1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Microchip switch driver main logic 4 * 5 * Copyright (C) 2017-2025 Microchip Technology Inc. 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/dsa/ksz_common.h> 10 #include <linux/export.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/platform_data/microchip-ksz.h> 15 #include <linux/phy.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_bridge.h> 18 #include <linux/if_vlan.h> 19 #include <linux/if_hsr.h> 20 #include <linux/irq.h> 21 #include <linux/irqdomain.h> 22 #include <linux/of.h> 23 #include <linux/of_mdio.h> 24 #include <linux/of_net.h> 25 #include <linux/micrel_phy.h> 26 #include <net/dsa.h> 27 #include <net/ieee8021q.h> 28 #include <net/pkt_cls.h> 29 #include <net/switchdev.h> 30 31 #include "ksz_common.h" 32 #include "ksz_dcb.h" 33 #include "ksz_ptp.h" 34 #include "ksz8.h" 35 #include "ksz9477.h" 36 #include "lan937x.h" 37 38 #define MIB_COUNTER_NUM 0x20 39 40 struct ksz_stats_raw { 41 u64 rx_hi; 42 u64 rx_undersize; 43 u64 rx_fragments; 44 u64 rx_oversize; 45 u64 rx_jabbers; 46 u64 rx_symbol_err; 47 u64 rx_crc_err; 48 u64 rx_align_err; 49 u64 rx_mac_ctrl; 50 u64 rx_pause; 51 u64 rx_bcast; 52 u64 rx_mcast; 53 u64 rx_ucast; 54 u64 rx_64_or_less; 55 u64 rx_65_127; 56 u64 rx_128_255; 57 u64 rx_256_511; 58 u64 rx_512_1023; 59 u64 rx_1024_1522; 60 u64 rx_1523_2000; 61 u64 rx_2001; 62 u64 tx_hi; 63 u64 tx_late_col; 64 u64 tx_pause; 65 u64 tx_bcast; 66 u64 tx_mcast; 67 u64 tx_ucast; 68 u64 tx_deferred; 69 u64 tx_total_col; 70 u64 tx_exc_col; 71 u64 tx_single_col; 72 u64 tx_mult_col; 73 u64 rx_total; 74 u64 tx_total; 75 u64 rx_discards; 76 u64 tx_discards; 77 }; 78 79 struct ksz88xx_stats_raw { 80 u64 rx; 81 u64 rx_hi; 82 u64 rx_undersize; 83 u64 rx_fragments; 84 u64 rx_oversize; 85 u64 rx_jabbers; 86 u64 rx_symbol_err; 87 u64 rx_crc_err; 88 u64 rx_align_err; 89 u64 rx_mac_ctrl; 90 u64 rx_pause; 91 u64 rx_bcast; 92 u64 rx_mcast; 93 u64 rx_ucast; 94 u64 rx_64_or_less; 95 u64 rx_65_127; 96 u64 rx_128_255; 97 u64 rx_256_511; 98 u64 rx_512_1023; 99 u64 rx_1024_1522; 100 u64 tx; 101 u64 tx_hi; 102 u64 tx_late_col; 103 u64 tx_pause; 104 u64 tx_bcast; 105 u64 tx_mcast; 106 u64 tx_ucast; 107 u64 tx_deferred; 108 u64 tx_total_col; 109 u64 tx_exc_col; 110 u64 tx_single_col; 111 u64 tx_mult_col; 112 u64 rx_discards; 113 u64 tx_discards; 114 }; 115 116 static const struct ksz_mib_names ksz88xx_mib_names[] = { 117 { 0x00, "rx" }, 118 { 0x01, "rx_hi" }, 119 { 0x02, "rx_undersize" }, 120 { 0x03, "rx_fragments" }, 121 { 0x04, "rx_oversize" }, 122 { 0x05, "rx_jabbers" }, 123 { 0x06, "rx_symbol_err" }, 124 { 0x07, "rx_crc_err" }, 125 { 0x08, "rx_align_err" }, 126 { 0x09, "rx_mac_ctrl" }, 127 { 0x0a, "rx_pause" }, 128 { 0x0b, "rx_bcast" }, 129 { 0x0c, "rx_mcast" }, 130 { 0x0d, "rx_ucast" }, 131 { 0x0e, "rx_64_or_less" }, 132 { 0x0f, "rx_65_127" }, 133 { 0x10, "rx_128_255" }, 134 { 0x11, "rx_256_511" }, 135 { 0x12, "rx_512_1023" }, 136 { 0x13, "rx_1024_1522" }, 137 { 0x14, "tx" }, 138 { 0x15, "tx_hi" }, 139 { 0x16, "tx_late_col" }, 140 { 0x17, "tx_pause" }, 141 { 0x18, "tx_bcast" }, 142 { 0x19, "tx_mcast" }, 143 { 0x1a, "tx_ucast" }, 144 { 0x1b, "tx_deferred" }, 145 { 0x1c, "tx_total_col" }, 146 { 0x1d, "tx_exc_col" }, 147 { 0x1e, "tx_single_col" }, 148 { 0x1f, "tx_mult_col" }, 149 { 0x100, "rx_discards" }, 150 { 0x101, "tx_discards" }, 151 }; 152 153 static const struct ksz_mib_names ksz9477_mib_names[] = { 154 { 0x00, "rx_hi" }, 155 { 0x01, "rx_undersize" }, 156 { 0x02, "rx_fragments" }, 157 { 0x03, "rx_oversize" }, 158 { 0x04, "rx_jabbers" }, 159 { 0x05, "rx_symbol_err" }, 160 { 0x06, "rx_crc_err" }, 161 { 0x07, "rx_align_err" }, 162 { 0x08, "rx_mac_ctrl" }, 163 { 0x09, "rx_pause" }, 164 { 0x0A, "rx_bcast" }, 165 { 0x0B, "rx_mcast" }, 166 { 0x0C, "rx_ucast" }, 167 { 0x0D, "rx_64_or_less" }, 168 { 0x0E, "rx_65_127" }, 169 { 0x0F, "rx_128_255" }, 170 { 0x10, "rx_256_511" }, 171 { 0x11, "rx_512_1023" }, 172 { 0x12, "rx_1024_1522" }, 173 { 0x13, "rx_1523_2000" }, 174 { 0x14, "rx_2001" }, 175 { 0x15, "tx_hi" }, 176 { 0x16, "tx_late_col" }, 177 { 0x17, "tx_pause" }, 178 { 0x18, "tx_bcast" }, 179 { 0x19, "tx_mcast" }, 180 { 0x1A, "tx_ucast" }, 181 { 0x1B, "tx_deferred" }, 182 { 0x1C, "tx_total_col" }, 183 { 0x1D, "tx_exc_col" }, 184 { 0x1E, "tx_single_col" }, 185 { 0x1F, "tx_mult_col" }, 186 { 0x80, "rx_total" }, 187 { 0x81, "tx_total" }, 188 { 0x82, "rx_discards" }, 189 { 0x83, "tx_discards" }, 190 }; 191 192 struct ksz_driver_strength_prop { 193 const char *name; 194 int offset; 195 int value; 196 }; 197 198 enum ksz_driver_strength_type { 199 KSZ_DRIVER_STRENGTH_HI, 200 KSZ_DRIVER_STRENGTH_LO, 201 KSZ_DRIVER_STRENGTH_IO, 202 }; 203 204 /** 205 * struct ksz_drive_strength - drive strength mapping 206 * @reg_val: register value 207 * @microamp: microamp value 208 */ 209 struct ksz_drive_strength { 210 u32 reg_val; 211 u32 microamp; 212 }; 213 214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants 215 * 216 * This values are not documented in KSZ9477 variants but confirmed by 217 * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893 218 * and KSZ8563 are using same register (drive strength) settings like KSZ8795. 219 * 220 * Documentation in KSZ8795CLX provides more information with some 221 * recommendations: 222 * - for high speed signals 223 * 1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using 224 * 2.5V or 3.3V VDDIO. 225 * 2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with 226 * using 1.8V VDDIO. 227 * 3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V 228 * or 3.3V VDDIO. 229 * 4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO. 230 * 5. In same interface, the heavy loading should use higher one of the 231 * drive current strength. 232 * - for low speed signals 233 * 1. 3.3V VDDIO, use either 4 mA or 8 mA. 234 * 2. 2.5V VDDIO, use either 8 mA or 12 mA. 235 * 3. 1.8V VDDIO, use either 12 mA or 16 mA. 236 * 4. If it is heavy loading, can use higher drive current strength. 237 */ 238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = { 239 { SW_DRIVE_STRENGTH_2MA, 2000 }, 240 { SW_DRIVE_STRENGTH_4MA, 4000 }, 241 { SW_DRIVE_STRENGTH_8MA, 8000 }, 242 { SW_DRIVE_STRENGTH_12MA, 12000 }, 243 { SW_DRIVE_STRENGTH_16MA, 16000 }, 244 { SW_DRIVE_STRENGTH_20MA, 20000 }, 245 { SW_DRIVE_STRENGTH_24MA, 24000 }, 246 { SW_DRIVE_STRENGTH_28MA, 28000 }, 247 }; 248 249 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, .. 250 * variants. 251 * This values are documented in KSZ8873 and KSZ8863 datasheets. 252 */ 253 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = { 254 { 0, 8000 }, 255 { KSZ8873_DRIVE_STRENGTH_16MA, 16000 }, 256 }; 257 258 static void ksz88x3_phylink_mac_config(struct phylink_config *config, 259 unsigned int mode, 260 const struct phylink_link_state *state); 261 static void ksz_phylink_mac_config(struct phylink_config *config, 262 unsigned int mode, 263 const struct phylink_link_state *state); 264 static void ksz_phylink_mac_link_down(struct phylink_config *config, 265 unsigned int mode, 266 phy_interface_t interface); 267 268 /** 269 * ksz_phylink_mac_disable_tx_lpi() - Callback to signal LPI support (Dummy) 270 * @config: phylink config structure 271 * 272 * This function is a dummy handler. See ksz_phylink_mac_enable_tx_lpi() for 273 * a detailed explanation of EEE/LPI handling in KSZ switches. 274 */ 275 static void ksz_phylink_mac_disable_tx_lpi(struct phylink_config *config) 276 { 277 } 278 279 /** 280 * ksz_phylink_mac_enable_tx_lpi() - Callback to signal LPI support (Dummy) 281 * @config: phylink config structure 282 * @timer: timer value before entering LPI (unused) 283 * @tx_clock_stop: whether to stop the TX clock in LPI mode (unused) 284 * 285 * This function signals to phylink that the driver architecture supports 286 * LPI management, enabling phylink to control EEE advertisement during 287 * negotiation according to IEEE Std 802.3 (Clause 78). 288 * 289 * Hardware Management of EEE/LPI State: 290 * For KSZ switch ports with integrated PHYs (e.g., KSZ9893R ports 1-2), 291 * observation and testing suggest that the actual EEE / Low Power Idle (LPI) 292 * state transitions are managed autonomously by the hardware based on 293 * the auto-negotiation results. (Note: While the datasheet describes EEE 294 * operation based on negotiation, it doesn't explicitly detail the internal 295 * MAC/PHY interaction, so autonomous hardware management of the MAC state 296 * for LPI is inferred from observed behavior). 297 * This hardware control, consistent with the switch's ability to operate 298 * autonomously via strapping, means MAC-level software intervention is not 299 * required or exposed for managing the LPI state once EEE is negotiated. 300 * (Ref: KSZ9893R Data Sheet DS00002420D, primarily Section 4.7.5 explaining 301 * EEE, also Sections 4.1.7 on Auto-Negotiation and 3.2.1 on Configuration 302 * Straps). 303 * 304 * Additionally, ports configured as MAC interfaces (e.g., KSZ9893R port 3) 305 * lack documented MAC-level LPI control. 306 * 307 * Therefore, this callback performs no action and serves primarily to inform 308 * phylink of LPI awareness and to document the inferred hardware behavior. 309 * 310 * Returns: 0 (Always success) 311 */ 312 static int ksz_phylink_mac_enable_tx_lpi(struct phylink_config *config, 313 u32 timer, bool tx_clock_stop) 314 { 315 return 0; 316 } 317 318 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = { 319 .mac_config = ksz88x3_phylink_mac_config, 320 .mac_link_down = ksz_phylink_mac_link_down, 321 .mac_link_up = ksz8_phylink_mac_link_up, 322 .mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi, 323 .mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi, 324 }; 325 326 static const struct phylink_mac_ops ksz8_phylink_mac_ops = { 327 .mac_config = ksz_phylink_mac_config, 328 .mac_link_down = ksz_phylink_mac_link_down, 329 .mac_link_up = ksz8_phylink_mac_link_up, 330 .mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi, 331 .mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi, 332 }; 333 334 static const struct ksz_dev_ops ksz88xx_dev_ops = { 335 .setup = ksz8_setup, 336 .get_port_addr = ksz8_get_port_addr, 337 .cfg_port_member = ksz8_cfg_port_member, 338 .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, 339 .port_setup = ksz8_port_setup, 340 .r_phy = ksz8_r_phy, 341 .w_phy = ksz8_w_phy, 342 .r_mib_cnt = ksz8_r_mib_cnt, 343 .r_mib_pkt = ksz8_r_mib_pkt, 344 .r_mib_stat64 = ksz88xx_r_mib_stats64, 345 .freeze_mib = ksz8_freeze_mib, 346 .port_init_cnt = ksz8_port_init_cnt, 347 .fdb_dump = ksz8_fdb_dump, 348 .fdb_add = ksz8_fdb_add, 349 .fdb_del = ksz8_fdb_del, 350 .mdb_add = ksz8_mdb_add, 351 .mdb_del = ksz8_mdb_del, 352 .vlan_filtering = ksz8_port_vlan_filtering, 353 .vlan_add = ksz8_port_vlan_add, 354 .vlan_del = ksz8_port_vlan_del, 355 .mirror_add = ksz8_port_mirror_add, 356 .mirror_del = ksz8_port_mirror_del, 357 .get_caps = ksz8_get_caps, 358 .config_cpu_port = ksz8_config_cpu_port, 359 .enable_stp_addr = ksz8_enable_stp_addr, 360 .reset = ksz8_reset_switch, 361 .init = ksz8_switch_init, 362 .exit = ksz8_switch_exit, 363 .change_mtu = ksz8_change_mtu, 364 .pme_write8 = ksz8_pme_write8, 365 .pme_pread8 = ksz8_pme_pread8, 366 .pme_pwrite8 = ksz8_pme_pwrite8, 367 }; 368 369 static const struct ksz_dev_ops ksz87xx_dev_ops = { 370 .setup = ksz8_setup, 371 .get_port_addr = ksz8_get_port_addr, 372 .cfg_port_member = ksz8_cfg_port_member, 373 .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, 374 .port_setup = ksz8_port_setup, 375 .r_phy = ksz8_r_phy, 376 .w_phy = ksz8_w_phy, 377 .r_mib_cnt = ksz8_r_mib_cnt, 378 .r_mib_pkt = ksz8_r_mib_pkt, 379 .r_mib_stat64 = ksz_r_mib_stats64, 380 .freeze_mib = ksz8_freeze_mib, 381 .port_init_cnt = ksz8_port_init_cnt, 382 .fdb_dump = ksz8_fdb_dump, 383 .fdb_add = ksz8_fdb_add, 384 .fdb_del = ksz8_fdb_del, 385 .mdb_add = ksz8_mdb_add, 386 .mdb_del = ksz8_mdb_del, 387 .vlan_filtering = ksz8_port_vlan_filtering, 388 .vlan_add = ksz8_port_vlan_add, 389 .vlan_del = ksz8_port_vlan_del, 390 .mirror_add = ksz8_port_mirror_add, 391 .mirror_del = ksz8_port_mirror_del, 392 .get_caps = ksz8_get_caps, 393 .config_cpu_port = ksz8_config_cpu_port, 394 .enable_stp_addr = ksz8_enable_stp_addr, 395 .reset = ksz8_reset_switch, 396 .init = ksz8_switch_init, 397 .exit = ksz8_switch_exit, 398 .change_mtu = ksz8_change_mtu, 399 .pme_write8 = ksz8_pme_write8, 400 .pme_pread8 = ksz8_pme_pread8, 401 .pme_pwrite8 = ksz8_pme_pwrite8, 402 }; 403 404 static void ksz9477_phylink_mac_link_up(struct phylink_config *config, 405 struct phy_device *phydev, 406 unsigned int mode, 407 phy_interface_t interface, 408 int speed, int duplex, bool tx_pause, 409 bool rx_pause); 410 411 static struct phylink_pcs * 412 ksz_phylink_mac_select_pcs(struct phylink_config *config, 413 phy_interface_t interface) 414 { 415 struct dsa_port *dp = dsa_phylink_to_port(config); 416 struct ksz_device *dev = dp->ds->priv; 417 struct ksz_port *p = &dev->ports[dp->index]; 418 419 if (ksz_is_sgmii_port(dev, dp->index) && 420 (interface == PHY_INTERFACE_MODE_SGMII || 421 interface == PHY_INTERFACE_MODE_1000BASEX)) 422 return p->pcs; 423 424 return NULL; 425 } 426 427 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = { 428 .mac_config = ksz_phylink_mac_config, 429 .mac_link_down = ksz_phylink_mac_link_down, 430 .mac_link_up = ksz9477_phylink_mac_link_up, 431 .mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi, 432 .mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi, 433 .mac_select_pcs = ksz_phylink_mac_select_pcs, 434 }; 435 436 static const struct ksz_dev_ops ksz9477_dev_ops = { 437 .setup = ksz9477_setup, 438 .get_port_addr = ksz9477_get_port_addr, 439 .cfg_port_member = ksz9477_cfg_port_member, 440 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, 441 .port_setup = ksz9477_port_setup, 442 .set_ageing_time = ksz9477_set_ageing_time, 443 .r_phy = ksz9477_r_phy, 444 .w_phy = ksz9477_w_phy, 445 .r_mib_cnt = ksz9477_r_mib_cnt, 446 .r_mib_pkt = ksz9477_r_mib_pkt, 447 .r_mib_stat64 = ksz_r_mib_stats64, 448 .freeze_mib = ksz9477_freeze_mib, 449 .port_init_cnt = ksz9477_port_init_cnt, 450 .vlan_filtering = ksz9477_port_vlan_filtering, 451 .vlan_add = ksz9477_port_vlan_add, 452 .vlan_del = ksz9477_port_vlan_del, 453 .mirror_add = ksz9477_port_mirror_add, 454 .mirror_del = ksz9477_port_mirror_del, 455 .get_caps = ksz9477_get_caps, 456 .fdb_dump = ksz9477_fdb_dump, 457 .fdb_add = ksz9477_fdb_add, 458 .fdb_del = ksz9477_fdb_del, 459 .mdb_add = ksz9477_mdb_add, 460 .mdb_del = ksz9477_mdb_del, 461 .change_mtu = ksz9477_change_mtu, 462 .pme_write8 = ksz_write8, 463 .pme_pread8 = ksz_pread8, 464 .pme_pwrite8 = ksz_pwrite8, 465 .config_cpu_port = ksz9477_config_cpu_port, 466 .tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc, 467 .enable_stp_addr = ksz9477_enable_stp_addr, 468 .reset = ksz9477_reset_switch, 469 .init = ksz9477_switch_init, 470 .exit = ksz9477_switch_exit, 471 .pcs_create = ksz9477_pcs_create, 472 }; 473 474 static const struct phylink_mac_ops lan937x_phylink_mac_ops = { 475 .mac_config = ksz_phylink_mac_config, 476 .mac_link_down = ksz_phylink_mac_link_down, 477 .mac_link_up = ksz9477_phylink_mac_link_up, 478 .mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi, 479 .mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi, 480 }; 481 482 static const struct ksz_dev_ops lan937x_dev_ops = { 483 .setup = lan937x_setup, 484 .teardown = lan937x_teardown, 485 .get_port_addr = ksz9477_get_port_addr, 486 .cfg_port_member = ksz9477_cfg_port_member, 487 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, 488 .port_setup = lan937x_port_setup, 489 .set_ageing_time = lan937x_set_ageing_time, 490 .mdio_bus_preinit = lan937x_mdio_bus_preinit, 491 .create_phy_addr_map = lan937x_create_phy_addr_map, 492 .r_phy = lan937x_r_phy, 493 .w_phy = lan937x_w_phy, 494 .r_mib_cnt = ksz9477_r_mib_cnt, 495 .r_mib_pkt = ksz9477_r_mib_pkt, 496 .r_mib_stat64 = ksz_r_mib_stats64, 497 .freeze_mib = ksz9477_freeze_mib, 498 .port_init_cnt = ksz9477_port_init_cnt, 499 .vlan_filtering = ksz9477_port_vlan_filtering, 500 .vlan_add = ksz9477_port_vlan_add, 501 .vlan_del = ksz9477_port_vlan_del, 502 .mirror_add = ksz9477_port_mirror_add, 503 .mirror_del = ksz9477_port_mirror_del, 504 .get_caps = lan937x_phylink_get_caps, 505 .setup_rgmii_delay = lan937x_setup_rgmii_delay, 506 .fdb_dump = ksz9477_fdb_dump, 507 .fdb_add = ksz9477_fdb_add, 508 .fdb_del = ksz9477_fdb_del, 509 .mdb_add = ksz9477_mdb_add, 510 .mdb_del = ksz9477_mdb_del, 511 .change_mtu = lan937x_change_mtu, 512 .config_cpu_port = lan937x_config_cpu_port, 513 .tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc, 514 .enable_stp_addr = ksz9477_enable_stp_addr, 515 .reset = lan937x_reset_switch, 516 .init = lan937x_switch_init, 517 .exit = lan937x_switch_exit, 518 }; 519 520 static const u16 ksz8795_regs[] = { 521 [REG_SW_MAC_ADDR] = 0x68, 522 [REG_IND_CTRL_0] = 0x6E, 523 [REG_IND_DATA_8] = 0x70, 524 [REG_IND_DATA_CHECK] = 0x72, 525 [REG_IND_DATA_HI] = 0x71, 526 [REG_IND_DATA_LO] = 0x75, 527 [REG_IND_MIB_CHECK] = 0x74, 528 [REG_IND_BYTE] = 0xA0, 529 [P_FORCE_CTRL] = 0x0C, 530 [P_LINK_STATUS] = 0x0E, 531 [P_LOCAL_CTRL] = 0x07, 532 [P_NEG_RESTART_CTRL] = 0x0D, 533 [P_REMOTE_STATUS] = 0x08, 534 [P_SPEED_STATUS] = 0x09, 535 [S_TAIL_TAG_CTRL] = 0x0C, 536 [P_STP_CTRL] = 0x02, 537 [S_START_CTRL] = 0x01, 538 [S_BROADCAST_CTRL] = 0x06, 539 [S_MULTICAST_CTRL] = 0x04, 540 [P_XMII_CTRL_0] = 0x06, 541 [P_XMII_CTRL_1] = 0x06, 542 [REG_SW_PME_CTRL] = 0x8003, 543 [REG_PORT_PME_STATUS] = 0x8003, 544 [REG_PORT_PME_CTRL] = 0x8007, 545 }; 546 547 static const u32 ksz8795_masks[] = { 548 [PORT_802_1P_REMAPPING] = BIT(7), 549 [SW_TAIL_TAG_ENABLE] = BIT(1), 550 [MIB_COUNTER_OVERFLOW] = BIT(6), 551 [MIB_COUNTER_VALID] = BIT(5), 552 [VLAN_TABLE_FID] = GENMASK(6, 0), 553 [VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7), 554 [VLAN_TABLE_VALID] = BIT(12), 555 [STATIC_MAC_TABLE_VALID] = BIT(21), 556 [STATIC_MAC_TABLE_USE_FID] = BIT(23), 557 [STATIC_MAC_TABLE_FID] = GENMASK(30, 24), 558 [STATIC_MAC_TABLE_OVERRIDE] = BIT(22), 559 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(20, 16), 560 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0), 561 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7), 562 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 563 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29), 564 [DYNAMIC_MAC_TABLE_FID] = GENMASK(22, 16), 565 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24), 566 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27), 567 [P_MII_TX_FLOW_CTRL] = BIT(5), 568 [P_MII_RX_FLOW_CTRL] = BIT(5), 569 }; 570 571 static const u8 ksz8795_xmii_ctrl0[] = { 572 [P_MII_100MBIT] = 0, 573 [P_MII_10MBIT] = 1, 574 [P_MII_FULL_DUPLEX] = 0, 575 [P_MII_HALF_DUPLEX] = 1, 576 }; 577 578 static const u8 ksz8795_xmii_ctrl1[] = { 579 [P_RGMII_SEL] = 3, 580 [P_GMII_SEL] = 2, 581 [P_RMII_SEL] = 1, 582 [P_MII_SEL] = 0, 583 [P_GMII_1GBIT] = 1, 584 [P_GMII_NOT_1GBIT] = 0, 585 }; 586 587 static const u8 ksz8795_shifts[] = { 588 [VLAN_TABLE_MEMBERSHIP_S] = 7, 589 [VLAN_TABLE] = 16, 590 [STATIC_MAC_FWD_PORTS] = 16, 591 [STATIC_MAC_FID] = 24, 592 [DYNAMIC_MAC_ENTRIES_H] = 3, 593 [DYNAMIC_MAC_ENTRIES] = 29, 594 [DYNAMIC_MAC_FID] = 16, 595 [DYNAMIC_MAC_TIMESTAMP] = 27, 596 [DYNAMIC_MAC_SRC_PORT] = 24, 597 }; 598 599 static const u16 ksz8863_regs[] = { 600 [REG_SW_MAC_ADDR] = 0x70, 601 [REG_IND_CTRL_0] = 0x79, 602 [REG_IND_DATA_8] = 0x7B, 603 [REG_IND_DATA_CHECK] = 0x7B, 604 [REG_IND_DATA_HI] = 0x7C, 605 [REG_IND_DATA_LO] = 0x80, 606 [REG_IND_MIB_CHECK] = 0x80, 607 [P_FORCE_CTRL] = 0x0C, 608 [P_LINK_STATUS] = 0x0E, 609 [P_LOCAL_CTRL] = 0x0C, 610 [P_NEG_RESTART_CTRL] = 0x0D, 611 [P_REMOTE_STATUS] = 0x0E, 612 [P_SPEED_STATUS] = 0x0F, 613 [S_TAIL_TAG_CTRL] = 0x03, 614 [P_STP_CTRL] = 0x02, 615 [S_START_CTRL] = 0x01, 616 [S_BROADCAST_CTRL] = 0x06, 617 [S_MULTICAST_CTRL] = 0x04, 618 }; 619 620 static const u32 ksz8863_masks[] = { 621 [PORT_802_1P_REMAPPING] = BIT(3), 622 [SW_TAIL_TAG_ENABLE] = BIT(6), 623 [MIB_COUNTER_OVERFLOW] = BIT(7), 624 [MIB_COUNTER_VALID] = BIT(6), 625 [VLAN_TABLE_FID] = GENMASK(15, 12), 626 [VLAN_TABLE_MEMBERSHIP] = GENMASK(18, 16), 627 [VLAN_TABLE_VALID] = BIT(19), 628 [STATIC_MAC_TABLE_VALID] = BIT(19), 629 [STATIC_MAC_TABLE_USE_FID] = BIT(21), 630 [STATIC_MAC_TABLE_FID] = GENMASK(25, 22), 631 [STATIC_MAC_TABLE_OVERRIDE] = BIT(20), 632 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(18, 16), 633 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(1, 0), 634 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(2), 635 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 636 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 24), 637 [DYNAMIC_MAC_TABLE_FID] = GENMASK(19, 16), 638 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(21, 20), 639 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(23, 22), 640 }; 641 642 static u8 ksz8863_shifts[] = { 643 [VLAN_TABLE_MEMBERSHIP_S] = 16, 644 [STATIC_MAC_FWD_PORTS] = 16, 645 [STATIC_MAC_FID] = 22, 646 [DYNAMIC_MAC_ENTRIES_H] = 8, 647 [DYNAMIC_MAC_ENTRIES] = 