xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 31368ce83c59a5422ee621a38aeea98142d0ecf7)
1 /*
2  * Microchip switch driver main logic
3  *
4  * Copyright (C) 2017
5  *
6  * Permission to use, copy, modify, and/or distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <linux/delay.h>
20 #include <linux/export.h>
21 #include <linux/gpio.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_data/microchip-ksz.h>
25 #include <linux/phy.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_bridge.h>
28 #include <net/dsa.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_priv.h"
32 
33 static const struct {
34 	int index;
35 	char string[ETH_GSTRING_LEN];
36 } mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
37 	{ 0x00, "rx_hi" },
38 	{ 0x01, "rx_undersize" },
39 	{ 0x02, "rx_fragments" },
40 	{ 0x03, "rx_oversize" },
41 	{ 0x04, "rx_jabbers" },
42 	{ 0x05, "rx_symbol_err" },
43 	{ 0x06, "rx_crc_err" },
44 	{ 0x07, "rx_align_err" },
45 	{ 0x08, "rx_mac_ctrl" },
46 	{ 0x09, "rx_pause" },
47 	{ 0x0A, "rx_bcast" },
48 	{ 0x0B, "rx_mcast" },
49 	{ 0x0C, "rx_ucast" },
50 	{ 0x0D, "rx_64_or_less" },
51 	{ 0x0E, "rx_65_127" },
52 	{ 0x0F, "rx_128_255" },
53 	{ 0x10, "rx_256_511" },
54 	{ 0x11, "rx_512_1023" },
55 	{ 0x12, "rx_1024_1522" },
56 	{ 0x13, "rx_1523_2000" },
57 	{ 0x14, "rx_2001" },
58 	{ 0x15, "tx_hi" },
59 	{ 0x16, "tx_late_col" },
60 	{ 0x17, "tx_pause" },
61 	{ 0x18, "tx_bcast" },
62 	{ 0x19, "tx_mcast" },
63 	{ 0x1A, "tx_ucast" },
64 	{ 0x1B, "tx_deferred" },
65 	{ 0x1C, "tx_total_col" },
66 	{ 0x1D, "tx_exc_col" },
67 	{ 0x1E, "tx_single_col" },
68 	{ 0x1F, "tx_mult_col" },
69 	{ 0x80, "rx_total" },
70 	{ 0x81, "tx_total" },
71 	{ 0x82, "rx_discards" },
72 	{ 0x83, "tx_discards" },
73 };
74 
75 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
76 {
77 	u8 data;
78 
79 	ksz_read8(dev, addr, &data);
80 	if (set)
81 		data |= bits;
82 	else
83 		data &= ~bits;
84 	ksz_write8(dev, addr, data);
85 }
86 
87 static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
88 {
89 	u32 data;
90 
91 	ksz_read32(dev, addr, &data);
92 	if (set)
93 		data |= bits;
94 	else
95 		data &= ~bits;
96 	ksz_write32(dev, addr, data);
97 }
98 
99 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
100 			 bool set)
101 {
102 	u32 addr;
103 	u8 data;
104 
105 	addr = PORT_CTRL_ADDR(port, offset);
106 	ksz_read8(dev, addr, &data);
107 
108 	if (set)
109 		data |= bits;
110 	else
111 		data &= ~bits;
112 
113 	ksz_write8(dev, addr, data);
114 }
115 
116 static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
117 			   u32 bits, bool set)
118 {
119 	u32 addr;
120 	u32 data;
121 
122 	addr = PORT_CTRL_ADDR(port, offset);
123 	ksz_read32(dev, addr, &data);
124 
125 	if (set)
126 		data |= bits;
127 	else
128 		data &= ~bits;
129 
130 	ksz_write32(dev, addr, data);
131 }
132 
133 static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
134 {
135 	u8 data;
136 
137 	do {
138 		ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
139 		if (!(data & waiton))
140 			break;
141 		usleep_range(1, 10);
142 	} while (timeout-- > 0);
143 
144 	if (timeout <= 0)
145 		return -ETIMEDOUT;
146 
147 	return 0;
148 }
149 
150 static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
151 {
152 	struct ksz_device *dev = ds->priv;
153 	int ret;
154 
155 	mutex_lock(&dev->vlan_mutex);
156 
157 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
158 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
159 
160 	/* wait to be cleared */
161 	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
162 	if (ret < 0) {
163 		dev_dbg(dev->dev, "Failed to read vlan table\n");
164 		goto exit;
165 	}
166 
167 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
168 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
169 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
170 
171 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
172 
173 exit:
174 	mutex_unlock(&dev->vlan_mutex);
175 
176 	return ret;
177 }
178 
179 static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
180 {
181 	struct ksz_device *dev = ds->priv;
182 	int ret;
183 
184 	mutex_lock(&dev->vlan_mutex);
185 
186 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
187 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
188 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
189 
190 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
