSR device */
4558 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4559 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4560 		return -EOPNOTSUPP;
4561 	}
4562 
4563 	/* KSZ9477 only supports HSR v0 and v1 */
4564 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4565 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4566 		return -EOPNOTSUPP;
4567 	}
4568 
4569 	/* KSZ9477 can only perform HSR offloading for up to two ports */
4570 	if (hweight8(dev->hsr_ports) >= 2) {
4571 		NL_SET_ERR_MSG_MOD(extack,
4572 				   "Cannot offload more than two ports - using software HSR");
4573 		return -EOPNOTSUPP;
4574 	}
4575 
4576 	/* Self MAC address filtering, to avoid frames traversing
4577 	 * the HSR ring more than once.
4578 	 */
4579 	ret = ksz_switch_macaddr_get(ds, port, extack);
4580 	if (ret)
4581 		return ret;
4582 
4583 	ksz9477_hsr_join(ds, port, hsr);
4584 	dev->hsr_dev = hsr;
4585 	dev->hsr_ports |= BIT(port);
4586 
4587 	return 0;
4588 }
4589 
4590 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4591 			 struct net_device *hsr)
4592 {
4593 	struct ksz_device *dev = ds->priv;
4594 
4595 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4596 
4597 	ksz9477_hsr_leave(ds, port, hsr);
4598 	dev->hsr_ports &= ~BIT(port);
4599 	if (!dev->hsr_ports)
4600 		dev->hsr_dev = NULL;
4601 
4602 	ksz_switch_macaddr_put(ds);
4603 
4604 	return 0;
4605 }
4606 
4607 static int ksz_suspend(struct dsa_switch *ds)
4608 {
4609 	struct ksz_device *dev = ds->priv;
4610 
4611 	cancel_delayed_work_sync(&dev->mib_read);
4612 	return 0;
4613 }
4614 
4615 static int ksz_resume(struct dsa_switch *ds)
4616 {
4617 	struct ksz_device *dev = ds->priv;
4618 
4619 	if (dev->mib_read_interval)
4620 		schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
4621 	return 0;
4622 }
4623 
4624 static const struct dsa_switch_ops ksz_switch_ops = {
4625 	.get_tag_protocol	= ksz_get_tag_protocol,
4626 	.connect_tag_protocol   = ksz_connect_tag_protocol,
4627 	.get_phy_flags		= ksz_get_phy_flags,
4628 	.setup			= ksz_setup,
4629 	.teardown		= ksz_teardown,
4630 	.phy_read		= ksz_phy_read16,
4631 	.phy_write		= ksz_phy_write16,
4632 	.phylink_get_caps	= ksz_phylink_get_caps,
4633 	.port_setup		= ksz_port_setup,
4634 	.set_ageing_time	= ksz_set_ageing_time,
4635 	.get_strings		= ksz_get_strings,
4636 	.get_ethtool_stats	= ksz_get_ethtool_stats,
4637 	.get_sset_count		= ksz_sset_count,
4638 	.port_bridge_join	= ksz_port_bridge_join,
4639 	.port_bridge_leave	= ksz_port_bridge_leave,
4640 	.port_hsr_join		= ksz_hsr_join,
4641 	.port_hsr_leave		= ksz_hsr_leave,
4642 	.port_set_mac_address	= ksz_port_set_mac_address,
4643 	.port_stp_state_set	= ksz_port_stp_state_set,
4644 	.port_teardown		= ksz_port_teardown,
4645 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4646 	.port_bridge_flags	= ksz_port_bridge_flags,
4647 	.port_fast_age		= ksz_port_fast_age,
4648 	.port_vlan_filtering	= ksz_port_vlan_filtering,
4649 	.port_vlan_add		= ksz_port_vlan_add,
4650 	.port_vlan_del		= ksz_port_vlan_del,
4651 	.port_fdb_dump		= ksz_port_fdb_dump,
4652 	.port_fdb_add		= ksz_port_fdb_add,
4653 	.port_fdb_del		= ksz_port_fdb_del,
4654 	.port_mdb_add           = ksz_port_mdb_add,
4655 	.port_mdb_del           = ksz_port_mdb_del,
4656 	.port_mirror_add	= ksz_port_mirror_add,
4657 	.port_mirror_del	= ksz_port_mirror_del,
4658 	.get_stats64		= ksz_get_stats64,
4659 	.get_pause_stats	= ksz_get_pause_stats,
4660 	.port_change_mtu	= ksz_change_mtu,
4661 	.port_max_mtu		= ksz_max_mtu,
4662 	.get_wol		= ksz_get_wol,
4663 	.set_wol		= ksz_set_wol,
4664 	.suspend		= ksz_suspend,
4665 	.resume			= ksz_resume,
4666 	.get_ts_info		= ksz_get_ts_info,
4667 	.port_hwtstamp_get	= ksz_hwtstamp_get,
4668 	.port_hwtstamp_set	= ksz_hwtstamp_set,
