xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2025 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <net/dsa.h>
28 #include <net/ieee8021q.h>
29 #include <net/pkt_cls.h>
30 #include <net/switchdev.h>
31 
32 #include "ksz_common.h"
33 #include "ksz_dcb.h"
34 #include "ksz_ptp.h"
35 #include "ksz8.h"
36 #include "ksz9477.h"
37 #include "lan937x.h"
38 
39 #define MIB_COUNTER_NUM 0x20
40 
41 struct ksz_stats_raw {
42 	u64 rx_hi;
43 	u64 rx_undersize;
44 	u64 rx_fragments;
45 	u64 rx_oversize;
46 	u64 rx_jabbers;
47 	u64 rx_symbol_err;
48 	u64 rx_crc_err;
49 	u64 rx_align_err;
50 	u64 rx_mac_ctrl;
51 	u64 rx_pause;
52 	u64 rx_bcast;
53 	u64 rx_mcast;
54 	u64 rx_ucast;
55 	u64 rx_64_or_less;
56 	u64 rx_65_127;
57 	u64 rx_128_255;
58 	u64 rx_256_511;
59 	u64 rx_512_1023;
60 	u64 rx_1024_1522;
61 	u64 rx_1523_2000;
62 	u64 rx_2001;
63 	u64 tx_hi;
64 	u64 tx_late_col;
65 	u64 tx_pause;
66 	u64 tx_bcast;
67 	u64 tx_mcast;
68 	u64 tx_ucast;
69 	u64 tx_deferred;
70 	u64 tx_total_col;
71 	u64 tx_exc_col;
72 	u64 tx_single_col;
73 	u64 tx_mult_col;
74 	u64 rx_total;
75 	u64 tx_total;
76 	u64 rx_discards;
77 	u64 tx_discards;
78 };
79 
80 struct ksz88xx_stats_raw {
81 	u64 rx;
82 	u64 rx_hi;
83 	u64 rx_undersize;
84 	u64 rx_fragments;
85 	u64 rx_oversize;
86 	u64 rx_jabbers;
87 	u64 rx_symbol_err;
88 	u64 rx_crc_err;
89 	u64 rx_align_err;
90 	u64 rx_mac_ctrl;
91 	u64 rx_pause;
92 	u64 rx_bcast;
93 	u64 rx_mcast;
94 	u64 rx_ucast;
95 	u64 rx_64_or_less;
96 	u64 rx_65_127;
97 	u64 rx_128_255;
98 	u64 rx_256_511;
99 	u64 rx_512_1023;
100 	u64 rx_1024_1522;
101 	u64 tx;
102 	u64 tx_hi;
103 	u64 tx_late_col;
104 	u64 tx_pause;
105 	u64 tx_bcast;
106 	u64 tx_mcast;
107 	u64 tx_ucast;
108 	u64 tx_deferred;
109 	u64 tx_total_col;
110 	u64 tx_exc_col;
111 	u64 tx_single_col;
112 	u64 tx_mult_col;
113 	u64 rx_discards;
114 	u64 tx_discards;
115 };
116 
117 static const struct ksz_mib_names ksz88xx_mib_names[] = {
118 	{ 0x00, "rx" },
119 	{ 0x01, "rx_hi" },
120 	{ 0x02, "rx_undersize" },
121 	{ 0x03, "rx_fragments" },
122 	{ 0x04, "rx_oversize" },
123 	{ 0x05, "rx_jabbers" },
124 	{ 0x06, "rx_symbol_err" },
125 	{ 0x07, "rx_crc_err" },
126 	{ 0x08, "rx_align_err" },
127 	{ 0x09, "rx_mac_ctrl" },
128 	{ 0x0a, "rx_pause" },
129 	{ 0x0b, "rx_bcast" },
130 	{ 0x0c, "rx_mcast" },
131 	{ 0x0d, "rx_ucast" },
132 	{ 0x0e, "rx_64_or_less" },
133 	{ 0x0f, "rx_65_127" },
134 	{ 0x10, "rx_128_255" },
135 	{ 0x11, "rx_256_511" },
136 	{ 0x12, "rx_512_1023" },
137 	{ 0x13, "rx_1024_1522" },
138 	{ 0x14, "tx" },
139 	{ 0x15, "tx_hi" },
140 	{ 0x16, "tx_late_col" },
141 	{ 0x17, "tx_pause" },
142 	{ 0x18, "tx_bcast" },
143 	{ 0x19, "tx_mcast" },
144 	{ 0x1a, "tx_ucast" },
145 	{ 0x1b, "tx_deferred" },
146 	{ 0x1c, "tx_total_col" },
147 	{ 0x1d, "tx_exc_col" },
148 	{ 0x1e, "tx_single_col" },
149 	{ 0x1f, "tx_mult_col" },
150 	{ 0x100, "rx_discards" },
151 	{ 0x101, "tx_discards" },
152 };
153 
154 static const struct ksz_mib_names ksz9477_mib_names[] = {
155 	{ 0x00, "rx_hi" },
156 	{ 0x01, "rx_undersize" },
157 	{ 0x02, "rx_fragments" },
158 	{ 0x03, "rx_oversize" },
159 	{ 0x04, "rx_jabbers" },
160 	{ 0x05, "rx_symbol_err" },