191 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
192 
193 	/* wait to be cleared */
194 	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
195 	if (ret < 0) {
196 		dev_dbg(dev->dev, "Failed to write vlan table\n");
197 		goto exit;
198 	}
199 
200 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
201 
202 	/* update vlan cache table */
203 	dev->vlan_cache[vid].table[0] = vlan_table[0];
204 	dev->vlan_cache[vid].table[1] = vlan_table[1];
205 	dev->vlan_cache[vid].table[2] = vlan_table[2];
206 
207 exit:
208 	mutex_unlock(&dev->vlan_mutex);
209 
210 	return ret;
211 }
212 
213 static void read_table(struct dsa_switch *ds, u32 *table)
214 {
215 	struct ksz_device *dev = ds->priv;
216 
217 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
218 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
219 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
220 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
221 }
222 
223 static void write_table(struct dsa_switch *ds, u32 *table)
224 {
225 	struct ksz_device *dev = ds->priv;
226 
227 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
228 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
229 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
230 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
231 }
232 
233 static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
234 {
235 	u32 data;
236 
237 	do {
238 		ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
239 		if (!(data & waiton))
240 			break;
241 		usleep_range(1, 10);
242 	} while (timeout-- > 0);
243 
244 	if (timeout <= 0)
245 		return -ETIMEDOUT;
246 
247 	return 0;
248 }
249 
250 static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
251 {
252 	u32 data;
253 
254 	do {
255 		ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
256 		if (!(data & waiton))
257 			break;
258 		usleep_range(1, 10);
259 	} while (timeout-- > 0);
260 
261 	if (timeout <= 0)
262 		return -ETIMEDOUT;
263 
264 	return 0;
265 }
266 
267 static int ksz_reset_switch(struct dsa_switch *ds)
268 {
269 	struct ksz_device *dev = ds->priv;
270 	u8 data8;
271 	u16 data16;
272 	u32 data32;
273 
274 	/* reset switch */
275 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
276 
277 	/* turn off SPI DO Edge select */
278 	ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
279 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
280 	ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
281 
282 	/* default configuration */
283 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
284 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
285 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
286 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
287 
288 	/* disable interrupts */
289 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
290 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
291 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
292 
293 	/* set broadcast storm protection 10% rate */
294 	ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
295 	data16 &= ~BROADCAST_STORM_RATE;
296 	data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
297 	ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
298 
299 	return 0;
300 }
301 
302 static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
303 {
304 	u8 data8;
305 	u16 data16;
306 
307 	/* enable tag tail for host port */
308 	if (cpu_port)
309 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
310 			     true);
311 
312 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
313 
314 	/* set back pressure */
315 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
316 
317 	/* set flow control */
318 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
319 		     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);
320 
321 	/* enable broadcast storm limit */
322 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
323 
324 	/* disable DiffServ priority */
325 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
326 
327 	/* replace priority */
328 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
329 		     false);
330 	ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
331 		       MTI_PVID_REPLACE, false);
332 
333 	/* enable 802.1p priority */
334 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
335 
336 	/* configure MAC to 1G & RGMII mode */
337 	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
