xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 22c55fb9eb92395d999b8404d73e58540d11bdd8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2025 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/ieee8021q.h>
28 #include <net/pkt_cls.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_common.h"
32 #include "ksz_dcb.h"
33 #include "ksz_ptp.h"
34 #include "ksz8.h"
35 #include "ksz9477.h"
36 #include "lan937x.h"
37 
38 #define MIB_COUNTER_NUM 0x20
39 
40 struct ksz_stats_raw {
41 	u64 rx_hi;
42 	u64 rx_undersize;
43 	u64 rx_fragments;
44 	u64 rx_oversize;
45 	u64 rx_jabbers;
46 	u64 rx_symbol_err;
47 	u64 rx_crc_err;
48 	u64 rx_align_err;
49 	u64 rx_mac_ctrl;
50 	u64 rx_pause;
51 	u64 rx_bcast;
52 	u64 rx_mcast;
53 	u64 rx_ucast;
54 	u64 rx_64_or_less;
55 	u64 rx_65_127;
56 	u64 rx_128_255;
57 	u64 rx_256_511;
58 	u64 rx_512_1023;
59 	u64 rx_1024_1522;
60 	u64 rx_1523_2000;
61 	u64 rx_2001;
62 	u64 tx_hi;
63 	u64 tx_late_col;
64 	u64 tx_pause;
65 	u64 tx_bcast;
66 	u64 tx_mcast;
67 	u64 tx_ucast;
68 	u64 tx_deferred;
69 	u64 tx_total_col;
70 	u64 tx_exc_col;
71 	u64 tx_single_col;
72 	u64 tx_mult_col;
73 	u64 rx_total;
74 	u64 tx_total;
75 	u64 rx_discards;
76 	u64 tx_discards;
77 };
78 
79 struct ksz88xx_stats_raw {
80 	u64 rx;
81 	u64 rx_hi;
82 	u64 rx_undersize;
83 	u64 rx_fragments;
84 	u64 rx_oversize;
85 	u64 rx_jabbers;
86 	u64 rx_symbol_err;
87 	u64 rx_crc_err;
88 	u64 rx_align_err;
89 	u64 rx_mac_ctrl;
90 	u64 rx_pause;
91 	u64 rx_bcast;
92 	u64 rx_mcast;
93 	u64 rx_ucast;
94 	u64 rx_64_or_less;
95 	u64 rx_65_127;
96 	u64 rx_128_255;
97 	u64 rx_256_511;
98 	u64 rx_512_1023;
99 	u64 rx_1024_1522;
100 	u64 tx;
101 	u64 tx_hi;
102 	u64 tx_late_col;
103 	u64 tx_pause;
104 	u64 tx_bcast;
105 	u64 tx_mcast;
106 	u64 tx_ucast;
107 	u64 tx_deferred;
108 	u64 tx_total_col;
109 	u64 tx_exc_col;
110 	u64 tx_single_col;
111 	u64 tx_mult_col;
112 	u64 rx_discards;
113 	u64 tx_discards;
114 };
115 
116 static const struct ksz_mib_names ksz88xx_mib_names[] = {
117 	{ 0x00, "rx" },
118 	{ 0x01, "rx_hi" },
119 	{ 0x02, "rx_undersize" },
120 	{ 0x03, "rx_fragments" },
121 	{ 0x04, "rx_oversize" },
122 	{ 0x05, "rx_jabbers" },
123 	{ 0x06, "rx_symbol_err" },
124 	{ 0x07, "rx_crc_err" },
125 	{ 0x08, "rx_align_err" },
126 	{ 0x09, "rx_mac_ctrl" },
127 	{ 0x0a, "rx_pause" },
128 	{ 0x0b, "rx_bcast" },
129 	{ 0x0c, "rx_mcast" },
130 	{ 0x0d, "rx_ucast" },
131 	{ 0x0e, "rx_64_or_less" },
132 	{ 0x0f, "rx_65_127" },
133 	{ 0x10, "rx_128_255" },
134 	{ 0x11, "rx_256_511" },
135 	{ 0x12, "rx_512_1023" },
136 	{ 0x13, "rx_1024_1522" },
137 	{ 0x14, "tx" },
138 	{ 0x15, "tx_hi" },
139 	{ 0x16, "tx_late_col" },
140 	{ 0x17, "tx_pause" },
141 	{ 0x18, "tx_bcast" },
142 	{ 0x19, "tx_mcast" },
143 	{ 0x1a, "tx_ucast" },
144 	{ 0x1b, "tx_deferred" },
145 	{ 0x1c, "tx_total_col" },
146 	{ 0x1d, "tx_exc_col" },
147 	{ 0x1e, "tx_single_col" },
148 	{ 0x1f, "tx_mult_col" },
149 	{ 0x100, "rx_discards" },
150 	{ 0x101, "tx_discards" },
151 };
152 
153 static const struct ksz_mib_names ksz9477_mib_names[] = {
154 	{ 0x00, "rx_hi" },
155 	{ 0x01, "rx_undersize" },
156 	{ 0x02, "rx_fragments" },
157 	{ 0x03, "rx_oversize" },
158 	{ 0x04, "rx_jabbers" },
159 	{ 0x05, "rx_symbol_err" },
160 	{ 0x06, "rx_crc_err" },
161 	{ 0x07, "rx_align_err" },
162 	{ 0x08, "rx_mac_ctrl" },
163 	{ 0x09, "rx_pause" },
164 	{ 0x0A, "rx_bcast" },
165 	{ 0x0B, "rx_mcast" },
166 	{ 0x0C, "rx_ucast" },
167 	{ 0x0D, "rx_64_or_less" },
168 	{ 0x0E, "rx_65_127" },
169 	{ 0x0F, "rx_128_255" },
170 	{ 0x10, "rx_256_511" },
171 	{ 0x11, "rx_512_1023" },
172 	{ 0x12, "rx_1024_1522" },
173 	{ 0x13, "rx_1523_2000" },
174 	{ 0x14, "rx_2001" },
175 	{ 0x15, "tx_hi" },
176 	{ 0x16, "tx_late_col" },
177 	{ 0x17, "tx_pause" },
178 	{ 0x18, "tx_bcast" },
179 	{ 0x19, "tx_mcast" },
180 	{ 0x1A, "tx_ucast" },
181 	{ 0x1B, "tx_deferred" },
182 	{ 0x1C, "tx_total_col" },
183 	{ 0x1D, "tx_exc_col" },
184 	{ 0x1E, "tx_single_col" },
185 	{ 0x1F, "tx_mult_col" },
186 	{ 0x80, "rx_total" },
187 	{ 0x81, "tx_total" },
188 	{ 0x82, "rx_discards" },
189 	{ 0x83, "tx_discards" },
190 };
191 
192 struct ksz_driver_strength_prop {
193 	const char *name;
194 	int offset;
195 	int value;
196 };
197 
198 enum ksz_driver_strength_type {
199 	KSZ_DRIVER_STRENGTH_HI,
200 	KSZ_DRIVER_STRENGTH_LO,
201 	KSZ_DRIVER_STRENGTH_IO,
202 };
203 
204 /**
205  * struct ksz_drive_strength - drive strength mapping
206  * @reg_val:	register value
207  * @microamp:	microamp value
208  */
209 struct ksz_drive_strength {
210 	u32 reg_val;
211 	u32 microamp;
212 };
213 
214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
215  *
216  * This values are not documented in KSZ9477 variants but confirmed by
217  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
218  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
219  *
220  * Documentation in KSZ8795CLX provides more information with some
221  * recommendations:
222  * - for high speed signals
223  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
224  *      2.5V or 3.3V VDDIO.
225  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
226  *      using 1.8V VDDIO.
227  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
228  *      or 3.3V VDDIO.
229  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
230  *   5. In same interface, the heavy loading should use higher one of the
231  *      drive current strength.
232  * - for low speed signals
233  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
234  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
235  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
236  *   4. If it is heavy loading, can use higher drive current strength.
237  */
238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
239 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
240 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
241 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
242 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
243 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
244 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
245 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
246 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
247 };
248 
249 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, ..
250  *			     variants.
251  * This values are documented in KSZ8873 and KSZ8863 datasheets.
252  */
253 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = {
254 	{ 0,  8000 },
255 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
256 };
257 
258 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
259 				       unsigned int mode,
260 				       const struct phylink_link_state *state);
261 static void ksz_phylink_mac_config(struct phylink_config *config,
262 				   unsigned int mode,
263 				   const struct phylink_link_state *state);
264 static void ksz_phylink_mac_link_down(struct phylink_config *config,
265 				      unsigned int mode,
266 				      phy_interface_t interface);
267 
268 /**
269  * ksz_phylink_mac_disable_tx_lpi() - Callback to signal LPI support (Dummy)
270  * @config: phylink config structure
271  *
272  * This function is a dummy handler. See ksz_phylink_mac_enable_tx_lpi() for
273  * a detailed explanation of EEE/LPI handling in KSZ switches.
274  */
275 static void ksz_phylink_mac_disable_tx_lpi(struct phylink_config *config)
276 {
277 }
278 
279 /**
280  * ksz_phylink_mac_enable_tx_lpi() - Callback to signal LPI support (Dummy)
281  * @config: phylink config structure
282  * @timer: timer value before entering LPI (unused)
283  * @tx_clock_stop: whether to stop the TX clock in LPI mode (unused)
284  *
285  * This function signals to phylink that the driver architecture supports
286  * LPI management, enabling phylink to control EEE advertisement during
287  * negotiation according to IEEE Std 802.3 (Clause 78).
288  *
289  * Hardware Management of EEE/LPI State:
290  * For KSZ switch ports with integrated PHYs (e.g., KSZ9893R ports 1-2),
291  * observation and testing suggest that the actual EEE / Low Power Idle (LPI)
292  * state transitions are managed autonomously by the hardware based on
293  * the auto-negotiation results. (Note: While the datasheet describes EEE
294  * operation based on negotiation, it doesn't explicitly detail the internal
295  * MAC/PHY interaction, so autonomous hardware management of the MAC state
296  * for LPI is inferred from observed behavior).
297  * This hardware control, consistent with the switch's ability to operate
298  * autonomously via strapping, means MAC-level software intervention is not
299  * required or exposed for managing the LPI state once EEE is negotiated.
300  * (Ref: KSZ9893R Data Sheet DS00002420D, primarily Section 4.7.5 explaining
301  * EEE, also Sections 4.1.7 on Auto-Negotiation and 3.2.1 on Configuration
302  * Straps).
303  *
304  * Additionally, ports configured as MAC interfaces (e.g., KSZ9893R port 3)
305  * lack documented MAC-level LPI control.
306  *
307  * Therefore, this callback performs no action and serves primarily to inform
308  * phylink of LPI awareness and to document the inferred hardware behavior.
309  *
310  * Returns: 0 (Always success)
311  */
312 static int ksz_phylink_mac_enable_tx_lpi(struct phylink_config *config,
313 					 u32 timer, bool tx_clock_stop)
314 {
315 	return 0;
316 }
317 
318 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = {
319 	.mac_config	= ksz88x3_phylink_mac_config,
320 	.mac_link_down	= ksz_phylink_mac_link_down,
321 	.mac_link_up	= ksz8_phylink_mac_link_up,
322 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
323 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
324 };
325 
326 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
327 	.mac_config	= ksz_phylink_mac_config,
328 	.mac_link_down	= ksz_phylink_mac_link_down,
329 	.mac_link_up	= ksz8_phylink_mac_link_up,
330 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
331 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
332 };
333 
334 static const struct ksz_dev_ops ksz8463_dev_ops = {
335 	.setup = ksz8_setup,
336 	.get_port_addr = ksz8463_get_port_addr,
337 	.cfg_port_member = ksz8_cfg_port_member,
338 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
339 	.port_setup = ksz8_port_setup,
340 	.r_phy = ksz8463_r_phy,
341 	.w_phy = ksz8463_w_phy,
342 	.r_mib_cnt = ksz8_r_mib_cnt,
343 	.r_mib_pkt = ksz8_r_mib_pkt,
344 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
345 	.freeze_mib = ksz8_freeze_mib,
346 	.port_init_cnt = ksz8_port_init_cnt,
347 	.fdb_dump = ksz8_fdb_dump,
348 	.fdb_add = ksz8_fdb_add,
349 	.fdb_del = ksz8_fdb_del,
350 	.mdb_add = ksz8_mdb_add,
351 	.mdb_del = ksz8_mdb_del,
352 	.vlan_filtering = ksz8_port_vlan_filtering,
353 	.vlan_add = ksz8_port_vlan_add,
354 	.vlan_del = ksz8_port_vlan_del,
355 	.mirror_add = ksz8_port_mirror_add,
356 	.mirror_del = ksz8_port_mirror_del,
357 	.get_caps = ksz8_get_caps,
358 	.config_cpu_port = ksz8_config_cpu_port,
359 	.enable_stp_addr = ksz8_enable_stp_addr,
360 	.reset = ksz8_reset_switch,
361 	.init = ksz8_switch_init,
362 	.exit = ksz8_switch_exit,
363 	.change_mtu = ksz8_change_mtu,
364 };
365 
366 static const struct ksz_dev_ops ksz88xx_dev_ops = {
367 	.setup = ksz8_setup,
368 	.get_port_addr = ksz8_get_port_addr,
369 	.cfg_port_member = ksz8_cfg_port_member,
370 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
371 	.port_setup = ksz8_port_setup,
372 	.r_phy = ksz8_r_phy,
373 	.w_phy = ksz8_w_phy,
374 	.r_mib_cnt = ksz8_r_mib_cnt,
375 	.r_mib_pkt = ksz8_r_mib_pkt,
376 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
377 	.freeze_mib = ksz8_freeze_mib,
378 	.port_init_cnt = ksz8_port_init_cnt,
379 	.fdb_dump = ksz8_fdb_dump,
380 	.fdb_add = ksz8_fdb_add,
381 	.fdb_del = ksz8_fdb_del,
382 	.mdb_add = ksz8_mdb_add,
383 	.mdb_del = ksz8_mdb_del,
384 	.vlan_filtering = ksz8_port_vlan_filtering,
385 	.vlan_add = ksz8_port_vlan_add,
386 	.vlan_del = ksz8_port_vlan_del,
387 	.mirror_add = ksz8_port_mirror_add,
388 	.mirror_del = ksz8_port_mirror_del,
389 	.get_caps = ksz8_get_caps,
390 	.config_cpu_port = ksz8_config_cpu_port,
391 	.enable_stp_addr = ksz8_enable_stp_addr,
392 	.reset = ksz8_reset_switch,
393 	.init = ksz8_switch_init,
394 	.exit = ksz8_switch_exit,
395 	.change_mtu = ksz8_change_mtu,
396 	.pme_write8 = ksz8_pme_write8,
397 	.pme_pread8 = ksz8_pme_pread8,
398 	.pme_pwrite8 = ksz8_pme_pwrite8,
399 };
400 
401 static const struct ksz_dev_ops ksz87xx_dev_ops = {
402 	.setup = ksz8_setup,
403 	.get_port_addr = ksz8_get_port_addr,
404 	.cfg_port_member = ksz8_cfg_port_member,
405 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
406 	.port_setup = ksz8_port_setup,
407 	.r_phy = ksz8_r_phy,
408 	.w_phy = ksz8_w_phy,
409 	.r_mib_cnt = ksz8_r_mib_cnt,
410 	.r_mib_pkt = ksz8_r_mib_pkt,
411 	.r_mib_stat64 = ksz_r_mib_stats64,
412 	.freeze_mib = ksz8_freeze_mib,
413 	.port_init_cnt = ksz8_port_init_cnt,
414 	.fdb_dump = ksz8_fdb_dump,
415 	.fdb_add = ksz8_fdb_add,
416 	.fdb_del = ksz8_fdb_del,
417 	.mdb_add = ksz8_mdb_add,
418 	.mdb_del = ksz8_mdb_del,
419 	.vlan_filtering = ksz8_port_vlan_filtering,
420 	.vlan_add = ksz8_port_vlan_add,
421 	.vlan_del = ksz8_port_vlan_del,
422 	.mirror_add = ksz8_port_mirror_add,
423 	.mirror_del = ksz8_port_mirror_del,
424 	.get_caps = ksz8_get_caps,
425 	.config_cpu_port = ksz8_config_cpu_port,
426 	.enable_stp_addr = ksz8_enable_stp_addr,
427 	.reset = ksz8_reset_switch,
428 	.init = ksz8_switch_init,
429 	.exit = ksz8_switch_exit,
430 	.change_mtu = ksz8_change_mtu,
431 	.pme_write8 = ksz8_pme_write8,
432 	.pme_pread8 = ksz8_pme_pread8,
433 	.pme_pwrite8 = ksz8_pme_pwrite8,
434 };
435 
436 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
437 					struct phy_device *phydev,
438 					unsigned int mode,
439 					phy_interface_t interface,
440 					int speed, int duplex, bool tx_pause,
441 					bool rx_pause);
442 
443 static struct phylink_pcs *
444 ksz_phylink_mac_select_pcs(struct phylink_config *config,
445 			   phy_interface_t interface)
446 {
447 	struct dsa_port *dp = dsa_phylink_to_port(config);
448 	struct ksz_device *dev = dp->ds->priv;
449 	struct ksz_port *p = &dev->ports[dp->index];
450 
451 	if (ksz_is_sgmii_port(dev, dp->index) &&
452 	    (interface == PHY_INTERFACE_MODE_SGMII ||
453 	    interface == PHY_INTERFACE_MODE_1000BASEX))
454 		return p->pcs;
455 
456 	return NULL;
457 }
458 
459 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
460 	.mac_config	= ksz_phylink_mac_config,
461 	.mac_link_down	= ksz_phylink_mac_link_down,
462 	.mac_link_up	= ksz9477_phylink_mac_link_up,
463 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
464 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
465 	.mac_select_pcs	= ksz_phylink_mac_select_pcs,
466 };
467 
468 static const struct ksz_dev_ops ksz9477_dev_ops = {
469 	.setup = ksz9477_setup,
470 	.get_port_addr = ksz9477_get_port_addr,
471 	.cfg_port_member = ksz9477_cfg_port_member,
472 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
473 	.port_setup = ksz9477_port_setup,
474 	.set_ageing_time = ksz9477_set_ageing_time,
475 	.r_phy = ksz9477_r_phy,
476 	.w_phy = ksz9477_w_phy,
477 	.r_mib_cnt = ksz9477_r_mib_cnt,
478 	.r_mib_pkt = ksz9477_r_mib_pkt,
479 	.r_mib_stat64 = ksz_r_mib_stats64,
480 	.freeze_mib = ksz9477_freeze_mib,
481 	.port_init_cnt = ksz9477_port_init_cnt,
482 	.vlan_filtering = ksz9477_port_vlan_filtering,
483 	.vlan_add = ksz9477_port_vlan_add,
484 	.vlan_del = ksz9477_port_vlan_del,
485 	.mirror_add = ksz9477_port_mirror_add,
486 	.mirror_del = ksz9477_port_mirror_del,
487 	.get_caps = ksz9477_get_caps,
488 	.fdb_dump = ksz9477_fdb_dump,
489 	.fdb_add = ksz9477_fdb_add,
490 	.fdb_del = ksz9477_fdb_del,
491 	.mdb_add = ksz9477_mdb_add,
492 	.mdb_del = ksz9477_mdb_del,
493 	.change_mtu = ksz9477_change_mtu,
494 	.pme_write8 = ksz_write8,
495 	.pme_pread8 = ksz_pread8,
496 	.pme_pwrite8 = ksz_pwrite8,
497 	.config_cpu_port = ksz9477_config_cpu_port,
498 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
499 	.enable_stp_addr = ksz9477_enable_stp_addr,
500 	.reset = ksz9477_reset_switch,
501 	.init = ksz9477_switch_init,
502 	.exit = ksz9477_switch_exit,
503 	.pcs_create = ksz9477_pcs_create,
504 };
505 
506 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
507 	.mac_config	= ksz_phylink_mac_config,
508 	.mac_link_down	= ksz_phylink_mac_link_down,
509 	.mac_link_up	= ksz9477_phylink_mac_link_up,
510 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
511 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
512 };
513 
514 static const struct ksz_dev_ops lan937x_dev_ops = {
515 	.setup = lan937x_setup,
516 	.teardown = lan937x_teardown,
517 	.get_port_addr = ksz9477_get_port_addr,
518 	.cfg_port_member = ksz9477_cfg_port_member,
519 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
520 	.port_setup = lan937x_port_setup,
521 	.set_ageing_time = lan937x_set_ageing_time,
522 	.mdio_bus_preinit = lan937x_mdio_bus_preinit,
523 	.create_phy_addr_map = lan937x_create_phy_addr_map,
524 	.r_phy = lan937x_r_phy,
525 	.w_phy = lan937x_w_phy,
526 	.r_mib_cnt = ksz9477_r_mib_cnt,
527 	.r_mib_pkt = ksz9477_r_mib_pkt,
528 	.r_mib_stat64 = ksz_r_mib_stats64,
529 	.freeze_mib = ksz9477_freeze_mib,
530 	.port_init_cnt = ksz9477_port_init_cnt,
531 	.vlan_filtering = ksz9477_port_vlan_filtering,
532 	.vlan_add = ksz9477_port_vlan_add,
533 	.vlan_del = ksz9477_port_vlan_del,
534 	.mirror_add = ksz9477_port_mirror_add,
535 	.mirror_del = ksz9477_port_mirror_del,
536 	.get_caps = lan937x_phylink_get_caps,
537 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
538 	.fdb_dump = ksz9477_fdb_dump,
539 	.fdb_add = ksz9477_fdb_add,
540 	.fdb_del = ksz9477_fdb_del,
541 	.mdb_add = ksz9477_mdb_add,
542 	.mdb_del = ksz9477_mdb_del,
543 	.change_mtu = lan937x_change_mtu,
544 	.config_cpu_port = lan937x_config_cpu_port,
545 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
546 	.enable_stp_addr = ksz9477_enable_stp_addr,
547 	.reset = lan937x_reset_switch,
548 	.init = lan937x_switch_init,
549 	.exit = lan937x_switch_exit,
550 };
551 
552 static const u16 ksz8463_regs[] = {
553 	[REG_SW_MAC_ADDR]		= 0x10,
554 	[REG_IND_CTRL_0]		= 0x30,
555 	[REG_IND_DATA_8]		= 0x26,
556 	[REG_IND_DATA_CHECK]		= 0x26,
557 	[REG_IND_DATA_HI]		= 0x28,
558 	[REG_IND_DATA_LO]		= 0x2C,
559 	[REG_IND_MIB_CHECK]		= 0x2F,
560 	[P_FORCE_CTRL]			= 0x0C,
561 	[P_LINK_STATUS]			= 0x0E,
562 	[P_LOCAL_CTRL]			= 0x0C,
563 	[P_NEG_RESTART_CTRL]		= 0x0D,
564 	[P_REMOTE_STATUS]		= 0x0E,
565 	[P_SPEED_STATUS]		= 0x0F,
566 	[S_TAIL_TAG_CTRL]		= 0xAD,
567 	[P_STP_CTRL]			= 0x6F,
568 	[S_START_CTRL]			= 0x01,
569 	[S_BROADCAST_CTRL]		= 0x06,
570 	[S_MULTICAST_CTRL]		= 0x04,
571 };
572 
573 static const u32 ksz8463_masks[] = {
574 	[PORT_802_1P_REMAPPING]		= BIT(3),
575 	[SW_TAIL_TAG_ENABLE]		= BIT(0),
576 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
577 	[MIB_COUNTER_VALID]		= BIT(6),
578 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
579 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
580 	[VLAN_TABLE_VALID]		= BIT(19),
581 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
582 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
583 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
584 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
585 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
586 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
587 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
588 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
589 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
590 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
591 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