161 	{ 0x06, "rx_crc_err" },
162 	{ 0x07, "rx_align_err" },
163 	{ 0x08, "rx_mac_ctrl" },
164 	{ 0x09, "rx_pause" },
165 	{ 0x0A, "rx_bcast" },
166 	{ 0x0B, "rx_mcast" },
167 	{ 0x0C, "rx_ucast" },
168 	{ 0x0D, "rx_64_or_less" },
169 	{ 0x0E, "rx_65_127" },
170 	{ 0x0F, "rx_128_255" },
171 	{ 0x10, "rx_256_511" },
172 	{ 0x11, "rx_512_1023" },
173 	{ 0x12, "rx_1024_1522" },
174 	{ 0x13, "rx_1523_2000" },
175 	{ 0x14, "rx_2001" },
176 	{ 0x15, "tx_hi" },
177 	{ 0x16, "tx_late_col" },
178 	{ 0x17, "tx_pause" },
179 	{ 0x18, "tx_bcast" },
180 	{ 0x19, "tx_mcast" },
181 	{ 0x1A, "tx_ucast" },
182 	{ 0x1B, "tx_deferred" },
183 	{ 0x1C, "tx_total_col" },
184 	{ 0x1D, "tx_exc_col" },
185 	{ 0x1E, "tx_single_col" },
186 	{ 0x1F, "tx_mult_col" },
187 	{ 0x80, "rx_total" },
188 	{ 0x81, "tx_total" },
189 	{ 0x82, "rx_discards" },
190 	{ 0x83, "tx_discards" },
191 };
192 
193 struct ksz_driver_strength_prop {
194 	const char *name;
195 	int offset;
196 	int value;
197 };
198 
199 enum ksz_driver_strength_type {
200 	KSZ_DRIVER_STRENGTH_HI,
201 	KSZ_DRIVER_STRENGTH_LO,
202 	KSZ_DRIVER_STRENGTH_IO,
203 };
204 
205 /**
206  * struct ksz_drive_strength - drive strength mapping
207  * @reg_val:	register value
208  * @microamp:	microamp value
209  */
210 struct ksz_drive_strength {
211 	u32 reg_val;
212 	u32 microamp;
213 };
214 
215 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
216  *
217  * This values are not documented in KSZ9477 variants but confirmed by
218  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
219  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
220  *
221  * Documentation in KSZ8795CLX provides more information with some
222  * recommendations:
223  * - for high speed signals
224  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
225  *      2.5V or 3.3V VDDIO.
226  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
227  *      using 1.8V VDDIO.
228  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
229  *      or 3.3V VDDIO.
230  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
231  *   5. In same interface, the heavy loading should use higher one of the
232  *      drive current strength.
233  * - for low speed signals
234  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
235  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
236  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
237  *   4. If it is heavy loading, can use higher drive current strength.
238  */
239 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
240 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
241 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
242 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
243 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
244 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
245 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
246 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
247 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
248 };
249 
250 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, ..
251  *			     variants.
252  * This values are documented in KSZ8873 and KSZ8863 datasheets.