338 	data8 |= PORT_RGMII_ID_EG_ENABLE;
339 	data8 &= ~PORT_MII_NOT_1GBIT;
340 	data8 &= ~PORT_MII_SEL_M;
341 	data8 |= PORT_RGMII_SEL;
342 	ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
343 
344 	/* clear pending interrupts */
345 	ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
346 }
347 
348 static void ksz_config_cpu_port(struct dsa_switch *ds)
349 {
350 	struct ksz_device *dev = ds->priv;
351 	int i;
352 
353 	ds->num_ports = dev->port_cnt;
354 
355 	for (i = 0; i < ds->num_ports; i++) {
356 		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
357 			dev->cpu_port = i;
358 
359 			/* enable cpu port */
360 			port_setup(dev, i, true);
361 		}
362 	}
363 }
364 
365 static int ksz_setup(struct dsa_switch *ds)
366 {
367 	struct ksz_device *dev = ds->priv;
368 	int ret = 0;
369 
370 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
371 				       dev->num_vlans, GFP_KERNEL);
372 	if (!dev->vlan_cache)
373 		return -ENOMEM;
374 
375 	ret = ksz_reset_switch(ds);
376 	if (ret) {
377 		dev_err(ds->dev, "failed to reset switch\n");
378 		return ret;
379 	}
380 
381 	/* accept packet up to 2000bytes */
382 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
383 
384 	ksz_config_cpu_port(ds);
385 
386 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
387 
388 	/* queue based egress rate limit */
389 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
390 
391 	/* start switch */
392 	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
393 
394 	return 0;
395 }
396 
397 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds)
398 {
399 	return DSA_TAG_PROTO_KSZ;
400 }
401 
402 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
403 {
404 	struct ksz_device *dev = ds->priv;
405 	u16 val = 0;
406 
407 	ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
408 
409 	return val;
410 }
411 
412 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
413 {
414 	struct ksz_device *dev = ds->priv;
415 
416 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
417 
418 	return 0;
419 }
420 
421 static int ksz_enable_port(struct dsa_switch *ds, int port,
422 			   struct phy_device *phy)
423 {
424 	struct ksz_device *dev = ds->priv;
425 
426 	/* setup slave port */
427 	port_setup(dev, port, false);
428 
429 	return 0;
430 }
431 
432 static void ksz_disable_port(struct dsa_switch *ds, int port,
433 			     struct phy_device *phy)
434 {
435 	struct ksz_device *dev = ds->priv;
436 
437 	/* there is no port disable */
438 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
439 }
440 
441 static int ksz_sset_count(struct dsa_switch *ds)
442 {
443 	return TOTAL_SWITCH_COUNTER_NUM;
444 }
445 
446 static void ksz_get_strings(struct dsa_switch *ds, int port, uint8_t *buf)
447 {
448 	int i;
449 
450 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
451 		memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
452 		       ETH_GSTRING_LEN);
453 	}
454 }
455 
456 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
457 				  uint64_t *buf)
458 {
459 	struct ksz_device *dev = ds->priv;
460 	int i;
461 	u32 data;
462 	int timeout;
463 
464 	mutex_lock(&dev->stats_mutex);
465 
466 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
467 		data = MIB_COUNTER_READ;
468 		data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
469 		ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
470 
471 		timeout = 1000;
472 		do {
473 			ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
474 				    &data);
475 			usleep_range(1, 10);
476 			if (!(data & MIB_COUNTER_READ))
477 				break;
478 		} while (timeout-- > 0);
479 
480 		/* failed to read MIB. get out of loop */
481 		if (!timeout) {
482 			dev_dbg(dev->dev, "Failed to get MIB\n");
483 			break;
484 		}
485 
486 		/* count resets upon read */
487 		ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
488 
489 		dev->mib_value[i] += (uint64_t)data;
490 		buf[i] = dev->mib_value[i];
491 	}
492 
493 	mutex_unlock(&dev->stats_mutex);
494 }
495 
496 static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
497 {
498 	struct ksz_device *dev = ds->priv;
499 	u8 data;
500 
501 	ksz_pread8(dev, port, P_STP_CTRL, &data);
502 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
503 
504 	switch (state) {
505 	case BR_STATE_DISABLED:
506 		data |= PORT_LEARN_DISABLE;
507 		break;
508 	case BR_STATE_LISTENING:
509 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
