1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Microchip switch driver main logic 4 * 5 * Copyright (C) 2017-2025 Microchip Technology Inc. 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/dsa/ksz_common.h> 10 #include <linux/export.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/platform_data/microchip-ksz.h> 15 #include <linux/phy.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_bridge.h> 18 #include <linux/if_vlan.h> 19 #include <linux/if_hsr.h> 20 #include <linux/irq.h> 21 #include <linux/irqdomain.h> 22 #include <linux/of.h> 23 #include <linux/of_mdio.h> 24 #include <linux/of_net.h> 25 #include <linux/micrel_phy.h> 26 #include <net/dsa.h> 27 #include <net/ieee8021q.h> 28 #include <net/pkt_cls.h> 29 #include <net/switchdev.h> 30 31 #include "ksz_common.h" 32 #include "ksz_dcb.h" 33 #include "ksz_ptp.h" 34 #include "ksz8.h" 35 #include "ksz9477.h" 36 #include "lan937x.h" 37 38 #define MIB_COUNTER_NUM 0x20 39 40 struct ksz_stats_raw { 41 u64 rx_hi; 42 u64 rx_undersize; 43 u64 rx_fragments; 44 u64 rx_oversize; 45 u64 rx_jabbers; 46 u64 rx_symbol_err; 47 u64 rx_crc_err; 48 u64 rx_align_err; 49 u64 rx_mac_ctrl; 50 u64 rx_pause; 51 u64 rx_bcast; 52 u64 rx_mcast; 53 u64 rx_ucast; 54 u64 rx_64_or_less; 55 u64 rx_65_127; 56 u64 rx_128_255; 57 u64 rx_256_511; 58 u64 rx_512_1023; 59 u64 rx_1024_1522; 60 u64 rx_1523_2000; 61 u64 rx_2001; 62 u64 tx_hi; 63 u64 tx_late_col; 64 u64 tx_pause; 65 u64 tx_bcast; 66 u64 tx_mcast; 67 u64 tx_ucast; 68 u64 tx_deferred; 69 u64 tx_total_col; 70 u64 tx_exc_col; 71 u64 tx_single_col; 72 u64 tx_mult_col; 73 u64 rx_total; 74 u64 tx_total; 75 u64 rx_discards; 76 u64 tx_discards; 77 }; 78 79 struct ksz88xx_stats_raw { 80 u64 rx; 81 u64 rx_hi; 82 u64 rx_undersize; 83 u64 rx_fragments; 84 u64 rx_oversize; 85 u64 rx_jabbers; 86 u64 rx_symbol_err; 87 u64 rx_crc_err; 88 u64 rx_align_err; 89 u64 rx_mac_ctrl; 90 u64 rx_pause; 91 u64 rx_bcast; 92 u64 rx_mcast; 93 u64 rx_ucast; 94 u64 rx_64_or_less; 95 u64 rx_65_127; 96 u64 rx_128_255; 97 u64 rx_256_511; 98 u64 rx_512_1023; 99 u64 rx_1024_1522; 100 u64 tx; 101 u64 tx_hi; 102 u64 tx_late_col; 103 u64 tx_pause; 104 u64 tx_bcast; 105 u64 tx_mcast; 106 u64 tx_ucast; 107 u64 tx_deferred; 108 u64 tx_total_col; 109 u64 tx_exc_col; 110 u64 tx_single_col; 111 u64 tx_mult_col; 112 u64 rx_discards; 113 u64 tx_discards; 114 }; 115 116 static const struct ksz_mib_names ksz88xx_mib_names[] = { 117 { 0x00, "rx" }, 118 { 0x01, "rx_hi" }, 119 { 0x02, "rx_undersize" }, 120 { 0x03, "rx_fragments" }, 121 { 0x04, "rx_oversize" }, 122 { 0x05, "rx_jabbers" }, 123 { 0x06, "rx_symbol_err" }, 124 { 0x07, "rx_crc_err" }, 125 { 0x08, "rx_align_err" }, 126 { 0x09, "rx_mac_ctrl" }, 127 { 0x0a, "rx_pause" }, 128 { 0x0b, "rx_bcast" }, 129 { 0x0c, "rx_mcast" }, 130 { 0x0d, "rx_ucast" }, 131 { 0x0e, "rx_64_or_less" }, 132 { 0x0f, "rx_65_127" }, 133 { 0x10, "rx_128_255" }, 134 { 0x11, "rx_256_511" }, 135 { 0x12, "rx_512_1023" }, 136 { 0x13, "rx_1024_1522" }, 137 { 0x14, "tx" }, 138 { 0x15, "tx_hi" }, 139 { 0x16, "tx_late_col" }, 140 { 0x17, "tx_pause" }, 141 { 0x18, "tx_bcast" }, 142 { 0x19, "tx_mcast" }, 143 { 0x1a, "tx_ucast" }, 144 { 0x1b, "tx_deferred" }, 145 { 0x1c, "tx_total_col" }, 146 { 0x1d, "tx_exc_col" }, 147 { 0x1e, "tx_single_col" }, 148 { 0x1f, "tx_mult_col" }, 149 { 0x100, "rx_discards" }, 150 { 0x101, "tx_discards" }, 151 }; 152 153 static const struct ksz_mib_names ksz9477_mib_names[] = { 154 { 0x00, "rx_hi" }, 155 { 0x01, "rx_undersize" }, 156 { 0x02, "rx_fragments" }, 157 { 0x03, "rx_oversize" }, 158 { 0x04, "rx_jabbers" }, 159 { 0x05, "rx_symbol_err" }, 160 { 0x06, "rx_crc_err" }, 161 { 0x07, "rx_align_err" }, 162 { 0x08, "rx_mac_ctrl" }, 163 { 0x09, "rx_pause" }, 164 { 0x0A, "rx_bcast" }, 165 { 0x0B, "rx_mcast" }, 166 { 0x0C, "rx_ucast" }, 167 { 0x0D, "rx_64_or_less" }, 168 { 0x0E, "rx_65_127" }, 169 { 0x0F, "rx_128_255" }, 170 { 0x10, "rx_256_511" }, 171 { 0x11, "rx_512_1023" }, 172 { 0x12, "rx_1024_1522" }, 173 { 0x13, "rx_1523_2000" }, 174 { 0x14, "rx_2001" }, 175 { 0x15, "tx_hi" }, 176 { 0x16, "tx_late_col" }, 177 { 0x17, "tx_pause" }, 178 { 0x18, "tx_bcast" }, 179 { 0x19, "tx_mcast" }, 180 { 0x1A, "tx_ucast" }, 181 { 0x1B, "tx_deferred" }, 182 { 0x1C, "tx_total_col" }, 183 { 0x1D, "tx_exc_col" }, 184 { 0x1E, "tx_single_col" }, 185 { 0x1F, "tx_mult_col" }, 186 { 0x80, "rx_total" }, 187 { 0x81, "tx_total" }, 188 { 0x82, "rx_discards" }, 189 { 0x83, "tx_discards" }, 190 }; 191 192 struct ksz_driver_strength_prop { 193 const char *name; 194 int offset; 195 int value; 196 }; 197 198 enum ksz_driver_strength_type { 199 KSZ_DRIVER_STRENGTH_HI, 200 KSZ_DRIVER_STRENGTH_LO, 201 KSZ_DRIVER_STRENGTH_IO, 202 }; 203 204 /** 205 * struct ksz_drive_strength - drive strength mapping 206 * @reg_val: register value 207 * @microamp: microamp value 208 */ 209 struct ksz_drive_strength { 210 u32 reg_val; 211 u32 microamp; 212 }; 213 214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants 215 * 216 * This values are not documented in KSZ9477 variants but confirmed by 217 * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893 218 * and KSZ8563 are using same register (drive strength) settings like KSZ8795. 219 * 220 * Documentation in KSZ8795CLX provides more information with some 221 * recommendations: 222 * - for high speed signals 223 * 1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using 224 * 2.5V or 3.3V VDDIO. 225 * 2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with 226 * using 1.8V VDDIO. 227 * 3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V 228 * or 3.3V VDDIO. 229 * 4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO. 230 * 5. In same interface, the heavy loading should use higher one of the 231 * drive current strength. 232 * - for low speed signals 233 * 1. 3.3V VDDIO, use either 4 mA or 8 mA. 234 * 2. 2.5V VDDIO, use either 8 mA or 12 mA. 235 * 3. 1.8V VDDIO, use either 12 mA or 16 mA. 236 * 4. If it is heavy loading, can use higher drive current strength. 237 */ 238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = { 239 { SW_DRIVE_STRENGTH_2MA, 2000 }, 240 { SW_DRIVE_STRENGTH_4MA, 4000 }, 241 { SW_DRIVE_STRENGTH_8MA, 8000 }, 242 { SW_DRIVE_STRENGTH_12MA, 12000 }, 243 { SW_DRIVE_STRENGTH_16MA, 16000 }, 244 { SW_DRIVE_STRENGTH_20MA, 20000 }, 245 { SW_DRIVE_STRENGTH_24MA, 24000 }, 246 { SW_DRIVE_STRENGTH_28MA, 28000 }, 247 }; 248 249 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, .. 250 * variants. 251 * This values are documented in KSZ8873 and KSZ8863 datasheets. 252 */ 253 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = { 254 { 0, 8000 }, 255 { KSZ8873_DRIVE_STRENGTH_16MA, 16000 }, 256 }; 257 258 static void ksz88x3_phylink_mac_config(struct phylink_config *config, 259 unsigned int mode, 260 const struct phylink_link_state *state); 261 static void ksz_phylink_mac_config(struct phylink_config *config, 262 unsigned int mode, 263 const struct phylink_link_state *state); 264 static void ksz_phylink_mac_link_down(struct phylink_config *config, 265 unsigned int mode, 266 phy_interface_t interface); 267 268 /** 269 * ksz_phylink_mac_disable_tx_lpi() - Callback to signal LPI support (Dummy) 270 * @config: phylink config structure 271 * 272 * This function is a dummy handler. See ksz_phylink_mac_enable_tx_lpi() for 273 * a detailed explanation of EEE/LPI handling in KSZ switches. 274 */ 275 static void ksz_phylink_mac_disable_tx_lpi(struct phylink_config *config) 276 { 277 } 278 279 /** 280 * ksz_phylink_mac_enable_tx_lpi() - Callback to signal LPI support (Dummy) 281 * @config: phylink config structure 282 * @timer: timer value before entering LPI (unused) 283 * @tx_clock_stop: whether to stop the TX clock in LPI mode (unused) 284 * 285 * This function signals to phylink that the driver architecture supports 286 * LPI management, enabling phylink to control EEE advertisement during 287 * negotiation according to IEEE Std 802.3 (Clause 78). 288 * 289 * Hardware Management of EEE/LPI State: 290 * For KSZ switch ports with integrated PHYs (e.g., KSZ9893R ports 1-2), 291 * observation and testing suggest that the actual EEE / Low Power Idle (LPI) 292 * state transitions are managed autonomously by the hardware based on 293 * the auto-negotiation results. (Note: While the datasheet describes EEE 294 * operation based on negotiation, it doesn't explicitly detail the internal 295 * MAC/PHY interaction, so autonomous hardware management of the MAC state 296 * for LPI is inferred from observed behavior). 297 * This hardware control, consistent with the switch's ability to operate 298 * autonomously via strapping, means MAC-level software intervention is not 299 * required or exposed for managing the LPI state once EEE is negotiated. 300 * (Ref: KSZ9893R Data Sheet DS00002420D, primarily Section 4.7.5 explaining 301 * EEE, also Sections 4.1.7 on Auto-Negotiation and 3.2.1 on Configuration 302 * Straps). 303 * 304 * Additionally, ports configured as MAC interfaces (e.g., KSZ9893R port 3) 305 * lack documented MAC-level LPI control. 306 * 307 * Therefore, this callback performs no action and serves primarily to inform 308 * phylink of LPI awareness and to document the inferred hardware behavior. 309 * 310 * Returns: 0 (Always success) 311 */ 312 static int ksz_phylink_mac_enable_tx_lpi(struct phylink_config *config, 313 u32 timer, bool tx_clock_stop) 314 { 315 return 0; 316 } 317 318 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = { 319 .mac_config = ksz88x3_phylink_mac_config, 320 .mac_link_down = ksz_phylink_mac_link_down, 321 .mac_link_up = ksz8_phylink_mac_link_up, 322 .mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi, 323 .mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi, 324 }; 325 326 static const struct phylink_mac_ops ksz8_phylink_mac_ops = { 327 .mac_config = ksz_phylink_mac_config, 328 .mac_link_down = ksz_phylink_mac_link_down, 329 .mac_link_up = ksz8_phylink_mac_link_up, 330 .mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi, 331 .mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi, 332 }; 333 334 static const struct ksz_dev_ops ksz8463_dev_ops = { 335 .setup = ksz8_setup, 336 .get_port_addr = ksz8463_get_port_addr, 337 .cfg_port_member = ksz8_cfg_port_member, 338 .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, 339 .port_setup = ksz8_port_setup, 340 .r_phy = ksz8463_r_phy, 341 .w_phy = ksz8463_w_phy, 342 .r_mib_cnt = ksz8_r_mib_cnt, 343 .r_mib_pkt = ksz8_r_mib_pkt, 344 .r_mib_stat64 = ksz88xx_r_mib_stats64, 345 .freeze_mib = ksz8_freeze_mib, 346 .port_init_cnt = ksz8_port_init_cnt, 347 .fdb_dump = ksz8_fdb_dump, 348 .fdb_add = ksz8_fdb_add, 349 .fdb_del = ksz8_fdb_del, 350 .mdb_add = ksz8_mdb_add, 351 .mdb_del = ksz8_mdb_del, 352 .vlan_filtering = ksz8_port_vlan_filtering, 353 .vlan_add = ksz8_port_vlan_add, 354 .vlan_del = ksz8_port_vlan_del, 355 .mirror_add = ksz8_port_mirror_add, 356 .mirror_del = ksz8_port_mirror_del, 357 .get_caps = ksz8_get_caps, 358 .config_cpu_port = ksz8_config_cpu_port, 359 .enable_stp_addr = ksz8_enable_stp_addr, 360 .reset = ksz8_reset_switch, 361 .init = ksz8_switch_init, 362 .exit = ksz8_switch_exit, 363 .change_mtu = ksz8_change_mtu, 364 }; 365 366 static const struct ksz_dev_ops ksz88xx_dev_ops = { 367 .setup = ksz8_setup, 368 .get_port_addr = ksz8_get_port_addr, 369 .cfg_port_member = ksz8_cfg_port_member, 370 .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, 371 .port_setup = ksz8_port_setup, 372 .r_phy = ksz8_r_phy, 373 .w_phy = ksz8_w_phy, 374 .r_mib_cnt = ksz8_r_mib_cnt, 375 .r_mib_pkt = ksz8_r_mib_pkt, 376 .r_mib_stat64 = ksz88xx_r_mib_stats64, 377 .freeze_mib = ksz8_freeze_mib, 378 .port_init_cnt = ksz8_port_init_cnt, 379 .fdb_dump = ksz8_fdb_dump, 380 .fdb_add = ksz8_fdb_add, 381 .fdb_del = ksz8_fdb_del, 382 .mdb_add = ksz8_mdb_add, 383 .mdb_del = ksz8_mdb_del, 384 .vlan_filtering = ksz8_port_vlan_filtering, 385 .vlan_add = ksz8_port_vlan_add, 386 .vlan_del = ksz8_port_vlan_del, 387 .mirror_add = ksz8_port_mirror_add, 388 .mirror_del = ksz8_port_mirror_del, 389 .get_caps = ksz8_get_caps, 390 .config_cpu_port = ksz8_config_cpu_port, 391 .enable_stp_addr = ksz8_enable_stp_addr, 392 .reset = ksz8_reset_switch, 393 .init = ksz8_switch_init, 394 .exit = ksz8_switch_exit, 395 .change_mtu = ksz8_change_mtu, 396 .pme_write8 = ksz8_pme_write8, 397 .pme_pread8 = ksz8_pme_pread8, 398 .pme_pwrite8 = ksz8_pme_pwrite8, 399 }; 400 401 static const struct ksz_dev_ops ksz87xx_dev_ops = { 402 .setup = ksz8_setup, 403 .get_port_addr = ksz8_get_port_addr, 404 .cfg_port_member = ksz8_cfg_port_member, 405 .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, 406 .port_setup = ksz8_port_setup, 407 .r_phy = ksz8_r_phy, 408 .w_phy = ksz8_w_phy, 409 .r_mib_cnt = ksz8_r_mib_cnt, 410 .r_mib_pkt = ksz8_r_mib_pkt, 411 .r_mib_stat64 = ksz_r_mib_stats64, 412 .freeze_mib = ksz8_freeze_mib, 413 .port_init_cnt = ksz8_port_init_cnt, 414 .fdb_dump = ksz8_fdb_dump, 415 .fdb_add = ksz8_fdb_add, 416 .fdb_del = ksz8_fdb_del, 417 .mdb_add = ksz8_mdb_add, 418 .mdb_del = ksz8_mdb_del, 419 .vlan_filtering = ksz8_port_vlan_filtering, 420 .vlan_add = ksz8_port_vlan_add, 421 .vlan_del = ksz8_port_vlan_del, 422 .mirror_add = ksz8_port_mirror_add, 423 .mirror_del = ksz8_port_mirror_del, 424 .get_caps = ksz8_get_caps, 425 .config_cpu_port = ksz8_config_cpu_port, 426 .enable_stp_addr = ksz8_enable_stp_addr, 427 .reset = ksz8_reset_switch, 428 .init = ksz8_switch_init, 429 .exit = ksz8_switch_exit, 430 .change_mtu = ksz8_change_mtu, 431 .pme_write8 = ksz8_pme_write8, 432 .pme_pread8 = ksz8_pme_pread8, 433 .pme_pwrite8 = ksz8_pme_pwrite8, 434 }; 435 436 static void ksz9477_phylink_mac_link_up(struct phylink_config *config, 437 struct phy_device *phydev, 438 unsigned int mode, 439 phy_interface_t interface, 440 int speed, int duplex, bool tx_pause, 441 bool rx_pause); 442 443 static struct phylink_pcs * 444 ksz_phylink_mac_select_pcs(struct phylink_config *config, 445 phy_interface_t interface) 446 { 447 struct dsa_port *dp = dsa_phylink_to_port(config); 448 struct ksz_device *dev = dp->ds->priv; 449 struct ksz_port *p = &dev->ports[dp->index]; 450 451 if (ksz_is_sgmii_port(dev, dp->index) && 452 (interface == PHY_INTERFACE_MODE_SGMII || 453 interface == PHY_INTERFACE_MODE_1000BASEX)) 454 return p->pcs; 455 456 return NULL; 457 } 458 459 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = { 460 .mac_config = ksz_phylink_mac_config, 461 .mac_link_down = ksz_phylink_mac_link_down, 462 .mac_link_up = ksz9477_phylink_mac_link_up, 463 .mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi, 464 .mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi, 465 .mac_select_pcs = ksz_phylink_mac_select_pcs, 466 }; 467 468 static const struct ksz_dev_ops ksz9477_dev_ops = { 469 .setup = ksz9477_setup, 470 .get_port_addr = ksz9477_get_port_addr, 471 .cfg_port_member = ksz9477_cfg_port_member, 472 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, 473 .port_setup = ksz9477_port_setup, 474 .set_ageing_time = ksz9477_set_ageing_time, 475 .r_phy = ksz9477_r_phy, 476 .w_phy = ksz9477_w_phy, 477 .r_mib_cnt = ksz9477_r_mib_cnt, 478 .r_mib_pkt = ksz9477_r_mib_pkt, 479 .r_mib_stat64 = ksz_r_mib_stats64, 480 .freeze_mib = ksz9477_freeze_mib, 481 .port_init_cnt = ksz9477_port_init_cnt, 482 .vlan_filtering = ksz9477_port_vlan_filtering, 483 .vlan_add = ksz9477_port_vlan_add, 484 .vlan_del = ksz9477_port_vlan_del, 485 .mirror_add = ksz9477_port_mirror_add, 486 .mirror_del = ksz9477_port_mirror_del, 487 .get_caps = ksz9477_get_caps, 488 .fdb_dump = ksz9477_fdb_dump, 489 .fdb_add = ksz9477_fdb_add, 490 .fdb_del = ksz9477_fdb_del, 491 .mdb_add = ksz9477_mdb_add, 492 .mdb_del = ksz9477_mdb_del, 493 .change_mtu = ksz9477_change_mtu, 494 .pme_write8 = ksz_write8, 495 .pme_pread8 = ksz_pread8, 496 .pme_pwrite8 = ksz_pwrite8, 497 .config_cpu_port = ksz9477_config_cpu_port, 498 .tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc, 499 .enable_stp_addr = ksz9477_enable_stp_addr, 500 .reset = ksz9477_reset_switch, 501 .init = ksz9477_switch_init, 502 .exit = ksz9477_switch_exit, 503 .pcs_create = ksz9477_pcs_create, 504 }; 505 506 static const struct phylink_mac_ops lan937x_phylink_mac_ops = { 507 .mac_config = ksz_phylink_mac_config, 508 .mac_link_down = ksz_phylink_mac_link_down, 509 .mac_link_up = ksz9477_phylink_mac_link_up, 510 .mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi, 511 .mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi, 512 }; 513 514 static const struct ksz_dev_ops lan937x_dev_ops = { 515 .setup = lan937x_setup, 516 .teardown = lan937x_teardown, 517 .get_port_addr = ksz9477_get_port_addr, 518 .cfg_port_member = ksz9477_cfg_port_member, 519 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, 520 .port_setup = lan937x_port_setup, 521 .set_ageing_time = lan937x_set_ageing_time, 522 .mdio_bus_preinit = lan937x_mdio_bus_preinit, 523 .create_phy_addr_map = lan937x_create_phy_addr_map, 524 .r_phy = lan937x_r_phy, 525 .w_phy = lan937x_w_phy, 526 .r_mib_cnt = ksz9477_r_mib_cnt, 527 .r_mib_pkt = ksz9477_r_mib_pkt, 528 .r_mib_stat64 = ksz_r_mib_stats64, 529 .freeze_mib = ksz9477_freeze_mib, 530 .port_init_cnt = ksz9477_port_init_cnt, 531 .vlan_filtering = ksz9477_port_vlan_filtering, 532 .vlan_add = ksz9477_port_vlan_add, 533 .vlan_del = ksz9477_port_vlan_del, 534 .mirror_add = ksz9477_port_mirror_add, 535 .mirror_del = ksz9477_port_mirror_del, 536 .get_caps = lan937x_phylink_get_caps, 537 .setup_rgmii_delay = lan937x_setup_rgmii_delay, 538 .fdb_dump = ksz9477_fdb_dump, 539 .fdb_add = ksz9477_fdb_add, 540 .fdb_del = ksz9477_fdb_del, 541 .mdb_add = ksz9477_mdb_add, 542 .mdb_del = ksz9477_mdb_del, 543 .change_mtu = lan937x_change_mtu, 544 .config_cpu_port = lan937x_config_cpu_port, 545 .tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc, 546 .enable_stp_addr = ksz9477_enable_stp_addr, 547 .reset = lan937x_reset_switch, 548 .init = lan937x_switch_init, 549 .exit = lan937x_switch_exit, 550 }; 551 552 static const u16 ksz8463_regs[] = { 553 [REG_SW_MAC_ADDR] = 0x10, 554 [REG_IND_CTRL_0] = 0x30, 555 [REG_IND_DATA_8] = 0x26, 556 [REG_IND_DATA_CHECK] = 0x26, 557 [REG_IND_DATA_HI] = 0x28, 558 [REG_IND_DATA_LO] = 0x2C, 559 [REG_IND_MIB_CHECK] = 0x2F, 560 [P_FORCE_CTRL] = 0x0C, 561 [P_LINK_STATUS] = 0x0E, 562 [P_LOCAL_CTRL] = 0x0C, 563 [P_NEG_RESTART_CTRL] = 0x0D, 564 [P_REMOTE_STATUS] = 0x0E, 565 [P_SPEED_STATUS] = 0x0F, 566 [S_TAIL_TAG_CTRL] = 0xAD, 567 [P_STP_CTRL] = 0x6F, 568 [S_START_CTRL] = 0x01, 569 [S_BROADCAST_CTRL] = 0x06, 570 [S_MULTICAST_CTRL] = 0x04, 571 }; 572 573 static const u32 ksz8463_masks[] = { 574 [PORT_802_1P_REMAPPING] = BIT(3), 575 [SW_TAIL_TAG_ENABLE] = BIT(0), 576 [MIB_COUNTER_OVERFLOW] = BIT(7), 577 [MIB_COUNTER_VALID] = BIT(6), 578 [VLAN_TABLE_FID] = GENMASK(15, 12), 579 [VLAN_TABLE_MEMBERSHIP] = GENMASK(18, 16), 580 [VLAN_TABLE_VALID] = BIT(19), 581 [STATIC_MAC_TABLE_VALID] = BIT(19), 582 [STATIC_MAC_TABLE_USE_FID] = BIT(21), 583 [STATIC_MAC_TABLE_FID] = GENMASK(25, 22), 584 [STATIC_MAC_TABLE_OVERRIDE] = BIT(20), 585 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(18, 16), 586 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(1, 0), 587 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(2), 588 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 589 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 24), 590 [DYNAMIC_MAC_TABLE_FID] = GENMASK(19, 16), 591 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(21, 20), 592 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(23, 22), 593 }; 594 595 static u8 ksz8463_shifts[] = { 596 [VLAN_TABLE_MEMBERSHIP_S] = 16, 597 [STATIC_MAC_FWD_PORTS] = 16, 598 [STATIC_MAC_FID] = 22, 599 [DYNAMIC_MAC_ENTRIES_H] = 8, 600 [DYNAMIC_MAC_ENTRIES] = 24, 601 [DYNAMIC_MAC_FID] = 16, 602 [DYNAMIC_MAC_TIMESTAMP] = 22, 603 [DYNAMIC_MAC_SRC_PORT] = 20, 604 }; 605 606 static const u16 ksz8795_regs[] = { 607 [REG_SW_MAC_ADDR] = 0x68, 608 [REG_IND_CTRL_0] = 0x6E, 609 [REG_IND_DATA_8] = 0x70, 610 [REG_IND_DATA_CHECK] = 0x72, 611 [REG_IND_DATA_HI] = 0x71, 612 [REG_IND_DATA_LO] = 0x75, 613 [REG_IND_MIB_CHECK] = 0x74, 614 [REG_IND_BYTE] = 0xA0, 615 [P_FORCE_CTRL] = 0x0C, 616 [P_LINK_STATUS] = 0x0E, 617 [P_LOCAL_CTRL] = 0x07, 618 [P_NEG_RESTART_CTRL] = 0x0D, 619 [P_REMOTE_STATUS] = 0x08, 620 [P_SPEED_STATUS] = 0x09, 621 [S_TAIL_TAG_CTRL] = 0x0C, 622 [P_STP_CTRL] = 0x02, 623 [S_START_CTRL] = 0x01, 624 [S_BROADCAST_CTRL] = 0x06, 625 [S_MULTICAST_CTRL] = 0x04, 626 [P_XMII_CTRL_0] = 0x06, 627 [P_XMII_CTRL_1] = 0x06, 628 [REG_SW_PME_CTRL] = 0x8003, 629 [REG_PORT_PME_STATUS] = 0x8003, 630 [REG_PORT_PME_CTRL] = 0x8007, 631 }; 632 633 static const u32 ksz8795_masks[] = { 634 [PORT_802_1P_REMAPPING] = BIT(7), 635 [SW_TAIL_TAG_ENABLE] = BIT(1), 636 [MIB_COUNTER_OVERFLOW] = BIT(6), 637 [MIB_COUNTER_VALID] = BIT(5), 638 [VLAN_TABLE_FID] = GENMASK(6, 0), 639 [VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7), 640 [VLAN_TABLE_VALID] = BIT(12), 641 [STATIC_MAC_TABLE_VALID] = BIT(21), 642 [STATIC_MAC_TABLE_USE_FID] = BIT(23), 643 [STATIC_MAC_TABLE_FID] = GENMASK(30, 24), 644 [STATIC_MAC_TABLE_OVERRIDE] = BIT(22), 645 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(20, 16), 646 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0), 647 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7), 648 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 649 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29), 650 [DYNAMIC_MAC_TABLE_FID] = GENMASK(22, 16), 651 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24), 652 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27), 653 [P_MII_TX_FLOW_CTRL] = BIT(5), 654 [P_MII_RX_FLOW_CTRL] = BIT(5), 655 }; 656 657 static const u8 ksz8795_xmii_ctrl0[] = { 658 [P_MII_100MBIT] = 0, 659 [P_MII_10MBIT] = 1, 