253  */
254 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = {
255 	{ 0,  8000 },
256 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
257 };
258 
259 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
260 				       unsigned int mode,
261 				       const struct phylink_link_state *state);
262 static void ksz_phylink_mac_config(struct phylink_config *config,
263 				   unsigned int mode,
264 				   const struct phylink_link_state *state);
265 static void ksz_phylink_mac_link_down(struct phylink_config *config,
266 				      unsigned int mode,
267 				      phy_interface_t interface);
268 
269 /**
270  * ksz_phylink_mac_disable_tx_lpi() - Callback to signal LPI support (Dummy)
271  * @config: phylink config structure
272  *
273  * This function is a dummy handler. See ksz_phylink_mac_enable_tx_lpi() for
274  * a detailed explanation of EEE/LPI handling in KSZ switches.
275  */
276 static void ksz_phylink_mac_disable_tx_lpi(struct phylink_config *config)
277 {
278 }
279 
280 /**
281  * ksz_phylink_mac_enable_tx_lpi() - Callback to signal LPI support (Dummy)
282  * @config: phylink config structure
283  * @timer: timer value before entering LPI (unused)
284  * @tx_clock_stop: whether to stop the TX clock in LPI mode (unused)
285  *
286  * This function signals to phylink that the driver architecture supports
287  * LPI management, enabling phylink to control EEE advertisement during
288  * negotiation according to IEEE Std 802.3 (Clause 78).
289  *
290  * Hardware Management of EEE/LPI State:
291  * For KSZ switch ports with integrated PHYs (e.g., KSZ9893R ports 1-2),
292  * observation and testing suggest that the actual EEE / Low Power Idle (LPI)
293  * state transitions are managed autonomously by the hardware based on
294  * the auto-negotiation results. (Note: While the datasheet describes EEE
295  * operation based on negotiation, it doesn't explicitly detail the internal
296  * MAC/PHY interaction, so autonomous hardware management of the MAC state
297  * for LPI is inferred from observed behavior).
298  * This hardware control, consistent with the switch's ability to operate
299  * autonomously via strapping, means MAC-level software intervention is not
300  * required or exposed for managing the LPI state once EEE is negotiated.
301  * (Ref: KSZ9893R Data Sheet DS00002420D, primarily Section 4.7.5 explaining
302  * EEE, also Sections 4.1.7 on Auto-Negotiation and 3.2.1 on Configuration
303  * Straps).
304  *
305  * Additionally, ports configured as MAC interfaces (e.g., KSZ9893R port 3)
306  * lack documented MAC-level LPI control.
307  *
308  * Therefore, this callback performs no action and serves primarily to inform
309  * phylink of LPI awareness and to document the inferred hardware behavior.
310  *
311  * Returns: 0 (Always success)
312  */
313 static int ksz_phylink_mac_enable_tx_lpi(struct phylink_config *config,
314 					 u32 timer, bool tx_clock_stop)
315 {
316 	return 0;
317 }
318 
319 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = {
320 	.mac_config	= ksz88x3_phylink_mac_config,
321 	.mac_link_down	= ksz_phylink_mac_link_down,
322 	.mac_link_up	= ksz8_phylink_mac_link_up,
323 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
324 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
325 };
326 
327 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
328 	.mac_config	= ksz_phylink_mac_config,
329 	.mac_link_down	= ksz_phylink_mac_link_down,
330 	.mac_link_up	= ksz8_phylink_mac_link_up,