24, 648 [DYNAMIC_MAC_FID] = 16, 649 [DYNAMIC_MAC_TIMESTAMP] = 22, 650 [DYNAMIC_MAC_SRC_PORT] = 20, 651 }; 652 653 static const u16 ksz8895_regs[] = { 654 [REG_SW_MAC_ADDR] = 0x68, 655 [REG_IND_CTRL_0] = 0x6E, 656 [REG_IND_DATA_8] = 0x70, 657 [REG_IND_DATA_CHECK] = 0x72, 658 [REG_IND_DATA_HI] = 0x71, 659 [REG_IND_DATA_LO] = 0x75, 660 [REG_IND_MIB_CHECK] = 0x75, 661 [P_FORCE_CTRL] = 0x0C, 662 [P_LINK_STATUS] = 0x0E, 663 [P_LOCAL_CTRL] = 0x0C, 664 [P_NEG_RESTART_CTRL] = 0x0D, 665 [P_REMOTE_STATUS] = 0x0E, 666 [P_SPEED_STATUS] = 0x09, 667 [S_TAIL_TAG_CTRL] = 0x0C, 668 [P_STP_CTRL] = 0x02, 669 [S_START_CTRL] = 0x01, 670 [S_BROADCAST_CTRL] = 0x06, 671 [S_MULTICAST_CTRL] = 0x04, 672 }; 673 674 static const u32 ksz8895_masks[] = { 675 [PORT_802_1P_REMAPPING] = BIT(7), 676 [SW_TAIL_TAG_ENABLE] = BIT(1), 677 [MIB_COUNTER_OVERFLOW] = BIT(7), 678 [MIB_COUNTER_VALID] = BIT(6), 679 [VLAN_TABLE_FID] = GENMASK(6, 0), 680 [VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7), 681 [VLAN_TABLE_VALID] = BIT(12), 682 [STATIC_MAC_TABLE_VALID] = BIT(21), 683 [STATIC_MAC_TABLE_USE_FID] = BIT(23), 684 [STATIC_MAC_TABLE_FID] = GENMASK(30, 24), 685 [STATIC_MAC_TABLE_OVERRIDE] = BIT(22), 686 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(20, 16), 687 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0), 688 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7), 689 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 690 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29), 691 [DYNAMIC_MAC_TABLE_FID] = GENMASK(22, 16), 692 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24), 693 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27), 694 }; 695 696 static const u8 ksz8895_shifts[] = { 697 [VLAN_TABLE_MEMBERSHIP_S] = 7, 698 [VLAN_TABLE] = 13, 699 [STATIC_MAC_FWD_PORTS] = 16, 700 [STATIC_MAC_FID] = 24, 701 [DYNAMIC_MAC_ENTRIES_H] = 3, 702 [DYNAMIC_MAC_ENTRIES] = 29, 703 [DYNAMIC_MAC_FID] = 16, 704 [DYNAMIC_MAC_TIMESTAMP] = 27, 705 [DYNAMIC_MAC_SRC_PORT] = 24, 706 }; 707 708 static const u16 ksz9477_regs[] = { 709 [REG_SW_MAC_ADDR] = 0x0302, 710 [P_STP_CTRL] = 0x0B04, 711 [S_START_CTRL] = 0x0300, 712 [S_BROADCAST_CTRL] = 0x0332, 713 [S_MULTICAST_CTRL] = 0x0331, 714 [P_XMII_CTRL_0] = 0x0300, 715 [P_XMII_CTRL_1] = 0x0301, 716 [REG_SW_PME_CTRL] = 0x0006, 717 [REG_PORT_PME_STATUS] = 0x0013, 718 [REG_PORT_PME_CTRL] = 0x0017, 719 }; 720 721 static const u32 ksz9477_masks[] = { 722 [ALU_STAT_WRITE] = 0, 723 [ALU_STAT_READ] = 1, 724 [P_MII_TX_FLOW_CTRL] = BIT(5), 725 [P_MII_RX_FLOW_CTRL] = BIT(3), 726 }; 727 728 static const u8 ksz9477_shifts[] = { 729 [ALU_STAT_INDEX] = 16, 730 }; 731 732 static const u8 ksz9477_xmii_ctrl0[] = { 733 [P_MII_100MBIT] = 1, 734 [P_MII_10MBIT] = 0, 735 [P_MII_FULL_DUPLEX] = 1, 736 [P_MII_HALF_DUPLEX] = 0, 737 }; 738 739 static const u8 ksz9477_xmii_ctrl1[] = { 740 [P_RGMII_SEL] = 0, 741 [P_RMII_SEL] = 1, 742 [P_GMII_SEL] = 2, 743 [P_MII_SEL] = 3, 744 [P_GMII_1GBIT] = 0, 745 [P_GMII_NOT_1GBIT] = 1, 746 }; 747 748 static const u32 lan937x_masks[] = { 749 [ALU_STAT_WRITE] = 1, 750 [ALU_STAT_READ] = 2, 751 [P_MII_TX_FLOW_CTRL] = BIT(5), 752 [P_MII_RX_FLOW_CTRL] = BIT(3), 753 }; 754 755 static const u8 lan937x_shifts[] = { 756 [ALU_STAT_INDEX] = 8, 757 }; 758 759 static const struct regmap_range ksz8563_valid_regs[] = { 760 regmap_reg_range(0x0000, 0x0003), 761 regmap_reg_range(0x0006, 0x0006), 762 regmap_reg_range(0x000f, 0x001f), 763 regmap_reg_range(0x0100, 0x0100), 764 regmap_reg_range(0x0104, 0x0107), 765 regmap_reg_range(0x010d, 0x010d), 766 regmap_reg_range(0x0110, 0x0113), 767 regmap_reg_range(0x0120, 0x012b), 768 regmap_reg_range(0x0201, 0x0201), 769 regmap_reg_range(0x0210, 0x0213), 770 regmap_reg_range(0x0300, 0x0300), 771 regmap_reg_range(0x0302, 0x031b), 772 regmap_reg_range(0x0320, 0x032b), 773 regmap_reg_range(0x0330, 0x0336), 774 regmap_reg_range(0x0338, 0x033e), 775 regmap_reg_range(0x0340, 0x035f), 776 regmap_reg_range(0x0370, 0x0370), 777 regmap_reg_range(0x0378, 0x0378), 778 regmap_reg_range(0x037c, 0x037d), 779 regmap_reg_range(0x0390, 0x0393), 780 regmap_reg_range(0x0400, 0x040e), 781 regmap_reg_range(0x0410, 0x042f), 782 regmap_reg_range(0x0500, 0x0519), 783 regmap_reg_range(0x0520, 0x054b), 784 regmap_reg_range(0x0550, 0x05b3), 785 786 /* port 1 */ 787 regmap_reg_range(0x1000, 0x1001), 788 regmap_reg_range(0x1004, 0x100b), 789 regmap_reg_range(0x1013, 0x1013), 790 regmap_reg_range(0x1017, 0x1017), 791 regmap_reg_range(0x101b, 0x101b), 792 regmap_reg_range(0x101f, 0x1021), 793 regmap_reg_range(0x1030, 0x1030), 794 regmap_reg_range(0x1100, 0x1111), 795 regmap_reg_range(0x111a, 0x111d), 796 regmap_reg_range(0x1122, 0x1127), 797 regmap_reg_range(0x112a, 0x112b), 798 regmap_reg_range(0x1136, 0x1139), 799 regmap_reg_range(0x113e, 0x113f), 800 regmap_reg_range(0x1400, 0x1401), 801 regmap_reg_range(0x1403, 0x1403), 802 regmap_reg_range(0x1410, 0x1417), 803 regmap_reg_range(0x1420, 0x1423), 804 regmap_reg_range(0x1500, 0x1507), 805 regmap_reg_range(0x1600, 0x1612), 806 regmap_reg_range(0x1800, 0x180f), 807 regmap_reg_range(0x1900, 0x1907), 808 regmap_reg_range(0x1914, 0x191b), 809 regmap_reg_range(0x1a00, 0x1a03), 810 regmap_reg_range(0x1a04, 0x1a08), 811 regmap_reg_range(0x1b00, 0x1b01), 812 regmap_reg_range(0x1b04, 0x1b04), 813 regmap_reg_range(0x1c00, 0x1c05), 814 regmap_reg_range(0x1c08, 0x1c1b), 815 816 /* port 2 */ 817 regmap_reg_range(0x2000, 0x2001), 818 regmap_reg_range(0x2004, 0x200b), 819 regmap_reg_range(0x2013, 0x2013), 820 regmap_reg_range(0x2017, 0x2017), 821 regmap_reg_range(0x201b, 0x201b), 822 regmap_reg_range(0x201f, 0x2021), 823 regmap_reg_range(0x2030, 0x2030), 824 regmap_reg_range(0x2100, 0x2111), 825 regmap_reg_range(0x211a, 0x211d), 826 regmap_reg_range(0x2122, 0x2127), 827 regmap_reg_range(0x212a, 0x212b), 828 regmap_reg_range(0x2136, 0x2139), 829 regmap_reg_range(0x213e, 0x213f), 830 regmap_reg_range(0x2400, 0x2401), 831 regmap_reg_range(0x2403, 0x2403), 832 regmap_reg_range(0x2410, 0x2417), 833 regmap_reg_range(0x2420, 0x2423), 834 regmap_reg_range(0x2500, 0x2507), 835 regmap_reg_range(0x2600, 0x2612), 836 regmap_reg_range(0x2800, 0x280f), 837 regmap_reg_range(0x2900, 0x2907), 838 regmap_reg_range(0x2914, 0x291b), 839 regmap_reg_range(0x2a00, 0x2a03), 840 regmap_reg_range(0x2a04, 0x2a08), 841 regmap_reg_range(0x2b00, 0x2b01), 842 regmap_reg_range(0x2b04, 0x2b04), 843 regmap_reg_range(0x2c00, 0x2c05), 844 regmap_reg_range(0x2c08, 0x2c1b), 845 846 /* port 3 */ 847 regmap_reg_range(0x3000, 0x3001), 848 regmap_reg_range(0x3004, 0x300b), 849 regmap_reg_range(0x3013, 0x3013), 850 regmap_reg_range(0x3017, 0x3017), 851 regmap_reg_range(0x301b, 0x301b), 852 regmap_reg_range(0x301f, 0x3021), 853 regmap_reg_range(0x3030, 0x3030), 854 regmap_reg_range(0x3300, 0x3301), 855 regmap_reg_range(0x3303, 0x3303), 856 regmap_reg_range(0x3400, 0x3401), 857 regmap_reg_range(0x3403, 0x3403), 858 regmap_reg_range(0x3410, 0x3417), 859 regmap_reg_range(0x3420, 0x3423), 860 regmap_reg_range(0x3500, 0x3507), 861 regmap_reg_range(0x3600, 0x3612), 862 regmap_reg_range(0x3800, 0x380f), 863 regmap_reg_range(0x3900, 0x3907), 864 regmap_reg_range(0x3914, 0x391b), 865 regmap_reg_range(0x3a00, 0x3a03), 866 regmap_reg_range(0x3a04, 0x3a08), 867 regmap_reg_range(0x3b00, 0x3b01), 868 regmap_reg_range(0x3b04, 0x3b04), 869 regmap_reg_range(0x3c00, 0x3c05), 870 regmap_reg_range(0x3c08, 0x3c1b), 871 }; 872 873 static const struct regmap_access_table ksz8563_register_set = { 874 .yes_ranges = ksz8563_valid_regs, 875 .n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs), 876 }; 877 878 static const struct regmap_range ksz9477_valid_regs[] = { 879 regmap_reg_range(0x0000, 0x0003), 880 regmap_reg_range(0x0006, 0x0006), 881 regmap_reg_range(0x0010, 0x001f), 882 regmap_reg_range(0x0100, 0x0100), 883 regmap_reg_range(0x0103, 0x0107), 884 regmap_reg_range(0x010d, 0x010d), 885 regmap_reg_range(0x0110, 0x0113), 886 regmap_reg_range(0x0120, 0x012b), 887 regmap_reg_range(0x0201, 0x0201), 888 regmap_reg_range(0x0210, 0x0213), 889 regmap_reg_range(0x0300, 0x0300), 890 regmap_reg_range(0x0302, 0x031b), 891 regmap_reg_range(0x0320, 0x032b), 892 regmap_reg_range(0x0330, 0x0336), 893 regmap_reg_range(0x0338, 0x033b), 894 regmap_reg_range(0x033e, 0x033e), 895 regmap_reg_range(0x0340, 0x035f), 896 regmap_reg_range(0x0370, 0x0370), 897 regmap_reg_range(0x0378, 0x0378), 898 regmap_reg_range(0x037c, 0x037d), 899 regmap_reg_range(0x0390, 0x0393), 900 regmap_reg_range(0x0400, 0x040e), 901 regmap_reg_range(0x0410, 0x042f), 902 regmap_reg_range(0x0444, 0x044b), 903 regmap_reg_range(0x0450, 0x046f), 904 regmap_reg_range(0x0500, 0x0519), 905 regmap_reg_range(0x0520, 0x054b), 906 regmap_reg_range(0x0550, 0x05b3), 907 regmap_reg_range(0x0604, 0x060b), 908 regmap_reg_range(0x0610, 0x0612), 909 regmap_reg_range(0x0614, 0x062c), 910 regmap_reg_range(0x0640, 0x0645), 911 regmap_reg_range(0x0648, 0x064d), 912 913 /* port 1 */ 914 regmap_reg_range(0x1000, 0x1001), 915 regmap_reg_range(0x1013, 0x1013), 916 regmap_reg_range(0x1017, 0x1017), 917 regmap_reg_range(0x101b, 0x101b), 918 regmap_reg_range(0x101f, 0x1020), 919 regmap_reg_range(0x1030, 0x1030), 920 regmap_reg_range(0x1100, 0x1115), 921 regmap_reg_range(0x111a, 0x111f), 922 regmap_reg_range(0x1120, 0x112b), 923 regmap_reg_range(0x1134, 0x113b), 924 regmap_reg_range(0x113c, 0x113f), 925 regmap_reg_range(0x1400, 0x1401), 926 regmap_reg_range(0x1403, 0x1403), 927 regmap_reg_range(0x1410, 0x1417), 928 regmap_reg_range(0x1420, 0x1423), 929 regmap_reg_range(0x1500, 0x1507), 930 regmap_reg_range(0x1600, 0x1613), 931 regmap_reg_range(0x1800, 0x180f), 932 regmap_reg_range(0x1820, 0x1827), 933 regmap_reg_range(0x1830, 0x1837), 934 regmap_reg_range(0x1840, 0x184b), 935 regmap_reg_range(0x1900, 0x1907), 936 regmap_reg_range(0x1914, 0x191b), 937 regmap_reg_range(0x1920, 0x1920), 938 regmap_reg_range(0x1923, 0x1927), 939 regmap_reg_range(0x1a00, 0x1a03), 940 regmap_reg_range(0x1a04, 0x1a07), 941 regmap_reg_range(0x1b00, 0x1b01), 942 regmap_reg_range(0x1b04, 0x1b04), 943 regmap_reg_range(0x1c00, 0x1c05), 944 regmap_reg_range(0x1c08, 0x1c1b), 945 946 /* port 2 */ 947 regmap_reg_range(0x2000, 0x2001), 948 regmap_reg_range(0x2013, 0x2013), 949 regmap_reg_range(0x2017, 0x2017), 950 regmap_reg_range(0x201b, 0x201b), 951 regmap_reg_range(0x201f, 0x2020), 952 regmap_reg_range(0x2030, 0x2030), 953 regmap_reg_range(0x2100, 0x2115), 954 regmap_reg_range(0x211a, 0x211f), 955 regmap_reg_range(0x2120, 0x212b), 956 regmap_reg_range(0x2134, 0x213b), 957 regmap_reg_range(0x213c, 0x213f), 958 regmap_reg_range(0x2400, 0x2401), 959 regmap_reg_range(0x2403, 0x2403), 960 regmap_reg_range(0x2410, 0x2417), 961 regmap_reg_range(0x2420, 0x2423), 962 regmap_reg_range(0x2500, 0x2507), 963 regmap_reg_range(0x2600, 0x2613), 964 regmap_reg_range(0x2800, 0x280f), 965 regmap_reg_range(0x2820, 0x2827), 966 regmap_reg_range(0x2830, 0x2837), 967 regmap_reg_range(0x2840, 0x284b), 968 regmap_reg_range(0x2900, 0x2907), 969 regmap_reg_range(0x2914, 0x291b), 970 regmap_reg_range(0x2920, 0x2920), 971 regmap_reg_range(0x2923, 0x2927), 972 regmap_reg_range(0x2a00, 0x2a03), 973 regmap_reg_range(0x2a04, 0x2a07), 974 regmap_reg_range(0x2b00, 0x2b01), 975 regmap_reg_range(0x2b04, 0x2b04), 976 regmap_reg_range(0x2c00, 0x2c05), 977 regmap_reg_range(0x2c08, 0x2c1b), 978 979 /* port 3 */ 980 regmap_reg_range(0x3000, 0x3001), 981 regmap_reg_range(0x3013, 0x3013), 982 regmap_reg_range(0x3017, 0x3017), 983 regmap_reg_range(0x301b, 0x301b), 984 regmap_reg_range(0x301f, 0x3020), 985 regmap_reg_range(0x3030, 0x3030), 986 regmap_reg_range(0x3100, 0x3115), 987 regmap_reg_range(0x311a, 0x311f), 988 regmap_reg_range(0x3120, 0x312b), 989 regmap_reg_range(0x3134, 0x313b), 990 regmap_reg_range(0x313c, 0x313f), 991 regmap_reg_range(0x3400, 0x3401), 992 regmap_reg_range(0x3403, 0x3403), 993 regmap_reg_range(0x3410, 0x3417), 994 regmap_reg_range(0x3420, 0x3423), 995 regmap_reg_range(0x3500, 0x3507), 996 regmap_reg_range(0x3600, 0x3613), 997 regmap_reg_range(0x3800, 0x380f), 998 regmap_reg_range(0x3820, 0x3827), 999 regmap_reg_range(0x3830, 0x3837), 1000 regmap_reg_range(0x3840, 0x384b), 1001 regmap_reg_range(0x3900, 0x3907), 1002 regmap_reg_range(0x3914, 0x391b), 1003 regmap_reg_range(0x3920, 0x3920), 1004 regmap_reg_range(0x3923, 0x3927), 1005 regmap_reg_range(0x3a00, 0x3a03), 1006 regmap_reg_range(0x3a04, 0x3a07), 1007 regmap_reg_range(0x3b00, 0x3b01), 1008 regmap_reg_range(0x3b04, 0x3b04), 1009 regmap_reg_range(0x3c00, 0x3c05), 1010 regmap_reg_range(0x3c08, 0x3c1b), 1011 1012 /* port 4 */ 1013 regmap_reg_range(0x4000, 0x4001), 1014 regmap_reg_range(0x4013, 0x4013), 1015 regmap_reg_range(0x4017, 0x4017), 1016 regmap_reg_range(0x401b, 0x401b), 1017 regmap_reg_range(0x401f, 0x4020), 1018 regmap_reg_range(0x4030, 0x4030), 1019 regmap_reg_range(0x4100, 0x4115), 1020 regmap_reg_range(0x411a, 0x411f), 1021 regmap_reg_range(0x4120, 0x412b), 1022 regmap_reg_range(0x4134, 0x413b), 1023 regmap_reg_range(0x413c, 0x413f), 1024 regmap_reg_range(0x4400, 0x4401), 1025 regmap_reg_range(0x4403, 0x4403), 1026 regmap_reg_range(0x4410, 0x4417), 1027 regmap_reg_range(0x4420, 0x4423), 1028 regmap_reg_range(0x4500, 0x4507), 1029 regmap_reg_range(0x4600, 0x4613), 1030 regmap_reg_range(0x4800, 0x480f), 1031 regmap_reg_range(0x4820, 0x4827), 1032 regmap_reg_range(0x4830, 0x4837), 1033 regmap_reg_range(0x4840, 0x484b), 1034 regmap_reg_range(0x4900, 0x4907), 1035 regmap_reg_range(0x4914, 0x491b), 1036 regmap_reg_range(0x4920, 0x4920), 1037 regmap_reg_range(0x4923, 0x4927), 1038 regmap_reg_range(0x4a00, 0x4a03), 1039 regmap_reg_range(0x4a04, 0x4a07), 1040 regmap_reg_range(0x4b00, 0x4b01), 1041 regmap_reg_range(0x4b04, 0x4b04), 1042 regmap_reg_range(0x4c00, 0x4c05), 1043 regmap_reg_range(0x4c08, 0x4c1b), 1044 1045 /* port 5 */ 1046 regmap_reg_range(0x5000, 0x5001), 1047 regmap_reg_range(0x5013, 0x5013), 1048 regmap_reg_range(0x5017, 0x5017), 1049 regmap_reg_range(0x501b, 0x501b), 1050 regmap_reg_range(0x501f, 0x5020), 1051 regmap_reg_range(0x5030, 0x5030), 1052 regmap_reg_range(0x5100, 0x5115), 1053 regmap_reg_range(0x511a, 0x511f), 1054 regmap_reg_range(0x5120, 0x512b), 1055 regmap_reg_range(0x5134, 0x513b), 1056 regmap_reg_range(0x513c, 0x513f), 1057 regmap_reg_range(0x5400, 0x5401), 1058 regmap_reg_range(0x5403, 0x5403), 1059 regmap_reg_range(0x5410, 0x5417), 1060 regmap_reg_range(0x5420, 0x5423), 1061 regmap_reg_range(0x5500, 0x5507), 1062 regmap_reg_range(0x5600, 0x5613), 1063 regmap_reg_range(0x5800, 0x580f), 1064 regmap_reg_range(0x5820, 0x5827), 1065 regmap_reg_range(0x5830, 0x5837), 1066 regmap_reg_range(0x5840, 0x584b), 1067 regmap_reg_range(0x5900, 0x5907), 1068 regmap_reg_range(0x5914, 0x591b), 1069 regmap_reg_range(0x5920, 0x5920), 1070 regmap_reg_range(0x5923, 0x5927), 1071 regmap_reg_range(0x5a00, 0x5a03), 1072 regmap_reg_range(0x5a04, 0x5a07), 1073 regmap_reg_range(0x5b00, 0x5b01), 1074 regmap_reg_range(0x5b04, 0x5b04), 1075 regmap_reg_range(0x5c00, 0x5c05), 1076 regmap_reg_range(0x5c08, 0x5c1b), 1077 1078 /* port 6 */ 1079 regmap_reg_range(0x6000, 0x6001), 1080 regmap_reg_range(0x6013, 0x6013), 1081 regmap_reg_range(0x6017, 0x6017), 1082 regmap_reg_range(0x601b, 0x601b), 1083 regmap_reg_range(0x601f, 0x6020), 1084 regmap_reg_range(0x6030, 0x6030), 1085 regmap_reg_range(0x6300, 0x6301), 1086 regmap_reg_range(0x6400, 0x6401), 1087 regmap_reg_range(0x6403, 0x6403), 1088 regmap_reg_range(0x6410, 0x6417), 1089 regmap_reg_range(0x6420, 0x6423), 1090 regmap_reg_range(0x6500, 0x6507), 1091 regmap_reg_range(0x6600, 0x6613), 1092 regmap_reg_range(0x6800, 0x680f), 1093 regmap_reg_range(0x6820, 0x6827), 1094 regmap_reg_range(0x6830, 0x6837), 1095 regmap_reg_range(0x6840, 0x684b), 1096 regmap_reg_range(0x6900, 0x6907), 1097 regmap_reg_range(0x6914, 0x691b), 1098 regmap_reg_range(0x6920, 0x6920), 1099 regmap_reg_range(0x6923, 0x6927), 1100 regmap_reg_range(0x6a00, 0x6a03), 1101 regmap_reg_range(0x6a04, 0x6a07), 1102 regmap_reg_range(0x6b00, 0x6b01), 1103 regmap_reg_range(0x6b04, 0x6b04), 1104 regmap_reg_range(0x6c00, 0x6c05), 1105 regmap_reg_range(0x6c08, 0x6c1b), 1106 1107 /* port 7 */ 1108 regmap_reg_range(0x7000, 0x7001), 1109 regmap_reg_range(0x7013, 0x7013), 1110 regmap_reg_range(0x7017, 0x7017), 1111 regmap_reg_range(0x701b, 0x701b), 1112 regmap_reg_range(0x701f, 0x7020), 1113 regmap_reg_range(0x7030, 0x7030), 1114 regmap_reg_range(0x7200, 0x7207), 1115 regmap_reg_range(0x7300, 0x7301), 1116 regmap_reg_range(0x7400, 0x7401), 1117 regmap_reg_range(0x7403, 0x7403), 1118 regmap_reg_range(0x7410, 0x7417), 1119 regmap_reg_range(0x7420, 0x7423), 1120 regmap_reg_range(0x7500, 0x7507), 1121 regmap_reg_range(0x7600, 0x7613), 1122 regmap_reg_range(0x7800, 0x780f), 1123 regmap_reg_range(0x7820, 0x7827), 1124 regmap_reg_range(0x7830, 0x7837), 1125 regmap_reg_range(0x7840, 0x784b), 1126 regmap_reg_range(0x7900, 0x7907), 1127 regmap_reg_range(0x7914, 0x791b), 1128 regmap_reg_range(0x7920, 0x7920), 1129 regmap_reg_range(0x7923, 0x7927), 1130 regmap_reg_range(0x7a00, 0x7a03), 1131 regmap_reg_range(0x7a04, 0x7a07), 1132 regmap_reg_range(0x7b00, 0x7b01), 1133 regmap_reg_range(0x7b04, 0x7b04), 1134 regmap_reg_range(0x7c00, 0x7c05), 1135 regmap_reg_range(0x7c08, 0x7c1b), 1136 }; 1137 1138 static const struct regmap_access_table ksz9477_register_set = { 1139 .yes_ranges = ksz9477_valid_regs, 1140 .n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs), 1141 }; 1142 1143 static const struct regmap_range ksz9896_valid_regs[] = { 1144 regmap_reg_range(0x0000, 0x0003), 1145 regmap_reg_range(0x0006, 0x0006), 1146 regmap_reg_range(0x0010, 0x001f), 1147 regmap_reg_range(0x0100, 0x0100), 1148 regmap_reg_range(0x0103, 0x0107), 1149 regmap_reg_range(0x010d, 0x010d), 1150 regmap_reg_range(0x0110, 0x0113), 1151 regmap_reg_range(0x0120, 0x0127), 1152 regmap_reg_range(0x0201, 0x0201), 1153 regmap_reg_range(0x0210, 0x0213), 1154 regmap_reg_range(0x0300, 0x0300), 1155 regmap_reg_range(0x0302, 0x030b), 1156 regmap_reg_range(0x0310, 0x031b), 1157 regmap_reg_range(0x0320, 0x032b), 1158 regmap_reg_range(0x0330, 0x0336), 1159 regmap_reg_range(0x0338, 0x033b), 1160 regmap_reg_range(0x033e, 0x033e), 1161 regmap_reg_range(0x0340, 0x035f), 1162 regmap_reg_range(0x0370, 0x0370), 1163 regmap_reg_range(0x0378, 0x0378), 1164 regmap_reg_range(0x037c, 0x037d), 1165 regmap_reg_range(0x0390, 0x0393), 1166 regmap_reg_range(0x0400, 0x040e), 1167 regmap_reg_range(0x0410, 0x042f), 1168 1169 /* port 1 */ 1170 regmap_reg_range(0x1000, 0x1001), 1171 regmap_reg_range(0x1013, 0x1013), 1172 regmap_reg_range(0x1017, 0x1017), 1173 regmap_reg_range(0x101b, 0x101b), 1174 regmap_reg_range(0x101f, 0x1020), 1175 regmap_reg_range(0x1030, 0x1030), 1176 regmap_reg_range(0x1100, 0x1115), 1177 regmap_reg_range(0x111a, 0x111f), 1178 regmap_reg_range(0x1120, 0x112b), 1179 regmap_reg_range(0x1134, 0x113b), 1180 regmap_reg_range(0x113c, 0x113f), 1181 regmap_reg_range(0x1400, 0x1401), 1182 regmap_reg_range(0x1403, 0x1403), 1183 regmap_reg_range(0x1410, 0x1417), 1184 regmap_reg_range(0x1420, 0x1423), 1185 regmap_reg_range(0x1500, 0x1507), 1186 regmap_reg_range(0x1600, 0x1612), 1187 regmap_reg_range(0x1800, 0x180f), 1188 regmap_reg_range(0x1820, 0x1827), 1189 regmap_reg_range(0x1830, 0x1837), 1190 regmap_reg_range(0x1840, 0x184b), 1191 regmap_reg_range(0x1900, 0x1907), 1192 regmap_reg_range(0x1914, 0x1915), 1193 regmap_reg_range(0x1a00, 0x1a03), 1194 regmap_reg_range(0x1a04, 0x1a07), 1195 regmap_reg_range(0x1b00, 0x1b01), 1196 regmap_reg_range(0x1b04, 0x1b04), 1197 1198 /* port 2 */ 1199 regmap_reg_range(0x2000, 0x2001), 1200 regmap_reg_range(0x2013, 0x2013), 1201 regmap_reg_range(0x2017, 0x2017), 1202 regmap_reg_range(0x201b, 0x201b), 1203 regmap_reg_range(0x201f, 0x2020), 1204 regmap_reg_range(0x2030, 0x2030), 1205 regmap_reg_range(0x2100, 0x2115), 1206 regmap_reg_range(0x211a, 0x211f), 1207 regmap_reg_range(0x2120, 0x212b), 1208 regmap_reg_range(0x2134, 0x213b), 1209 regmap_reg_range(0x213c, 0x213f), 1210 regmap_reg_range(0x2400, 0x2401), 1211 regmap_reg_range(0x2403, 0x2403), 1212 regmap_reg_range(0x2410, 0x2417), 1213 regmap_reg_range(0x2420, 0x2423), 1214 regmap_reg_range(0x2500, 0x2507), 1215 regmap_reg_range(0x2600, 0x2612), 1216 regmap_reg_range(0x2800, 0x280f), 1217 regmap_reg_range(0x2820, 0x2827), 1218 regmap_reg_range(0x2830, 0x2837), 1219 regmap_reg_range(0x2840, 0x284b), 1220 regmap_reg_range(0x2900, 0x2907), 1221 regmap_reg_range(0x2914, 0x2915), 1222 regmap_reg_range(0x2a00, 0x2a03), 1223 regmap_reg_range(0x2a04, 0x2a07), 1224 regmap_reg_range(0x2b00, 0x2b01), 1225 regmap_reg_range(0x2b04, 0x2b04), 1226 1227 /* port 3 */ 1228 regmap_reg_range(0x3000, 0x3001), 1229 regmap_reg_range(0x3013, 0x3013), 1230 regmap_reg_range(0x3017, 0x3017), 1231 regmap_reg_range(0x301b, 0x301b), 1232 regmap_reg_range(0x301f, 0x3020), 1233 regmap_reg_range(0x3030, 0x3030), 1234 regmap_reg_range(0x3100, 0x3115), 1235 regmap_reg_range(0x311a, 0x311f), 1236 regmap_reg_range(0x3120, 0x312b), 1237 regmap_reg_range(0x3134, 0x313b), 1238 regmap_reg_range(0x313c, 0x313f), 1239 regmap_reg_range(0x3400, 0x3401), 1240 regmap_reg_range(0x3403, 0x3403), 1241 regmap_reg_range(0x3410, 