660 [P_MII_FULL_DUPLEX] = 0, 661 [P_MII_HALF_DUPLEX] = 1, 662 }; 663 664 static const u8 ksz8795_xmii_ctrl1[] = { 665 [P_RGMII_SEL] = 3, 666 [P_GMII_SEL] = 2, 667 [P_RMII_SEL] = 1, 668 [P_MII_SEL] = 0, 669 [P_GMII_1GBIT] = 1, 670 [P_GMII_NOT_1GBIT] = 0, 671 }; 672 673 static const u8 ksz8795_shifts[] = { 674 [VLAN_TABLE_MEMBERSHIP_S] = 7, 675 [VLAN_TABLE] = 16, 676 [STATIC_MAC_FWD_PORTS] = 16, 677 [STATIC_MAC_FID] = 24, 678 [DYNAMIC_MAC_ENTRIES_H] = 3, 679 [DYNAMIC_MAC_ENTRIES] = 29, 680 [DYNAMIC_MAC_FID] = 16, 681 [DYNAMIC_MAC_TIMESTAMP] = 27, 682 [DYNAMIC_MAC_SRC_PORT] = 24, 683 }; 684 685 static const u16 ksz8863_regs[] = { 686 [REG_SW_MAC_ADDR] = 0x70, 687 [REG_IND_CTRL_0] = 0x79, 688 [REG_IND_DATA_8] = 0x7B, 689 [REG_IND_DATA_CHECK] = 0x7B, 690 [REG_IND_DATA_HI] = 0x7C, 691 [REG_IND_DATA_LO] = 0x80, 692 [REG_IND_MIB_CHECK] = 0x80, 693 [P_FORCE_CTRL] = 0x0C, 694 [P_LINK_STATUS] = 0x0E, 695 [P_LOCAL_CTRL] = 0x0C, 696 [P_NEG_RESTART_CTRL] = 0x0D, 697 [P_REMOTE_STATUS] = 0x0E, 698 [P_SPEED_STATUS] = 0x0F, 699 [S_TAIL_TAG_CTRL] = 0x03, 700 [P_STP_CTRL] = 0x02, 701 [S_START_CTRL] = 0x01, 702 [S_BROADCAST_CTRL] = 0x06, 703 [S_MULTICAST_CTRL] = 0x04, 704 }; 705 706 static const u32 ksz8863_masks[] = { 707 [PORT_802_1P_REMAPPING] = BIT(3), 708 [SW_TAIL_TAG_ENABLE] = BIT(6), 709 [MIB_COUNTER_OVERFLOW] = BIT(7), 710 [MIB_COUNTER_VALID] = BIT(6), 711 [VLAN_TABLE_FID] = GENMASK(15, 12), 712 [VLAN_TABLE_MEMBERSHIP] = GENMASK(18, 16), 713 [VLAN_TABLE_VALID] = BIT(19), 714 [STATIC_MAC_TABLE_VALID] = BIT(19), 715 [STATIC_MAC_TABLE_USE_FID] = BIT(21), 716 [STATIC_MAC_TABLE_FID] = GENMASK(25, 22), 717 [STATIC_MAC_TABLE_OVERRIDE] = BIT(20), 718 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(18, 16), 719 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(1, 0), 720 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(2), 721 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 722 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 24), 723 [DYNAMIC_MAC_TABLE_FID] = GENMASK(19, 16), 724 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(21, 20), 725 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(23, 22), 726 }; 727 728 static u8 ksz8863_shifts[] = { 729 [VLAN_TABLE_MEMBERSHIP_S] = 16, 730 [STATIC_MAC_FWD_PORTS] = 16, 731 [STATIC_MAC_FID] = 22, 732 [DYNAMIC_MAC_ENTRIES_H] = 8, 733 [DYNAMIC_MAC_ENTRIES] = 24, 734 [DYNAMIC_MAC_FID] = 16, 735 [DYNAMIC_MAC_TIMESTAMP] = 22, 736 [DYNAMIC_MAC_SRC_PORT] = 20, 737 }; 738 739 static const u16 ksz8895_regs[] = { 740 [REG_SW_MAC_ADDR] = 0x68, 741 [REG_IND_CTRL_0] = 0x6E, 742 [REG_IND_DATA_8] = 0x70, 743 [REG_IND_DATA_CHECK] = 0x72, 744 [REG_IND_DATA_HI] = 0x71, 745 [REG_IND_DATA_LO] = 0x75, 746 [REG_IND_MIB_CHECK] = 0x75, 747 [P_FORCE_CTRL] = 0x0C, 748 [P_LINK_STATUS] = 0x0E, 749 [P_LOCAL_CTRL] = 0x0C, 750 [P_NEG_RESTART_CTRL] = 0x0D, 751 [P_REMOTE_STATUS] = 0x0E, 752 [P_SPEED_STATUS] = 0x09, 753 [S_TAIL_TAG_CTRL] = 0x0C, 754 [P_STP_CTRL] = 0x02, 755 [S_START_CTRL] = 0x01, 756 [S_BROADCAST_CTRL] = 0x06, 757 [S_MULTICAST_CTRL] = 0x04, 758 }; 759 760 static const u32 ksz8895_masks[] = { 761 [PORT_802_1P_REMAPPING] = BIT(7), 762 [SW_TAIL_TAG_ENABLE] = BIT(1), 763 [MIB_COUNTER_OVERFLOW] = BIT(7), 764 [MIB_COUNTER_VALID] = BIT(6), 765 [VLAN_TABLE_FID] = GENMASK(6, 0), 766 [VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7), 767 [VLAN_TABLE_VALID] = BIT(12), 768 [STATIC_MAC_TABLE_VALID] = BIT(21), 769 [STATIC_MAC_TABLE_USE_FID] = BIT(23), 770 [STATIC_MAC_TABLE_FID] = GENMASK(30, 24), 771 [STATIC_MAC_TABLE_OVERRIDE] = BIT(22), 772 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(20, 16), 773 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0), 774 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7), 775 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 776 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29), 777 [DYNAMIC_MAC_TABLE_FID] = GENMASK(22, 16), 778 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24), 779 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27), 780 }; 781 782 static const u8 ksz8895_shifts[] = { 783 [VLAN_TABLE_MEMBERSHIP_S] = 7, 784 [VLAN_TABLE] = 13, 785 [STATIC_MAC_FWD_PORTS] = 16, 786 [STATIC_MAC_FID] = 24, 787 [DYNAMIC_MAC_ENTRIES_H] = 3, 788 [DYNAMIC_MAC_ENTRIES] = 29, 789 [DYNAMIC_MAC_FID] = 16, 790 [DYNAMIC_MAC_TIMESTAMP] = 27, 791 [DYNAMIC_MAC_SRC_PORT] = 24, 792 }; 793 794 static const u16 ksz9477_regs[] = { 795 [REG_SW_MAC_ADDR] = 0x0302, 796 [P_STP_CTRL] = 0x0B04, 797 [S_START_CTRL] = 0x0300, 798 [S_BROADCAST_CTRL] = 0x0332, 799 [S_MULTICAST_CTRL] = 0x0331, 800 [P_XMII_CTRL_0] = 0x0300, 801 [P_XMII_CTRL_1] = 0x0301, 802 [REG_SW_PME_CTRL] = 0x0006, 803 [REG_PORT_PME_STATUS] = 0x0013, 804 [REG_PORT_PME_CTRL] = 0x0017, 805 }; 806 807 static const u32 ksz9477_masks[] = { 808 [ALU_STAT_WRITE] = 0, 809 [ALU_STAT_READ] = 1, 810 [P_MII_TX_FLOW_CTRL] = BIT(5), 811 [P_MII_RX_FLOW_CTRL] = BIT(3), 812 }; 813 814 static const u8 ksz9477_shifts[] = { 815 [ALU_STAT_INDEX] = 16, 816 }; 817 818 static const u8 ksz9477_xmii_ctrl0[] = { 819 [P_MII_100MBIT] = 1, 820 [P_MII_10MBIT] = 0, 821 [P_MII_FULL_DUPLEX] = 1, 822 [P_MII_HALF_DUPLEX] = 0, 823 }; 824 825 static const u8 ksz9477_xmii_ctrl1[] = { 826 [P_RGMII_SEL] = 0, 827 [P_RMII_SEL] = 1, 828 [P_GMII_SEL] = 2, 829 [P_MII_SEL] = 3, 830 [P_GMII_1GBIT] = 0, 831 [P_GMII_NOT_1GBIT] = 1, 832 }; 833 834 static const u32 lan937x_masks[] = { 835 [ALU_STAT_WRITE] = 1, 836 [ALU_STAT_READ] = 2, 837 [P_MII_TX_FLOW_CTRL] = BIT(5), 838 [P_MII_RX_FLOW_CTRL] = BIT(3), 839 }; 840 841 static const u8 lan937x_shifts[] = { 842 [ALU_STAT_INDEX] = 8, 843 }; 844 845 static const struct regmap_range ksz8563_valid_regs[] = { 846 regmap_reg_range(0x0000, 0x0003), 847 regmap_reg_range(0x0006, 0x0006), 848 regmap_reg_range(0x000f, 0x001f), 849 regmap_reg_range(0x0100, 0x0100), 850 regmap_reg_range(0x0104, 0x0107), 851 regmap_reg_range(0x010d, 0x010d), 852 regmap_reg_range(0x0110, 0x0113), 853 regmap_reg_range(0x0120, 0x012b), 854 regmap_reg_range(0x0201, 0x0201), 855 regmap_reg_range(0x0210, 0x0213), 856 regmap_reg_range(0x0300, 0x0300), 857 regmap_reg_range(0x0302, 0x031b), 858 regmap_reg_range(0x0320, 0x032b), 859 regmap_reg_range(0x0330, 0x0336), 860 regmap_reg_range(0x0338, 0x033e), 861 regmap_reg_range(0x0340, 0x035f), 862 regmap_reg_range(0x0370, 0x0370), 863 regmap_reg_range(0x0378, 0x0378), 864 regmap_reg_range(0x037c, 0x037d), 865 regmap_reg_range(0x0390, 0x0393), 866 regmap_reg_range(0x0400, 0x040e), 867 regmap_reg_range(0x0410, 0x042f), 868 regmap_reg_range(0x0500, 0x0519), 869 regmap_reg_range(0x0520, 0x054b), 870 regmap_reg_range(0x0550, 0x05b3), 871 872 /* port 1 */ 873 regmap_reg_range(0x1000, 0x1001), 874 regmap_reg_range(0x1004, 0x100b), 875 regmap_reg_range(0x1013, 0x1013), 876 regmap_reg_range(0x1017, 0x1017), 877 regmap_reg_range(0x101b, 0x101b), 878 regmap_reg_range(0x101f, 0x1021), 879 regmap_reg_range(0x1030, 0x1030), 880 regmap_reg_range(0x1100, 0x1111), 881 regmap_reg_range(0x111a, 0x111d), 882 regmap_reg_range(0x1122, 0x1127), 883 regmap_reg_range(0x112a, 0x112b), 884 regmap_reg_range(0x1136, 0x1139), 885 regmap_reg_range(0x113e, 0x113f), 886 regmap_reg_range(0x1400, 0x1401), 887 regmap_reg_range(0x1403, 0x1403), 888 regmap_reg_range(0x1410, 0x1417), 889 regmap_reg_range(0x1420, 0x1423), 890 regmap_reg_range(0x1500, 0x1507), 891 regmap_reg_range(0x1600, 0x1612), 892 regmap_reg_range(0x1800, 0x180f), 893 regmap_reg_range(0x1900, 0x1907), 894 regmap_reg_range(0x1914, 0x191b), 895 regmap_reg_range(0x1a00, 0x1a03), 896 regmap_reg_range(0x1a04, 0x1a08), 897 regmap_reg_range(0x1b00, 0x1b01), 898 regmap_reg_range(0x1b04, 0x1b04), 899 regmap_reg_range(0x1c00, 0x1c05), 900 regmap_reg_range(0x1c08, 0x1c1b), 901 902 /* port 2 */ 903 regmap_reg_range(0x2000, 0x2001), 904 regmap_reg_range(0x2004, 0x200b), 905 regmap_reg_range(0x2013, 0x2013), 906 regmap_reg_range(0x2017, 0x2017), 907 regmap_reg_range(0x201b, 0x201b), 908 regmap_reg_range(0x201f, 0x2021), 909 regmap_reg_range(0x2030, 0x2030), 910 regmap_reg_range(0x2100, 0x2111), 911 regmap_reg_range(0x211a, 0x211d), 912 regmap_reg_range(0x2122, 0x2127), 913 regmap_reg_range(0x212a, 0x212b), 914 regmap_reg_range(0x2136, 0x2139), 915 regmap_reg_range(0x213e, 0x213f), 916 regmap_reg_range(0x2400, 0x2401), 917 regmap_reg_range(0x2403, 0x2403), 918 regmap_reg_range(0x2410, 0x2417), 919 regmap_reg_range(0x2420, 0x2423), 920 regmap_reg_range(0x2500, 0x2507), 921 regmap_reg_range(0x2600, 0x2612), 922 regmap_reg_range(0x2800, 0x280f), 923 regmap_reg_range(0x2900, 0x2907), 924 regmap_reg_range(0x2914, 0x291b), 925 regmap_reg_range(0x2a00, 0x2a03), 926 regmap_reg_range(0x2a04, 0x2a08), 927 regmap_reg_range(0x2b00, 0x2b01), 928 regmap_reg_range(0x2b04, 0x2b04), 929 regmap_reg_range(0x2c00, 0x2c05), 930 regmap_reg_range(0x2c08, 0x2c1b), 931 932 /* port 3 */ 933 regmap_reg_range(0x3000, 0x3001), 934 regmap_reg_range(0x3004, 0x300b), 935 regmap_reg_range(0x3013, 0x3013), 936 regmap_reg_range(0x3017, 0x3017), 937 regmap_reg_range(0x301b, 0x301b), 938 regmap_reg_range(0x301f, 0x3021), 939 regmap_reg_range(0x3030, 0x3030), 940 regmap_reg_range(0x3300, 0x3301), 941 regmap_reg_range(0x3303, 0x3303), 942 regmap_reg_range(0x3400, 0x3401), 943 regmap_reg_range(0x3403, 0x3403), 944 regmap_reg_range(0x3410, 0x3417), 945 regmap_reg_range(0x3420, 0x3423), 946 regmap_reg_range(0x3500, 0x3507), 947 regmap_reg_range(0x3600, 0x3612), 948 regmap_reg_range(0x3800, 0x380f), 949 regmap_reg_range(0x3900, 0x3907), 950 regmap_reg_range(0x3914, 0x391b), 951 regmap_reg_range(0x3a00, 0x3a03), 952 regmap_reg_range(0x3a04, 0x3a08), 953 regmap_reg_range(0x3b00, 0x3b01), 954 regmap_reg_range(0x3b04, 0x3b04), 955 regmap_reg_range(0x3c00, 0x3c05), 956 regmap_reg_range(0x3c08, 0x3c1b), 957 }; 958 959 static const struct regmap_access_table ksz8563_register_set = { 960 .yes_ranges = ksz8563_valid_regs, 961 .n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs), 962 }; 963 964 static const struct regmap_range ksz9477_valid_regs[] = { 965 regmap_reg_range(0x0000, 0x0003), 966 regmap_reg_range(0x0006, 0x0006), 967 regmap_reg_range(0x0010, 0x001f), 968 regmap_reg_range(0x0100, 0x0100), 969 regmap_reg_range(0x0103, 0x0107), 970 regmap_reg_range(0x010d, 0x010d), 971 regmap_reg_range(0x0110, 0x0113), 972 regmap_reg_range(0x0120, 0x012b), 973 regmap_reg_range(0x0201, 0x0201), 974 regmap_reg_range(0x0210, 0x0213), 975 regmap_reg_range(0x0300, 0x0300), 976 regmap_reg_range(0x0302, 0x031b), 977 regmap_reg_range(0x0320, 0x032b), 978 regmap_reg_range(0x0330, 0x0336), 979 regmap_reg_range(0x0338, 0x033b), 980 regmap_reg_range(0x033e, 0x033e), 981 regmap_reg_range(0x0340, 0x035f), 982 regmap_reg_range(0x0370, 0x0370), 983 regmap_reg_range(0x0378, 0x0378), 984 regmap_reg_range(0x037c, 0x037d), 985 regmap_reg_range(0x0390, 0x0393), 986 regmap_reg_range(0x0400, 0x040e), 987 regmap_reg_range(0x0410, 0x042f), 988 regmap_reg_range(0x0444, 0x044b), 989 regmap_reg_range(0x0450, 0x046f), 990 regmap_reg_range(0x0500, 0x0519), 991 regmap_reg_range(0x0520, 0x054b), 992 regmap_reg_range(0x0550, 0x05b3), 993 regmap_reg_range(0x0604, 0x060b), 994 regmap_reg_range(0x0610, 0x0612), 995 regmap_reg_range(0x0614, 0x062c), 996 regmap_reg_range(0x0640, 0x0645), 997 regmap_reg_range(0x0648, 0x064d), 998 999 /* port 1 */ 1000 regmap_reg_range(0x1000, 0x1001), 1001 regmap_reg_range(0x1013, 0x1013), 1002 regmap_reg_range(0x1017, 0x1017), 1003 regmap_reg_range(0x101b, 0x101b), 1004 regmap_reg_range(0x101f, 0x1020), 1005 regmap_reg_range(0x1030, 0x1030), 1006 regmap_reg_range(0x1100, 0x1115), 1007 regmap_reg_range(0x111a, 0x111f), 1008 regmap_reg_range(0x1120, 0x112b), 1009 regmap_reg_range(0x1134, 0x113b), 1010 regmap_reg_range(0x113c, 0x113f), 1011 regmap_reg_range(0x1400, 0x1401), 1012 regmap_reg_range(0x1403, 0x1403), 1013 regmap_reg_range(0x1410, 0x1417), 1014 regmap_reg_range(0x1420, 0x1423), 1015 regmap_reg_range(0x1500, 0x1507), 1016 regmap_reg_range(0x1600, 0x1613), 1017 regmap_reg_range(0x1800, 0x180f), 1018 regmap_reg_range(0x1820, 0x1827), 1019 regmap_reg_range(0x1830, 0x1837), 1020 regmap_reg_range(0x1840, 0x184b), 1021 regmap_reg_range(0x1900, 0x1907), 1022 regmap_reg_range(0x1914, 0x191b), 1023 regmap_reg_range(0x1920, 0x1920), 1024 regmap_reg_range(0x1923, 0x1927), 1025 regmap_reg_range(0x1a00, 0x1a03), 1026 regmap_reg_range(0x1a04, 0x1a07), 1027 regmap_reg_range(0x1b00, 0x1b01), 1028 regmap_reg_range(0x1b04, 0x1b04), 1029 regmap_reg_range(0x1c00, 0x1c05), 1030 regmap_reg_range(0x1c08, 0x1c1b), 1031 1032 /* port 2 */ 1033 regmap_reg_range(0x2000, 0x2001), 1034 regmap_reg_range(0x2013, 0x2013), 1035 regmap_reg_range(0x2017, 0x2017), 1036 regmap_reg_range(0x201b, 0x201b), 1037 regmap_reg_range(0x201f, 0x2020), 1038 regmap_reg_range(0x2030, 0x2030), 1039 regmap_reg_range(0x2100, 0x2115), 1040 regmap_reg_range(0x211a, 0x211f), 1041 regmap_reg_range(0x2120, 0x212b), 1042 regmap_reg_range(0x2134, 0x213b), 1043 regmap_reg_range(0x213c, 0x213f), 1044 regmap_reg_range(0x2400, 0x2401), 1045 regmap_reg_range(0x2403, 0x2403), 1046 regmap_reg_range(0x2410, 0x2417), 1047 regmap_reg_range(0x2420, 0x2423), 1048 regmap_reg_range(0x2500, 0x2507), 1049 regmap_reg_range(0x2600, 0x2613), 1050 regmap_reg_range(0x2800, 0x280f), 1051 regmap_reg_range(0x2820, 0x2827), 1052 regmap_reg_range(0x2830, 0x2837), 1053 regmap_reg_range(0x2840, 0x284b), 1054 regmap_reg_range(0x2900, 0x2907), 1055 regmap_reg_range(0x2914, 0x291b), 1056 regmap_reg_range(0x2920, 0x2920), 1057 regmap_reg_range(0x2923, 0x2927), 1058 regmap_reg_range(0x2a00, 0x2a03), 1059 regmap_reg_range(0x2a04, 0x2a07), 1060 regmap_reg_range(0x2b00, 0x2b01), 1061 regmap_reg_range(0x2b04, 0x2b04), 1062 regmap_reg_range(0x2c00, 0x2c05), 1063 regmap_reg_range(0x2c08, 0x2c1b), 1064 1065 /* port 3 */ 1066 regmap_reg_range(0x3000, 0x3001), 1067 regmap_reg_range(0x3013, 0x3013), 1068 regmap_reg_range(0x3017, 0x3017), 1069 regmap_reg_range(0x301b, 0x301b), 1070 regmap_reg_range(0x301f, 0x3020), 1071 regmap_reg_range(0x3030, 0x3030), 1072 regmap_reg_range(0x3100, 0x3115), 1073 regmap_reg_range(0x311a, 0x311f), 1074 regmap_reg_range(0x3120, 0x312b), 1075 regmap_reg_range(0x3134, 0x313b), 1076 regmap_reg_range(0x313c, 0x313f), 1077 regmap_reg_range(0x3400, 0x3401), 1078 regmap_reg_range(0x3403, 0x3403), 1079 regmap_reg_range(0x3410, 0x3417), 1080 regmap_reg_range(0x3420, 0x3423), 1081 regmap_reg_range(0x3500, 0x3507), 1082 regmap_reg_range(0x3600, 0x3613), 1083 regmap_reg_range(0x3800, 0x380f), 1084 regmap_reg_range(0x3820, 0x3827), 1085 regmap_reg_range(0x3830, 0x3837), 1086 regmap_reg_range(0x3840, 0x384b), 1087 regmap_reg_range(0x3900, 0x3907), 1088 regmap_reg_range(0x3914, 0x391b), 1089 regmap_reg_range(0x3920, 0x3920), 1090 regmap_reg_range(0x3923, 0x3927), 1091 regmap_reg_range(0x3a00, 0x3a03), 1092 regmap_reg_range(0x3a04, 0x3a07), 1093 regmap_reg_range(0x3b00, 0x3b01), 1094 regmap_reg_range(0x3b04, 0x3b04), 1095 regmap_reg_range(0x3c00, 0x3c05), 1096 regmap_reg_range(0x3c08, 0x3c1b), 1097 1098 /* port 4 */ 1099 regmap_reg_range(0x4000, 0x4001), 1100 regmap_reg_range(0x4013, 0x4013), 1101 regmap_reg_range(0x4017, 0x4017), 1102 regmap_reg_range(0x401b, 0x401b), 1103 regmap_reg_range(0x401f, 0x4020), 1104 regmap_reg_range(0x4030, 0x4030), 1105 regmap_reg_range(0x4100, 0x4115), 1106 regmap_reg_range(0x411a, 0x411f), 1107 regmap_reg_range(0x4120, 0x412b), 1108 regmap_reg_range(0x4134, 0x413b), 1109 regmap_reg_range(0x413c, 0x413f), 1110 regmap_reg_range(0x4400, 0x4401), 1111 regmap_reg_range(0x4403, 0x4403), 1112 regmap_reg_range(0x4410, 0x4417), 1113 regmap_reg_range(0x4420, 0x4423), 1114 regmap_reg_range(0x4500, 0x4507), 1115 regmap_reg_range(0x4600, 0x4613), 1116 regmap_reg_range(0x4800, 0x480f), 1117 regmap_reg_range(0x4820, 0x4827), 1118 regmap_reg_range(0x4830, 0x4837), 1119 regmap_reg_range(0x4840, 0x484b), 1120 regmap_reg_range(0x4900, 0x4907), 1121 regmap_reg_range(0x4914, 0x491b), 1122 regmap_reg_range(0x4920, 0x4920), 1123 regmap_reg_range(0x4923, 0x4927), 1124 regmap_reg_range(0x4a00, 0x4a03), 1125 regmap_reg_range(0x4a04, 0x4a07), 1126 regmap_reg_range(0x4b00, 0x4b01), 1127 regmap_reg_range(0x4b04, 0x4b04), 1128 regmap_reg_range(0x4c00, 0x4c05), 1129 regmap_reg_range(0x4c08, 0x4c1b), 1130 1131 /* port 5 */ 1132 regmap_reg_range(0x5000, 0x5001), 1133 regmap_reg_range(0x5013, 0x5013), 1134 regmap_reg_range(0x5017, 0x5017), 1135 regmap_reg_range(0x501b, 0x501b), 1136 regmap_reg_range(0x501f, 0x5020), 1137 regmap_reg_range(0x5030, 0x5030), 1138 regmap_reg_range(0x5100, 0x5115), 1139 regmap_reg_range(0x511a, 0x511f), 1140 regmap_reg_range(0x5120, 0x512b), 1141 regmap_reg_range(0x5134, 0x513b), 1142 regmap_reg_range(0x513c, 0x513f), 1143 regmap_reg_range(0x5400, 0x5401), 1144 regmap_reg_range(0x5403, 0x5403), 1145 regmap_reg_range(0x5410, 0x5417), 1146 regmap_reg_range(0x5420, 0x5423), 1147 regmap_reg_range(0x5500, 0x5507), 1148 regmap_reg_range(0x5600, 0x5613), 1149 regmap_reg_range(0x5800, 0x580f), 1150 regmap_reg_range(0x5820, 0x5827), 1151 regmap_reg_range(0x5830, 0x5837), 1152 regmap_reg_range(0x5840, 0x584b), 1153 regmap_reg_range(0x5900, 0x5907), 1154 regmap_reg_range(0x5914, 0x591b), 1155 regmap_reg_range(0x5920, 0x5920), 1156 regmap_reg_range(0x5923, 0x5927), 1157 regmap_reg_range(0x5a00, 0x5a03), 1158 regmap_reg_range(0x5a04, 0x5a07), 1159 regmap_reg_range(0x5b00, 0x5b01), 1160 regmap_reg_range(0x5b04, 0x5b04), 1161 regmap_reg_range(0x5c00, 0x5c05), 1162 regmap_reg_range(0x5c08, 0x5c1b), 1163 1164 /* port 6 */ 1165 regmap_reg_range(0x6000, 0x6001), 1166 regmap_reg_range(0x6013, 0x6013), 1167 regmap_reg_range(0x6017, 0x6017), 1168 regmap_reg_range(0x601b, 0x601b), 1169 regmap_reg_range(0x601f, 0x6020), 1170 regmap_reg_range(0x6030, 0x6030), 1171 regmap_reg_range(0x6300, 0x6301), 1172 regmap_reg_range(0x6400, 0x6401), 1173 regmap_reg_range(0x6403, 0x6403), 1174 regmap_reg_range(0x6410, 0x6417), 1175 regmap_reg_range(0x6420, 0x6423), 1176 regmap_reg_range(0x6500, 0x6507), 1177 regmap_reg_range(0x6600, 0x6613), 1178 regmap_reg_range(0x6800, 0x680f), 1179 regmap_reg_range(0x6820, 0x6827), 1180 regmap_reg_range(0x6830, 0x6837), 1181 regmap_reg_range(0x6840, 0x684b), 1182 regmap_reg_range(0x6900, 0x6907), 1183 regmap_reg_range(0x6914, 0x691b), 1184 regmap_reg_range(0x6920, 0x6920), 1185 regmap_reg_range(0x6923, 0x6927), 1186 regmap_reg_range(0x6a00, 0x6a03), 1187 regmap_reg_range(0x6a04, 0x6a07), 1188 regmap_reg_range(0x6b00, 0x6b01), 1189 regmap_reg_range(0x6b04, 0x6b04), 1190 regmap_reg_range(0x6c00, 0x6c05), 1191 regmap_reg_range(0x6c08, 0x6c1b), 1192 1193 /* port 7 */ 1194 regmap_reg_range(0x7000, 0x7001), 1195 regmap_reg_range(0x7013, 0x7013), 1196 regmap_reg_range(0x7017, 0x7017), 1197 regmap_reg_range(0x701b, 0x701b), 1198 regmap_reg_range(0x701f, 0x7020), 1199 regmap_reg_range(0x7030, 0x7030), 1200 regmap_reg_range(0x7200, 0x7207), 1201 regmap_reg_range(0x7300, 0x7301), 1202 regmap_reg_range(0x7400, 0x7401), 1203 regmap_reg_range(0x7403, 0x7403), 1204 regmap_reg_range(0x7410, 0x7417), 1205 regmap_reg_range(0x7420, 0x7423), 1206 regmap_reg_range(0x7500, 0x7507), 1207 regmap_reg_range(0x7600, 0x7613), 1208 regmap_reg_range(0x7800, 0x780f), 1209 regmap_reg_range(0x7820, 0x7827), 1210 regmap_reg_range(0x7830, 0x7837), 1211 regmap_reg_range(0x7840, 0x784b), 1212 regmap_reg_range(0x7900, 0x7907), 1213 regmap_reg_range(0x7914, 0x791b), 1214 regmap_reg_range(0x7920, 0x7920), 1215 regmap_reg_range(0x7923, 0x7927), 1216 regmap_reg_range(0x7a00, 0x7a03), 1217 regmap_reg_range(0x7a04, 0x7a07), 1218 regmap_reg_range(0x7b00, 0x7b01), 1219 regmap_reg_range(0x7b04, 0x7b04), 1220 regmap_reg_range(0x7c00, 0x7c05), 1221 regmap_reg_range(0x7c08, 0x7c1b), 1222 }; 1223 1224 static const struct regmap_access_table ksz9477_register_set = { 1225 .yes_ranges = ksz9477_valid_regs, 1226 .n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs), 1227 }; 1228 1229 static const struct regmap_range ksz9896_valid_regs[] = { 1230 regmap_reg_range(0x0000, 0x0003), 1231 regmap_reg_range(0x0006, 0x0006), 1232 regmap_reg_range(0x0010, 0x001f), 1233 regmap_reg_range(0x0100, 0x0100), 1234 regmap_reg_range(0x0103, 0x0107), 1235 regmap_reg_range(0x010d, 0x010d), 1236 regmap_reg_range(0x0110, 0x0113), 1237 regmap_reg_range(0x0120, 0x0127), 1238 regmap_reg_range(0x0201, 0x0201), 1239 regmap_reg_range(0x0210, 0x0213), 1240 regmap_reg_range(0x0300, 0x0300), 1241 regmap_reg_range(0x0302, 0x030b), 1242 regmap_reg_range(0x0310, 0x031b), 1243 regmap_reg_range(0x0320, 0x032b), 1244 regmap_reg_range(0x0330, 0x0336), 1245 regmap_reg_range(0x0338, 0x033b), 1246 regmap_reg_range(0x033e, 0x033e), 1247 regmap_reg_range(0x0340, 0x035f), 1248 regmap_reg_range(0x0370, 0x0370), 1249 regmap_reg_range(0x0378, 0x0378), 1250 regmap_reg_range(0x037c, 0x037d), 1251 regmap_reg_range(0x0390, 0x0393), 1252 regmap_reg_range(0x0400, 0x040e), 1253 regmap_reg_range(0x0410, 0x042f), 1254 1255 /* port 1 */ 1256 regmap_reg_range(0x1000, 0x1001), 1257 regmap_reg_range(0x1013, 0x1013), 1258 regmap_reg_range(0x1017, 0x1017), 1259 regmap_reg_range(0x101b, 0x101b), 1260 regmap_reg_range(0x101f, 0x1020), 1261 regmap_reg_range(0x1030, 0x1030), 1262 regmap_reg_range(0x1100, 0x1115), 1263 regmap_reg_range(0x111a, 0x111f), 1264 regmap_reg_range(0x1120, 0x112b), 1265 regmap_reg_range(0x1134, 0x113b), 1266 regmap_reg_range(0x113c, 0x113f), 1267 regmap_reg_range(0x1400, 0x1401), 1268 regmap_reg_range(0x1403, 0x1403), 1269 regmap_reg_range(0x1410, 0x1417), 1270 regmap_reg_range(0x1420, 0x1423), 1271 regmap_reg_range(0x1500, 0x1507), 1272 regmap_reg_range(0x1600, 0x1612), 1273 regmap_reg_range(0x1800, 0x180f), 1274 regmap_reg_range(0x1820, 0x1827), 1275 regmap_reg_range(0x1830, 0x1837), 1276 regmap_reg_range(0x1840, 0x184b), 1277 regmap_reg_range(0x1900, 0x1907), 1278 regmap_reg_range(0x1914, 0x1915), 