592 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
593 };
594 
595 static u8 ksz8463_shifts[] = {
596 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
597 	[STATIC_MAC_FWD_PORTS]		= 16,
598 	[STATIC_MAC_FID]		= 22,
599 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
600 	[DYNAMIC_MAC_ENTRIES]		= 24,
601 	[DYNAMIC_MAC_FID]		= 16,
602 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
603 	[DYNAMIC_MAC_SRC_PORT]		= 20,
604 };
605 
606 static const u16 ksz8795_regs[] = {
607 	[REG_SW_MAC_ADDR]		= 0x68,
608 	[REG_IND_CTRL_0]		= 0x6E,
609 	[REG_IND_DATA_8]		= 0x70,
610 	[REG_IND_DATA_CHECK]		= 0x72,
611 	[REG_IND_DATA_HI]		= 0x71,
612 	[REG_IND_DATA_LO]		= 0x75,
613 	[REG_IND_MIB_CHECK]		= 0x74,
614 	[REG_IND_BYTE]			= 0xA0,
615 	[P_FORCE_CTRL]			= 0x0C,
616 	[P_LINK_STATUS]			= 0x0E,
617 	[P_LOCAL_CTRL]			= 0x07,
618 	[P_NEG_RESTART_CTRL]		= 0x0D,
619 	[P_REMOTE_STATUS]		= 0x08,
620 	[P_SPEED_STATUS]		= 0x09,
621 	[S_TAIL_TAG_CTRL]		= 0x0C,
622 	[P_STP_CTRL]			= 0x02,
623 	[S_START_CTRL]			= 0x01,
624 	[S_BROADCAST_CTRL]		= 0x06,
625 	[S_MULTICAST_CTRL]		= 0x04,
626 	[P_XMII_CTRL_0]			= 0x06,
627 	[P_XMII_CTRL_1]			= 0x06,
628 	[REG_SW_PME_CTRL]		= 0x8003,
629 	[REG_PORT_PME_STATUS]		= 0x8003,
630 	[REG_PORT_PME_CTRL]		= 0x8007,
631 };
632 
633 static const u32 ksz8795_masks[] = {
634 	[PORT_802_1P_REMAPPING]		= BIT(7),
635 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
636 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
637 	[MIB_COUNTER_VALID]		= BIT(5),
638 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
639 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
640 	[VLAN_TABLE_VALID]		= BIT(12),
641 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
642 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
643 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
644 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
645 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
646 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
647 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
648 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
649 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
650 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
651 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
652 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
653 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
654 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
655 };
656 
657 static const u8 ksz8795_xmii_ctrl0[] = {
658 	[P_MII_100MBIT]			= 0,
659 	[P_MII_10MBIT]			= 1,
660 	[P_MII_FULL_DUPLEX]		= 0,
661 	[P_MII_HALF_DUPLEX]		= 1,
662 };
663 
664 static const u8 ksz8795_xmii_ctrl1[] = {
665 	[P_RGMII_SEL]			= 3,
666 	[P_GMII_SEL]			= 2,
667 	[P_RMII_SEL]			= 1,
668 	[P_MII_SEL]			= 0,
669 	[P_GMII_1GBIT]			= 1,
670 	[P_GMII_NOT_1GBIT]		= 0,
671 };
672 
673 static const u8 ksz8795_shifts[] = {
674 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
675 	[VLAN_TABLE]			= 16,
676 	[STATIC_MAC_FWD_PORTS]		= 16,
677 	[STATIC_MAC_FID]		= 24,
678 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
679 	[DYNAMIC_MAC_ENTRIES]		= 29,
680 	[DYNAMIC_MAC_FID]		= 16,
681 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
682 	[DYNAMIC_MAC_SRC_PORT]		= 24,
683 };
684 
685 static const u16 ksz8863_regs[] = {
686 	[REG_SW_MAC_ADDR]		= 0x70,
687 	[REG_IND_CTRL_0]		= 0x79,
688 	[REG_IND_DATA_8]		= 0x7B,
689 	[REG_IND_DATA_CHECK]		= 0x7B,
690 	[REG_IND_DATA_HI]		= 0x7C,
691 	[REG_IND_DATA_LO]		= 0x80,
692 	[REG_IND_MIB_CHECK]		= 0x80,
693 	[P_FORCE_CTRL]			= 0x0C,
694 	[P_LINK_STATUS]			= 0x0E,
695 	[P_LOCAL_CTRL]			= 0x0C,
696 	[P_NEG_RESTART_CTRL]		= 0x0D,
697 	[P_REMOTE_STATUS]		= 0x0E,
698 	[P_SPEED_STATUS]		= 0x0F,
699 	[S_TAIL_TAG_CTRL]		= 0x03,
700 	[P_STP_CTRL]			= 0x02,
701 	[S_START_CTRL]			= 0x01,
702 	[S_BROADCAST_CTRL]		= 0x06,
703 	[S_MULTICAST_CTRL]		= 0x04,
704 };
705 
706 static const u32 ksz8863_masks[] = {
707 	[PORT_802_1P_REMAPPING]		= BIT(3),
708 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
709 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
710 	[MIB_COUNTER_VALID]		= BIT(6),
711 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
712 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
713 	[VLAN_TABLE_VALID]		= BIT(19),
714 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
715 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
716 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
717 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
718 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
719 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
720 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
721 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
722 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
723 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
724 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
725 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
726 };
727 
728 static u8 ksz8863_shifts[] = {
729 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
730 	[STATIC_MAC_FWD_PORTS]		= 16,
731 	[STATIC_MAC_FID]		= 22,
732 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
733 	[DYNAMIC_MAC_ENTRIES]		= 24,
734 	[DYNAMIC_MAC_FID]		= 16,
735 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
736 	[DYNAMIC_MAC_SRC_PORT]		= 20,
737 };
738 
739 static const u16 ksz8895_regs[] = {
740 	[REG_SW_MAC_ADDR]		= 0x68,
741 	[REG_IND_CTRL_0]		= 0x6E,
742 	[REG_IND_DATA_8]		= 0x70,
743 	[REG_IND_DATA_CHECK]		= 0x72,
744 	[REG_IND_DATA_HI]		= 0x71,
745 	[REG_IND_DATA_LO]		= 0x75,
746 	[REG_IND_MIB_CHECK]		= 0x75,
747 	[P_FORCE_CTRL]			= 0x0C,
748 	[P_LINK_STATUS]			= 0x0E,
749 	[P_LOCAL_CTRL]			= 0x0C,
750 	[P_NEG_RESTART_CTRL]		= 0x0D,
751 	[P_REMOTE_STATUS]		= 0x0E,
752 	[P_SPEED_STATUS]		= 0x09,
753 	[S_TAIL_TAG_CTRL]		= 0x0C,
754 	[P_STP_CTRL]			= 0x02,
755 	[S_START_CTRL]			= 0x01,
756 	[S_BROADCAST_CTRL]		= 0x06,
757 	[S_MULTICAST_CTRL]		= 0x04,
758 };
759 
760 static const u32 ksz8895_masks[] = {
761 	[PORT_802_1P_REMAPPING]		= BIT(7),
762 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
763 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
764 	[MIB_COUNTER_VALID]		= BIT(6),
765 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
766 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
767 	[VLAN_TABLE_VALID]		= BIT(12),
768 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
769 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
770 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
771 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
772 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
773 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
774 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
775 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
776 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
777 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
778 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
779 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
780 };
781 
782 static const u8 ksz8895_shifts[] = {
783 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
784 	[VLAN_TABLE]			= 13,
785 	[STATIC_MAC_FWD_PORTS]		= 16,
786 	[STATIC_MAC_FID]		= 24,
787 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
788 	[DYNAMIC_MAC_ENTRIES]		= 29,
789 	[DYNAMIC_MAC_FID]		= 16,
790 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
791 	[DYNAMIC_MAC_SRC_PORT]		= 24,
792 };
793 
794 static const u16 ksz9477_regs[] = {
795 	[REG_SW_MAC_ADDR]		= 0x0302,
796 	[P_STP_CTRL]			= 0x0B04,
797 	[S_START_CTRL]			= 0x0300,
798 	[S_BROADCAST_CTRL]		= 0x0332,
799 	[S_MULTICAST_CTRL]		= 0x0331,
800 	[P_XMII_CTRL_0]			= 0x0300,
801 	[P_XMII_CTRL_1]			= 0x0301,
802 	[REG_SW_PME_CTRL]		= 0x0006,
803 	[REG_PORT_PME_STATUS]		= 0x0013,
804 	[REG_PORT_PME_CTRL]		= 0x0017,
805 };
806 
807 static const u32 ksz9477_masks[] = {
808 	[ALU_STAT_WRITE]		= 0,
809 	[ALU_STAT_READ]			= 1,
810 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
811 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
812 };
813 
814 static const u8 ksz9477_shifts[] = {
815 	[ALU_STAT_INDEX]		= 16,
816 };
817 
818 static const u8 ksz9477_xmii_ctrl0[] = {
819 	[P_MII_100MBIT]			= 1,
820 	[P_MII_10MBIT]			= 0,
821 	[P_MII_FULL_DUPLEX]		= 1,
822 	[P_MII_HALF_DUPLEX]		= 0,
823 };
824 
825 static const u8 ksz9477_xmii_ctrl1[] = {
826 	[P_RGMII_SEL]			= 0,
827 	[P_RMII_SEL]			= 1,
828 	[P_GMII_SEL]			= 2,
829 	[P_MII_SEL]			= 3,
830 	[P_GMII_1GBIT]			= 0,
831 	[P_GMII_NOT_1GBIT]		= 1,
832 };
833 
834 static const u32 lan937x_masks[] = {
835 	[ALU_STAT_WRITE]		= 1,
836 	[ALU_STAT_READ]			= 2,
837 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
838 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
839 };
840 
841 static const u8 lan937x_shifts[] = {
842 	[ALU_STAT_INDEX]		= 8,
843 };
844 
845 static const struct regmap_range ksz8563_valid_regs[] = {
846 	regmap_reg_range(0x0000, 0x0003),
847 	regmap_reg_range(0x0006, 0x0006),
848 	regmap_reg_range(0x000f, 0x001f),
849 	regmap_reg_range(0x0100, 0x0100),
850 	regmap_reg_range(0x0104, 0x0107),
851 	regmap_reg_range(0x010d, 0x010d),
852 	regmap_reg_range(0x0110, 0x0113),
853 	regmap_reg_range(0x0120, 0x012b),
854 	regmap_reg_range(0x0201, 0x0201),
855 	regmap_reg_range(0x0210, 0x0213),
856 	regmap_reg_range(0x0300, 0x0300),
857 	regmap_reg_range(0x0302, 0x031b),
858 	regmap_reg_range(0x0320, 0x032b),
859 	regmap_reg_range(0x0330, 0x0336),
860 	regmap_reg_range(0x0338, 0x033e),
861 	regmap_reg_range(0x0340, 0x035f),
862 	regmap_reg_range(0x0370, 0x0370),
863 	regmap_reg_range(0x0378, 0x0378),
864 	regmap_reg_range(0x037c, 0x037d),
865 	regmap_reg_range(0x0390, 0x0393),
866 	regmap_reg_range(0x0400, 0x040e),
867 	regmap_reg_range(0x0410, 0x042f),
868 	regmap_reg_range(0x0500, 0x0519),
869 	regmap_reg_range(0x0520, 0x054b),
870 	regmap_reg_range(0x0550, 0x05b3),
871 
872 	/* port 1 */
873 	regmap_reg_range(0x1000, 0x1001),
874 	regmap_reg_range(0x1004, 0x100b),
875 	regmap_reg_range(0x1013, 0x1013),
876 	regmap_reg_range(0x1017, 0x1017),
877 	regmap_reg_range(0x101b, 0x101b),
878 	regmap_reg_range(0x101f, 0x1021),
879 	regmap_reg_range(0x1030, 0x1030),
880 	regmap_reg_range(0x1100, 0x1111),
881 	regmap_reg_range(0x111a, 0x111d),
882 	regmap_reg_range(0x1122, 0x1127),
883 	regmap_reg_range(0x112a, 0x112b),
884 	regmap_reg_range(0x1136, 0x1139),
885 	regmap_reg_range(0x113e, 0x113f),
886 	regmap_reg_range(0x1400, 0x1401),
887 	regmap_reg_range(0x1403, 0x1403),
888 	regmap_reg_range(0x1410, 0x1417),
889 	regmap_reg_range(0x1420, 0x1423),
890 	regmap_reg_range(0x1500, 0x1507),
891 	regmap_reg_range(0x1600, 0x1612),
892 	regmap_reg_range(0x1800, 0x180f),
893 	regmap_reg_range(0x1900, 0x1907),
894 	regmap_reg_range(0x1914, 0x191b),
895 	regmap_reg_range(0x1a00, 0x1a03),
896 	regmap_reg_range(0x1a04, 0x1a08),
897 	regmap_reg_range(0x1b00, 0x1b01),
898 	regmap_reg_range(0x1b04, 0x1b04),
899 	regmap_reg_range(0x1c00, 0x1c05),
900 	regmap_reg_range(0x1c08, 0x1c1b),
901 
902 	/* port 2 */
903 	regmap_reg_range(0x2000, 0x2001),
904 	regmap_reg_range(0x2004, 0x200b),
905 	regmap_reg_range(0x2013, 0x2013),
906 	regmap_reg_range(0x2017, 0x2017),
907 	regmap_reg_range(0x201b, 0x201b),
908 	regmap_reg_range(0x201f, 0x2021),
909 	regmap_reg_range(0x2030, 0x2030),
910 	regmap_reg_range(0x2100, 0x2111),
911 	regmap_reg_range(0x211a, 0x211d),
912 	regmap_reg_range(0x2122, 0x2127),
913 	regmap_reg_range(0x212a, 0x212b),
914 	regmap_reg_range(0x2136, 0x2139),
915 	regmap_reg_range(0x213e, 0x213f),
916 	regmap_reg_range(0x2400, 0x2401),
917 	regmap_reg_range(0x2403, 0x2403),
918 	regmap_reg_range(0x2410, 0x2417),
919 	regmap_reg_range(0x2420, 0x2423),
920 	regmap_reg_range(0x2500, 0x2507),
921 	regmap_reg_range(0x2600, 0x2612),
922 	regmap_reg_range(0x2800, 0x280f),
923 	regmap_reg_range(0x2900, 0x2907),
924 	regmap_reg_range(0x2914, 0x291b),
925 	regmap_reg_range(0x2a00, 0x2a03),
926 	regmap_reg_range(0x2a04, 0x2a08),
927 	regmap_reg_range(0x2b00, 0x2b01),
928 	regmap_reg_range(0x2b04, 0x2b04),
929 	regmap_reg_range(0x2c00, 0x2c05),
930 	regmap_reg_range(0x2c08, 0x2c1b),
931 
932 	/* port 3 */
933 	regmap_reg_range(0x3000, 0x3001),
934 	regmap_reg_range(0x3004, 0x300b),
935 	regmap_reg_range(0x3013, 0x3013),
936 	regmap_reg_range(0x3017, 0x3017),
937 	regmap_reg_range(0x301b, 0x301b),
938 	regmap_reg_range(0x301f, 0x3021),
939 	regmap_reg_range(0x3030, 0x3030),
940 	regmap_reg_range(0x3300, 0x3301),
941 	regmap_reg_range(0x3303, 0x3303),
942 	regmap_reg_range(0x3400, 0x3401),
943 	regmap_reg_range(0x3403, 0x3403),
944 	regmap_reg_range(0x3410, 0x3417),
945 	regmap_reg_range(0x3420, 0x3423),
946 	regmap_reg_range(0x3500, 0x3507),
947 	regmap_reg_range(0x3600, 0x3612),
948 	regmap_reg_range(0x3800, 0x380f),
949 	regmap_reg_range(0x3900, 0x3907),
950 	regmap_reg_range(0x3914, 0x391b),
951 	regmap_reg_range(0x3a00, 0x3a03),
952 	regmap_reg_range(0x3a04, 0x3a08),
953 	regmap_reg_range(0x3b00, 0x3b01),
954 	regmap_reg_range(0x3b04, 0x3b04),
955 	regmap_reg_range(0x3c00, 0x3c05),
956 	regmap_reg_range(0x3c08, 0x3c1b),
957 };
958 
959 static const struct regmap_access_table ksz8563_register_set = {
960 	.yes_ranges = ksz8563_valid_regs,
961 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
962 };
963 
964 static const struct regmap_range ksz9477_valid_regs[] = {
965 	regmap_reg_range(0x0000, 0x0003),
966 	regmap_reg_range(0x0006, 0x0006),
967 	regmap_reg_range(0x0010, 0x001f),
968 	regmap_reg_range(0x0100, 0x0100),
969 	regmap_reg_range(0x0103, 0x0107),
970 	regmap_reg_range(0x010d, 0x010d),
971 	regmap_reg_range(0x0110, 0x0113),
972 	regmap_reg_range(0x0120, 0x012b),
973 	regmap_reg_range(0x0201, 0x0201),
974 	regmap_reg_range(0x0210, 0x0213),
975 	regmap_reg_range(0x0300, 0x0300),
976 	regmap_reg_range(0x0302, 0x031b),
977 	regmap_reg_range(0x0320, 0x032b),
978 	regmap_reg_range(0x0330, 0x0336),
979 	regmap_reg_range(0x0338, 0x033b),
980 	regmap_reg_range(0x033e, 0x033e),
981 	regmap_reg_range(0x0340, 0x035f),
982 	regmap_reg_range(0x0370, 0x0370),
983 	regmap_reg_range(0x0378, 0x0378),
984 	regmap_reg_range(0x037c, 0x037d),
985 	regmap_reg_range(0x0390, 0x0393),
986 	regmap_reg_range(0x0400, 0x040e),
987 	regmap_reg_range(0x0410, 0x042f),
988 	regmap_reg_range(0x0444, 0x044b),
989 	regmap_reg_range(0x0450, 0x046f),
990 	regmap_reg_range(0x0500, 0x0519),
991 	regmap_reg_range(0x0520, 0x054b),
992 	regmap_reg_range(0x0550, 0x05b3),
993 	regmap_reg_range(0x0604, 0x060b),
994 	regmap_reg_range(0x0610, 0x0612),
995 	regmap_reg_range(0x0614, 0x062c),
996 	regmap_reg_range(0x0640, 0x0645),
997 	regmap_reg_range(0x0648, 0x064d),
998 
999 	/* port 1 */
1000 	regmap_reg_range(0x1000, 0x1001),
1001 	regmap_reg_range(0x1013, 0x1013),
1002 	regmap_reg_range(0x1017, 0x1017),
1003 	regmap_reg_range(0x101b, 0x101b),
1004 	regmap_reg_range(0x101f, 0x1020),
1005 	regmap_reg_range(0x1030, 0x1030),
1006 	regmap_reg_range(0x1100, 0x1115),
1007 	regmap_reg_range(0x111a, 0x111f),
1008 	regmap_reg_range(0x1120, 0x112b),
1009 	regmap_reg_range(0x1134, 0x113b),
1010 	regmap_reg_range(0x113c, 0x113f),
1011 	regmap_reg_range(0x1400, 0x1401),
1012 	regmap_reg_range(0x1403, 0x1403),
1013 	regmap_reg_range(0x1410, 0x1417),
1014 	regmap_reg_range(0x1420, 0x1423),
1015 	regmap_reg_range(0x1500, 0x1507),
1016 	regmap_reg_range(0x1600, 0x1613),
1017 	regmap_reg_range(0x1800, 0x180f),
1018 	regmap_reg_range(0x1820, 0x1827),
1019 	regmap_reg_range(0x1830, 0x1837),
1020 	regmap_reg_range(0x1840, 0x184b),
1021 	regmap_reg_range(0x1900, 0x1907),
1022 	regmap_reg_range(0x1914, 0x191b),
1023 	regmap_reg_range(0x1920, 0x1920),
1024 	regmap_reg_range(0x1923, 0x1927),
1025 	regmap_reg_range(0x1a00, 0x1a03),
1026 	regmap_reg_range(0x1a04, 0x1a07),
1027 	regmap_reg_range(0x1b00, 0x1b01),
1028 	regmap_reg_range(0x1b04, 0x1b04),
1029 	regmap_reg_range(0x1c00, 0x1c05),
1030 	regmap_reg_range(0x1c08, 0x1c1b),
1031 
1032 	/* port 2 */
1033 	regmap_reg_range(0x2000, 0x2001),
1034 	regmap_reg_range(0x2013, 0x2013),
1035 	regmap_reg_range(0x2017, 0x2017),
1036 	regmap_reg_range(0x201b, 0x201b),
1037 	regmap_reg_range(0x201f, 0x2020),
1038 	regmap_reg_range(0x2030, 0x2030),
1039 	regmap_reg_range(0x2100, 0x2115),
1040 	regmap_reg_range(0x211a, 0x211f),
1041 	regmap_reg_range(0x2120, 0x212b),
1042 	regmap_reg_range(0x2134, 0x213b),
1043 	regmap_reg_range(0x213c, 0x213f),
1044 	regmap_reg_range(0x2400, 0x2401),
1045 	regmap_reg_range(0x2403, 0x2403),
1046 	regmap_reg_range(0x2410, 0x2417),
1047 	regmap_reg_range(0x2420, 0x2423),
1048 	regmap_reg_range(0x2500, 0x2507),
1049 	regmap_reg_range(0x2600, 0x2613),
1050 	regmap_reg_range(0x2800, 0x280f),
1051 	regmap_reg_range(0x2820, 0x2827),
1052 	regmap_reg_range(0x2830, 0x2837),
1053 	regmap_reg_range(0x2840, 0x284b),
1054 	regmap_reg_range(0x2900, 0x2907),
1055 	regmap_reg_range(0x2914, 0x291b),
1056 	regmap_reg_range(0x2920, 0x2920),
1057 	regmap_reg_range(0x2923, 0x2927),
1058 	regmap_reg_range(0x2a00, 0x2a03),
1059 	regmap_reg_range(0x2a04, 0x2a07),
1060 	regmap_reg_range(0x2b00, 0x2b01),
1061 	regmap_reg_range(0x2b04, 0x2b04),
1062 	regmap_reg_range(0x2c00, 0x2c05),
1063 	regmap_reg_range(0x2c08, 0x2c1b),
1064 
1065 	/* port 3 */
1066 	regmap_reg_range(0x3000, 0x3001),
1067 	regmap_reg_range(0x3013, 0x3013),
1068 	regmap_reg_range(0x3017, 0x3017),
1069 	regmap_reg_range(0x301b, 0x301b),
1070 	regmap_reg_range(0x301f, 0x3020),
1071 	regmap_reg_range(0x3030, 0x3030),
1072 	regmap_reg_range(0x3100, 0x3115),
1073 	regmap_reg_range(0x311a, 0x311f),
1074 	regmap_reg_range(0x3120, 0x312b),
1075 	regmap_reg_range(0x3134, 0x313b),
1076 	regmap_reg_range(0x313c, 0x313f),
1077 	regmap_reg_range(0x3400, 0x3401),
1078 	regmap_reg_range(0x3403, 0x3403),
1079 	regmap_reg_range(0x3410, 0x3417),
1080 	regmap_reg_range(0x3420, 0x3423),
1081 	regmap_reg_range(0x3500, 0x3507),
1082 	regmap_reg_range(0x3600, 0x3613),
1083 	regmap_reg_range(0x3800, 0x380f),
1084 	regmap_reg_range(0x3820, 0x3827),
1085 	regmap_reg_range(0x3830, 0x3837),
1086 	regmap_reg_range(0x3840, 0x384b),
1087 	regmap_reg_range(0x3900, 0x3907),
1088 	regmap_reg_range(0x3914, 0x391b),
1089 	regmap_reg_range(0x3920, 0x3920),
1090 	regmap_reg_range(0x3923, 0x3927),
1091 	regmap_reg_range(0x3a00, 0x3a03),
1092 	regmap_reg_range(0x3a04, 0x3a07),
1093 	regmap_reg_range(0x3b00, 0x3b01),
1094 	regmap_reg_range(0x3b04, 0x3b04),
1095 	regmap_reg_range(0x3c00, 0x3c05),
1096 	regmap_reg_range(0x3c08, 0x3c1b),
1097 
1098 	/* port 4 */
1099 	regmap_reg_range(0x4000, 0x4001),
1100 	regmap_reg_range(0x4013, 0x4013),
1101 	regmap_reg_range(0x4017, 0x4017),
1102 	regmap_reg_range(0x401b, 0x401b),
1103 	regmap_reg_range(0x401f, 0x4020),
1104 	regmap_reg_range(0x4030, 0x4030),
1105 	regmap_reg_range(0x4100, 0x4115),
1106 	regmap_reg_range(0x411a, 0x411f),
1107 	regmap_reg_range(0x4120, 0x412b),
1108 	regmap_reg_range(0x4134, 0x413b),
1109 	regmap_reg_range(0x413c, 0x413f),
1110 	regmap_reg_range(0x4400, 0x4401),
1111 	regmap_reg_range(0x4403, 0x4403),
1112 	regmap_reg_range(0x4410, 0x4417),
1113 	regmap_reg_range(0x4420, 0x4423),
1114 	regmap_reg_range(0x4500, 0x4507),
1115 	regmap_reg_range(0x4600, 0x4613),
1116 	regmap_reg_range(0x4800, 0x480f),
1117 	regmap_reg_range(0x4820, 0x4827),
1118 	regmap_reg_range(0x4830, 0x4837),
1119 	regmap_reg_range(0x4840, 0x484b),
1120 	regmap_reg_range(0x4900, 0x4907),
1121 	regmap_reg_range(0x4914, 0x491b),
1122 	regmap_reg_range(0x4920, 0x4920),
1123 	regmap_reg_range(0x4923, 0x4927),
1124 	regmap_reg_range(0x4a00, 0x4a03),
1125 	regmap_reg_range(0x4a04, 0x4a07),
1126 	regmap_reg_range(0x4b00, 0x4b01),
1127 	regmap_reg_range(0x4b04, 0x4b04),
1128 	regmap_reg_range(0x4c00, 0x4c05),