0x3417), 1242 regmap_reg_range(0x3420, 0x3423), 1243 regmap_reg_range(0x3500, 0x3507), 1244 regmap_reg_range(0x3600, 0x3612), 1245 regmap_reg_range(0x3800, 0x380f), 1246 regmap_reg_range(0x3820, 0x3827), 1247 regmap_reg_range(0x3830, 0x3837), 1248 regmap_reg_range(0x3840, 0x384b), 1249 regmap_reg_range(0x3900, 0x3907), 1250 regmap_reg_range(0x3914, 0x3915), 1251 regmap_reg_range(0x3a00, 0x3a03), 1252 regmap_reg_range(0x3a04, 0x3a07), 1253 regmap_reg_range(0x3b00, 0x3b01), 1254 regmap_reg_range(0x3b04, 0x3b04), 1255 1256 /* port 4 */ 1257 regmap_reg_range(0x4000, 0x4001), 1258 regmap_reg_range(0x4013, 0x4013), 1259 regmap_reg_range(0x4017, 0x4017), 1260 regmap_reg_range(0x401b, 0x401b), 1261 regmap_reg_range(0x401f, 0x4020), 1262 regmap_reg_range(0x4030, 0x4030), 1263 regmap_reg_range(0x4100, 0x4115), 1264 regmap_reg_range(0x411a, 0x411f), 1265 regmap_reg_range(0x4120, 0x412b), 1266 regmap_reg_range(0x4134, 0x413b), 1267 regmap_reg_range(0x413c, 0x413f), 1268 regmap_reg_range(0x4400, 0x4401), 1269 regmap_reg_range(0x4403, 0x4403), 1270 regmap_reg_range(0x4410, 0x4417), 1271 regmap_reg_range(0x4420, 0x4423), 1272 regmap_reg_range(0x4500, 0x4507), 1273 regmap_reg_range(0x4600, 0x4612), 1274 regmap_reg_range(0x4800, 0x480f), 1275 regmap_reg_range(0x4820, 0x4827), 1276 regmap_reg_range(0x4830, 0x4837), 1277 regmap_reg_range(0x4840, 0x484b), 1278 regmap_reg_range(0x4900, 0x4907), 1279 regmap_reg_range(0x4914, 0x4915), 1280 regmap_reg_range(0x4a00, 0x4a03), 1281 regmap_reg_range(0x4a04, 0x4a07), 1282 regmap_reg_range(0x4b00, 0x4b01), 1283 regmap_reg_range(0x4b04, 0x4b04), 1284 1285 /* port 5 */ 1286 regmap_reg_range(0x5000, 0x5001), 1287 regmap_reg_range(0x5013, 0x5013), 1288 regmap_reg_range(0x5017, 0x5017), 1289 regmap_reg_range(0x501b, 0x501b), 1290 regmap_reg_range(0x501f, 0x5020), 1291 regmap_reg_range(0x5030, 0x5030), 1292 regmap_reg_range(0x5100, 0x5115), 1293 regmap_reg_range(0x511a, 0x511f), 1294 regmap_reg_range(0x5120, 0x512b), 1295 regmap_reg_range(0x5134, 0x513b), 1296 regmap_reg_range(0x513c, 0x513f), 1297 regmap_reg_range(0x5400, 0x5401), 1298 regmap_reg_range(0x5403, 0x5403), 1299 regmap_reg_range(0x5410, 0x5417), 1300 regmap_reg_range(0x5420, 0x5423), 1301 regmap_reg_range(0x5500, 0x5507), 1302 regmap_reg_range(0x5600, 0x5612), 1303 regmap_reg_range(0x5800, 0x580f), 1304 regmap_reg_range(0x5820, 0x5827), 1305 regmap_reg_range(0x5830, 0x5837), 1306 regmap_reg_range(0x5840, 0x584b), 1307 regmap_reg_range(0x5900, 0x5907), 1308 regmap_reg_range(0x5914, 0x5915), 1309 regmap_reg_range(0x5a00, 0x5a03), 1310 regmap_reg_range(0x5a04, 0x5a07), 1311 regmap_reg_range(0x5b00, 0x5b01), 1312 regmap_reg_range(0x5b04, 0x5b04), 1313 1314 /* port 6 */ 1315 regmap_reg_range(0x6000, 0x6001), 1316 regmap_reg_range(0x6013, 0x6013), 1317 regmap_reg_range(0x6017, 0x6017), 1318 regmap_reg_range(0x601b, 0x601b), 1319 regmap_reg_range(0x601f, 0x6020), 1320 regmap_reg_range(0x6030, 0x6030), 1321 regmap_reg_range(0x6100, 0x6115), 1322 regmap_reg_range(0x611a, 0x611f), 1323 regmap_reg_range(0x6120, 0x612b), 1324 regmap_reg_range(0x6134, 0x613b), 1325 regmap_reg_range(0x613c, 0x613f), 1326 regmap_reg_range(0x6300, 0x6301), 1327 regmap_reg_range(0x6400, 0x6401), 1328 regmap_reg_range(0x6403, 0x6403), 1329 regmap_reg_range(0x6410, 0x6417), 1330 regmap_reg_range(0x6420, 0x6423), 1331 regmap_reg_range(0x6500, 0x6507), 1332 regmap_reg_range(0x6600, 0x6612), 1333 regmap_reg_range(0x6800, 0x680f), 1334 regmap_reg_range(0x6820, 0x6827), 1335 regmap_reg_range(0x6830, 0x6837), 1336 regmap_reg_range(0x6840, 0x684b), 1337 regmap_reg_range(0x6900, 0x6907), 1338 regmap_reg_range(0x6914, 0x6915), 1339 regmap_reg_range(0x6a00, 0x6a03), 1340 regmap_reg_range(0x6a04, 0x6a07), 1341 regmap_reg_range(0x6b00, 0x6b01), 1342 regmap_reg_range(0x6b04, 0x6b04), 1343 }; 1344 1345 static const struct regmap_access_table ksz9896_register_set = { 1346 .yes_ranges = ksz9896_valid_regs, 1347 .n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs), 1348 }; 1349 1350 static const struct regmap_range ksz8873_valid_regs[] = { 1351 regmap_reg_range(0x00, 0x01), 1352 /* global control register */ 1353 regmap_reg_range(0x02, 0x0f), 1354 1355 /* port registers */ 1356 regmap_reg_range(0x10, 0x1d), 1357 regmap_reg_range(0x1e, 0x1f), 1358 regmap_reg_range(0x20, 0x2d), 1359 regmap_reg_range(0x2e, 0x2f), 1360 regmap_reg_range(0x30, 0x39), 1361 regmap_reg_range(0x3f, 0x3f), 1362 1363 /* advanced control registers */ 1364 regmap_reg_range(0x60, 0x6f), 1365 regmap_reg_range(0x70, 0x75), 1366 regmap_reg_range(0x76, 0x78), 1367 regmap_reg_range(0x79, 0x7a), 1368 regmap_reg_range(0x7b, 0x83), 1369 regmap_reg_range(0x8e, 0x99), 1370 regmap_reg_range(0x9a, 0xa5), 1371 regmap_reg_range(0xa6, 0xa6), 1372 regmap_reg_range(0xa7, 0xaa), 1373 regmap_reg_range(0xab, 0xae), 1374 regmap_reg_range(0xaf, 0xba), 1375 regmap_reg_range(0xbb, 0xbc), 1376 regmap_reg_range(0xbd, 0xbd), 1377 regmap_reg_range(0xc0, 0xc0), 1378 regmap_reg_range(0xc2, 0xc2), 1379 regmap_reg_range(0xc3, 0xc3), 1380 regmap_reg_range(0xc4, 0xc4), 1381 regmap_reg_range(0xc6, 0xc6), 1382 }; 1383 1384 static const struct regmap_access_table ksz8873_register_set = { 1385 .yes_ranges = ksz8873_valid_regs, 1386 .n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs), 1387 }; 1388 1389 const struct ksz_chip_data ksz_switch_chips[] = { 1390 [KSZ8563] = { 1391 .chip_id = KSZ8563_CHIP_ID, 1392 .dev_name = "KSZ8563", 1393 .num_vlans = 4096, 1394 .num_alus = 4096, 1395 .num_statics = 16, 1396 .cpu_ports = 0x07, /* can be configured as cpu port */ 1397 .port_cnt = 3, /* total port count */ 1398 .port_nirqs = 3, 1399 .num_tx_queues = 4, 1400 .num_ipms = 8, 1401 .tc_cbs_supported = true, 1402 .ops = &ksz9477_dev_ops, 1403 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1404 .mib_names = ksz9477_mib_names, 1405 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1406 .reg_mib_cnt = MIB_COUNTER_NUM, 1407 .regs = ksz9477_regs, 1408 .masks = ksz9477_masks, 1409 .shifts = ksz9477_shifts, 1410 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1411 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1412 .supports_mii = {false, false, true}, 1413 .supports_rmii = {false, false, true}, 1414 .supports_rgmii = {false, false, true}, 1415 .internal_phy = {true, true, false}, 1416 .gbit_capable = {false, false, true}, 1417 .ptp_capable = true, 1418 .wr_table = &ksz8563_register_set, 1419 .rd_table = &ksz8563_register_set, 1420 }, 1421 1422 [KSZ8795] = { 1423 .chip_id = KSZ8795_CHIP_ID, 1424 .dev_name = "KSZ8795", 1425 .num_vlans = 4096, 1426 .num_alus = 0, 1427 .num_statics = 32, 1428 .cpu_ports = 0x10, /* can be configured as cpu port */ 1429 .port_cnt = 5, /* total cpu and user ports */ 1430 .num_tx_queues = 4, 1431 .num_ipms = 4, 1432 .ops = &ksz87xx_dev_ops, 1433 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1434 .ksz87xx_eee_link_erratum = true, 1435 .mib_names = ksz9477_mib_names, 1436 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1437 .reg_mib_cnt = MIB_COUNTER_NUM, 1438 .regs = ksz8795_regs, 1439 .masks = ksz8795_masks, 1440 .shifts = ksz8795_shifts, 1441 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1442 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1443 .supports_mii = {false, false, false, false, true}, 1444 .supports_rmii = {false, false, false, false, true}, 1445 .supports_rgmii = {false, false, false, false, true}, 1446 .internal_phy = {true, true, true, true, false}, 1447 }, 1448 1449 [KSZ8794] = { 1450 /* WARNING 1451 * ======= 1452 * KSZ8794 is similar to KSZ8795, except the port map 1453 * contains a gap between external and CPU ports, the 1454 * port map is NOT continuous. The per-port register 1455 * map is shifted accordingly too, i.e. registers at 1456 * offset 0x40 are NOT used on KSZ8794 and they ARE 1457 * used on KSZ8795 for external port 3. 1458 * external cpu 1459 * KSZ8794 0,1,2 4 1460 * KSZ8795 0,1,2,3 4 1461 * KSZ8765 0,1,2,3 4 1462 * port_cnt is configured as 5, even though it is 4 1463 */ 1464 .chip_id = KSZ8794_CHIP_ID, 1465 .dev_name = "KSZ8794", 1466 .num_vlans = 4096, 1467 .num_alus = 0, 1468 .num_statics = 32, 1469 .cpu_ports = 0x10, /* can be configured as cpu port */ 1470 .port_cnt = 5, /* total cpu and user ports */ 1471 .num_tx_queues = 4, 1472 .num_ipms = 4, 1473 .ops = &ksz87xx_dev_ops, 1474 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1475 .ksz87xx_eee_link_erratum = true, 1476 .mib_names = ksz9477_mib_names, 1477 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1478 .reg_mib_cnt = MIB_COUNTER_NUM, 1479 .regs = ksz8795_regs, 1480 .masks = ksz8795_masks, 1481 .shifts = ksz8795_shifts, 1482 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1483 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1484 .supports_mii = {false, false, false, false, true}, 1485 .supports_rmii = {false, false, false, false, true}, 1486 .supports_rgmii = {false, false, false, false, true}, 1487 .internal_phy = {true, true, true, false, false}, 1488 }, 1489 1490 [KSZ8765] = { 1491 .chip_id = KSZ8765_CHIP_ID, 1492 .dev_name = "KSZ8765", 1493 .num_vlans = 4096, 1494 .num_alus = 0, 1495 .num_statics = 32, 1496 .cpu_ports = 0x10, /* can be configured as cpu port */ 1497 .port_cnt = 5, /* total cpu and user ports */ 1498 .num_tx_queues = 4, 1499 .num_ipms = 4, 1500 .ops = &ksz87xx_dev_ops, 1501 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1502 .ksz87xx_eee_link_erratum = true, 1503 .mib_names = ksz9477_mib_names, 1504 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1505 .reg_mib_cnt = MIB_COUNTER_NUM, 1506 .regs = ksz8795_regs, 1507 .masks = ksz8795_masks, 1508 .shifts = ksz8795_shifts, 1509 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1510 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1511 .supports_mii = {false, false, false, false, true}, 1512 .supports_rmii = {false, false, false, false, true}, 1513 .supports_rgmii = {false, false, false, false, true}, 1514 .internal_phy = {true, true, true, true, false}, 1515 }, 1516 1517 [KSZ88X3] = { 1518 .chip_id = KSZ88X3_CHIP_ID, 1519 .dev_name = "KSZ8863/KSZ8873", 1520 .num_vlans = 16, 1521 .num_alus = 0, 1522 .num_statics = 8, 1523 .cpu_ports = 0x4, /* can be configured as cpu port */ 1524 .port_cnt = 3, 1525 .num_tx_queues = 4, 1526 .num_ipms = 4, 1527 .ops = &ksz88xx_dev_ops, 1528 .phylink_mac_ops = &ksz88x3_phylink_mac_ops, 1529 .mib_names = ksz88xx_mib_names, 1530 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1531 .reg_mib_cnt = MIB_COUNTER_NUM, 1532 .regs = ksz8863_regs, 1533 .masks = ksz8863_masks, 1534 .shifts = ksz8863_shifts, 1535 .supports_mii = {false, false, true}, 1536 .supports_rmii = {false, false, true}, 1537 .internal_phy = {true, true, false}, 1538 .wr_table = &ksz8873_register_set, 1539 .rd_table = &ksz8873_register_set, 1540 }, 1541 1542 [KSZ8864] = { 1543 /* WARNING 1544 * ======= 1545 * KSZ8864 is similar to KSZ8895, except the first port 1546 * does not exist. 1547 * external cpu 1548 * KSZ8864 1,2,3 4 1549 * KSZ8895 0,1,2,3 4 1550 * port_cnt is configured as 5, even though it is 4 1551 */ 1552 .chip_id = KSZ8864_CHIP_ID, 1553 .dev_name = "KSZ8864", 1554 .num_vlans = 4096, 1555 .num_alus = 0, 1556 .num_statics = 32, 1557 .cpu_ports = 0x10, /* can be configured as cpu port */ 1558 .port_cnt = 5, /* total cpu and user ports */ 1559 .num_tx_queues = 4, 1560 .num_ipms = 4, 1561 .ops = &ksz88xx_dev_ops, 1562 .phylink_mac_ops = &ksz88x3_phylink_mac_ops, 1563 .mib_names = ksz88xx_mib_names, 1564 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1565 .reg_mib_cnt = MIB_COUNTER_NUM, 1566 .regs = ksz8895_regs, 1567 .masks = ksz8895_masks, 1568 .shifts = ksz8895_shifts, 1569 .supports_mii = {false, false, false, false, true}, 1570 .supports_rmii = {false, false, false, false, true}, 1571 .internal_phy = {false, true, true, true, false}, 1572 }, 1573 1574 [KSZ8895] = { 1575 .chip_id = KSZ8895_CHIP_ID, 1576 .dev_name = "KSZ8895", 1577 .num_vlans = 4096, 1578 .num_alus = 0, 1579 .num_statics = 32, 1580 .cpu_ports = 0x10, /* can be configured as cpu port */ 1581 .port_cnt = 5, /* total cpu and user ports */ 1582 .num_tx_queues = 4, 1583 .num_ipms = 4, 1584 .ops = &ksz88xx_dev_ops, 1585 .phylink_mac_ops = &ksz88x3_phylink_mac_ops, 1586 .mib_names = ksz88xx_mib_names, 1587 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1588 .reg_mib_cnt = MIB_COUNTER_NUM, 1589 .regs = ksz8895_regs, 1590 .masks = ksz8895_masks, 1591 .shifts = ksz8895_shifts, 1592 .supports_mii = {false, false, false, false, true}, 1593 .supports_rmii = {false, false, false, false, true}, 1594 .internal_phy = {true, true, true, true, false}, 1595 }, 1596 1597 [KSZ9477] = { 1598 .chip_id = KSZ9477_CHIP_ID, 1599 .dev_name = "KSZ9477", 1600 .num_vlans = 4096, 1601 .num_alus = 4096, 1602 .num_statics = 16, 1603 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1604 .port_cnt = 7, /* total physical port count */ 1605 .port_nirqs = 4, 1606 .num_tx_queues = 4, 1607 .num_ipms = 8, 1608 .tc_cbs_supported = true, 1609 .ops = &ksz9477_dev_ops, 1610 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1611 .phy_errata_9477 = true, 1612 .mib_names = ksz9477_mib_names, 1613 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1614 .reg_mib_cnt = MIB_COUNTER_NUM, 1615 .regs = ksz9477_regs, 1616 .masks = ksz9477_masks, 1617 .shifts = ksz9477_shifts, 1618 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1619 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1620 .supports_mii = {false, false, false, false, 1621 false, true, false}, 1622 .supports_rmii = {false, false, false, false, 1623 false, true, false}, 1624 .supports_rgmii = {false, false, false, false, 1625 false, true, false}, 1626 .internal_phy = {true, true, true, true, 1627 true, false, false}, 1628 .gbit_capable = {true, true, true, true, true, true, true}, 1629 .ptp_capable = true, 1630 .sgmii_port = 7, 1631 .wr_table = &ksz9477_register_set, 1632 .rd_table = &ksz9477_register_set, 1633 }, 1634 1635 [KSZ9896] = { 1636 .chip_id = KSZ9896_CHIP_ID, 1637 .dev_name = "KSZ9896", 1638 .num_vlans = 4096, 1639 .num_alus = 4096, 1640 .num_statics = 16, 1641 .cpu_ports = 0x3F, /* can be configured as cpu port */ 1642 .port_cnt = 6, /* total physical port count */ 1643 .port_nirqs = 2, 1644 .num_tx_queues = 4, 1645 .num_ipms = 8, 1646 .ops = &ksz9477_dev_ops, 1647 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1648 .phy_errata_9477 = true, 1649 .mib_names = ksz9477_mib_names, 1650 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1651 .reg_mib_cnt = MIB_COUNTER_NUM, 1652 .regs = ksz9477_regs, 1653 .masks = ksz9477_masks, 1654 .shifts = ksz9477_shifts, 1655 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1656 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1657 .supports_mii = {false, false, false, false, 1658 false, true}, 1659 .supports_rmii = {false, false, false, false, 1660 false, true}, 1661 .supports_rgmii = {false, false, false, false, 1662 false, true}, 1663 .internal_phy = {true, true, true, true, 1664 true, false}, 1665 .gbit_capable = {true, true, true, true, true, true}, 1666 .wr_table = &ksz9896_register_set, 1667 .rd_table = &ksz9896_register_set, 1668 }, 1669 1670 [KSZ9897] = { 1671 .chip_id = KSZ9897_CHIP_ID, 1672 .dev_name = "KSZ9897", 1673 .num_vlans = 4096, 1674 .num_alus = 4096, 1675 .num_statics = 16, 1676 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1677 .port_cnt = 7, /* total physical port count */ 1678 .port_nirqs = 2, 1679 .num_tx_queues = 4, 1680 .num_ipms = 8, 1681 .ops = &ksz9477_dev_ops, 1682 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1683 .phy_errata_9477 = true, 1684 .mib_names = ksz9477_mib_names, 1685 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1686 .reg_mib_cnt = MIB_COUNTER_NUM, 1687 .regs = ksz9477_regs, 1688 .masks = ksz9477_masks, 1689 .shifts = ksz9477_shifts, 1690 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1691 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1692 .supports_mii = {false, false, false, false, 1693 false, true, true}, 1694 .supports_rmii = {false, false, false, false, 1695 false, true, true}, 1696 .supports_rgmii = {false, false, false, false, 1697 false, true, true}, 1698 .internal_phy = {true, true, true, true, 1699 true, false, false}, 1700 .gbit_capable = {true, true, true, true, true, true, true}, 1701 }, 1702 1703 [KSZ9893] = { 1704 .chip_id = KSZ9893_CHIP_ID, 1705 .dev_name = "KSZ9893", 1706 .num_vlans = 4096, 1707 .num_alus = 4096, 1708 .num_statics = 16, 1709 .cpu_ports = 0x07, /* can be configured as cpu port */ 1710 .port_cnt = 3, /* total port count */ 1711 .port_nirqs = 2, 1712 .num_tx_queues = 4, 1713 .num_ipms = 8, 1714 .ops = &ksz9477_dev_ops, 1715 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1716 .mib_names = ksz9477_mib_names, 1717 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1718 .reg_mib_cnt = MIB_COUNTER_NUM, 1719 .regs = ksz9477_regs, 1720 .masks = ksz9477_masks, 1721 .shifts = ksz9477_shifts, 1722 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1723 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1724 .supports_mii = {false, false, true}, 1725 .supports_rmii = {false, false, true}, 1726 .supports_rgmii = {false, false, true}, 1727 .internal_phy = {true, true, false}, 1728 .gbit_capable = {true, true, true}, 1729 }, 1730 1731 [KSZ9563] = { 1732 .chip_id = KSZ9563_CHIP_ID, 1733 .dev_name = "KSZ9563", 1734 .num_vlans = 4096, 1735 .num_alus = 4096, 1736 .num_statics = 16, 1737 .cpu_ports = 0x07, /* can be configured as cpu port */ 1738 .port_cnt = 3, /* total port count */ 1739 .port_nirqs = 3, 1740 .num_tx_queues = 4, 1741 .num_ipms = 8, 1742 .tc_cbs_supported = true, 1743 .ops = &ksz9477_dev_ops, 1744 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1745 .mib_names = ksz9477_mib_names, 1746 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1747 .reg_mib_cnt = MIB_COUNTER_NUM, 1748 .regs = ksz9477_regs, 1749 .masks = ksz9477_masks, 1750 .shifts = ksz9477_shifts, 1751 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1752 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1753 .supports_mii = {false, false, true}, 1754 .supports_rmii = {false, false, true}, 1755 .supports_rgmii = {false, false, true}, 1756 .internal_phy = {true, true, false}, 1757 .gbit_capable = {true, true, true}, 1758 .ptp_capable = true, 1759 }, 1760 1761 [KSZ8567] = { 1762 .chip_id = KSZ8567_CHIP_ID, 1763 .dev_name = "KSZ8567", 1764 .num_vlans = 4096, 1765 .num_alus = 4096, 1766 .num_statics = 16, 1767 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1768 .port_cnt = 7, /* total port count */ 1769 .port_nirqs = 3, 1770 .num_tx_queues = 4, 1771 .num_ipms = 8, 1772 .tc_cbs_supported = true, 1773 .ops = &ksz9477_dev_ops, 1774 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1775 .phy_errata_9477 = true, 1776 .mib_names = ksz9477_mib_names, 1777 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1778 .reg_mib_cnt = MIB_COUNTER_NUM, 1779 .regs = ksz9477_regs, 1780 .masks = ksz9477_masks, 1781 .shifts = ksz9477_shifts, 1782 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1783 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1784 .supports_mii = {false, false, false, false, 1785 false, true, true}, 1786 .supports_rmii = {false, false, false, false, 1787 false, true, true}, 1788 .supports_rgmii = {false, false, false, false, 1789 false, true, true}, 1790 .internal_phy = {true, true, true, true, 1791 true, false, false}, 1792 .gbit_capable = {false, false, false, false, false, 1793 true, true}, 1794 .ptp_capable = true, 1795 }, 1796 1797 [KSZ9567] = { 1798 .chip_id = KSZ9567_CHIP_ID, 1799 .dev_name = "KSZ9567", 1800 .num_vlans = 4096, 1801 .num_alus = 4096, 1802 .num_statics = 16, 1803 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1804 .port_cnt = 7, /* total physical port count */ 1805 .port_nirqs = 3, 1806 .num_tx_queues = 4, 1807 .num_ipms = 8, 1808 .tc_cbs_supported = true, 1809 .ops = &ksz9477_dev_ops, 1810 .mib_names = ksz9477_mib_names, 1811 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1812 .reg_mib_cnt = MIB_COUNTER_NUM, 1813 .regs = ksz9477_regs, 1814 .masks = ksz9477_masks, 1815 .shifts = ksz9477_shifts, 1816 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1817 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1818 .supports_mii = {false, false, false, false, 1819 false, true, true}, 1820 .supports_rmii = {false, false, false, false, 1821 false, true, true}, 1822 .supports_rgmii = {false, false, false, false, 1823 false, true, true}, 1824 .internal_phy = {true, true, true, true, 1825 true, false, false}, 1826 .gbit_capable = {true, true, true, true, true, true, true}, 1827 .ptp_capable = true, 1828 }, 1829 1830 [LAN9370] = { 1831 .chip_id = LAN9370_CHIP_ID, 1832 .dev_name = "LAN9370", 1833 .num_vlans = 4096, 1834 .num_alus = 1024, 1835 .num_statics = 256, 1836 .cpu_ports = 0x10, /* can be configured as cpu port */ 1837 .port_cnt = 5, /* total physical port count */ 1838 .port_nirqs = 6, 1839 .num_tx_queues = 8, 1840 .num_ipms = 8, 1841 .tc_cbs_supported = true, 1842 .phy_side_mdio_supported = true, 1843 .ops = &lan937x_dev_ops, 1844 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1845 .mib_names = ksz9477_mib_names, 1846 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1847 .reg_mib_cnt = MIB_COUNTER_NUM, 1848 .regs = ksz9477_regs, 1849 .masks = lan937x_masks, 1850 .shifts = lan937x_shifts, 1851 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1852 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1853 .supports_mii = {false, false, false, false, true}, 1854 .supports_rmii = {false, false, false, false, true}, 1855 .supports_rgmii = {false, false, false, false, true}, 1856 .internal_phy = {true, true, true, true, false}, 1857 .ptp_capable = true, 1858 }, 1859 1860 [LAN9371] = { 1861 .chip_id = LAN9371_CHIP_ID, 1862 .dev_name = "LAN9371", 1863 .num_vlans = 4096, 1864 .num_alus = 1024, 1865 .num_statics = 256, 1866 .cpu_ports = 0x30, /* can be configured as cpu port */ 1867 .port_cnt = 6, /* total physical port count */ 1868 .port_nirqs = 6, 1869 .num_tx_queues = 8, 1870 .num_ipms = 8, 1871 .tc_cbs_supported = true, 1872 .phy_side_mdio_supported = true, 1873 .ops = &lan937x_dev_ops, 1874 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1875 .mib_names = ksz9477_mib_names, 1876 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1877 .reg_mib_cnt = MIB_COUNTER_NUM, 1878 .regs = ksz9477_regs, 1879 .masks = lan937x_masks, 1880 .shifts = lan937x_shifts, 1881 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1882 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1883 .supports_mii = {false, false, false, false, true, true}, 1884 .supports_rmii = {false, false, false, false, true, true}, 1885 .supports_rgmii = {false, false, false, false, true, true}, 1886 .internal_phy = {true, true, true, true, false, false}, 1887 .ptp_capable = true, 1888 }, 1889 1890 [LAN9372] = { 1891 .chip_id = LAN9372_CHIP_ID, 1892 .dev_name = "LAN9372", 1893 .num_vlans = 4096, 1894 .num_alus = 1024, 1895 .num_statics = 256, 1896 .cpu_ports = 0x30, /* can be configured as cpu port */ 1897 .port_cnt = 8, /* total physical port count */ 1898 .port_nirqs = 6, 1899 .num_tx_queues = 8, 1900 .num_ipms = 8, 1901 .tc_cbs_supported = true, 1902 .phy_side_mdio_supported = true, 1903 .ops = &lan937x_dev_ops, 1904 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1905 .mib_names = ksz9477_mib_names, 1906 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1907 .reg_mib_cnt = MIB_COUNTER_NUM, 1908 .regs = ksz9477_regs, 1909 .masks = lan937x_masks, 1910 .shifts = lan937x_shifts, 1911 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1912 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1913 .supports_mii = {false, false, false, false, 1914 true, true, false, false}, 1915 .supports_rmii = {false, false, false, false, 1916 true, true, false, false}, 1917 .supports_rgmii = {false, false, false, false, 1918 true, true, false, false}, 1919 .internal_phy = {true, true, true, true, 1920 false, false, true, true}, 1921 .ptp_capable = true, 1922 }, 1923 1924 [LAN9373] = { 1925 .chip_id = LAN9373_CHIP_ID, 1926 .dev_name = "LAN9373", 1927 .num_vlans = 4096, 1928 .num_alus = 1024, 1929 .num_statics = 256, 1930 .cpu_ports = 0x38, /* can be configured as cpu port */ 1931 .port_cnt = 5, /* total physical port count */ 1932 .port_nirqs = 6, 1933 .num_tx_queues = 8, 1934 .num_ipms = 8, 1935 .tc_cbs_supported = true, 1936 .phy_side_mdio_supported = true, 1937 .ops = &lan937x_dev_ops, 1938 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1939 .mib_names = ksz9477_mib_names, 1940 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1941 .reg_mib_cnt = MIB_COUNTER_NUM, 1942 .regs = ksz9477_regs, 1943 .masks = lan937x_masks, 1944 .shifts = lan937x_shifts, 1945 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1946 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1947 .supports_mii = {false, false, false, false, 1948 true, true, false, false}, 1949 .supports_rmii = {false, false, false, false, 1950 true, true, false, false}, 1951 .supports_rgmii = {false, false, false, false, 1952 true, true, false, false}, 1953 .internal_phy = {true, true, true, false, 1954 false, false, true, true}, 1955 .ptp_capable = true, 1956 }, 1957 1958 [LAN9374] = { 1959 .chip_id = LAN9374_CHIP_ID, 1960 .dev_name = "LAN9374", 1961 .num_vlans = 4096, 1962 .num_alus = 1024, 1963 .num_statics = 256, 1964 .cpu_ports = 0x30, /* can be configured as cpu port */ 1965 .port_cnt = 8, /* total physical port count */ 1966 .port_nirqs = 6, 1967 .num_tx_queues = 8, 1968 .num_ipms = 8, 1969 .tc_cbs_supported = true, 1970 .phy_side_mdio_supported = true, 1971 .ops = &lan937x_dev_ops, 1972 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1973 .mib_names = ksz9477_mib_names, 1974 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1975 .reg_mib_cnt = MIB_COUNTER_NUM, 1976 .regs = ksz9477_regs, 1977 .masks = lan937x_masks, 1978 .shifts = lan937x_shifts, 1979 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1980 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1981 .supports_mii = {false, false, false, false, 1982 true, true, false, false}, 1983 .supports_rmii = {false, false, false, false, 1984 true, true, false, false}, 1985 .supports_rgmii = {false, false, false, false, 1986 true, true, false, false}, 1987 .internal_phy = {true, true, true, true, 1988 false, false, true, true}, 1989 .ptp_capable = true, 1990 }, 1991 1992 [LAN9646] = { 1993 .chip_id = LAN9646_CHIP_ID, 1994 .dev_name = "LAN9646", 1995 .num_vlans = 4096, 1996 .num_alus = 4096, 1997 .num_statics = 16, 1998 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1999 .port_cnt = 7, /* total physical port count */ 2000 .port_nirqs = 4, 2001 .num_tx_queues = 4, 2002 .num_ipms = 8, 2003 .ops = &ksz9477_dev_ops, 2004 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 2005 .phy_errata_9477 = true, 2006 .mib_names = ksz9477_mib_names, 2007 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 2008 .reg_mib_cnt = MIB_COUNTER_NUM, 2009 .regs = ksz9477_regs, 2010 .masks = ksz9477_masks, 2011 .shifts = ksz9477_shifts, 2012 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 2013 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 2014 .supports_mii = {false, false, false, false, 2015 false, true, true}, 2016 .supports_rmii = {false, false, false, false, 2017 false, true, true}, 2018 .supports_rgmii = {false, false, false, false, 2019 false, true, true}, 2020 .internal_phy = {true, true, true, true, 2021 true, false, false}, 2022 .gbit_capable = {true, true, true, true, true, true, true}, 2023 .sgmii_port = 7, 2024 .wr_table = &ksz9477_register_set, 2025 .rd_table = &ksz9477_register_set, 2026 }, 2027 }; 2028 EXPORT_SYMBOL_GPL(ksz_switch_chips); 2029 2030 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num) 2031 { 2032 int i; 2033 2034 for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) { 2035 const struct ksz_chip_data *chip = &ksz_switch_chips[i]; 2036 2037 if (chip->chip_id == prod_num) 2038 return chip; 2039 } 2040 2041 return NULL; 2042 } 2043 2044 static int ksz_check_device_id(struct ksz_device *dev) 2045 { 2046 const struct ksz_chip_data *expected_chip_data; 2047 u32 expected_chip_id; 2048 2049 if (dev->pdata) { 2050 expected_chip_id = dev->pdata->chip_id; 2051 expected_chip_data = ksz_lookup_info(expected_chip_id); 2052 if (WARN_ON(!expected_chip_data)) 2053 return -ENODEV; 2054 } else { 2055 expected_chip_data = of_device_get_match_data(dev->dev); 2056 expected_chip_id = expected_chip_data->chip_id; 2057 } 2058 2059 if (expected_chip_id != dev->chip_id) { 2060 dev_err(dev->dev, 2061 "Device tree specifies chip %s but found %s, please fix it!\n", 2062 expected_chip_data->dev_name, dev->info->dev_name); 2063 return -ENODEV; 2064 } 2065 2066 return 0; 2067 } 2068 2069 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port, 2070 struct phylink_config *config) 2071 { 2072 struct ksz_device *dev = ds->priv; 2073 2074 if (dev->info->supports_mii[port]) 2075 __set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces); 2076 2077 if (dev->info->supports_rmii[port]) 2078 __set_bit(PHY_INTERFACE_MODE_RMII, 2079 config->supported_interfaces); 2080 2081 if (dev->info->supports_rgmii[port]) 2082 phy_interface_set_rgmii(config->supported_interfaces); 2083 2084 if (dev->info->internal_phy[port]) { 2085 __set_bit(PHY_INTERFACE_MODE_INTERNAL, 2086 config->supported_interfaces); 2087 /* Compatibility for phylib's default interface type when the 2088 * phy-mode property is absent 2089 */ 2090 __set_bit(PHY_INTERFACE_MODE_GMII, 2091 config->supported_interfaces); 2092 } 2093 2094 if (dev->dev_ops->get_caps) 2095 dev->dev_ops->get_caps(dev, port, config); 2096 2097 if (ds->ops->support_eee && ds->ops->support_eee(ds, port)) { 2098 memcpy(config->lpi_interfaces, config->supported_interfaces, 2099 sizeof(config->lpi_interfaces)); 2100 2101 config->lpi_capabilities = MAC_100FD; 2102 if (dev->info->gbit_capable[port]) 2103 config->lpi_capabilities |= MAC_1000FD; 2104 2105 /* EEE is fully operational */ 2106 config->eee_enabled_default = true; 2107 } 2108 } 2109 2110 void ksz_r_mib_stats64(struct ksz_device *dev, int port) 2111 { 2112 struct ethtool_pause_stats *pstats; 2113 struct rtnl_link_stats64 *stats; 2114 struct ksz_stats_raw *raw; 2115 struct ksz_port_mib *mib; 2116 int ret; 2117 2118 mib = &dev->ports[port].mib; 2119 stats = &mib->stats64; 2120 pstats = &mib->pause_stats; 2121 raw = (struct ksz_stats_raw *)mib->counters; 2122 2123 spin_lock(&mib->stats64_lock); 2124 2125 stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast + 2126 raw->rx_pause; 2127 stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast + 2128 raw->tx_pause; 2129 2130 /* HW counters are counting bytes + FCS which is not acceptable 2131 * for rtnl_link_stats64 interface 2132 */ 2133 stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN; 2134 stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN; 2135 2136 stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments + 2137 raw->rx_oversize; 2138 2139 stats->rx_crc_errors = raw->rx_crc_err; 2140 stats->rx_frame_errors = raw->rx_align_err; 2141 stats->rx_dropped = raw->rx_discards; 2142 stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors + 2143 stats->rx_frame_errors + stats->rx_dropped; 2144 2145 stats->tx_window_errors = raw->tx_late_col; 2146 stats->tx_fifo_errors = raw->tx_discards; 2147 stats->tx_aborted_errors = raw->tx_exc_col; 2148 stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors + 2149 stats->tx_aborted_errors; 2150 2151 stats->multicast = raw->rx_mcast; 2152 stats->collisions = raw->tx_total_col; 2153 2154 pstats->tx_pause_frames = raw->tx_pause; 2155 pstats->rx_pause_frames = raw->rx_pause; 2156 2157 spin_unlock(&mib->stats64_lock); 2158 2159 if (dev->info->phy_errata_9477 && !ksz_is_sgmii_port(dev, port)) { 2160 ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col); 2161 if (ret) 2162 dev_err(dev->dev, "Failed to monitor transmission halt\n"); 2163 } 2164 } 2165 2166 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port) 2167 { 2168 struct ethtool_pause_stats *pstats; 2169 struct rtnl_link_stats64 *stats; 2170 struct ksz88xx_stats_raw *raw; 2171 struct ksz_port_mib *mib; 2172 2173 mib = &dev->ports[port].mib; 2174 stats = &mib->stats64; 2175 pstats = &mib->pause_stats; 2176 raw = (struct ksz88xx_stats_raw *)mib->counters; 2177 2178 spin_lock(&mib->stats64_lock); 2179 2180 stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast + 2181 raw->rx_pause; 2182 stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast + 2183 raw->tx_pause; 2184 2185 /* HW counters are counting bytes + FCS which is not acceptable 2186 * for rtnl_link_stats64 interface 2187 */ 2188 stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN; 2189 stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN; 2190 2191 stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments + 2192 raw->rx_oversize; 2193 2194 stats->rx_crc_errors = raw->rx_crc_err; 2195 stats->rx_frame_errors = raw->rx_align_err; 2196 stats->rx_dropped = raw->rx_discards; 2197 stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors + 2198 stats->rx_frame_errors + stats->rx_dropped; 2199 2200 stats->tx_window_errors = raw->tx_late_col; 2201 stats->tx_fifo_errors = raw->tx_discards; 2202 stats->tx_aborted_errors = raw->tx_exc_col; 2203 stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors + 2204 stats->tx_aborted_errors; 2205 2206 stats->multicast = raw->rx_mcast; 2207 stats->collisions = raw->tx_total_col; 2208 2209 pstats->tx_pause_frames = raw->tx_pause; 2210 pstats->rx_pause_frames = raw->rx_pause; 2211 2212 spin_unlock(&mib->stats64_lock); 2213 } 2214 2215 static void ksz_get_stats64(struct dsa_switch *ds, int port, 2216 struct rtnl_link_stats64 *s) 2217 { 2218 struct ksz_device *dev = ds->priv; 2219 struct ksz_port_mib *mib; 2220 2221 mib = &dev->ports[port].mib; 2222 2223 spin_lock(&mib->stats64_lock); 2224 memcpy(s, &mib->stats64, sizeof(*s)); 2225 spin_unlock(&mib->stats64_lock); 2226 } 2227 2228 static void ksz_get_pause_stats(struct dsa_switch *ds, int port, 2229 struct ethtool_pause_stats *pause_stats) 2230 { 2231 struct ksz_device *dev = ds->priv; 2232 struct ksz_port_mib *mib; 2233 2234 mib = &dev->ports[port].mib; 2235 2236 spin_lock(&mib->stats64_lock); 2237 memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats)); 2238 spin_unlock(&mib->stats64_lock); 2239 } 2240 2241 static void ksz_get_strings(struct dsa_switch *ds, int port, 2242 u32 stringset, uint8_t *buf) 2243 { 2244 struct ksz_device *dev = ds->priv; 2245 int i; 2246 2247 if (stringset != ETH_SS_STATS) 2248 return; 2249 2250 for (i = 0; i < dev->info->mib_cnt; i++) 2251 ethtool_puts(&buf, dev->info->mib_names[i].string); 2252 } 2253 2254 /** 2255 * ksz_update_port_member - Adjust port forwarding rules based on STP state and 2256 * isolation settings. 2257 * @dev: A pointer to the struct ksz_device representing the device. 2258 * @port: The port number to adjust. 2259 * 2260 * This function dynamically adjusts the port membership configuration for a 2261 * specified port and other device ports, based on Spanning Tree Protocol (STP) 2262 * states and port isolation settings. Each port, including the CPU port, has a 2263 * membership register, represented as a bitfield, where each bit corresponds 2264 * to a port number. A set bit indicates permission to forward frames to that 2265 * port. This function iterates over all ports, updating the membership register 2266 * to reflect current forwarding permissions: 2267 * 2268 * 1. Forwards frames only to ports that are part of the same bridge group and 2269 * in the BR_STATE_FORWARDING state. 2270 * 2. Takes into account the isolation status of ports; ports in the 2271 * BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward 2272 * frames to each other, even if they are in the same bridge group. 2273 * 3. Ensures that the CPU port is included in the membership based on its 2274 * upstream port configuration, allowing for management and control traffic 2275 * to flow as required. 2276 */ 2277 static void ksz_update_port_member(struct ksz_device *dev, int port) 2278 { 2279 struct ksz_port *p = &dev->ports[port]; 2280 struct dsa_switch *ds = dev->ds; 2281 u8 port_member = 0, cpu_port; 2282 const struct dsa_port *dp; 2283 int i, j; 2284 2285 if (!dsa_is_user_port(ds, port)) 2286 return; 2287 2288 dp = dsa_to_port(ds, port); 2289 cpu_port = BIT(dsa_upstream_port(ds, port)); 2290 2291 for (i = 0; i < ds->num_ports; i++) { 2292 const struct dsa_port *other_dp = dsa_to_port(ds, i); 2293 struct ksz_port *other_p = &dev->ports[i]; 2294 u8 val = 0; 2295 2296 if (!dsa_is_user_port(ds, i)) 2297 continue; 2298 if (port == i) 2299 continue; 2300 if (!dsa_port_bridge_same(dp, other_dp)) 2301 continue; 2302 if (other_p->stp_state != BR_STATE_FORWARDING) 2303 continue; 2304 2305 /* At this point we know that "port" and "other" port [i] are in 2306 * the same bridge group and that "other" port [i] is in 2307 * forwarding stp state. If "port" is also in forwarding stp 2308 * state, we can allow forwarding from port [port] to port [i]. 2309 * Except if both ports are isolated. 2310 */ 2311 if (p->stp_state == BR_STATE_FORWARDING && 2312 !(p->isolated && other_p->isolated)) { 2313 val |= BIT(port); 2314 port_member |= BIT(i); 2315 } 2316 2317 /* Retain port [i]'s relationship to other ports than [port] */ 2318 for (j = 0; j < ds->num_ports; j++) { 2319 const struct dsa_port *third_dp; 2320 struct ksz_port *third_p; 2321 2322 if (j == i) 2323 continue; 2324 if (j == port) 2325 continue; 2326 if (!dsa_is_user_port(ds, j)) 2327 continue; 2328 third_p = &dev->ports[j]; 2329 if (third_p->stp_state != BR_STATE_FORWARDING) 2330 continue; 2331 2332 third_dp = dsa_to_port(ds, j); 2333 2334 /* Now we updating relation of the "other" port [i] to 2335 * the "third" port [j]. We already know that "other" 2336 * port [i] is in forwarding stp state and that "third" 2337 * port [j] is in forwarding stp state too. 2338 * We need to check if "other" port [i] and "third" port 2339 * [j] are in the same bridge group and not isolated 2340 * before allowing forwarding from port [i] to port [j]. 2341 */ 2342 if (dsa_port_bridge_same(other_dp, third_dp) && 2343 !(other_p->isolated && third_p->isolated)) 2344 val |= BIT(j); 2345 } 2346 2347 dev->dev_ops->cfg_port_member(dev, i, val | cpu_port); 2348 } 2349 2350 dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port); 2351 } 2352 2353 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum) 2354 { 2355 struct ksz_device *dev = bus->priv; 2356 u16 val; 2357 int ret; 2358 2359 ret = dev->dev_ops->r_phy(dev, addr, regnum, &val); 2360 if (ret < 0) 2361 return ret; 2362 2363 return val; 2364 } 2365 2366 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum, 2367 u16 val) 2368 { 2369 struct ksz_device *dev = bus->priv; 2370 2371 return dev->dev_ops->w_phy(dev, addr, regnum, val); 2372 } 2373 2374 /** 2375 * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus. 2376 * @bus: MDIO bus structure. 2377 * @addr: PHY address on the parent MDIO bus. 2378 * @regnum: Register number to read. 2379 * 2380 * This function provides a direct read operation on the parent MDIO bus for 2381 * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus 2382 * to retrieve data from the PHY registers at the specified address and register 2383 * number. 2384 * 2385 * Return: Value of the PHY register, or a negative error code on failure. 2386 */ 2387 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum) 2388 { 2389 struct ksz_device *dev = bus->priv; 2390 2391 return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum); 2392 } 2393 2394 /** 2395 * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus. 2396 * @bus: MDIO bus structure. 2397 * @addr: PHY address on the parent MDIO bus. 2398 * @regnum: Register number to write to. 2399 * @val: Value to write to the PHY register. 2400 * 2401 * This function provides a direct write operation on the parent MDIO bus for 2402 * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus 2403 * to modify the PHY register values at the specified address. 2404 * 2405 * Return: 0 on success, or a negative error code on failure. 2406 */ 2407 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum, 2408 u16 val) 2409 { 2410 struct ksz_device *dev = bus->priv; 2411 2412 return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val); 2413 } 2414 2415 /** 2416 * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port. 2417 * @dev: Pointer to device structure. 2418 * @addr: PHY address to map to a port. 2419 * 2420 * This function finds the corresponding switch port for a given PHY address by 2421 * iterating over all user ports on the device. It checks if a port's PHY 2422 * address in `phy_addr_map` matches the specified address and if the port 2423 * contains an internal PHY. If a match is found, the index of the port is 2424 * returned. 2425 * 2426 * Return: Port index on success, or -EINVAL if no matching port is found. 2427 */ 2428 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr) 2429 { 2430 struct dsa_switch *ds = dev->ds; 2431 struct dsa_port *dp; 2432 2433 dsa_switch_for_each_user_port(dp, ds) { 2434 if (dev->info->internal_phy[dp->index] && 2435 dev->phy_addr_map[dp->index] == addr) 2436 return dp->index; 2437 } 2438 2439 return -EINVAL; 2440 } 2441 2442 /** 2443 * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device. 2444 * @dev: Pointer to the KSZ device structure. 2445 * 2446 * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the 2447 * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in 2448 * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain. 2449 * 2450 * Return: 0 on success, or a negative error code on failure. 