1279 regmap_reg_range(0x1a00, 0x1a03), 1280 regmap_reg_range(0x1a04, 0x1a07), 1281 regmap_reg_range(0x1b00, 0x1b01), 1282 regmap_reg_range(0x1b04, 0x1b04), 1283 1284 /* port 2 */ 1285 regmap_reg_range(0x2000, 0x2001), 1286 regmap_reg_range(0x2013, 0x2013), 1287 regmap_reg_range(0x2017, 0x2017), 1288 regmap_reg_range(0x201b, 0x201b), 1289 regmap_reg_range(0x201f, 0x2020), 1290 regmap_reg_range(0x2030, 0x2030), 1291 regmap_reg_range(0x2100, 0x2115), 1292 regmap_reg_range(0x211a, 0x211f), 1293 regmap_reg_range(0x2120, 0x212b), 1294 regmap_reg_range(0x2134, 0x213b), 1295 regmap_reg_range(0x213c, 0x213f), 1296 regmap_reg_range(0x2400, 0x2401), 1297 regmap_reg_range(0x2403, 0x2403), 1298 regmap_reg_range(0x2410, 0x2417), 1299 regmap_reg_range(0x2420, 0x2423), 1300 regmap_reg_range(0x2500, 0x2507), 1301 regmap_reg_range(0x2600, 0x2612), 1302 regmap_reg_range(0x2800, 0x280f), 1303 regmap_reg_range(0x2820, 0x2827), 1304 regmap_reg_range(0x2830, 0x2837), 1305 regmap_reg_range(0x2840, 0x284b), 1306 regmap_reg_range(0x2900, 0x2907), 1307 regmap_reg_range(0x2914, 0x2915), 1308 regmap_reg_range(0x2a00, 0x2a03), 1309 regmap_reg_range(0x2a04, 0x2a07), 1310 regmap_reg_range(0x2b00, 0x2b01), 1311 regmap_reg_range(0x2b04, 0x2b04), 1312 1313 /* port 3 */ 1314 regmap_reg_range(0x3000, 0x3001), 1315 regmap_reg_range(0x3013, 0x3013), 1316 regmap_reg_range(0x3017, 0x3017), 1317 regmap_reg_range(0x301b, 0x301b), 1318 regmap_reg_range(0x301f, 0x3020), 1319 regmap_reg_range(0x3030, 0x3030), 1320 regmap_reg_range(0x3100, 0x3115), 1321 regmap_reg_range(0x311a, 0x311f), 1322 regmap_reg_range(0x3120, 0x312b), 1323 regmap_reg_range(0x3134, 0x313b), 1324 regmap_reg_range(0x313c, 0x313f), 1325 regmap_reg_range(0x3400, 0x3401), 1326 regmap_reg_range(0x3403, 0x3403), 1327 regmap_reg_range(0x3410, 0x3417), 1328 regmap_reg_range(0x3420, 0x3423), 1329 regmap_reg_range(0x3500, 0x3507), 1330 regmap_reg_range(0x3600, 0x3612), 1331 regmap_reg_range(0x3800, 0x380f), 1332 regmap_reg_range(0x3820, 0x3827), 1333 regmap_reg_range(0x3830, 0x3837), 1334 regmap_reg_range(0x3840, 0x384b), 1335 regmap_reg_range(0x3900, 0x3907), 1336 regmap_reg_range(0x3914, 0x3915), 1337 regmap_reg_range(0x3a00, 0x3a03), 1338 regmap_reg_range(0x3a04, 0x3a07), 1339 regmap_reg_range(0x3b00, 0x3b01), 1340 regmap_reg_range(0x3b04, 0x3b04), 1341 1342 /* port 4 */ 1343 regmap_reg_range(0x4000, 0x4001), 1344 regmap_reg_range(0x4013, 0x4013), 1345 regmap_reg_range(0x4017, 0x4017), 1346 regmap_reg_range(0x401b, 0x401b), 1347 regmap_reg_range(0x401f, 0x4020), 1348 regmap_reg_range(0x4030, 0x4030), 1349 regmap_reg_range(0x4100, 0x4115), 1350 regmap_reg_range(0x411a, 0x411f), 1351 regmap_reg_range(0x4120, 0x412b), 1352 regmap_reg_range(0x4134, 0x413b), 1353 regmap_reg_range(0x413c, 0x413f), 1354 regmap_reg_range(0x4400, 0x4401), 1355 regmap_reg_range(0x4403, 0x4403), 1356 regmap_reg_range(0x4410, 0x4417), 1357 regmap_reg_range(0x4420, 0x4423), 1358 regmap_reg_range(0x4500, 0x4507), 1359 regmap_reg_range(0x4600, 0x4612), 1360 regmap_reg_range(0x4800, 0x480f), 1361 regmap_reg_range(0x4820, 0x4827), 1362 regmap_reg_range(0x4830, 0x4837), 1363 regmap_reg_range(0x4840, 0x484b), 1364 regmap_reg_range(0x4900, 0x4907), 1365 regmap_reg_range(0x4914, 0x4915), 1366 regmap_reg_range(0x4a00, 0x4a03), 1367 regmap_reg_range(0x4a04, 0x4a07), 1368 regmap_reg_range(0x4b00, 0x4b01), 1369 regmap_reg_range(0x4b04, 0x4b04), 1370 1371 /* port 5 */ 1372 regmap_reg_range(0x5000, 0x5001), 1373 regmap_reg_range(0x5013, 0x5013), 1374 regmap_reg_range(0x5017, 0x5017), 1375 regmap_reg_range(0x501b, 0x501b), 1376 regmap_reg_range(0x501f, 0x5020), 1377 regmap_reg_range(0x5030, 0x5030), 1378 regmap_reg_range(0x5100, 0x5115), 1379 regmap_reg_range(0x511a, 0x511f), 1380 regmap_reg_range(0x5120, 0x512b), 1381 regmap_reg_range(0x5134, 0x513b), 1382 regmap_reg_range(0x513c, 0x513f), 1383 regmap_reg_range(0x5400, 0x5401), 1384 regmap_reg_range(0x5403, 0x5403), 1385 regmap_reg_range(0x5410, 0x5417), 1386 regmap_reg_range(0x5420, 0x5423), 1387 regmap_reg_range(0x5500, 0x5507), 1388 regmap_reg_range(0x5600, 0x5612), 1389 regmap_reg_range(0x5800, 0x580f), 1390 regmap_reg_range(0x5820, 0x5827), 1391 regmap_reg_range(0x5830, 0x5837), 1392 regmap_reg_range(0x5840, 0x584b), 1393 regmap_reg_range(0x5900, 0x5907), 1394 regmap_reg_range(0x5914, 0x5915), 1395 regmap_reg_range(0x5a00, 0x5a03), 1396 regmap_reg_range(0x5a04, 0x5a07), 1397 regmap_reg_range(0x5b00, 0x5b01), 1398 regmap_reg_range(0x5b04, 0x5b04), 1399 1400 /* port 6 */ 1401 regmap_reg_range(0x6000, 0x6001), 1402 regmap_reg_range(0x6013, 0x6013), 1403 regmap_reg_range(0x6017, 0x6017), 1404 regmap_reg_range(0x601b, 0x601b), 1405 regmap_reg_range(0x601f, 0x6020), 1406 regmap_reg_range(0x6030, 0x6030), 1407 regmap_reg_range(0x6100, 0x6115), 1408 regmap_reg_range(0x611a, 0x611f), 1409 regmap_reg_range(0x6120, 0x612b), 1410 regmap_reg_range(0x6134, 0x613b), 1411 regmap_reg_range(0x613c, 0x613f), 1412 regmap_reg_range(0x6300, 0x6301), 1413 regmap_reg_range(0x6400, 0x6401), 1414 regmap_reg_range(0x6403, 0x6403), 1415 regmap_reg_range(0x6410, 0x6417), 1416 regmap_reg_range(0x6420, 0x6423), 1417 regmap_reg_range(0x6500, 0x6507), 1418 regmap_reg_range(0x6600, 0x6612), 1419 regmap_reg_range(0x6800, 0x680f), 1420 regmap_reg_range(0x6820, 0x6827), 1421 regmap_reg_range(0x6830, 0x6837), 1422 regmap_reg_range(0x6840, 0x684b), 1423 regmap_reg_range(0x6900, 0x6907), 1424 regmap_reg_range(0x6914, 0x6915), 1425 regmap_reg_range(0x6a00, 0x6a03), 1426 regmap_reg_range(0x6a04, 0x6a07), 1427 regmap_reg_range(0x6b00, 0x6b01), 1428 regmap_reg_range(0x6b04, 0x6b04), 1429 }; 1430 1431 static const struct regmap_access_table ksz9896_register_set = { 1432 .yes_ranges = ksz9896_valid_regs, 1433 .n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs), 1434 }; 1435 1436 static const struct regmap_range ksz8873_valid_regs[] = { 1437 regmap_reg_range(0x00, 0x01), 1438 /* global control register */ 1439 regmap_reg_range(0x02, 0x0f), 1440 1441 /* port registers */ 1442 regmap_reg_range(0x10, 0x1d), 1443 regmap_reg_range(0x1e, 0x1f), 1444 regmap_reg_range(0x20, 0x2d), 1445 regmap_reg_range(0x2e, 0x2f), 1446 regmap_reg_range(0x30, 0x39), 1447 regmap_reg_range(0x3f, 0x3f), 1448 1449 /* advanced control registers */ 1450 regmap_reg_range(0x43, 0x43), 1451 regmap_reg_range(0x60, 0x6f), 1452 regmap_reg_range(0x70, 0x75), 1453 regmap_reg_range(0x76, 0x78), 1454 regmap_reg_range(0x79, 0x7a), 1455 regmap_reg_range(0x7b, 0x83), 1456 regmap_reg_range(0x8e, 0x99), 1457 regmap_reg_range(0x9a, 0xa5), 1458 regmap_reg_range(0xa6, 0xa6), 1459 regmap_reg_range(0xa7, 0xaa), 1460 regmap_reg_range(0xab, 0xae), 1461 regmap_reg_range(0xaf, 0xba), 1462 regmap_reg_range(0xbb, 0xbc), 1463 regmap_reg_range(0xbd, 0xbd), 1464 regmap_reg_range(0xc0, 0xc0), 1465 regmap_reg_range(0xc2, 0xc2), 1466 regmap_reg_range(0xc3, 0xc3), 1467 regmap_reg_range(0xc4, 0xc4), 1468 regmap_reg_range(0xc6, 0xc6), 1469 }; 1470 1471 static const struct regmap_access_table ksz8873_register_set = { 1472 .yes_ranges = ksz8873_valid_regs, 1473 .n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs), 1474 }; 1475 1476 const struct ksz_chip_data ksz_switch_chips[] = { 1477 [KSZ8463] = { 1478 .chip_id = KSZ8463_CHIP_ID, 1479 .dev_name = "KSZ8463", 1480 .num_vlans = 16, 1481 .num_alus = 0, 1482 .num_statics = 8, 1483 .cpu_ports = 0x4, /* can be configured as cpu port */ 1484 .port_cnt = 3, 1485 .num_tx_queues = 4, 1486 .num_ipms = 4, 1487 .ops = &ksz8463_dev_ops, 1488 .phylink_mac_ops = &ksz88x3_phylink_mac_ops, 1489 .mib_names = ksz88xx_mib_names, 1490 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1491 .reg_mib_cnt = MIB_COUNTER_NUM, 1492 .regs = ksz8463_regs, 1493 .masks = ksz8463_masks, 1494 .shifts = ksz8463_shifts, 1495 .supports_mii = {false, false, true}, 1496 .supports_rmii = {false, false, true}, 1497 .internal_phy = {true, true, false}, 1498 }, 1499 1500 [KSZ8563] = { 1501 .chip_id = KSZ8563_CHIP_ID, 1502 .dev_name = "KSZ8563", 1503 .num_vlans = 4096, 1504 .num_alus = 4096, 1505 .num_statics = 16, 1506 .cpu_ports = 0x07, /* can be configured as cpu port */ 1507 .port_cnt = 3, /* total port count */ 1508 .port_nirqs = 3, 1509 .num_tx_queues = 4, 1510 .num_ipms = 8, 1511 .tc_cbs_supported = true, 1512 .ops = &ksz9477_dev_ops, 1513 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1514 .mib_names = ksz9477_mib_names, 1515 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1516 .reg_mib_cnt = MIB_COUNTER_NUM, 1517 .regs = ksz9477_regs, 1518 .masks = ksz9477_masks, 1519 .shifts = ksz9477_shifts, 1520 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1521 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1522 .supports_mii = {false, false, true}, 1523 .supports_rmii = {false, false, true}, 1524 .supports_rgmii = {false, false, true}, 1525 .internal_phy = {true, true, false}, 1526 .gbit_capable = {false, false, true}, 1527 .ptp_capable = true, 1528 .wr_table = &ksz8563_register_set, 1529 .rd_table = &ksz8563_register_set, 1530 }, 1531 1532 [KSZ8795] = { 1533 .chip_id = KSZ8795_CHIP_ID, 1534 .dev_name = "KSZ8795", 1535 .num_vlans = 4096, 1536 .num_alus = 0, 1537 .num_statics = 32, 1538 .cpu_ports = 0x10, /* can be configured as cpu port */ 1539 .port_cnt = 5, /* total cpu and user ports */ 1540 .num_tx_queues = 4, 1541 .num_ipms = 4, 1542 .ops = &ksz87xx_dev_ops, 1543 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1544 .ksz87xx_eee_link_erratum = true, 1545 .mib_names = ksz9477_mib_names, 1546 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1547 .reg_mib_cnt = MIB_COUNTER_NUM, 1548 .regs = ksz8795_regs, 1549 .masks = ksz8795_masks, 1550 .shifts = ksz8795_shifts, 1551 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1552 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1553 .supports_mii = {false, false, false, false, true}, 1554 .supports_rmii = {false, false, false, false, true}, 1555 .supports_rgmii = {false, false, false, false, true}, 1556 .internal_phy = {true, true, true, true, false}, 1557 }, 1558 1559 [KSZ8794] = { 1560 /* WARNING 1561 * ======= 1562 * KSZ8794 is similar to KSZ8795, except the port map 1563 * contains a gap between external and CPU ports, the 1564 * port map is NOT continuous. The per-port register 1565 * map is shifted accordingly too, i.e. registers at 1566 * offset 0x40 are NOT used on KSZ8794 and they ARE 1567 * used on KSZ8795 for external port 3. 1568 * external cpu 1569 * KSZ8794 0,1,2 4 1570 * KSZ8795 0,1,2,3 4 1571 * KSZ8765 0,1,2,3 4 1572 * port_cnt is configured as 5, even though it is 4 1573 */ 1574 .chip_id = KSZ8794_CHIP_ID, 1575 .dev_name = "KSZ8794", 1576 .num_vlans = 4096, 1577 .num_alus = 0, 1578 .num_statics = 32, 1579 .cpu_ports = 0x10, /* can be configured as cpu port */ 1580 .port_cnt = 5, /* total cpu and user ports */ 1581 .num_tx_queues = 4, 1582 .num_ipms = 4, 1583 .ops = &ksz87xx_dev_ops, 1584 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1585 .ksz87xx_eee_link_erratum = true, 1586 .mib_names = ksz9477_mib_names, 1587 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1588 .reg_mib_cnt = MIB_COUNTER_NUM, 1589 .regs = ksz8795_regs, 1590 .masks = ksz8795_masks, 1591 .shifts = ksz8795_shifts, 1592 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1593 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1594 .supports_mii = {false, false, false, false, true}, 1595 .supports_rmii = {false, false, false, false, true}, 1596 .supports_rgmii = {false, false, false, false, true}, 1597 .internal_phy = {true, true, true, false, false}, 1598 }, 1599 1600 [KSZ8765] = { 1601 .chip_id = KSZ8765_CHIP_ID, 1602 .dev_name = "KSZ8765", 1603 .num_vlans = 4096, 1604 .num_alus = 0, 1605 .num_statics = 32, 1606 .cpu_ports = 0x10, /* can be configured as cpu port */ 1607 .port_cnt = 5, /* total cpu and user ports */ 1608 .num_tx_queues = 4, 1609 .num_ipms = 4, 1610 .ops = &ksz87xx_dev_ops, 1611 .phylink_mac_ops = &ksz8_phylink_mac_ops, 1612 .ksz87xx_eee_link_erratum = true, 1613 .mib_names = ksz9477_mib_names, 1614 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1615 .reg_mib_cnt = MIB_COUNTER_NUM, 1616 .regs = ksz8795_regs, 1617 .masks = ksz8795_masks, 1618 .shifts = ksz8795_shifts, 1619 .xmii_ctrl0 = ksz8795_xmii_ctrl0, 1620 .xmii_ctrl1 = ksz8795_xmii_ctrl1, 1621 .supports_mii = {false, false, false, false, true}, 1622 .supports_rmii = {false, false, false, false, true}, 1623 .supports_rgmii = {false, false, false, false, true}, 1624 .internal_phy = {true, true, true, true, false}, 1625 }, 1626 1627 [KSZ88X3] = { 1628 .chip_id = KSZ88X3_CHIP_ID, 1629 .dev_name = "KSZ8863/KSZ8873", 1630 .num_vlans = 16, 1631 .num_alus = 0, 1632 .num_statics = 8, 1633 .cpu_ports = 0x4, /* can be configured as cpu port */ 1634 .port_cnt = 3, 1635 .num_tx_queues = 4, 1636 .num_ipms = 4, 1637 .ops = &ksz88xx_dev_ops, 1638 .phylink_mac_ops = &ksz88x3_phylink_mac_ops, 1639 .mib_names = ksz88xx_mib_names, 1640 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1641 .reg_mib_cnt = MIB_COUNTER_NUM, 1642 .regs = ksz8863_regs, 1643 .masks = ksz8863_masks, 1644 .shifts = ksz8863_shifts, 1645 .supports_mii = {false, false, true}, 1646 .supports_rmii = {false, false, true}, 1647 .internal_phy = {true, true, false}, 1648 .wr_table = &ksz8873_register_set, 1649 .rd_table = &ksz8873_register_set, 1650 }, 1651 1652 [KSZ8864] = { 1653 /* WARNING 1654 * ======= 1655 * KSZ8864 is similar to KSZ8895, except the first port 1656 * does not exist. 1657 * external cpu 1658 * KSZ8864 1,2,3 4 1659 * KSZ8895 0,1,2,3 4 1660 * port_cnt is configured as 5, even though it is 4 1661 */ 1662 .chip_id = KSZ8864_CHIP_ID, 1663 .dev_name = "KSZ8864", 1664 .num_vlans = 4096, 1665 .num_alus = 0, 1666 .num_statics = 32, 1667 .cpu_ports = 0x10, /* can be configured as cpu port */ 1668 .port_cnt = 5, /* total cpu and user ports */ 1669 .num_tx_queues = 4, 1670 .num_ipms = 4, 1671 .ops = &ksz88xx_dev_ops, 1672 .phylink_mac_ops = &ksz88x3_phylink_mac_ops, 1673 .mib_names = ksz88xx_mib_names, 1674 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1675 .reg_mib_cnt = MIB_COUNTER_NUM, 1676 .regs = ksz8895_regs, 1677 .masks = ksz8895_masks, 1678 .shifts = ksz8895_shifts, 1679 .supports_mii = {false, false, false, false, true}, 1680 .supports_rmii = {false, false, false, false, true}, 1681 .internal_phy = {false, true, true, true, false}, 1682 }, 1683 1684 [KSZ8895] = { 1685 .chip_id = KSZ8895_CHIP_ID, 1686 .dev_name = "KSZ8895", 1687 .num_vlans = 4096, 1688 .num_alus = 0, 1689 .num_statics = 32, 1690 .cpu_ports = 0x10, /* can be configured as cpu port */ 1691 .port_cnt = 5, /* total cpu and user ports */ 1692 .num_tx_queues = 4, 1693 .num_ipms = 4, 1694 .ops = &ksz88xx_dev_ops, 1695 .phylink_mac_ops = &ksz88x3_phylink_mac_ops, 1696 .mib_names = ksz88xx_mib_names, 1697 .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), 1698 .reg_mib_cnt = MIB_COUNTER_NUM, 1699 .regs = ksz8895_regs, 1700 .masks = ksz8895_masks, 1701 .shifts = ksz8895_shifts, 1702 .supports_mii = {false, false, false, false, true}, 1703 .supports_rmii = {false, false, false, false, true}, 1704 .internal_phy = {true, true, true, true, false}, 1705 }, 1706 1707 [KSZ9477] = { 1708 .chip_id = KSZ9477_CHIP_ID, 1709 .dev_name = "KSZ9477", 1710 .num_vlans = 4096, 1711 .num_alus = 4096, 1712 .num_statics = 16, 1713 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1714 .port_cnt = 7, /* total physical port count */ 1715 .port_nirqs = 4, 1716 .num_tx_queues = 4, 1717 .num_ipms = 8, 1718 .tc_cbs_supported = true, 1719 .ops = &ksz9477_dev_ops, 1720 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1721 .phy_errata_9477 = true, 1722 .mib_names = ksz9477_mib_names, 1723 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1724 .reg_mib_cnt = MIB_COUNTER_NUM, 1725 .regs = ksz9477_regs, 1726 .masks = ksz9477_masks, 1727 .shifts = ksz9477_shifts, 1728 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1729 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1730 .supports_mii = {false, false, false, false, 1731 false, true, false}, 1732 .supports_rmii = {false, false, false, false, 1733 false, true, false}, 1734 .supports_rgmii = {false, false, false, false, 1735 false, true, false}, 1736 .internal_phy = {true, true, true, true, 1737 true, false, false}, 1738 .gbit_capable = {true, true, true, true, true, true, true}, 1739 .ptp_capable = true, 1740 .sgmii_port = 7, 1741 .wr_table = &ksz9477_register_set, 1742 .rd_table = &ksz9477_register_set, 1743 }, 1744 1745 [KSZ9896] = { 1746 .chip_id = KSZ9896_CHIP_ID, 1747 .dev_name = "KSZ9896", 1748 .num_vlans = 4096, 1749 .num_alus = 4096, 1750 .num_statics = 16, 1751 .cpu_ports = 0x3F, /* can be configured as cpu port */ 1752 .port_cnt = 6, /* total physical port count */ 1753 .port_nirqs = 2, 1754 .num_tx_queues = 4, 1755 .num_ipms = 8, 1756 .ops = &ksz9477_dev_ops, 1757 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1758 .phy_errata_9477 = true, 1759 .mib_names = ksz9477_mib_names, 1760 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1761 .reg_mib_cnt = MIB_COUNTER_NUM, 1762 .regs = ksz9477_regs, 1763 .masks = ksz9477_masks, 1764 .shifts = ksz9477_shifts, 1765 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1766 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1767 .supports_mii = {false, false, false, false, 1768 false, true}, 1769 .supports_rmii = {false, false, false, false, 1770 false, true}, 1771 .supports_rgmii = {false, false, false, false, 1772 false, true}, 1773 .internal_phy = {true, true, true, true, 1774 true, false}, 1775 .gbit_capable = {true, true, true, true, true, true}, 1776 .wr_table = &ksz9896_register_set, 1777 .rd_table = &ksz9896_register_set, 1778 }, 1779 1780 [KSZ9897] = { 1781 .chip_id = KSZ9897_CHIP_ID, 1782 .dev_name = "KSZ9897", 1783 .num_vlans = 4096, 1784 .num_alus = 4096, 1785 .num_statics = 16, 1786 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1787 .port_cnt = 7, /* total physical port count */ 1788 .port_nirqs = 2, 1789 .num_tx_queues = 4, 1790 .num_ipms = 8, 1791 .ops = &ksz9477_dev_ops, 1792 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1793 .phy_errata_9477 = true, 1794 .mib_names = ksz9477_mib_names, 1795 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1796 .reg_mib_cnt = MIB_COUNTER_NUM, 1797 .regs = ksz9477_regs, 1798 .masks = ksz9477_masks, 1799 .shifts = ksz9477_shifts, 1800 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1801 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1802 .supports_mii = {false, false, false, false, 1803 false, true, true}, 1804 .supports_rmii = {false, false, false, false, 1805 false, true, true}, 1806 .supports_rgmii = {false, false, false, false, 1807 false, true, true}, 1808 .internal_phy = {true, true, true, true, 1809 true, false, false}, 1810 .gbit_capable = {true, true, true, true, true, true, true}, 1811 }, 1812 1813 [KSZ9893] = { 1814 .chip_id = KSZ9893_CHIP_ID, 1815 .dev_name = "KSZ9893", 1816 .num_vlans = 4096, 1817 .num_alus = 4096, 1818 .num_statics = 16, 1819 .cpu_ports = 0x07, /* can be configured as cpu port */ 1820 .port_cnt = 3, /* total port count */ 1821 .port_nirqs = 2, 1822 .num_tx_queues = 4, 1823 .num_ipms = 8, 1824 .ops = &ksz9477_dev_ops, 1825 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1826 .mib_names = ksz9477_mib_names, 1827 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1828 .reg_mib_cnt = MIB_COUNTER_NUM, 1829 .regs = ksz9477_regs, 1830 .masks = ksz9477_masks, 1831 .shifts = ksz9477_shifts, 1832 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1833 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1834 .supports_mii = {false, false, true}, 1835 .supports_rmii = {false, false, true}, 1836 .supports_rgmii = {false, false, true}, 1837 .internal_phy = {true, true, false}, 1838 .gbit_capable = {true, true, true}, 1839 }, 1840 1841 [KSZ9563] = { 1842 .chip_id = KSZ9563_CHIP_ID, 1843 .dev_name = "KSZ9563", 1844 .num_vlans = 4096, 1845 .num_alus = 4096, 1846 .num_statics = 16, 1847 .cpu_ports = 0x07, /* can be configured as cpu port */ 1848 .port_cnt = 3, /* total port count */ 1849 .port_nirqs = 3, 1850 .num_tx_queues = 4, 1851 .num_ipms = 8, 1852 .tc_cbs_supported = true, 1853 .ops = &ksz9477_dev_ops, 1854 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1855 .mib_names = ksz9477_mib_names, 1856 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1857 .reg_mib_cnt = MIB_COUNTER_NUM, 1858 .regs = ksz9477_regs, 1859 .masks = ksz9477_masks, 1860 .shifts = ksz9477_shifts, 1861 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1862 .