4669 	.port_txtstamp		= ksz_port_txtstamp,
4670 	.port_rxtstamp		= ksz_port_rxtstamp,
4671 	.cls_flower_add		= ksz_cls_flower_add,
4672 	.cls_flower_del		= ksz_cls_flower_del,
4673 	.port_setup_tc		= ksz_setup_tc,
4674 	.support_eee		= ksz_support_eee,
4675 	.get_mac_eee		= ksz_get_mac_eee,
4676 	.set_mac_eee		= ksz_set_mac_eee,
4677 	.port_get_default_prio	= ksz_port_get_default_prio,
4678 	.port_set_default_prio	= ksz_port_set_default_prio,
4679 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
4680 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
4681 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
4682 	.port_get_apptrust	= ksz_port_get_apptrust,
4683 	.port_set_apptrust	= ksz_port_set_apptrust,
4684 };
4685 
4686 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
4687 {
4688 	struct dsa_switch *ds;
4689 	struct ksz_device *swdev;
4690 
4691 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
4692 	if (!ds)
4693 		return NULL;
4694 
4695 	ds->dev = base;
4696 	ds->num_ports = DSA_MAX_PORTS;
4697 	ds->ops = &ksz_switch_ops;
4698 
4699 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
4700 	if (!swdev)
4701 		return NULL;
4702 
4703 	ds->priv = swdev;
4704 	swdev->dev = base;
4705 
4706 	swdev->ds = ds;
4707 	swdev->priv = priv;
4708 
4709 	return swdev;
4710 }
4711 EXPORT_SYMBOL(ksz_switch_alloc);
4712 
4713 /**
4714  * ksz_switch_shutdown - Shutdown routine for the switch device.
4715  * @dev: The switch device structure.
4716  *
4717  * This function is responsible for initiating a shutdown sequence for the
4718  * switch device. It invokes the reset operation defined in the device
4719  * operations, if available, to reset the switch. Subsequently, it calls the
4720  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
4721  * switch.
4722  */
4723 void ksz_switch_shutdown(struct ksz_device *dev)
4724 {
4725 	bool wol_enabled = false;
4726 
4727 	ksz_wol_pre_shutdown(dev, &wol_enabled);
4728 
4729 	if (dev->dev_ops->reset && !wol_enabled)
4730 		dev->dev_ops->reset(dev);
4731 
4732 	dsa_switch_shutdown(dev->ds);
4733 }
4734 EXPORT_SYMBOL(ksz_switch_shutdown);
4735 
4736 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
4737 				  struct device_node *port_dn)
4738 {
4739 	phy_interface_t phy_mode = dev->ports[port_num].interface;
4740 	int rx_delay = -1, tx_delay = -1;
4741 
4742 	if (!phy_interface_mode_is_rgmii(phy_mode))
4743 		return;
4744 
4745 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
4746 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
4747 
4748 	if (rx_delay == -1 && tx_delay == -1) {
4749 		dev_warn(dev->dev,
4750 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
4751 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
4752 			 "\"tx-internal-delay-ps\"",
4753 			 port_num);
4754 
4755 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4756 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4757 			rx_delay = 2000;
4758 
4759 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4760 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4761 			tx_delay = 2000;
4762 	}
4763 
4764 	if (rx_delay < 0)
4765 		rx_delay = 0;
4766 	if (tx_delay < 0)
4767 		tx_delay = 0;
4768 
4769 	dev->ports[port_num].rgmii_rx_val = rx_delay;
4770 	dev->ports[port_num].rgmii_tx_val = tx_delay;
4771 }
4772 
4773 /**
4774  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4775  *				 register value.
4776  * @array:	The array of drive strength values to search.
4777  * @array_size:	The size of the array.
4778  * @microamp:	The drive strength value in microamp to be converted.
4779  *
4780  * This function searches the array of drive strength values for the given
4781  * microamp value and returns the corresponding register value for that drive.