2451 */ 2452 static int ksz_irq_phy_setup(struct ksz_device *dev) 2453 { 2454 struct dsa_switch *ds = dev->ds; 2455 int phy, port; 2456 int irq; 2457 int ret; 2458 2459 for (phy = 0; phy < PHY_MAX_ADDR; phy++) { 2460 if (BIT(phy) & ds->phys_mii_mask) { 2461 port = ksz_phy_addr_to_port(dev, phy); 2462 if (port < 0) { 2463 ret = port; 2464 goto out; 2465 } 2466 2467 irq = irq_find_mapping(dev->ports[port].pirq.domain, 2468 PORT_SRC_PHY_INT); 2469 if (irq < 0) { 2470 ret = irq; 2471 goto out; 2472 } 2473 ds->user_mii_bus->irq[phy] = irq; 2474 } 2475 } 2476 return 0; 2477 out: 2478 while (phy--) 2479 if (BIT(phy) & ds->phys_mii_mask) 2480 irq_dispose_mapping(ds->user_mii_bus->irq[phy]); 2481 2482 return ret; 2483 } 2484 2485 /** 2486 * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device. 2487 * @dev: Pointer to the KSZ device structure. 2488 * 2489 * Releases any IRQ mappings previously assigned to active PHYs in the KSZ 2490 * switch by disposing of each mapped IRQ in the `user_mii_bus` structure. 2491 */ 2492 static void ksz_irq_phy_free(struct ksz_device *dev) 2493 { 2494 struct dsa_switch *ds = dev->ds; 2495 int phy; 2496 2497 for (phy = 0; phy < PHY_MAX_ADDR; phy++) 2498 if (BIT(phy) & ds->phys_mii_mask) 2499 irq_dispose_mapping(ds->user_mii_bus->irq[phy]); 2500 } 2501 2502 /** 2503 * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT 2504 * @dev: pointer to the KSZ device structure 2505 * @bus: pointer to the MII bus structure 2506 * @mdio_np: pointer to the MDIO node in the device tree 2507 * 2508 * This function parses and validates PHY configurations for each user port 2509 * defined in the device tree for a KSZ switch device. It verifies that the 2510 * `phy-handle` properties are correctly set and that the internal PHYs match 2511 * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if 2512 * all validations pass. Logs error messages for any mismatches or missing data. 2513 * 2514 * Return: 0 on success, or a negative error code on failure. 2515 */ 2516 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus, 2517 struct device_node *mdio_np) 2518 { 2519 struct device_node *phy_node, *phy_parent_node; 2520 bool phys_are_valid = true; 2521 struct dsa_port *dp; 2522 u32 phy_addr; 2523 int ret; 2524 2525 dsa_switch_for_each_user_port(dp, dev->ds) { 2526 if (!dev->info->internal_phy[dp->index]) 2527 continue; 2528 2529 phy_node = of_parse_phandle(dp->dn, "phy-handle", 0); 2530 if (!phy_node) { 2531 dev_err(dev->dev, "failed to parse phy-handle for port %d.\n", 2532 dp->index); 2533 phys_are_valid = false; 2534 continue; 2535 } 2536 2537 phy_parent_node = of_get_parent(phy_node); 2538 if (!phy_parent_node) { 2539 dev_err(dev->dev, "failed to get PHY-parent node for port %d\n", 2540 dp->index); 2541 phys_are_valid = false; 2542 } else if (phy_parent_node != mdio_np) { 2543 dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n", 2544 dp->index, mdio_np, phy_parent_node); 2545 phys_are_valid = false; 2546 } else { 2547 ret = of_property_read_u32(phy_node, "reg", &phy_addr); 2548 if (ret < 0) { 2549 dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n", 2550 dp->index, ret); 2551 phys_are_valid = false; 2552 } else if (phy_addr != dev->phy_addr_map[dp->index]) { 2553 dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n", 2554 dp->index, dev->phy_addr_map[dp->index], 2555 phy_addr); 2556 phys_are_valid = false; 2557 } else { 2558 bus->phy_mask |= BIT(phy_addr); 2559 } 2560 } 2561 2562 of_node_put(phy_node); 2563 of_node_put(phy_parent_node); 2564 } 2565 2566 if (!phys_are_valid) 2567 return -EINVAL; 2568 2569 return 0; 2570 } 2571 2572 /** 2573 * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device. 2574 * @dev: Pointer to the KSZ device structure. 2575 * 2576 * This function sets up and registers an MDIO bus for the KSZ switch device, 2577 * allowing access to its internal PHYs. If the device supports side MDIO, 2578 * the function will configure the external MDIO controller specified by the 2579 * "mdio-parent-bus" device tree property to directly manage internal PHYs. 2580 * Otherwise, SPI or I2C access is set up for PHY access. 2581 * 2582 * Return: 0 on success, or a negative error code on failure. 2583 */ 2584 static int ksz_mdio_register(struct ksz_device *dev) 2585 { 2586 struct device_node *parent_bus_node; 2587 struct mii_bus *parent_bus = NULL; 2588 struct dsa_switch *ds = dev->ds; 2589 struct device_node *mdio_np; 2590 struct mii_bus *bus; 2591 int ret, i; 2592 2593 mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio"); 2594 if (!mdio_np) 2595 return 0; 2596 2597 parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0); 2598 if (parent_bus_node && !dev->info->phy_side_mdio_supported) { 2599 dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n"); 2600 ret = -EINVAL; 2601 2602 goto put_mdio_node; 2603 } else if (parent_bus_node) { 2604 parent_bus = of_mdio_find_bus(parent_bus_node); 2605 if (!parent_bus) { 2606 ret = -EPROBE_DEFER; 2607 2608 goto put_mdio_node; 2609 } 2610 2611 dev->parent_mdio_bus = parent_bus; 2612 } 2613 2614 bus = devm_mdiobus_alloc(ds->dev); 2615 if (!bus) { 2616 ret = -ENOMEM; 2617 goto put_mdio_node; 2618 } 2619 2620 if (dev->dev_ops->mdio_bus_preinit) { 2621 ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus); 2622 if (ret) 2623 goto put_mdio_node; 2624 } 2625 2626 if (dev->dev_ops->create_phy_addr_map) { 2627 ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus); 2628 if (ret) 2629 goto put_mdio_node; 2630 } else { 2631 for (i = 0; i < dev->info->port_cnt; i++) 2632 dev->phy_addr_map[i] = i; 2633 } 2634 2635 bus->priv = dev; 2636 if (parent_bus) { 2637 bus->read = ksz_parent_mdio_read; 2638 bus->write = ksz_parent_mdio_write; 2639 bus->name = "KSZ side MDIO"; 2640 snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d", 2641 ds->index); 2642 } else { 2643 bus->read = ksz_sw_mdio_read; 2644 bus->write = ksz_sw_mdio_write; 2645 bus->name = "ksz user smi"; 2646 if (ds->dst->index != 0) { 2647 snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d-%d", ds->dst->index, ds->index); 2648 } else { 2649 snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index); 2650 } 2651 } 2652 2653 ret = ksz_parse_dt_phy_config(dev, bus, mdio_np); 2654 if (ret) 2655 goto put_mdio_node; 2656 2657 ds->phys_mii_mask = bus->phy_mask; 2658 bus->parent = ds->dev; 2659 2660 ds->user_mii_bus = bus; 2661 2662 if (dev->irq > 0) { 2663 ret = ksz_irq_phy_setup(dev); 2664 if (ret) 2665 goto put_mdio_node; 2666 } 2667 2668 ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np); 2669 if (ret) { 2670 dev_err(ds->dev, "unable to register MDIO bus %s\n", 2671 bus->id); 2672 if (dev->irq > 0) 2673 ksz_irq_phy_free(dev); 2674 } 2675 2676 put_mdio_node: 2677 of_node_put(mdio_np); 2678 of_node_put(parent_bus_node); 2679 2680 return ret; 2681 } 2682 2683 static void ksz_irq_mask(struct irq_data *d) 2684 { 2685 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2686 2687 kirq->masked |= BIT(d->hwirq); 2688 } 2689 2690 static void ksz_irq_unmask(struct irq_data *d) 2691 { 2692 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2693 2694 kirq->masked &= ~BIT(d->hwirq); 2695 } 2696 2697 static void ksz_irq_bus_lock(struct irq_data *d) 2698 { 2699 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2700 2701 mutex_lock(&kirq->dev->lock_irq); 2702 } 2703 2704 static void ksz_irq_bus_sync_unlock(struct irq_data *d) 2705 { 2706 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2707 struct ksz_device *dev = kirq->dev; 2708 int ret; 2709 2710 ret = ksz_write8(dev, kirq->reg_mask, kirq->masked); 2711 if (ret) 2712 dev_err(dev->dev, "failed to change IRQ mask\n"); 2713 2714 mutex_unlock(&dev->lock_irq); 2715 } 2716 2717 static const struct irq_chip ksz_irq_chip = { 2718 .name = "ksz-irq", 2719 .irq_mask = ksz_irq_mask, 2720 .irq_unmask = ksz_irq_unmask, 2721 .irq_bus_lock = ksz_irq_bus_lock, 2722 .irq_bus_sync_unlock = ksz_irq_bus_sync_unlock, 2723 }; 2724 2725 static int ksz_irq_domain_map(struct irq_domain *d, 2726 unsigned int irq, irq_hw_number_t hwirq) 2727 { 2728 irq_set_chip_data(irq, d->host_data); 2729 irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq); 2730 irq_set_noprobe(irq); 2731 2732 return 0; 2733 } 2734 2735 static const struct irq_domain_ops ksz_irq_domain_ops = { 2736 .map = ksz_irq_domain_map, 2737 .xlate = irq_domain_xlate_twocell, 2738 }; 2739 2740 static void ksz_irq_free(struct ksz_irq *kirq) 2741 { 2742 int irq, virq; 2743 2744 free_irq(kirq->irq_num, kirq); 2745 2746 for (irq = 0; irq < kirq->nirqs; irq++) { 2747 virq = irq_find_mapping(kirq->domain, irq); 2748 irq_dispose_mapping(virq); 2749 } 2750 2751 irq_domain_remove(kirq->domain); 2752 } 2753 2754 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id) 2755 { 2756 struct ksz_irq *kirq = dev_id; 2757 unsigned int nhandled = 0; 2758 struct ksz_device *dev; 2759 unsigned int sub_irq; 2760 u8 data; 2761 int ret; 2762 u8 n; 2763 2764 dev = kirq->dev; 2765 2766 /* Read interrupt status register */ 2767 ret = ksz_read8(dev, kirq->reg_status, &data); 2768 if (ret) 2769 goto out; 2770 2771 for (n = 0; n < kirq->nirqs; ++n) { 2772 if (data & BIT(n)) { 2773 sub_irq = irq_find_mapping(kirq->domain, n); 2774 handle_nested_irq(sub_irq); 2775 ++nhandled; 2776 } 2777 } 2778 out: 2779 return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE); 2780 } 2781 2782 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq) 2783 { 2784 int ret, n; 2785 2786 kirq->dev = dev; 2787 kirq->masked = ~0; 2788 2789 kirq->domain = irq_domain_create_simple(dev_fwnode(dev->dev), kirq->nirqs, 0, 2790 &ksz_irq_domain_ops, kirq); 2791 if (!kirq->domain) 2792 return -ENOMEM; 2793 2794 for (n = 0; n < kirq->nirqs; n++) 2795 irq_create_mapping(kirq->domain, n); 2796 2797 ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn, 2798 IRQF_ONESHOT, kirq->name, kirq); 2799 if (ret) 2800 goto out; 2801 2802 return 0; 2803 2804 out: 2805 ksz_irq_free(kirq); 2806 2807 return ret; 2808 } 2809 2810 static int ksz_girq_setup(struct ksz_device *dev) 2811 { 2812 struct ksz_irq *girq = &dev->girq; 2813 2814 girq->nirqs = dev->info->port_cnt; 2815 girq->reg_mask = REG_SW_PORT_INT_MASK__1; 2816 girq->reg_status = REG_SW_PORT_INT_STATUS__1; 2817 snprintf(girq->name, sizeof(girq->name), "global_port_irq"); 2818 2819 girq->irq_num = dev->irq; 2820 2821 return ksz_irq_common_setup(dev, girq); 2822 } 2823 2824 static int ksz_pirq_setup(struct ksz_device *dev, u8 p) 2825 { 2826 struct ksz_irq *pirq = &dev->ports[p].pirq; 2827 2828 pirq->nirqs = dev->info->port_nirqs; 2829 pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK); 2830 pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS); 2831 snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p); 2832 2833 pirq->irq_num = irq_find_mapping(dev->girq.domain, p); 2834 if (pirq->irq_num < 0) 2835 return pirq->irq_num; 2836 2837 return ksz_irq_common_setup(dev, pirq); 2838 } 2839 2840 static int ksz_parse_drive_strength(struct ksz_device *dev); 2841 2842 static int ksz_setup(struct dsa_switch *ds) 2843 { 2844 struct ksz_device *dev = ds->priv; 2845 struct dsa_port *dp; 2846 struct ksz_port *p; 2847 const u16 *regs; 2848 int ret; 2849 2850 regs = dev->info->regs; 2851 2852 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table), 2853 dev->info->num_vlans, GFP_KERNEL); 2854 if (!dev->vlan_cache) 2855 return -ENOMEM; 2856 2857 ret = dev->dev_ops->reset(dev); 2858 if (ret) { 2859 dev_err(ds->dev, "failed to reset switch\n"); 2860 return ret; 2861 } 2862 2863 ret = ksz_parse_drive_strength(dev); 2864 if (ret) 2865 return ret; 2866 2867 if (ksz_has_sgmii_port(dev) && dev->dev_ops->pcs_create) { 2868 ret = dev->dev_ops->pcs_create(dev); 2869 if (ret) 2870 return ret; 2871 } 2872 2873 /* set broadcast storm protection 10% rate */ 2874 regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL], 2875 BROADCAST_STORM_RATE, 2876 (BROADCAST_STORM_VALUE * 2877 BROADCAST_STORM_PROT_RATE) / 100); 2878 2879 dev->dev_ops->config_cpu_port(ds); 2880 2881 dev->dev_ops->enable_stp_addr(dev); 2882 2883 ds->num_tx_queues = dev->info->num_tx_queues; 2884 2885 regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL], 2886 MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE); 2887 2888 ksz_init_mib_timer(dev); 2889 2890 ds->configure_vlan_while_not_filtering = false; 2891 ds->dscp_prio_mapping_is_global = true; 2892 2893 if (dev->dev_ops->setup) { 2894 ret = dev->dev_ops->setup(ds); 2895 if (ret) 2896 return ret; 2897 } 2898 2899 /* Start with learning disabled on standalone user ports, and enabled 2900 * on the CPU port. In lack of other finer mechanisms, learning on the 2901 * CPU port will avoid flooding bridge local addresses on the network 2902 * in some cases. 2903 */ 2904 p = &dev->ports[dev->cpu_port]; 2905 p->learning = true; 2906 2907 if (dev->irq > 0) { 2908 ret = ksz_girq_setup(dev); 2909 if (ret) 2910 return ret; 2911 2912 dsa_switch_for_each_user_port(dp, dev->ds) { 2913 ret = ksz_pirq_setup(dev, dp->index); 2914 if (ret) 2915 goto out_girq; 2916 2917 if (dev->info->ptp_capable) { 2918 ret = ksz_ptp_irq_setup(ds, dp->index); 2919 if (ret) 2920 goto out_pirq; 2921 } 2922 } 2923 } 2924 2925 if (dev->info->ptp_capable) { 2926 ret = ksz_ptp_clock_register(ds); 2927 if (ret) { 2928 dev_err(dev->dev, "Failed to register PTP clock: %d\n", 2929 ret); 2930 goto out_ptpirq; 2931 } 2932 } 2933 2934 ret = ksz_mdio_register(dev); 2935 if (ret < 0) { 2936 dev_err(dev->dev, "failed to register the mdio"); 2937 goto out_ptp_clock_unregister; 2938 } 2939 2940 ret = ksz_dcb_init(dev); 2941 if (ret) 2942 goto out_ptp_clock_unregister; 2943 2944 /* start switch */ 2945 regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL], 2946 SW_START, SW_START); 2947 2948 return 0; 2949 2950 out_ptp_clock_unregister: 2951 if (dev->info->ptp_capable) 2952 ksz_ptp_clock_unregister(ds); 2953 out_ptpirq: 2954 if (dev->irq > 0 && dev->info->ptp_capable) 2955 dsa_switch_for_each_user_port(dp, dev->ds) 2956 ksz_ptp_irq_free(ds, dp->index); 2957 out_pirq: 2958 if (dev->irq > 0) 2959 dsa_switch_for_each_user_port(dp, dev->ds) 2960 ksz_irq_free(&dev->ports[dp->index].pirq); 2961 out_girq: 2962 if (dev->irq > 0) 2963 ksz_irq_free(&dev->girq); 2964 2965 return ret; 2966 } 2967 2968 static void ksz_teardown(struct dsa_switch *ds) 2969 { 2970 struct ksz_device *dev = ds->priv; 2971 struct dsa_port *dp; 2972 2973 if (dev->info->ptp_capable) 2974 ksz_ptp_clock_unregister(ds); 2975 2976 if (dev->irq > 0) { 2977 dsa_switch_for_each_user_port(dp, dev->ds) { 2978 if (dev->info->ptp_capable) 2979 ksz_ptp_irq_free(ds, dp->index); 2980 2981 ksz_irq_free(&dev->ports[dp->index].pirq); 2982 } 2983 2984 ksz_irq_free(&dev->girq); 2985 } 2986 2987 if (dev->dev_ops->teardown) 2988 dev->dev_ops->teardown(ds); 2989 } 2990 2991 static void port_r_cnt(struct ksz_device *dev, int port) 2992 { 2993 struct ksz_port_mib *mib = &dev->ports[port].mib; 2994 u64 *dropped; 2995 2996 /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */ 2997 while (mib->cnt_ptr < dev->info->reg_mib_cnt) { 2998 dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr, 2999 &mib->counters[mib->cnt_ptr]); 3000 ++mib->cnt_ptr; 3001 } 3002 3003 /* last one in storage */ 3004 dropped = &mib->counters[dev->info->mib_cnt]; 3005 3006 /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */ 3007 while (mib->cnt_ptr < dev->info->mib_cnt) { 3008 dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr, 3009 dropped, &mib->counters[mib->cnt_ptr]); 3010 ++mib->cnt_ptr; 3011 } 3012 mib->cnt_ptr = 0; 3013 } 3014 3015 static void ksz_mib_read_work(struct work_struct *work) 3016 { 3017 struct ksz_device *dev = container_of(work, struct ksz_device, 3018 mib_read.work); 3019 struct ksz_port_mib *mib; 3020 struct ksz_port *p; 3021 int i; 3022 3023 for (i = 0; i < dev->info->port_cnt; i++) { 3024 if (dsa_is_unused_port(dev->ds, i)) 3025 continue; 3026 3027 p = &dev->ports[i]; 3028 mib = &p->mib; 3029 mutex_lock(&mib->cnt_mutex); 3030 3031 /* Only read MIB counters when the port is told to do. 3032 * If not, read only dropped counters when link is not up. 3033 */ 3034 if (!p->read) { 3035 const struct dsa_port *dp = dsa_to_port(dev->ds, i); 3036 3037 if (!netif_carrier_ok(dp->user)) 3038 mib->cnt_ptr = dev->info->reg_mib_cnt; 3039 } 3040 port_r_cnt(dev, i); 3041 p->read = false; 3042 3043 if (dev->dev_ops->r_mib_stat64) 3044 dev->dev_ops->r_mib_stat64(dev, i); 3045 3046 mutex_unlock(&mib->cnt_mutex); 3047 } 3048 3049 schedule_delayed_work(&dev->mib_read, dev->mib_read_interval); 3050 } 3051 3052 void ksz_init_mib_timer(struct ksz_device *dev) 3053 { 3054 int i; 3055 3056 INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work); 3057 3058 for (i = 0; i < dev->info->port_cnt; i++) { 3059 struct ksz_port_mib *mib = &dev->ports[i].mib; 3060 3061 dev->dev_ops->port_init_cnt(dev, i); 3062 3063 mib->cnt_ptr = 0; 3064 memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64)); 3065 } 3066 } 3067 3068 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg) 3069 { 3070 struct ksz_device *dev = ds->priv; 3071 u16 val = 0xffff; 3072 int ret; 3073 3074 ret = dev->dev_ops->r_phy(dev, addr, reg, &val); 3075 if (ret) 3076 return ret; 3077 3078 return val; 3079 } 3080 3081 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val) 3082 { 3083 struct ksz_device *dev = ds->priv; 3084 int ret; 3085 3086 ret = dev->dev_ops->w_phy(dev, addr, reg, val); 3087 if (ret) 3088 return ret; 3089 3090 return 0; 3091 } 3092 3093 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port) 3094 { 3095 struct ksz_device *dev = ds->priv; 3096 3097 switch (dev->chip_id) { 3098 case KSZ88X3_CHIP_ID: 3099 /* Silicon Errata Sheet (DS80000830A): 3100 * Port 1 does not work with LinkMD Cable-Testing. 3101 * Port 1 does not respond to received PAUSE control frames. 3102 */ 3103 if (!port) 3104 return MICREL_KSZ8_P1_ERRATA; 3105 break; 3106 } 3107 3108 return 0; 3109 } 3110 3111 static void ksz_phylink_mac_link_down(struct phylink_config *config, 3112 unsigned int mode, 3113 phy_interface_t interface) 3114 { 3115 struct dsa_port *dp = dsa_phylink_to_port(config); 3116 struct ksz_device *dev = dp->ds->priv; 3117 3118 /* Read all MIB counters when the link is going down. */ 3119 dev->ports[dp->index].read = true; 3120 /* timer started */ 3121 if (dev->mib_read_interval) 3122 schedule_delayed_work(&dev->mib_read, 0); 3123 } 3124 3125 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset) 3126 { 3127 struct ksz_device *dev = ds->priv; 3128 3129 if (sset != ETH_SS_STATS) 3130 return 0; 3131 3132 return dev->info->mib_cnt; 3133 } 3134 3135 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port, 3136 uint64_t *buf) 3137 { 3138 const struct dsa_port *dp = dsa_to_port(ds, port); 3139 struct ksz_device *dev = ds->priv; 3140 struct ksz_port_mib *mib; 3141 3142 mib = &dev->ports[port].mib; 3143 mutex_lock(&mib->cnt_mutex); 3144 3145 /* Only read dropped counters if no link. */ 3146 if (!netif_carrier_ok(dp->user)) 3147 mib->cnt_ptr = dev->info->reg_mib_cnt; 3148 port_r_cnt(dev, port); 3149 memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64)); 3150 mutex_unlock(&mib->cnt_mutex); 3151 } 3152 3153 static int ksz_port_bridge_join(struct dsa_switch *ds, int port, 3154 struct dsa_bridge bridge, 3155 bool *tx_fwd_offload, 3156 struct netlink_ext_ack *extack) 3157 { 3158 /* port_stp_state_set() will be called after to put the port in 3159 * appropriate state so there is no need to do anything. 3160 */ 3161 3162 return 0; 3163 } 3164 3165 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port, 3166 struct dsa_bridge bridge) 3167 { 3168 /* port_stp_state_set() will be called after to put the port in 3169 * forwarding state so there is no need to do anything. 3170 */ 3171 } 3172 3173 static void ksz_port_fast_age(struct dsa_switch *ds, int port) 3174 { 3175 struct ksz_device *dev = ds->priv; 3176 3177 dev->dev_ops->flush_dyn_mac_table(dev, port); 3178 } 3179 3180 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) 3181 { 3182 struct ksz_device *dev = ds->priv; 3183 3184 if (!dev->dev_ops->set_ageing_time) 3185 return -EOPNOTSUPP; 3186 3187 return dev->dev_ops->set_ageing_time(dev, msecs); 3188 } 3189 3190 static int ksz_port_fdb_add(struct dsa_switch *ds, int port, 3191 const unsigned char *addr, u16 vid, 3192 struct dsa_db db) 3193 { 3194 struct ksz_device *dev = ds->priv; 3195 3196 if (!dev->dev_ops->fdb_add) 3197 return -EOPNOTSUPP; 3198 3199 return dev->dev_ops->fdb_add(dev, port, addr, vid, db); 3200 } 3201 3202 static int ksz_port_fdb_del(struct dsa_switch *ds, int port, 3203 const unsigned char *addr, 3204 u16 vid, struct dsa_db db) 3205 { 3206 struct ksz_device *dev = ds->priv; 3207 3208 if (!dev->dev_ops->fdb_del) 3209 return -EOPNOTSUPP; 3210 3211 return dev->dev_ops->fdb_del(dev, port, addr, vid, db); 3212 } 3213 3214 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port, 3215 dsa_fdb_dump_cb_t *cb, void *data) 3216 { 3217 struct ksz_device *dev = ds->priv; 3218 3219 if (!dev->dev_ops->fdb_dump) 3220 return -EOPNOTSUPP; 3221 3222 return dev->dev_ops->fdb_dump(dev, port, cb, data); 3223 } 3224 3225 static int ksz_port_mdb_add(struct dsa_switch *ds, int port, 3226 const struct switchdev_obj_port_mdb *mdb, 3227 struct dsa_db db) 3228 { 3229 struct ksz_device *dev = ds->priv; 3230 3231 if (!dev->dev_ops->mdb_add) 3232 return -EOPNOTSUPP; 3233 3234 return dev->dev_ops->mdb_add(dev, port, mdb, db); 3235 } 3236 3237 static int ksz_port_mdb_del(struct dsa_switch *ds, int port, 3238 const struct switchdev_obj_port_mdb *mdb, 3239 struct dsa_db db) 3240 { 3241 struct ksz_device *dev = ds->priv; 3242 3243 if (!dev->dev_ops->mdb_del) 3244 return -EOPNOTSUPP; 3245 3246 return dev->dev_ops->mdb_del(dev, port, mdb, db); 3247 } 3248 3249 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev, 3250 int port) 3251 { 3252 u32 queue_map = 0; 3253 int ipm; 3254 3255 for (ipm = 0; ipm < dev->info->num_ipms; ipm++) { 3256 int queue; 3257 3258 /* Traffic Type (TT) is corresponding to the Internal Priority 3259 * Map (IPM) in the switch. Traffic Class (TC) is 3260 * corresponding to the queue in the switch. 