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ 1863 .supports_mii = {false, false, true}, 1864 .supports_rmii = {false, false, true}, 1865 .supports_rgmii = {false, false, true}, 1866 .internal_phy = {true, true, false}, 1867 .gbit_capable = {true, true, true}, 1868 .ptp_capable = true, 1869 }, 1870 1871 [KSZ8567] = { 1872 .chip_id = KSZ8567_CHIP_ID, 1873 .dev_name = "KSZ8567", 1874 .num_vlans = 4096, 1875 .num_alus = 4096, 1876 .num_statics = 16, 1877 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1878 .port_cnt = 7, /* total port count */ 1879 .port_nirqs = 3, 1880 .num_tx_queues = 4, 1881 .num_ipms = 8, 1882 .tc_cbs_supported = true, 1883 .ops = &ksz9477_dev_ops, 1884 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 1885 .phy_errata_9477 = true, 1886 .mib_names = ksz9477_mib_names, 1887 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1888 .reg_mib_cnt = MIB_COUNTER_NUM, 1889 .regs = ksz9477_regs, 1890 .masks = ksz9477_masks, 1891 .shifts = ksz9477_shifts, 1892 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1893 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1894 .supports_mii = {false, false, false, false, 1895 false, true, true}, 1896 .supports_rmii = {false, false, false, false, 1897 false, true, true}, 1898 .supports_rgmii = {false, false, false, false, 1899 false, true, true}, 1900 .internal_phy = {true, true, true, true, 1901 true, false, false}, 1902 .gbit_capable = {false, false, false, false, false, 1903 true, true}, 1904 .ptp_capable = true, 1905 }, 1906 1907 [KSZ9567] = { 1908 .chip_id = KSZ9567_CHIP_ID, 1909 .dev_name = "KSZ9567", 1910 .num_vlans = 4096, 1911 .num_alus = 4096, 1912 .num_statics = 16, 1913 .cpu_ports = 0x7F, /* can be configured as cpu port */ 1914 .port_cnt = 7, /* total physical port count */ 1915 .port_nirqs = 3, 1916 .num_tx_queues = 4, 1917 .num_ipms = 8, 1918 .tc_cbs_supported = true, 1919 .ops = &ksz9477_dev_ops, 1920 .mib_names = ksz9477_mib_names, 1921 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1922 .reg_mib_cnt = MIB_COUNTER_NUM, 1923 .regs = ksz9477_regs, 1924 .masks = ksz9477_masks, 1925 .shifts = ksz9477_shifts, 1926 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1927 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1928 .supports_mii = {false, false, false, false, 1929 false, true, true}, 1930 .supports_rmii = {false, false, false, false, 1931 false, true, true}, 1932 .supports_rgmii = {false, false, false, false, 1933 false, true, true}, 1934 .internal_phy = {true, true, true, true, 1935 true, false, false}, 1936 .gbit_capable = {true, true, true, true, true, true, true}, 1937 .ptp_capable = true, 1938 }, 1939 1940 [LAN9370] = { 1941 .chip_id = LAN9370_CHIP_ID, 1942 .dev_name = "LAN9370", 1943 .num_vlans = 4096, 1944 .num_alus = 1024, 1945 .num_statics = 256, 1946 .cpu_ports = 0x10, /* can be configured as cpu port */ 1947 .port_cnt = 5, /* total physical port count */ 1948 .port_nirqs = 6, 1949 .num_tx_queues = 8, 1950 .num_ipms = 8, 1951 .tc_cbs_supported = true, 1952 .phy_side_mdio_supported = true, 1953 .ops = &lan937x_dev_ops, 1954 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1955 .mib_names = ksz9477_mib_names, 1956 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1957 .reg_mib_cnt = MIB_COUNTER_NUM, 1958 .regs = ksz9477_regs, 1959 .masks = lan937x_masks, 1960 .shifts = lan937x_shifts, 1961 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1962 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1963 .supports_mii = {false, false, false, false, true}, 1964 .supports_rmii = {false, false, false, false, true}, 1965 .supports_rgmii = {false, false, false, false, true}, 1966 .internal_phy = {true, true, true, true, false}, 1967 .ptp_capable = true, 1968 }, 1969 1970 [LAN9371] = { 1971 .chip_id = LAN9371_CHIP_ID, 1972 .dev_name = "LAN9371", 1973 .num_vlans = 4096, 1974 .num_alus = 1024, 1975 .num_statics = 256, 1976 .cpu_ports = 0x30, /* can be configured as cpu port */ 1977 .port_cnt = 6, /* total physical port count */ 1978 .port_nirqs = 6, 1979 .num_tx_queues = 8, 1980 .num_ipms = 8, 1981 .tc_cbs_supported = true, 1982 .phy_side_mdio_supported = true, 1983 .ops = &lan937x_dev_ops, 1984 .phylink_mac_ops = &lan937x_phylink_mac_ops, 1985 .mib_names = ksz9477_mib_names, 1986 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 1987 .reg_mib_cnt = MIB_COUNTER_NUM, 1988 .regs = ksz9477_regs, 1989 .masks = lan937x_masks, 1990 .shifts = lan937x_shifts, 1991 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 1992 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 1993 .supports_mii = {false, false, false, false, true, true}, 1994 .supports_rmii = {false, false, false, false, true, true}, 1995 .supports_rgmii = {false, false, false, false, true, true}, 1996 .internal_phy = {true, true, true, true, false, false}, 1997 .ptp_capable = true, 1998 }, 1999 2000 [LAN9372] = { 2001 .chip_id = LAN9372_CHIP_ID, 2002 .dev_name = "LAN9372", 2003 .num_vlans = 4096, 2004 .num_alus = 1024, 2005 .num_statics = 256, 2006 .cpu_ports = 0x30, /* can be configured as cpu port */ 2007 .port_cnt = 8, /* total physical port count */ 2008 .port_nirqs = 6, 2009 .num_tx_queues = 8, 2010 .num_ipms = 8, 2011 .tc_cbs_supported = true, 2012 .phy_side_mdio_supported = true, 2013 .ops = &lan937x_dev_ops, 2014 .phylink_mac_ops = &lan937x_phylink_mac_ops, 2015 .mib_names = ksz9477_mib_names, 2016 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 2017 .reg_mib_cnt = MIB_COUNTER_NUM, 2018 .regs = ksz9477_regs, 2019 .masks = lan937x_masks, 2020 .shifts = lan937x_shifts, 2021 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 2022 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 2023 .supports_mii = {false, false, false, false, 2024 true, true, false, false}, 2025 .supports_rmii = {false, false, false, false, 2026 true, true, false, false}, 2027 .supports_rgmii = {false, false, false, false, 2028 true, true, false, false}, 2029 .internal_phy = {true, true, true, true, 2030 false, false, true, true}, 2031 .ptp_capable = true, 2032 }, 2033 2034 [LAN9373] = { 2035 .chip_id = LAN9373_CHIP_ID, 2036 .dev_name = "LAN9373", 2037 .num_vlans = 4096, 2038 .num_alus = 1024, 2039 .num_statics = 256, 2040 .cpu_ports = 0x38, /* can be configured as cpu port */ 2041 .port_cnt = 5, /* total physical port count */ 2042 .port_nirqs = 6, 2043 .num_tx_queues = 8, 2044 .num_ipms = 8, 2045 .tc_cbs_supported = true, 2046 .phy_side_mdio_supported = true, 2047 .ops = &lan937x_dev_ops, 2048 .phylink_mac_ops = &lan937x_phylink_mac_ops, 2049 .mib_names = ksz9477_mib_names, 2050 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 2051 .reg_mib_cnt = MIB_COUNTER_NUM, 2052 .regs = ksz9477_regs, 2053 .masks = lan937x_masks, 2054 .shifts = lan937x_shifts, 2055 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 2056 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 2057 .supports_mii = {false, false, false, false, 2058 true, true, false, false}, 2059 .supports_rmii = {false, false, false, false, 2060 true, true, false, false}, 2061 .supports_rgmii = {false, false, false, false, 2062 true, true, false, false}, 2063 .internal_phy = {true, true, true, false, 2064 false, false, true, true}, 2065 .ptp_capable = true, 2066 }, 2067 2068 [LAN9374] = { 2069 .chip_id = LAN9374_CHIP_ID, 2070 .dev_name = "LAN9374", 2071 .num_vlans = 4096, 2072 .num_alus = 1024, 2073 .num_statics = 256, 2074 .cpu_ports = 0x30, /* can be configured as cpu port */ 2075 .port_cnt = 8, /* total physical port count */ 2076 .port_nirqs = 6, 2077 .num_tx_queues = 8, 2078 .num_ipms = 8, 2079 .tc_cbs_supported = true, 2080 .phy_side_mdio_supported = true, 2081 .ops = &lan937x_dev_ops, 2082 .phylink_mac_ops = &lan937x_phylink_mac_ops, 2083 .mib_names = ksz9477_mib_names, 2084 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 2085 .reg_mib_cnt = MIB_COUNTER_NUM, 2086 .regs = ksz9477_regs, 2087 .masks = lan937x_masks, 2088 .shifts = lan937x_shifts, 2089 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 2090 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 2091 .supports_mii = {false, false, false, false, 2092 true, true, false, false}, 2093 .supports_rmii = {false, false, false, false, 2094 true, true, false, false}, 2095 .supports_rgmii = {false, false, false, false, 2096 true, true, false, false}, 2097 .internal_phy = {true, true, true, true, 2098 false, false, true, true}, 2099 .ptp_capable = true, 2100 }, 2101 2102 [LAN9646] = { 2103 .chip_id = LAN9646_CHIP_ID, 2104 .dev_name = "LAN9646", 2105 .num_vlans = 4096, 2106 .num_alus = 4096, 2107 .num_statics = 16, 2108 .cpu_ports = 0x7F, /* can be configured as cpu port */ 2109 .port_cnt = 7, /* total physical port count */ 2110 .port_nirqs = 4, 2111 .num_tx_queues = 4, 2112 .num_ipms = 8, 2113 .ops = &ksz9477_dev_ops, 2114 .phylink_mac_ops = &ksz9477_phylink_mac_ops, 2115 .phy_errata_9477 = true, 2116 .mib_names = ksz9477_mib_names, 2117 .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), 2118 .reg_mib_cnt = MIB_COUNTER_NUM, 2119 .regs = ksz9477_regs, 2120 .masks = ksz9477_masks, 2121 .shifts = ksz9477_shifts, 2122 .xmii_ctrl0 = ksz9477_xmii_ctrl0, 2123 .xmii_ctrl1 = ksz9477_xmii_ctrl1, 2124 .supports_mii = {false, false, false, false, 2125 false, true, true}, 2126 .supports_rmii = {false, false, false, false, 2127 false, true, true}, 2128 .supports_rgmii = {false, false, false, false, 2129 false, true, true}, 2130 .internal_phy = {true, true, true, true, 2131 true, false, false}, 2132 .gbit_capable = {true, true, true, true, true, true, true}, 2133 .sgmii_port = 7, 2134 .wr_table = &ksz9477_register_set, 2135 .rd_table = &ksz9477_register_set, 2136 }, 2137 }; 2138 EXPORT_SYMBOL_GPL(ksz_switch_chips); 2139 2140 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num) 2141 { 2142 int i; 2143 2144 for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) { 2145 const struct ksz_chip_data *chip = &ksz_switch_chips[i]; 2146 2147 if (chip->chip_id == prod_num) 2148 return chip; 2149 } 2150 2151 return NULL; 2152 } 2153 2154 static int ksz_check_device_id(struct ksz_device *dev) 2155 { 2156 const struct ksz_chip_data *expected_chip_data; 2157 u32 expected_chip_id; 2158 2159 if (dev->pdata) { 2160 expected_chip_id = dev->pdata->chip_id; 2161 expected_chip_data = ksz_lookup_info(expected_chip_id); 2162 if (WARN_ON(!expected_chip_data)) 2163 return -ENODEV; 2164 } else { 2165 expected_chip_data = of_device_get_match_data(dev->dev); 2166 expected_chip_id = expected_chip_data->chip_id; 2167 } 2168 2169 if (expected_chip_id != dev->chip_id) { 2170 dev_err(dev->dev, 2171 "Device tree specifies chip %s but found %s, please fix it!\n", 2172 expected_chip_data->dev_name, dev->info->dev_name); 2173 return -ENODEV; 2174 } 2175 2176 return 0; 2177 } 2178 2179 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port, 2180 struct phylink_config *config) 2181 { 2182 struct ksz_device *dev = ds->priv; 2183 2184 if (dev->info->supports_mii[port]) 2185 __set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces); 2186 2187 if (dev->info->supports_rmii[port]) 2188 __set_bit(PHY_INTERFACE_MODE_RMII, 2189 config->supported_interfaces); 2190 2191 if (dev->info->supports_rgmii[port]) 2192 phy_interface_set_rgmii(config->supported_interfaces); 2193 2194 if (dev->info->internal_phy[port]) { 2195 __set_bit(PHY_INTERFACE_MODE_INTERNAL, 2196 config->supported_interfaces); 2197 /* Compatibility for phylib's default interface type when the 2198 * phy-mode property is absent 2199 */ 2200 __set_bit(PHY_INTERFACE_MODE_GMII, 2201 config->supported_interfaces); 2202 } 2203 2204 if (dev->dev_ops->get_caps) 2205 dev->dev_ops->get_caps(dev, port, config); 2206 2207 if (ds->ops->support_eee && ds->ops->support_eee(ds, port)) { 2208 memcpy(config->lpi_interfaces, config->supported_interfaces, 2209 sizeof(config->lpi_interfaces)); 2210 2211 config->lpi_capabilities = MAC_100FD; 2212 if (dev->info->gbit_capable[port]) 2213 config->lpi_capabilities |= MAC_1000FD; 2214 2215 /* EEE is fully operational */ 2216 config->eee_enabled_default = true; 2217 } 2218 } 2219 2220 void ksz_r_mib_stats64(struct ksz_device *dev, int port) 2221 { 2222 struct ethtool_pause_stats *pstats; 2223 struct rtnl_link_stats64 *stats; 2224 struct ksz_stats_raw *raw; 2225 struct ksz_port_mib *mib; 2226 int ret; 2227 2228 mib = &dev->ports[port].mib; 2229 stats = &mib->stats64; 2230 pstats = &mib->pause_stats; 2231 raw = (struct ksz_stats_raw *)mib->counters; 2232 2233 spin_lock(&mib->stats64_lock); 2234 2235 stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast + 2236 raw->rx_pause; 2237 stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast + 2238 raw->tx_pause; 2239 2240 /* HW counters are counting bytes + FCS which is not acceptable 2241 * for rtnl_link_stats64 interface 2242 */ 2243 stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN; 2244 stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN; 2245 2246 stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments + 2247 raw->rx_oversize; 2248 2249 stats->rx_crc_errors = raw->rx_crc_err; 2250 stats->rx_frame_errors = raw->rx_align_err; 2251 stats->rx_dropped = raw->rx_discards; 2252 stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors + 2253 stats->rx_frame_errors + stats->rx_dropped; 2254 2255 stats->tx_window_errors = raw->tx_late_col; 2256 stats->tx_fifo_errors = raw->tx_discards; 2257 stats->tx_aborted_errors = raw->tx_exc_col; 2258 stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors + 2259 stats->tx_aborted_errors; 2260 2261 stats->multicast = raw->rx_mcast; 2262 stats->collisions = raw->tx_total_col; 2263 2264 pstats->tx_pause_frames = raw->tx_pause; 2265 pstats->rx_pause_frames = raw->rx_pause; 2266 2267 spin_unlock(&mib->stats64_lock); 2268 2269 if (dev->info->phy_errata_9477 && !ksz_is_sgmii_port(dev, port)) { 2270 ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col); 2271 if (ret) 2272 dev_err(dev->dev, "Failed to monitor transmission halt\n"); 2273 } 2274 } 2275 2276 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port) 2277 { 2278 struct ethtool_pause_stats *pstats; 2279 struct rtnl_link_stats64 *stats; 2280 struct ksz88xx_stats_raw *raw; 2281 struct ksz_port_mib *mib; 2282 2283 mib = &dev->ports[port].mib; 2284 stats = &mib->stats64; 2285 pstats = &mib->pause_stats; 2286 raw = (struct ksz88xx_stats_raw *)mib->counters; 2287 2288 spin_lock(&mib->stats64_lock); 2289 2290 stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast + 2291 raw->rx_pause; 2292 stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast + 2293 raw->tx_pause; 2294 2295 /* HW counters are counting bytes + FCS which is not acceptable 2296 * for rtnl_link_stats64 interface 2297 */ 2298 stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN; 2299 stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN; 2300 2301 stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments + 2302 raw->rx_oversize; 2303 2304 stats->rx_crc_errors = raw->rx_crc_err; 2305 stats->rx_frame_errors = raw->rx_align_err; 2306 stats->rx_dropped = raw->rx_discards; 2307 stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors + 2308 stats->rx_frame_errors + stats->rx_dropped; 2309 2310 stats->tx_window_errors = raw->tx_late_col; 2311 stats->tx_fifo_errors = raw->tx_discards; 2312 stats->tx_aborted_errors = raw->tx_exc_col; 2313 stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors + 2314 stats->tx_aborted_errors; 2315 2316 stats->multicast = raw->rx_mcast; 2317 stats->collisions = raw->tx_total_col; 2318 2319 pstats->tx_pause_frames = raw->tx_pause; 2320 pstats->rx_pause_frames = raw->rx_pause; 2321 2322 spin_unlock(&mib->stats64_lock); 2323 } 2324 2325 static void ksz_get_stats64(struct dsa_switch *ds, int port, 2326 struct rtnl_link_stats64 *s) 2327 { 2328 struct ksz_device *dev = ds->priv; 2329 struct ksz_port_mib *mib; 2330 2331 mib = &dev->ports[port].mib; 2332 2333 spin_lock(&mib->stats64_lock); 2334 memcpy(s, &mib->stats64, sizeof(*s)); 2335 spin_unlock(&mib->stats64_lock); 2336 } 2337 2338 static void ksz_get_pause_stats(struct dsa_switch *ds, int port, 2339 struct ethtool_pause_stats *pause_stats) 2340 { 2341 struct ksz_device *dev = ds->priv; 2342 struct ksz_port_mib *mib; 2343 2344 mib = &dev->ports[port].mib; 2345 2346 spin_lock(&mib->stats64_lock); 2347 memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats)); 2348 spin_unlock(&mib->stats64_lock); 2349 } 2350 2351 static void ksz_get_strings(struct dsa_switch *ds, int port, 2352 u32 stringset, uint8_t *buf) 2353 { 2354 struct ksz_device *dev = ds->priv; 2355 int i; 2356 2357 if (stringset != ETH_SS_STATS) 2358 return; 2359 2360 for (i = 0; i < dev->info->mib_cnt; i++) 2361 ethtool_puts(&buf, dev->info->mib_names[i].string); 2362 } 2363 2364 /** 2365 * ksz_update_port_member - Adjust port forwarding rules based on STP state and 2366 * isolation settings. 2367 * @dev: A pointer to the struct ksz_device representing the device. 2368 * @port: The port number to adjust. 2369 * 2370 * This function dynamically adjusts the port membership configuration for a 2371 * specified port and other device ports, based on Spanning Tree Protocol (STP) 2372 * states and port isolation settings. Each port, including the CPU port, has a 2373 * membership register, represented as a bitfield, where each bit corresponds 2374 * to a port number. A set bit indicates permission to forward frames to that 2375 * port. This function iterates over all ports, updating the membership register 2376 * to reflect current forwarding permissions: 2377 * 2378 * 1. Forwards frames only to ports that are part of the same bridge group and 2379 * in the BR_STATE_FORWARDING state. 2380 * 2. Takes into account the isolation status of ports; ports in the 2381 * BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward 2382 * frames to each other, even if they are in the same bridge group. 2383 * 3. Ensures that the CPU port is included in the membership based on its 2384 * upstream port configuration, allowing for management and control traffic 2385 * to flow as required. 2386 */ 2387 static void ksz_update_port_member(struct ksz_device *dev, int port) 2388 { 2389 struct ksz_port *p = &dev->ports[port]; 2390 struct dsa_switch *ds = dev->ds; 2391 u8 port_member = 0, cpu_port; 2392 const struct dsa_port *dp; 2393 int i, j; 2394 2395 if (!dsa_is_user_port(ds, port)) 2396 return; 2397 2398 dp = dsa_to_port(ds, port); 2399 cpu_port = BIT(dsa_upstream_port(ds, port)); 2400 2401 for (i = 0; i < ds->num_ports; i++) { 2402 const struct dsa_port *other_dp = dsa_to_port(ds, i); 2403 struct ksz_port *other_p = &dev->ports[i]; 2404 u8 val = 0; 2405 2406 if (!dsa_is_user_port(ds, i)) 2407 continue; 2408 if (port == i) 2409 continue; 2410 if (!dsa_port_bridge_same(dp, other_dp)) 2411 continue; 2412 if (other_p->stp_state != BR_STATE_FORWARDING) 2413 continue; 2414 2415 /* At this point we know that "port" and "other" port [i] are in 2416 * the same bridge group and that "other" port [i] is in 2417 * forwarding stp state. If "port" is also in forwarding stp 2418 * state, we can allow forwarding from port [port] to port [i]. 2419 * Except if both ports are isolated. 2420 */ 2421 if (p->stp_state == BR_STATE_FORWARDING && 2422 !(p->isolated && other_p->isolated)) { 2423 val |= BIT(port); 2424 port_member |= BIT(i); 2425 } 2426 2427 /* Retain port [i]'s relationship to other ports than [port] */ 2428 for (j = 0; j < ds->num_ports; j++) { 2429 const struct dsa_port *third_dp; 2430 struct ksz_port *third_p; 2431 2432 if (j == i) 2433 continue; 2434 if (j == port) 2435 continue; 2436 if (!dsa_is_user_port(ds, j)) 2437 continue; 2438 third_p = &dev->ports[j]; 2439 if (third_p->stp_state != BR_STATE_FORWARDING) 2440 continue; 2441 2442 third_dp = dsa_to_port(ds, j); 2443 2444 /* Now we updating relation of the "other" port [i] to 2445 * the "third" port [j]. We already know that "other" 2446 * port [i] is in forwarding stp state and that "third" 2447 * port [j] is in forwarding stp state too. 2448 * We need to check if "other" port [i] and "third" port 2449 * [j] are in the same bridge group and not isolated 2450 * before allowing forwarding from port [i] to port [j]. 2451 */ 2452 if (dsa_port_bridge_same(other_dp, third_dp) && 2453 !(other_p->isolated && third_p->isolated)) 2454 val |= BIT(j); 2455 } 2456 2457 dev->dev_ops->cfg_port_member(dev, i, val | cpu_port); 2458 } 2459 2460 /* HSR ports are setup once so need to use the assigned membership 2461 * when the port is enabled. 2462 */ 2463 if (!port_member && p->stp_state == BR_STATE_FORWARDING && 2464 (dev->hsr_ports & BIT(port))) 2465 port_member = dev->hsr_ports; 2466 dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port); 2467 } 2468 2469 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum) 2470 { 2471 struct ksz_device *dev = bus->priv; 2472 u16 val; 2473 int ret; 2474 2475 ret = dev->dev_ops->r_phy(dev, addr, regnum, &val); 2476 if (ret < 0) 2477 return ret; 2478 2479 return val; 2480 } 2481 2482 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum, 2483 u16 val) 2484 { 2485 struct ksz_device *dev = bus->priv; 2486 2487 return dev->dev_ops->w_phy(dev, addr, regnum, val); 2488 } 2489 2490 /** 2491 * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus. 2492 * @bus: MDIO bus structure. 2493 * @addr: PHY address on the parent MDIO bus. 2494 * @regnum: Register number to read. 2495 * 2496 * This function provides a direct read operation on the parent MDIO bus for 2497 * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus 2498 * to retrieve data from the PHY registers at the specified address and register 2499 * number. 2500 * 2501 * Return: Value of the PHY register, or a negative error code on failure. 2502 */ 2503 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum) 2504 { 2505 struct ksz_device *dev = bus->priv; 2506 2507 return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum); 2508 } 2509 2510 /** 2511 * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus. 2512 * @bus: MDIO bus structure. 2513 * @addr: PHY address on the parent MDIO bus. 2514 * @regnum: Register number to write to. 2515 * @val: Value to write to the PHY register. 2516 * 2517 * This function provides a direct write operation on the parent MDIO bus for 2518 * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus 2519 * to modify the PHY register values at the specified address. 2520 * 2521 * Return: 0 on success, or a negative error code on failure. 2522 */ 2523 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum, 2524 u16 val) 2525 { 2526 struct ksz_device *dev = bus->priv; 2527 2528 return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val); 2529 } 2530 2531 /** 2532 * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port. 2533 * @dev: Pointer to device structure. 