4782  *
4783  * Returns: If found, the corresponding register value for that drive strength
4784  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4785  */
4786 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4787 				     size_t array_size, int microamp)
4788 {
4789 	int i;
4790 
4791 	for (i = 0; i < array_size; i++) {
4792 		if (array[i].microamp == microamp)
4793 			return array[i].reg_val;
4794 	}
4795 
4796 	return -EINVAL;
4797 }
4798 
4799 /**
4800  * ksz_drive_strength_error() - Report invalid drive strength value
4801  * @dev:	ksz device
4802  * @array:	The array of drive strength values to search.
4803  * @array_size:	The size of the array.
4804  * @microamp:	Invalid drive strength value in microamp
4805  *
4806  * This function logs an error message when an unsupported drive strength value
4807  * is detected. It lists out all the supported drive strength values for
4808  * reference in the error message.
4809  */
4810 static void ksz_drive_strength_error(struct ksz_device *dev,
4811 				     const struct ksz_drive_strength *array,
4812 				     size_t array_size, int microamp)
4813 {
4814 	char supported_values[100];
4815 	size_t remaining_size;
4816 	int added_len;
4817 	char *ptr;
4818 	int i;
4819 
4820 	remaining_size = sizeof(supported_values);
4821 	ptr = supported_values;
4822 
4823 	for (i = 0; i < array_size; i++) {
4824 		added_len = snprintf(ptr, remaining_size,
4825 				     i == 0 ? "%d" : ", %d", array[i].microamp);
4826 
4827 		if (added_len >= remaining_size)
4828 			break;
4829 
4830 		ptr += added_len;
4831 		remaining_size -= added_len;
4832 	}
4833 
4834 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
4835 		microamp, supported_values);
4836 }
4837 
4838 /**
4839  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
4840  *				    chip variants.
4841  * @dev:       ksz device
4842  * @props:     Array of drive strength properties to be applied
4843  * @num_props: Number of properties in the array
4844  *
4845  * This function configures the drive strength for various KSZ9477 chip variants
4846  * based on the provided properties. It handles chip-specific nuances and
4847  * ensures only valid drive strengths are written to the respective chip.
4848  *
4849  * Return: 0 on successful configuration, a negative error code on failure.
4850  */
4851 static int ksz9477_drive_strength_write(struct ksz_device *dev,
4852 					struct ksz_driver_strength_prop *props,
4853 					int num_props)
4854 {
4855 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4856 	int i, ret, reg;
4857 	u8 mask = 0;
4858 	u8 val = 0;
4859 
4860 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4861 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4862 			 props[KSZ_DRIVER_STRENGTH_IO].name);
4863 
4864 	if (dev->chip_id == KSZ8795_CHIP_ID ||
4865 	    dev->chip_id == KSZ8794_CHIP_ID ||
4866 	    dev->chip_id == KSZ8765_CHIP_ID)
4867 		reg = KSZ8795_REG_SW_CTRL_20;
4868 	else
4869 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4870 
4871 	for (i = 0; i < num_props; i++) {
4872 		if (props[i].value == -1)
4873 			continue;
4874 
4875 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4876 						array_size, props[i].value);
4877 		if (ret < 0) {
4878 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4879 						 array_size, props[i].value);
4880 			return ret;
4881 		}
4882 
4883 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4884 		val |= ret << props[i].offset;
4885 	}
4886 
4887 	return ksz_rmw8(dev, reg, mask, val);
4888 }
4889 
4890 /**
4891  * ksz88x3_drive_strength_write() - Set the drive strength configuration for
4892  *				    KSZ8863 compatible chip variants.
4893  * @dev:       ksz device
4894  * @props:     Array of drive strength properties to be set
4895  * @num_props: Number of properties in the array
4896  *
4897  * This function applies the specified drive strength settings to KSZ88X3 chip
4898  * variants (KSZ8873, KSZ8863).
4899  * It ensures the configurations align with what the chip variant supports and
4900  * warns or errors out on unsupported settings.
4901  *
4902  * Return: 0 on success, error code otherwise
4903  */
4904 static int ksz88x3_drive_strength_write(struct ksz_device *dev,
4905 					struct ksz_driver_strength_prop *props,
4906 					int num_props)
4907 {
4908 	size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths);
4909 	int microamp;
4910 	int i, ret;
4911 
4912 	for (i = 0; i < num_props; i++) {
4913 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4914 			continue;
4915 
4916 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4917 			 props[i].name);
4918 	}
4919 
4920 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4921 	ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size,
4922 					microamp);
4923 	if (ret < 0) {
4924 		ksz_drive_strength_error(dev, ksz88x3_drive_strengths,
4925 					 array_size, microamp);
4926 		return ret;
4927 	}
4928 
4929 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4930 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4931 }
4932 
4933 /**
4934  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4935  *				from device tree properties.