3261 */ 3262 queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues); 3263 if (queue < 0) 3264 return queue; 3265 3266 queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S); 3267 } 3268 3269 return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map); 3270 } 3271 3272 static int ksz_port_setup(struct dsa_switch *ds, int port) 3273 { 3274 struct ksz_device *dev = ds->priv; 3275 int ret; 3276 3277 if (!dsa_is_user_port(ds, port)) 3278 return 0; 3279 3280 /* setup user port */ 3281 dev->dev_ops->port_setup(dev, port, false); 3282 3283 if (!is_ksz8(dev)) { 3284 ret = ksz9477_set_default_prio_queue_mapping(dev, port); 3285 if (ret) 3286 return ret; 3287 } 3288 3289 /* port_stp_state_set() will be called after to enable the port so 3290 * there is no need to do anything. 3291 */ 3292 3293 return ksz_dcb_init_port(dev, port); 3294 } 3295 3296 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) 3297 { 3298 struct ksz_device *dev = ds->priv; 3299 struct ksz_port *p; 3300 const u16 *regs; 3301 u8 data; 3302 3303 regs = dev->info->regs; 3304 3305 ksz_pread8(dev, port, regs[P_STP_CTRL], &data); 3306 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE); 3307 3308 p = &dev->ports[port]; 3309 3310 switch (state) { 3311 case BR_STATE_DISABLED: 3312 data |= PORT_LEARN_DISABLE; 3313 break; 3314 case BR_STATE_LISTENING: 3315 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE); 3316 break; 3317 case BR_STATE_LEARNING: 3318 data |= PORT_RX_ENABLE; 3319 if (!p->learning) 3320 data |= PORT_LEARN_DISABLE; 3321 break; 3322 case BR_STATE_FORWARDING: 3323 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 3324 if (!p->learning) 3325 data |= PORT_LEARN_DISABLE; 3326 break; 3327 case BR_STATE_BLOCKING: 3328 data |= PORT_LEARN_DISABLE; 3329 break; 3330 default: 3331 dev_err(ds->dev, "invalid STP state: %d\n", state); 3332 return; 3333 } 3334 3335 ksz_pwrite8(dev, port, regs[P_STP_CTRL], data); 3336 3337 p->stp_state = state; 3338 3339 ksz_update_port_member(dev, port); 3340 } 3341 3342 static void ksz_port_teardown(struct dsa_switch *ds, int port) 3343 { 3344 struct ksz_device *dev = ds->priv; 3345 3346 switch (dev->chip_id) { 3347 case KSZ8563_CHIP_ID: 3348 case KSZ8567_CHIP_ID: 3349 case KSZ9477_CHIP_ID: 3350 case KSZ9563_CHIP_ID: 3351 case KSZ9567_CHIP_ID: 3352 case KSZ9893_CHIP_ID: 3353 case KSZ9896_CHIP_ID: 3354 case KSZ9897_CHIP_ID: 3355 case LAN9646_CHIP_ID: 3356 if (dsa_is_user_port(ds, port)) 3357 ksz9477_port_acl_free(dev, port); 3358 } 3359 } 3360 3361 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port, 3362 struct switchdev_brport_flags flags, 3363 struct netlink_ext_ack *extack) 3364 { 3365 if (flags.mask & ~(BR_LEARNING | BR_ISOLATED)) 3366 return -EINVAL; 3367 3368 return 0; 3369 } 3370 3371 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port, 3372 struct switchdev_brport_flags flags, 3373 struct netlink_ext_ack *extack) 3374 { 3375 struct ksz_device *dev = ds->priv; 3376 struct ksz_port *p = &dev->ports[port]; 3377 3378 if (flags.mask & (BR_LEARNING | BR_ISOLATED)) { 3379 if (flags.mask & BR_LEARNING) 3380 p->learning = !!(flags.val & BR_LEARNING); 3381 3382 if (flags.mask & BR_ISOLATED) 3383 p->isolated = !!(flags.val & BR_ISOLATED); 3384 3385 /* Make the change take effect immediately */ 3386 ksz_port_stp_state_set(ds, port, p->stp_state); 3387 } 3388 3389 return 0; 3390 } 3391 3392 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds, 3393 int port, 3394 enum dsa_tag_protocol mp) 3395 { 3396 struct ksz_device *dev = ds->priv; 3397 enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE; 3398 3399 if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev)) 3400 proto = DSA_TAG_PROTO_KSZ8795; 3401 3402 if (dev->chip_id == KSZ88X3_CHIP_ID || 3403 dev->chip_id == KSZ8563_CHIP_ID || 3404 dev->chip_id == KSZ9893_CHIP_ID || 3405 dev->chip_id == KSZ9563_CHIP_ID) 3406 proto = DSA_TAG_PROTO_KSZ9893; 3407 3408 if (dev->chip_id == KSZ8567_CHIP_ID || 3409 dev->chip_id == KSZ9477_CHIP_ID || 3410 dev->chip_id == KSZ9896_CHIP_ID || 3411 dev->chip_id == KSZ9897_CHIP_ID || 3412 dev->chip_id == KSZ9567_CHIP_ID || 3413 dev->chip_id == LAN9646_CHIP_ID) 3414 proto = DSA_TAG_PROTO_KSZ9477; 3415 3416 if (is_lan937x(dev)) 3417 proto = DSA_TAG_PROTO_LAN937X; 3418 3419 return proto; 3420 } 3421 3422 static int ksz_connect_tag_protocol(struct dsa_switch *ds, 3423 enum dsa_tag_protocol proto) 3424 { 3425 struct ksz_tagger_data *tagger_data; 3426 3427 switch (proto) { 3428 case DSA_TAG_PROTO_KSZ8795: 3429 return 0; 3430 case DSA_TAG_PROTO_KSZ9893: 3431 case DSA_TAG_PROTO_KSZ9477: 3432 case DSA_TAG_PROTO_LAN937X: 3433 tagger_data = ksz_tagger_data(ds); 3434 tagger_data->xmit_work_fn = ksz_port_deferred_xmit; 3435 return 0; 3436 default: 3437 return -EPROTONOSUPPORT; 3438 } 3439 } 3440 3441 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, 3442 bool flag, struct netlink_ext_ack *extack) 3443 { 3444 struct ksz_device *dev = ds->priv; 3445 3446 if (!dev->dev_ops->vlan_filtering) 3447 return -EOPNOTSUPP; 3448 3449 return dev->dev_ops->vlan_filtering(dev, port, flag, extack); 3450 } 3451 3452 static int ksz_port_vlan_add(struct dsa_switch *ds, int port, 3453 const struct switchdev_obj_port_vlan *vlan, 3454 struct netlink_ext_ack *extack) 3455 { 3456 struct ksz_device *dev = ds->priv; 3457 3458 if (!dev->dev_ops->vlan_add) 3459 return -EOPNOTSUPP; 3460 3461 return dev->dev_ops->vlan_add(dev, port, vlan, extack); 3462 } 3463 3464 static int ksz_port_vlan_del(struct dsa_switch *ds, int port, 3465 const struct switchdev_obj_port_vlan *vlan) 3466 { 3467 struct ksz_device *dev = ds->priv; 3468 3469 if (!dev->dev_ops->vlan_del) 3470 return -EOPNOTSUPP; 3471 3472 return dev->dev_ops->vlan_del(dev, port, vlan); 3473 } 3474 3475 static int ksz_port_mirror_add(struct dsa_switch *ds, int port, 3476 struct dsa_mall_mirror_tc_entry *mirror, 3477 bool ingress, struct netlink_ext_ack *extack) 3478 { 3479 struct ksz_device *dev = ds->priv; 3480 3481 if (!dev->dev_ops->mirror_add) 3482 return -EOPNOTSUPP; 3483 3484 return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack); 3485 } 3486 3487 static void ksz_port_mirror_del(struct dsa_switch *ds, int port, 3488 struct dsa_mall_mirror_tc_entry *mirror) 3489 { 3490 struct ksz_device *dev = ds->priv; 3491 3492 if (dev->dev_ops->mirror_del) 3493 dev->dev_ops->mirror_del(dev, port, mirror); 3494 } 3495 3496 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu) 3497 { 3498 struct ksz_device *dev = ds->priv; 3499 3500 if (!dev->dev_ops->change_mtu) 3501 return -EOPNOTSUPP; 3502 3503 return dev->dev_ops->change_mtu(dev, port, mtu); 3504 } 3505 3506 static int ksz_max_mtu(struct dsa_switch *ds, int port) 3507 { 3508 struct ksz_device *dev = ds->priv; 3509 3510 switch (dev->chip_id) { 3511 case KSZ8795_CHIP_ID: 3512 case KSZ8794_CHIP_ID: 3513 case KSZ8765_CHIP_ID: 3514 return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3515 case KSZ88X3_CHIP_ID: 3516 case KSZ8864_CHIP_ID: 3517 case KSZ8895_CHIP_ID: 3518 return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3519 case KSZ8563_CHIP_ID: 3520 case KSZ8567_CHIP_ID: 3521 case KSZ9477_CHIP_ID: 3522 case KSZ9563_CHIP_ID: 3523 case KSZ9567_CHIP_ID: 3524 case KSZ9893_CHIP_ID: 3525 case KSZ9896_CHIP_ID: 3526 case KSZ9897_CHIP_ID: 3527 case LAN9370_CHIP_ID: 3528 case LAN9371_CHIP_ID: 3529 case LAN9372_CHIP_ID: 3530 case LAN9373_CHIP_ID: 3531 case LAN9374_CHIP_ID: 3532 case LAN9646_CHIP_ID: 3533 return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3534 } 3535 3536 return -EOPNOTSUPP; 3537 } 3538 3539 /** 3540 * ksz_support_eee - Determine Energy Efficient Ethernet (EEE) support for a 3541 * port 3542 * @ds: Pointer to the DSA switch structure 3543 * @port: Port number to check 3544 * 3545 * This function also documents devices where EEE was initially advertised but 3546 * later withdrawn due to reliability issues, as described in official errata 3547 * documents. These devices are explicitly listed to record known limitations, 3548 * even if there is no technical necessity for runtime checks. 3549 * 3550 * Returns: true if the internal PHY on the given port supports fully 3551 * operational EEE, false otherwise. 3552 */ 3553 static bool ksz_support_eee(struct dsa_switch *ds, int port) 3554 { 3555 struct ksz_device *dev = ds->priv; 3556 3557 if (!dev->info->internal_phy[port]) 3558 return false; 3559 3560 switch (dev->chip_id) { 3561 case KSZ8563_CHIP_ID: 3562 case KSZ9563_CHIP_ID: 3563 case KSZ9893_CHIP_ID: 3564 return true; 3565 case KSZ8567_CHIP_ID: 3566 /* KSZ8567R Errata DS80000752C Module 4 */ 3567 case KSZ8765_CHIP_ID: 3568 case KSZ8794_CHIP_ID: 3569 case KSZ8795_CHIP_ID: 3570 /* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */ 3571 case KSZ9477_CHIP_ID: 3572 /* KSZ9477S Errata DS80000754A Module 4 */ 3573 case KSZ9567_CHIP_ID: 3574 /* KSZ9567S Errata DS80000756A Module 4 */ 3575 case KSZ9896_CHIP_ID: 3576 /* KSZ9896C Errata DS80000757A Module 3 */ 3577 case KSZ9897_CHIP_ID: 3578 case LAN9646_CHIP_ID: 3579 /* KSZ9897R Errata DS80000758C Module 4 */ 3580 /* Energy Efficient Ethernet (EEE) feature select must be 3581 * manually disabled 3582 * The EEE feature is enabled by default, but it is not fully 3583 * operational. It must be manually disabled through register 3584 * controls. If not disabled, the PHY ports can auto-negotiate 3585 * to enable EEE, and this feature can cause link drops when 3586 * linked to another device supporting EEE. 3587 * 3588 * The same item appears in the errata for all switches above. 3589 */ 3590 break; 3591 } 3592 3593 return false; 3594 } 3595 3596 static int ksz_set_mac_eee(struct dsa_switch *ds, int port, 3597 struct ethtool_keee *e) 3598 { 3599 struct ksz_device *dev = ds->priv; 3600 3601 if (!e->tx_lpi_enabled) { 3602 dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n"); 3603 return -EINVAL; 3604 } 3605 3606 if (e->tx_lpi_timer) { 3607 dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n"); 3608 return -EINVAL; 3609 } 3610 3611 return 0; 3612 } 3613 3614 static void ksz_set_xmii(struct ksz_device *dev, int port, 3615 phy_interface_t interface) 3616 { 3617 const u8 *bitval = dev->info->xmii_ctrl1; 3618 struct ksz_port *p = &dev->ports[port]; 3619 const u16 *regs = dev->info->regs; 3620 u8 data8; 3621 3622 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3623 3624 data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE | 3625 P_RGMII_ID_EG_ENABLE); 3626 3627 switch (interface) { 3628 case PHY_INTERFACE_MODE_MII: 3629 data8 |= bitval[P_MII_SEL]; 3630 break; 3631 case PHY_INTERFACE_MODE_RMII: 3632 data8 |= bitval[P_RMII_SEL]; 3633 break; 3634 case PHY_INTERFACE_MODE_GMII: 3635 data8 |= bitval[P_GMII_SEL]; 3636 break; 3637 case PHY_INTERFACE_MODE_RGMII: 3638 case PHY_INTERFACE_MODE_RGMII_ID: 3639 case PHY_INTERFACE_MODE_RGMII_TXID: 3640 case PHY_INTERFACE_MODE_RGMII_RXID: 3641 data8 |= bitval[P_RGMII_SEL]; 3642 /* On KSZ9893, disable RGMII in-band status support */ 3643 if (dev->chip_id == KSZ9893_CHIP_ID || 3644 dev->chip_id == KSZ8563_CHIP_ID || 3645 dev->chip_id == KSZ9563_CHIP_ID || 3646 is_lan937x(dev)) 3647 data8 &= ~P_MII_MAC_MODE; 3648 break; 3649 default: 3650 dev_err(dev->dev, "Unsupported interface '%s' for port %d\n", 3651 phy_modes(interface), port); 3652 return; 3653 } 3654 3655 if (p->rgmii_tx_val) 3656 data8 |= P_RGMII_ID_EG_ENABLE; 3657 3658 if (p->rgmii_rx_val) 3659 data8 |= P_RGMII_ID_IG_ENABLE; 3660 3661 /* Write the updated value */ 3662 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8); 3663 } 3664 3665 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit) 3666 { 3667 const u8 *bitval = dev->info->xmii_ctrl1; 3668 const u16 *regs = dev->info->regs; 3669 phy_interface_t interface; 3670 u8 data8; 3671 u8 val; 3672 3673 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3674 3675 val = FIELD_GET(P_MII_SEL_M, data8); 3676 3677 if (val == bitval[P_MII_SEL]) { 3678 if (gbit) 3679 interface = PHY_INTERFACE_MODE_GMII; 3680 else 3681 interface = PHY_INTERFACE_MODE_MII; 3682 } else if (val == bitval[P_RMII_SEL]) { 3683 interface = PHY_INTERFACE_MODE_RMII; 3684 } else { 3685 interface = PHY_INTERFACE_MODE_RGMII; 3686 if (data8 & P_RGMII_ID_EG_ENABLE) 3687 interface = PHY_INTERFACE_MODE_RGMII_TXID; 3688 if (data8 & P_RGMII_ID_IG_ENABLE) { 3689 interface = PHY_INTERFACE_MODE_RGMII_RXID; 3690 if (data8 & P_RGMII_ID_EG_ENABLE) 3691 interface = PHY_INTERFACE_MODE_RGMII_ID; 3692 } 3693 } 3694 3695 return interface; 3696 } 3697 3698 static void ksz88x3_phylink_mac_config(struct phylink_config *config, 3699 unsigned int mode, 3700 const struct phylink_link_state *state) 3701 { 3702 struct dsa_port *dp = dsa_phylink_to_port(config); 3703 struct ksz_device *dev = dp->ds->priv; 3704 3705 dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN); 3706 } 3707 3708 static void ksz_phylink_mac_config(struct phylink_config *config, 3709 unsigned int mode, 3710 const struct phylink_link_state *state) 3711 { 3712 struct dsa_port *dp = dsa_phylink_to_port(config); 3713 struct ksz_device *dev = dp->ds->priv; 3714 int port = dp->index; 3715 3716 /* Internal PHYs */ 3717 if (dev->info->internal_phy[port]) 3718 return; 3719 3720 /* No need to configure XMII control register when using SGMII. */ 3721 if (ksz_is_sgmii_port(dev, port)) 3722 return; 3723 3724 if (phylink_autoneg_inband(mode)) { 3725 dev_err(dev->dev, "In-band AN not supported!\n"); 3726 return; 3727 } 3728 3729 ksz_set_xmii(dev, port, state->interface); 3730 3731 if (dev->dev_ops->setup_rgmii_delay) 3732 dev->dev_ops->setup_rgmii_delay(dev, port); 3733 } 3734 3735 bool ksz_get_gbit(struct ksz_device *dev, int port) 3736 { 3737 const u8 *bitval = dev->info->xmii_ctrl1; 3738 const u16 *regs = dev->info->regs; 3739 bool gbit = false; 3740 u8 data8; 3741 bool val; 3742 3743 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3744 3745 val = FIELD_GET(P_GMII_1GBIT_M, data8); 3746 3747 if (val == bitval[P_GMII_1GBIT]) 3748 gbit = true; 3749 3750 return gbit; 3751 } 3752 3753 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit) 3754 { 3755 const u8 *bitval = dev->info->xmii_ctrl1; 3756 const u16 *regs = dev->info->regs; 3757 u8 data8; 3758 3759 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3760 3761 data8 &= ~P_GMII_1GBIT_M; 3762 3763 if (gbit) 3764 data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]); 3765 else 3766 data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]); 3767 3768 /* Write the updated value */ 3769 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8); 3770 } 3771 3772 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed) 3773 { 3774 const u8 *bitval = dev->info->xmii_ctrl0; 3775 const u16 *regs = dev->info->regs; 3776 u8 data8; 3777 3778 ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8); 3779 3780 data8 &= ~P_MII_100MBIT_M; 3781 3782 if (speed == SPEED_100) 3783 data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]); 3784 else 3785 data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]); 3786 3787 /* Write the updated value */ 3788 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8); 3789 } 3790 3791 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed) 3792 { 3793 if (speed == SPEED_1000) 3794 ksz_set_gbit(dev, port, true); 3795 else 3796 ksz_set_gbit(dev, port, false); 3797 3798 if (speed == SPEED_100 || speed == SPEED_10) 3799 ksz_set_100_10mbit(dev, port, speed); 3800 } 3801 3802 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex, 3803 bool tx_pause, bool rx_pause) 3804 { 3805 const u8 *bitval = dev->info->xmii_ctrl0; 3806 const u32 *masks = dev->info->masks; 3807 const u16 *regs = dev->info->regs; 3808 u8 mask; 3809 u8 val; 3810 3811 mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] | 3812 masks[P_MII_RX_FLOW_CTRL]; 3813 3814 if (duplex == DUPLEX_FULL) 3815 val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]); 3816 else 3817 val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]); 3818 3819 if (tx_pause) 3820 val |= masks[P_MII_TX_FLOW_CTRL]; 3821 3822 if (rx_pause) 3823 val |= masks[P_MII_RX_FLOW_CTRL]; 3824 3825 ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val); 3826 } 3827 3828 static void ksz9477_phylink_mac_link_up(struct phylink_config *config, 3829 struct phy_device *phydev, 3830 unsigned int mode, 3831 phy_interface_t interface, 3832 int speed, int duplex, bool tx_pause, 3833 bool rx_pause) 3834 { 3835 struct dsa_port *dp = dsa_phylink_to_port(config); 3836 struct ksz_device *dev = dp->ds->priv; 3837 int port = dp->index; 3838 struct ksz_port *p; 3839 3840 p = &dev->ports[port]; 3841 3842 /* Internal PHYs */ 3843 if (dev->info->internal_phy[port]) 3844 return; 3845 3846 p->phydev.speed = speed; 3847 3848 ksz_port_set_xmii_speed(dev, port, speed); 3849 3850 ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause); 3851 } 3852 3853 static int ksz_switch_detect(struct ksz_device *dev) 3854 { 3855 u8 id1, id2, id4; 3856 u16 id16; 3857 u32 id32; 3858 int ret; 3859 3860 /* read chip id */ 3861 ret = ksz_read16(dev, REG_CHIP_ID0, &id16); 3862 if (ret) 3863 return ret; 3864 3865 id1 = FIELD_GET(SW_FAMILY_ID_M, id16); 3866 id2 = FIELD_GET(SW_CHIP_ID_M, id16); 3867 3868 switch (id1) { 3869 case KSZ87_FAMILY_ID: 3870 if (id2 == KSZ87_CHIP_ID_95) { 3871 u8 val; 3872 3873 dev->chip_id = KSZ8795_CHIP_ID; 3874 3875 ksz_read8(dev, KSZ8_PORT_STATUS_0, &val); 3876 if (val & KSZ8_PORT_FIBER_MODE) 3877 dev->chip_id = KSZ8765_CHIP_ID; 3878 } else if (id2 == KSZ87_CHIP_ID_94) { 3879 dev->chip_id = KSZ8794_CHIP_ID; 3880 } else { 3881 return -ENODEV; 3882 } 3883 break; 3884 case KSZ88_FAMILY_ID: 3885 if (id2 == KSZ88_CHIP_ID_63) 3886 dev->chip_id = KSZ88X3_CHIP_ID; 3887 else 3888 return -ENODEV; 3889 break; 3890 case KSZ8895_FAMILY_ID: 3891 if (id2 == KSZ8895_CHIP_ID_95 || 3892 id2 == KSZ8895_CHIP_ID_95R) 3893 dev->chip_id = KSZ8895_CHIP_ID; 3894 else 3895 return -ENODEV; 3896 ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4); 3897 if (ret) 3898 return ret; 3899 if (id4 & SW_KSZ8864) 3900 dev->chip_id = KSZ8864_CHIP_ID; 3901 break; 3902 default: 3903 ret = ksz_read32(dev, REG_CHIP_ID0, &id32); 3904 if (ret) 3905 return ret; 3906 3907 dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32); 3908 id32 &= ~0xFF; 3909 3910 switch (id32) { 3911 case KSZ9477_CHIP_ID: 3912 case KSZ9896_CHIP_ID: 3913 case KSZ9897_CHIP_ID: 3914 case KSZ9567_CHIP_ID: 3915 case KSZ8567_CHIP_ID: 3916 case LAN9370_CHIP_ID: 3917 case LAN9371_CHIP_ID: 3918 case LAN9372_CHIP_ID: 3919 case LAN9373_CHIP_ID: 3920 case LAN9374_CHIP_ID: 3921 3922 /* LAN9646 does not have its own chip id. */ 3923 if (dev->chip_id != LAN9646_CHIP_ID) 3924 dev->chip_id = id32; 3925 break; 3926 case KSZ9893_CHIP_ID: 3927 ret = ksz_read8(dev, REG_CHIP_ID4, 3928 &id4); 3929 if (ret) 3930 return ret; 3931 3932 if (id4 == SKU_ID_KSZ8563) 3933 dev->chip_id = KSZ8563_CHIP_ID; 3934 else if (id4 == SKU_ID_KSZ9563) 3935 dev->chip_id = KSZ9563_CHIP_ID; 3936 else 3937 dev->chip_id = KSZ9893_CHIP_ID; 3938 3939 break; 3940 default: 3941 dev_err(dev->dev, 3942 "unsupported switch detected %x)\n", id32); 3943 return -ENODEV; 3944 } 3945 } 3946 return 0; 3947 } 3948 3949 static int ksz_cls_flower_add(struct dsa_switch *ds, int port, 3950 struct flow_cls_offload *cls, bool ingress) 3951 { 3952 struct ksz_device *dev = ds->priv; 3953 3954 switch (dev->chip_id) { 3955 case KSZ8563_CHIP_ID: 3956 case KSZ8567_CHIP_ID: 3957 case KSZ9477_CHIP_ID: 3958 case KSZ9563_CHIP_ID: 3959 case KSZ9567_CHIP_ID: 3960 case KSZ9893_CHIP_ID: 3961 case KSZ9896_CHIP_ID: 3962 case KSZ9897_CHIP_ID: 3963 case LAN9646_CHIP_ID: 3964 return ksz9477_cls_flower_add(ds, port, cls, ingress); 3965 } 3966 3967 return -EOPNOTSUPP; 3968 } 3969 3970 static int ksz_cls_flower_del(struct dsa_switch *ds, int port, 3971 struct flow_cls_offload *cls, bool ingress) 3972 { 3973 struct ksz_device *dev = ds->priv; 3974 3975 switch (dev->chip_id) { 3976 case KSZ8563_CHIP_ID: 3977 case KSZ8567_CHIP_ID: 3978 case KSZ9477_CHIP_ID: 3979 case KSZ9563_CHIP_ID: 3980 case KSZ9567_CHIP_ID: 3981 case KSZ9893_CHIP_ID: 3982 case KSZ9896_CHIP_ID: 3983 case KSZ9897_CHIP_ID: 3984 case LAN9646_CHIP_ID: 3985 return ksz9477_cls_flower_del(ds, port, cls, ingress); 3986 } 3987 3988 return -EOPNOTSUPP; 3989 } 3990 3991 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth 3992 * is converted to Hex-decimal using the successive multiplication method. On 3993 * every step, integer part is taken and decimal part is carry forwarded. 