2534 * @addr: PHY address to map to a port. 2535 * 2536 * This function finds the corresponding switch port for a given PHY address by 2537 * iterating over all user ports on the device. It checks if a port's PHY 2538 * address in `phy_addr_map` matches the specified address and if the port 2539 * contains an internal PHY. If a match is found, the index of the port is 2540 * returned. 2541 * 2542 * Return: Port index on success, or -EINVAL if no matching port is found. 2543 */ 2544 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr) 2545 { 2546 struct dsa_switch *ds = dev->ds; 2547 struct dsa_port *dp; 2548 2549 dsa_switch_for_each_user_port(dp, ds) { 2550 if (dev->info->internal_phy[dp->index] && 2551 dev->phy_addr_map[dp->index] == addr) 2552 return dp->index; 2553 } 2554 2555 return -EINVAL; 2556 } 2557 2558 /** 2559 * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device. 2560 * @dev: Pointer to the KSZ device structure. 2561 * 2562 * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the 2563 * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in 2564 * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain. 2565 * 2566 * Return: 0 on success, or a negative error code on failure. 2567 */ 2568 static int ksz_irq_phy_setup(struct ksz_device *dev) 2569 { 2570 struct dsa_switch *ds = dev->ds; 2571 int phy, port; 2572 int irq; 2573 int ret; 2574 2575 for (phy = 0; phy < PHY_MAX_ADDR; phy++) { 2576 if (BIT(phy) & ds->phys_mii_mask) { 2577 port = ksz_phy_addr_to_port(dev, phy); 2578 if (port < 0) { 2579 ret = port; 2580 goto out; 2581 } 2582 2583 irq = irq_find_mapping(dev->ports[port].pirq.domain, 2584 PORT_SRC_PHY_INT); 2585 if (irq < 0) { 2586 ret = irq; 2587 goto out; 2588 } 2589 ds->user_mii_bus->irq[phy] = irq; 2590 } 2591 } 2592 return 0; 2593 out: 2594 while (phy--) 2595 if (BIT(phy) & ds->phys_mii_mask) 2596 irq_dispose_mapping(ds->user_mii_bus->irq[phy]); 2597 2598 return ret; 2599 } 2600 2601 /** 2602 * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device. 2603 * @dev: Pointer to the KSZ device structure. 2604 * 2605 * Releases any IRQ mappings previously assigned to active PHYs in the KSZ 2606 * switch by disposing of each mapped IRQ in the `user_mii_bus` structure. 2607 */ 2608 static void ksz_irq_phy_free(struct ksz_device *dev) 2609 { 2610 struct dsa_switch *ds = dev->ds; 2611 int phy; 2612 2613 for (phy = 0; phy < PHY_MAX_ADDR; phy++) 2614 if (BIT(phy) & ds->phys_mii_mask) 2615 irq_dispose_mapping(ds->user_mii_bus->irq[phy]); 2616 } 2617 2618 /** 2619 * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT 2620 * @dev: pointer to the KSZ device structure 2621 * @bus: pointer to the MII bus structure 2622 * @mdio_np: pointer to the MDIO node in the device tree 2623 * 2624 * This function parses and validates PHY configurations for each user port 2625 * defined in the device tree for a KSZ switch device. It verifies that the 2626 * `phy-handle` properties are correctly set and that the internal PHYs match 2627 * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if 2628 * all validations pass. Logs error messages for any mismatches or missing data. 2629 * 2630 * Return: 0 on success, or a negative error code on failure. 2631 */ 2632 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus, 2633 struct device_node *mdio_np) 2634 { 2635 struct device_node *phy_node, *phy_parent_node; 2636 bool phys_are_valid = true; 2637 struct dsa_port *dp; 2638 u32 phy_addr; 2639 int ret; 2640 2641 dsa_switch_for_each_user_port(dp, dev->ds) { 2642 if (!dev->info->internal_phy[dp->index]) 2643 continue; 2644 2645 phy_node = of_parse_phandle(dp->dn, "phy-handle", 0); 2646 if (!phy_node) { 2647 dev_err(dev->dev, "failed to parse phy-handle for port %d.\n", 2648 dp->index); 2649 phys_are_valid = false; 2650 continue; 2651 } 2652 2653 phy_parent_node = of_get_parent(phy_node); 2654 if (!phy_parent_node) { 2655 dev_err(dev->dev, "failed to get PHY-parent node for port %d\n", 2656 dp->index); 2657 phys_are_valid = false; 2658 } else if (phy_parent_node != mdio_np) { 2659 dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n", 2660 dp->index, mdio_np, phy_parent_node); 2661 phys_are_valid = false; 2662 } else { 2663 ret = of_property_read_u32(phy_node, "reg", &phy_addr); 2664 if (ret < 0) { 2665 dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n", 2666 dp->index, ret); 2667 phys_are_valid = false; 2668 } else if (phy_addr != dev->phy_addr_map[dp->index]) { 2669 dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n", 2670 dp->index, dev->phy_addr_map[dp->index], 2671 phy_addr); 2672 phys_are_valid = false; 2673 } else { 2674 bus->phy_mask |= BIT(phy_addr); 2675 } 2676 } 2677 2678 of_node_put(phy_node); 2679 of_node_put(phy_parent_node); 2680 } 2681 2682 if (!phys_are_valid) 2683 return -EINVAL; 2684 2685 return 0; 2686 } 2687 2688 /** 2689 * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device. 2690 * @dev: Pointer to the KSZ device structure. 2691 * 2692 * This function sets up and registers an MDIO bus for the KSZ switch device, 2693 * allowing access to its internal PHYs. If the device supports side MDIO, 2694 * the function will configure the external MDIO controller specified by the 2695 * "mdio-parent-bus" device tree property to directly manage internal PHYs. 2696 * Otherwise, SPI or I2C access is set up for PHY access. 2697 * 2698 * Return: 0 on success, or a negative error code on failure. 2699 */ 2700 static int ksz_mdio_register(struct ksz_device *dev) 2701 { 2702 struct device_node *parent_bus_node; 2703 struct mii_bus *parent_bus = NULL; 2704 struct dsa_switch *ds = dev->ds; 2705 struct device_node *mdio_np; 2706 struct mii_bus *bus; 2707 int ret, i; 2708 2709 mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio"); 2710 if (!mdio_np) 2711 return 0; 2712 2713 parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0); 2714 if (parent_bus_node && !dev->info->phy_side_mdio_supported) { 2715 dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n"); 2716 ret = -EINVAL; 2717 2718 goto put_mdio_node; 2719 } else if (parent_bus_node) { 2720 parent_bus = of_mdio_find_bus(parent_bus_node); 2721 if (!parent_bus) { 2722 ret = -EPROBE_DEFER; 2723 2724 goto put_mdio_node; 2725 } 2726 2727 dev->parent_mdio_bus = parent_bus; 2728 } 2729 2730 bus = devm_mdiobus_alloc(ds->dev); 2731 if (!bus) { 2732 ret = -ENOMEM; 2733 goto put_mdio_node; 2734 } 2735 2736 if (dev->dev_ops->mdio_bus_preinit) { 2737 ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus); 2738 if (ret) 2739 goto put_mdio_node; 2740 } 2741 2742 if (dev->dev_ops->create_phy_addr_map) { 2743 ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus); 2744 if (ret) 2745 goto put_mdio_node; 2746 } else { 2747 for (i = 0; i < dev->info->port_cnt; i++) 2748 dev->phy_addr_map[i] = i; 2749 } 2750 2751 bus->priv = dev; 2752 if (parent_bus) { 2753 bus->read = ksz_parent_mdio_read; 2754 bus->write = ksz_parent_mdio_write; 2755 bus->name = "KSZ side MDIO"; 2756 snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d", 2757 ds->index); 2758 } else { 2759 bus->read = ksz_sw_mdio_read; 2760 bus->write = ksz_sw_mdio_write; 2761 bus->name = "ksz user smi"; 2762 if (ds->dst->index != 0) { 2763 snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d-%d", ds->dst->index, ds->index); 2764 } else { 2765 snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index); 2766 } 2767 } 2768 2769 ret = ksz_parse_dt_phy_config(dev, bus, mdio_np); 2770 if (ret) 2771 goto put_mdio_node; 2772 2773 ds->phys_mii_mask = bus->phy_mask; 2774 bus->parent = ds->dev; 2775 2776 ds->user_mii_bus = bus; 2777 2778 if (dev->irq > 0) { 2779 ret = ksz_irq_phy_setup(dev); 2780 if (ret) 2781 goto put_mdio_node; 2782 } 2783 2784 ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np); 2785 if (ret) { 2786 dev_err(ds->dev, "unable to register MDIO bus %s\n", 2787 bus->id); 2788 if (dev->irq > 0) 2789 ksz_irq_phy_free(dev); 2790 } 2791 2792 put_mdio_node: 2793 of_node_put(mdio_np); 2794 of_node_put(parent_bus_node); 2795 2796 return ret; 2797 } 2798 2799 static void ksz_irq_mask(struct irq_data *d) 2800 { 2801 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2802 2803 kirq->masked |= BIT(d->hwirq); 2804 } 2805 2806 static void ksz_irq_unmask(struct irq_data *d) 2807 { 2808 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2809 2810 kirq->masked &= ~BIT(d->hwirq); 2811 } 2812 2813 static void ksz_irq_bus_lock(struct irq_data *d) 2814 { 2815 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2816 2817 mutex_lock(&kirq->dev->lock_irq); 2818 } 2819 2820 static void ksz_irq_bus_sync_unlock(struct irq_data *d) 2821 { 2822 struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); 2823 struct ksz_device *dev = kirq->dev; 2824 int ret; 2825 2826 ret = ksz_write8(dev, kirq->reg_mask, kirq->masked); 2827 if (ret) 2828 dev_err(dev->dev, "failed to change IRQ mask\n"); 2829 2830 mutex_unlock(&dev->lock_irq); 2831 } 2832 2833 static const struct irq_chip ksz_irq_chip = { 2834 .name = "ksz-irq", 2835 .irq_mask = ksz_irq_mask, 2836 .irq_unmask = ksz_irq_unmask, 2837 .irq_bus_lock = ksz_irq_bus_lock, 2838 .irq_bus_sync_unlock = ksz_irq_bus_sync_unlock, 2839 }; 2840 2841 static int ksz_irq_domain_map(struct irq_domain *d, 2842 unsigned int irq, irq_hw_number_t hwirq) 2843 { 2844 irq_set_chip_data(irq, d->host_data); 2845 irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq); 2846 irq_set_noprobe(irq); 2847 2848 return 0; 2849 } 2850 2851 static const struct irq_domain_ops ksz_irq_domain_ops = { 2852 .map = ksz_irq_domain_map, 2853 .xlate = irq_domain_xlate_twocell, 2854 }; 2855 2856 static void ksz_irq_free(struct ksz_irq *kirq) 2857 { 2858 int irq, virq; 2859 2860 free_irq(kirq->irq_num, kirq); 2861 2862 for (irq = 0; irq < kirq->nirqs; irq++) { 2863 virq = irq_find_mapping(kirq->domain, irq); 2864 irq_dispose_mapping(virq); 2865 } 2866 2867 irq_domain_remove(kirq->domain); 2868 } 2869 2870 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id) 2871 { 2872 struct ksz_irq *kirq = dev_id; 2873 unsigned int nhandled = 0; 2874 struct ksz_device *dev; 2875 unsigned int sub_irq; 2876 u8 data; 2877 int ret; 2878 u8 n; 2879 2880 dev = kirq->dev; 2881 2882 /* Read interrupt status register */ 2883 ret = ksz_read8(dev, kirq->reg_status, &data); 2884 if (ret) 2885 goto out; 2886 2887 for (n = 0; n < kirq->nirqs; ++n) { 2888 if (data & BIT(n)) { 2889 sub_irq = irq_find_mapping(kirq->domain, n); 2890 handle_nested_irq(sub_irq); 2891 ++nhandled; 2892 } 2893 } 2894 out: 2895 return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE); 2896 } 2897 2898 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq) 2899 { 2900 int ret, n; 2901 2902 kirq->dev = dev; 2903 kirq->masked = ~0; 2904 2905 kirq->domain = irq_domain_create_simple(dev_fwnode(dev->dev), kirq->nirqs, 0, 2906 &ksz_irq_domain_ops, kirq); 2907 if (!kirq->domain) 2908 return -ENOMEM; 2909 2910 for (n = 0; n < kirq->nirqs; n++) 2911 irq_create_mapping(kirq->domain, n); 2912 2913 ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn, 2914 IRQF_ONESHOT, kirq->name, kirq); 2915 if (ret) 2916 goto out; 2917 2918 return 0; 2919 2920 out: 2921 ksz_irq_free(kirq); 2922 2923 return ret; 2924 } 2925 2926 static int ksz_girq_setup(struct ksz_device *dev) 2927 { 2928 struct ksz_irq *girq = &dev->girq; 2929 2930 girq->nirqs = dev->info->port_cnt; 2931 girq->reg_mask = REG_SW_PORT_INT_MASK__1; 2932 girq->reg_status = REG_SW_PORT_INT_STATUS__1; 2933 snprintf(girq->name, sizeof(girq->name), "global_port_irq"); 2934 2935 girq->irq_num = dev->irq; 2936 2937 return ksz_irq_common_setup(dev, girq); 2938 } 2939 2940 static int ksz_pirq_setup(struct ksz_device *dev, u8 p) 2941 { 2942 struct ksz_irq *pirq = &dev->ports[p].pirq; 2943 2944 pirq->nirqs = dev->info->port_nirqs; 2945 pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK); 2946 pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS); 2947 snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p); 2948 2949 pirq->irq_num = irq_find_mapping(dev->girq.domain, p); 2950 if (pirq->irq_num < 0) 2951 return pirq->irq_num; 2952 2953 return ksz_irq_common_setup(dev, pirq); 2954 } 2955 2956 static int ksz_parse_drive_strength(struct ksz_device *dev); 2957 2958 static int ksz_setup(struct dsa_switch *ds) 2959 { 2960 struct ksz_device *dev = ds->priv; 2961 u16 storm_mask, storm_rate; 2962 struct dsa_port *dp; 2963 struct ksz_port *p; 2964 const u16 *regs; 2965 int ret; 2966 2967 regs = dev->info->regs; 2968 2969 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table), 2970 dev->info->num_vlans, GFP_KERNEL); 2971 if (!dev->vlan_cache) 2972 return -ENOMEM; 2973 2974 ret = dev->dev_ops->reset(dev); 2975 if (ret) { 2976 dev_err(ds->dev, "failed to reset switch\n"); 2977 return ret; 2978 } 2979 2980 ret = ksz_parse_drive_strength(dev); 2981 if (ret) 2982 return ret; 2983 2984 if (ksz_has_sgmii_port(dev) && dev->dev_ops->pcs_create) { 2985 ret = dev->dev_ops->pcs_create(dev); 2986 if (ret) 2987 return ret; 2988 } 2989 2990 /* set broadcast storm protection 10% rate */ 2991 storm_mask = BROADCAST_STORM_RATE; 2992 storm_rate = (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100; 2993 if (ksz_is_ksz8463(dev)) { 2994 storm_mask = swab16(storm_mask); 2995 storm_rate = swab16(storm_rate); 2996 } 2997 regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL], 2998 storm_mask, storm_rate); 2999 3000 dev->dev_ops->config_cpu_port(ds); 3001 3002 dev->dev_ops->enable_stp_addr(dev); 3003 3004 ds->num_tx_queues = dev->info->num_tx_queues; 3005 3006 regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL], 3007 MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE); 3008 3009 ksz_init_mib_timer(dev); 3010 3011 ds->configure_vlan_while_not_filtering = false; 3012 ds->dscp_prio_mapping_is_global = true; 3013 3014 if (dev->dev_ops->setup) { 3015 ret = dev->dev_ops->setup(ds); 3016 if (ret) 3017 return ret; 3018 } 3019 3020 /* Start with learning disabled on standalone user ports, and enabled 3021 * on the CPU port. In lack of other finer mechanisms, learning on the 3022 * CPU port will avoid flooding bridge local addresses on the network 3023 * in some cases. 3024 */ 3025 p = &dev->ports[dev->cpu_port]; 3026 p->learning = true; 3027 3028 if (dev->irq > 0) { 3029 ret = ksz_girq_setup(dev); 3030 if (ret) 3031 return ret; 3032 3033 dsa_switch_for_each_user_port(dp, dev->ds) { 3034 ret = ksz_pirq_setup(dev, dp->index); 3035 if (ret) 3036 goto out_girq; 3037 3038 if (dev->info->ptp_capable) { 3039 ret = ksz_ptp_irq_setup(ds, dp->index); 3040 if (ret) 3041 goto out_pirq; 3042 } 3043 } 3044 } 3045 3046 if (dev->info->ptp_capable) { 3047 ret = ksz_ptp_clock_register(ds); 3048 if (ret) { 3049 dev_err(dev->dev, "Failed to register PTP clock: %d\n", 3050 ret); 3051 goto out_ptpirq; 3052 } 3053 } 3054 3055 ret = ksz_mdio_register(dev); 3056 if (ret < 0) { 3057 dev_err(dev->dev, "failed to register the mdio"); 3058 goto out_ptp_clock_unregister; 3059 } 3060 3061 ret = ksz_dcb_init(dev); 3062 if (ret) 3063 goto out_ptp_clock_unregister; 3064 3065 /* start switch */ 3066 regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL], 3067 SW_START, SW_START); 3068 3069 return 0; 3070 3071 out_ptp_clock_unregister: 3072 if (dev->info->ptp_capable) 3073 ksz_ptp_clock_unregister(ds); 3074 out_ptpirq: 3075 if (dev->irq > 0 && dev->info->ptp_capable) 3076 dsa_switch_for_each_user_port(dp, dev->ds) 3077 ksz_ptp_irq_free(ds, dp->index); 3078 out_pirq: 3079 if (dev->irq > 0) 3080 dsa_switch_for_each_user_port(dp, dev->ds) 3081 ksz_irq_free(&dev->ports[dp->index].pirq); 3082 out_girq: 3083 if (dev->irq > 0) 3084 ksz_irq_free(&dev->girq); 3085 3086 return ret; 3087 } 3088 3089 static void ksz_teardown(struct dsa_switch *ds) 3090 { 3091 struct ksz_device *dev = ds->priv; 3092 struct dsa_port *dp; 3093 3094 if (dev->info->ptp_capable) 3095 ksz_ptp_clock_unregister(ds); 3096 3097 if (dev->irq > 0) { 3098 dsa_switch_for_each_user_port(dp, dev->ds) { 3099 if (dev->info->ptp_capable) 3100 ksz_ptp_irq_free(ds, dp->index); 3101 3102 ksz_irq_free(&dev->ports[dp->index].pirq); 3103 } 3104 3105 ksz_irq_free(&dev->girq); 3106 } 3107 3108 if (dev->dev_ops->teardown) 3109 dev->dev_ops->teardown(ds); 3110 } 3111 3112 static void port_r_cnt(struct ksz_device *dev, int port) 3113 { 3114 struct ksz_port_mib *mib = &dev->ports[port].mib; 3115 u64 *dropped; 3116 3117 /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */ 3118 while (mib->cnt_ptr < dev->info->reg_mib_cnt) { 3119 dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr, 3120 &mib->counters[mib->cnt_ptr]); 3121 ++mib->cnt_ptr; 3122 } 3123 3124 /* last one in storage */ 3125 dropped = &mib->counters[dev->info->mib_cnt]; 3126 3127 /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */ 3128 while (mib->cnt_ptr < dev->info->mib_cnt) { 3129 dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr, 3130 dropped, &mib->counters[mib->cnt_ptr]); 3131 ++mib->cnt_ptr; 3132 } 3133 mib->cnt_ptr = 0; 3134 } 3135 3136 static void ksz_mib_read_work(struct work_struct *work) 3137 { 3138 struct ksz_device *dev = container_of(work, struct ksz_device, 3139 mib_read.work); 3140 struct ksz_port_mib *mib; 3141 struct ksz_port *p; 3142 int i; 3143 3144 for (i = 0; i < dev->info->port_cnt; i++) { 3145 if (dsa_is_unused_port(dev->ds, i)) 3146 continue; 3147 3148 p = &dev->ports[i]; 3149 mib = &p->mib; 3150 mutex_lock(&mib->cnt_mutex); 3151 3152 /* Only read MIB counters when the port is told to do. 3153 * If not, read only dropped counters when link is not up. 3154 */ 3155 if (!p->read) { 3156 const struct dsa_port *dp = dsa_to_port(dev->ds, i); 3157 3158 if (!netif_carrier_ok(dp->user)) 3159 mib->cnt_ptr = dev->info->reg_mib_cnt; 3160 } 3161 port_r_cnt(dev, i); 3162 p->read = false; 3163 3164 if (dev->dev_ops->r_mib_stat64) 3165 dev->dev_ops->r_mib_stat64(dev, i); 3166 3167 mutex_unlock(&mib->cnt_mutex); 3168 } 3169 3170 schedule_delayed_work(&dev->mib_read, dev->mib_read_interval); 3171 } 3172 3173 void ksz_init_mib_timer(struct ksz_device *dev) 3174 { 3175 int i; 3176 3177 INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work); 3178 3179 for (i = 0; i < dev->info->port_cnt; i++) { 3180 struct ksz_port_mib *mib = &dev->ports[i].mib; 3181 3182 dev->dev_ops->port_init_cnt(dev, i); 3183 3184 mib->cnt_ptr = 0; 3185 memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64)); 3186 } 3187 } 3188 3189 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg) 3190 { 3191 struct ksz_device *dev = ds->priv; 3192 u16 val = 0xffff; 3193 int ret; 3194 3195 ret = dev->dev_ops->r_phy(dev, addr, reg, &val); 3196 if (ret) 3197 return ret; 3198 3199 return val; 3200 } 3201 3202 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val) 3203 { 3204 struct ksz_device *dev = ds->priv; 3205 int ret; 3206 3207 ret = dev->dev_ops->w_phy(dev, addr, reg, val); 3208 if (ret) 3209 return ret; 3210 3211 return 0; 3212 } 3213 3214 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port) 3215 { 3216 struct ksz_device *dev = ds->priv; 3217 3218 switch (dev->chip_id) { 3219 case KSZ88X3_CHIP_ID: 3220 /* Silicon Errata Sheet (DS80000830A): 3221 * Port 1 does not work with LinkMD Cable-Testing. 3222 * Port 1 does not respond to received PAUSE control frames. 3223 */ 3224 if (!port) 3225 return MICREL_KSZ8_P1_ERRATA; 3226 break; 3227 } 3228 3229 return 0; 3230 } 3231 3232 static void ksz_phylink_mac_link_down(struct phylink_config *config, 3233 unsigned int mode, 3234 phy_interface_t interface) 3235 { 3236 struct dsa_port *dp = dsa_phylink_to_port(config); 3237 struct ksz_device *dev = dp->ds->priv; 3238 3239 /* Read all MIB counters when the link is going down. */ 3240 dev->ports[dp->index].read = true; 3241 /* timer started */ 3242 if (dev->mib_read_interval) 3243 schedule_delayed_work(&dev->mib_read, 0); 3244 } 3245 3246 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset) 3247 { 3248 struct ksz_device *dev = ds->priv; 3249 3250 if (sset != ETH_SS_STATS) 3251 return 0; 3252 3253 return dev->info->mib_cnt; 3254 } 3255 3256 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port, 3257 uint64_t *buf) 3258 { 3259 const struct dsa_port *dp = dsa_to_port(ds, port); 3260 struct ksz_device *dev = ds->priv; 3261 struct ksz_port_mib *mib; 3262 3263 mib = &dev->ports[port].mib; 3264 mutex_lock(&mib->cnt_mutex); 3265 3266 /* Only read dropped counters if no link. */ 3267 if (!netif_carrier_ok(dp->user)) 3268 mib->cnt_ptr = dev->info->reg_mib_cnt; 3269 port_r_cnt(dev, port); 3270 memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64)); 3271 mutex_unlock(&mib->cnt_mutex); 3272 } 3273 3274 static int ksz_port_bridge_join(struct dsa_switch *ds, int port, 3275 struct dsa_bridge bridge, 3276 bool *tx_fwd_offload, 3277 struct netlink_ext_ack *extack) 3278 { 3279 /* port_stp_state_set() will be called after to put the port in 3280 * appropriate state so there is no need to do anything. 3281 */ 3282 3283 return 0; 3284 } 3285 3286 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port, 3287 struct dsa_bridge bridge) 3288 { 3289 /* port_stp_state_set() will be called after to put the port in 3290 * forwarding state so there is no need to do anything. 