1129 	regmap_reg_range(0x4c08, 0x4c1b),
1130 
1131 	/* port 5 */
1132 	regmap_reg_range(0x5000, 0x5001),
1133 	regmap_reg_range(0x5013, 0x5013),
1134 	regmap_reg_range(0x5017, 0x5017),
1135 	regmap_reg_range(0x501b, 0x501b),
1136 	regmap_reg_range(0x501f, 0x5020),
1137 	regmap_reg_range(0x5030, 0x5030),
1138 	regmap_reg_range(0x5100, 0x5115),
1139 	regmap_reg_range(0x511a, 0x511f),
1140 	regmap_reg_range(0x5120, 0x512b),
1141 	regmap_reg_range(0x5134, 0x513b),
1142 	regmap_reg_range(0x513c, 0x513f),
1143 	regmap_reg_range(0x5400, 0x5401),
1144 	regmap_reg_range(0x5403, 0x5403),
1145 	regmap_reg_range(0x5410, 0x5417),
1146 	regmap_reg_range(0x5420, 0x5423),
1147 	regmap_reg_range(0x5500, 0x5507),
1148 	regmap_reg_range(0x5600, 0x5613),
1149 	regmap_reg_range(0x5800, 0x580f),
1150 	regmap_reg_range(0x5820, 0x5827),
1151 	regmap_reg_range(0x5830, 0x5837),
1152 	regmap_reg_range(0x5840, 0x584b),
1153 	regmap_reg_range(0x5900, 0x5907),
1154 	regmap_reg_range(0x5914, 0x591b),
1155 	regmap_reg_range(0x5920, 0x5920),
1156 	regmap_reg_range(0x5923, 0x5927),
1157 	regmap_reg_range(0x5a00, 0x5a03),
1158 	regmap_reg_range(0x5a04, 0x5a07),
1159 	regmap_reg_range(0x5b00, 0x5b01),
1160 	regmap_reg_range(0x5b04, 0x5b04),
1161 	regmap_reg_range(0x5c00, 0x5c05),
1162 	regmap_reg_range(0x5c08, 0x5c1b),
1163 
1164 	/* port 6 */
1165 	regmap_reg_range(0x6000, 0x6001),
1166 	regmap_reg_range(0x6013, 0x6013),
1167 	regmap_reg_range(0x6017, 0x6017),
1168 	regmap_reg_range(0x601b, 0x601b),
1169 	regmap_reg_range(0x601f, 0x6020),
1170 	regmap_reg_range(0x6030, 0x6030),
1171 	regmap_reg_range(0x6300, 0x6301),
1172 	regmap_reg_range(0x6400, 0x6401),
1173 	regmap_reg_range(0x6403, 0x6403),
1174 	regmap_reg_range(0x6410, 0x6417),
1175 	regmap_reg_range(0x6420, 0x6423),
1176 	regmap_reg_range(0x6500, 0x6507),
1177 	regmap_reg_range(0x6600, 0x6613),
1178 	regmap_reg_range(0x6800, 0x680f),
1179 	regmap_reg_range(0x6820, 0x6827),
1180 	regmap_reg_range(0x6830, 0x6837),
1181 	regmap_reg_range(0x6840, 0x684b),
1182 	regmap_reg_range(0x6900, 0x6907),
1183 	regmap_reg_range(0x6914, 0x691b),
1184 	regmap_reg_range(0x6920, 0x6920),
1185 	regmap_reg_range(0x6923, 0x6927),
1186 	regmap_reg_range(0x6a00, 0x6a03),
1187 	regmap_reg_range(0x6a04, 0x6a07),
1188 	regmap_reg_range(0x6b00, 0x6b01),
1189 	regmap_reg_range(0x6b04, 0x6b04),
1190 	regmap_reg_range(0x6c00, 0x6c05),
1191 	regmap_reg_range(0x6c08, 0x6c1b),
1192 
1193 	/* port 7 */
1194 	regmap_reg_range(0x7000, 0x7001),
1195 	regmap_reg_range(0x7013, 0x7013),
1196 	regmap_reg_range(0x7017, 0x7017),
1197 	regmap_reg_range(0x701b, 0x701b),
1198 	regmap_reg_range(0x701f, 0x7020),
1199 	regmap_reg_range(0x7030, 0x7030),
1200 	regmap_reg_range(0x7200, 0x7207),
1201 	regmap_reg_range(0x7300, 0x7301),
1202 	regmap_reg_range(0x7400, 0x7401),
1203 	regmap_reg_range(0x7403, 0x7403),
1204 	regmap_reg_range(0x7410, 0x7417),
1205 	regmap_reg_range(0x7420, 0x7423),
1206 	regmap_reg_range(0x7500, 0x7507),
1207 	regmap_reg_range(0x7600, 0x7613),
1208 	regmap_reg_range(0x7800, 0x780f),
1209 	regmap_reg_range(0x7820, 0x7827),
1210 	regmap_reg_range(0x7830, 0x7837),
1211 	regmap_reg_range(0x7840, 0x784b),
1212 	regmap_reg_range(0x7900, 0x7907),
1213 	regmap_reg_range(0x7914, 0x791b),
1214 	regmap_reg_range(0x7920, 0x7920),
1215 	regmap_reg_range(0x7923, 0x7927),
1216 	regmap_reg_range(0x7a00, 0x7a03),
1217 	regmap_reg_range(0x7a04, 0x7a07),
1218 	regmap_reg_range(0x7b00, 0x7b01),
1219 	regmap_reg_range(0x7b04, 0x7b04),
1220 	regmap_reg_range(0x7c00, 0x7c05),
1221 	regmap_reg_range(0x7c08, 0x7c1b),
1222 };
1223 
1224 static const struct regmap_access_table ksz9477_register_set = {
1225 	.yes_ranges = ksz9477_valid_regs,
1226 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1227 };
1228 
1229 static const struct regmap_range ksz9896_valid_regs[] = {
1230 	regmap_reg_range(0x0000, 0x0003),
1231 	regmap_reg_range(0x0006, 0x0006),
1232 	regmap_reg_range(0x0010, 0x001f),
1233 	regmap_reg_range(0x0100, 0x0100),
1234 	regmap_reg_range(0x0103, 0x0107),
1235 	regmap_reg_range(0x010d, 0x010d),
1236 	regmap_reg_range(0x0110, 0x0113),
1237 	regmap_reg_range(0x0120, 0x0127),
1238 	regmap_reg_range(0x0201, 0x0201),
1239 	regmap_reg_range(0x0210, 0x0213),
1240 	regmap_reg_range(0x0300, 0x0300),
1241 	regmap_reg_range(0x0302, 0x030b),
1242 	regmap_reg_range(0x0310, 0x031b),
1243 	regmap_reg_range(0x0320, 0x032b),
1244 	regmap_reg_range(0x0330, 0x0336),
1245 	regmap_reg_range(0x0338, 0x033b),
1246 	regmap_reg_range(0x033e, 0x033e),
1247 	regmap_reg_range(0x0340, 0x035f),
1248 	regmap_reg_range(0x0370, 0x0370),
1249 	regmap_reg_range(0x0378, 0x0378),
1250 	regmap_reg_range(0x037c, 0x037d),
1251 	regmap_reg_range(0x0390, 0x0393),
1252 	regmap_reg_range(0x0400, 0x040e),
1253 	regmap_reg_range(0x0410, 0x042f),
1254 
1255 	/* port 1 */
1256 	regmap_reg_range(0x1000, 0x1001),
1257 	regmap_reg_range(0x1013, 0x1013),
1258 	regmap_reg_range(0x1017, 0x1017),
1259 	regmap_reg_range(0x101b, 0x101b),
1260 	regmap_reg_range(0x101f, 0x1020),
1261 	regmap_reg_range(0x1030, 0x1030),
1262 	regmap_reg_range(0x1100, 0x1115),
1263 	regmap_reg_range(0x111a, 0x111f),
1264 	regmap_reg_range(0x1120, 0x112b),
1265 	regmap_reg_range(0x1134, 0x113b),
1266 	regmap_reg_range(0x113c, 0x113f),
1267 	regmap_reg_range(0x1400, 0x1401),
1268 	regmap_reg_range(0x1403, 0x1403),
1269 	regmap_reg_range(0x1410, 0x1417),
1270 	regmap_reg_range(0x1420, 0x1423),
1271 	regmap_reg_range(0x1500, 0x1507),
1272 	regmap_reg_range(0x1600, 0x1612),
1273 	regmap_reg_range(0x1800, 0x180f),
1274 	regmap_reg_range(0x1820, 0x1827),
1275 	regmap_reg_range(0x1830, 0x1837),
1276 	regmap_reg_range(0x1840, 0x184b),
1277 	regmap_reg_range(0x1900, 0x1907),
1278 	regmap_reg_range(0x1914, 0x1915),
1279 	regmap_reg_range(0x1a00, 0x1a03),
1280 	regmap_reg_range(0x1a04, 0x1a07),
1281 	regmap_reg_range(0x1b00, 0x1b01),
1282 	regmap_reg_range(0x1b04, 0x1b04),
1283 
1284 	/* port 2 */
1285 	regmap_reg_range(0x2000, 0x2001),
1286 	regmap_reg_range(0x2013, 0x2013),
1287 	regmap_reg_range(0x2017, 0x2017),
1288 	regmap_reg_range(0x201b, 0x201b),
1289 	regmap_reg_range(0x201f, 0x2020),
1290 	regmap_reg_range(0x2030, 0x2030),
1291 	regmap_reg_range(0x2100, 0x2115),
1292 	regmap_reg_range(0x211a, 0x211f),
1293 	regmap_reg_range(0x2120, 0x212b),
1294 	regmap_reg_range(0x2134, 0x213b),
1295 	regmap_reg_range(0x213c, 0x213f),
1296 	regmap_reg_range(0x2400, 0x2401),
1297 	regmap_reg_range(0x2403, 0x2403),
1298 	regmap_reg_range(0x2410, 0x2417),
1299 	regmap_reg_range(0x2420, 0x2423),
1300 	regmap_reg_range(0x2500, 0x2507),
1301 	regmap_reg_range(0x2600, 0x2612),
1302 	regmap_reg_range(0x2800, 0x280f),
1303 	regmap_reg_range(0x2820, 0x2827),
1304 	regmap_reg_range(0x2830, 0x2837),
1305 	regmap_reg_range(0x2840, 0x284b),
1306 	regmap_reg_range(0x2900, 0x2907),
1307 	regmap_reg_range(0x2914, 0x2915),
1308 	regmap_reg_range(0x2a00, 0x2a03),
1309 	regmap_reg_range(0x2a04, 0x2a07),
1310 	regmap_reg_range(0x2b00, 0x2b01),
1311 	regmap_reg_range(0x2b04, 0x2b04),
1312 
1313 	/* port 3 */
1314 	regmap_reg_range(0x3000, 0x3001),
1315 	regmap_reg_range(0x3013, 0x3013),
1316 	regmap_reg_range(0x3017, 0x3017),
1317 	regmap_reg_range(0x301b, 0x301b),
1318 	regmap_reg_range(0x301f, 0x3020),
1319 	regmap_reg_range(0x3030, 0x3030),
1320 	regmap_reg_range(0x3100, 0x3115),
1321 	regmap_reg_range(0x311a, 0x311f),
1322 	regmap_reg_range(0x3120, 0x312b),
1323 	regmap_reg_range(0x3134, 0x313b),
1324 	regmap_reg_range(0x313c, 0x313f),
1325 	regmap_reg_range(0x3400, 0x3401),
1326 	regmap_reg_range(0x3403, 0x3403),
1327 	regmap_reg_range(0x3410, 0x3417),
1328 	regmap_reg_range(0x3420, 0x3423),
1329 	regmap_reg_range(0x3500, 0x3507),
1330 	regmap_reg_range(0x3600, 0x3612),
1331 	regmap_reg_range(0x3800, 0x380f),
1332 	regmap_reg_range(0x3820, 0x3827),
1333 	regmap_reg_range(0x3830, 0x3837),
1334 	regmap_reg_range(0x3840, 0x384b),
1335 	regmap_reg_range(0x3900, 0x3907),
1336 	regmap_reg_range(0x3914, 0x3915),
1337 	regmap_reg_range(0x3a00, 0x3a03),
1338 	regmap_reg_range(0x3a04, 0x3a07),
1339 	regmap_reg_range(0x3b00, 0x3b01),
1340 	regmap_reg_range(0x3b04, 0x3b04),
1341 
1342 	/* port 4 */
1343 	regmap_reg_range(0x4000, 0x4001),
1344 	regmap_reg_range(0x4013, 0x4013),
1345 	regmap_reg_range(0x4017, 0x4017),
1346 	regmap_reg_range(0x401b, 0x401b),
1347 	regmap_reg_range(0x401f, 0x4020),
1348 	regmap_reg_range(0x4030, 0x4030),
1349 	regmap_reg_range(0x4100, 0x4115),
1350 	regmap_reg_range(0x411a, 0x411f),
1351 	regmap_reg_range(0x4120, 0x412b),
1352 	regmap_reg_range(0x4134, 0x413b),
1353 	regmap_reg_range(0x413c, 0x413f),
1354 	regmap_reg_range(0x4400, 0x4401),
1355 	regmap_reg_range(0x4403, 0x4403),
1356 	regmap_reg_range(0x4410, 0x4417),
1357 	regmap_reg_range(0x4420, 0x4423),
1358 	regmap_reg_range(0x4500, 0x4507),
1359 	regmap_reg_range(0x4600, 0x4612),
1360 	regmap_reg_range(0x4800, 0x480f),
1361 	regmap_reg_range(0x4820, 0x4827),
1362 	regmap_reg_range(0x4830, 0x4837),
1363 	regmap_reg_range(0x4840, 0x484b),
1364 	regmap_reg_range(0x4900, 0x4907),
1365 	regmap_reg_range(0x4914, 0x4915),
1366 	regmap_reg_range(0x4a00, 0x4a03),
1367 	regmap_reg_range(0x4a04, 0x4a07),
1368 	regmap_reg_range(0x4b00, 0x4b01),
1369 	regmap_reg_range(0x4b04, 0x4b04),
1370 
1371 	/* port 5 */
1372 	regmap_reg_range(0x5000, 0x5001),
1373 	regmap_reg_range(0x5013, 0x5013),
1374 	regmap_reg_range(0x5017, 0x5017),
1375 	regmap_reg_range(0x501b, 0x501b),
1376 	regmap_reg_range(0x501f, 0x5020),
1377 	regmap_reg_range(0x5030, 0x5030),
1378 	regmap_reg_range(0x5100, 0x5115),
1379 	regmap_reg_range(0x511a, 0x511f),
1380 	regmap_reg_range(0x5120, 0x512b),
1381 	regmap_reg_range(0x5134, 0x513b),
1382 	regmap_reg_range(0x513c, 0x513f),
1383 	regmap_reg_range(0x5400, 0x5401),
1384 	regmap_reg_range(0x5403, 0x5403),
1385 	regmap_reg_range(0x5410, 0x5417),
1386 	regmap_reg_range(0x5420, 0x5423),
1387 	regmap_reg_range(0x5500, 0x5507),
1388 	regmap_reg_range(0x5600, 0x5612),
1389 	regmap_reg_range(0x5800, 0x580f),
1390 	regmap_reg_range(0x5820, 0x5827),
1391 	regmap_reg_range(0x5830, 0x5837),
1392 	regmap_reg_range(0x5840, 0x584b),
1393 	regmap_reg_range(0x5900, 0x5907),
1394 	regmap_reg_range(0x5914, 0x5915),
1395 	regmap_reg_range(0x5a00, 0x5a03),
1396 	regmap_reg_range(0x5a04, 0x5a07),
1397 	regmap_reg_range(0x5b00, 0x5b01),
1398 	regmap_reg_range(0x5b04, 0x5b04),
1399 
1400 	/* port 6 */
1401 	regmap_reg_range(0x6000, 0x6001),
1402 	regmap_reg_range(0x6013, 0x6013),
1403 	regmap_reg_range(0x6017, 0x6017),
1404 	regmap_reg_range(0x601b, 0x601b),
1405 	regmap_reg_range(0x601f, 0x6020),
1406 	regmap_reg_range(0x6030, 0x6030),
1407 	regmap_reg_range(0x6100, 0x6115),
1408 	regmap_reg_range(0x611a, 0x611f),
1409 	regmap_reg_range(0x6120, 0x612b),
1410 	regmap_reg_range(0x6134, 0x613b),
1411 	regmap_reg_range(0x613c, 0x613f),
1412 	regmap_reg_range(0x6300, 0x6301),
1413 	regmap_reg_range(0x6400, 0x6401),
1414 	regmap_reg_range(0x6403, 0x6403),
1415 	regmap_reg_range(0x6410, 0x6417),
1416 	regmap_reg_range(0x6420, 0x6423),
1417 	regmap_reg_range(0x6500, 0x6507),
1418 	regmap_reg_range(0x6600, 0x6612),
1419 	regmap_reg_range(0x6800, 0x680f),
1420 	regmap_reg_range(0x6820, 0x6827),
1421 	regmap_reg_range(0x6830, 0x6837),
1422 	regmap_reg_range(0x6840, 0x684b),
1423 	regmap_reg_range(0x6900, 0x6907),
1424 	regmap_reg_range(0x6914, 0x6915),
1425 	regmap_reg_range(0x6a00, 0x6a03),
1426 	regmap_reg_range(0x6a04, 0x6a07),
1427 	regmap_reg_range(0x6b00, 0x6b01),
1428 	regmap_reg_range(0x6b04, 0x6b04),
1429 };
1430 
1431 static const struct regmap_access_table ksz9896_register_set = {
1432 	.yes_ranges = ksz9896_valid_regs,
1433 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1434 };
1435 
1436 static const struct regmap_range ksz8873_valid_regs[] = {
1437 	regmap_reg_range(0x00, 0x01),
1438 	/* global control register */
1439 	regmap_reg_range(0x02, 0x0f),
1440 
1441 	/* port registers */
1442 	regmap_reg_range(0x10, 0x1d),
1443 	regmap_reg_range(0x1e, 0x1f),
1444 	regmap_reg_range(0x20, 0x2d),
1445 	regmap_reg_range(0x2e, 0x2f),
1446 	regmap_reg_range(0x30, 0x39),
1447 	regmap_reg_range(0x3f, 0x3f),
1448 
1449 	/* advanced control registers */
1450 	regmap_reg_range(0x43, 0x43),
1451 	regmap_reg_range(0x60, 0x6f),
1452 	regmap_reg_range(0x70, 0x75),
1453 	regmap_reg_range(0x76, 0x78),
1454 	regmap_reg_range(0x79, 0x7a),
1455 	regmap_reg_range(0x7b, 0x83),
1456 	regmap_reg_range(0x8e, 0x99),
1457 	regmap_reg_range(0x9a, 0xa5),
1458 	regmap_reg_range(0xa6, 0xa6),
1459 	regmap_reg_range(0xa7, 0xaa),
1460 	regmap_reg_range(0xab, 0xae),
1461 	regmap_reg_range(0xaf, 0xba),
1462 	regmap_reg_range(0xbb, 0xbc),
1463 	regmap_reg_range(0xbd, 0xbd),
1464 	regmap_reg_range(0xc0, 0xc0),
1465 	regmap_reg_range(0xc2, 0xc2),
1466 	regmap_reg_range(0xc3, 0xc3),
1467 	regmap_reg_range(0xc4, 0xc4),
1468 	regmap_reg_range(0xc6, 0xc6),
1469 };
1470 
1471 static const struct regmap_access_table ksz8873_register_set = {
1472 	.yes_ranges = ksz8873_valid_regs,
1473 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1474 };
1475 
1476 const struct ksz_chip_data ksz_switch_chips[] = {
1477 	[KSZ8463] = {
1478 		.chip_id = KSZ8463_CHIP_ID,
1479 		.dev_name = "KSZ8463",
1480 		.num_vlans = 16,
1481 		.num_alus = 0,
1482 		.num_statics = 8,
1483 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1484 		.port_cnt = 3,
1485 		.num_tx_queues = 4,
1486 		.num_ipms = 4,
1487 		.ops = &ksz8463_dev_ops,
1488 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1489 		.mib_names = ksz88xx_mib_names,
1490 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1491 		.reg_mib_cnt = MIB_COUNTER_NUM,
1492 		.regs = ksz8463_regs,
1493 		.masks = ksz8463_masks,
1494 		.shifts = ksz8463_shifts,
1495 		.supports_mii = {false, false, true},
1496 		.supports_rmii = {false, false, true},
1497 		.internal_phy = {true, true, false},
1498 	},
1499 
1500 	[KSZ8563] = {
1501 		.chip_id = KSZ8563_CHIP_ID,
1502 		.dev_name = "KSZ8563",
1503 		.num_vlans = 4096,
1504 		.num_alus = 4096,
1505 		.num_statics = 16,
1506 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1507 		.port_cnt = 3,		/* total port count */
1508 		.port_nirqs = 3,
1509 		.num_tx_queues = 4,
1510 		.num_ipms = 8,
1511 		.tc_cbs_supported = true,
1512 		.ops = &ksz9477_dev_ops,
1513 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1514 		.mib_names = ksz9477_mib_names,
1515 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1516 		.reg_mib_cnt = MIB_COUNTER_NUM,
1517 		.regs = ksz9477_regs,
1518 		.masks = ksz9477_masks,
1519 		.shifts = ksz9477_shifts,
1520 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1521 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1522 		.supports_mii = {false, false, true},
1523 		.supports_rmii = {false, false, true},
1524 		.supports_rgmii = {false, false, true},
1525 		.internal_phy = {true, true, false},
1526 		.gbit_capable = {false, false, true},
1527 		.ptp_capable = true,
1528 		.wr_table = &ksz8563_register_set,
1529 		.rd_table = &ksz8563_register_set,
1530 	},
1531 
1532 	[KSZ8795] = {
1533 		.chip_id = KSZ8795_CHIP_ID,
1534 		.dev_name = "KSZ8795",
1535 		.num_vlans = 4096,
1536 		.num_alus = 0,
1537 		.num_statics = 32,
1538 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1539 		.port_cnt = 5,		/* total cpu and user ports */
1540 		.num_tx_queues = 4,
1541 		.num_ipms = 4,
1542 		.ops = &ksz87xx_dev_ops,
1543 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1544 		.ksz87xx_eee_link_erratum = true,
1545 		.mib_names = ksz9477_mib_names,
1546 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1547 		.reg_mib_cnt = MIB_COUNTER_NUM,
1548 		.regs = ksz8795_regs,
1549 		.masks = ksz8795_masks,
1550 		.shifts = ksz8795_shifts,
1551 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1552 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1553 		.supports_mii = {false, false, false, false, true},
1554 		.supports_rmii = {false, false, false, false, true},
1555 		.supports_rgmii = {false, false, false, false, true},
1556 		.internal_phy = {true, true, true, true, false},
1557 	},
1558 
1559 	[KSZ8794] = {
1560 		/* WARNING
1561 		 * =======
1562 		 * KSZ8794 is similar to KSZ8795, except the port map
1563 		 * contains a gap between external and CPU ports, the
1564 		 * port map is NOT continuous. The per-port register
1565 		 * map is shifted accordingly too, i.e. registers at
1566 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1567 		 * used on KSZ8795 for external port 3.
1568 		 *           external  cpu
1569 		 * KSZ8794   0,1,2      4
1570 		 * KSZ8795   0,1,2,3    4
1571 		 * KSZ8765   0,1,2,3    4
1572 		 * port_cnt is configured as 5, even though it is 4
1573 		 */
1574 		.chip_id = KSZ8794_CHIP_ID,
1575 		.dev_name = "KSZ8794",
1576 		.num_vlans = 4096,
1577 		.num_alus = 0,
1578 		.num_statics = 32,
1579 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1580 		.port_cnt = 5,		/* total cpu and user ports */
1581 		.num_tx_queues = 4,
1582 		.num_ipms = 4,
1583 		.ops = &ksz87xx_dev_ops,
1584 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1585 		.ksz87xx_eee_link_erratum = true,
1586 		.mib_names = ksz9477_mib_names,
1587 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1588 		.reg_mib_cnt = MIB_COUNTER_NUM,
1589 		.regs = ksz8795_regs,
1590 		.masks = ksz8795_masks,
1591 		.shifts = ksz8795_shifts,
1592 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1593 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1594 		.supports_mii = {false, false, false, false, true},
1595 		.supports_rmii = {false, false, false, false, true},
1596 		.supports_rgmii = {false, false, false, false, true},
1597 		.internal_phy = {true, true, true, false, false},
1598 	},
1599 
1600 	[KSZ8765] = {
1601 		.chip_id = KSZ8765_CHIP_ID,
1602 		.dev_name = "KSZ8765",
1603 		.num_vlans = 4096,
1604 		.num_alus = 0,
1605 		.num_statics = 32,
1606 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1607 		.port_cnt = 5,		/* total cpu and user ports */
1608 		.num_tx_queues = 4,
1609 		.num_ipms = 4,
1610 		.ops = &ksz87xx_dev_ops,
1611 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1612 		.ksz87xx_eee_link_erratum = true,
1613 		.mib_names = ksz9477_mib_names,
1614 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1615 		.reg_mib_cnt = MIB_COUNTER_NUM,
1616 		.regs = ksz8795_regs,
1617 		.masks = ksz8795_masks,
1618 		.shifts = ksz8795_shifts,
1619 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1620 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1621 		.supports_mii = {false, false, false, false, true},
1622 		.supports_rmii = {false, false, false, false, true},
1623 		.supports_rgmii = {false, false, false, false, true},
1624 		.internal_phy = {true, true, true, true, false},
1625 	},
1626 
1627 	[KSZ88X3] = {
1628 		.chip_id = KSZ88X3_CHIP_ID,
1629 		.dev_name = "KSZ8863/KSZ8873",
1630 		.num_vlans = 16,
1631 		.num_alus = 0,
1632 		.num_statics = 8,
1633 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1634 		.port_cnt = 3,
1635 		.num_tx_queues = 4,
1636 		.num_ipms = 4,
1637 		.ops = &ksz88xx_dev_ops,
1638 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1639 		.mib_names = ksz88xx_mib_names,
1640 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1641 		.reg_mib_cnt = MIB_COUNTER_NUM,
1642 		.regs = ksz8863_regs,
1643 		.masks = ksz8863_masks,
1644 		.shifts = ksz8863_shifts,
1645 		.supports_mii = {false, false, true},
1646 		.supports_rmii = {false, false, true},
1647 		.internal_phy = {true, true, false},
1648 		.wr_table = &ksz8873_register_set,
1649 		.rd_table = &ksz8873_register_set,
1650 	},
1651 
1652 	[KSZ8864] = {
1653 		/* WARNING
1654 		 * =======
1655 		 * KSZ8864 is similar to KSZ8895, except the first port
1656 		 * does not exist.