331 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
332 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
333 };
334 
335 static const struct ksz_dev_ops ksz8463_dev_ops = {
336 	.setup = ksz8_setup,
337 	.get_port_addr = ksz8463_get_port_addr,
338 	.cfg_port_member = ksz8_cfg_port_member,
339 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
340 	.port_setup = ksz8_port_setup,
341 	.r_phy = ksz8463_r_phy,
342 	.w_phy = ksz8463_w_phy,
343 	.r_mib_cnt = ksz8_r_mib_cnt,
344 	.r_mib_pkt = ksz8_r_mib_pkt,
345 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
346 	.freeze_mib = ksz8_freeze_mib,
347 	.port_init_cnt = ksz8_port_init_cnt,
348 	.fdb_dump = ksz8_fdb_dump,
349 	.fdb_add = ksz8_fdb_add,
350 	.fdb_del = ksz8_fdb_del,
351 	.mdb_add = ksz8_mdb_add,
352 	.mdb_del = ksz8_mdb_del,
353 	.vlan_filtering = ksz8_port_vlan_filtering,
354 	.vlan_add = ksz8_port_vlan_add,
355 	.vlan_del = ksz8_port_vlan_del,
356 	.mirror_add = ksz8_port_mirror_add,
357 	.mirror_del = ksz8_port_mirror_del,
358 	.get_caps = ksz8_get_caps,
359 	.config_cpu_port = ksz8_config_cpu_port,
360 	.enable_stp_addr = ksz8_enable_stp_addr,
361 	.reset = ksz8_reset_switch,
362 	.init = ksz8_switch_init,
363 	.exit = ksz8_switch_exit,
364 	.change_mtu = ksz8_change_mtu,
365 };
366 
367 static const struct ksz_dev_ops ksz88xx_dev_ops = {
368 	.setup = ksz8_setup,
369 	.get_port_addr = ksz8_get_port_addr,
370 	.cfg_port_member = ksz8_cfg_port_member,
371 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
372 	.port_setup = ksz8_port_setup,
373 	.r_phy = ksz8_r_phy,
374 	.w_phy = ksz8_w_phy,
375 	.r_mib_cnt = ksz8_r_mib_cnt,
376 	.r_mib_pkt = ksz8_r_mib_pkt,
377 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
378 	.freeze_mib = ksz8_freeze_mib,
379 	.port_init_cnt = ksz8_port_init_cnt,
380 	.fdb_dump = ksz8_fdb_dump,
381 	.fdb_add = ksz8_fdb_add,
382 	.fdb_del = ksz8_fdb_del,
383 	.mdb_add = ksz8_mdb_add,
384 	.mdb_del = ksz8_mdb_del,
385 	.vlan_filtering = ksz8_port_vlan_filtering,
386 	.vlan_add = ksz8_port_vlan_add,
387 	.vlan_del = ksz8_port_vlan_del,
388 	.mirror_add = ksz8_port_mirror_add,
389 	.mirror_del = ksz8_port_mirror_del,
390 	.get_caps = ksz8_get_caps,
391 	.config_cpu_port = ksz8_config_cpu_port,
392 	.enable_stp_addr = ksz8_enable_stp_addr,
393 	.reset = ksz8_reset_switch,
394 	.init = ksz8_switch_init,
395 	.exit = ksz8_switch_exit,
396 	.change_mtu = ksz8_change_mtu,
397 	.pme_write8 = ksz8_pme_write8,
398 	.pme_pread8 = ksz8_pme_pread8,
399 	.pme_pwrite8 = ksz8_pme_pwrite8,
400 };
401 
402 static const struct ksz_dev_ops ksz87xx_dev_ops = {
403 	.setup = ksz8_setup,
404 	.get_port_addr = ksz8_get_port_addr,
405 	.cfg_port_member = ksz8_cfg_port_member,
406 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
407 	.port_setup = ksz8_port_setup,
408 	.r_phy = ksz8_r_phy,
409 	.w_phy = ksz8_w_phy,
410 	.r_mib_cnt = ksz8_r_mib_cnt,
411 	.r_mib_pkt = ksz8_r_mib_pkt,
412 	.r_mib_stat64 = ksz_r_mib_stats64,
413 	.freeze_mib = ksz8_freeze_mib,
414 	.port_init_cnt = ksz8_port_init_cnt,
415 	.fdb_dump = ksz8_fdb_dump,
416 	.fdb_add = ksz8_fdb_add,
417 	.fdb_del = ksz8_fdb_del,
418 	.mdb_add = ksz8_mdb_add,
419 	.mdb_del = ksz8_mdb_del,
420 	.vlan_filtering = ksz8_port_vlan_filtering,
421 	.vlan_add = ksz8_port_vlan_add,
422 	.vlan_del = ksz8_port_vlan_del,
423 	.mirror_add = ksz8_port_mirror_add,
424 	.mirror_del = ksz8_port_mirror_del,
425 	.get_caps = ksz8_get_caps,
426 	.config_cpu_port = ksz8_config_cpu_port,