3291 */ 3292 } 3293 3294 static void ksz_port_fast_age(struct dsa_switch *ds, int port) 3295 { 3296 struct ksz_device *dev = ds->priv; 3297 3298 dev->dev_ops->flush_dyn_mac_table(dev, port); 3299 } 3300 3301 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) 3302 { 3303 struct ksz_device *dev = ds->priv; 3304 3305 if (!dev->dev_ops->set_ageing_time) 3306 return -EOPNOTSUPP; 3307 3308 return dev->dev_ops->set_ageing_time(dev, msecs); 3309 } 3310 3311 static int ksz_port_fdb_add(struct dsa_switch *ds, int port, 3312 const unsigned char *addr, u16 vid, 3313 struct dsa_db db) 3314 { 3315 struct ksz_device *dev = ds->priv; 3316 3317 if (!dev->dev_ops->fdb_add) 3318 return -EOPNOTSUPP; 3319 3320 return dev->dev_ops->fdb_add(dev, port, addr, vid, db); 3321 } 3322 3323 static int ksz_port_fdb_del(struct dsa_switch *ds, int port, 3324 const unsigned char *addr, 3325 u16 vid, struct dsa_db db) 3326 { 3327 struct ksz_device *dev = ds->priv; 3328 3329 if (!dev->dev_ops->fdb_del) 3330 return -EOPNOTSUPP; 3331 3332 return dev->dev_ops->fdb_del(dev, port, addr, vid, db); 3333 } 3334 3335 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port, 3336 dsa_fdb_dump_cb_t *cb, void *data) 3337 { 3338 struct ksz_device *dev = ds->priv; 3339 3340 if (!dev->dev_ops->fdb_dump) 3341 return -EOPNOTSUPP; 3342 3343 return dev->dev_ops->fdb_dump(dev, port, cb, data); 3344 } 3345 3346 static int ksz_port_mdb_add(struct dsa_switch *ds, int port, 3347 const struct switchdev_obj_port_mdb *mdb, 3348 struct dsa_db db) 3349 { 3350 struct ksz_device *dev = ds->priv; 3351 3352 if (!dev->dev_ops->mdb_add) 3353 return -EOPNOTSUPP; 3354 3355 return dev->dev_ops->mdb_add(dev, port, mdb, db); 3356 } 3357 3358 static int ksz_port_mdb_del(struct dsa_switch *ds, int port, 3359 const struct switchdev_obj_port_mdb *mdb, 3360 struct dsa_db db) 3361 { 3362 struct ksz_device *dev = ds->priv; 3363 3364 if (!dev->dev_ops->mdb_del) 3365 return -EOPNOTSUPP; 3366 3367 return dev->dev_ops->mdb_del(dev, port, mdb, db); 3368 } 3369 3370 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev, 3371 int port) 3372 { 3373 u32 queue_map = 0; 3374 int ipm; 3375 3376 for (ipm = 0; ipm < dev->info->num_ipms; ipm++) { 3377 int queue; 3378 3379 /* Traffic Type (TT) is corresponding to the Internal Priority 3380 * Map (IPM) in the switch. Traffic Class (TC) is 3381 * corresponding to the queue in the switch. 3382 */ 3383 queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues); 3384 if (queue < 0) 3385 return queue; 3386 3387 queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S); 3388 } 3389 3390 return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map); 3391 } 3392 3393 static int ksz_port_setup(struct dsa_switch *ds, int port) 3394 { 3395 struct ksz_device *dev = ds->priv; 3396 int ret; 3397 3398 if (!dsa_is_user_port(ds, port)) 3399 return 0; 3400 3401 /* setup user port */ 3402 dev->dev_ops->port_setup(dev, port, false); 3403 3404 if (!is_ksz8(dev)) { 3405 ret = ksz9477_set_default_prio_queue_mapping(dev, port); 3406 if (ret) 3407 return ret; 3408 } 3409 3410 /* port_stp_state_set() will be called after to enable the port so 3411 * there is no need to do anything. 3412 */ 3413 3414 return ksz_dcb_init_port(dev, port); 3415 } 3416 3417 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) 3418 { 3419 struct ksz_device *dev = ds->priv; 3420 struct ksz_port *p; 3421 const u16 *regs; 3422 u8 data; 3423 3424 regs = dev->info->regs; 3425 3426 ksz_pread8(dev, port, regs[P_STP_CTRL], &data); 3427 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE); 3428 3429 p = &dev->ports[port]; 3430 3431 switch (state) { 3432 case BR_STATE_DISABLED: 3433 data |= PORT_LEARN_DISABLE; 3434 break; 3435 case BR_STATE_LISTENING: 3436 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE); 3437 break; 3438 case BR_STATE_LEARNING: 3439 data |= PORT_RX_ENABLE; 3440 if (!p->learning) 3441 data |= PORT_LEARN_DISABLE; 3442 break; 3443 case BR_STATE_FORWARDING: 3444 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 3445 if (!p->learning) 3446 data |= PORT_LEARN_DISABLE; 3447 break; 3448 case BR_STATE_BLOCKING: 3449 data |= PORT_LEARN_DISABLE; 3450 break; 3451 default: 3452 dev_err(ds->dev, "invalid STP state: %d\n", state); 3453 return; 3454 } 3455 3456 ksz_pwrite8(dev, port, regs[P_STP_CTRL], data); 3457 3458 p->stp_state = state; 3459 3460 ksz_update_port_member(dev, port); 3461 } 3462 3463 static void ksz_port_teardown(struct dsa_switch *ds, int port) 3464 { 3465 struct ksz_device *dev = ds->priv; 3466 3467 switch (dev->chip_id) { 3468 case KSZ8563_CHIP_ID: 3469 case KSZ8567_CHIP_ID: 3470 case KSZ9477_CHIP_ID: 3471 case KSZ9563_CHIP_ID: 3472 case KSZ9567_CHIP_ID: 3473 case KSZ9893_CHIP_ID: 3474 case KSZ9896_CHIP_ID: 3475 case KSZ9897_CHIP_ID: 3476 case LAN9646_CHIP_ID: 3477 if (dsa_is_user_port(ds, port)) 3478 ksz9477_port_acl_free(dev, port); 3479 } 3480 } 3481 3482 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port, 3483 struct switchdev_brport_flags flags, 3484 struct netlink_ext_ack *extack) 3485 { 3486 if (flags.mask & ~(BR_LEARNING | BR_ISOLATED)) 3487 return -EINVAL; 3488 3489 return 0; 3490 } 3491 3492 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port, 3493 struct switchdev_brport_flags flags, 3494 struct netlink_ext_ack *extack) 3495 { 3496 struct ksz_device *dev = ds->priv; 3497 struct ksz_port *p = &dev->ports[port]; 3498 3499 if (flags.mask & (BR_LEARNING | BR_ISOLATED)) { 3500 if (flags.mask & BR_LEARNING) 3501 p->learning = !!(flags.val & BR_LEARNING); 3502 3503 if (flags.mask & BR_ISOLATED) 3504 p->isolated = !!(flags.val & BR_ISOLATED); 3505 3506 /* Make the change take effect immediately */ 3507 ksz_port_stp_state_set(ds, port, p->stp_state); 3508 } 3509 3510 return 0; 3511 } 3512 3513 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds, 3514 int port, 3515 enum dsa_tag_protocol mp) 3516 { 3517 struct ksz_device *dev = ds->priv; 3518 enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE; 3519 3520 if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev)) 3521 proto = DSA_TAG_PROTO_KSZ8795; 3522 3523 if (dev->chip_id == KSZ88X3_CHIP_ID || 3524 dev->chip_id == KSZ8463_CHIP_ID || 3525 dev->chip_id == KSZ8563_CHIP_ID || 3526 dev->chip_id == KSZ9893_CHIP_ID || 3527 dev->chip_id == KSZ9563_CHIP_ID) 3528 proto = DSA_TAG_PROTO_KSZ9893; 3529 3530 if (dev->chip_id == KSZ8567_CHIP_ID || 3531 dev->chip_id == KSZ9477_CHIP_ID || 3532 dev->chip_id == KSZ9896_CHIP_ID || 3533 dev->chip_id == KSZ9897_CHIP_ID || 3534 dev->chip_id == KSZ9567_CHIP_ID || 3535 dev->chip_id == LAN9646_CHIP_ID) 3536 proto = DSA_TAG_PROTO_KSZ9477; 3537 3538 if (is_lan937x(dev)) 3539 proto = DSA_TAG_PROTO_LAN937X; 3540 3541 return proto; 3542 } 3543 3544 static int ksz_connect_tag_protocol(struct dsa_switch *ds, 3545 enum dsa_tag_protocol proto) 3546 { 3547 struct ksz_tagger_data *tagger_data; 3548 3549 switch (proto) { 3550 case DSA_TAG_PROTO_KSZ8795: 3551 return 0; 3552 case DSA_TAG_PROTO_KSZ9893: 3553 case DSA_TAG_PROTO_KSZ9477: 3554 case DSA_TAG_PROTO_LAN937X: 3555 tagger_data = ksz_tagger_data(ds); 3556 tagger_data->xmit_work_fn = ksz_port_deferred_xmit; 3557 return 0; 3558 default: 3559 return -EPROTONOSUPPORT; 3560 } 3561 } 3562 3563 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, 3564 bool flag, struct netlink_ext_ack *extack) 3565 { 3566 struct ksz_device *dev = ds->priv; 3567 3568 if (!dev->dev_ops->vlan_filtering) 3569 return -EOPNOTSUPP; 3570 3571 return dev->dev_ops->vlan_filtering(dev, port, flag, extack); 3572 } 3573 3574 static int ksz_port_vlan_add(struct dsa_switch *ds, int port, 3575 const struct switchdev_obj_port_vlan *vlan, 3576 struct netlink_ext_ack *extack) 3577 { 3578 struct ksz_device *dev = ds->priv; 3579 3580 if (!dev->dev_ops->vlan_add) 3581 return -EOPNOTSUPP; 3582 3583 return dev->dev_ops->vlan_add(dev, port, vlan, extack); 3584 } 3585 3586 static int ksz_port_vlan_del(struct dsa_switch *ds, int port, 3587 const struct switchdev_obj_port_vlan *vlan) 3588 { 3589 struct ksz_device *dev = ds->priv; 3590 3591 if (!dev->dev_ops->vlan_del) 3592 return -EOPNOTSUPP; 3593 3594 return dev->dev_ops->vlan_del(dev, port, vlan); 3595 } 3596 3597 static int ksz_port_mirror_add(struct dsa_switch *ds, int port, 3598 struct dsa_mall_mirror_tc_entry *mirror, 3599 bool ingress, struct netlink_ext_ack *extack) 3600 { 3601 struct ksz_device *dev = ds->priv; 3602 3603 if (!dev->dev_ops->mirror_add) 3604 return -EOPNOTSUPP; 3605 3606 return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack); 3607 } 3608 3609 static void ksz_port_mirror_del(struct dsa_switch *ds, int port, 3610 struct dsa_mall_mirror_tc_entry *mirror) 3611 { 3612 struct ksz_device *dev = ds->priv; 3613 3614 if (dev->dev_ops->mirror_del) 3615 dev->dev_ops->mirror_del(dev, port, mirror); 3616 } 3617 3618 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu) 3619 { 3620 struct ksz_device *dev = ds->priv; 3621 3622 if (!dev->dev_ops->change_mtu) 3623 return -EOPNOTSUPP; 3624 3625 return dev->dev_ops->change_mtu(dev, port, mtu); 3626 } 3627 3628 static int ksz_max_mtu(struct dsa_switch *ds, int port) 3629 { 3630 struct ksz_device *dev = ds->priv; 3631 3632 switch (dev->chip_id) { 3633 case KSZ8795_CHIP_ID: 3634 case KSZ8794_CHIP_ID: 3635 case KSZ8765_CHIP_ID: 3636 return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3637 case KSZ8463_CHIP_ID: 3638 case KSZ88X3_CHIP_ID: 3639 case KSZ8864_CHIP_ID: 3640 case KSZ8895_CHIP_ID: 3641 return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3642 case KSZ8563_CHIP_ID: 3643 case KSZ8567_CHIP_ID: 3644 case KSZ9477_CHIP_ID: 3645 case KSZ9563_CHIP_ID: 3646 case KSZ9567_CHIP_ID: 3647 case KSZ9893_CHIP_ID: 3648 case KSZ9896_CHIP_ID: 3649 case KSZ9897_CHIP_ID: 3650 case LAN9370_CHIP_ID: 3651 case LAN9371_CHIP_ID: 3652 case LAN9372_CHIP_ID: 3653 case LAN9373_CHIP_ID: 3654 case LAN9374_CHIP_ID: 3655 case LAN9646_CHIP_ID: 3656 return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; 3657 } 3658 3659 return -EOPNOTSUPP; 3660 } 3661 3662 /** 3663 * ksz_support_eee - Determine Energy Efficient Ethernet (EEE) support for a 3664 * port 3665 * @ds: Pointer to the DSA switch structure 3666 * @port: Port number to check 3667 * 3668 * This function also documents devices where EEE was initially advertised but 3669 * later withdrawn due to reliability issues, as described in official errata 3670 * documents. These devices are explicitly listed to record known limitations, 3671 * even if there is no technical necessity for runtime checks. 3672 * 3673 * Returns: true if the internal PHY on the given port supports fully 3674 * operational EEE, false otherwise. 3675 */ 3676 static bool ksz_support_eee(struct dsa_switch *ds, int port) 3677 { 3678 struct ksz_device *dev = ds->priv; 3679 3680 if (!dev->info->internal_phy[port]) 3681 return false; 3682 3683 switch (dev->chip_id) { 3684 case KSZ8563_CHIP_ID: 3685 case KSZ9563_CHIP_ID: 3686 case KSZ9893_CHIP_ID: 3687 return true; 3688 case KSZ8567_CHIP_ID: 3689 /* KSZ8567R Errata DS80000752C Module 4 */ 3690 case KSZ8765_CHIP_ID: 3691 case KSZ8794_CHIP_ID: 3692 case KSZ8795_CHIP_ID: 3693 /* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */ 3694 case KSZ9477_CHIP_ID: 3695 /* KSZ9477S Errata DS80000754A Module 4 */ 3696 case KSZ9567_CHIP_ID: 3697 /* KSZ9567S Errata DS80000756A Module 4 */ 3698 case KSZ9896_CHIP_ID: 3699 /* KSZ9896C Errata DS80000757A Module 3 */ 3700 case KSZ9897_CHIP_ID: 3701 case LAN9646_CHIP_ID: 3702 /* KSZ9897R Errata DS80000758C Module 4 */ 3703 /* Energy Efficient Ethernet (EEE) feature select must be 3704 * manually disabled 3705 * The EEE feature is enabled by default, but it is not fully 3706 * operational. It must be manually disabled through register 3707 * controls. If not disabled, the PHY ports can auto-negotiate 3708 * to enable EEE, and this feature can cause link drops when 3709 * linked to another device supporting EEE. 3710 * 3711 * The same item appears in the errata for all switches above. 3712 */ 3713 break; 3714 } 3715 3716 return false; 3717 } 3718 3719 static int ksz_set_mac_eee(struct dsa_switch *ds, int port, 3720 struct ethtool_keee *e) 3721 { 3722 struct ksz_device *dev = ds->priv; 3723 3724 if (!e->tx_lpi_enabled) { 3725 dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n"); 3726 return -EINVAL; 3727 } 3728 3729 if (e->tx_lpi_timer) { 3730 dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n"); 3731 return -EINVAL; 3732 } 3733 3734 return 0; 3735 } 3736 3737 static void ksz_set_xmii(struct ksz_device *dev, int port, 3738 phy_interface_t interface) 3739 { 3740 const u8 *bitval = dev->info->xmii_ctrl1; 3741 struct ksz_port *p = &dev->ports[port]; 3742 const u16 *regs = dev->info->regs; 3743 u8 data8; 3744 3745 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3746 3747 data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE | 3748 P_RGMII_ID_EG_ENABLE); 3749 3750 switch (interface) { 3751 case PHY_INTERFACE_MODE_MII: 3752 data8 |= bitval[P_MII_SEL]; 3753 break; 3754 case PHY_INTERFACE_MODE_RMII: 3755 data8 |= bitval[P_RMII_SEL]; 3756 break; 3757 case PHY_INTERFACE_MODE_GMII: 3758 data8 |= bitval[P_GMII_SEL]; 3759 break; 3760 case PHY_INTERFACE_MODE_RGMII: 3761 case PHY_INTERFACE_MODE_RGMII_ID: 3762 case PHY_INTERFACE_MODE_RGMII_TXID: 3763 case PHY_INTERFACE_MODE_RGMII_RXID: 3764 data8 |= bitval[P_RGMII_SEL]; 3765 /* On KSZ9893, disable RGMII in-band status support */ 3766 if (dev->chip_id == KSZ9893_CHIP_ID || 3767 dev->chip_id == KSZ8563_CHIP_ID || 3768 dev->chip_id == KSZ9563_CHIP_ID || 3769 is_lan937x(dev)) 3770 data8 &= ~P_MII_MAC_MODE; 3771 break; 3772 default: 3773 dev_err(dev->dev, "Unsupported interface '%s' for port %d\n", 3774 phy_modes(interface), port); 3775 return; 3776 } 3777 3778 if (p->rgmii_tx_val) 3779 data8 |= P_RGMII_ID_EG_ENABLE; 3780 3781 if (p->rgmii_rx_val) 3782 data8 |= P_RGMII_ID_IG_ENABLE; 3783 3784 /* Write the updated value */ 3785 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8); 3786 } 3787 3788 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit) 3789 { 3790 const u8 *bitval = dev->info->xmii_ctrl1; 3791 const u16 *regs = dev->info->regs; 3792 phy_interface_t interface; 3793 u8 data8; 3794 u8 val; 3795 3796 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3797 3798 val = FIELD_GET(P_MII_SEL_M, data8); 3799 3800 if (val == bitval[P_MII_SEL]) { 3801 if (gbit) 3802 interface = PHY_INTERFACE_MODE_GMII; 3803 else 3804 interface = PHY_INTERFACE_MODE_MII; 3805 } else if (val == bitval[P_RMII_SEL]) { 3806 interface = PHY_INTERFACE_MODE_RMII; 3807 } else { 3808 interface = PHY_INTERFACE_MODE_RGMII; 3809 if (data8 & P_RGMII_ID_EG_ENABLE) 3810 interface = PHY_INTERFACE_MODE_RGMII_TXID; 3811 if (data8 & P_RGMII_ID_IG_ENABLE) { 3812 interface = PHY_INTERFACE_MODE_RGMII_RXID; 3813 if (data8 & P_RGMII_ID_EG_ENABLE) 3814 interface = PHY_INTERFACE_MODE_RGMII_ID; 3815 } 3816 } 3817 3818 return interface; 3819 } 3820 3821 static void ksz88x3_phylink_mac_config(struct phylink_config *config, 3822 unsigned int mode, 3823 const struct phylink_link_state *state) 3824 { 3825 struct dsa_port *dp = dsa_phylink_to_port(config); 3826 struct ksz_device *dev = dp->ds->priv; 3827 3828 dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN); 3829 } 3830 3831 static void ksz_phylink_mac_config(struct phylink_config *config, 3832 unsigned int mode, 3833 const struct phylink_link_state *state) 3834 { 3835 struct dsa_port *dp = dsa_phylink_to_port(config); 3836 struct ksz_device *dev = dp->ds->priv; 3837 int port = dp->index; 3838 3839 /* Internal PHYs */ 3840 if (dev->info->internal_phy[port]) 3841 return; 3842 3843 /* No need to configure XMII control register when using SGMII. */ 3844 if (ksz_is_sgmii_port(dev, port)) 3845 return; 3846 3847 if (phylink_autoneg_inband(mode)) { 3848 dev_err(dev->dev, "In-band AN not supported!\n"); 3849 return; 3850 } 3851 3852 ksz_set_xmii(dev, port, state->interface); 3853 3854 if (dev->dev_ops->setup_rgmii_delay) 3855 dev->dev_ops->setup_rgmii_delay(dev, port); 3856 } 3857 3858 bool ksz_get_gbit(struct ksz_device *dev, int port) 3859 { 3860 const u8 *bitval = dev->info->xmii_ctrl1; 3861 const u16 *regs = dev->info->regs; 3862 bool gbit = false; 3863 u8 data8; 3864 bool val; 3865 3866 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3867 3868 val = FIELD_GET(P_GMII_1GBIT_M, data8); 3869 3870 if (val == bitval[P_GMII_1GBIT]) 3871 gbit = true; 3872 3873 return gbit; 3874 } 3875 3876 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit) 3877 { 3878 const u8 *bitval = dev->info->xmii_ctrl1; 3879 const u16 *regs = dev->info->regs; 3880 u8 data8; 3881 3882 ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); 3883 3884 data8 &= ~P_GMII_1GBIT_M; 3885 3886 if (gbit) 3887 data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]); 3888 else 3889 data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]); 3890 3891 /* Write the updated value */ 3892 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8); 3893 } 3894 3895 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed) 3896 { 3897 const u8 *bitval = dev->info->xmii_ctrl0; 3898 const u16 *regs = dev->info->regs; 3899 u8 data8; 3900 3901 ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8); 3902 3903 data8 &= ~P_MII_100MBIT_M; 3904 3905 if (speed == SPEED_100) 3906 data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]); 3907 else 3908 data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]); 3909 3910 /* Write the updated value */ 3911 ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8); 3912 } 3913 3914 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed) 3915 { 3916 if (speed == SPEED_1000) 3917 ksz_set_gbit(dev, port, true); 3918 else 3919 ksz_set_gbit(dev, port, false); 3920 3921 if (speed == SPEED_100 || speed == SPEED_10) 3922 ksz_set_100_10mbit(dev, port, speed); 3923 } 3924 3925 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex, 3926 bool tx_pause, bool rx_pause) 3927 { 3928 const u8 *bitval = dev->info->xmii_ctrl0; 3929 const u32 *masks = dev->info->masks; 3930 const u16 *regs = dev->info->regs; 3931 u8 mask; 3932 u8 val; 3933 3934 mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] | 3935 masks[P_MII_RX_FLOW_CTRL]; 3936 3937 if (duplex == DUPLEX_FULL) 3938 val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]); 3939 else 3940 val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]); 3941 3942 if (tx_pause) 3943 val |= masks[P_MII_TX_FLOW_CTRL]; 3944 3945 if (rx_pause) 3946 val |= masks[P_MII_RX_FLOW_CTRL]; 3947 3948 ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val); 3949 } 3950 3951 static void ksz9477_phylink_mac_link_up(struct phylink_config *config, 3952 struct phy_device *phydev, 3953 unsigned int mode, 3954 phy_interface_t interface, 3955 int speed, int duplex, bool tx_pause, 3956 bool rx_pause) 3957 { 3958 struct dsa_port *dp = dsa_phylink_to_port(config); 3959 struct ksz_device *dev = dp->ds->priv; 3960 int port = dp->index; 3961 struct ksz_port *p; 3962 3963 p = &dev->ports[port]; 3964 3965 /* Internal PHYs */ 3966 if (dev->info->internal_phy[port]) 3967 return; 3968 3969 p->phydev.speed = speed; 3970 3971 ksz_port_set_xmii_speed(dev, port, speed); 3972 3973 ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause); 3974 } 3975 3976 static int ksz_switch_detect(struct ksz_device *dev) 3977 { 3978 u8 id1, id2, id4; 3979 u16 id16; 3980 u32 id32; 3981 int ret; 3982 3983 /* read chip id */ 3984 ret = ksz_read16(dev, REG_CHIP_ID0, &id16); 3985 if (ret) 3986 return ret; 3987 3988 id1 = FIELD_GET(SW_FAMILY_ID_M, id16); 3989 id2 = FIELD_GET(SW_CHIP_ID_M, id16); 3990 3991 switch (id1) { 3992 case KSZ84_FAMILY_ID: 3993 dev->chip_id = KSZ8463_CHIP_ID; 3994 break; 3995 case KSZ87_FAMILY_ID: 3996 if (id2 == KSZ87_CHIP_ID_95) { 3997 u8 val; 3998 3999 dev->chip_id = KSZ8795_CHIP_ID; 4000 4001 ksz_read8(dev, KSZ8_PORT_STATUS_0, &val); 4002 if (val & KSZ8_PORT_FIBER_MODE) 4003 dev->chip_id = KSZ8765_CHIP_ID; 4004 } else if (id2 == KSZ87_CHIP_ID_94) { 4005 dev->chip_id = KSZ8794_CHIP_ID; 4006 } else { 4007 return -ENODEV; 4008 } 4009 break; 4010 case KSZ88_FAMILY_ID: 4011 if (id2 == KSZ88_CHIP_ID_63) 4012 dev->chip_id = KSZ88X3_CHIP_ID; 4013 else 4014 return -ENODEV; 4015 break; 4016 case KSZ8895_FAMILY_ID: 4017 if (id2 == KSZ8895_CHIP_ID_95 || 4018 id2 == KSZ8895_CHIP_ID_95R) 4019 dev->chip_id = KSZ8895_CHIP_ID; 4020 else 4021 return -ENODEV; 4022 ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4); 4023 if (ret) 4024 return ret; 4025 if (id4 & SW_KSZ8864) 4026 dev->chip_id = KSZ8864_CHIP_ID; 4027 break; 4028 default: 4029 ret = ksz_read32(dev, REG_CHIP_ID0, &id32); 4030 if (ret) 4031 return ret; 4032 4033 dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32); 4034 id32 &= ~0xFF; 4035 4036 switch (id32) { 4037 case KSZ9477_CHIP_ID: 4038 case KSZ9896_CHIP_ID: 4039 case KSZ9897_CHIP_ID: 4040 case KSZ9567_CHIP_ID: 4041 case KSZ8567_CHIP_ID: 4042 case LAN9370_CHIP_ID: 4043 case LAN9371_CHIP_ID: 4044 case LAN9372_CHIP_ID: 4045 case LAN9373_CHIP_ID: 4046 case LAN9374_CHIP_ID: 4047 4048 /* LAN9646 does not have its own chip id. */ 4049 if (dev->chip_id != LAN9646_CHIP_ID) 4050 dev->chip_id = id32; 4051 break; 4052 case KSZ9893_CHIP_ID: 4053 ret = ksz_read8(dev, REG_CHIP_ID4, 4054 &id4); 4055 if (ret) 4056 return ret; 4057 4058 if (id4 == SKU_ID_KSZ8563) 4059 dev->chip_id = KSZ8563_CHIP_ID; 4060 else if (id4 == SKU_ID_KSZ9563) 4061 dev->chip_id = KSZ9563_CHIP_ID; 4062 else 4063 dev->chip_id = KSZ9893_CHIP_ID; 4064 4065 break; 4066 default: 4067 dev_err(dev->dev, 4068 "unsupported switch detected %x)\n", id32); 4069 return -ENODEV; 4070 } 4071 } 4072 return 0; 4073 } 4074 4075 static int ksz_cls_flower_add(struct dsa_switch *ds, int port, 4076 struct flow_cls_offload *cls, bool ingress) 4077 { 4078 struct ksz_device *dev = ds->priv; 4079 4080 switch (dev->chip_id) { 4081 case KSZ8563_CHIP_ID: 4082 case KSZ8567_CHIP_ID: 4083 case KSZ9477_CHIP_ID: 4084 case KSZ9563_CHIP_ID: 4085 case KSZ9567_CHIP_ID: 4086 case KSZ9893_CHIP_ID: 4087 case KSZ9896_CHIP_ID: 4088 case KSZ9897_CHIP_ID: 4089 case LAN9646_CHIP_ID: 4090 return ksz9477_cls_flower_add(ds, port, cls, ingress); 4091 } 4092 4093 return -EOPNOTSUPP; 4094 } 4095 4096 static int ksz_cls_flower_del(struct dsa_switch *ds, int port, 4097 struct flow_cls_offload *cls, bool ingress) 4098 { 4099 struct ksz_device *dev = ds->priv; 4100 4101 switch (dev->chip_id) { 4102 case KSZ8563_CHIP_ID: 4103 case KSZ8567_CHIP_ID: 4104 case KSZ9477_CHIP_ID: 4105 case KSZ9563_CHIP_ID: 4106 case KSZ9567_CHIP_ID: 4107 case KSZ9893_CHIP_ID: 4108 case KSZ9896_CHIP_ID: 4109 case KSZ9897_CHIP_ID: 4110 case LAN9646_CHIP_ID: 4111 return ksz9477_cls_flower_del(ds, port, cls, ingress); 4112 } 4113 4114 return -EOPNOTSUPP; 4115 } 4116 4117 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth 4118 * is converted to Hex-decimal using the successive multiplication method. On 4119 * every step, integer part is taken and decimal part is carry forwarded. 