1657 		 *           external  cpu
1658 		 * KSZ8864   1,2,3      4
1659 		 * KSZ8895   0,1,2,3    4
1660 		 * port_cnt is configured as 5, even though it is 4
1661 		 */
1662 		.chip_id = KSZ8864_CHIP_ID,
1663 		.dev_name = "KSZ8864",
1664 		.num_vlans = 4096,
1665 		.num_alus = 0,
1666 		.num_statics = 32,
1667 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1668 		.port_cnt = 5,		/* total cpu and user ports */
1669 		.num_tx_queues = 4,
1670 		.num_ipms = 4,
1671 		.ops = &ksz88xx_dev_ops,
1672 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1673 		.mib_names = ksz88xx_mib_names,
1674 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1675 		.reg_mib_cnt = MIB_COUNTER_NUM,
1676 		.regs = ksz8895_regs,
1677 		.masks = ksz8895_masks,
1678 		.shifts = ksz8895_shifts,
1679 		.supports_mii = {false, false, false, false, true},
1680 		.supports_rmii = {false, false, false, false, true},
1681 		.internal_phy = {false, true, true, true, false},
1682 	},
1683 
1684 	[KSZ8895] = {
1685 		.chip_id = KSZ8895_CHIP_ID,
1686 		.dev_name = "KSZ8895",
1687 		.num_vlans = 4096,
1688 		.num_alus = 0,
1689 		.num_statics = 32,
1690 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1691 		.port_cnt = 5,		/* total cpu and user ports */
1692 		.num_tx_queues = 4,
1693 		.num_ipms = 4,
1694 		.ops = &ksz88xx_dev_ops,
1695 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1696 		.mib_names = ksz88xx_mib_names,
1697 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1698 		.reg_mib_cnt = MIB_COUNTER_NUM,
1699 		.regs = ksz8895_regs,
1700 		.masks = ksz8895_masks,
1701 		.shifts = ksz8895_shifts,
1702 		.supports_mii = {false, false, false, false, true},
1703 		.supports_rmii = {false, false, false, false, true},
1704 		.internal_phy = {true, true, true, true, false},
1705 	},
1706 
1707 	[KSZ9477] = {
1708 		.chip_id = KSZ9477_CHIP_ID,
1709 		.dev_name = "KSZ9477",
1710 		.num_vlans = 4096,
1711 		.num_alus = 4096,
1712 		.num_statics = 16,
1713 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1714 		.port_cnt = 7,		/* total physical port count */
1715 		.port_nirqs = 4,
1716 		.num_tx_queues = 4,
1717 		.num_ipms = 8,
1718 		.tc_cbs_supported = true,
1719 		.ops = &ksz9477_dev_ops,
1720 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1721 		.phy_errata_9477 = true,
1722 		.mib_names = ksz9477_mib_names,
1723 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1724 		.reg_mib_cnt = MIB_COUNTER_NUM,
1725 		.regs = ksz9477_regs,
1726 		.masks = ksz9477_masks,
1727 		.shifts = ksz9477_shifts,
1728 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1729 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1730 		.supports_mii	= {false, false, false, false,
1731 				   false, true, false},
1732 		.supports_rmii	= {false, false, false, false,
1733 				   false, true, false},
1734 		.supports_rgmii = {false, false, false, false,
1735 				   false, true, false},
1736 		.internal_phy	= {true, true, true, true,
1737 				   true, false, false},
1738 		.gbit_capable	= {true, true, true, true, true, true, true},
1739 		.ptp_capable = true,
1740 		.sgmii_port = 7,
1741 		.wr_table = &ksz9477_register_set,
1742 		.rd_table = &ksz9477_register_set,
1743 	},
1744 
1745 	[KSZ9896] = {
1746 		.chip_id = KSZ9896_CHIP_ID,
1747 		.dev_name = "KSZ9896",
1748 		.num_vlans = 4096,
1749 		.num_alus = 4096,
1750 		.num_statics = 16,
1751 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1752 		.port_cnt = 6,		/* total physical port count */
1753 		.port_nirqs = 2,
1754 		.num_tx_queues = 4,
1755 		.num_ipms = 8,
1756 		.ops = &ksz9477_dev_ops,
1757 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1758 		.phy_errata_9477 = true,
1759 		.mib_names = ksz9477_mib_names,
1760 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1761 		.reg_mib_cnt = MIB_COUNTER_NUM,
1762 		.regs = ksz9477_regs,
1763 		.masks = ksz9477_masks,
1764 		.shifts = ksz9477_shifts,
1765 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1766 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1767 		.supports_mii	= {false, false, false, false,
1768 				   false, true},
1769 		.supports_rmii	= {false, false, false, false,
1770 				   false, true},
1771 		.supports_rgmii = {false, false, false, false,
1772 				   false, true},
1773 		.internal_phy	= {true, true, true, true,
1774 				   true, false},
1775 		.gbit_capable	= {true, true, true, true, true, true},
1776 		.wr_table = &ksz9896_register_set,
1777 		.rd_table = &ksz9896_register_set,
1778 	},
1779 
1780 	[KSZ9897] = {
1781 		.chip_id = KSZ9897_CHIP_ID,
1782 		.dev_name = "KSZ9897",
1783 		.num_vlans = 4096,
1784 		.num_alus = 4096,
1785 		.num_statics = 16,
1786 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1787 		.port_cnt = 7,		/* total physical port count */
1788 		.port_nirqs = 2,
1789 		.num_tx_queues = 4,
1790 		.num_ipms = 8,
1791 		.ops = &ksz9477_dev_ops,
1792 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1793 		.phy_errata_9477 = true,
1794 		.mib_names = ksz9477_mib_names,
1795 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1796 		.reg_mib_cnt = MIB_COUNTER_NUM,
1797 		.regs = ksz9477_regs,
1798 		.masks = ksz9477_masks,
1799 		.shifts = ksz9477_shifts,
1800 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1801 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1802 		.supports_mii	= {false, false, false, false,
1803 				   false, true, true},
1804 		.supports_rmii	= {false, false, false, false,
1805 				   false, true, true},
1806 		.supports_rgmii = {false, false, false, false,
1807 				   false, true, true},
1808 		.internal_phy	= {true, true, true, true,
1809 				   true, false, false},
1810 		.gbit_capable	= {true, true, true, true, true, true, true},
1811 	},
1812 
1813 	[KSZ9893] = {
1814 		.chip_id = KSZ9893_CHIP_ID,
1815 		.dev_name = "KSZ9893",
1816 		.num_vlans = 4096,
1817 		.num_alus = 4096,
1818 		.num_statics = 16,
1819 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1820 		.port_cnt = 3,		/* total port count */
1821 		.port_nirqs = 2,
1822 		.num_tx_queues = 4,
1823 		.num_ipms = 8,
1824 		.ops = &ksz9477_dev_ops,
1825 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1826 		.mib_names = ksz9477_mib_names,
1827 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1828 		.reg_mib_cnt = MIB_COUNTER_NUM,
1829 		.regs = ksz9477_regs,
1830 		.masks = ksz9477_masks,
1831 		.shifts = ksz9477_shifts,
1832 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1833 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1834 		.supports_mii = {false, false, true},
1835 		.supports_rmii = {false, false, true},
1836 		.supports_rgmii = {false, false, true},
1837 		.internal_phy = {true, true, false},
1838 		.gbit_capable = {true, true, true},
1839 	},
1840 
1841 	[KSZ9563] = {
1842 		.chip_id = KSZ9563_CHIP_ID,
1843 		.dev_name = "KSZ9563",
1844 		.num_vlans = 4096,
1845 		.num_alus = 4096,
1846 		.num_statics = 16,
1847 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1848 		.port_cnt = 3,		/* total port count */
1849 		.port_nirqs = 3,
1850 		.num_tx_queues = 4,
1851 		.num_ipms = 8,
1852 		.tc_cbs_supported = true,
1853 		.ops = &ksz9477_dev_ops,
1854 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1855 		.mib_names = ksz9477_mib_names,
1856 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1857 		.reg_mib_cnt = MIB_COUNTER_NUM,
1858 		.regs = ksz9477_regs,
1859 		.masks = ksz9477_masks,
1860 		.shifts = ksz9477_shifts,
1861 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1862 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1863 		.supports_mii = {false, false, true},
1864 		.supports_rmii = {false, false, true},
1865 		.supports_rgmii = {false, false, true},
1866 		.internal_phy = {true, true, false},
1867 		.gbit_capable = {true, true, true},
1868 		.ptp_capable = true,
1869 	},
1870 
1871 	[KSZ8567] = {
1872 		.chip_id = KSZ8567_CHIP_ID,
1873 		.dev_name = "KSZ8567",
1874 		.num_vlans = 4096,
1875 		.num_alus = 4096,
1876 		.num_statics = 16,
1877 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1878 		.port_cnt = 7,		/* total port count */
1879 		.port_nirqs = 3,
1880 		.num_tx_queues = 4,
1881 		.num_ipms = 8,
1882 		.tc_cbs_supported = true,
1883 		.ops = &ksz9477_dev_ops,
1884 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1885 		.phy_errata_9477 = true,
1886 		.mib_names = ksz9477_mib_names,
1887 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1888 		.reg_mib_cnt = MIB_COUNTER_NUM,
1889 		.regs = ksz9477_regs,
1890 		.masks = ksz9477_masks,
1891 		.shifts = ksz9477_shifts,
1892 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1893 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1894 		.supports_mii	= {false, false, false, false,
1895 				   false, true, true},
1896 		.supports_rmii	= {false, false, false, false,
1897 				   false, true, true},
1898 		.supports_rgmii = {false, false, false, false,
1899 				   false, true, true},
1900 		.internal_phy	= {true, true, true, true,
1901 				   true, false, false},
1902 		.gbit_capable	= {false, false, false, false, false,
1903 				   true, true},
1904 		.ptp_capable = true,
1905 	},
1906 
1907 	[KSZ9567] = {
1908 		.chip_id = KSZ9567_CHIP_ID,
1909 		.dev_name = "KSZ9567",
1910 		.num_vlans = 4096,
1911 		.num_alus = 4096,
1912 		.num_statics = 16,
1913 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1914 		.port_cnt = 7,		/* total physical port count */
1915 		.port_nirqs = 3,
1916 		.num_tx_queues = 4,
1917 		.num_ipms = 8,
1918 		.tc_cbs_supported = true,
1919 		.ops = &ksz9477_dev_ops,
1920 		.mib_names = ksz9477_mib_names,
1921 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1922 		.reg_mib_cnt = MIB_COUNTER_NUM,
1923 		.regs = ksz9477_regs,
1924 		.masks = ksz9477_masks,
1925 		.shifts = ksz9477_shifts,
1926 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1927 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1928 		.supports_mii	= {false, false, false, false,
1929 				   false, true, true},
1930 		.supports_rmii	= {false, false, false, false,
1931 				   false, true, true},
1932 		.supports_rgmii = {false, false, false, false,
1933 				   false, true, true},
1934 		.internal_phy	= {true, true, true, true,
1935 				   true, false, false},
1936 		.gbit_capable	= {true, true, true, true, true, true, true},
1937 		.ptp_capable = true,
1938 	},
1939 
1940 	[LAN9370] = {
1941 		.chip_id = LAN9370_CHIP_ID,
1942 		.dev_name = "LAN9370",
1943 		.num_vlans = 4096,
1944 		.num_alus = 1024,
1945 		.num_statics = 256,
1946 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1947 		.port_cnt = 5,		/* total physical port count */
1948 		.port_nirqs = 6,
1949 		.num_tx_queues = 8,
1950 		.num_ipms = 8,
1951 		.tc_cbs_supported = true,
1952 		.phy_side_mdio_supported = true,
1953 		.ops = &lan937x_dev_ops,
1954 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1955 		.mib_names = ksz9477_mib_names,
1956 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1957 		.reg_mib_cnt = MIB_COUNTER_NUM,
1958 		.regs = ksz9477_regs,
1959 		.masks = lan937x_masks,
1960 		.shifts = lan937x_shifts,
1961 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1962 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1963 		.supports_mii = {false, false, false, false, true},
1964 		.supports_rmii = {false, false, false, false, true},
1965 		.supports_rgmii = {false, false, false, false, true},
1966 		.internal_phy = {true, true, true, true, false},
1967 		.ptp_capable = true,
1968 	},
1969 
1970 	[LAN9371] = {
1971 		.chip_id = LAN9371_CHIP_ID,
1972 		.dev_name = "LAN9371",
1973 		.num_vlans = 4096,
1974 		.num_alus = 1024,
1975 		.num_statics = 256,
1976 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1977 		.port_cnt = 6,		/* total physical port count */
1978 		.port_nirqs = 6,
1979 		.num_tx_queues = 8,
1980 		.num_ipms = 8,
1981 		.tc_cbs_supported = true,
1982 		.phy_side_mdio_supported = true,
1983 		.ops = &lan937x_dev_ops,
1984 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1985 		.mib_names = ksz9477_mib_names,
1986 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1987 		.reg_mib_cnt = MIB_COUNTER_NUM,
1988 		.regs = ksz9477_regs,
1989 		.masks = lan937x_masks,
1990 		.shifts = lan937x_shifts,
1991 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1992 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1993 		.supports_mii = {false, false, false, false, true, true},
1994 		.supports_rmii = {false, false, false, false, true, true},
1995 		.supports_rgmii = {false, false, false, false, true, true},
1996 		.internal_phy = {true, true, true, true, false, false},
1997 		.ptp_capable = true,
1998 	},
1999 
2000 	[LAN9372] = {
2001 		.chip_id = LAN9372_CHIP_ID,
2002 		.dev_name = "LAN9372",
2003 		.num_vlans = 4096,
2004 		.num_alus = 1024,
2005 		.num_statics = 256,
2006 		.cpu_ports = 0x30,	/* can be configured as cpu port */
2007 		.port_cnt = 8,		/* total physical port count */
2008 		.port_nirqs = 6,
2009 		.num_tx_queues = 8,
2010 		.num_ipms = 8,
2011 		.tc_cbs_supported = true,
2012 		.phy_side_mdio_supported = true,
2013 		.ops = &lan937x_dev_ops,
2014 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2015 		.mib_names = ksz9477_mib_names,
2016 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2017 		.reg_mib_cnt = MIB_COUNTER_NUM,
2018 		.regs = ksz9477_regs,
2019 		.masks = lan937x_masks,
2020 		.shifts = lan937x_shifts,
2021 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2022 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2023 		.supports_mii	= {false, false, false, false,
2024 				   true, true, false, false},
2025 		.supports_rmii	= {false, false, false, false,
2026 				   true, true, false, false},
2027 		.supports_rgmii = {false, false, false, false,
2028 				   true, true, false, false},
2029 		.internal_phy	= {true, true, true, true,
2030 				   false, false, true, true},
2031 		.ptp_capable = true,
2032 	},
2033 
2034 	[LAN9373] = {
2035 		.chip_id = LAN9373_CHIP_ID,
2036 		.dev_name = "LAN9373",
2037 		.num_vlans = 4096,
2038 		.num_alus = 1024,
2039 		.num_statics = 256,
2040 		.cpu_ports = 0x38,	/* can be configured as cpu port */
2041 		.port_cnt = 5,		/* total physical port count */
2042 		.port_nirqs = 6,
2043 		.num_tx_queues = 8,
2044 		.num_ipms = 8,
2045 		.tc_cbs_supported = true,
2046 		.phy_side_mdio_supported = true,
2047 		.ops = &lan937x_dev_ops,
2048 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2049 		.mib_names = ksz9477_mib_names,
2050 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2051 		.reg_mib_cnt = MIB_COUNTER_NUM,
2052 		.regs = ksz9477_regs,
2053 		.masks = lan937x_masks,
2054 		.shifts = lan937x_shifts,
2055 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2056 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2057 		.supports_mii	= {false, false, false, false,
2058 				   true, true, false, false},
2059 		.supports_rmii	= {false, false, false, false,
2060 				   true, true, false, false},
2061 		.supports_rgmii = {false, false, false, false,
2062 				   true, true, false, false},
2063 		.internal_phy	= {true, true, true, false,
2064 				   false, false, true, true},
2065 		.ptp_capable = true,
2066 	},
2067 
2068 	[LAN9374] = {
2069 		.chip_id = LAN9374_CHIP_ID,
2070 		.dev_name = "LAN9374",
2071 		.num_vlans = 4096,
2072 		.num_alus = 1024,
2073 		.num_statics = 256,
2074 		.cpu_ports = 0x30,	/* can be configured as cpu port */
2075 		.port_cnt = 8,		/* total physical port count */
2076 		.port_nirqs = 6,
2077 		.num_tx_queues = 8,
2078 		.num_ipms = 8,
2079 		.tc_cbs_supported = true,
2080 		.phy_side_mdio_supported = true,
2081 		.ops = &lan937x_dev_ops,
2082 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2083 		.mib_names = ksz9477_mib_names,
2084 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2085 		.reg_mib_cnt = MIB_COUNTER_NUM,
2086 		.regs = ksz9477_regs,
2087 		.masks = lan937x_masks,
2088 		.shifts = lan937x_shifts,
2089 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2090 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2091 		.supports_mii	= {false, false, false, false,
2092 				   true, true, false, false},
2093 		.supports_rmii	= {false, false, false, false,
2094 				   true, true, false, false},
2095 		.supports_rgmii = {false, false, false, false,
2096 				   true, true, false, false},
2097 		.internal_phy	= {true, true, true, true,
2098 				   false, false, true, true},
2099 		.ptp_capable = true,
2100 	},
2101 
2102 	[LAN9646] = {
2103 		.chip_id = LAN9646_CHIP_ID,
2104 		.dev_name = "LAN9646",
2105 		.num_vlans = 4096,
2106 		.num_alus = 4096,
2107 		.num_statics = 16,
2108 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
2109 		.port_cnt = 7,		/* total physical port count */
2110 		.port_nirqs = 4,
2111 		.num_tx_queues = 4,
2112 		.num_ipms = 8,
2113 		.ops = &ksz9477_dev_ops,
2114 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
2115 		.phy_errata_9477 = true,
2116 		.mib_names = ksz9477_mib_names,
2117 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2118 		.reg_mib_cnt = MIB_COUNTER_NUM,
2119 		.regs = ksz9477_regs,
2120 		.masks = ksz9477_masks,
2121 		.shifts = ksz9477_shifts,
2122 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2123 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2124 		.supports_mii	= {false, false, false, false,
2125 				   false, true, true},
2126 		.supports_rmii	= {false, false, false, false,
2127 				   false, true, true},
2128 		.supports_rgmii = {false, false, false, false,
2129 				   false, true, true},
2130 		.internal_phy	= {true, true, true, true,
2131 				   true, false, false},
2132 		.gbit_capable	= {true, true, true, true, true, true, true},
2133 		.sgmii_port = 7,
2134 		.wr_table = &ksz9477_register_set,
2135 		.rd_table = &ksz9477_register_set,
2136 	},
2137 };
2138 EXPORT_SYMBOL_GPL(ksz_switch_chips);
2139 
2140 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
2141 {
2142 	int i;
2143 
2144 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
2145 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
2146 
2147 		if (chip->chip_id == prod_num)
2148 			return chip;
2149 	}
2150 
2151 	return NULL;
2152 }
2153 
2154 static int ksz_check_device_id(struct ksz_device *dev)
2155 {
2156 	const struct ksz_chip_data *expected_chip_data;
2157 	u32 expected_chip_id;
2158 
2159 	if (dev->pdata) {
2160 		expected_chip_id = dev->pdata->chip_id;
2161 		expected_chip_data = ksz_lookup_info(expected_chip_id);
2162 		if (WARN_ON(!expected_chip_data))
2163 			return -ENODEV;
2164 	} else {
2165 		expected_chip_data = of_device_get_match_data(dev->dev);
2166 		expected_chip_id = expected_chip_data->chip_id;
2167 	}
2168 
2169 	if (expected_chip_id != dev->chip_id) {
2170 		dev_err(dev->dev,
2171 			"Device tree specifies chip %s but found %s, please fix it!\n",
2172 			expected_chip_data->dev_name, dev->info->dev_name);
2173 		return -ENODEV;
2174 	}
2175 
2176 	return 0;
2177 }
2178 
2179 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
2180 				 struct phylink_config *config)
2181 {
2182 	struct ksz_device *dev = ds->priv;
2183 
2184 	if (dev->info->supports_mii[port])
2185 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
2186 
2187 	if (dev->info->supports_rmii[port])
2188 		__set_bit(PHY_INTERFACE_MODE_RMII,
2189 			  config->supported_interfaces);
2190 
2191 	if (dev->info->supports_rgmii[port])
2192 		phy_interface_set_rgmii(config->supported_interfaces);
2193 
2194 	if (dev->info->internal_phy[port]) {
2195 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2196 			  config->supported_interfaces);
2197 		/* Compatibility for phylib's default interface type when the
2198 		 * phy-mode property is absent
2199 		 */
2200 		__set_bit(PHY_INTERFACE_MODE_GMII,
2201 			  config->supported_interfaces);
2202 	}
2203 
2204 	if (dev->dev_ops->get_caps)
2205 		dev->dev_ops->get_caps(dev, port, config);
2206 
2207 	if (ds->ops->support_eee && ds->ops->support_eee(ds, port)) {
2208 		memcpy(config->lpi_interfaces, config->supported_interfaces,
2209 		       sizeof(config->lpi_interfaces));
2210 
2211 		config->lpi_capabilities = MAC_100FD;
2212 		if (dev->info->gbit_capable[port])
2213 			config->lpi_capabilities |= MAC_1000FD;
2214 
2215 		/* EEE is fully operational */
2216 		config->eee_enabled_default = true;
2217 	}
2218 }
2219 
2220 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
2221 {
2222 	struct ethtool_pause_stats *pstats;
2223 	struct rtnl_link_stats64 *stats;
2224 	struct ksz_stats_raw *raw;
2225 	struct ksz_port_mib *mib;
2226 	int ret;
2227 
2228 	mib = &dev->ports[port].mib;
2229 	stats = &mib->stats64;
2230 	pstats = &mib->pause_stats;
2231 	raw = (struct ksz_stats_raw *)mib->counters;
2232 
2233 	spin_lock(&mib->stats64_lock);
2234 
2235 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2236 		raw->rx_pause;
2237 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2238 		raw->tx_pause;
2239 
2240 	/* HW counters are counting bytes + FCS which is not acceptable
2241 	 * for rtnl_link_stats64 interface
2242 	 */
2243 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
2244 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
2245 
2246 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2247 		raw->rx_oversize;
2248 
2249 	stats->rx_crc_errors = raw->rx_crc_err;
2250 	stats->rx_frame_errors = raw->rx_align_err;
2251 	stats->rx_dropped = raw->rx_discards;
2252 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2253 		stats->rx_frame_errors  + stats->rx_dropped;
2254 
2255 	stats->tx_window_errors = raw->tx_late_col;
2256 	stats->tx_fifo_errors = raw->tx_discards;
2257 	stats->tx_aborted_errors = raw->tx_exc_col;
2258 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2259 		stats->tx_aborted_errors;
2260 
2261 	stats->multicast = raw->rx_mcast;
2262 	stats->collisions = raw->tx_total_col;
2263 
2264 	pstats->tx_pause_frames = raw->tx_pause;
2265 	pstats->rx_pause_frames = raw->rx_pause;
2266 
2267 	spin_unlock(&mib->stats64_lock);
2268 
2269 	if (dev->info->phy_errata_9477 && !ksz_is_sgmii_port(dev, port)) {
2270 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
2271 		if (ret)
2272 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
2273 	}
2274 }
2275 
2276 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
2277 {
2278 	struct ethtool_pause_stats *pstats;
2279 	struct rtnl_link_stats64 *stats;
2280 	struct ksz88xx_stats_raw *raw;
2281 	struct ksz_port_mib *mib;
2282 
2283 	mib = &dev->ports[port].mib;
2284 	stats = &mib->stats64;
2285 	pstats = &mib->pause_stats;
2286 	raw = (struct ksz88xx_stats_raw *)mib->counters;
2287 
2288 	spin_lock(&mib->stats64_lock);
2289 
2290 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2291 		raw->rx_pause;
2292 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2293 		raw->tx_pause;
2294 
2295 	/* HW counters are counting bytes + FCS which is not acceptable
2296 	 * for rtnl_link_stats64 interface
2297 	 */
2298 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
2299 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
2300 
2301 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2302 		raw->rx_oversize;
2303 
2304 	stats->rx_crc_errors = raw->rx_crc_err;
2305 	stats->rx_frame_errors = raw->rx_align_err;
2306 	stats->rx_dropped = raw->rx_discards;
2307 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2308 		stats->rx_frame_errors  + stats->rx_dropped;
2309 
2310 	stats->tx_window_errors = raw->tx_late_col;
2311 	stats->tx_fifo_errors = raw->tx_discards;
2312 	stats->tx_aborted_errors = raw->tx_exc_col;
2313 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2314 		stats->tx_aborted_errors;
2315 
2316 	stats->multicast = raw->rx_mcast;
2317 	stats->collisions = raw->tx_total_col;
2318 
2319 	pstats->tx_pause_frames = raw->tx_pause;
2320 	pstats->rx_pause_frames = raw->rx_pause;
2321 
2322 	spin_unlock(&mib->stats64_lock);
2323 }
2324 
2325 static void ksz_get_stats64(struct dsa_switch *ds, int port,
2326 			    struct rtnl_link_stats64 *s)
2327 {
2328 	struct ksz_device *dev = ds->priv;
2329 	struct ksz_port_mib *mib;
2330 
2331 	mib = &dev->ports[port].mib;
2332 
2333 	spin_lock(&mib->stats64_lock);
2334 	memcpy(s, &mib->stats64, sizeof(*s));
2335 	spin_unlock(&mib->stats64_lock);
2336 }
2337 
2338 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
2339 				struct ethtool_pause_stats *pause_stats)
2340 {
2341 	struct ksz_device *dev = ds->priv;
2342 	struct ksz_port_mib *mib;
2343 
2344 	mib = &dev->ports[port].mib;
2345 
2346 	spin_lock(&mib->stats64_lock);
2347 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
2348 	spin_unlock(&mib->stats64_lock);
2349 }
2350 
2351 static void ksz_get_strings(struct dsa_switch *ds, int port,
2352 			    u32 stringset, uint8_t *buf)
2353 {
2354 	struct ksz_device *dev = ds->priv;
2355 	int i;
2356 
2357 	if (stringset != ETH_SS_STATS)
2358 		return;
2359 
2360 	for (i = 0; i < dev->info->mib_cnt; i++)
2361 		ethtool_puts(&buf, dev->info->mib_names[i].string);
2362 }
2363 
2364 /**
2365  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2366  *			    isolation settings.
2367  * @dev: A pointer to the struct ksz_device representing the device.