4936  * @dev:	ksz device
4937  *
4938  * This function reads the specified drive strength properties from the
4939  * device tree, validates against the supported chip variants, and sets
4940  * them accordingly. An error should be critical here, as the drive strength
4941  * settings are crucial for EMI compliance.
4942  *
4943  * Return: 0 on success, error code otherwise
4944  */
4945 static int ksz_parse_drive_strength(struct ksz_device *dev)
4946 {
4947 	struct ksz_driver_strength_prop of_props[] = {
4948 		[KSZ_DRIVER_STRENGTH_HI] = {
4949 			.name = "microchip,hi-drive-strength-microamp",
4950 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4951 			.value = -1,
4952 		},
4953 		[KSZ_DRIVER_STRENGTH_LO] = {
4954 			.name = "microchip,lo-drive-strength-microamp",
4955 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4956 			.value = -1,
4957 		},
4958 		[KSZ_DRIVER_STRENGTH_IO] = {
4959 			.name = "microchip,io-drive-strength-microamp",
4960 			.offset = 0, /* don't care */
4961 			.value = -1,
4962 		},
4963 	};
4964 	struct device_node *np = dev->dev->of_node;
4965 	bool have_any_prop = false;
4966 	int i, ret;
4967 
4968 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4969 		ret = of_property_read_u32(np, of_props[i].name,
4970 					   &of_props[i].value);
4971 		if (ret && ret != -EINVAL)
4972 			dev_warn(dev->dev, "Failed to read %s\n",
4973 				 of_props[i].name);
4974 		if (ret)
4975 			continue;
4976 
4977 		have_any_prop = true;
4978 	}
4979 
4980 	if (!have_any_prop)
4981 		return 0;
4982 
4983 	switch (dev->chip_id) {
4984 	case KSZ88X3_CHIP_ID:
4985 		return ksz88x3_drive_strength_write(dev, of_props,
4986 						    ARRAY_SIZE(of_props));
4987 	case KSZ8795_CHIP_ID:
4988 	case KSZ8794_CHIP_ID:
4989 	case KSZ8765_CHIP_ID:
4990 	case KSZ8563_CHIP_ID:
4991 	case KSZ8567_CHIP_ID:
4992 	case KSZ9477_CHIP_ID:
4993 	case KSZ9563_CHIP_ID:
4994 	case KSZ9567_CHIP_ID:
4995 	case KSZ9893_CHIP_ID:
4996 	case KSZ9896_CHIP_ID:
4997 	case KSZ9897_CHIP_ID:
4998 	case LAN9646_CHIP_ID:
4999 		return ksz9477_drive_strength_write(dev, of_props,
5000 						    ARRAY_SIZE(of_props));
5001 	default:
5002 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5003 			if (of_props[i].value == -1)
5004 				continue;
5005 
5006 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5007 				 of_props[i].name);
5008 		}
5009 	}
5010 
5011 	return 0;
5012 }
5013 
5014 int ksz_switch_register(struct ksz_device *dev)
5015 {
5016 	const struct ksz_chip_data *info;
5017 	struct device_node *ports;
5018 	phy_interface_t interface;
5019 	unsigned int port_num;
5020 	int ret;
5021 	int i;
5022 
5023 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
5024 						  GPIOD_OUT_LOW);
5025 	if (IS_ERR(dev->reset_gpio))
5026 		return PTR_ERR(dev->reset_gpio);
5027 
5028 	if (dev->reset_gpio) {
5029 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5030 		usleep_range(10000, 12000);
5031 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
5032 		msleep(100);
5033 	}
5034 
5035 	mutex_init(&dev->dev_mutex);
5036 	mutex_init(&dev->regmap_mutex);
5037 	mutex_init(&dev->alu_mutex);
5038 	mutex_init(&dev->vlan_mutex);
5039 
5040 	ret = ksz_switch_detect(dev);
5041 	if (ret)
5042 		return ret;
5043 
5044 	info = ksz_lookup_info(dev->chip_id);
5045 	if (!info)
5046 		return -ENODEV;
5047 
5048 	/* Update the compatible info with the probed one */
5049 	dev->info = info;
5050 
5051 	dev_info(dev->dev, "found switch: %s, rev %i\n",
5052 		 dev->info->dev_name, dev->chip_rev);
5053 
5054 	ret = ksz_check_device_id(dev);
5055 	if (ret)
5056 		return ret;
5057 
5058 	dev->dev_ops = dev->info->ops;
5059 
5060 	ret = dev->dev_ops->init(dev);
5061 	if (ret)
5062 		return ret;
5063 
5064 	dev->ports = devm_kzalloc(dev->dev,
5065 				  dev->info->port_cnt * sizeof(struct ksz_port),
5066 				  GFP_KERNEL);
5067 	if (!dev->ports)
5068 		return -ENOMEM;
5069 
5070 	for (i = 0; i < dev->info->port_cnt; i++) {
5071 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
5072 		mutex_init(&dev->ports[i].mib.cnt_mutex);
5073 		dev->ports[i].mib.counters =
5074 			devm_kzalloc(dev->dev,
5075 				     sizeof(u64) * (dev->info->mib_cnt + 1),
5076 				     GFP_KERNEL);
5077 		if (!dev->ports[i].mib.counters)
5078 			return -ENOMEM;
5079 
5080 		dev->ports[i].ksz_dev = dev;
5081 		dev->ports[i].num = i;
5082 	}
5083 
5084 	/* set the real number of ports */
5085 	dev->ds->num_ports = dev->info->port_cnt;
5086 
5087 	/* set the phylink ops */
5088 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
5089 
5090 	/* Host port interface will be self detected, or specifically set in
5091 	 * device tree.