4120 */ 4121 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw) 4122 { 4123 u32 cinc = 0; 4124 u32 txrate; 4125 u32 rate; 4126 u8 temp; 4127 u8 i; 4128 4129 txrate = idle_slope - send_slope; 4130 4131 if (!txrate) 4132 return -EINVAL; 4133 4134 rate = idle_slope; 4135 4136 /* 24 bit register */ 4137 for (i = 0; i < 6; i++) { 4138 rate = rate * 16; 4139 4140 temp = rate / txrate; 4141 4142 rate %= txrate; 4143 4144 cinc = ((cinc << 4) | temp); 4145 } 4146 4147 *bw = cinc; 4148 4149 return 0; 4150 } 4151 4152 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler, 4153 u8 shaper) 4154 { 4155 return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0, 4156 FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) | 4157 FIELD_PREP(MTI_SHAPING_M, shaper)); 4158 } 4159 4160 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port, 4161 struct tc_cbs_qopt_offload *qopt) 4162 { 4163 struct ksz_device *dev = ds->priv; 4164 int ret; 4165 u32 bw; 4166 4167 if (!dev->info->tc_cbs_supported) 4168 return -EOPNOTSUPP; 4169 4170 if (qopt->queue > dev->info->num_tx_queues) 4171 return -EINVAL; 4172 4173 /* Queue Selection */ 4174 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue); 4175 if (ret) 4176 return ret; 4177 4178 if (!qopt->enable) 4179 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR, 4180 MTI_SHAPING_OFF); 4181 4182 /* High Credit */ 4183 ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK, 4184 qopt->hicredit); 4185 if (ret) 4186 return ret; 4187 4188 /* Low Credit */ 4189 ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK, 4190 qopt->locredit); 4191 if (ret) 4192 return ret; 4193 4194 /* Credit Increment Register */ 4195 ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw); 4196 if (ret) 4197 return ret; 4198 4199 if (dev->dev_ops->tc_cbs_set_cinc) { 4200 ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw); 4201 if (ret) 4202 return ret; 4203 } 4204 4205 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO, 4206 MTI_SHAPING_SRP); 4207 } 4208 4209 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port) 4210 { 4211 int queue, ret; 4212 4213 /* Configuration will not take effect until the last Port Queue X 4214 * Egress Limit Control Register is written. 4215 */ 4216 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 4217 ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue, 4218 KSZ9477_OUT_RATE_NO_LIMIT); 4219 if (ret) 4220 return ret; 4221 } 4222 4223 return 0; 4224 } 4225 4226 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p, 4227 int band) 4228 { 4229 /* Compared to queues, bands prioritize packets differently. In strict 4230 * priority mode, the lowest priority is assigned to Queue 0 while the 4231 * highest priority is given to Band 0. 4232 */ 4233 return p->bands - 1 - band; 4234 } 4235 4236 static u8 ksz8463_tc_ctrl(int port, int queue) 4237 { 4238 u8 reg; 4239 4240 reg = 0xC8 + port * 4; 4241 reg += ((3 - queue) / 2) * 2; 4242 reg++; 4243 reg -= (queue & 1); 4244 return reg; 4245 } 4246 4247 /** 4248 * ksz88x3_tc_ets_add - Configure ETS (Enhanced Transmission Selection) 4249 * for a port on KSZ88x3 switch 4250 * @dev: Pointer to the KSZ switch device structure 4251 * @port: Port number to configure 4252 * @p: Pointer to offload replace parameters describing ETS bands and mapping 4253 * 4254 * The KSZ88x3 supports two scheduling modes: Strict Priority and 4255 * Weighted Fair Queuing (WFQ). Both modes have fixed behavior: 4256 * - No configurable queue-to-priority mapping 4257 * - No weight adjustment in WFQ mode 4258 * 4259 * This function configures the switch to use strict priority mode by 4260 * clearing the WFQ enable bit for all queues associated with ETS bands. 4261 * If strict priority is not explicitly requested, the switch will default 4262 * to WFQ mode. 4263 * 4264 * Return: 0 on success, or a negative error code on failure 4265 */ 4266 static int ksz88x3_tc_ets_add(struct ksz_device *dev, int port, 4267 struct tc_ets_qopt_offload_replace_params *p) 4268 { 4269 int ret, band; 4270 4271 /* Only strict priority mode is supported for now. 4272 * WFQ is implicitly enabled when strict mode is disabled. 4273 */ 4274 for (band = 0; band < p->bands; band++) { 4275 int queue = ksz_ets_band_to_queue(p, band); 4276 u8 reg; 4277 4278 /* Calculate TXQ Split Control register address for this 4279 * port/queue 4280 */ 4281 reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue); 4282 if (ksz_is_ksz8463(dev)) 4283 reg = ksz8463_tc_ctrl(port, queue); 4284 4285 /* Clear WFQ enable bit to select strict priority scheduling */ 4286 ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE, 0); 4287 if (ret) 4288 return ret; 4289 } 4290 4291 return 0; 4292 } 4293 4294 /** 4295 * ksz88x3_tc_ets_del - Reset ETS (Enhanced Transmission Selection) config 4296 * for a port on KSZ88x3 switch 4297 * @dev: Pointer to the KSZ switch device structure 4298 * @port: Port number to reset 4299 * 4300 * The KSZ88x3 supports only fixed scheduling modes: Strict Priority or 4301 * Weighted Fair Queuing (WFQ), with no reconfiguration of weights or 4302 * queue mapping. This function resets the port’s scheduling mode to 4303 * the default, which is WFQ, by enabling the WFQ bit for all queues. 4304 * 4305 * Return: 0 on success, or a negative error code on failure 4306 */ 4307 static int ksz88x3_tc_ets_del(struct ksz_device *dev, int port) 4308 { 4309 int ret, queue; 4310 4311 /* Iterate over all transmit queues for this port */ 4312 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 4313 u8 reg; 4314 4315 /* Calculate TXQ Split Control register address for this 4316 * port/queue 4317 */ 4318 reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue); 4319 if (ksz_is_ksz8463(dev)) 4320 reg = ksz8463_tc_ctrl(port, queue); 4321 4322 /* Set WFQ enable bit to revert back to default scheduling 4323 * mode 4324 */ 4325 ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE, 4326 KSZ8873_TXQ_WFQ_ENABLE); 4327 if (ret) 4328 return ret; 4329 } 4330 4331 return 0; 4332 } 4333 4334 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue) 4335 { 4336 int ret; 4337 4338 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue); 4339 if (ret) 4340 return ret; 4341 4342 return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO, 4343 MTI_SHAPING_OFF); 4344 } 4345 4346 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue, 4347 int weight) 4348 { 4349 int ret; 4350 4351 ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue); 4352 if (ret) 4353 return ret; 4354 4355 ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR, 4356 MTI_SHAPING_OFF); 4357 if (ret) 4358 return ret; 4359 4360 return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight); 4361 } 4362 4363 static int ksz_tc_ets_add(struct ksz_device *dev, int port, 4364 struct tc_ets_qopt_offload_replace_params *p) 4365 { 4366 int ret, band, tc_prio; 4367 u32 queue_map = 0; 4368 4369 /* In order to ensure proper prioritization, it is necessary to set the 4370 * rate limit for the related queue to zero. Otherwise strict priority 4371 * or WRR mode will not work. This is a hardware limitation. 4372 */ 4373 ret = ksz_disable_egress_rate_limit(dev, port); 4374 if (ret) 4375 return ret; 4376 4377 /* Configure queue scheduling mode for all bands. Currently only strict 4378 * prio mode is supported. 4379 */ 4380 for (band = 0; band < p->bands; band++) { 4381 int queue = ksz_ets_band_to_queue(p, band); 4382 4383 ret = ksz_queue_set_strict(dev, port, queue); 4384 if (ret) 4385 return ret; 4386 } 4387 4388 /* Configure the mapping between traffic classes and queues. Note: 4389 * priomap variable support 16 traffic classes, but the chip can handle 4390 * only 8 classes. 4391 */ 4392 for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) { 4393 int queue; 4394 4395 if (tc_prio >= dev->info->num_ipms) 4396 break; 4397 4398 queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]); 4399 queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S); 4400 } 4401 4402 return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map); 4403 } 4404 4405 static int ksz_tc_ets_del(struct ksz_device *dev, int port) 4406 { 4407 int ret, queue; 4408 4409 /* To restore the default chip configuration, set all queues to use the 4410 * WRR scheduler with a weight of 1. 4411 */ 4412 for (queue = 0; queue < dev->info->num_tx_queues; queue++) { 4413 ret = ksz_queue_set_wrr(dev, port, queue, 4414 KSZ9477_DEFAULT_WRR_WEIGHT); 4415 4416 if (ret) 4417 return ret; 4418 } 4419 4420 /* Revert the queue mapping for TC-priority to its default setting on 4421 * the chip. 4422 */ 4423 return ksz9477_set_default_prio_queue_mapping(dev, port); 4424 } 4425 4426 static int ksz_tc_ets_validate(struct ksz_device *dev, int port, 4427 struct tc_ets_qopt_offload_replace_params *p) 4428 { 4429 int band; 4430 4431 /* Since it is not feasible to share one port among multiple qdisc, 4432 * the user must configure all available queues appropriately. 4433 */ 4434 if (p->bands != dev->info->num_tx_queues) { 4435 dev_err(dev->dev, "Not supported amount of bands. It should be %d\n", 4436 dev->info->num_tx_queues); 4437 return -EOPNOTSUPP; 4438 } 4439 4440 for (band = 0; band < p->bands; ++band) { 4441 /* The KSZ switches utilize a weighted round robin configuration 4442 * where a certain number of packets can be transmitted from a 4443 * queue before the next queue is serviced. For more information 4444 * on this, refer to section 5.2.8.4 of the KSZ8565R 4445 * documentation on the Port Transmit Queue Control 1 Register. 4446 * However, the current ETS Qdisc implementation (as of February 4447 * 2023) assigns a weight to each queue based on the number of 4448 * bytes or extrapolated bandwidth in percentages. Since this 4449 * differs from the KSZ switches' method and we don't want to 4450 * fake support by converting bytes to packets, it is better to 4451 * return an error instead. 4452 */ 4453 if (p->quanta[band]) { 4454 dev_err(dev->dev, "Quanta/weights configuration is not supported.\n"); 4455 return -EOPNOTSUPP; 4456 } 4457 } 4458 4459 return 0; 4460 } 4461 4462 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port, 4463 struct tc_ets_qopt_offload *qopt) 4464 { 4465 struct ksz_device *dev = ds->priv; 4466 int ret; 4467 4468 if (is_ksz8(dev) && !(ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))) 4469 return -EOPNOTSUPP; 4470 4471 if (qopt->parent != TC_H_ROOT) { 4472 dev_err(dev->dev, "Parent should be \"root\"\n"); 4473 return -EOPNOTSUPP; 4474 } 4475 4476 switch (qopt->command) { 4477 case TC_ETS_REPLACE: 4478 ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params); 4479 if (ret) 4480 return ret; 4481 4482 if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev)) 4483 return ksz88x3_tc_ets_add(dev, port, 4484 &qopt->replace_params); 4485 else 4486 return ksz_tc_ets_add(dev, port, &qopt->replace_params); 4487 case TC_ETS_DESTROY: 4488 if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev)) 4489 return ksz88x3_tc_ets_del(dev, port); 4490 else 4491 return ksz_tc_ets_del(dev, port); 4492 case TC_ETS_STATS: 4493 case TC_ETS_GRAFT: 4494 return -EOPNOTSUPP; 4495 } 4496 4497 return -EOPNOTSUPP; 4498 } 4499 4500 static int ksz_setup_tc(struct dsa_switch *ds, int port, 4501 enum tc_setup_type type, void *type_data) 4502 { 4503 switch (type) { 4504 case TC_SETUP_QDISC_CBS: 4505 return ksz_setup_tc_cbs(ds, port, type_data); 4506 case TC_SETUP_QDISC_ETS: 4507 return ksz_tc_setup_qdisc_ets(ds, port, type_data); 4508 default: 4509 return -EOPNOTSUPP; 4510 } 4511 } 4512 4513 /** 4514 * ksz_handle_wake_reason - Handle wake reason on a specified port. 4515 * @dev: The device structure. 4516 * @port: The port number. 4517 * 4518 * This function reads the PME (Power Management Event) status register of a 4519 * specified port to determine the wake reason. If there is no wake event, it 4520 * returns early. Otherwise, it logs the wake reason which could be due to a 4521 * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register 4522 * is then cleared to acknowledge the handling of the wake event. 4523 * 4524 * Return: 0 on success, or an error code on failure. 4525 */ 4526 int ksz_handle_wake_reason(struct ksz_device *dev, int port) 4527 { 4528 const struct ksz_dev_ops *ops = dev->dev_ops; 4529 const u16 *regs = dev->info->regs; 4530 u8 pme_status; 4531 int ret; 4532 4533 ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS], 4534 &pme_status); 4535 if (ret) 4536 return ret; 4537 4538 if (!pme_status) 4539 return 0; 4540 4541 dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port, 4542 pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "", 4543 pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "", 4544 pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : ""); 4545 4546 return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS], 4547 pme_status); 4548 } 4549 4550 /** 4551 * ksz_get_wol - Get Wake-on-LAN settings for a specified port. 4552 * @ds: The dsa_switch structure. 4553 * @port: The port number. 4554 * @wol: Pointer to ethtool Wake-on-LAN settings structure. 4555 * 4556 * This function checks the device PME wakeup_source flag and chip_id. 4557 * If enabled and supported, it sets the supported and active WoL 4558 * flags. 4559 */ 4560 static void ksz_get_wol(struct dsa_switch *ds, int port, 4561 struct ethtool_wolinfo *wol) 4562 { 4563 struct ksz_device *dev = ds->priv; 4564 const u16 *regs = dev->info->regs; 4565 u8 pme_ctrl; 4566 int ret; 4567 4568 if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev)) 4569 return; 4570 4571 if (!dev->wakeup_source) 4572 return; 4573 4574 wol->supported = WAKE_PHY; 4575 4576 /* Check if the current MAC address on this port can be set 4577 * as global for WAKE_MAGIC support. The result may vary 4578 * dynamically based on other ports configurations. 4579 */ 4580 if (ksz_is_port_mac_global_usable(dev->ds, port)) 4581 wol->supported |= WAKE_MAGIC; 4582 4583 ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL], 4584 &pme_ctrl); 4585 if (ret) 4586 return; 4587 4588 if (pme_ctrl & PME_WOL_MAGICPKT) 4589 wol->wolopts |= WAKE_MAGIC; 4590 if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY)) 4591 wol->wolopts |= WAKE_PHY; 4592 } 4593 4594 /** 4595 * ksz_set_wol - Set Wake-on-LAN settings for a specified port. 4596 * @ds: The dsa_switch structure. 4597 * @port: The port number. 4598 * @wol: Pointer to ethtool Wake-on-LAN settings structure. 4599 * 4600 * This function configures Wake-on-LAN (WoL) settings for a specified 4601 * port. It validates the provided WoL options, checks if PME is 4602 * enabled and supported, clears any previous wake reasons, and sets 4603 * the Magic Packet flag in the port's PME control register if 4604 * specified. 4605 * 4606 * Return: 0 on success, or other error codes on failure. 4607 */ 4608 static int ksz_set_wol(struct dsa_switch *ds, int port, 4609 struct ethtool_wolinfo *wol) 4610 { 4611 u8 pme_ctrl = 0, pme_ctrl_old = 0; 4612 struct ksz_device *dev = ds->priv; 4613 const u16 *regs = dev->info->regs; 4614 bool magic_switched_off; 4615 bool magic_switched_on; 4616 int ret; 4617 4618 if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC)) 4619 return -EINVAL; 4620 4621 if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev)) 4622 return -EOPNOTSUPP; 4623 4624 if (!dev->wakeup_source) 4625 return -EOPNOTSUPP; 4626 4627 ret = ksz_handle_wake_reason(dev, port); 4628 if (ret) 4629 return ret; 4630 4631 if (wol->wolopts & WAKE_MAGIC) 4632 pme_ctrl |= PME_WOL_MAGICPKT; 4633 if (wol->wolopts & WAKE_PHY) 4634 pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY; 4635 4636 ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL], 4637 &pme_ctrl_old); 4638 if (ret) 4639 return ret; 4640 4641 if (pme_ctrl_old == pme_ctrl) 4642 return 0; 4643 4644 magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) && 4645 !(pme_ctrl & PME_WOL_MAGICPKT); 4646 magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) && 4647 (pme_ctrl & PME_WOL_MAGICPKT); 4648 4649 /* To keep reference count of MAC address, we should do this 4650 * operation only on change of WOL settings. 4651 */ 4652 if (magic_switched_on) { 4653 ret = ksz_switch_macaddr_get(dev->ds, port, NULL); 4654 if (ret) 4655 return ret; 4656 } else if (magic_switched_off) { 4657 ksz_switch_macaddr_put(dev->ds); 4658 } 4659 4660 ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL], 4661 pme_ctrl); 4662 if (ret) { 4663 if (magic_switched_on) 4664 ksz_switch_macaddr_put(dev->ds); 4665 return ret; 4666 } 4667 4668 return 0; 4669 } 4670 4671 /** 4672 * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while 4673 * considering Wake-on-LAN (WoL) settings. 4674 * @dev: The switch device structure. 4675 * @wol_enabled: Pointer to a boolean which will be set to true if WoL is 4676 * enabled on any port. 4677 * 4678 * This function prepares the switch device for a safe shutdown while taking 4679 * into account the Wake-on-LAN (WoL) settings on the user ports. It updates 4680 * the wol_enabled flag accordingly to reflect whether WoL is active on any 4681 * port. 4682 */ 4683 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled) 4684 { 4685 const struct ksz_dev_ops *ops = dev->dev_ops; 4686 const u16 *regs = dev->info->regs; 4687 u8 pme_pin_en = PME_ENABLE; 4688 struct dsa_port *dp; 4689 int ret; 4690 4691 *wol_enabled = false; 4692 4693 if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev)) 4694 return; 4695 4696 if (!dev->wakeup_source) 4697 return; 4698 4699 dsa_switch_for_each_user_port(dp, dev->ds) { 4700 u8 pme_ctrl = 0; 4701 4702 ret = ops->pme_pread8(dev, dp->index, 4703 regs[REG_PORT_PME_CTRL], &pme_ctrl); 4704 if (!ret && pme_ctrl) 4705 *wol_enabled = true; 4706 4707 /* make sure there are no pending wake events which would 4708 * prevent the device from going to sleep/shutdown. 4709 */ 4710 ksz_handle_wake_reason(dev, dp->index); 4711 } 4712 4713 /* Now we are save to enable PME pin. */ 4714 if (*wol_enabled) { 4715 if (dev->pme_active_high) 4716 pme_pin_en |= PME_POLARITY; 4717 ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en); 4718 if (ksz_is_ksz87xx(dev)) 4719 ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK); 4720 } 4721 } 4722 4723 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port, 4724 const unsigned char *addr) 4725 { 4726 struct dsa_port *dp = dsa_to_port(ds, port); 4727 struct ethtool_wolinfo wol; 4728 4729 if (dp->hsr_dev) { 4730 dev_err(ds->dev, 4731 "Cannot change MAC address on port %d with active HSR offload\n", 4732 port); 4733 return -EBUSY; 4734 } 4735 4736 /* Need to initialize variable as the code to fill in settings may 4737 * not be executed. 4738 */ 4739 wol.wolopts = 0; 4740 4741 ksz_get_wol(ds, dp->index, &wol); 4742 if (wol.wolopts & WAKE_MAGIC) { 4743 dev_err(ds->dev, 4744 "Cannot change MAC address on port %d with active Wake on Magic Packet\n", 4745 port); 4746 return -EBUSY; 4747 } 4748 4749 return 0; 4750 } 4751 4752 /** 4753 * ksz_is_port_mac_global_usable - Check if the MAC address on a given port 4754 * can be used as a global address. 4755 * @ds: Pointer to the DSA switch structure. 4756 * @port: The port number on which the MAC address is to be checked. 4757 * 4758 * This function examines the MAC address set on the specified port and 4759 * determines if it can be used as a global address for the switch. 4760 * 4761 * Return: true if the port's MAC address can be used as a global address, false 4762 * otherwise. 4763 */ 4764 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port) 4765 { 4766 struct net_device *user = dsa_to_port(ds, port)->user; 4767 const unsigned char *addr = user->dev_addr; 4768 struct ksz_switch_macaddr *switch_macaddr; 4769 struct ksz_device *dev = ds->priv; 4770 4771 ASSERT_RTNL(); 4772 4773 switch_macaddr = dev->switch_macaddr; 4774 if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr)) 4775 return false; 4776 4777 return true; 4778 } 4779 4780 /** 4781 * ksz_switch_macaddr_get - Program the switch's MAC address register. 4782 * @ds: DSA switch instance. 4783 * @port: Port number. 4784 * @extack: Netlink extended acknowledgment. 4785 * 4786 * This function programs the switch's MAC address register with the MAC address 4787 * of the requesting user port. This single address is used by the switch for 4788 * multiple features like HSR self-address filtering and WoL. Other user ports 4789 * can share ownership of this address as long as their MAC address is the same. 4790 * The MAC addresses of user ports must not change while they have ownership of 4791 * the switch MAC address. 4792 * 4793 * Return: 0 on success, or other error codes on failure. 