2368  * @port: The port number to adjust.
2369  *
2370  * This function dynamically adjusts the port membership configuration for a
2371  * specified port and other device ports, based on Spanning Tree Protocol (STP)
2372  * states and port isolation settings. Each port, including the CPU port, has a
2373  * membership register, represented as a bitfield, where each bit corresponds
2374  * to a port number. A set bit indicates permission to forward frames to that
2375  * port. This function iterates over all ports, updating the membership register
2376  * to reflect current forwarding permissions:
2377  *
2378  * 1. Forwards frames only to ports that are part of the same bridge group and
2379  *    in the BR_STATE_FORWARDING state.
2380  * 2. Takes into account the isolation status of ports; ports in the
2381  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2382  *    frames to each other, even if they are in the same bridge group.
2383  * 3. Ensures that the CPU port is included in the membership based on its
2384  *    upstream port configuration, allowing for management and control traffic
2385  *    to flow as required.
2386  */
2387 static void ksz_update_port_member(struct ksz_device *dev, int port)
2388 {
2389 	struct ksz_port *p = &dev->ports[port];
2390 	struct dsa_switch *ds = dev->ds;
2391 	u8 port_member = 0, cpu_port;
2392 	const struct dsa_port *dp;
2393 	int i, j;
2394 
2395 	if (!dsa_is_user_port(ds, port))
2396 		return;
2397 
2398 	dp = dsa_to_port(ds, port);
2399 	cpu_port = BIT(dsa_upstream_port(ds, port));
2400 
2401 	for (i = 0; i < ds->num_ports; i++) {
2402 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2403 		struct ksz_port *other_p = &dev->ports[i];
2404 		u8 val = 0;
2405 
2406 		if (!dsa_is_user_port(ds, i))
2407 			continue;
2408 		if (port == i)
2409 			continue;
2410 		if (!dsa_port_bridge_same(dp, other_dp))
2411 			continue;
2412 		if (other_p->stp_state != BR_STATE_FORWARDING)
2413 			continue;
2414 
2415 		/* At this point we know that "port" and "other" port [i] are in
2416 		 * the same bridge group and that "other" port [i] is in
2417 		 * forwarding stp state. If "port" is also in forwarding stp
2418 		 * state, we can allow forwarding from port [port] to port [i].
2419 		 * Except if both ports are isolated.
2420 		 */
2421 		if (p->stp_state == BR_STATE_FORWARDING &&
2422 		    !(p->isolated && other_p->isolated)) {
2423 			val |= BIT(port);
2424 			port_member |= BIT(i);
2425 		}
2426 
2427 		/* Retain port [i]'s relationship to other ports than [port] */
2428 		for (j = 0; j < ds->num_ports; j++) {
2429 			const struct dsa_port *third_dp;
2430 			struct ksz_port *third_p;
2431 
2432 			if (j == i)
2433 				continue;
2434 			if (j == port)
2435 				continue;
2436 			if (!dsa_is_user_port(ds, j))
2437 				continue;
2438 			third_p = &dev->ports[j];
2439 			if (third_p->stp_state != BR_STATE_FORWARDING)
2440 				continue;
2441 
2442 			third_dp = dsa_to_port(ds, j);
2443 
2444 			/* Now we updating relation of the "other" port [i] to
2445 			 * the "third" port [j]. We already know that "other"
2446 			 * port [i] is in forwarding stp state and that "third"
2447 			 * port [j] is in forwarding stp state too.
2448 			 * We need to check if "other" port [i] and "third" port
2449 			 * [j] are in the same bridge group and not isolated
2450 			 * before allowing forwarding from port [i] to port [j].
2451 			 */
2452 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2453 			    !(other_p->isolated && third_p->isolated))
2454 				val |= BIT(j);
2455 		}
2456 
2457 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2458 	}
2459 
2460 	/* HSR ports are setup once so need to use the assigned membership
2461 	 * when the port is enabled.
2462 	 */
2463 	if (!port_member && p->stp_state == BR_STATE_FORWARDING &&
2464 	    (dev->hsr_ports & BIT(port)))
2465 		port_member = dev->hsr_ports;
2466 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2467 }
2468 
2469 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2470 {
2471 	struct ksz_device *dev = bus->priv;
2472 	u16 val;
2473 	int ret;
2474 
2475 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2476 	if (ret < 0)
2477 		return ret;
2478 
2479 	return val;
2480 }
2481 
2482 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2483 			     u16 val)
2484 {
2485 	struct ksz_device *dev = bus->priv;
2486 
2487 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2488 }
2489 
2490 /**
2491  * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus.
2492  * @bus: MDIO bus structure.
2493  * @addr: PHY address on the parent MDIO bus.
2494  * @regnum: Register number to read.
2495  *
2496  * This function provides a direct read operation on the parent MDIO bus for
2497  * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus
2498  * to retrieve data from the PHY registers at the specified address and register
2499  * number.
2500  *
2501  * Return: Value of the PHY register, or a negative error code on failure.
2502  */
2503 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum)
2504 {
2505 	struct ksz_device *dev = bus->priv;
2506 
2507 	return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum);
2508 }
2509 
2510 /**
2511  * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus.
2512  * @bus: MDIO bus structure.
2513  * @addr: PHY address on the parent MDIO bus.
2514  * @regnum: Register number to write to.
2515  * @val: Value to write to the PHY register.
2516  *
2517  * This function provides a direct write operation on the parent MDIO bus for
2518  * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus
2519  * to modify the PHY register values at the specified address.
2520  *
2521  * Return: 0 on success, or a negative error code on failure.
2522  */
2523 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum,
2524 				 u16 val)
2525 {
2526 	struct ksz_device *dev = bus->priv;
2527 
2528 	return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val);
2529 }
2530 
2531 /**
2532  * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port.
2533  * @dev: Pointer to device structure.
2534  * @addr: PHY address to map to a port.
2535  *
2536  * This function finds the corresponding switch port for a given PHY address by
2537  * iterating over all user ports on the device. It checks if a port's PHY
2538  * address in `phy_addr_map` matches the specified address and if the port
2539  * contains an internal PHY. If a match is found, the index of the port is
2540  * returned.
2541  *
2542  * Return: Port index on success, or -EINVAL if no matching port is found.
2543  */
2544 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr)
2545 {
2546 	struct dsa_switch *ds = dev->ds;
2547 	struct dsa_port *dp;
2548 
2549 	dsa_switch_for_each_user_port(dp, ds) {
2550 		if (dev->info->internal_phy[dp->index] &&
2551 		    dev->phy_addr_map[dp->index] == addr)
2552 			return dp->index;
2553 	}
2554 
2555 	return -EINVAL;
2556 }
2557 
2558 /**
2559  * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device.
2560  * @dev: Pointer to the KSZ device structure.
2561  *
2562  * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the
2563  * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in
2564  * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain.
2565  *
2566  * Return: 0 on success, or a negative error code on failure.
2567  */
2568 static int ksz_irq_phy_setup(struct ksz_device *dev)
2569 {
2570 	struct dsa_switch *ds = dev->ds;
2571 	int phy, port;
2572 	int irq;
2573 	int ret;
2574 
2575 	for (phy = 0; phy < PHY_MAX_ADDR; phy++) {
2576 		if (BIT(phy) & ds->phys_mii_mask) {
2577 			port = ksz_phy_addr_to_port(dev, phy);
2578 			if (port < 0) {
2579 				ret = port;
2580 				goto out;
2581 			}
2582 
2583 			irq = irq_find_mapping(dev->ports[port].pirq.domain,
2584 					       PORT_SRC_PHY_INT);
2585 			if (irq < 0) {
2586 				ret = irq;
2587 				goto out;
2588 			}
2589 			ds->user_mii_bus->irq[phy] = irq;
2590 		}
2591 	}
2592 	return 0;
2593 out:
2594 	while (phy--)
2595 		if (BIT(phy) & ds->phys_mii_mask)
2596 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2597 
2598 	return ret;
2599 }
2600 
2601 /**
2602  * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device.
2603  * @dev: Pointer to the KSZ device structure.
2604  *
2605  * Releases any IRQ mappings previously assigned to active PHYs in the KSZ
2606  * switch by disposing of each mapped IRQ in the `user_mii_bus` structure.
2607  */
2608 static void ksz_irq_phy_free(struct ksz_device *dev)
2609 {
2610 	struct dsa_switch *ds = dev->ds;
2611 	int phy;
2612 
2613 	for (phy = 0; phy < PHY_MAX_ADDR; phy++)
2614 		if (BIT(phy) & ds->phys_mii_mask)
2615 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2616 }
2617 
2618 /**
2619  * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT
2620  * @dev: pointer to the KSZ device structure
2621  * @bus: pointer to the MII bus structure
2622  * @mdio_np: pointer to the MDIO node in the device tree
2623  *
2624  * This function parses and validates PHY configurations for each user port
2625  * defined in the device tree for a KSZ switch device. It verifies that the
2626  * `phy-handle` properties are correctly set and that the internal PHYs match
2627  * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if
2628  * all validations pass. Logs error messages for any mismatches or missing data.
2629  *
2630  * Return: 0 on success, or a negative error code on failure.
2631  */
2632 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus,
2633 				   struct device_node *mdio_np)
2634 {
2635 	struct device_node *phy_node, *phy_parent_node;
2636 	bool phys_are_valid = true;
2637 	struct dsa_port *dp;
2638 	u32 phy_addr;
2639 	int ret;
2640 
2641 	dsa_switch_for_each_user_port(dp, dev->ds) {
2642 		if (!dev->info->internal_phy[dp->index])
2643 			continue;
2644 
2645 		phy_node = of_parse_phandle(dp->dn, "phy-handle", 0);
2646 		if (!phy_node) {
2647 			dev_err(dev->dev, "failed to parse phy-handle for port %d.\n",
2648 				dp->index);
2649 			phys_are_valid = false;
2650 			continue;
2651 		}
2652 
2653 		phy_parent_node = of_get_parent(phy_node);
2654 		if (!phy_parent_node) {
2655 			dev_err(dev->dev, "failed to get PHY-parent node for port %d\n",
2656 				dp->index);
2657 			phys_are_valid = false;
2658 		} else if (phy_parent_node != mdio_np) {
2659 			dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n",
2660 				dp->index, mdio_np, phy_parent_node);
2661 			phys_are_valid = false;
2662 		} else {
2663 			ret = of_property_read_u32(phy_node, "reg", &phy_addr);
2664 			if (ret < 0) {
2665 				dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n",
2666 					dp->index, ret);
2667 				phys_are_valid = false;
2668 			} else if (phy_addr != dev->phy_addr_map[dp->index]) {
2669 				dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n",
2670 					dp->index, dev->phy_addr_map[dp->index],
2671 					phy_addr);
2672 				phys_are_valid = false;
2673 			} else {
2674 				bus->phy_mask |= BIT(phy_addr);
2675 			}
2676 		}
2677 
2678 		of_node_put(phy_node);
2679 		of_node_put(phy_parent_node);
2680 	}
2681 
2682 	if (!phys_are_valid)
2683 		return -EINVAL;
2684 
2685 	return 0;
2686 }
2687 
2688 /**
2689  * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device.
2690  * @dev: Pointer to the KSZ device structure.
2691  *
2692  * This function sets up and registers an MDIO bus for the KSZ switch device,
2693  * allowing access to its internal PHYs. If the device supports side MDIO,
2694  * the function will configure the external MDIO controller specified by the
2695  * "mdio-parent-bus" device tree property to directly manage internal PHYs.
2696  * Otherwise, SPI or I2C access is set up for PHY access.
2697  *
2698  * Return: 0 on success, or a negative error code on failure.
2699  */
2700 static int ksz_mdio_register(struct ksz_device *dev)
2701 {
2702 	struct device_node *parent_bus_node;
2703 	struct mii_bus *parent_bus = NULL;
2704 	struct dsa_switch *ds = dev->ds;
2705 	struct device_node *mdio_np;
2706 	struct mii_bus *bus;
2707 	int ret, i;
2708 
2709 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2710 	if (!mdio_np)
2711 		return 0;
2712 
2713 	parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0);
2714 	if (parent_bus_node && !dev->info->phy_side_mdio_supported) {
2715 		dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n");
2716 		ret = -EINVAL;
2717 
2718 		goto put_mdio_node;
2719 	} else if (parent_bus_node) {
2720 		parent_bus = of_mdio_find_bus(parent_bus_node);
2721 		if (!parent_bus) {
2722 			ret = -EPROBE_DEFER;
2723 
2724 			goto put_mdio_node;
2725 		}
2726 
2727 		dev->parent_mdio_bus = parent_bus;
2728 	}
2729 
2730 	bus = devm_mdiobus_alloc(ds->dev);
2731 	if (!bus) {
2732 		ret = -ENOMEM;
2733 		goto put_mdio_node;
2734 	}
2735 
2736 	if (dev->dev_ops->mdio_bus_preinit) {
2737 		ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus);
2738 		if (ret)
2739 			goto put_mdio_node;
2740 	}
2741 
2742 	if (dev->dev_ops->create_phy_addr_map) {
2743 		ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus);
2744 		if (ret)
2745 			goto put_mdio_node;
2746 	} else {
2747 		for (i = 0; i < dev->info->port_cnt; i++)
2748 			dev->phy_addr_map[i] = i;
2749 	}
2750 
2751 	bus->priv = dev;
2752 	if (parent_bus) {
2753 		bus->read = ksz_parent_mdio_read;
2754 		bus->write = ksz_parent_mdio_write;
2755 		bus->name = "KSZ side MDIO";
2756 		snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d",
2757 			 ds->index);
2758 	} else {
2759 		bus->read = ksz_sw_mdio_read;
2760 		bus->write = ksz_sw_mdio_write;
2761 		bus->name = "ksz user smi";
2762 		if (ds->dst->index != 0) {
2763 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d-%d", ds->dst->index, ds->index);
2764 		} else {
2765 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2766 		}
2767 	}
2768 
2769 	ret = ksz_parse_dt_phy_config(dev, bus, mdio_np);
2770 	if (ret)
2771 		goto put_mdio_node;
2772 
2773 	ds->phys_mii_mask = bus->phy_mask;
2774 	bus->parent = ds->dev;
2775 
2776 	ds->user_mii_bus = bus;
2777 
2778 	if (dev->irq > 0) {
2779 		ret = ksz_irq_phy_setup(dev);
2780 		if (ret)
2781 			goto put_mdio_node;
2782 	}
2783 
2784 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2785 	if (ret) {
2786 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2787 			bus->id);
2788 		if (dev->irq > 0)
2789 			ksz_irq_phy_free(dev);
2790 	}
2791 
2792 put_mdio_node:
2793 	of_node_put(mdio_np);
2794 	of_node_put(parent_bus_node);
2795 
2796 	return ret;
2797 }
2798 
2799 static void ksz_irq_mask(struct irq_data *d)
2800 {
2801 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2802 
2803 	kirq->masked |= BIT(d->hwirq);
2804 }
2805 
2806 static void ksz_irq_unmask(struct irq_data *d)
2807 {
2808 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2809 
2810 	kirq->masked &= ~BIT(d->hwirq);
2811 }
2812 
2813 static void ksz_irq_bus_lock(struct irq_data *d)
2814 {
2815 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2816 
2817 	mutex_lock(&kirq->dev->lock_irq);
2818 }
2819 
2820 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2821 {
2822 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2823 	struct ksz_device *dev = kirq->dev;
2824 	int ret;
2825 
2826 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2827 	if (ret)
2828 		dev_err(dev->dev, "failed to change IRQ mask\n");
2829 
2830 	mutex_unlock(&dev->lock_irq);
2831 }
2832 
2833 static const struct irq_chip ksz_irq_chip = {
2834 	.name			= "ksz-irq",
2835 	.irq_mask		= ksz_irq_mask,
2836 	.irq_unmask		= ksz_irq_unmask,
2837 	.irq_bus_lock		= ksz_irq_bus_lock,
2838 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2839 };
2840 
2841 static int ksz_irq_domain_map(struct irq_domain *d,
2842 			      unsigned int irq, irq_hw_number_t hwirq)
2843 {
2844 	irq_set_chip_data(irq, d->host_data);
2845 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2846 	irq_set_noprobe(irq);
2847 
2848 	return 0;
2849 }
2850 
2851 static const struct irq_domain_ops ksz_irq_domain_ops = {
2852 	.map	= ksz_irq_domain_map,
2853 	.xlate	= irq_domain_xlate_twocell,
2854 };
2855 
2856 static void ksz_irq_free(struct ksz_irq *kirq)
2857 {
2858 	int irq, virq;
2859 
2860 	free_irq(kirq->irq_num, kirq);
2861 
2862 	for (irq = 0; irq < kirq->nirqs; irq++) {
2863 		virq = irq_find_mapping(kirq->domain, irq);
2864 		irq_dispose_mapping(virq);
2865 	}
2866 
2867 	irq_domain_remove(kirq->domain);
2868 }
2869 
2870 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2871 {
2872 	struct ksz_irq *kirq = dev_id;
2873 	unsigned int nhandled = 0;
2874 	struct ksz_device *dev;
2875 	unsigned int sub_irq;
2876 	u8 data;
2877 	int ret;
2878 	u8 n;
2879 
2880 	dev = kirq->dev;
2881 
2882 	/* Read interrupt status register */
2883 	ret = ksz_read8(dev, kirq->reg_status, &data);
2884 	if (ret)
2885 		goto out;
2886 
2887 	for (n = 0; n < kirq->nirqs; ++n) {
2888 		if (data & BIT(n)) {
2889 			sub_irq = irq_find_mapping(kirq->domain, n);
2890 			handle_nested_irq(sub_irq);
2891 			++nhandled;
2892 		}
2893 	}
2894 out:
2895 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2896 }
2897 
2898 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2899 {
2900 	int ret, n;
2901 
2902 	kirq->dev = dev;
2903 	kirq->masked = ~0;
2904 
2905 	kirq->domain = irq_domain_create_simple(dev_fwnode(dev->dev), kirq->nirqs, 0,
2906 						&ksz_irq_domain_ops, kirq);
2907 	if (!kirq->domain)
2908 		return -ENOMEM;
2909 
2910 	for (n = 0; n < kirq->nirqs; n++)
2911 		irq_create_mapping(kirq->domain, n);
2912 
2913 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2914 				   IRQF_ONESHOT, kirq->name, kirq);
2915 	if (ret)
2916 		goto out;
2917 
2918 	return 0;
2919 
2920 out:
2921 	ksz_irq_free(kirq);
2922 
2923 	return ret;
2924 }
2925 
2926 static int ksz_girq_setup(struct ksz_device *dev)
2927 {
2928 	struct ksz_irq *girq = &dev->girq;
2929 
2930 	girq->nirqs = dev->info->port_cnt;
2931 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2932 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2933 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2934 
2935 	girq->irq_num = dev->irq;
2936 
2937 	return ksz_irq_common_setup(dev, girq);
2938 }
2939 
2940 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2941 {
2942 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2943 
2944 	pirq->nirqs = dev->info->port_nirqs;
2945 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2946 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2947 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2948 
2949 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2950 	if (pirq->irq_num < 0)
2951 		return pirq->irq_num;
2952 
2953 	return ksz_irq_common_setup(dev, pirq);
2954 }
2955 
2956 static int ksz_parse_drive_strength(struct ksz_device *dev);
2957 
2958 static int ksz_setup(struct dsa_switch *ds)
2959 {
2960 	struct ksz_device *dev = ds->priv;
2961 	u16 storm_mask, storm_rate;
2962 	struct dsa_port *dp;
2963 	struct ksz_port *p;
2964 	const u16 *regs;
2965 	int ret;
2966 
2967 	regs = dev->info->regs;
2968 
2969 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2970 				       dev->info->num_vlans, GFP_KERNEL);
2971 	if (!dev->vlan_cache)
2972 		return -ENOMEM;
2973 
2974 	ret = dev->dev_ops->reset(dev);
2975 	if (ret) {
2976 		dev_err(ds->dev, "failed to reset switch\n");
2977 		return ret;
2978 	}
2979 
2980 	ret = ksz_parse_drive_strength(dev);
2981 	if (ret)
2982 		return ret;
2983 
2984 	if (ksz_has_sgmii_port(dev) && dev->dev_ops->pcs_create) {
2985 		ret = dev->dev_ops->pcs_create(dev);
2986 		if (ret)
2987 			return ret;
2988 	}
2989 
2990 	/* set broadcast storm protection 10% rate */
2991 	storm_mask = BROADCAST_STORM_RATE;
2992 	storm_rate = (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
2993 	if (ksz_is_ksz8463(dev)) {
2994 		storm_mask = swab16(storm_mask);
2995 		storm_rate = swab16(storm_rate);
2996 	}
2997 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2998 			   storm_mask, storm_rate);
2999 
3000 	dev->dev_ops->config_cpu_port(ds);
3001 
3002 	dev->dev_ops->enable_stp_addr(dev);
3003 
3004 	ds->num_tx_queues = dev->info->num_tx_queues;
3005 
3006 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
3007 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
3008 
3009 	ksz_init_mib_timer(dev);
3010 
3011 	ds->configure_vlan_while_not_filtering = false;
3012 	ds->dscp_prio_mapping_is_global = true;
3013 
3014 	if (dev->dev_ops->setup) {
3015 		ret = dev->dev_ops->setup(ds);
3016 		if (ret)
3017 			return ret;
3018 	}
3019 
3020 	/* Start with learning disabled on standalone user ports, and enabled
3021 	 * on the CPU port. In lack of other finer mechanisms, learning on the
3022 	 * CPU port will avoid flooding bridge local addresses on the network
3023 	 * in some cases.
3024 	 */
3025 	p = &dev->ports[dev->cpu_port];
3026 	p->learning = true;
3027 
3028 	if (dev->irq > 0) {
3029 		ret = ksz_girq_setup(dev);
3030 		if (ret)
3031 			return ret;
3032 
3033 		dsa_switch_for_each_user_port(dp, dev->ds) {
3034 			ret = ksz_pirq_setup(dev, dp->index);
3035 			if (ret)
3036 				goto out_girq;
3037 
3038 			if (dev->info->ptp_capable) {
3039 				ret = ksz_ptp_irq_setup(ds, dp->index);
3040 				if (ret)
3041 					goto out_pirq;
3042 			}
3043 		}
3044 	}
3045 
3046 	if (dev->info->ptp_capable) {
3047 		ret = ksz_ptp_clock_register(ds);
3048 		if (ret) {
3049 			dev_err(dev->dev, "Failed to register PTP clock: %d\n",
3050 				ret);
3051 			goto out_ptpirq;
3052 		}
3053 	}
3054 
3055 	ret = ksz_mdio_register(dev);
3056 	if (ret < 0) {
3057 		dev_err(dev->dev, "failed to register the mdio");
3058 		goto out_ptp_clock_unregister;
3059 	}
3060 
3061 	ret = ksz_dcb_init(dev);
3062 	if (ret)
3063 		goto out_ptp_clock_unregister;
3064 
3065 	/* start switch */
3066 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
3067 			   SW_START, SW_START);
3068 
3069 	return 0;
3070 
3071 out_ptp_clock_unregister:
3072 	if (dev->info->ptp_capable)
3073 		ksz_ptp_clock_unregister(ds);
3074 out_ptpirq:
3075 	if (dev->irq > 0 && dev->info->ptp_capable)
3076 		dsa_switch_for_each_user_port(dp, dev->ds)
3077 			ksz_ptp_irq_free(ds, dp->index);
3078 out_pirq:
3079 	if (dev->irq > 0)
3080 		dsa_switch_for_each_user_port(dp, dev->ds)
3081 			ksz_irq_free(&dev->ports[dp->index].pirq);
3082 out_girq:
3083 	if (dev->irq > 0)
3084 		ksz_irq_free(&dev->girq);
3085 
3086 	return ret;
3087 }
3088 
3089 static void ksz_teardown(struct dsa_switch *ds)
3090 {
3091 	struct ksz_device *dev = ds->priv;
3092 	struct dsa_port *dp;
3093 
3094 	if (dev->info->ptp_capable)
3095 		ksz_ptp_clock_unregister(ds);
3096 
3097 	if (dev->irq > 0) {
3098 		dsa_switch_for_each_user_port(dp, dev->ds) {
3099 			if (dev->info->ptp_capable)
3100 				ksz_ptp_irq_free(ds, dp->index);
3101 
3102 			ksz_irq_free(&dev->ports[dp->index].pirq);
3103 		}
3104 
3105 		ksz_irq_free(&dev->girq);
3106 	}
3107 
3108 	if (dev->dev_ops->teardown)
3109 		dev->dev_ops->teardown(ds);
3110 }
3111 
3112 static void port_r_cnt(struct ksz_device *dev, int port)
3113 {
3114 	struct ksz_port_mib *mib = &dev->ports[port].mib;
3115 	u64 *dropped;
3116 
3117 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
3118 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
3119 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
3120 					&mib->counters[mib->cnt_ptr]);
3121 		++mib->cnt_ptr;
3122 	}
3123 
3124 	/* last one in storage */
3125 	dropped = &mib->counters[dev->info->mib_cnt];
3126 
3127 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
3128 	while (mib->cnt_ptr < dev->info->mib_cnt) {
3129 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
3130 					dropped, &mib->counters[mib->cnt_ptr]);
3131 		++mib->cnt_ptr;
3132 	}
3133 	mib->cnt_ptr = 0;
3134 }
3135 
3136 static void ksz_mib_read_work(struct work_struct *work)
3137 {
3138 	struct ksz_device *dev = container_of(work, struct ksz_device,
3139 					      mib_read.work);
3140 	struct ksz_port_mib *mib;
3141 	struct ksz_port *p;
3142 	int i;
3143 
3144 	for (i = 0; i < dev->info->port_cnt; i++) {
3145 		if (dsa_is_unused_port(dev->ds, i))
3146 			continue;
3147 
3148 		p = &dev->ports[i];
3149 		mib = &p->mib;
3150 		mutex_lock(&mib->cnt_mutex);
3151 
3152 		/* Only read MIB counters when the port is told to do.