427 	.enable_stp_addr = ksz8_enable_stp_addr,
428 	.reset = ksz8_reset_switch,
429 	.init = ksz8_switch_init,
430 	.exit = ksz8_switch_exit,
431 	.change_mtu = ksz8_change_mtu,
432 	.pme_write8 = ksz8_pme_write8,
433 	.pme_pread8 = ksz8_pme_pread8,
434 	.pme_pwrite8 = ksz8_pme_pwrite8,
435 };
436 
437 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
438 					struct phy_device *phydev,
439 					unsigned int mode,
440 					phy_interface_t interface,
441 					int speed, int duplex, bool tx_pause,
442 					bool rx_pause);
443 
444 static struct phylink_pcs *
445 ksz_phylink_mac_select_pcs(struct phylink_config *config,
446 			   phy_interface_t interface)
447 {
448 	struct dsa_port *dp = dsa_phylink_to_port(config);
449 	struct ksz_device *dev = dp->ds->priv;
450 	struct ksz_port *p = &dev->ports[dp->index];
451 
452 	if (ksz_is_sgmii_port(dev, dp->index) &&
453 	    (interface == PHY_INTERFACE_MODE_SGMII ||
454 	    interface == PHY_INTERFACE_MODE_1000BASEX))
455 		return p->pcs;
456 
457 	return NULL;
458 }
459 
460 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
461 	.mac_config	= ksz_phylink_mac_config,
462 	.mac_link_down	= ksz_phylink_mac_link_down,
463 	.mac_link_up	= ksz9477_phylink_mac_link_up,
464 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
465 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
466 	.mac_select_pcs	= ksz_phylink_mac_select_pcs,
467 };
468 
469 static const struct ksz_dev_ops ksz9477_dev_ops = {
470 	.setup = ksz9477_setup,
471 	.get_port_addr = ksz9477_get_port_addr,
472 	.cfg_port_member = ksz9477_cfg_port_member,
473 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
474 	.port_setup = ksz9477_port_setup,
475 	.set_ageing_time = ksz9477_set_ageing_time,
476 	.r_phy = ksz9477_r_phy,
477 	.w_phy = ksz9477_w_phy,
478 	.r_mib_cnt = ksz9477_r_mib_cnt,
479 	.r_mib_pkt = ksz9477_r_mib_pkt,
480 	.r_mib_stat64 = ksz_r_mib_stats64,
481 	.freeze_mib = ksz9477_freeze_mib,
482 	.port_init_cnt = ksz9477_port_init_cnt,
483 	.vlan_filtering = ksz9477_port_vlan_filtering,
484 	.vlan_add = ksz9477_port_vlan_add,
485 	.vlan_del = ksz9477_port_vlan_del,
486 	.mirror_add = ksz9477_port_mirror_add,
487 	.mirror_del = ksz9477_port_mirror_del,
488 	.get_caps = ksz9477_get_caps,
489 	.fdb_dump = ksz9477_fdb_dump,
490 	.fdb_add = ksz9477_fdb_add,
491 	.fdb_del = ksz9477_fdb_del,
492 	.mdb_add = ksz9477_mdb_add,
493 	.mdb_del = ksz9477_mdb_del,
494 	.change_mtu = ksz9477_change_mtu,
495 	.pme_write8 = ksz_write8,
496 	.pme_pread8 = ksz_pread8,
497 	.pme_pwrite8 = ksz_pwrite8,
498 	.config_cpu_port = ksz9477_config_cpu_port,
499 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
500 	.enable_stp_addr = ksz9477_enable_stp_addr,
501 	.reset = ksz9477_reset_switch,
502 	.init = ksz9477_switch_init,
503 	.exit = ksz9477_switch_exit,
504 	.pcs_create = ksz9477_pcs_create,
505 };
506 
507 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
508 	.mac_config	= ksz_phylink_mac_config,
509 	.mac_link_down	= ksz_phylink_mac_link_down,
510 	.mac_link_up	= ksz9477_phylink_mac_link_up,
511 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
512 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
513 };
514 
515 static const struct ksz_dev_ops lan937x_dev_ops = {
516 	.setup = lan937x_setup,
517 	.teardown = lan937x_teardown,
518 	.get_port_addr = ksz9477_get_port_addr,
519 	.cfg_port_member = ksz9477_cfg_port_member,
520 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
521 	.port_setup = lan937x_port_setup,