5092 	 */
5093 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
5094 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
5095 	if (dev->dev->of_node) {
5096 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
5097 		if (ret == 0)
5098 			dev->compat_interface = interface;
5099 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
5100 		if (!ports)
5101 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
5102 		if (ports) {
5103 			for_each_available_child_of_node_scoped(ports, port) {
5104 				if (of_property_read_u32(port, "reg",
5105 							 &port_num))
5106 					continue;
5107 				if (!(dev->port_mask & BIT(port_num))) {
5108 					of_node_put(ports);
5109 					return -EINVAL;
5110 				}
5111 				of_get_phy_mode(port,
5112 						&dev->ports[port_num].interface);
5113 
5114 				ksz_parse_rgmii_delay(dev, port_num, port);
5115 			}
5116 			of_node_put(ports);
5117 		}
5118 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
5119 							 "microchip,synclko-125");
5120 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
5121 							     "microchip,synclko-disable");
5122 		if (dev->synclko_125 && dev->synclko_disable) {
5123 			dev_err(dev->dev, "inconsistent synclko settings\n");
5124 			return -EINVAL;
5125 		}
5126 
5127 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
5128 							   "wakeup-source");
5129 		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
5130 							     "microchip,pme-active-high");
5131 	}
5132 
5133 	ret = dsa_register_switch(dev->ds);
5134 	if (ret) {
5135 		dev->dev_ops->exit(dev);
5136 		return ret;
5137 	}
5138 
5139 	/* Read MIB counters every 30 seconds to avoid overflow. */
5140 	dev->mib_read_interval = msecs_to_jiffies(5000);
5141 
5142 	/* Start the MIB timer. */
5143 	schedule_delayed_work(&dev->mib_read, 0);
5144 
5145 	return ret;
5146 }
5147 EXPORT_SYMBOL(ksz_switch_register);
5148 
5149 void ksz_switch_remove(struct ksz_device *dev)
5150 {
5151 	/* timer started */
5152 	if (dev->mib_read_interval) {
5153 		dev->mib_read_interval = 0;
5154 		cancel_delayed_work_sync(&dev->mib_read);
5155 	}
5156 
5157 	dev->dev_ops->exit(dev);
5158 	dsa_unregister_switch(dev->ds);
5159 
5160 	if (dev->reset_gpio)
5161 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5162 
5163 }
5164 EXPORT_SYMBOL(ksz_switch_remove);
5165 
5166 #ifdef CONFIG_PM_SLEEP
5167 int ksz_switch_suspend(struct device *dev)
5168 {
5169 	struct ksz_device *priv = dev_get_drvdata(dev);
5170 
5171 	return dsa_switch_suspend(priv->ds);
5172 }
5173 EXPORT_SYMBOL(ksz_switch_suspend);
5174 
5175 int ksz_switch_resume(struct device *dev)
5176 {
5177 	struct ksz_device *priv = dev_get_drvdata(dev);
5178 
5179 	return dsa_switch_resume(priv->ds);
5180 }
5181 EXPORT_SYMBOL(ksz_switch_resume);
5182 #endif
5183 
5184 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
5185 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
5186 MODULE_LICENSE("GPL");
5187