3994 */ 3995 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw) 3996 { 3997 u32 cinc = 0; 3998 u32 txrate; 3999 u32 rate; 4000 u8 temp; 4001 u8 i; 4002 4003 txrate = idle_slope - send_slope; 4004 4005 if (!txrate) 4006 return -EINVAL; 4007 4008 rate = idle_slope; 4009 4010 /* 24 bit register */ 4011 for (i = 0; i < 6; i++) { 4012 rate = rate * 16; 4013 4014 temp = rate / txrate; 4015 4016 rate %= txrate; 4017 4018 cinc = ((cinc << 4) | temp); 4019 } 4020 4021 *bw = cinc; 4022 4023 return 0; 4024 } 4025 4026 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler, 4027 u8 shaper) 4028 { 4029 return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0, 4030 FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) | 4031 FIELD_PREP(MTI_SHAPING_M, shaper)); 4032 } 4033 4034 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port, 4035 struct tc_cbs_qopt_offload *qopt) 4036 { 4037 struct ksz_device *dev = ds->priv; 4038 int ret; 4039 u32 bw; 4040 4041 if (!dev->info->tc_cbs_supported) 4042 return -EOPNOTSUPP; 4043 4044 if (qopt->queue > dev->info->num_tx_queues) 4045 return -EINVAL; 4046 4047 /* Queue Selection */ 4048 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue); 4049 if (ret) 4050 return ret; 4051 4052 if (!qopt->enable) 4053 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR, 4054 MTI_SHAPING_OFF); 4055 4056 /* High Credit */ 4057 ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK, 4058 qopt->hicredit); 4059 if (ret) 4060 return ret; 4061 4062 /* Low Credit */ 4063 ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK, 4064 qopt->locredit); 4065 if (ret) 4066 return ret; 4067 4068 /* Credit Increment Register */ 4069 ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw); 4070 if (ret) 4071 return ret; 4072 4073 if (dev->dev_ops->tc_cbs_set_cinc) { 4074 ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw); 4075 if (ret) 4076 return ret; 4077 } 4078 4079 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO, 4080 MTI_SHAPING_SRP); 4081 } 4082 4083 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port) 4084 { 4085 int queue, ret; 4086 4087 /* Configuration will not take effect until the last Port Queue X 4088 * Egress Limit Control Register is written. 4089 */ 4090 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 4091 ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue, 4092 KSZ9477_OUT_RATE_NO_LIMIT); 4093 if (ret) 4094 return ret; 4095 } 4096 4097 return 0; 4098 } 4099 4100 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p, 4101 int band) 4102 { 4103 /* Compared to queues, bands prioritize packets differently. In strict 4104 * priority mode, the lowest priority is assigned to Queue 0 while the 4105 * highest priority is given to Band 0. 4106 */ 4107 return p->bands - 1 - band; 4108 } 4109 4110 /** 4111 * ksz88x3_tc_ets_add - Configure ETS (Enhanced Transmission Selection) 4112 * for a port on KSZ88x3 switch 4113 * @dev: Pointer to the KSZ switch device structure 4114 * @port: Port number to configure 4115 * @p: Pointer to offload replace parameters describing ETS bands and mapping 4116 * 4117 * The KSZ88x3 supports two scheduling modes: Strict Priority and 4118 * Weighted Fair Queuing (WFQ). Both modes have fixed behavior: 4119 * - No configurable queue-to-priority mapping 4120 * - No weight adjustment in WFQ mode 4121 * 4122 * This function configures the switch to use strict priority mode by 4123 * clearing the WFQ enable bit for all queues associated with ETS bands. 4124 * If strict priority is not explicitly requested, the switch will default 4125 * to WFQ mode. 4126 * 4127 * Return: 0 on success, or a negative error code on failure 4128 */ 4129 static int ksz88x3_tc_ets_add(struct ksz_device *dev, int port, 4130 struct tc_ets_qopt_offload_replace_params *p) 4131 { 4132 int ret, band; 4133 4134 /* Only strict priority mode is supported for now. 4135 * WFQ is implicitly enabled when strict mode is disabled. 4136 */ 4137 for (band = 0; band < p->bands; band++) { 4138 int queue = ksz_ets_band_to_queue(p, band); 4139 u8 reg; 4140 4141 /* Calculate TXQ Split Control register address for this 4142 * port/queue 4143 */ 4144 reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue); 4145 4146 /* Clear WFQ enable bit to select strict priority scheduling */ 4147 ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE, 0); 4148 if (ret) 4149 return ret; 4150 } 4151 4152 return 0; 4153 } 4154 4155 /** 4156 * ksz88x3_tc_ets_del - Reset ETS (Enhanced Transmission Selection) config 4157 * for a port on KSZ88x3 switch 4158 * @dev: Pointer to the KSZ switch device structure 4159 * @port: Port number to reset 4160 * 4161 * The KSZ88x3 supports only fixed scheduling modes: Strict Priority or 4162 * Weighted Fair Queuing (WFQ), with no reconfiguration of weights or 4163 * queue mapping. This function resets the port’s scheduling mode to 4164 * the default, which is WFQ, by enabling the WFQ bit for all queues. 4165 * 4166 * Return: 0 on success, or a negative error code on failure 4167 */ 4168 static int ksz88x3_tc_ets_del(struct ksz_device *dev, int port) 4169 { 4170 int ret, queue; 4171 4172 /* Iterate over all transmit queues for this port */ 4173 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 4174 u8 reg; 4175 4176 /* Calculate TXQ Split Control register address for this 4177 * port/queue 4178 */ 4179 reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue); 4180 4181 /* Set WFQ enable bit to revert back to default scheduling 4182 * mode 4183 */ 4184 ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE, 4185 KSZ8873_TXQ_WFQ_ENABLE); 4186 if (ret) 4187 return ret; 4188 } 4189 4190 return 0; 4191 } 4192 4193 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue) 4194 { 4195 int ret; 4196 4197 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue); 4198 if (ret) 4199 return ret; 4200 4201 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO, 4202 MTI_SHAPING_OFF); 4203 } 4204 4205 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue, 4206 int weight) 4207 { 4208 int ret; 4209 4210 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue); 4211 if (ret) 4212 return ret; 4213 4214 ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR, 4215 MTI_SHAPING_OFF); 4216 if (ret) 4217 return ret; 4218 4219 return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight); 4220 } 4221 4222 static int ksz_tc_ets_add(struct ksz_device *dev, int port, 4223 struct tc_ets_qopt_offload_replace_params *p) 4224 { 4225 int ret, band, tc_prio; 4226 u32 queue_map = 0; 4227 4228 /* In order to ensure proper prioritization, it is necessary to set the 4229 * rate limit for the related queue to zero. Otherwise strict priority 4230 * or WRR mode will not work. This is a hardware limitation. 4231 */ 4232 ret = ksz_disable_egress_rate_limit(dev, port); 4233 if (ret) 4234 return ret; 4235 4236 /* Configure queue scheduling mode for all bands. Currently only strict 4237 * prio mode is supported. 4238 */ 4239 for (band = 0; band < p->bands; band++) { 4240 int queue = ksz_ets_band_to_queue(p, band); 4241 4242 ret = ksz_queue_set_strict(dev, port, queue); 4243 if (ret) 4244 return ret; 4245 } 4246 4247 /* Configure the mapping between traffic classes and queues. Note: 4248 * priomap variable support 16 traffic classes, but the chip can handle 4249 * only 8 classes. 4250 */ 4251 for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) { 4252 int queue; 4253 4254 if (tc_prio >= dev->info->num_ipms) 4255 break; 4256 4257 queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]); 4258 queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S); 4259 } 4260 4261 return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map); 4262 } 4263 4264 static int ksz_tc_ets_del(struct ksz_device *dev, int port) 4265 { 4266 int ret, queue; 4267 4268 /* To restore the default chip configuration, set all queues to use the 4269 * WRR scheduler with a weight of 1. 4270 */ 4271 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 4272 ret = ksz_queue_set_wrr(dev, port, queue, 4273 KSZ9477_DEFAULT_WRR_WEIGHT); 4274 4275 if (ret) 4276 return ret; 4277 } 4278 4279 /* Revert the queue mapping for TC-priority to its default setting on 4280 * the chip. 4281 */ 4282 return ksz9477_set_default_prio_queue_mapping(dev, port); 4283 } 4284 4285 static int ksz_tc_ets_validate(struct ksz_device *dev, int port, 4286 struct tc_ets_qopt_offload_replace_params *p) 4287 { 4288 int band; 4289 4290 /* Since it is not feasible to share one port among multiple qdisc, 4291 * the user must configure all available queues appropriately. 4292 */ 4293 if (p->bands != dev->info->num_tx_queues) { 4294 dev_err(dev->dev, "Not supported amount of bands. It should be %d\n", 4295 dev->info->num_tx_queues); 4296 return -EOPNOTSUPP; 4297 } 4298 4299 for (band = 0; band < p->bands; ++band) { 4300 /* The KSZ switches utilize a weighted round robin configuration 4301 * where a certain number of packets can be transmitted from a 4302 * queue before the next queue is serviced. For more information 4303 * on this, refer to section 5.2.8.4 of the KSZ8565R 4304 * documentation on the Port Transmit Queue Control 1 Register. 4305 * However, the current ETS Qdisc implementation (as of February 4306 * 2023) assigns a weight to each queue based on the number of 4307 * bytes or extrapolated bandwidth in percentages. Since this 4308 * differs from the KSZ switches' method and we don't want to 4309 * fake support by converting bytes to packets, it is better to 4310 * return an error instead. 4311 */ 4312 if (p->quanta[band]) { 4313 dev_err(dev->dev, "Quanta/weights configuration is not supported.\n"); 4314 return -EOPNOTSUPP; 4315 } 4316 } 4317 4318 return 0; 4319 } 4320 4321 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port, 4322 struct tc_ets_qopt_offload *qopt) 4323 { 4324 struct ksz_device *dev = ds->priv; 4325 int ret; 4326 4327 if (is_ksz8(dev) && !ksz_is_ksz88x3(dev)) 4328 return -EOPNOTSUPP; 4329 4330 if (qopt->parent != TC_H_ROOT) { 4331 dev_err(dev->dev, "Parent should be \"root\"\n"); 4332 return -EOPNOTSUPP; 4333 } 4334 4335 switch (qopt->command) { 4336 case TC_ETS_REPLACE: 4337 ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params); 4338 if (ret) 4339 return ret; 4340 4341 if (ksz_is_ksz88x3(dev)) 4342 return ksz88x3_tc_ets_add(dev, port, 4343 &qopt->replace_params); 4344 else 4345 return ksz_tc_ets_add(dev, port, &qopt->replace_params); 4346 case TC_ETS_DESTROY: 4347 if (ksz_is_ksz88x3(dev)) 4348 return ksz88x3_tc_ets_del(dev, port); 4349 else 4350 return ksz_tc_ets_del(dev, port); 4351 case TC_ETS_STATS: 4352 case TC_ETS_GRAFT: 4353 return -EOPNOTSUPP; 4354 } 4355 4356 return -EOPNOTSUPP; 4357 } 4358 4359 static int ksz_setup_tc(struct dsa_switch *ds, int port, 4360 enum tc_setup_type type, void *type_data) 4361 { 4362 switch (type) { 4363 case TC_SETUP_QDISC_CBS: 4364 return ksz_setup_tc_cbs(ds, port, type_data); 4365 case TC_SETUP_QDISC_ETS: 4366 return ksz_tc_setup_qdisc_ets(ds, port, type_data); 4367 default: 4368 return -EOPNOTSUPP; 4369 } 4370 } 4371 4372 /** 4373 * ksz_handle_wake_reason - Handle wake reason on a specified port. 4374 * @dev: The device structure. 4375 * @port: The port number. 4376 * 4377 * This function reads the PME (Power Management Event) status register of a 4378 * specified port to determine the wake reason. If there is no wake event, it 4379 * returns early. Otherwise, it logs the wake reason which could be due to a 4380 * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register 4381 * is then cleared to acknowledge the handling of the wake event. 4382 * 4383 * Return: 0 on success, or an error code on failure. 4384 */ 4385 int ksz_handle_wake_reason(struct ksz_device *dev, int port) 4386 { 4387 const struct ksz_dev_ops *ops = dev->dev_ops; 4388 const u16 *regs = dev->info->regs; 4389 u8 pme_status; 4390 int ret; 4391 4392 ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS], 4393 &pme_status); 4394 if (ret) 4395 return ret; 4396 4397 if (!pme_status) 4398 return 0; 4399 4400 dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port, 4401 pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "", 4402 pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "", 4403 pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : ""); 4404 4405 return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS], 4406 pme_status); 4407 } 4408 4409 /** 4410 * ksz_get_wol - Get Wake-on-LAN settings for a specified port. 4411 * @ds: The dsa_switch structure. 4412 * @port: The port number. 4413 * @wol: Pointer to ethtool Wake-on-LAN settings structure. 4414 * 4415 * This function checks the device PME wakeup_source flag and chip_id. 4416 * If enabled and supported, it sets the supported and active WoL 4417 * flags. 4418 */ 4419 static void ksz_get_wol(struct dsa_switch *ds, int port, 4420 struct ethtool_wolinfo *wol) 4421 { 4422 struct ksz_device *dev = ds->priv; 4423 const u16 *regs = dev->info->regs; 4424 u8 pme_ctrl; 4425 int ret; 4426 4427 if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev)) 4428 return; 4429 4430 if (!dev->wakeup_source) 4431 return; 4432 4433 wol->supported = WAKE_PHY; 4434 4435 /* Check if the current MAC address on this port can be set 4436 * as global for WAKE_MAGIC support. The result may vary 4437 * dynamically based on other ports configurations. 4438 */ 4439 if (ksz_is_port_mac_global_usable(dev->ds, port)) 4440 wol->supported |= WAKE_MAGIC; 4441 4442 ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL], 4443 &pme_ctrl); 4444 if (ret) 4445 return; 4446 4447 if (pme_ctrl & PME_WOL_MAGICPKT) 4448 wol->wolopts |= WAKE_MAGIC; 4449 if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY)) 4450 wol->wolopts |= WAKE_PHY; 4451 } 4452 4453 /** 4454 * ksz_set_wol - Set Wake-on-LAN settings for a specified port. 4455 * @ds: The dsa_switch structure. 4456 * @port: The port number. 4457 * @wol: Pointer to ethtool Wake-on-LAN settings structure. 4458 * 4459 * This function configures Wake-on-LAN (WoL) settings for a specified 4460 * port. It validates the provided WoL options, checks if PME is 4461 * enabled and supported, clears any previous wake reasons, and sets 4462 * the Magic Packet flag in the port's PME control register if 4463 * specified. 4464 * 4465 * Return: 0 on success, or other error codes on failure. 4466 */ 4467 static int ksz_set_wol(struct dsa_switch *ds, int port, 4468 struct ethtool_wolinfo *wol) 4469 { 4470 u8 pme_ctrl = 0, pme_ctrl_old = 0; 4471 struct ksz_device *dev = ds->priv; 4472 const u16 *regs = dev->info->regs; 4473 bool magic_switched_off; 4474 bool magic_switched_on; 4475 int ret; 4476 4477 if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC)) 4478 return -EINVAL; 4479 4480 if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev)) 4481 return -EOPNOTSUPP; 4482 4483 if (!dev->wakeup_source) 4484 return -EOPNOTSUPP; 4485 4486 ret = ksz_handle_wake_reason(dev, port); 4487 if (ret) 4488 return ret; 4489 4490 if (wol->wolopts & WAKE_MAGIC) 4491 pme_ctrl |= PME_WOL_MAGICPKT; 4492 if (wol->wolopts & WAKE_PHY) 4493 pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY; 4494 4495 ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL], 4496 &pme_ctrl_old); 4497 if (ret) 4498 return ret; 4499 4500 if (pme_ctrl_old == pme_ctrl) 4501 return 0; 4502 4503 magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) && 4504 !(pme_ctrl & PME_WOL_MAGICPKT); 4505 magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) && 4506 (pme_ctrl & PME_WOL_MAGICPKT); 4507 4508 /* To keep reference count of MAC address, we should do this 4509 * operation only on change of WOL settings. 4510 */ 4511 if (magic_switched_on) { 4512 ret = ksz_switch_macaddr_get(dev->ds, port, NULL); 4513 if (ret) 4514 return ret; 4515 } else if (magic_switched_off) { 4516 ksz_switch_macaddr_put(dev->ds); 4517 } 4518 4519 ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL], 4520 pme_ctrl); 4521 if (ret) { 4522 if (magic_switched_on) 4523 ksz_switch_macaddr_put(dev->ds); 4524 return ret; 4525 } 4526 4527 return 0; 4528 } 4529 4530 /** 4531 * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while 4532 * considering Wake-on-LAN (WoL) settings. 4533 * @dev: The switch device structure. 4534 * @wol_enabled: Pointer to a boolean which will be set to true if WoL is 4535 * enabled on any port. 4536 * 4537 * This function prepares the switch device for a safe shutdown while taking 4538 * into account the Wake-on-LAN (WoL) settings on the user ports. It updates 4539 * the wol_enabled flag accordingly to reflect whether WoL is active on any 4540 * port. 4541 */ 4542 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled) 4543 { 4544 const struct ksz_dev_ops *ops = dev->dev_ops; 4545 const u16 *regs = dev->info->regs; 4546 u8 pme_pin_en = PME_ENABLE; 4547 struct dsa_port *dp; 4548 int ret; 4549 4550 *wol_enabled = false; 4551 4552 if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev)) 4553 return; 4554 4555 if (!dev->wakeup_source) 4556 return; 4557 4558 dsa_switch_for_each_user_port(dp, dev->ds) { 4559 u8 pme_ctrl = 0; 4560 4561 ret = ops->pme_pread8(dev, dp->index, 4562 regs[REG_PORT_PME_CTRL], &pme_ctrl); 4563 if (!ret && pme_ctrl) 4564 *wol_enabled = true; 4565 4566 /* make sure there are no pending wake events which would 4567 * prevent the device from going to sleep/shutdown. 4568 */ 4569 ksz_handle_wake_reason(dev, dp->index); 4570 } 4571 4572 /* Now we are save to enable PME pin. */ 4573 if (*wol_enabled) { 4574 if (dev->pme_active_high) 4575 pme_pin_en |= PME_POLARITY; 4576 ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en); 4577 if (ksz_is_ksz87xx(dev)) 4578 ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK); 4579 } 4580 } 4581 4582 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port, 4583 const unsigned char *addr) 4584 { 4585 struct dsa_port *dp = dsa_to_port(ds, port); 4586 struct ethtool_wolinfo wol; 4587 4588 if (dp->hsr_dev) { 4589 dev_err(ds->dev, 4590 "Cannot change MAC address on port %d with active HSR offload\n", 4591 port); 4592 return -EBUSY; 4593 } 4594 4595 /* Need to initialize variable as the code to fill in settings may 4596 * not be executed. 4597 */ 4598 wol.wolopts = 0; 4599 4600 ksz_get_wol(ds, dp->index, &wol); 4601 if (wol.wolopts & WAKE_MAGIC) { 4602 dev_err(ds->dev, 4603 "Cannot change MAC address on port %d with active Wake on Magic Packet\n", 4604 port); 4605 return -EBUSY; 4606 } 4607 4608 return 0; 4609 } 4610 4611 /** 4612 * ksz_is_port_mac_global_usable - Check if the MAC address on a given port 4613 * can be used as a global address. 4614 * @ds: Pointer to the DSA switch structure. 4615 * @port: The port number on which the MAC address is to be checked. 4616 * 4617 * This function examines the MAC address set on the specified port and 4618 * determines if it can be used as a global address for the switch. 4619 * 4620 * Return: true if the port's MAC address can be used as a global address, false 4621 * otherwise. 4622 */ 4623 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port) 4624 { 4625 struct net_device *user = dsa_to_port(ds, port)->user; 4626 const unsigned char *addr = user->dev_addr; 4627 struct ksz_switch_macaddr *switch_macaddr; 4628 struct ksz_device *dev = ds->priv; 4629 4630 ASSERT_RTNL(); 4631 4632 switch_macaddr = dev->switch_macaddr; 4633 if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr)) 4634 return false; 4635 4636 return true; 4637 } 4638 4639 /** 4640 * ksz_switch_macaddr_get - Program the switch's MAC address register. 4641 * @ds: DSA switch instance. 4642 * @port: Port number. 4643 * @extack: Netlink extended acknowledgment. 4644 * 4645 * This function programs the switch's MAC address register with the MAC address 4646 * of the requesting user port. This single address is used by the switch for 4647 * multiple features like HSR self-address filtering and WoL. Other user ports 4648 * can share ownership of this address as long as their MAC address is the same. 4649 * The MAC addresses of user ports must not change while they have ownership of 4650 * the switch MAC address. 4651 * 4652 * Return: 0 on success, or other error codes on failure. 