3153 		 * If not, read only dropped counters when link is not up.
3154 		 */
3155 		if (!p->read) {
3156 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
3157 
3158 			if (!netif_carrier_ok(dp->user))
3159 				mib->cnt_ptr = dev->info->reg_mib_cnt;
3160 		}
3161 		port_r_cnt(dev, i);
3162 		p->read = false;
3163 
3164 		if (dev->dev_ops->r_mib_stat64)
3165 			dev->dev_ops->r_mib_stat64(dev, i);
3166 
3167 		mutex_unlock(&mib->cnt_mutex);
3168 	}
3169 
3170 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
3171 }
3172 
3173 void ksz_init_mib_timer(struct ksz_device *dev)
3174 {
3175 	int i;
3176 
3177 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
3178 
3179 	for (i = 0; i < dev->info->port_cnt; i++) {
3180 		struct ksz_port_mib *mib = &dev->ports[i].mib;
3181 
3182 		dev->dev_ops->port_init_cnt(dev, i);
3183 
3184 		mib->cnt_ptr = 0;
3185 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
3186 	}
3187 }
3188 
3189 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
3190 {
3191 	struct ksz_device *dev = ds->priv;
3192 	u16 val = 0xffff;
3193 	int ret;
3194 
3195 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
3196 	if (ret)
3197 		return ret;
3198 
3199 	return val;
3200 }
3201 
3202 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
3203 {
3204 	struct ksz_device *dev = ds->priv;
3205 	int ret;
3206 
3207 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
3208 	if (ret)
3209 		return ret;
3210 
3211 	return 0;
3212 }
3213 
3214 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
3215 {
3216 	struct ksz_device *dev = ds->priv;
3217 
3218 	switch (dev->chip_id) {
3219 	case KSZ88X3_CHIP_ID:
3220 		/* Silicon Errata Sheet (DS80000830A):
3221 		 * Port 1 does not work with LinkMD Cable-Testing.
3222 		 * Port 1 does not respond to received PAUSE control frames.
3223 		 */
3224 		if (!port)
3225 			return MICREL_KSZ8_P1_ERRATA;
3226 		break;
3227 	}
3228 
3229 	return 0;
3230 }
3231 
3232 static void ksz_phylink_mac_link_down(struct phylink_config *config,
3233 				      unsigned int mode,
3234 				      phy_interface_t interface)
3235 {
3236 	struct dsa_port *dp = dsa_phylink_to_port(config);
3237 	struct ksz_device *dev = dp->ds->priv;
3238 
3239 	/* Read all MIB counters when the link is going down. */
3240 	dev->ports[dp->index].read = true;
3241 	/* timer started */
3242 	if (dev->mib_read_interval)
3243 		schedule_delayed_work(&dev->mib_read, 0);
3244 }
3245 
3246 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
3247 {
3248 	struct ksz_device *dev = ds->priv;
3249 
3250 	if (sset != ETH_SS_STATS)
3251 		return 0;
3252 
3253 	return dev->info->mib_cnt;
3254 }
3255 
3256 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
3257 				  uint64_t *buf)
3258 {
3259 	const struct dsa_port *dp = dsa_to_port(ds, port);
3260 	struct ksz_device *dev = ds->priv;
3261 	struct ksz_port_mib *mib;
3262 
3263 	mib = &dev->ports[port].mib;
3264 	mutex_lock(&mib->cnt_mutex);
3265 
3266 	/* Only read dropped counters if no link. */
3267 	if (!netif_carrier_ok(dp->user))
3268 		mib->cnt_ptr = dev->info->reg_mib_cnt;
3269 	port_r_cnt(dev, port);
3270 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
3271 	mutex_unlock(&mib->cnt_mutex);
3272 }
3273 
3274 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
3275 				struct dsa_bridge bridge,
3276 				bool *tx_fwd_offload,
3277 				struct netlink_ext_ack *extack)
3278 {
3279 	/* port_stp_state_set() will be called after to put the port in
3280 	 * appropriate state so there is no need to do anything.
3281 	 */
3282 
3283 	return 0;
3284 }
3285 
3286 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
3287 				  struct dsa_bridge bridge)
3288 {
3289 	/* port_stp_state_set() will be called after to put the port in
3290 	 * forwarding state so there is no need to do anything.
3291 	 */
3292 }
3293 
3294 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
3295 {
3296 	struct ksz_device *dev = ds->priv;
3297 
3298 	dev->dev_ops->flush_dyn_mac_table(dev, port);
3299 }
3300 
3301 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
3302 {
3303 	struct ksz_device *dev = ds->priv;
3304 
3305 	if (!dev->dev_ops->set_ageing_time)
3306 		return -EOPNOTSUPP;
3307 
3308 	return dev->dev_ops->set_ageing_time(dev, msecs);
3309 }
3310 
3311 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
3312 			    const unsigned char *addr, u16 vid,
3313 			    struct dsa_db db)
3314 {
3315 	struct ksz_device *dev = ds->priv;
3316 
3317 	if (!dev->dev_ops->fdb_add)
3318 		return -EOPNOTSUPP;
3319 
3320 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
3321 }
3322 
3323 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
3324 			    const unsigned char *addr,
3325 			    u16 vid, struct dsa_db db)
3326 {
3327 	struct ksz_device *dev = ds->priv;
3328 
3329 	if (!dev->dev_ops->fdb_del)
3330 		return -EOPNOTSUPP;
3331 
3332 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
3333 }
3334 
3335 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
3336 			     dsa_fdb_dump_cb_t *cb, void *data)
3337 {
3338 	struct ksz_device *dev = ds->priv;
3339 
3340 	if (!dev->dev_ops->fdb_dump)
3341 		return -EOPNOTSUPP;
3342 
3343 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
3344 }
3345 
3346 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
3347 			    const struct switchdev_obj_port_mdb *mdb,
3348 			    struct dsa_db db)
3349 {
3350 	struct ksz_device *dev = ds->priv;
3351 
3352 	if (!dev->dev_ops->mdb_add)
3353 		return -EOPNOTSUPP;
3354 
3355 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
3356 }
3357 
3358 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
3359 			    const struct switchdev_obj_port_mdb *mdb,
3360 			    struct dsa_db db)
3361 {
3362 	struct ksz_device *dev = ds->priv;
3363 
3364 	if (!dev->dev_ops->mdb_del)
3365 		return -EOPNOTSUPP;
3366 
3367 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
3368 }
3369 
3370 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
3371 						  int port)
3372 {
3373 	u32 queue_map = 0;
3374 	int ipm;
3375 
3376 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
3377 		int queue;
3378 
3379 		/* Traffic Type (TT) is corresponding to the Internal Priority
3380 		 * Map (IPM) in the switch. Traffic Class (TC) is
3381 		 * corresponding to the queue in the switch.
3382 		 */
3383 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
3384 		if (queue < 0)
3385 			return queue;
3386 
3387 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
3388 	}
3389 
3390 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3391 }
3392 
3393 static int ksz_port_setup(struct dsa_switch *ds, int port)
3394 {
3395 	struct ksz_device *dev = ds->priv;
3396 	int ret;
3397 
3398 	if (!dsa_is_user_port(ds, port))
3399 		return 0;
3400 
3401 	/* setup user port */
3402 	dev->dev_ops->port_setup(dev, port, false);
3403 
3404 	if (!is_ksz8(dev)) {
3405 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
3406 		if (ret)
3407 			return ret;
3408 	}
3409 
3410 	/* port_stp_state_set() will be called after to enable the port so
3411 	 * there is no need to do anything.
3412 	 */
3413 
3414 	return ksz_dcb_init_port(dev, port);
3415 }
3416 
3417 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
3418 {
3419 	struct ksz_device *dev = ds->priv;
3420 	struct ksz_port *p;
3421 	const u16 *regs;
3422 	u8 data;
3423 
3424 	regs = dev->info->regs;
3425 
3426 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
3427 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3428 
3429 	p = &dev->ports[port];
3430 
3431 	switch (state) {
3432 	case BR_STATE_DISABLED:
3433 		data |= PORT_LEARN_DISABLE;
3434 		break;
3435 	case BR_STATE_LISTENING:
3436 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3437 		break;
3438 	case BR_STATE_LEARNING:
3439 		data |= PORT_RX_ENABLE;
3440 		if (!p->learning)
3441 			data |= PORT_LEARN_DISABLE;
3442 		break;
3443 	case BR_STATE_FORWARDING:
3444 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
3445 		if (!p->learning)
3446 			data |= PORT_LEARN_DISABLE;
3447 		break;
3448 	case BR_STATE_BLOCKING:
3449 		data |= PORT_LEARN_DISABLE;
3450 		break;
3451 	default:
3452 		dev_err(ds->dev, "invalid STP state: %d\n", state);
3453 		return;
3454 	}
3455 
3456 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
3457 
3458 	p->stp_state = state;
3459 
3460 	ksz_update_port_member(dev, port);
3461 }
3462 
3463 static void ksz_port_teardown(struct dsa_switch *ds, int port)
3464 {
3465 	struct ksz_device *dev = ds->priv;
3466 
3467 	switch (dev->chip_id) {
3468 	case KSZ8563_CHIP_ID:
3469 	case KSZ8567_CHIP_ID:
3470 	case KSZ9477_CHIP_ID:
3471 	case KSZ9563_CHIP_ID:
3472 	case KSZ9567_CHIP_ID:
3473 	case KSZ9893_CHIP_ID:
3474 	case KSZ9896_CHIP_ID:
3475 	case KSZ9897_CHIP_ID:
3476 	case LAN9646_CHIP_ID:
3477 		if (dsa_is_user_port(ds, port))
3478 			ksz9477_port_acl_free(dev, port);
3479 	}
3480 }
3481 
3482 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3483 				     struct switchdev_brport_flags flags,
3484 				     struct netlink_ext_ack *extack)
3485 {
3486 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
3487 		return -EINVAL;
3488 
3489 	return 0;
3490 }
3491 
3492 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
3493 				 struct switchdev_brport_flags flags,
3494 				 struct netlink_ext_ack *extack)
3495 {
3496 	struct ksz_device *dev = ds->priv;
3497 	struct ksz_port *p = &dev->ports[port];
3498 
3499 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
3500 		if (flags.mask & BR_LEARNING)
3501 			p->learning = !!(flags.val & BR_LEARNING);
3502 
3503 		if (flags.mask & BR_ISOLATED)
3504 			p->isolated = !!(flags.val & BR_ISOLATED);
3505 
3506 		/* Make the change take effect immediately */
3507 		ksz_port_stp_state_set(ds, port, p->stp_state);
3508 	}
3509 
3510 	return 0;
3511 }
3512 
3513 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
3514 						  int port,
3515 						  enum dsa_tag_protocol mp)
3516 {
3517 	struct ksz_device *dev = ds->priv;
3518 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
3519 
3520 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
3521 		proto = DSA_TAG_PROTO_KSZ8795;
3522 
3523 	if (dev->chip_id == KSZ88X3_CHIP_ID ||
3524 	    dev->chip_id == KSZ8463_CHIP_ID ||
3525 	    dev->chip_id == KSZ8563_CHIP_ID ||
3526 	    dev->chip_id == KSZ9893_CHIP_ID ||
3527 	    dev->chip_id == KSZ9563_CHIP_ID)
3528 		proto = DSA_TAG_PROTO_KSZ9893;
3529 
3530 	if (dev->chip_id == KSZ8567_CHIP_ID ||
3531 	    dev->chip_id == KSZ9477_CHIP_ID ||
3532 	    dev->chip_id == KSZ9896_CHIP_ID ||
3533 	    dev->chip_id == KSZ9897_CHIP_ID ||
3534 	    dev->chip_id == KSZ9567_CHIP_ID ||
3535 	    dev->chip_id == LAN9646_CHIP_ID)
3536 		proto = DSA_TAG_PROTO_KSZ9477;
3537 
3538 	if (is_lan937x(dev))
3539 		proto = DSA_TAG_PROTO_LAN937X;
3540 
3541 	return proto;
3542 }
3543 
3544 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
3545 				    enum dsa_tag_protocol proto)
3546 {
3547 	struct ksz_tagger_data *tagger_data;
3548 
3549 	switch (proto) {
3550 	case DSA_TAG_PROTO_KSZ8795:
3551 		return 0;
3552 	case DSA_TAG_PROTO_KSZ9893:
3553 	case DSA_TAG_PROTO_KSZ9477:
3554 	case DSA_TAG_PROTO_LAN937X:
3555 		tagger_data = ksz_tagger_data(ds);
3556 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
3557 		return 0;
3558 	default:
3559 		return -EPROTONOSUPPORT;
3560 	}
3561 }
3562 
3563 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
3564 				   bool flag, struct netlink_ext_ack *extack)
3565 {
3566 	struct ksz_device *dev = ds->priv;
3567 
3568 	if (!dev->dev_ops->vlan_filtering)
3569 		return -EOPNOTSUPP;
3570 
3571 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
3572 }
3573 
3574 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
3575 			     const struct switchdev_obj_port_vlan *vlan,
3576 			     struct netlink_ext_ack *extack)
3577 {
3578 	struct ksz_device *dev = ds->priv;
3579 
3580 	if (!dev->dev_ops->vlan_add)
3581 		return -EOPNOTSUPP;
3582 
3583 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
3584 }
3585 
3586 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3587 			     const struct switchdev_obj_port_vlan *vlan)
3588 {
3589 	struct ksz_device *dev = ds->priv;
3590 
3591 	if (!dev->dev_ops->vlan_del)
3592 		return -EOPNOTSUPP;
3593 
3594 	return dev->dev_ops->vlan_del(dev, port, vlan);
3595 }
3596 
3597 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3598 			       struct dsa_mall_mirror_tc_entry *mirror,
3599 			       bool ingress, struct netlink_ext_ack *extack)
3600 {
3601 	struct ksz_device *dev = ds->priv;
3602 
3603 	if (!dev->dev_ops->mirror_add)
3604 		return -EOPNOTSUPP;
3605 
3606 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3607 }
3608 
3609 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3610 				struct dsa_mall_mirror_tc_entry *mirror)
3611 {
3612 	struct ksz_device *dev = ds->priv;
3613 
3614 	if (dev->dev_ops->mirror_del)
3615 		dev->dev_ops->mirror_del(dev, port, mirror);
3616 }
3617 
3618 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3619 {
3620 	struct ksz_device *dev = ds->priv;
3621 
3622 	if (!dev->dev_ops->change_mtu)
3623 		return -EOPNOTSUPP;
3624 
3625 	return dev->dev_ops->change_mtu(dev, port, mtu);
3626 }
3627 
3628 static int ksz_max_mtu(struct dsa_switch *ds, int port)
3629 {
3630 	struct ksz_device *dev = ds->priv;
3631 
3632 	switch (dev->chip_id) {
3633 	case KSZ8795_CHIP_ID:
3634 	case KSZ8794_CHIP_ID:
3635 	case KSZ8765_CHIP_ID:
3636 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3637 	case KSZ8463_CHIP_ID:
3638 	case KSZ88X3_CHIP_ID:
3639 	case KSZ8864_CHIP_ID:
3640 	case KSZ8895_CHIP_ID:
3641 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3642 	case KSZ8563_CHIP_ID:
3643 	case KSZ8567_CHIP_ID:
3644 	case KSZ9477_CHIP_ID:
3645 	case KSZ9563_CHIP_ID:
3646 	case KSZ9567_CHIP_ID:
3647 	case KSZ9893_CHIP_ID:
3648 	case KSZ9896_CHIP_ID:
3649 	case KSZ9897_CHIP_ID:
3650 	case LAN9370_CHIP_ID:
3651 	case LAN9371_CHIP_ID:
3652 	case LAN9372_CHIP_ID:
3653 	case LAN9373_CHIP_ID:
3654 	case LAN9374_CHIP_ID:
3655 	case LAN9646_CHIP_ID:
3656 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3657 	}
3658 
3659 	return -EOPNOTSUPP;
3660 }
3661 
3662 /**
3663  * ksz_support_eee - Determine Energy Efficient Ethernet (EEE) support for a
3664  *                   port
3665  * @ds: Pointer to the DSA switch structure
3666  * @port: Port number to check
3667  *
3668  * This function also documents devices where EEE was initially advertised but
3669  * later withdrawn due to reliability issues, as described in official errata
3670  * documents. These devices are explicitly listed to record known limitations,
3671  * even if there is no technical necessity for runtime checks.
3672  *
3673  * Returns: true if the internal PHY on the given port supports fully
3674  * operational EEE, false otherwise.
3675  */
3676 static bool ksz_support_eee(struct dsa_switch *ds, int port)
3677 {
3678 	struct ksz_device *dev = ds->priv;
3679 
3680 	if (!dev->info->internal_phy[port])
3681 		return false;
3682 
3683 	switch (dev->chip_id) {
3684 	case KSZ8563_CHIP_ID:
3685 	case KSZ9563_CHIP_ID:
3686 	case KSZ9893_CHIP_ID:
3687 		return true;
3688 	case KSZ8567_CHIP_ID:
3689 		/* KSZ8567R Errata DS80000752C Module 4 */
3690 	case KSZ8765_CHIP_ID:
3691 	case KSZ8794_CHIP_ID:
3692 	case KSZ8795_CHIP_ID:
3693 		/* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */
3694 	case KSZ9477_CHIP_ID:
3695 		/* KSZ9477S Errata DS80000754A Module 4 */
3696 	case KSZ9567_CHIP_ID:
3697 		/* KSZ9567S Errata DS80000756A Module 4 */
3698 	case KSZ9896_CHIP_ID:
3699 		/* KSZ9896C Errata DS80000757A Module 3 */
3700 	case KSZ9897_CHIP_ID:
3701 	case LAN9646_CHIP_ID:
3702 		/* KSZ9897R Errata DS80000758C Module 4 */
3703 		/* Energy Efficient Ethernet (EEE) feature select must be
3704 		 * manually disabled
3705 		 *   The EEE feature is enabled by default, but it is not fully
3706 		 *   operational. It must be manually disabled through register
3707 		 *   controls. If not disabled, the PHY ports can auto-negotiate
3708 		 *   to enable EEE, and this feature can cause link drops when
3709 		 *   linked to another device supporting EEE.
3710 		 *
3711 		 * The same item appears in the errata for all switches above.
3712 		 */
3713 		break;
3714 	}
3715 
3716 	return false;
3717 }
3718 
3719 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3720 			   struct ethtool_keee *e)
3721 {
3722 	struct ksz_device *dev = ds->priv;
3723 
3724 	if (!e->tx_lpi_enabled) {
3725 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3726 		return -EINVAL;
3727 	}
3728 
3729 	if (e->tx_lpi_timer) {
3730 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3731 		return -EINVAL;
3732 	}
3733 
3734 	return 0;
3735 }
3736 
3737 static void ksz_set_xmii(struct ksz_device *dev, int port,
3738 			 phy_interface_t interface)
3739 {
3740 	const u8 *bitval = dev->info->xmii_ctrl1;
3741 	struct ksz_port *p = &dev->ports[port];
3742 	const u16 *regs = dev->info->regs;
3743 	u8 data8;
3744 
3745 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3746 
3747 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3748 		   P_RGMII_ID_EG_ENABLE);
3749 
3750 	switch (interface) {
3751 	case PHY_INTERFACE_MODE_MII:
3752 		data8 |= bitval[P_MII_SEL];
3753 		break;
3754 	case PHY_INTERFACE_MODE_RMII:
3755 		data8 |= bitval[P_RMII_SEL];
3756 		break;
3757 	case PHY_INTERFACE_MODE_GMII:
3758 		data8 |= bitval[P_GMII_SEL];
3759 		break;
3760 	case PHY_INTERFACE_MODE_RGMII:
3761 	case PHY_INTERFACE_MODE_RGMII_ID:
3762 	case PHY_INTERFACE_MODE_RGMII_TXID:
3763 	case PHY_INTERFACE_MODE_RGMII_RXID:
3764 		data8 |= bitval[P_RGMII_SEL];
3765 		/* On KSZ9893, disable RGMII in-band status support */
3766 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3767 		    dev->chip_id == KSZ8563_CHIP_ID ||
3768 		    dev->chip_id == KSZ9563_CHIP_ID ||
3769 		    is_lan937x(dev))
3770 			data8 &= ~P_MII_MAC_MODE;
3771 		break;
3772 	default:
3773 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3774 			phy_modes(interface), port);
3775 		return;
3776 	}
3777 
3778 	if (p->rgmii_tx_val)
3779 		data8 |= P_RGMII_ID_EG_ENABLE;
3780 
3781 	if (p->rgmii_rx_val)
3782 		data8 |= P_RGMII_ID_IG_ENABLE;
3783 
3784 	/* Write the updated value */
3785 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3786 }
3787 
3788 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3789 {
3790 	const u8 *bitval = dev->info->xmii_ctrl1;
3791 	const u16 *regs = dev->info->regs;
3792 	phy_interface_t interface;
3793 	u8 data8;
3794 	u8 val;
3795 
3796 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3797 
3798 	val = FIELD_GET(P_MII_SEL_M, data8);
3799 
3800 	if (val == bitval[P_MII_SEL]) {
3801 		if (gbit)
3802 			interface = PHY_INTERFACE_MODE_GMII;
3803 		else
3804 			interface = PHY_INTERFACE_MODE_MII;
3805 	} else if (val == bitval[P_RMII_SEL]) {
3806 		interface = PHY_INTERFACE_MODE_RMII;
3807 	} else {
3808 		interface = PHY_INTERFACE_MODE_RGMII;
3809 		if (data8 & P_RGMII_ID_EG_ENABLE)
3810 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3811 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3812 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3813 			if (data8 & P_RGMII_ID_EG_ENABLE)
3814 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3815 		}
3816 	}
3817 
3818 	return interface;
3819 }
3820 
3821 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
3822 				       unsigned int mode,
3823 				       const struct phylink_link_state *state)
3824 {
3825 	struct dsa_port *dp = dsa_phylink_to_port(config);
3826 	struct ksz_device *dev = dp->ds->priv;
3827 
3828 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3829 }
3830 
3831 static void ksz_phylink_mac_config(struct phylink_config *config,
3832 				   unsigned int mode,
3833 				   const struct phylink_link_state *state)
3834 {
3835 	struct dsa_port *dp = dsa_phylink_to_port(config);
3836 	struct ksz_device *dev = dp->ds->priv;
3837 	int port = dp->index;
3838 
3839 	/* Internal PHYs */
3840 	if (dev->info->internal_phy[port])
3841 		return;
3842 
3843 	/* No need to configure XMII control register when using SGMII. */
3844 	if (ksz_is_sgmii_port(dev, port))
3845 		return;
3846 
3847 	if (phylink_autoneg_inband(mode)) {
3848 		dev_err(dev->dev, "In-band AN not supported!\n");
3849 		return;
3850 	}
3851 
3852 	ksz_set_xmii(dev, port, state->interface);
3853 
3854 	if (dev->dev_ops->setup_rgmii_delay)
3855 		dev->dev_ops->setup_rgmii_delay(dev, port);
3856 }
3857 
3858 bool ksz_get_gbit(struct ksz_device *dev, int port)
3859 {
3860 	const u8 *bitval = dev->info->xmii_ctrl1;
3861 	const u16 *regs = dev->info->regs;
3862 	bool gbit = false;
3863 	u8 data8;
3864 	bool val;
3865 
3866 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3867 
3868 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3869 
3870 	if (val == bitval[P_GMII_1GBIT])
3871 		gbit = true;
3872 
3873 	return gbit;
3874 }
3875 
3876 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3877 {
3878 	const u8 *bitval = dev->info->xmii_ctrl1;
3879 	const u16 *regs = dev->info->regs;
3880 	u8 data8;
3881 
3882 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3883 
3884 	data8 &= ~P_GMII_1GBIT_M;
3885 
3886 	if (gbit)
3887 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3888 	else
3889 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3890 
3891 	/* Write the updated value */
3892 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3893 }
3894 
3895 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3896 {
3897 	const u8 *bitval = dev->info->xmii_ctrl0;
3898 	const u16 *regs = dev->info->regs;
3899 	u8 data8;
3900 
3901 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3902 
3903 	data8 &= ~P_MII_100MBIT_M;
3904 
3905 	if (speed == SPEED_100)
3906 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3907 	else
3908 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3909 
3910 	/* Write the updated value */
3911 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3912 }
3913 
3914 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3915 {
3916 	if (speed == SPEED_1000)
3917 		ksz_set_gbit(dev, port, true);
3918 	else
3919 		ksz_set_gbit(dev, port, false);
3920 
3921 	if (speed == SPEED_100 || speed == SPEED_10)
3922 		ksz_set_100_10mbit(dev, port, speed);
3923 }
3924 
3925 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3926 				bool tx_pause, bool rx_pause)
3927 {
3928 	const u8 *bitval = dev->info->xmii_ctrl0;
3929 	const u32 *masks = dev->info->masks;
3930 	const u16 *regs = dev->info->regs;
3931 	u8 mask;
3932 	u8 val;
3933 
3934 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3935 	       masks[P_MII_RX_FLOW_CTRL];
3936 
3937 	if (duplex == DUPLEX_FULL)
3938 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3939 	else
3940 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3941 
3942 	if (tx_pause)
3943 		val |= masks[P_MII_TX_FLOW_CTRL];
3944 
3945 	if (rx_pause)
3946 		val |= masks[P_MII_RX_FLOW_CTRL];
3947 
3948 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3949 }
3950 
3951 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3952 					struct phy_device *phydev,
3953 					unsigned int mode,
3954 					phy_interface_t interface,
3955 					int speed, int duplex, bool tx_pause,
3956 					bool rx_pause)
3957 {
3958 	struct dsa_port *dp = dsa_phylink_to_port(config);
3959 	struct ksz_device *dev = dp->ds->priv;
3960 	int port = dp->index;
3961 	struct ksz_port *p;
3962 
3963 	p = &dev->ports[port];
3964 
3965 	/* Internal PHYs */
3966 	if (dev->info->internal_phy[port])
3967 		return;
3968 
3969 	p->phydev.speed = speed;
3970 
3971 	ksz_port_set_xmii_speed(dev, port, speed);
3972 
3973 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3974 }
3975 
3976 static int ksz_switch_detect(struct ksz_device *dev)
3977 {
3978 	u8 id1, id2, id4;
3979 	u16 id16;
3980 	u32 id32;
3981 	int ret;
3982 
3983 	/* read chip id */
3984 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3985 	if (ret)
3986 		return ret;
3987 
3988 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3989 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3990 
3991 	switch (id1) {
3992 	case KSZ84_FAMILY_ID:
3993 		dev->chip_id = KSZ8463_CHIP_ID;
3994 		break;
3995 	case KSZ87_FAMILY_ID:
3996 		if (id2 == KSZ87_CHIP_ID_95) {
3997 			u8 val;
3998 
3999 			dev->chip_id = KSZ8795_CHIP_ID;
4000 
4001 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
4002 			if (val & KSZ8_PORT_FIBER_MODE)
4003 				dev->chip_id = KSZ8765_CHIP_ID;
4004 		} else if (id2 == KSZ87_CHIP_ID_94) {
4005 			dev->chip_id = KSZ8794_CHIP_ID;
4006 		} else {
4007 			return -ENODEV;
4008 		}
4009 		break;
4010 	case KSZ88_FAMILY_ID:
4011 		if (id2 == KSZ88_CHIP_ID_63)
4012 			dev->chip_id = KSZ88X3_CHIP_ID;
4013 		else
4014 			return -ENODEV;
4015 		break;
4016 	case KSZ8895_FAMILY_ID:
4017 		if (id2 == KSZ8895_CHIP_ID_95 ||
4018 		    id2 == KSZ8895_CHIP_ID_95R)
4019 			dev->chip_id = KSZ8895_CHIP_ID;
4020 		else
4021 			return -ENODEV;
4022 		ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4);
4023 		if (ret)
4024 			return ret;
4025 		if (id4 & SW_KSZ8864)
4026 			dev->chip_id = KSZ8864_CHIP_ID;
4027 		break;
4028 	default:
4029 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
4030 		if (ret)
4031 			return ret;
4032 
4033 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
4034 		id32 &= ~0xFF;
4035 
4036 		switch (id32) {
4037 		case KSZ9477_CHIP_ID:
4038 		case KSZ9896_CHIP_ID:
4039 		case KSZ9897_CHIP_ID:
4040 		case KSZ9567_CHIP_ID:
4041 		case KSZ8567_CHIP_ID:
4042 		case LAN9370_CHIP_ID:
4043 		case LAN9371_CHIP_ID:
4044 		case LAN9372_CHIP_ID:
4045 		case LAN9373_CHIP_ID:
4046 		case LAN9374_CHIP_ID:
4047 
4048 			/* LAN9646 does not have its own chip id. */
4049 			if (dev->chip_id != LAN9646_CHIP_ID)
4050 				dev->chip_id = id32;
4051 			break;
4052 		case KSZ9893_CHIP_ID:
4053 			ret = ksz_read8(dev, REG_CHIP_ID4,
4054 					&id4);
4055 			if (ret)
4056 				return ret;
4057 
4058 			if (id4 == SKU_ID_KSZ8563)
4059 				dev->chip_id = KSZ8563_CHIP_ID;
4060 			else if (id4 == SKU_ID_KSZ9563)
4061 				dev->chip_id = KSZ9563_CHIP_ID;
4062 			else
4063 				dev->chip_id = KSZ9893_CHIP_ID;
4064 
4065 			break;
4066 		default:
4067 			dev_err(dev->dev,
4068 				"unsupported switch detected %x)\n", id32);
4069 			return -ENODEV;
4070 		}
4071 	}
4072 	return 0;
4073 }
4074 
4075 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
4076 			      struct flow_cls_offload *cls, bool ingress)
4077 {
4078 	struct ksz_device *dev = ds->priv;
4079 
4080 	switch (dev->chip_id) {
4081 	case KSZ8563_CHIP_ID:
4082 	case KSZ8567_CHIP_ID:
4083 	case KSZ9477_CHIP_ID:
4084 	case KSZ9563_CHIP_ID:
4085 	case KSZ9567_CHIP_ID:
4086 	case KSZ9893_CHIP_ID:
4087 	case KSZ9896_CHIP_ID:
4088 	case KSZ9897_CHIP_ID:
4089 	case LAN9646_CHIP_ID:
4090 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
4091 	}
4092 
4093 	return -EOPNOTSUPP;
4094 }
4095 
4096 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
4097 			      struct flow_cls_offload *cls, bool ingress)
4098 {
4099 	struct ksz_device *dev = ds->priv;
4100 
4101 	switch (dev->chip_id) {
4102 	case KSZ8563_CHIP_ID:
4103 	case KSZ8567_CHIP_ID:
4104 	case KSZ9477_CHIP_ID:
4105 	case KSZ9563_CHIP_ID:
4106 	case KSZ9567_CHIP_ID:
4107 	case KSZ9893_CHIP_ID:
4108 	case KSZ9896_CHIP_ID:
4109 	case KSZ9897_CHIP_ID:
4110 	case LAN9646_CHIP_ID:
4111 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
4112 	}
4113 
4114 	return -EOPNOTSUPP;
4115 }
4116 
4117 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
4118  * is converted to Hex-decimal using the successive multiplication method. On
4119  * every step, integer part is taken and decimal part is carry forwarded.