4794 */ 4795 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port, 4796 struct netlink_ext_ack *extack) 4797 { 4798 struct net_device *user = dsa_to_port(ds, port)->user; 4799 const unsigned char *addr = user->dev_addr; 4800 struct ksz_switch_macaddr *switch_macaddr; 4801 struct ksz_device *dev = ds->priv; 4802 const u16 *regs = dev->info->regs; 4803 int i, ret; 4804 4805 /* Make sure concurrent MAC address changes are blocked */ 4806 ASSERT_RTNL(); 4807 4808 switch_macaddr = dev->switch_macaddr; 4809 if (switch_macaddr) { 4810 if (!ether_addr_equal(switch_macaddr->addr, addr)) { 4811 NL_SET_ERR_MSG_FMT_MOD(extack, 4812 "Switch already configured for MAC address %pM", 4813 switch_macaddr->addr); 4814 return -EBUSY; 4815 } 4816 4817 refcount_inc(&switch_macaddr->refcount); 4818 return 0; 4819 } 4820 4821 switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL); 4822 if (!switch_macaddr) 4823 return -ENOMEM; 4824 4825 ether_addr_copy(switch_macaddr->addr, addr); 4826 refcount_set(&switch_macaddr->refcount, 1); 4827 dev->switch_macaddr = switch_macaddr; 4828 4829 /* Program the switch MAC address to hardware */ 4830 for (i = 0; i < ETH_ALEN; i++) { 4831 if (ksz_is_ksz8463(dev)) { 4832 u16 addr16 = ((u16)addr[i] << 8) | addr[i + 1]; 4833 4834 ret = ksz_write16(dev, regs[REG_SW_MAC_ADDR] + i, 4835 addr16); 4836 i++; 4837 } else { 4838 ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 4839 addr[i]); 4840 } 4841 if (ret) 4842 goto macaddr_drop; 4843 } 4844 4845 return 0; 4846 4847 macaddr_drop: 4848 dev->switch_macaddr = NULL; 4849 refcount_set(&switch_macaddr->refcount, 0); 4850 kfree(switch_macaddr); 4851 4852 return ret; 4853 } 4854 4855 void ksz_switch_macaddr_put(struct dsa_switch *ds) 4856 { 4857 struct ksz_switch_macaddr *switch_macaddr; 4858 struct ksz_device *dev = ds->priv; 4859 const u16 *regs = dev->info->regs; 4860 int i; 4861 4862 /* Make sure concurrent MAC address changes are blocked */ 4863 ASSERT_RTNL(); 4864 4865 switch_macaddr = dev->switch_macaddr; 4866 if (!refcount_dec_and_test(&switch_macaddr->refcount)) 4867 return; 4868 4869 for (i = 0; i < ETH_ALEN; i++) 4870 ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0); 4871 4872 dev->switch_macaddr = NULL; 4873 kfree(switch_macaddr); 4874 } 4875 4876 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr, 4877 struct netlink_ext_ack *extack) 4878 { 4879 struct ksz_device *dev = ds->priv; 4880 enum hsr_version ver; 4881 int ret; 4882 4883 ret = hsr_get_version(hsr, &ver); 4884 if (ret) 4885 return ret; 4886 4887 if (dev->chip_id != KSZ9477_CHIP_ID) { 4888 NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload"); 4889 return -EOPNOTSUPP; 4890 } 4891 4892 /* KSZ9477 can support HW offloading of only 1 HSR device */ 4893 if (dev->hsr_dev && hsr != dev->hsr_dev) { 4894 NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR"); 4895 return -EOPNOTSUPP; 4896 } 4897 4898 /* KSZ9477 only supports HSR v0 and v1 */ 4899 if (!(ver == HSR_V0 || ver == HSR_V1)) { 4900 NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported"); 4901 return -EOPNOTSUPP; 4902 } 4903 4904 /* KSZ9477 can only perform HSR offloading for up to two ports */ 4905 if (hweight8(dev->hsr_ports) >= 2) { 4906 NL_SET_ERR_MSG_MOD(extack, 4907 "Cannot offload more than two ports - using software HSR"); 4908 return -EOPNOTSUPP; 4909 } 4910 4911 /* Self MAC address filtering, to avoid frames traversing 4912 * the HSR ring more than once. 4913 */ 4914 ret = ksz_switch_macaddr_get(ds, port, extack); 4915 if (ret) 4916 return ret; 4917 4918 ksz9477_hsr_join(ds, port, hsr); 4919 dev->hsr_dev = hsr; 4920 dev->hsr_ports |= BIT(port); 4921 4922 return 0; 4923 } 4924 4925 static int ksz_hsr_leave(struct dsa_switch *ds, int port, 4926 struct net_device *hsr) 4927 { 4928 struct ksz_device *dev = ds->priv; 4929 4930 WARN_ON(dev->chip_id != KSZ9477_CHIP_ID); 4931 4932 ksz9477_hsr_leave(ds, port, hsr); 4933 dev->hsr_ports &= ~BIT(port); 4934 if (!dev->hsr_ports) 4935 dev->hsr_dev = NULL; 4936 4937 ksz_switch_macaddr_put(ds); 4938 4939 return 0; 4940 } 4941 4942 static int ksz_suspend(struct dsa_switch *ds) 4943 { 4944 struct ksz_device *dev = ds->priv; 4945 4946 cancel_delayed_work_sync(&dev->mib_read); 4947 return 0; 4948 } 4949 4950 static int ksz_resume(struct dsa_switch *ds) 4951 { 4952 struct ksz_device *dev = ds->priv; 4953 4954 if (dev->mib_read_interval) 4955 schedule_delayed_work(&dev->mib_read, dev->mib_read_interval); 4956 return 0; 4957 } 4958 4959 static const struct dsa_switch_ops ksz_switch_ops = { 4960 .get_tag_protocol = ksz_get_tag_protocol, 4961 .connect_tag_protocol = ksz_connect_tag_protocol, 4962 .get_phy_flags = ksz_get_phy_flags, 4963 .setup = ksz_setup, 4964 .teardown = ksz_teardown, 4965 .phy_read = ksz_phy_read16, 4966 .phy_write = ksz_phy_write16, 4967 .phylink_get_caps = ksz_phylink_get_caps, 4968 .port_setup = ksz_port_setup, 4969 .set_ageing_time = ksz_set_ageing_time, 4970 .get_strings = ksz_get_strings, 4971 .get_ethtool_stats = ksz_get_ethtool_stats, 4972 .get_sset_count = ksz_sset_count, 4973 .port_bridge_join = ksz_port_bridge_join, 4974 .port_bridge_leave = ksz_port_bridge_leave, 4975 .port_hsr_join = ksz_hsr_join, 4976 .port_hsr_leave = ksz_hsr_leave, 4977 .port_set_mac_address = ksz_port_set_mac_address, 4978 .port_stp_state_set = ksz_port_stp_state_set, 4979 .port_teardown = ksz_port_teardown, 4980 .port_pre_bridge_flags = ksz_port_pre_bridge_flags, 4981 .port_bridge_flags = ksz_port_bridge_flags, 4982 .port_fast_age = ksz_port_fast_age, 4983 .port_vlan_filtering = ksz_port_vlan_filtering, 4984 .port_vlan_add = ksz_port_vlan_add, 4985 .port_vlan_del = ksz_port_vlan_del, 4986 .port_fdb_dump = ksz_port_fdb_dump, 4987 .port_fdb_add = ksz_port_fdb_add, 4988 .port_fdb_del = ksz_port_fdb_del, 4989 .port_mdb_add = ksz_port_mdb_add, 4990 .port_mdb_del = ksz_port_mdb_del, 4991 .port_mirror_add = ksz_port_mirror_add, 4992 .port_mirror_del = ksz_port_mirror_del, 4993 .get_stats64 = ksz_get_stats64, 4994 .get_pause_stats = ksz_get_pause_stats, 4995 .port_change_mtu = ksz_change_mtu, 4996 .port_max_mtu = ksz_max_mtu, 4997 .get_wol = ksz_get_wol, 4998 .set_wol = ksz_set_wol, 4999 .suspend = ksz_suspend, 5000 .resume = ksz_resume, 5001 .get_ts_info = ksz_get_ts_info, 5002 .port_hwtstamp_get = ksz_hwtstamp_get, 5003 .port_hwtstamp_set = ksz_hwtstamp_set, 5004 .port_txtstamp = ksz_port_txtstamp, 5005 .port_rxtstamp = ksz_port_rxtstamp, 5006 .cls_flower_add = ksz_cls_flower_add, 5007 .cls_flower_del = ksz_cls_flower_del, 5008 .port_setup_tc = ksz_setup_tc, 5009 .support_eee = ksz_support_eee, 5010 .set_mac_eee = ksz_set_mac_eee, 5011 .port_get_default_prio = ksz_port_get_default_prio, 5012 .port_set_default_prio = ksz_port_set_default_prio, 5013 .port_get_dscp_prio = ksz_port_get_dscp_prio, 5014 .port_add_dscp_prio = ksz_port_add_dscp_prio, 5015 .port_del_dscp_prio = ksz_port_del_dscp_prio, 5016 .port_get_apptrust = ksz_port_get_apptrust, 5017 .port_set_apptrust = ksz_port_set_apptrust, 5018 }; 5019 5020 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv) 5021 { 5022 struct dsa_switch *ds; 5023 struct ksz_device *swdev; 5024 5025 ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL); 5026 if (!ds) 5027 return NULL; 5028 5029 ds->dev = base; 5030 ds->num_ports = DSA_MAX_PORTS; 5031 ds->ops = &ksz_switch_ops; 5032 5033 swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL); 5034 if (!swdev) 5035 return NULL; 5036 5037 ds->priv = swdev; 5038 swdev->dev = base; 5039 5040 swdev->ds = ds; 5041 swdev->priv = priv; 5042 5043 return swdev; 5044 } 5045 EXPORT_SYMBOL(ksz_switch_alloc); 5046 5047 /** 5048 * ksz_switch_shutdown - Shutdown routine for the switch device. 5049 * @dev: The switch device structure. 5050 * 5051 * This function is responsible for initiating a shutdown sequence for the 5052 * switch device. It invokes the reset operation defined in the device 5053 * operations, if available, to reset the switch. Subsequently, it calls the 5054 * DSA framework's shutdown function to ensure a proper shutdown of the DSA 5055 * switch. 5056 */ 5057 void ksz_switch_shutdown(struct ksz_device *dev) 5058 { 5059 bool wol_enabled = false; 5060 5061 ksz_wol_pre_shutdown(dev, &wol_enabled); 5062 5063 if (dev->dev_ops->reset && !wol_enabled) 5064 dev->dev_ops->reset(dev); 5065 5066 dsa_switch_shutdown(dev->ds); 5067 } 5068 EXPORT_SYMBOL(ksz_switch_shutdown); 5069 5070 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num, 5071 struct device_node *port_dn) 5072 { 5073 phy_interface_t phy_mode = dev->ports[port_num].interface; 5074 int rx_delay = -1, tx_delay = -1; 5075 5076 if (!phy_interface_mode_is_rgmii(phy_mode)) 5077 return; 5078 5079 of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay); 5080 of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay); 5081 5082 if (rx_delay == -1 && tx_delay == -1) { 5083 dev_warn(dev->dev, 5084 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, " 5085 "please update device tree to specify \"rx-internal-delay-ps\" and " 5086 "\"tx-internal-delay-ps\"", 5087 port_num); 5088 5089 if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID || 5090 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 5091 rx_delay = 2000; 5092 5093 if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID || 5094 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 5095 tx_delay = 2000; 5096 } 5097 5098 if (rx_delay < 0) 5099 rx_delay = 0; 5100 if (tx_delay < 0) 5101 tx_delay = 0; 5102 5103 dev->ports[port_num].rgmii_rx_val = rx_delay; 5104 dev->ports[port_num].rgmii_tx_val = tx_delay; 5105 } 5106 5107 /** 5108 * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding 5109 * register value. 5110 * @array: The array of drive strength values to search. 5111 * @array_size: The size of the array. 5112 * @microamp: The drive strength value in microamp to be converted. 5113 * 5114 * This function searches the array of drive strength values for the given 5115 * microamp value and returns the corresponding register value for that drive. 5116 * 5117 * Returns: If found, the corresponding register value for that drive strength 5118 * is returned. Otherwise, -EINVAL is returned indicating an invalid value. 5119 */ 5120 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array, 5121 size_t array_size, int microamp) 5122 { 5123 int i; 5124 5125 for (i = 0; i < array_size; i++) { 5126 if (array[i].microamp == microamp) 5127 return array[i].reg_val; 5128 } 5129 5130 return -EINVAL; 5131 } 5132 5133 /** 5134 * ksz_drive_strength_error() - Report invalid drive strength value 5135 * @dev: ksz device 5136 * @array: The array of drive strength values to search. 5137 * @array_size: The size of the array. 5138 * @microamp: Invalid drive strength value in microamp 5139 * 5140 * This function logs an error message when an unsupported drive strength value 5141 * is detected. It lists out all the supported drive strength values for 5142 * reference in the error message. 5143 */ 5144 static void ksz_drive_strength_error(struct ksz_device *dev, 5145 const struct ksz_drive_strength *array, 5146 size_t array_size, int microamp) 5147 { 5148 char supported_values[100]; 5149 size_t remaining_size; 5150 int added_len; 5151 char *ptr; 5152 int i; 5153 5154 remaining_size = sizeof(supported_values); 5155 ptr = supported_values; 5156 5157 for (i = 0; i < array_size; i++) { 5158 added_len = snprintf(ptr, remaining_size, 5159 i == 0 ? "%d" : ", %d", array[i].microamp); 5160 5161 if (added_len >= remaining_size) 5162 break; 5163 5164 ptr += added_len; 5165 remaining_size -= added_len; 5166 } 5167 5168 dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n", 5169 microamp, supported_values); 5170 } 5171 5172 /** 5173 * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477 5174 * chip variants. 5175 * @dev: ksz device 5176 * @props: Array of drive strength properties to be applied 5177 * @num_props: Number of properties in the array 5178 * 5179 * This function configures the drive strength for various KSZ9477 chip variants 5180 * based on the provided properties. It handles chip-specific nuances and 5181 * ensures only valid drive strengths are written to the respective chip. 5182 * 5183 * Return: 0 on successful configuration, a negative error code on failure. 5184 */ 5185 static int ksz9477_drive_strength_write(struct ksz_device *dev, 5186 struct ksz_driver_strength_prop *props, 5187 int num_props) 5188 { 5189 size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths); 5190 int i, ret, reg; 5191 u8 mask = 0; 5192 u8 val = 0; 5193 5194 if (props[KSZ_DRIVER_STRENGTH_IO].value != -1) 5195 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 5196 props[KSZ_DRIVER_STRENGTH_IO].name); 5197 5198 if (dev->chip_id == KSZ8795_CHIP_ID || 5199 dev->chip_id == KSZ8794_CHIP_ID || 5200 dev->chip_id == KSZ8765_CHIP_ID) 5201 reg = KSZ8795_REG_SW_CTRL_20; 5202 else 5203 reg = KSZ9477_REG_SW_IO_STRENGTH; 5204 5205 for (i = 0; i < num_props; i++) { 5206 if (props[i].value == -1) 5207 continue; 5208 5209 ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths, 5210 array_size, props[i].value); 5211 if (ret < 0) { 5212 ksz_drive_strength_error(dev, ksz9477_drive_strengths, 5213 array_size, props[i].value); 5214 return ret; 5215 } 5216 5217 mask |= SW_DRIVE_STRENGTH_M << props[i].offset; 5218 val |= ret << props[i].offset; 5219 } 5220 5221 return ksz_rmw8(dev, reg, mask, val); 5222 } 5223 5224 /** 5225 * ksz88x3_drive_strength_write() - Set the drive strength configuration for 5226 * KSZ8863 compatible chip variants. 5227 * @dev: ksz device 5228 * @props: Array of drive strength properties to be set 5229 * @num_props: Number of properties in the array 5230 * 5231 * This function applies the specified drive strength settings to KSZ88X3 chip 5232 * variants (KSZ8873, KSZ8863). 5233 * It ensures the configurations align with what the chip variant supports and 5234 * warns or errors out on unsupported settings. 5235 * 5236 * Return: 0 on success, error code otherwise 5237 */ 5238 static int ksz88x3_drive_strength_write(struct ksz_device *dev, 5239 struct ksz_driver_strength_prop *props, 5240 int num_props) 5241 { 5242 size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths); 5243 int microamp; 5244 int i, ret; 5245 5246 for (i = 0; i < num_props; i++) { 5247 if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO) 5248 continue; 5249 5250 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 5251 props[i].name); 5252 } 5253 5254 microamp = props[KSZ_DRIVER_STRENGTH_IO].value; 5255 ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size, 5256 microamp); 5257 if (ret < 0) { 5258 ksz_drive_strength_error(dev, ksz88x3_drive_strengths, 5259 array_size, microamp); 5260 return ret; 5261 } 5262 5263 return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12, 5264 KSZ8873_DRIVE_STRENGTH_16MA, ret); 5265 } 5266 5267 /** 5268 * ksz_parse_drive_strength() - Extract and apply drive strength configurations 5269 * from device tree properties. 5270 * @dev: ksz device 5271 * 5272 * This function reads the specified drive strength properties from the 5273 * device tree, validates against the supported chip variants, and sets 5274 * them accordingly. An error should be critical here, as the drive strength 5275 * settings are crucial for EMI compliance. 5276 * 5277 * Return: 0 on success, error code otherwise 5278 */ 5279 static int ksz_parse_drive_strength(struct ksz_device *dev) 5280 { 5281 struct ksz_driver_strength_prop of_props[] = { 5282 [KSZ_DRIVER_STRENGTH_HI] = { 5283 .name = "microchip,hi-drive-strength-microamp", 5284 .offset = SW_HI_SPEED_DRIVE_STRENGTH_S, 5285 .value = -1, 5286 }, 5287 [KSZ_DRIVER_STRENGTH_LO] = { 5288 .name = "microchip,lo-drive-strength-microamp", 5289 .offset = SW_LO_SPEED_DRIVE_STRENGTH_S, 5290 .value = -1, 5291 }, 5292 [KSZ_DRIVER_STRENGTH_IO] = { 5293 .name = "microchip,io-drive-strength-microamp", 5294 .offset = 0, /* don't care */ 5295 .value = -1, 5296 }, 5297 }; 5298 struct device_node *np = dev->dev->of_node; 5299 bool have_any_prop = false; 5300 int i, ret; 5301 5302 for (i = 0; i < ARRAY_SIZE(of_props); i++) { 5303 ret = of_property_read_u32(np, of_props[i].name, 5304 &of_props[i].value); 5305 if (ret && ret != -EINVAL) 5306 dev_warn(dev->dev, "Failed to read %s\n", 5307 of_props[i].name); 5308 if (ret) 5309 continue; 5310 5311 have_any_prop = true; 5312 } 5313 5314 if (!have_any_prop) 5315 return 0; 5316 5317 switch (dev->chip_id) { 5318 case KSZ88X3_CHIP_ID: 5319 return ksz88x3_drive_strength_write(dev, of_props, 5320 ARRAY_SIZE(of_props)); 5321 case KSZ8795_CHIP_ID: 5322 case KSZ8794_CHIP_ID: 5323 case KSZ8765_CHIP_ID: 5324 case KSZ8563_CHIP_ID: 5325 case KSZ8567_CHIP_ID: 5326 case KSZ9477_CHIP_ID: 5327 case KSZ9563_CHIP_ID: 5328 case KSZ9567_CHIP_ID: 5329 case KSZ9893_CHIP_ID: 5330 case KSZ9896_CHIP_ID: 5331 case KSZ9897_CHIP_ID: 5332 case LAN9646_CHIP_ID: 5333 return ksz9477_drive_strength_write(dev, of_props, 5334 ARRAY_SIZE(of_props)); 5335 default: 5336 for (i = 0; i < ARRAY_SIZE(of_props); i++) { 5337 if (of_props[i].value == -1) 5338 continue; 5339 5340 dev_warn(dev->dev, "%s is not supported by this chip variant\n", 5341 of_props[i].name); 5342 } 5343 } 5344 5345 return 0; 5346 } 5347 5348 int ksz_switch_register(struct ksz_device *dev) 5349 { 5350 const struct ksz_chip_data *info; 5351 struct device_node *ports; 5352 phy_interface_t interface; 5353 unsigned int port_num; 5354 int ret; 5355 int i; 5356 5357 dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset", 5358 GPIOD_OUT_LOW); 5359 if (IS_ERR(dev->reset_gpio)) 5360 return PTR_ERR(dev->reset_gpio); 5361 5362 if (dev->reset_gpio) { 5363 gpiod_set_value_cansleep(dev->reset_gpio, 1); 5364 usleep_range(10000, 12000); 5365 gpiod_set_value_cansleep(dev->reset_gpio, 0); 5366 msleep(100); 5367 } 5368 5369 mutex_init(&dev->dev_mutex); 5370 mutex_init(&dev->regmap_mutex); 5371 mutex_init(&dev->alu_mutex); 5372 mutex_init(&dev->vlan_mutex); 5373 5374 ret = ksz_switch_detect(dev); 5375 if (ret) 5376 return ret; 5377 5378 info = ksz_lookup_info(dev->chip_id); 5379 if (!info) 5380 return -ENODEV; 5381 5382 /* Update the compatible info with the probed one */ 5383 dev->info = info; 5384 5385 dev_info(dev->dev, "found switch: %s, rev %i\n", 5386 dev->info->dev_name, dev->chip_rev); 5387 5388 ret = ksz_check_device_id(dev); 5389 if (ret) 5390 return ret; 5391 5392 dev->dev_ops = dev->info->ops; 5393 5394 ret = dev->dev_ops->init(dev); 5395 if (ret) 5396 return ret; 5397 5398 dev->ports = devm_kzalloc(dev->dev, 5399 dev->info->port_cnt * sizeof(struct ksz_port), 5400 GFP_KERNEL); 5401 if (!dev->ports) 5402 return -ENOMEM; 5403 5404 for (i = 0; i < dev->info->port_cnt; i++) { 5405 spin_lock_init(&dev->ports[i].mib.stats64_lock); 5406 mutex_init(&dev->ports[i].mib.cnt_mutex); 5407 dev->ports[i].mib.counters = 5408 devm_kzalloc(dev->dev, 5409 sizeof(u64) * (dev->info->mib_cnt + 1), 5410 GFP_KERNEL); 5411 if (!dev->ports[i].mib.counters) 5412 return -ENOMEM; 5413 5414 dev->ports[i].ksz_dev = dev; 5415 dev->ports[i].num = i; 5416 } 5417 5418 /* set the real number of ports */ 5419 dev->ds->num_ports = dev->info->port_cnt; 5420 5421 /* set the phylink ops */ 5422 dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops; 5423 5424 /* Host port interface will be self detected, or specifically set in 5425 * device tree. 5426 */ 5427 for (port_num = 0; port_num < dev->info->port_cnt; ++port_num) 5428 dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA; 5429 if (dev->dev->of_node) { 5430 ret = of_get_phy_mode(dev->dev->of_node, &interface); 5431 if (ret == 0) 5432 dev->compat_interface = interface; 5433 ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports"); 5434 if (!ports) 5435 ports = of_get_child_by_name(dev->dev->of_node, "ports"); 5436 if (ports) { 5437 for_each_available_child_of_node_scoped(ports, port) { 5438 if (of_property_read_u32(port, "reg", 5439 &port_num)) 5440 continue; 5441 if (!(dev->port_mask & BIT(port_num))) { 5442 of_node_put(ports); 5443 return -EINVAL; 5444 } 5445 of_get_phy_mode(port, 5446 &dev->ports[port_num].interface); 5447 5448 ksz_parse_rgmii_delay(dev, port_num, port); 5449 dev->ports[port_num].fiber = 5450 of_property_read_bool(port, 5451 "micrel,fiber-mode"); 5452 } 5453 of_node_put(ports); 5454 } 5455 dev->synclko_125 = of_property_read_bool(dev->dev->of_node, 5456 "microchip,synclko-125"); 5457 dev->synclko_disable = of_property_read_bool(dev->dev->of_node, 5458 "microchip,synclko-disable"); 5459 if (dev->synclko_125 && dev->synclko_disable) { 5460 dev_err(dev->dev, "inconsistent synclko settings\n"); 5461 return -EINVAL; 5462 } 5463 5464 dev->wakeup_source = of_property_read_bool(dev->dev->of_node, 5465 "wakeup-source"); 5466 dev->pme_active_high = of_property_read_bool(dev->dev->of_node, 5467 "microchip,pme-active-high"); 5468 } 5469 5470 ret = dsa_register_switch(dev->ds); 5471 if (ret) { 5472 dev->dev_ops->exit(dev); 5473 return ret; 5474 } 5475 5476 /* Read MIB counters every 30 seconds to avoid overflow. */ 5477 dev->mib_read_interval = msecs_to_jiffies(5000); 5478 5479 /* Start the MIB timer. */ 5480 schedule_delayed_work(&dev->mib_read, 0); 5481 5482 return ret; 5483 } 5484 EXPORT_SYMBOL(ksz_switch_register); 5485 5486 void ksz_switch_remove(struct ksz_device *dev) 5487 { 5488 /* timer started */ 5489 if (dev->mib_read_interval) { 5490 dev->mib_read_interval = 0; 5491 cancel_delayed_work_sync(&dev->mib_read); 5492 } 5493 5494 dev->dev_ops->exit(dev); 5495 dsa_unregister_switch(dev->ds); 5496 5497 if (dev->reset_gpio) 5498 gpiod_set_value_cansleep(dev->reset_gpio, 1); 5499 5500 } 5501 EXPORT_SYMBOL(ksz_switch_remove); 5502 5503 #ifdef CONFIG_PM_SLEEP 5504 int ksz_switch_suspend(struct device *dev) 5505 { 5506 struct ksz_device *priv = dev_get_drvdata(dev); 5507 5508 return dsa_switch_suspend(priv->ds); 5509 } 5510 EXPORT_SYMBOL(ksz_switch_suspend); 5511 5512 int ksz_switch_resume(struct device *dev) 5513 { 5514 struct ksz_device *priv = dev_get_drvdata(dev); 5515 5516 return dsa_switch_resume(priv->ds); 5517 } 5518 EXPORT_SYMBOL(ksz_switch_resume); 5519 #endif 5520 5521 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>"); 5522 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver"); 5523 MODULE_LICENSE("GPL"); 5524