510 		break;
511 	case BR_STATE_LEARNING:
512 		data |= PORT_RX_ENABLE;
513 		break;
514 	case BR_STATE_FORWARDING:
515 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
516 		break;
517 	case BR_STATE_BLOCKING:
518 		data |= PORT_LEARN_DISABLE;
519 		break;
520 	default:
521 		dev_err(ds->dev, "invalid STP state: %d\n", state);
522 		return;
523 	}
524 
525 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
526 }
527 
528 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
529 {
530 	struct ksz_device *dev = ds->priv;
531 	u8 data8;
532 
533 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
534 	data8 |= SW_FAST_AGING;
535 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
536 
537 	data8 &= ~SW_FAST_AGING;
538 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
539 }
540 
541 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
542 {
543 	struct ksz_device *dev = ds->priv;
544 
545 	if (flag) {
546 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
547 			     PORT_VLAN_LOOKUP_VID_0, true);
548 		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
549 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
550 	} else {
551 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
552 		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
553 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
554 			     PORT_VLAN_LOOKUP_VID_0, false);
555 	}
556 
557 	return 0;
558 }
559 
560 static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
561 				 const struct switchdev_obj_port_vlan *vlan,
562 				 struct switchdev_trans *trans)
563 {
564 	/* nothing needed */
565 
566 	return 0;
567 }
568 
569 static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
570 			      const struct switchdev_obj_port_vlan *vlan,
571 			      struct switchdev_trans *trans)
572 {
573 	struct ksz_device *dev = ds->priv;
574 	u32 vlan_table[3];
575 	u16 vid;
576 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
577 
578 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
579 		if (get_vlan_table(ds, vid, vlan_table)) {
580 			dev_dbg(dev->dev, "Failed to get vlan table\n");
581 			return;
582 		}
583 
584 		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
585 		if (untagged)
586 			vlan_table[1] |= BIT(port);
587 		else
588 			vlan_table[1] &= ~BIT(port);
589 		vlan_table[1] &= ~(BIT(dev->cpu_port));
590 
591 		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
592 
593 		if (set_vlan_table(ds, vid, vlan_table)) {
594 			dev_dbg(dev->dev, "Failed to set vlan table\n");
595 			return;
596 		}
597 
598 		/* change PVID */
599 		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
600 			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
601 	}
602 }
603 
604 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
605 			     const struct switchdev_obj_port_vlan *vlan)
606 {
607 	struct ksz_device *dev = ds->priv;
608 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
609 	u32 vlan_table[3];
610 	u16 vid;
611 	u16 pvid;
612 
613 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
614 	pvid = pvid & 0xFFF;
615 
616 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
617 		if (get_vlan_table(ds, vid, vlan_table)) {
618 			dev_dbg(dev->dev, "Failed to get vlan table\n");
619 			return -ETIMEDOUT;
620 		}
621 
622 		vlan_table[2] &= ~BIT(port);
623 
624 		if (pvid == vid)
625 			pvid = 1;
626 
627 		if (untagged)
628 			vlan_table[1] &= ~BIT(port);
629 
630 		if (set_vlan_table(ds, vid, vlan_table)) {
631 			dev_dbg(dev->dev, "Failed to set vlan table\n");
632 			return -ETIMEDOUT;
633 		}
634 	}
635 
636 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
637 
638 	return 0;
639 }
640 
641 static int ksz_port_vlan_dump(struct dsa_switch *ds, int port,
642 			      struct switchdev_obj_port_vlan *vlan,
643 			      switchdev_obj_dump_cb_t *cb)
644 {
645 	struct ksz_device *dev = ds->priv;
646 	u16 vid;
647 	u16 data;
648 	struct vlan_table *vlan_cache;
649 	int err = 0;
650 
651 	mutex_lock(&dev->vlan_mutex);
652 
653 	/* use dev->vlan_cache due to lack of searching valid vlan entry */
654 	for (vid = vlan->vid_begin; vid < dev->num_vlans; vid++) {
655 		vlan_cache = &dev->vlan_cache[vid];
656 
657 		if (!(vlan_cache->table[0] & VLAN_VALID))
658 			continue;
659 
660 		vlan->vid_begin = vid;
661 		vlan->vid_end = vid;
662 		vlan->flags = 0;
663 		if (vlan_cache->table[2] & BIT(port)) {