4653 */ 4654 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port, 4655 struct netlink_ext_ack *extack) 4656 { 4657 struct net_device *user = dsa_to_port(ds, port)->user; 4658 const unsigned char *addr = user->dev_addr; 4659 struct ksz_switch_macaddr *switch_macaddr; 4660 struct ksz_device *dev = ds->priv; 4661 const u16 *regs = dev->info->regs; 4662 int i, ret; 4663 4664 /* Make sure concurrent MAC address changes are blocked */ 4665 ASSERT_RTNL(); 4666 4667 switch_macaddr = dev->switch_macaddr; 4668 if (switch_macaddr) { 4669 if (!ether_addr_equal(switch_macaddr->addr, addr)) { 4670 NL_SET_ERR_MSG_FMT_MOD(extack, 4671 "Switch already configured for MAC address %pM", 4672 switch_macaddr->addr); 4673 return -EBUSY; 4674 } 4675 4676 refcount_inc(&switch_macaddr->refcount); 4677 return 0; 4678 } 4679 4680 switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL); 4681 if (!switch_macaddr) 4682 return -ENOMEM; 4683 4684 ether_addr_copy(switch_macaddr->addr, addr); 4685 refcount_set(&switch_macaddr->refcount, 1); 4686 dev->switch_macaddr = switch_macaddr; 4687 4688 /* Program the switch MAC address to hardware */ 4689 for (i = 0; i < ETH_ALEN; i++) { 4690 ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]); 4691 if (ret) 4692 goto macaddr_drop; 4693 } 4694 4695 return 0; 4696 4697 macaddr_drop: 4698 dev->switch_macaddr = NULL; 4699 refcount_set(&switch_macaddr->refcount, 0); 4700 kfree(switch_macaddr); 4701 4702 return ret; 4703 } 4704 4705 void ksz_switch_macaddr_put(struct dsa_switch *ds) 4706 { 4707 struct ksz_switch_macaddr *switch_macaddr; 4708 struct ksz_device *dev = ds->priv; 4709 const u16 *regs = dev->info->regs; 4710 int i; 4711 4712 /* Make sure concurrent MAC address changes are blocked */ 4713 ASSERT_RTNL(); 4714 4715 switch_macaddr = dev->switch_macaddr; 4716 if (!refcount_dec_and_test(&switch_macaddr->refcount)) 4717 return; 4718 4719 for (i = 0; i < ETH_ALEN; i++) 4720 ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0); 4721 4722 dev->switch_macaddr = NULL; 4723 kfree(switch_macaddr); 4724 } 4725 4726 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr, 4727 struct netlink_ext_ack *extack) 4728 { 4729 struct ksz_device *dev = ds->priv; 4730 enum hsr_version ver; 4731 int ret; 4732 4733 ret = hsr_get_version(hsr, &ver); 4734 if (ret) 4735 return ret; 4736 4737 if (dev->chip_id != KSZ9477_CHIP_ID) { 4738 NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload"); 4739 return -EOPNOTSUPP; 4740 } 4741 4742 /* KSZ9477 can support HW offloading of only 1 HSR device */ 4743 if (dev->hsr_dev && hsr != dev->hsr_dev) { 4744 NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR"); 4745 return -EOPNOTSUPP; 4746 } 4747 4748 /* KSZ9477 only supports HSR v0 and v1 */ 4749 if (!(ver == HSR_V0 || ver == HSR_V1)) { 4750 NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported"); 4751 return -EOPNOTSUPP; 4752 } 4753 4754 /* KSZ9477 can only perform HSR offloading for up to two ports */ 4755 if (hweight8(dev->hsr_ports) >= 2) { 4756 NL_SET_ERR_MSG_MOD(extack, 4757 "Cannot offload more than two ports - using software HSR"); 4758 return -EOPNOTSUPP; 4759 } 4760 4761 /* Self MAC address filtering, to avoid frames traversing 4762 * the HSR ring more than once. 4763 */ 4764 ret = ksz_switch_macaddr_get(ds, port, extack); 4765 if (ret) 4766 return ret; 4767 4768 ksz9477_hsr_join(ds, port, hsr); 4769 dev->hsr_dev = hsr; 4770 dev->hsr_ports |= BIT(port); 4771 4772 return 0; 4773 } 4774 4775 static int ksz_hsr_leave(struct dsa_switch *ds, int port, 4776 struct net_device *hsr) 4777 { 4778 struct ksz_device *dev = ds->priv; 4779 4780 WARN_ON(dev->chip_id != KSZ9477_CHIP_ID); 4781 4782 ksz9477_hsr_leave(ds, port, hsr); 4783 dev->hsr_ports &= ~BIT(port); 4784 if (!dev->hsr_ports) 4785 dev->hsr_dev = NULL; 4786 4787 ksz_switch_macaddr_put(ds); 4788 4789 return 0; 4790 } 4791 4792 static int ksz_suspend(struct dsa_switch *ds) 4793 { 4794 struct ksz_device *dev = ds->priv; 4795 4796 cancel_delayed_work_sync(&dev->mib_read); 4797 return 0; 4798 } 4799 4800 static int ksz_resume(struct dsa_switch *ds) 4801 { 4802 struct ksz_device *dev = ds->priv; 4803 4804 if (dev->mib_read_interval) 4805 schedule_delayed_work(&dev->mib_read, dev->mib_read_interval); 4806 return 0; 4807 } 4808 4809 static const struct dsa_switch_ops ksz_switch_ops = { 4810 .get_tag_protocol = ksz_get_tag_protocol, 4811 .connect_tag_protocol = ksz_connect_tag_protocol, 4812 .get_phy_flags = ksz_get_phy_flags, 4813 .setup = ksz_setup, 4814 .teardown = ksz_teardown, 4815 .phy_read = ksz_phy_read16, 4816 .phy_write = ksz_phy_write16, 4817 .phylink_get_caps = ksz_phylink_get_caps, 4818 .port_setup = ksz_port_setup, 4819 .set_ageing_time = ksz_set_ageing_time, 4820 .get_strings = ksz_get_strings, 4821 .get_ethtool_stats = ksz_get_ethtool_stats, 4822 .get_sset_count = ksz_sset_count, 4823 .port_bridge_join = ksz_port_bridge_join, 4824 .port_bridge_leave = ksz_port_bridge_leave, 4825 .port_hsr_join = ksz_hsr_join, 4826 .port_hsr_leave = ksz_hsr_leave, 4827 .port_set_mac_address = ksz_port_set_mac_address, 4828 .port_stp_state_set = ksz_port_stp_state_set, 4829 .port_teardown = ksz_port_teardown, 4830 .port_pre_bridge_flags = ksz_port_pre_bridge_flags, 4831 .port_bridge_flags = ksz_port_bridge_flags, 4832 .port_fast_age = ksz_port_fast_age, 4833 .port_vlan_filtering = ksz_port_vlan_filtering, 4834 .port_vlan_add = ksz_port_vlan_add, 4835 .port_vlan_del = ksz_port_vlan_del, 4836 .port_fdb_dump = ksz_port_fdb_dump, 4837 .port_fdb_add = ksz_port_fdb_add, 4838 .port_fdb_del = ksz_port_fdb_del, 4839 .port_mdb_add = ksz_port_mdb_add, 4840 .port_mdb_del = ksz_port_mdb_del, 4841 .port_mirror_add = ksz_port_mirror_add, 4842 .port_mirror_del = ksz_port_mirror_del, 4843 .get_stats64 = ksz_get_stats64, 4844 .get_pause_stats = ksz_get_pause_stats, 4845 .port_change_mtu = ksz_change_mtu, 4846 .port_max_mtu = ksz_max_mtu, 4847 .get_wol = ksz_get_wol, 4848 .set_wol = ksz_set_wol, 4849 .suspend = ksz_suspend, 4850 .resume = ksz_resume, 4851 .get_ts_info = ksz_get_ts_info, 4852 .port_hwtstamp_get = ksz_hwtstamp_get, 4853 .port_hwtstamp_set = ksz_hwtstamp_set, 4854 .port_txtstamp = ksz_port_txtstamp, 4855 .port_rxtstamp = ksz_port_rxtstamp, 4856 .cls_flower_add = ksz_cls_flower_add, 4857 .cls_flower_del = ksz_cls_flower_del, 4858 .port_setup_tc = ksz_setup_tc, 4859 .support_eee = ksz_support_eee, 4860 .set_mac_eee = ksz_set_mac_eee, 4861 .port_get_default_prio = ksz_port_get_default_prio, 4862 .port_set_default_prio = ksz_port_set_default_prio, 4863 .port_get_dscp_prio = ksz_port_get_dscp_prio, 4864 .port_add_dscp_prio = ksz_port_add_dscp_prio, 4865 .port_del_dscp_prio = ksz_port_del_dscp_prio, 4866 .port_get_apptrust = ksz_port_get_apptrust, 4867 .port_set_apptrust = ksz_port_set_apptrust, 4868 }; 4869 4870 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv) 4871 { 4872 struct dsa_switch *ds; 4873 struct ksz_device *swdev; 4874 4875 ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL); 4876 if (!ds) 4877 return NULL; 4878 4879 ds->dev = base; 4880 ds->num_ports = DSA_MAX_PORTS; 4881 ds->ops = &ksz_switch_ops; 4882 4883 swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL); 4884 if (!swdev) 4885 return NULL; 4886 4887 ds->priv = swdev; 4888 swdev->dev = base; 4889 4890 swdev->ds = ds; 4891 swdev->priv = priv; 4892 4893 return swdev; 4894 } 4895 EXPORT_SYMBOL(ksz_switch_alloc); 4896 4897 /** 4898 * ksz_switch_shutdown - Shutdown routine for the switch device. 4899 * @dev: The switch device structure. 4900 * 4901 * This function is responsible for initiating a shutdown sequence for the 4902 * switch device. It invokes the reset operation defined in the device 4903 * operations, if available, to reset the switch. Subsequently, it calls the 4904 * DSA framework's shutdown function to ensure a proper shutdown of the DSA 4905 * switch. 4906 */ 4907 void ksz_switch_shutdown(struct ksz_device *dev) 4908 { 4909 bool wol_enabled = false; 4910 4911 ksz_wol_pre_shutdown(dev, &wol_enabled); 4912 4913 if (dev->dev_ops->reset && !wol_enabled) 4914 dev->dev_ops->reset(dev); 4915 4916 dsa_switch_shutdown(dev->ds); 4917 } 4918 EXPORT_SYMBOL(ksz_switch_shutdown); 4919 4920 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num, 4921 struct device_node *port_dn) 4922 { 4923 phy_interface_t phy_mode = dev->ports[port_num].interface; 4924 int rx_delay = -1, tx_delay = -1; 4925 4926 if (!phy_interface_mode_is_rgmii(phy_mode)) 4927 return; 4928 4929 of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay); 4930 of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay); 4931 4932 if (rx_delay == -1 && tx_delay == -1) { 4933 dev_warn(dev->dev, 4934 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, " 4935 "please update device tree to specify \"rx-internal-delay-ps\" and " 4936 "\"tx-internal-delay-ps\"", 4937 port_num); 4938 4939 if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID || 4940 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 4941 rx_delay = 2000; 4942 4943 if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID || 4944 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 4945 tx_delay = 2000; 4946 } 4947 4948 if (rx_delay < 0) 4949 rx_delay = 0; 4950 if (tx_delay < 0) 4951 tx_delay = 0; 4952 4953 dev->ports[port_num].rgmii_rx_val = rx_delay; 4954 dev->ports[port_num].rgmii_tx_val = tx_delay; 4955 } 4956 4957 /** 4958 * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding 4959 * register value. 4960 * @array: The array of drive strength values to search. 4961 * @array_size: The size of the array. 4962 * @microamp: The drive strength value in microamp to be converted. 4963 * 4964 * This function searches the array of drive strength values for the given 4965 * microamp value and returns the corresponding register value for that drive. 4966 * 4967 * Returns: If found, the corresponding register value for that drive strength 4968 * is returned. Otherwise, -EINVAL is returned indicating an invalid value. 4969 */ 4970 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array, 4971 size_t array_size, int microamp) 4972 { 4973 int i; 4974 4975 for (i = 0; i < array_size; i++) { 4976 if (array[i].microamp == microamp) 4977 return array[i].reg_val; 4978 } 4979 4980 return -EINVAL; 4981 } 4982 4983 /** 4984 * ksz_drive_strength_error() - Report invalid drive strength value 4985 * @dev: ksz device 4986 * @array: The array of drive strength values to search. 4987 * @array_size: The size of the array. 4988 * @microamp: Invalid drive strength value in microamp 4989 * 4990 * This function logs an error message when an unsupported drive strength value 4991 * is detected. It lists out all the supported drive strength values for 4992 * reference in the error message. 4993 */ 4994 static void ksz_drive_strength_error(struct ksz_device *dev, 4995 const struct ksz_drive_strength *array, 4996 size_t array_size, int microamp) 4997 { 4998 char supported_values[100]; 4999 size_t remaining_size; 5000 int added_len; 5001 char *ptr; 5002 int i; 5003 5004 remaining_size = sizeof(supported_values); 5005 ptr = supported_values; 5006 5007 for (i = 0; i < array_size; i++) { 5008 added_len = snprintf(ptr, remaining_size, 5009 i == 0 ? "%d" : ", %d", array[i].microamp); 5010 5011 if (added_len >= remaining_size) 5012 break; 5013 5014 ptr += added_len; 5015 remaining_size -= added_len; 5016 } 5017 5018 dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n", 5019 microamp, supported_values); 5020 } 5021 5022 /** 5023 * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477 5024 * chip variants. 5025 * @dev: ksz device 5026 * @props: Array of drive strength properties to be applied 5027 * @num_props: Number of properties in the array 5028 * 5029 * This function configures the drive strength for various KSZ9477 chip variants 5030 * based on the provided properties. It handles chip-specific nuances and 5031 * ensures only valid drive strengths are written to the respective chip. 5032 * 5033 * Return: 0 on successful configuration, a negative error code on failure. 5034 */ 5035 static int ksz9477_drive_strength_write(struct ksz_device *dev, 5036 struct ksz_driver_strength_prop *props, 5037 int num_props) 5038 { 5039 size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths); 5040 int i, ret, reg; 5041 u8 mask = 0; 5042 u8 val = 0; 5043 5044 if (props[KSZ_DRIVER_STRENGTH_IO].value != -1) 5045 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 5046 props[KSZ_DRIVER_STRENGTH_IO].name); 5047 5048 if (dev->chip_id == KSZ8795_CHIP_ID || 5049 dev->chip_id == KSZ8794_CHIP_ID || 5050 dev->chip_id == KSZ8765_CHIP_ID) 5051 reg = KSZ8795_REG_SW_CTRL_20; 5052 else 5053 reg = KSZ9477_REG_SW_IO_STRENGTH; 5054 5055 for (i = 0; i < num_props; i++) { 5056 if (props[i].value == -1) 5057 continue; 5058 5059 ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths, 5060 array_size, props[i].value); 5061 if (ret < 0) { 5062 ksz_drive_strength_error(dev, ksz9477_drive_strengths, 5063 array_size, props[i].value); 5064 return ret; 5065 } 5066 5067 mask |= SW_DRIVE_STRENGTH_M << props[i].offset; 5068 val |= ret << props[i].offset; 5069 } 5070 5071 return ksz_rmw8(dev, reg, mask, val); 5072 } 5073 5074 /** 5075 * ksz88x3_drive_strength_write() - Set the drive strength configuration for 5076 * KSZ8863 compatible chip variants. 5077 * @dev: ksz device 5078 * @props: Array of drive strength properties to be set 5079 * @num_props: Number of properties in the array 5080 * 5081 * This function applies the specified drive strength settings to KSZ88X3 chip 5082 * variants (KSZ8873, KSZ8863). 5083 * It ensures the configurations align with what the chip variant supports and 5084 * warns or errors out on unsupported settings. 5085 * 5086 * Return: 0 on success, error code otherwise 5087 */ 5088 static int ksz88x3_drive_strength_write(struct ksz_device *dev, 5089 struct ksz_driver_strength_prop *props, 5090 int num_props) 5091 { 5092 size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths); 5093 int microamp; 5094 int i, ret; 5095 5096 for (i = 0; i < num_props; i++) { 5097 if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO) 5098 continue; 5099 5100 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 5101 props[i].name); 5102 } 5103 5104 microamp = props[KSZ_DRIVER_STRENGTH_IO].value; 5105 ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size, 5106 microamp); 5107 if (ret < 0) { 5108 ksz_drive_strength_error(dev, ksz88x3_drive_strengths, 5109 array_size, microamp); 5110 return ret; 5111 } 5112 5113 return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12, 5114 KSZ8873_DRIVE_STRENGTH_16MA, ret); 5115 } 5116 5117 /** 5118 * ksz_parse_drive_strength() - Extract and apply drive strength configurations 5119 * from device tree properties. 5120 * @dev: ksz device 5121 * 5122 * This function reads the specified drive strength properties from the 5123 * device tree, validates against the supported chip variants, and sets 5124 * them accordingly. An error should be critical here, as the drive strength 5125 * settings are crucial for EMI compliance. 5126 * 5127 * Return: 0 on success, error code otherwise 5128 */ 5129 static int ksz_parse_drive_strength(struct ksz_device *dev) 5130 { 5131 struct ksz_driver_strength_prop of_props[] = { 5132 [KSZ_DRIVER_STRENGTH_HI] = { 5133 .name = "microchip,hi-drive-strength-microamp", 5134 .offset = SW_HI_SPEED_DRIVE_STRENGTH_S, 5135 .value = -1, 5136 }, 5137 [KSZ_DRIVER_STRENGTH_LO] = { 5138 .name = "microchip,lo-drive-strength-microamp", 5139 .offset = SW_LO_SPEED_DRIVE_STRENGTH_S, 5140 .value = -1, 5141 }, 5142 [KSZ_DRIVER_STRENGTH_IO] = { 5143 .name = "microchip,io-drive-strength-microamp", 5144 .offset = 0, /* don't care */ 5145 .value = -1, 5146 }, 5147 }; 5148 struct device_node *np = dev->dev->of_node; 5149 bool have_any_prop = false; 5150 int i, ret; 5151 5152 for (i = 0; i < ARRAY_SIZE(of_props); i++) { 5153 ret = of_property_read_u32(np, of_props[i].name, 5154 &of_props[i].value); 5155 if (ret && ret != -EINVAL) 5156 dev_warn(dev->dev, "Failed to read %s\n", 5157 of_props[i].name); 5158 if (ret) 5159 continue; 5160 5161 have_any_prop = true; 5162 } 5163 5164 if (!have_any_prop) 5165 return 0; 5166 5167 switch (dev->chip_id) { 5168 case KSZ88X3_CHIP_ID: 5169 return ksz88x3_drive_strength_write(dev, of_props, 5170 ARRAY_SIZE(of_props)); 5171 case KSZ8795_CHIP_ID: 5172 case KSZ8794_CHIP_ID: 5173 case KSZ8765_CHIP_ID: 5174 case KSZ8563_CHIP_ID: 5175 case KSZ8567_CHIP_ID: 5176 case KSZ9477_CHIP_ID: 5177 case KSZ9563_CHIP_ID: 5178 case KSZ9567_CHIP_ID: 5179 case KSZ9893_CHIP_ID: 5180 case KSZ9896_CHIP_ID: 5181 case KSZ9897_CHIP_ID: 5182 case LAN9646_CHIP_ID: 5183 return ksz9477_drive_strength_write(dev, of_props, 5184 ARRAY_SIZE(of_props)); 5185 default: 5186 for (i = 0; i < ARRAY_SIZE(of_props); i++) { 5187 if (of_props[i].value == -1) 5188 continue; 5189 5190 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 5191 of_props[i].name); 5192 } 5193 } 5194 5195 return 0; 5196 } 5197 5198 int ksz_switch_register(struct ksz_device *dev) 5199 { 5200 const struct ksz_chip_data *info; 5201 struct device_node *ports; 5202 phy_interface_t interface; 5203 unsigned int port_num; 5204 int ret; 5205 int i; 5206 5207 dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset", 5208 GPIOD_OUT_LOW); 5209 if (IS_ERR(dev->reset_gpio)) 5210 return PTR_ERR(dev->reset_gpio); 5211 5212 if (dev->reset_gpio) { 5213 gpiod_set_value_cansleep(dev->reset_gpio, 1); 5214 usleep_range(10000, 12000); 5215 gpiod_set_value_cansleep(dev->reset_gpio, 0); 5216 msleep(100); 5217 } 5218 5219 mutex_init(&dev->dev_mutex); 5220 mutex_init(&dev->regmap_mutex); 5221 mutex_init(&dev->alu_mutex); 5222 mutex_init(&dev->vlan_mutex); 5223 5224 ret = ksz_switch_detect(dev); 5225 if (ret) 5226 return ret; 5227 5228 info = ksz_lookup_info(dev->chip_id); 5229 if (!info) 5230 return -ENODEV; 5231 5232 /* Update the compatible info with the probed one */ 5233 dev->info = info; 5234 5235 dev_info(dev->dev, "found switch: %s, rev %i\n", 5236 dev->info->dev_name, dev->chip_rev); 5237 5238 ret = ksz_check_device_id(dev); 5239 if (ret) 5240 return ret; 5241 5242 dev->dev_ops = dev->info->ops; 5243 5244 ret = dev->dev_ops->init(dev); 5245 if (ret) 5246 return ret; 5247 5248 dev->ports = devm_kzalloc(dev->dev, 5249 dev->info->port_cnt * sizeof(struct ksz_port), 5250 GFP_KERNEL); 5251 if (!dev->ports) 5252 return -ENOMEM; 5253 5254 for (i = 0; i < dev->info->port_cnt; i++) { 5255 spin_lock_init(&dev->ports[i].mib.stats64_lock); 5256 mutex_init(&dev->ports[i].mib.cnt_mutex); 5257 dev->ports[i].mib.counters = 5258 devm_kzalloc(dev->dev, 5259 sizeof(u64) * (dev->info->mib_cnt + 1), 5260 GFP_KERNEL); 5261 if (!dev->ports[i].mib.counters) 5262 return -ENOMEM; 5263 5264 dev->ports[i].ksz_dev = dev; 5265 dev->ports[i].num = i; 5266 } 5267 5268 /* set the real number of ports */ 5269 dev->ds->num_ports = dev->info->port_cnt; 5270 5271 /* set the phylink ops */ 5272 dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops; 5273 5274 /* Host port interface will be self detected, or specifically set in 5275 * device tree. 5276 */ 5277 for (port_num = 0; port_num < dev->info->port_cnt; ++port_num) 5278 dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA; 5279 if (dev->dev->of_node) { 5280 ret = of_get_phy_mode(dev->dev->of_node, &interface); 5281 if (ret == 0) 5282 dev->compat_interface = interface; 5283 ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports"); 5284 if (!ports) 5285 ports = of_get_child_by_name(dev->dev->of_node, "ports"); 5286 if (ports) { 5287 for_each_available_child_of_node_scoped(ports, port) { 5288 if (of_property_read_u32(port, "reg", 5289 &port_num)) 5290 continue; 5291 if (!(dev->port_mask & BIT(port_num))) { 5292 of_node_put(ports); 5293 return -EINVAL; 5294 } 5295 of_get_phy_mode(port, 5296 &dev->ports[port_num].interface); 5297 5298 ksz_parse_rgmii_delay(dev, port_num, port); 5299 } 5300 of_node_put(ports); 5301 } 5302 dev->synclko_125 = of_property_read_bool(dev->dev->of_node, 5303 "microchip,synclko-125"); 5304 dev->synclko_disable = of_property_read_bool(dev->dev->of_node, 5305 "microchip,synclko-disable"); 5306 if (dev->synclko_125 && dev->synclko_disable) { 5307 dev_err(dev->dev, "inconsistent synclko settings\n"); 5308 return -EINVAL; 5309 } 5310 5311 dev->wakeup_source = of_property_read_bool(dev->dev->of_node, 5312 "wakeup-source"); 5313 dev->pme_active_high = of_property_read_bool(dev->dev->of_node, 5314 "microchip,pme-active-high"); 5315 } 5316 5317 ret = dsa_register_switch(dev->ds); 5318 if (ret) { 5319 dev->dev_ops->exit(dev); 5320 return ret; 5321 } 5322 5323 /* Read MIB counters every 30 seconds to avoid overflow. */ 5324 dev->mib_read_interval = msecs_to_jiffies(5000); 5325 5326 /* Start the MIB timer. */ 5327 schedule_delayed_work(&dev->mib_read, 0); 5328 5329 return ret; 5330 } 5331 EXPORT_SYMBOL(ksz_switch_register); 5332 5333 void ksz_switch_remove(struct ksz_device *dev) 5334 { 5335 /* timer started */ 5336 if (dev->mib_read_interval) { 5337 dev->mib_read_interval = 0; 5338 cancel_delayed_work_sync(&dev->mib_read); 5339 } 5340 5341 dev->dev_ops->exit(dev); 5342 dsa_unregister_switch(dev->ds); 5343 5344 if (dev->reset_gpio) 5345 gpiod_set_value_cansleep(dev->reset_gpio, 1); 5346 5347 } 5348 EXPORT_SYMBOL(ksz_switch_remove); 5349 5350 #ifdef CONFIG_PM_SLEEP 5351 int ksz_switch_suspend(struct device *dev) 5352 { 5353 struct ksz_device *priv = dev_get_drvdata(dev); 5354 5355 return dsa_switch_suspend(priv->ds); 5356 } 5357 EXPORT_SYMBOL(ksz_switch_suspend); 5358 5359 int ksz_switch_resume(struct device *dev) 5360 { 5361 struct ksz_device *priv = dev_get_drvdata(dev); 5362 5363 return dsa_switch_resume(priv->ds); 5364 } 5365 EXPORT_SYMBOL(ksz_switch_resume); 5366 #endif 5367 5368 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>"); 5369 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver"); 5370 MODULE_LICENSE("GPL"); 5371