4120  */
4121 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
4122 {
4123 	u32 cinc = 0;
4124 	u32 txrate;
4125 	u32 rate;
4126 	u8 temp;
4127 	u8 i;
4128 
4129 	txrate = idle_slope - send_slope;
4130 
4131 	if (!txrate)
4132 		return -EINVAL;
4133 
4134 	rate = idle_slope;
4135 
4136 	/* 24 bit register */
4137 	for (i = 0; i < 6; i++) {
4138 		rate = rate * 16;
4139 
4140 		temp = rate / txrate;
4141 
4142 		rate %= txrate;
4143 
4144 		cinc = ((cinc << 4) | temp);
4145 	}
4146 
4147 	*bw = cinc;
4148 
4149 	return 0;
4150 }
4151 
4152 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
4153 			     u8 shaper)
4154 {
4155 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
4156 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
4157 			   FIELD_PREP(MTI_SHAPING_M, shaper));
4158 }
4159 
4160 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
4161 			    struct tc_cbs_qopt_offload *qopt)
4162 {
4163 	struct ksz_device *dev = ds->priv;
4164 	int ret;
4165 	u32 bw;
4166 
4167 	if (!dev->info->tc_cbs_supported)
4168 		return -EOPNOTSUPP;
4169 
4170 	if (qopt->queue > dev->info->num_tx_queues)
4171 		return -EINVAL;
4172 
4173 	/* Queue Selection */
4174 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
4175 	if (ret)
4176 		return ret;
4177 
4178 	if (!qopt->enable)
4179 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4180 					 MTI_SHAPING_OFF);
4181 
4182 	/* High Credit */
4183 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
4184 			   qopt->hicredit);
4185 	if (ret)
4186 		return ret;
4187 
4188 	/* Low Credit */
4189 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
4190 			   qopt->locredit);
4191 	if (ret)
4192 		return ret;
4193 
4194 	/* Credit Increment Register */
4195 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
4196 	if (ret)
4197 		return ret;
4198 
4199 	if (dev->dev_ops->tc_cbs_set_cinc) {
4200 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
4201 		if (ret)
4202 			return ret;
4203 	}
4204 
4205 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4206 				 MTI_SHAPING_SRP);
4207 }
4208 
4209 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
4210 {
4211 	int queue, ret;
4212 
4213 	/* Configuration will not take effect until the last Port Queue X
4214 	 * Egress Limit Control Register is written.
4215 	 */
4216 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4217 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
4218 				  KSZ9477_OUT_RATE_NO_LIMIT);
4219 		if (ret)
4220 			return ret;
4221 	}
4222 
4223 	return 0;
4224 }
4225 
4226 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
4227 				 int band)
4228 {
4229 	/* Compared to queues, bands prioritize packets differently. In strict
4230 	 * priority mode, the lowest priority is assigned to Queue 0 while the
4231 	 * highest priority is given to Band 0.
4232 	 */
4233 	return p->bands - 1 - band;
4234 }
4235 
4236 static u8 ksz8463_tc_ctrl(int port, int queue)
4237 {
4238 	u8 reg;
4239 
4240 	reg = 0xC8 + port * 4;
4241 	reg += ((3 - queue) / 2) * 2;
4242 	reg++;
4243 	reg -= (queue & 1);
4244 	return reg;
4245 }
4246 
4247 /**
4248  * ksz88x3_tc_ets_add - Configure ETS (Enhanced Transmission Selection)
4249  *                      for a port on KSZ88x3 switch
4250  * @dev: Pointer to the KSZ switch device structure
4251  * @port: Port number to configure
4252  * @p: Pointer to offload replace parameters describing ETS bands and mapping
4253  *
4254  * The KSZ88x3 supports two scheduling modes: Strict Priority and
4255  * Weighted Fair Queuing (WFQ). Both modes have fixed behavior:
4256  *   - No configurable queue-to-priority mapping
4257  *   - No weight adjustment in WFQ mode
4258  *
4259  * This function configures the switch to use strict priority mode by
4260  * clearing the WFQ enable bit for all queues associated with ETS bands.
4261  * If strict priority is not explicitly requested, the switch will default
4262  * to WFQ mode.
4263  *
4264  * Return: 0 on success, or a negative error code on failure
4265  */
4266 static int ksz88x3_tc_ets_add(struct ksz_device *dev, int port,
4267 			      struct tc_ets_qopt_offload_replace_params *p)
4268 {
4269 	int ret, band;
4270 
4271 	/* Only strict priority mode is supported for now.
4272 	 * WFQ is implicitly enabled when strict mode is disabled.
4273 	 */
4274 	for (band = 0; band < p->bands; band++) {
4275 		int queue = ksz_ets_band_to_queue(p, band);
4276 		u8 reg;
4277 
4278 		/* Calculate TXQ Split Control register address for this
4279 		 * port/queue
4280 		 */
4281 		reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue);
4282 		if (ksz_is_ksz8463(dev))
4283 			reg = ksz8463_tc_ctrl(port, queue);
4284 
4285 		/* Clear WFQ enable bit to select strict priority scheduling */
4286 		ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE, 0);
4287 		if (ret)
4288 			return ret;
4289 	}
4290 
4291 	return 0;
4292 }
4293 
4294 /**
4295  * ksz88x3_tc_ets_del - Reset ETS (Enhanced Transmission Selection) config
4296  *                      for a port on KSZ88x3 switch
4297  * @dev: Pointer to the KSZ switch device structure
4298  * @port: Port number to reset
4299  *
4300  * The KSZ88x3 supports only fixed scheduling modes: Strict Priority or
4301  * Weighted Fair Queuing (WFQ), with no reconfiguration of weights or
4302  * queue mapping. This function resets the port’s scheduling mode to
4303  * the default, which is WFQ, by enabling the WFQ bit for all queues.
4304  *
4305  * Return: 0 on success, or a negative error code on failure
4306  */
4307 static int ksz88x3_tc_ets_del(struct ksz_device *dev, int port)
4308 {
4309 	int ret, queue;
4310 
4311 	/* Iterate over all transmit queues for this port */
4312 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4313 		u8 reg;
4314 
4315 		/* Calculate TXQ Split Control register address for this
4316 		 * port/queue
4317 		 */
4318 		reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue);
4319 		if (ksz_is_ksz8463(dev))
4320 			reg = ksz8463_tc_ctrl(port, queue);
4321 
4322 		/* Set WFQ enable bit to revert back to default scheduling
4323 		 * mode
4324 		 */
4325 		ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE,
4326 			       KSZ8873_TXQ_WFQ_ENABLE);
4327 		if (ret)
4328 			return ret;
4329 	}
4330 
4331 	return 0;
4332 }
4333 
4334 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
4335 {
4336 	int ret;
4337 
4338 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4339 	if (ret)
4340 		return ret;
4341 
4342 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4343 				 MTI_SHAPING_OFF);
4344 }
4345 
4346 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
4347 			     int weight)
4348 {
4349 	int ret;
4350 
4351 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4352 	if (ret)
4353 		return ret;
4354 
4355 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4356 				MTI_SHAPING_OFF);
4357 	if (ret)
4358 		return ret;
4359 
4360 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
4361 }
4362 
4363 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
4364 			  struct tc_ets_qopt_offload_replace_params *p)
4365 {
4366 	int ret, band, tc_prio;
4367 	u32 queue_map = 0;
4368 
4369 	/* In order to ensure proper prioritization, it is necessary to set the
4370 	 * rate limit for the related queue to zero. Otherwise strict priority
4371 	 * or WRR mode will not work. This is a hardware limitation.
4372 	 */
4373 	ret = ksz_disable_egress_rate_limit(dev, port);
4374 	if (ret)
4375 		return ret;
4376 
4377 	/* Configure queue scheduling mode for all bands. Currently only strict
4378 	 * prio mode is supported.
4379 	 */
4380 	for (band = 0; band < p->bands; band++) {
4381 		int queue = ksz_ets_band_to_queue(p, band);
4382 
4383 		ret = ksz_queue_set_strict(dev, port, queue);
4384 		if (ret)
4385 			return ret;
4386 	}
4387 
4388 	/* Configure the mapping between traffic classes and queues. Note:
4389 	 * priomap variable support 16 traffic classes, but the chip can handle
4390 	 * only 8 classes.
4391 	 */
4392 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
4393 		int queue;
4394 
4395 		if (tc_prio >= dev->info->num_ipms)
4396 			break;
4397 
4398 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
4399 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
4400 	}
4401 
4402 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
4403 }
4404 
4405 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
4406 {
4407 	int ret, queue;
4408 
4409 	/* To restore the default chip configuration, set all queues to use the
4410 	 * WRR scheduler with a weight of 1.
4411 	 */
4412 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4413 		ret = ksz_queue_set_wrr(dev, port, queue,
4414 					KSZ9477_DEFAULT_WRR_WEIGHT);
4415 
4416 		if (ret)
4417 			return ret;
4418 	}
4419 
4420 	/* Revert the queue mapping for TC-priority to its default setting on
4421 	 * the chip.
4422 	 */
4423 	return ksz9477_set_default_prio_queue_mapping(dev, port);
4424 }
4425 
4426 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
4427 			       struct tc_ets_qopt_offload_replace_params *p)
4428 {
4429 	int band;
4430 
4431 	/* Since it is not feasible to share one port among multiple qdisc,
4432 	 * the user must configure all available queues appropriately.
4433 	 */
4434 	if (p->bands != dev->info->num_tx_queues) {
4435 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
4436 			dev->info->num_tx_queues);
4437 		return -EOPNOTSUPP;
4438 	}
4439 
4440 	for (band = 0; band < p->bands; ++band) {
4441 		/* The KSZ switches utilize a weighted round robin configuration
4442 		 * where a certain number of packets can be transmitted from a
4443 		 * queue before the next queue is serviced. For more information
4444 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
4445 		 * documentation on the Port Transmit Queue Control 1 Register.
4446 		 * However, the current ETS Qdisc implementation (as of February
4447 		 * 2023) assigns a weight to each queue based on the number of
4448 		 * bytes or extrapolated bandwidth in percentages. Since this
4449 		 * differs from the KSZ switches' method and we don't want to
4450 		 * fake support by converting bytes to packets, it is better to
4451 		 * return an error instead.
4452 		 */
4453 		if (p->quanta[band]) {
4454 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
4455 			return -EOPNOTSUPP;
4456 		}
4457 	}
4458 
4459 	return 0;
4460 }
4461 
4462 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
4463 				  struct tc_ets_qopt_offload *qopt)
4464 {
4465 	struct ksz_device *dev = ds->priv;
4466 	int ret;
4467 
4468 	if (is_ksz8(dev) && !(ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev)))
4469 		return -EOPNOTSUPP;
4470 
4471 	if (qopt->parent != TC_H_ROOT) {
4472 		dev_err(dev->dev, "Parent should be \"root\"\n");
4473 		return -EOPNOTSUPP;
4474 	}
4475 
4476 	switch (qopt->command) {
4477 	case TC_ETS_REPLACE:
4478 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
4479 		if (ret)
4480 			return ret;
4481 
4482 		if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
4483 			return ksz88x3_tc_ets_add(dev, port,
4484 						  &qopt->replace_params);
4485 		else
4486 			return ksz_tc_ets_add(dev, port, &qopt->replace_params);
4487 	case TC_ETS_DESTROY:
4488 		if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
4489 			return ksz88x3_tc_ets_del(dev, port);
4490 		else
4491 			return ksz_tc_ets_del(dev, port);
4492 	case TC_ETS_STATS:
4493 	case TC_ETS_GRAFT:
4494 		return -EOPNOTSUPP;
4495 	}
4496 
4497 	return -EOPNOTSUPP;
4498 }
4499 
4500 static int ksz_setup_tc(struct dsa_switch *ds, int port,
4501 			enum tc_setup_type type, void *type_data)
4502 {
4503 	switch (type) {
4504 	case TC_SETUP_QDISC_CBS:
4505 		return ksz_setup_tc_cbs(ds, port, type_data);
4506 	case TC_SETUP_QDISC_ETS:
4507 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
4508 	default:
4509 		return -EOPNOTSUPP;
4510 	}
4511 }
4512 
4513 /**
4514  * ksz_handle_wake_reason - Handle wake reason on a specified port.
4515  * @dev: The device structure.
4516  * @port: The port number.
4517  *
4518  * This function reads the PME (Power Management Event) status register of a
4519  * specified port to determine the wake reason. If there is no wake event, it
4520  * returns early. Otherwise, it logs the wake reason which could be due to a
4521  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
4522  * is then cleared to acknowledge the handling of the wake event.
4523  *
4524  * Return: 0 on success, or an error code on failure.
4525  */
4526 int ksz_handle_wake_reason(struct ksz_device *dev, int port)
4527 {
4528 	const struct ksz_dev_ops *ops = dev->dev_ops;
4529 	const u16 *regs = dev->info->regs;
4530 	u8 pme_status;
4531 	int ret;
4532 
4533 	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
4534 			      &pme_status);
4535 	if (ret)
4536 		return ret;
4537 
4538 	if (!pme_status)
4539 		return 0;
4540 
4541 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
4542 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
4543 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
4544 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
4545 
4546 	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
4547 				pme_status);
4548 }
4549 
4550 /**
4551  * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
4552  * @ds: The dsa_switch structure.
4553  * @port: The port number.
4554  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4555  *
4556  * This function checks the device PME wakeup_source flag and chip_id.
4557  * If enabled and supported, it sets the supported and active WoL
4558  * flags.
4559  */
4560 static void ksz_get_wol(struct dsa_switch *ds, int port,
4561 			struct ethtool_wolinfo *wol)
4562 {
4563 	struct ksz_device *dev = ds->priv;
4564 	const u16 *regs = dev->info->regs;
4565 	u8 pme_ctrl;
4566 	int ret;
4567 
4568 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4569 		return;
4570 
4571 	if (!dev->wakeup_source)
4572 		return;
4573 
4574 	wol->supported = WAKE_PHY;
4575 
4576 	/* Check if the current MAC address on this port can be set
4577 	 * as global for WAKE_MAGIC support. The result may vary
4578 	 * dynamically based on other ports configurations.
4579 	 */
4580 	if (ksz_is_port_mac_global_usable(dev->ds, port))
4581 		wol->supported |= WAKE_MAGIC;
4582 
4583 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4584 				       &pme_ctrl);
4585 	if (ret)
4586 		return;
4587 
4588 	if (pme_ctrl & PME_WOL_MAGICPKT)
4589 		wol->wolopts |= WAKE_MAGIC;
4590 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
4591 		wol->wolopts |= WAKE_PHY;
4592 }
4593 
4594 /**
4595  * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
4596  * @ds: The dsa_switch structure.
4597  * @port: The port number.
4598  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4599  *
4600  * This function configures Wake-on-LAN (WoL) settings for a specified
4601  * port. It validates the provided WoL options, checks if PME is
4602  * enabled and supported, clears any previous wake reasons, and sets
4603  * the Magic Packet flag in the port's PME control register if
4604  * specified.
4605  *
4606  * Return: 0 on success, or other error codes on failure.
4607  */
4608 static int ksz_set_wol(struct dsa_switch *ds, int port,
4609 		       struct ethtool_wolinfo *wol)
4610 {
4611 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
4612 	struct ksz_device *dev = ds->priv;
4613 	const u16 *regs = dev->info->regs;
4614 	bool magic_switched_off;
4615 	bool magic_switched_on;
4616 	int ret;
4617 
4618 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
4619 		return -EINVAL;
4620 
4621 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4622 		return -EOPNOTSUPP;
4623 
4624 	if (!dev->wakeup_source)
4625 		return -EOPNOTSUPP;
4626 
4627 	ret = ksz_handle_wake_reason(dev, port);
4628 	if (ret)
4629 		return ret;
4630 
4631 	if (wol->wolopts & WAKE_MAGIC)
4632 		pme_ctrl |= PME_WOL_MAGICPKT;
4633 	if (wol->wolopts & WAKE_PHY)
4634 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
4635 
4636 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4637 				       &pme_ctrl_old);
4638 	if (ret)
4639 		return ret;
4640 
4641 	if (pme_ctrl_old == pme_ctrl)
4642 		return 0;
4643 
4644 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
4645 			    !(pme_ctrl & PME_WOL_MAGICPKT);
4646 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
4647 			    (pme_ctrl & PME_WOL_MAGICPKT);
4648 
4649 	/* To keep reference count of MAC address, we should do this
4650 	 * operation only on change of WOL settings.
4651 	 */
4652 	if (magic_switched_on) {
4653 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
4654 		if (ret)
4655 			return ret;
4656 	} else if (magic_switched_off) {
4657 		ksz_switch_macaddr_put(dev->ds);
4658 	}
4659 
4660 	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
4661 					pme_ctrl);
4662 	if (ret) {
4663 		if (magic_switched_on)
4664 			ksz_switch_macaddr_put(dev->ds);
4665 		return ret;
4666 	}
4667 
4668 	return 0;
4669 }
4670 
4671 /**
4672  * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
4673  *                        considering Wake-on-LAN (WoL) settings.
4674  * @dev: The switch device structure.
4675  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
4676  *               enabled on any port.
4677  *
4678  * This function prepares the switch device for a safe shutdown while taking
4679  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
4680  * the wol_enabled flag accordingly to reflect whether WoL is active on any
4681  * port.
4682  */
4683 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
4684 {
4685 	const struct ksz_dev_ops *ops = dev->dev_ops;
4686 	const u16 *regs = dev->info->regs;
4687 	u8 pme_pin_en = PME_ENABLE;
4688 	struct dsa_port *dp;
4689 	int ret;
4690 
4691 	*wol_enabled = false;
4692 
4693 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4694 		return;
4695 
4696 	if (!dev->wakeup_source)
4697 		return;
4698 
4699 	dsa_switch_for_each_user_port(dp, dev->ds) {
4700 		u8 pme_ctrl = 0;
4701 
4702 		ret = ops->pme_pread8(dev, dp->index,
4703 				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
4704 		if (!ret && pme_ctrl)
4705 			*wol_enabled = true;
4706 
4707 		/* make sure there are no pending wake events which would
4708 		 * prevent the device from going to sleep/shutdown.
4709 		 */
4710 		ksz_handle_wake_reason(dev, dp->index);
4711 	}
4712 
4713 	/* Now we are save to enable PME pin. */
4714 	if (*wol_enabled) {
4715 		if (dev->pme_active_high)
4716 			pme_pin_en |= PME_POLARITY;
4717 		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
4718 		if (ksz_is_ksz87xx(dev))
4719 			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
4720 	}
4721 }
4722 
4723 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4724 				    const unsigned char *addr)
4725 {
4726 	struct dsa_port *dp = dsa_to_port(ds, port);
4727 	struct ethtool_wolinfo wol;
4728 
4729 	if (dp->hsr_dev) {
4730 		dev_err(ds->dev,
4731 			"Cannot change MAC address on port %d with active HSR offload\n",
4732 			port);
4733 		return -EBUSY;
4734 	}
4735 
4736 	/* Need to initialize variable as the code to fill in settings may
4737 	 * not be executed.
4738 	 */
4739 	wol.wolopts = 0;
4740 
4741 	ksz_get_wol(ds, dp->index, &wol);
4742 	if (wol.wolopts & WAKE_MAGIC) {
4743 		dev_err(ds->dev,
4744 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4745 			port);
4746 		return -EBUSY;
4747 	}
4748 
4749 	return 0;
4750 }
4751 
4752 /**
4753  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4754  *                                 can be used as a global address.
4755  * @ds: Pointer to the DSA switch structure.
4756  * @port: The port number on which the MAC address is to be checked.
4757  *
4758  * This function examines the MAC address set on the specified port and
4759  * determines if it can be used as a global address for the switch.
4760  *
4761  * Return: true if the port's MAC address can be used as a global address, false
4762  * otherwise.
4763  */
4764 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4765 {
4766 	struct net_device *user = dsa_to_port(ds, port)->user;
4767 	const unsigned char *addr = user->dev_addr;
4768 	struct ksz_switch_macaddr *switch_macaddr;
4769 	struct ksz_device *dev = ds->priv;
4770 
4771 	ASSERT_RTNL();
4772 
4773 	switch_macaddr = dev->switch_macaddr;
4774 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4775 		return false;
4776 
4777 	return true;
4778 }
4779 
4780 /**
4781  * ksz_switch_macaddr_get - Program the switch's MAC address register.