664 			if (vlan_cache->table[1] & BIT(port))
665 				vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
666 			ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &data);
667 			if (vid == (data & 0xFFFFF))
668 				vlan->flags |= BRIDGE_VLAN_INFO_PVID;
669 
670 			err = cb(&vlan->obj);
671 			if (err)
672 				break;
673 		}
674 	}
675 
676 	mutex_unlock(&dev->vlan_mutex);
677 
678 	return err;
679 }
680 
681 static int ksz_port_fdb_prepare(struct dsa_switch *ds, int port,
682 				const struct switchdev_obj_port_fdb *fdb,
683 				struct switchdev_trans *trans)
684 {
685 	/* nothing needed */
686 
687 	return 0;
688 }
689 
690 struct alu_struct {
691 	/* entry 1 */
692 	u8	is_static:1;
693 	u8	is_src_filter:1;
694 	u8	is_dst_filter:1;
695 	u8	prio_age:3;
696 	u32	_reserv_0_1:23;
697 	u8	mstp:3;
698 	/* entry 2 */
699 	u8	is_override:1;
700 	u8	is_use_fid:1;
701 	u32	_reserv_1_1:23;
702 	u8	port_forward:7;
703 	/* entry 3 & 4*/
704 	u32	_reserv_2_1:9;
705 	u8	fid:7;
706 	u8	mac[ETH_ALEN];
707 };
708 
709 static void ksz_port_fdb_add(struct dsa_switch *ds, int port,
710 			     const struct switchdev_obj_port_fdb *fdb,
711 			     struct switchdev_trans *trans)
712 {
713 	struct ksz_device *dev = ds->priv;
714 	u32 alu_table[4];
715 	u32 data;
716 
717 	mutex_lock(&dev->alu_mutex);
718 
719 	/* find any entry with mac & vid */
720 	data = fdb->vid << ALU_FID_INDEX_S;
721 	data |= ((fdb->addr[0] << 8) | fdb->addr[1]);
722 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
723 
724 	data = ((fdb->addr[2] << 24) | (fdb->addr[3] << 16));
725 	data |= ((fdb->addr[4] << 8) | fdb->addr[5]);
726 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
727 
728 	/* start read operation */
729 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
730 
731 	/* wait to be finished */
732 	if (wait_alu_ready(dev, ALU_START, 1000) < 0) {
733 		dev_dbg(dev->dev, "Failed to read ALU\n");
734 		goto exit;
735 	}
736 
737 	/* read ALU entry */
738 	read_table(ds, alu_table);
739 
740 	/* update ALU entry */
741 	alu_table[0] = ALU_V_STATIC_VALID;
742 	alu_table[1] |= BIT(port);
743 	if (fdb->vid)
744 		alu_table[1] |= ALU_V_USE_FID;
745 	alu_table[2] = (fdb->vid << ALU_V_FID_S);
746 	alu_table[2] |= ((fdb->addr[0] << 8) | fdb->addr[1]);
747 	alu_table[3] = ((fdb->addr[2] << 24) | (fdb->addr[3] << 16));
748 	alu_table[3] |= ((fdb->addr[4] << 8) | fdb->addr[5]);
749 
750 	write_table(ds, alu_table);
751 
752 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
753 
754 	/* wait to be finished */
755 	if (wait_alu_ready(dev, ALU_START, 1000) < 0)
756 		dev_dbg(dev->dev, "Failed to read ALU\n");
757 
758 exit:
759 	mutex_unlock(&dev->alu_mutex);
760 }
761 
762 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
763 			    const struct switchdev_obj_port_fdb *fdb)
764 {
765 	struct ksz_device *dev = ds->priv;
766 	u32 alu_table[4];
767 	u32 data;
768 	int ret = 0;
769 
770 	mutex_lock(&dev->alu_mutex);
771 
772 	/* read any entry with mac & vid */
773 	data = fdb->vid << ALU_FID_INDEX_S;
774 	data |= ((fdb->addr[0] << 8) | fdb->addr[1]);
775 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
776 
777 	data = ((fdb->addr[2] << 24) | (fdb->addr[3] << 16));
778 	data |= ((fdb->addr[4] << 8) | fdb->addr[5]);
779 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
780 
781 	/* start read operation */
782 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
783 
784 	/* wait to be finished */
785 	ret = wait_alu_ready(dev, ALU_START, 1000);
786 	if (ret < 0) {
787 		dev_dbg(dev->dev, "Failed to read ALU\n");
788 		goto exit;
789 	}
790 
791 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
792 	if (alu_table[0] & ALU_V_STATIC_VALID) {
793 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
794 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
795 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
796 
797 		/* clear forwarding port */
798 		alu_table[2] &= ~BIT(port);
799 
800 		/* if there is no port to forward, clear table */
801 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
802 			alu_table[0] = 0;
803 			alu_table[1] = 0;
804 			alu_table[2] = 0;
805 			alu_table[3] = 0;
806 		}
807 	} else {
808 		alu_table[0] = 0;
809 		alu_table[1] = 0;
810 		alu_table[2] = 0;
811 		alu_table[3] = 0;
812 	}
813 
814 	write_table(ds, alu_table);
815 
816 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