4782  * @ds: DSA switch instance.
4783  * @port: Port number.
4784  * @extack: Netlink extended acknowledgment.
4785  *
4786  * This function programs the switch's MAC address register with the MAC address
4787  * of the requesting user port. This single address is used by the switch for
4788  * multiple features like HSR self-address filtering and WoL. Other user ports
4789  * can share ownership of this address as long as their MAC address is the same.
4790  * The MAC addresses of user ports must not change while they have ownership of
4791  * the switch MAC address.
4792  *
4793  * Return: 0 on success, or other error codes on failure.
4794  */
4795 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4796 			   struct netlink_ext_ack *extack)
4797 {
4798 	struct net_device *user = dsa_to_port(ds, port)->user;
4799 	const unsigned char *addr = user->dev_addr;
4800 	struct ksz_switch_macaddr *switch_macaddr;
4801 	struct ksz_device *dev = ds->priv;
4802 	const u16 *regs = dev->info->regs;
4803 	int i, ret;
4804 
4805 	/* Make sure concurrent MAC address changes are blocked */
4806 	ASSERT_RTNL();
4807 
4808 	switch_macaddr = dev->switch_macaddr;
4809 	if (switch_macaddr) {
4810 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4811 			NL_SET_ERR_MSG_FMT_MOD(extack,
4812 					       "Switch already configured for MAC address %pM",
4813 					       switch_macaddr->addr);
4814 			return -EBUSY;
4815 		}
4816 
4817 		refcount_inc(&switch_macaddr->refcount);
4818 		return 0;
4819 	}
4820 
4821 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4822 	if (!switch_macaddr)
4823 		return -ENOMEM;
4824 
4825 	ether_addr_copy(switch_macaddr->addr, addr);
4826 	refcount_set(&switch_macaddr->refcount, 1);
4827 	dev->switch_macaddr = switch_macaddr;
4828 
4829 	/* Program the switch MAC address to hardware */
4830 	for (i = 0; i < ETH_ALEN; i++) {
4831 		if (ksz_is_ksz8463(dev)) {
4832 			u16 addr16 = ((u16)addr[i] << 8) | addr[i + 1];
4833 
4834 			ret = ksz_write16(dev, regs[REG_SW_MAC_ADDR] + i,
4835 					  addr16);
4836 			i++;
4837 		} else {
4838 			ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i,
4839 					 addr[i]);
4840 		}
4841 		if (ret)
4842 			goto macaddr_drop;
4843 	}
4844 
4845 	return 0;
4846 
4847 macaddr_drop:
4848 	dev->switch_macaddr = NULL;
4849 	refcount_set(&switch_macaddr->refcount, 0);
4850 	kfree(switch_macaddr);
4851 
4852 	return ret;
4853 }
4854 
4855 void ksz_switch_macaddr_put(struct dsa_switch *ds)
4856 {
4857 	struct ksz_switch_macaddr *switch_macaddr;
4858 	struct ksz_device *dev = ds->priv;
4859 	const u16 *regs = dev->info->regs;
4860 	int i;
4861 
4862 	/* Make sure concurrent MAC address changes are blocked */
4863 	ASSERT_RTNL();
4864 
4865 	switch_macaddr = dev->switch_macaddr;
4866 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4867 		return;
4868 
4869 	for (i = 0; i < ETH_ALEN; i++)
4870 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4871 
4872 	dev->switch_macaddr = NULL;
4873 	kfree(switch_macaddr);
4874 }
4875 
4876 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4877 			struct netlink_ext_ack *extack)
4878 {
4879 	struct ksz_device *dev = ds->priv;
4880 	enum hsr_version ver;
4881 	int ret;
4882 
4883 	ret = hsr_get_version(hsr, &ver);
4884 	if (ret)
4885 		return ret;
4886 
4887 	if (dev->chip_id != KSZ9477_CHIP_ID) {
4888 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4889 		return -EOPNOTSUPP;
4890 	}
4891 
4892 	/* KSZ9477 can support HW offloading of only 1 HSR device */
4893 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4894 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4895 		return -EOPNOTSUPP;
4896 	}
4897 
4898 	/* KSZ9477 only supports HSR v0 and v1 */
4899 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4900 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4901 		return -EOPNOTSUPP;
4902 	}
4903 
4904 	/* KSZ9477 can only perform HSR offloading for up to two ports */
4905 	if (hweight8(dev->hsr_ports) >= 2) {
4906 		NL_SET_ERR_MSG_MOD(extack,
4907 				   "Cannot offload more than two ports - using software HSR");
4908 		return -EOPNOTSUPP;
4909 	}
4910 
4911 	/* Self MAC address filtering, to avoid frames traversing
4912 	 * the HSR ring more than once.
4913 	 */
4914 	ret = ksz_switch_macaddr_get(ds, port, extack);
4915 	if (ret)
4916 		return ret;
4917 
4918 	ksz9477_hsr_join(ds, port, hsr);
4919 	dev->hsr_dev = hsr;
4920 	dev->hsr_ports |= BIT(port);
4921 
4922 	return 0;
4923 }
4924 
4925 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4926 			 struct net_device *hsr)
4927 {
4928 	struct ksz_device *dev = ds->priv;
4929 
4930 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4931 
4932 	ksz9477_hsr_leave(ds, port, hsr);
4933 	dev->hsr_ports &= ~BIT(port);
4934 	if (!dev->hsr_ports)
4935 		dev->hsr_dev = NULL;
4936 
4937 	ksz_switch_macaddr_put(ds);
4938 
4939 	return 0;
4940 }
4941 
4942 static int ksz_suspend(struct dsa_switch *ds)
4943 {
4944 	struct ksz_device *dev = ds->priv;
4945 
4946 	cancel_delayed_work_sync(&dev->mib_read);
4947 	return 0;
4948 }
4949 
4950 static int ksz_resume(struct dsa_switch *ds)
4951 {
4952 	struct ksz_device *dev = ds->priv;
4953 
4954 	if (dev->mib_read_interval)
4955 		schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
4956 	return 0;
4957 }
4958 
4959 static const struct dsa_switch_ops ksz_switch_ops = {
4960 	.get_tag_protocol	= ksz_get_tag_protocol,
4961 	.connect_tag_protocol   = ksz_connect_tag_protocol,
4962 	.get_phy_flags		= ksz_get_phy_flags,
4963 	.setup			= ksz_setup,
4964 	.teardown		= ksz_teardown,
4965 	.phy_read		= ksz_phy_read16,
4966 	.phy_write		= ksz_phy_write16,
4967 	.phylink_get_caps	= ksz_phylink_get_caps,
4968 	.port_setup		= ksz_port_setup,
4969 	.set_ageing_time	= ksz_set_ageing_time,
4970 	.get_strings		= ksz_get_strings,
4971 	.get_ethtool_stats	= ksz_get_ethtool_stats,
4972 	.get_sset_count		= ksz_sset_count,
4973 	.port_bridge_join	= ksz_port_bridge_join,
4974 	.port_bridge_leave	= ksz_port_bridge_leave,
4975 	.port_hsr_join		= ksz_hsr_join,
4976 	.port_hsr_leave		= ksz_hsr_leave,
4977 	.port_set_mac_address	= ksz_port_set_mac_address,
4978 	.port_stp_state_set	= ksz_port_stp_state_set,
4979 	.port_teardown		= ksz_port_teardown,
4980 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4981 	.port_bridge_flags	= ksz_port_bridge_flags,
4982 	.port_fast_age		= ksz_port_fast_age,
4983 	.port_vlan_filtering	= ksz_port_vlan_filtering,
4984 	.port_vlan_add		= ksz_port_vlan_add,
4985 	.port_vlan_del		= ksz_port_vlan_del,
4986 	.port_fdb_dump		= ksz_port_fdb_dump,
4987 	.port_fdb_add		= ksz_port_fdb_add,
4988 	.port_fdb_del		= ksz_port_fdb_del,
4989 	.port_mdb_add           = ksz_port_mdb_add,
4990 	.port_mdb_del           = ksz_port_mdb_del,
4991 	.port_mirror_add	= ksz_port_mirror_add,
4992 	.port_mirror_del	= ksz_port_mirror_del,
4993 	.get_stats64		= ksz_get_stats64,
4994 	.get_pause_stats	= ksz_get_pause_stats,
4995 	.port_change_mtu	= ksz_change_mtu,
4996 	.port_max_mtu		= ksz_max_mtu,
4997 	.get_wol		= ksz_get_wol,
4998 	.set_wol		= ksz_set_wol,
4999 	.suspend		= ksz_suspend,
5000 	.resume			= ksz_resume,
5001 	.get_ts_info		= ksz_get_ts_info,
5002 	.port_hwtstamp_get	= ksz_hwtstamp_get,
5003 	.port_hwtstamp_set	= ksz_hwtstamp_set,
5004 	.port_txtstamp		= ksz_port_txtstamp,
5005 	.port_rxtstamp		= ksz_port_rxtstamp,
5006 	.cls_flower_add		= ksz_cls_flower_add,
5007 	.cls_flower_del		= ksz_cls_flower_del,
5008 	.port_setup_tc		= ksz_setup_tc,
5009 	.support_eee		= ksz_support_eee,
5010 	.set_mac_eee		= ksz_set_mac_eee,
5011 	.port_get_default_prio	= ksz_port_get_default_prio,
5012 	.port_set_default_prio	= ksz_port_set_default_prio,
5013 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
5014 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
5015 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
5016 	.port_get_apptrust	= ksz_port_get_apptrust,
5017 	.port_set_apptrust	= ksz_port_set_apptrust,
5018 };
5019 
5020 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
5021 {
5022 	struct dsa_switch *ds;
5023 	struct ksz_device *swdev;
5024 
5025 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
5026 	if (!ds)
5027 		return NULL;
5028 
5029 	ds->dev = base;
5030 	ds->num_ports = DSA_MAX_PORTS;
5031 	ds->ops = &ksz_switch_ops;
5032 
5033 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
5034 	if (!swdev)
5035 		return NULL;
5036 
5037 	ds->priv = swdev;
5038 	swdev->dev = base;
5039 
5040 	swdev->ds = ds;
5041 	swdev->priv = priv;
5042 
5043 	return swdev;
5044 }
5045 EXPORT_SYMBOL(ksz_switch_alloc);
5046 
5047 /**
5048  * ksz_switch_shutdown - Shutdown routine for the switch device.
5049  * @dev: The switch device structure.
5050  *
5051  * This function is responsible for initiating a shutdown sequence for the
5052  * switch device. It invokes the reset operation defined in the device
5053  * operations, if available, to reset the switch. Subsequently, it calls the
5054  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
5055  * switch.
5056  */
5057 void ksz_switch_shutdown(struct ksz_device *dev)
5058 {
5059 	bool wol_enabled = false;
5060 
5061 	ksz_wol_pre_shutdown(dev, &wol_enabled);
5062 
5063 	if (dev->dev_ops->reset && !wol_enabled)
5064 		dev->dev_ops->reset(dev);
5065 
5066 	dsa_switch_shutdown(dev->ds);
5067 }
5068 EXPORT_SYMBOL(ksz_switch_shutdown);
5069 
5070 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
5071 				  struct device_node *port_dn)
5072 {
5073 	phy_interface_t phy_mode = dev->ports[port_num].interface;
5074 	int rx_delay = -1, tx_delay = -1;
5075 
5076 	if (!phy_interface_mode_is_rgmii(phy_mode))
5077 		return;
5078 
5079 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
5080 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
5081 
5082 	if (rx_delay == -1 && tx_delay == -1) {
5083 		dev_warn(dev->dev,
5084 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
5085 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
5086 			 "\"tx-internal-delay-ps\"",
5087 			 port_num);
5088 
5089 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
5090 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
5091 			rx_delay = 2000;
5092 
5093 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
5094 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
5095 			tx_delay = 2000;
5096 	}
5097 
5098 	if (rx_delay < 0)
5099 		rx_delay = 0;
5100 	if (tx_delay < 0)
5101 		tx_delay = 0;
5102 
5103 	dev->ports[port_num].rgmii_rx_val = rx_delay;
5104 	dev->ports[port_num].rgmii_tx_val = tx_delay;
5105 }
5106 
5107 /**
5108  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
5109  *				 register value.
5110  * @array:	The array of drive strength values to search.
5111  * @array_size:	The size of the array.
5112  * @microamp:	The drive strength value in microamp to be converted.
5113  *
5114  * This function searches the array of drive strength values for the given
5115  * microamp value and returns the corresponding register value for that drive.
5116  *
5117  * Returns: If found, the corresponding register value for that drive strength
5118  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
5119  */
5120 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
5121 				     size_t array_size, int microamp)
5122 {
5123 	int i;
5124 
5125 	for (i = 0; i < array_size; i++) {
5126 		if (array[i].microamp == microamp)
5127 			return array[i].reg_val;
5128 	}
5129 
5130 	return -EINVAL;
5131 }
5132 
5133 /**
5134  * ksz_drive_strength_error() - Report invalid drive strength value
5135  * @dev:	ksz device
5136  * @array:	The array of drive strength values to search.
5137  * @array_size:	The size of the array.
5138  * @microamp:	Invalid drive strength value in microamp
5139  *
5140  * This function logs an error message when an unsupported drive strength value
5141  * is detected. It lists out all the supported drive strength values for
5142  * reference in the error message.
5143  */
5144 static void ksz_drive_strength_error(struct ksz_device *dev,
5145 				     const struct ksz_drive_strength *array,
5146 				     size_t array_size, int microamp)
5147 {
5148 	char supported_values[100];
5149 	size_t remaining_size;
5150 	int added_len;
5151 	char *ptr;
5152 	int i;
5153 
5154 	remaining_size = sizeof(supported_values);
5155 	ptr = supported_values;
5156 
5157 	for (i = 0; i < array_size; i++) {
5158 		added_len = snprintf(ptr, remaining_size,
5159 				     i == 0 ? "%d" : ", %d", array[i].microamp);
5160 
5161 		if (added_len >= remaining_size)
5162 			break;
5163 
5164 		ptr += added_len;
5165 		remaining_size -= added_len;
5166 	}
5167 
5168 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
5169 		microamp, supported_values);
5170 }
5171 
5172 /**
5173  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
5174  *				    chip variants.
5175  * @dev:       ksz device
5176  * @props:     Array of drive strength properties to be applied
5177  * @num_props: Number of properties in the array
5178  *
5179  * This function configures the drive strength for various KSZ9477 chip variants
5180  * based on the provided properties. It handles chip-specific nuances and
5181  * ensures only valid drive strengths are written to the respective chip.
5182  *
5183  * Return: 0 on successful configuration, a negative error code on failure.
5184  */
5185 static int ksz9477_drive_strength_write(struct ksz_device *dev,
5186 					struct ksz_driver_strength_prop *props,
5187 					int num_props)
5188 {
5189 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
5190 	int i, ret, reg;
5191 	u8 mask = 0;
5192 	u8 val = 0;
5193 
5194 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
5195 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5196 			 props[KSZ_DRIVER_STRENGTH_IO].name);
5197 
5198 	if (dev->chip_id == KSZ8795_CHIP_ID ||
5199 	    dev->chip_id == KSZ8794_CHIP_ID ||
5200 	    dev->chip_id == KSZ8765_CHIP_ID)
5201 		reg = KSZ8795_REG_SW_CTRL_20;
5202 	else
5203 		reg = KSZ9477_REG_SW_IO_STRENGTH;
5204 
5205 	for (i = 0; i < num_props; i++) {
5206 		if (props[i].value == -1)
5207 			continue;
5208 
5209 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
5210 						array_size, props[i].value);
5211 		if (ret < 0) {
5212 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
5213 						 array_size, props[i].value);
5214 			return ret;
5215 		}
5216 
5217 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
5218 		val |= ret << props[i].offset;
5219 	}
5220 
5221 	return ksz_rmw8(dev, reg, mask, val);
5222 }
5223 
5224 /**
5225  * ksz88x3_drive_strength_write() - Set the drive strength configuration for
5226  *				    KSZ8863 compatible chip variants.
5227  * @dev:       ksz device
5228  * @props:     Array of drive strength properties to be set
5229  * @num_props: Number of properties in the array
5230  *
5231  * This function applies the specified drive strength settings to KSZ88X3 chip
5232  * variants (KSZ8873, KSZ8863).
5233  * It ensures the configurations align with what the chip variant supports and
5234  * warns or errors out on unsupported settings.
5235  *
5236  * Return: 0 on success, error code otherwise
5237  */
5238 static int ksz88x3_drive_strength_write(struct ksz_device *dev,
5239 					struct ksz_driver_strength_prop *props,
5240 					int num_props)
5241 {
5242 	size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths);
5243 	int microamp;
5244 	int i, ret;
5245 
5246 	for (i = 0; i < num_props; i++) {
5247 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
5248 			continue;
5249 
5250 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5251 			 props[i].name);
5252 	}
5253 
5254 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
5255 	ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size,
5256 					microamp);
5257 	if (ret < 0) {
5258 		ksz_drive_strength_error(dev, ksz88x3_drive_strengths,
5259 					 array_size, microamp);
5260 		return ret;
5261 	}
5262 
5263 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
5264 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
5265 }
5266 
5267 /**
5268  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
5269  *				from device tree properties.
5270  * @dev:	ksz device
5271  *
5272  * This function reads the specified drive strength properties from the
5273  * device tree, validates against the supported chip variants, and sets
5274  * them accordingly. An error should be critical here, as the drive strength
5275  * settings are crucial for EMI compliance.
5276  *
5277  * Return: 0 on success, error code otherwise
5278  */
5279 static int ksz_parse_drive_strength(struct ksz_device *dev)
5280 {
5281 	struct ksz_driver_strength_prop of_props[] = {
5282 		[KSZ_DRIVER_STRENGTH_HI] = {
5283 			.name = "microchip,hi-drive-strength-microamp",
5284 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
5285 			.value = -1,
5286 		},
5287 		[KSZ_DRIVER_STRENGTH_LO] = {
5288 			.name = "microchip,lo-drive-strength-microamp",
5289 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
5290 			.value = -1,
5291 		},
5292 		[KSZ_DRIVER_STRENGTH_IO] = {
5293 			.name = "microchip,io-drive-strength-microamp",
5294 			.offset = 0, /* don't care */
5295 			.value = -1,
5296 		},
5297 	};
5298 	struct device_node *np = dev->dev->of_node;
5299 	bool have_any_prop = false;
5300 	int i, ret;
5301 
5302 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5303 		ret = of_property_read_u32(np, of_props[i].name,
5304 					   &of_props[i].value);
5305 		if (ret && ret != -EINVAL)
5306 			dev_warn(dev->dev, "Failed to read %s\n",
5307 				 of_props[i].name);
5308 		if (ret)
5309 			continue;
5310 
5311 		have_any_prop = true;
5312 	}
5313 
5314 	if (!have_any_prop)
5315 		return 0;
5316 
5317 	switch (dev->chip_id) {
5318 	case KSZ88X3_CHIP_ID:
5319 		return ksz88x3_drive_strength_write(dev, of_props,
5320 						    ARRAY_SIZE(of_props));
5321 	case KSZ8795_CHIP_ID:
5322 	case KSZ8794_CHIP_ID:
5323 	case KSZ8765_CHIP_ID:
5324 	case KSZ8563_CHIP_ID:
5325 	case KSZ8567_CHIP_ID:
5326 	case KSZ9477_CHIP_ID:
5327 	case KSZ9563_CHIP_ID:
5328 	case KSZ9567_CHIP_ID:
5329 	case KSZ9893_CHIP_ID:
5330 	case KSZ9896_CHIP_ID:
5331 	case KSZ9897_CHIP_ID:
5332 	case LAN9646_CHIP_ID:
5333 		return ksz9477_drive_strength_write(dev, of_props,
5334 						    ARRAY_SIZE(of_props));
5335 	default:
5336 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5337 			if (of_props[i].value == -1)
5338 				continue;
5339 
5340 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5341 				 of_props[i].name);
5342 		}
5343 	}
5344 
5345 	return 0;
5346 }
5347 
5348 int ksz_switch_register(struct ksz_device *dev)
5349 {
5350 	const struct ksz_chip_data *info;
5351 	struct device_node *ports;
5352 	phy_interface_t interface;
5353 	unsigned int port_num;
5354 	int ret;
5355 	int i;
5356 
5357 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
5358 						  GPIOD_OUT_LOW);
5359 	if (IS_ERR(dev->reset_gpio))
5360 		return PTR_ERR(dev->reset_gpio);
5361 
5362 	if (dev->reset_gpio) {
5363 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5364 		usleep_range(10000, 12000);
5365 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
5366 		msleep(100);
5367 	}
5368 
5369 	mutex_init(&dev->dev_mutex);
5370 	mutex_init(&dev->regmap_mutex);
5371 	mutex_init(&dev->alu_mutex);
5372 	mutex_init(&dev->vlan_mutex);
5373 
5374 	ret = ksz_switch_detect(dev);
5375 	if (ret)
5376 		return ret;
5377 
5378 	info = ksz_lookup_info(dev->chip_id);
5379 	if (!info)
5380 		return -ENODEV;
5381 
5382 	/* Update the compatible info with the probed one */
5383 	dev->info = info;
5384 
5385 	dev_info(dev->dev, "found switch: %s, rev %i\n",
5386 		 dev->info->dev_name, dev->chip_rev);
5387 
5388 	ret = ksz_check_device_id(dev);
5389 	if (ret)
5390 		return ret;
5391 
5392 	dev->dev_ops = dev->info->ops;
5393 
5394 	ret = dev->dev_ops->init(dev);
5395 	if (ret)
5396 		return ret;
5397 
5398 	dev->ports = devm_kzalloc(dev->dev,
5399 				  dev->info->port_cnt * sizeof(struct ksz_port),
5400 				  GFP_KERNEL);
5401 	if (!dev->ports)
5402 		return -ENOMEM;
5403 
5404 	for (i = 0; i < dev->info->port_cnt; i++) {
5405 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
5406 		mutex_init(&dev->ports[i].mib.cnt_mutex);
5407 		dev->ports[i].mib.counters =
5408 			devm_kzalloc(dev->dev,
5409 				     sizeof(u64) * (dev->info->mib_cnt + 1),
5410 				     GFP_KERNEL);
5411 		if (!dev->ports[i].mib.counters)
5412 			return -ENOMEM;
5413 
5414 		dev->ports[i].ksz_dev = dev;
5415 		dev->ports[i].num = i;
5416 	}
5417 
5418 	/* set the real number of ports */
5419 	dev->ds->num_ports = dev->info->port_cnt;
5420 
5421 	/* set the phylink ops */
5422 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
5423 
5424 	/* Host port interface will be self detected, or specifically set in
5425 	 * device tree.
5426 	 */
5427 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
5428 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
5429 	if (dev->dev->of_node) {
5430 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
5431 		if (ret == 0)
5432 			dev->compat_interface = interface;
5433 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
5434 		if (!ports)
5435 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
5436 		if (ports) {
5437 			for_each_available_child_of_node_scoped(ports, port) {
5438 				if (of_property_read_u32(port, "reg",
5439 							 &port_num))
5440 					continue;
5441 				if (!(dev->port_mask & BIT(port_num))) {
5442 					of_node_put(ports);
5443 					return -EINVAL;
5444 				}
5445 				of_get_phy_mode(port,
5446 						&dev->ports[port_num].interface);
5447 
5448 				ksz_parse_rgmii_delay(dev, port_num, port);
5449 				dev->ports[port_num].fiber =
5450 					of_property_read_bool(port,
5451 							      "micrel,fiber-mode");
5452 			}
5453 			of_node_put(ports);
5454 		}
5455 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
5456 							 "microchip,synclko-125");
5457 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
5458 							     "microchip,synclko-disable");
5459 		if (dev->synclko_125 && dev->synclko_disable) {
5460 			dev_err(dev->dev, "inconsistent synclko settings\n");
5461 			return -EINVAL;
5462 		}
5463 
5464 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
5465 							   "wakeup-source");
5466 		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
5467 							     "microchip,pme-active-high");
5468 	}
5469 
5470 	ret = dsa_register_switch(dev->ds);
5471 	if (ret) {
5472 		dev->dev_ops->exit(dev);
5473 		return ret;
5474 	}
5475 
5476 	/* Read MIB counters every 30 seconds to avoid overflow. */
5477 	dev->mib_read_interval = msecs_to_jiffies(5000);
5478 
5479 	/* Start the MIB timer. */
5480 	schedule_delayed_work(&dev->mib_read, 0);
5481 
5482 	return ret;
5483 }
5484 EXPORT_SYMBOL(ksz_switch_register);
5485 
5486 void ksz_switch_remove(struct ksz_device *dev)
5487 {
5488 	/* timer started */
5489 	if (dev->mib_read_interval) {
5490 		dev->mib_read_interval = 0;
5491 		cancel_delayed_work_sync(&dev->mib_read);
5492 	}
5493 
5494 	dev->dev_ops->exit(dev);
5495 	dsa_unregister_switch(dev->ds);
5496 
5497 	if (dev->reset_gpio)
5498 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5499 
5500 }
5501 EXPORT_SYMBOL(ksz_switch_remove);
5502 
5503 #ifdef CONFIG_PM_SLEEP
5504 int ksz_switch_suspend(struct device *dev)
5505 {
5506 	struct ksz_device *priv = dev_get_drvdata(dev);
5507 
5508 	return dsa_switch_suspend(priv->ds);
5509 }
5510 EXPORT_SYMBOL(ksz_switch_suspend);
5511 
5512 int ksz_switch_resume(struct device *dev)
5513 {
5514 	struct ksz_device *priv = dev_get_drvdata(dev);
5515 
5516 	return dsa_switch_resume(priv->ds);
5517 }
5518 EXPORT_SYMBOL(ksz_switch_resume);
5519 #endif
5520 
5521 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
5522 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
5523 MODULE_LICENSE("GPL");
5524