817 
818 	/* wait to be finished */
819 	ret = wait_alu_ready(dev, ALU_START, 1000);
820 	if (ret < 0)
821 		dev_dbg(dev->dev, "Failed to write ALU\n");
822 
823 exit:
824 	mutex_unlock(&dev->alu_mutex);
825 
826 	return ret;
827 }
828 
829 static void convert_alu(struct alu_struct *alu, u32 *alu_table)
830 {
831 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
832 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
833 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
834 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
835 			ALU_V_PRIO_AGE_CNT_M;
836 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
837 
838 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
839 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
840 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
841 
842 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
843 
844 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
845 	alu->mac[1] = alu_table[2] & 0xFF;
846 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
847 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
848 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
849 	alu->mac[5] = alu_table[3] & 0xFF;
850 }
851 
852 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
853 			     struct switchdev_obj_port_fdb *fdb,
854 			     switchdev_obj_dump_cb_t *cb)
855 {
856 	struct ksz_device *dev = ds->priv;
857 	int ret = 0;
858 	u32 data;
859 	u32 alu_table[4];
860 	struct alu_struct alu;
861 	int timeout;
862 
863 	mutex_lock(&dev->alu_mutex);
864 
865 	/* start ALU search */
866 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
867 
868 	do {
869 		timeout = 1000;
870 		do {
871 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
872 			if ((data & ALU_VALID) || !(data & ALU_START))
873 				break;
874 			usleep_range(1, 10);
875 		} while (timeout-- > 0);
876 
877 		if (!timeout) {
878 			dev_dbg(dev->dev, "Failed to search ALU\n");
879 			ret = -ETIMEDOUT;
880 			goto exit;
881 		}
882 
883 		/* read ALU table */
884 		read_table(ds, alu_table);
885 
886 		convert_alu(&alu, alu_table);
887 
888 		if (alu.port_forward & BIT(port)) {
889 			fdb->vid = alu.fid;
890 			if (alu.is_static)
891 				fdb->ndm_state = NUD_NOARP;
892 			else
893 				fdb->ndm_state = NUD_REACHABLE;
894 			ether_addr_copy(fdb->addr, alu.mac);
895 
896 			ret = cb(&fdb->obj);
897 			if (ret)
898 				goto exit;
899 		}
900 	} while (data & ALU_START);
901 
902 exit:
903 
904 	/* stop ALU search */
905 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
906 
907 	mutex_unlock(&dev->alu_mutex);
908 
909 	return ret;
910 }
911 
912 static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
913 				const struct switchdev_obj_port_mdb *mdb,
914 				struct switchdev_trans *trans)
915 {
916 	/* nothing to do */
917 	return 0;
918 }
919 
920 static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
921 			     const struct switchdev_obj_port_mdb *mdb,
922 			     struct switchdev_trans *trans)
923 {
924 	struct ksz_device *dev = ds->priv;
925 	u32 static_table[4];
926 	u32 data;
927 	int index;
928 	u32 mac_hi, mac_lo;
929 
930 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
931 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
932 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
933 
934 	mutex_lock(&dev->alu_mutex);
935 
936 	for (index = 0; index < dev->num_statics; index++) {
937 		/* find empty slot first */
938 		data = (index << ALU_STAT_INDEX_S) |
939 			ALU_STAT_READ | ALU_STAT_START;
940 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
941 
942 		/* wait to be finished */
943 		if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
944 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
945 			goto exit;
946 		}
947 
948 		/* read ALU static table */
949 		read_table(ds, static_table);
950 
951 		if (static_table[0] & ALU_V_STATIC_VALID) {
952 			/* check this has same vid & mac address */
953 			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
954 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
955 			    (static_table[3] == mac_lo)) {
956 				/* found matching one */
957 				break;
958 			}
959 		} else {
960 			/* found empty one */
961 			break;
962 		}
963 	}
964 
965 	/* no available entry */
966 	if (index == dev->num_statics)
967 		goto exit;
968 
969 	/* add entry */
970 	static_table[0] = ALU_V_STATIC_VALID;
971 	static_table[1] |= BIT(port);
972 	if (mdb->vid)
973 		static_table[1] |= ALU_V_USE_FID;
974 	static_table[2] = (mdb->vid << ALU_V_FID_S);
975 	static_table[2] |= mac_hi;
976 	static_table[3] = mac_lo;
977 
978 	write_table(ds, static_table);
979 
980 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
981 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
982 
983 	/* wait to be finished */
984 	if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
985 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
986 
987 exit:
988 	mutex_unlock(&dev->alu_mutex);
989 }
990 
991 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
992 			    const struct switchdev_obj_port_mdb *mdb)
993 {
994 	struct ksz_device *dev = ds->priv;
995 	u32 static_table[4];
996 	u32 data;
997 	int index;
998 	int ret = 0;
999 	u32 mac_hi, mac_lo;
1000 
1001 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
1002 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
1003 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
1004 
1005 	mutex_lock(&dev->alu_mutex);
1006 
1007 	for (index = 0; index < dev->num_statics; index++) {
1008 		/* find empty slot first */
1009 		data = (index << ALU_STAT_INDEX_S) |
1010 			ALU_STAT_READ | ALU_STAT_START;
1011 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1012 
1013 		/* wait to be finished */
1014 		ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
1015 		if (ret < 0) {
1016 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1017 			goto exit;
1018 		}
1019 
1020 		/* read ALU static table */
1021 		read_table(ds, static_table);
1022 
1023 		if (static_table[0] & ALU_V_STATIC_VALID) {
1024 			/* check this has same vid & mac address */
1025 
1026 			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
1027 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
1028 			    (static_table[3] == mac_lo)) {
1029 				/* found matching one */
1030 				break;
1031 			}
1032 		}
1033 	}
1034 
1035 	/* no available entry */
1036 	if (index == dev->num_statics) {
1037 		ret = -EINVAL;
1038 		goto exit;
1039 	}
1040 
1041 	/* clear port */
1042 	static_table[1] &= ~BIT(port);
1043 
1044 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
1045 		/* delete entry */
1046 		static_table[0] = 0;
1047 		static_table[1] = 0;
1048 		static_table[2] = 0;
1049 		static_table[3] = 0;
1050 	}
1051 
1052 	write_table(ds, static_table);
1053 
1054 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
1055 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1056 
1057 	/* wait to be finished */
1058 	ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
1059 	if (ret < 0)
1060 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1061 
1062 exit:
1063 	mutex_unlock(&dev->alu_mutex);
1064 
1065 	return ret;
1066 }
1067 
1068 static int ksz_port_mdb_dump(struct dsa_switch *ds, int port,
1069 			     struct switchdev_obj_port_mdb *mdb,
1070 			     switchdev_obj_dump_cb_t *cb)
1071 {
1072 	/* this is not called by switch layer */
1073 	return 0;
1074 }
1075 
1076 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
1077 			       struct dsa_mall_mirror_tc_entry *mirror,
1078 			       bool ingress)
1079 {
1080 	struct ksz_device *dev = ds->priv;
1081 
1082 	if (ingress)
1083 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1084 	else
1085 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1086 
1087 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1088 
1089 	/* configure mirror port */
1090 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1091 		     PORT_MIRROR_SNIFFER, true);
1092 
1093 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1094 
1095 	return 0;
1096 }
1097 
1098 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
1099 				struct dsa_mall_mirror_tc_entry *mirror)
1100 {
1101 	struct ksz_device *dev = ds->priv;
1102 	u8 data;
1103 
1104 	if (mirror->ingress)
1105 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1106 	else
1107 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1108 
1109 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1110 
1111 	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1112 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1113 			     PORT_MIRROR_SNIFFER, false);
1114 }
1115 
1116 static const struct dsa_switch_ops ksz_switch_ops = {
1117 	.get_tag_protocol	= ksz_get_tag_protocol,
1118 	.setup			= ksz_setup,
1119 	.phy_read		= ksz_phy_read16,
1120 	.phy_write		= ksz_phy_write16,
1121 	.port_enable		= ksz_enable_port,
1122 	.port_disable		= ksz_disable_port,
1123 	.get_strings		= ksz_get_strings,
1124 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1125 	.get_sset_count		= ksz_sset_count,
1126 	.port_stp_state_set	= ksz_port_stp_state_set,
1127 	.port_fast_age		= ksz_port_fast_age,
1128 	.port_vlan_filtering	= ksz_port_vlan_filtering,
1129 	.port_vlan_prepare	= ksz_port_vlan_prepare,
1130 	.port_vlan_add		= ksz_port_vlan_add,
1131 	.port_vlan_del		= ksz_port_vlan_del,
1132 	.port_vlan_dump		= ksz_port_vlan_dump,
1133 	.port_fdb_prepare	= ksz_port_fdb_prepare,
1134 	.port_fdb_dump		= ksz_port_fdb_dump,
1135 	.port_fdb_add		= ksz_port_fdb_add,
1136 	.port_fdb_del		= ksz_port_fdb_del,
1137 	.port_mdb_prepare       = ksz_port_mdb_prepare,
1138 	.port_mdb_add           = ksz_port_mdb_add,
1139 	.port_mdb_del           = ksz_port_mdb_del,
1140 	.port_mdb_dump          = ksz_port_mdb_dump,
1141 	.port_mirror_add	= ksz_port_mirror_add,
1142 	.port_mirror_del	= ksz_port_mirror_del,
1143 };
1144 
1145 struct ksz_chip_data {
1146 	u32 chip_id;
1147 	const char *dev_name;
1148 	int num_vlans;
1149 	int num_alus;
1150 	int num_statics;
1151 	int cpu_ports;
1152 	int port_cnt;
1153 };
1154 
1155 static const struct ksz_chip_data ksz_switch_chips[] = {
1156 	{
1157 		.chip_id = 0x00947700,
1158 		.dev_name = "KSZ9477",
1159 		.num_vlans = 4096,
1160 		.num_alus = 4096,
1161 		.num_statics = 16,
1162 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1163 		.port_cnt = 7,		/* total physical port count */
1164 	},
1165 };
1166 
1167 static int ksz_switch_init(struct ksz_device *dev)
1168 {
1169 	int i;
1170 
1171 	mutex_init(&dev->reg_mutex);
1172 	mutex_init(&dev->stats_mutex);
1173 	mutex_init(&dev->alu_mutex);
1174 	mutex_init(&dev->vlan_mutex);
1175 
1176 	dev->ds->ops = &ksz_switch_ops;
1177 
1178 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1179 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1180 
1181 		if (dev->chip_id == chip->chip_id) {
1182 			dev->name = chip->dev_name;
1183 			dev->num_vlans = chip->num_vlans;
1184 			dev->num_alus = chip->num_alus;
1185 			dev->num_statics = chip->num_statics;
1186 			dev->port_cnt = chip->port_cnt;
1187 			dev->cpu_ports = chip->cpu_ports;
1188 
1189 			break;
1190 		}
1191 	}
1192 
1193 	/* no switch found */
1194 	if (!dev->port_cnt)
1195 		return -ENODEV;
1196 
1197 	return 0;
1198 }
1199 
1200 struct ksz_device *ksz_switch_alloc(struct device *base,
1201 				    const struct ksz_io_ops *ops,
1202 				    void *priv)
1203 {
1204 	struct dsa_switch *ds;
1205 	struct ksz_device *swdev;
1206 
1207 	ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
1208 	if (!ds)
1209 		return NULL;
1210 
1211 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
1212 	if (!swdev)
1213 		return NULL;
1214 
1215 	ds->priv = swdev;
1216 	swdev->dev = base;
1217 
1218 	swdev->ds = ds;
1219 	swdev->priv = priv;
1220 	swdev->ops = ops;
1221 
1222 	return swdev;
1223 }
1224 EXPORT_SYMBOL(ksz_switch_alloc);
1225 
1226 int ksz_switch_detect(struct ksz_device *dev)
1227 {
1228 	u8 data8;
1229 	u32 id32;
1230 	int ret;
1231 
1232 	/* turn off SPI DO Edge select */
1233 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1234 	if (ret)
1235 		return ret;
1236 
1237 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1238 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1239 	if (ret)
1240 		return ret;
1241 
1242 	/* read chip id */
1243 	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1244 	if (ret)
1245 		return ret;
1246 
1247 	dev->chip_id = id32;
1248 
1249 	return 0;
1250 }
1251 EXPORT_SYMBOL(ksz_switch_detect);
1252 
1253 int ksz_switch_register(struct ksz_device *dev)
1254 {
1255 	int ret;
1256 
1257 	if (dev->pdata)
1258 		dev->chip_id = dev->pdata->chip_id;
1259 
1260 	if (ksz_switch_detect(dev))
1261 		return -EINVAL;
1262 
1263 	ret = ksz_switch_init(dev);
1264 	if (ret)
1265 		return ret;
1266 
1267 	return dsa_register_switch(dev->ds);
1268 }
1269 EXPORT_SYMBOL(ksz_switch_register);
1270 
1271 void ksz_switch_remove(struct ksz_device *dev)
1272 {
1273 	dsa_unregister_switch(dev->ds);
1274 }
1275 EXPORT_SYMBOL(ksz_switch_remove);
1276 
1277 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1278 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
1279 MODULE_LICENSE("GPL");
1280