522 	.set_ageing_time = lan937x_set_ageing_time,
523 	.mdio_bus_preinit = lan937x_mdio_bus_preinit,
524 	.create_phy_addr_map = lan937x_create_phy_addr_map,
525 	.r_phy = lan937x_r_phy,
526 	.w_phy = lan937x_w_phy,
527 	.r_mib_cnt = ksz9477_r_mib_cnt,
528 	.r_mib_pkt = ksz9477_r_mib_pkt,
529 	.r_mib_stat64 = ksz_r_mib_stats64,
530 	.freeze_mib = ksz9477_freeze_mib,
531 	.port_init_cnt = ksz9477_port_init_cnt,
532 	.vlan_filtering = ksz9477_port_vlan_filtering,
533 	.vlan_add = ksz9477_port_vlan_add,
534 	.vlan_del = ksz9477_port_vlan_del,
535 	.mirror_add = ksz9477_port_mirror_add,
536 	.mirror_del = ksz9477_port_mirror_del,
537 	.get_caps = lan937x_phylink_get_caps,
538 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
539 	.fdb_dump = ksz9477_fdb_dump,
540 	.fdb_add = ksz9477_fdb_add,
541 	.fdb_del = ksz9477_fdb_del,
542 	.mdb_add = ksz9477_mdb_add,
543 	.mdb_del = ksz9477_mdb_del,
544 	.change_mtu = lan937x_change_mtu,
545 	.config_cpu_port = lan937x_config_cpu_port,
546 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
547 	.enable_stp_addr = ksz9477_enable_stp_addr,
548 	.reset = lan937x_reset_switch,
549 	.init = lan937x_switch_init,
550 	.exit = lan937x_switch_exit,
551 };
552 
553 static const u16 ksz8463_regs[] = {
554 	[REG_SW_MAC_ADDR]		= 0x10,
555 	[REG_IND_CTRL_0]		= 0x30,
556 	[REG_IND_DATA_8]		= 0x26,
557 	[REG_IND_DATA_CHECK]		= 0x26,
558 	[REG_IND_DATA_HI]		= 0x28,
559 	[REG_IND_DATA_LO]		= 0x2C,
560 	[REG_IND_MIB_CHECK]		= 0x2F,
561 	[P_FORCE_CTRL]			= 0x0C,
562 	[P_LINK_STATUS]			= 0x0E,
563 	[P_LOCAL_CTRL]			= 0x0C,
564 	[P_NEG_RESTART_CTRL]		= 0x0D,
565 	[P_REMOTE_STATUS]		= 0x0E,
566 	[P_SPEED_STATUS]		= 0x0F,
567 	[S_TAIL_TAG_CTRL]		= 0xAD,
568 	[P_STP_CTRL]			= 0x6F,
569 	[S_START_CTRL]			= 0x01,
570 	[S_BROADCAST_CTRL]		= 0x06,
571 	[S_MULTICAST_CTRL]		= 0x04,
572 };
573 
574 static const u32 ksz8463_masks[] = {
575 	[PORT_802_1P_REMAPPING]		= BIT(3),
576 	[SW_TAIL_TAG_ENABLE]		= BIT(0),
577 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
578 	[MIB_COUNTER_VALID]		= BIT(6),
579 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
580 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
581 	[VLAN_TABLE_VALID]		= BIT(19),
582 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
583 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
584 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
585 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
586 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
587 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
588 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
589 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
590 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
591 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
592 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
593 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
594 };
595 
596 static u8 ksz8463_shifts[] = {
597 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
598 	[STATIC_MAC_FWD_PORTS]		= 16,
599 	[STATIC_MAC_FID]		= 22,
600 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
601 	[DYNAMIC_MAC_ENTRIES]		= 24,
602 	[DYNAMIC_MAC_FID]		= 16,
603 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
604 	[DYNAMIC_MAC_SRC_PORT]		= 20,
605 };
606 
607 static const u16 ksz8795_regs[] = {
608 	[REG_SW_MAC_ADDR]		= 0x68,
609 	[REG_IND_CTRL_0]		= 0x6E,
610 	[REG_IND_DATA_8]		= 0x70,
611 	[REG_IND_DATA_CHECK]		= 0x72,
612 	[REG_IND_DATA_HI]		= 0x71,
613 	[REG_IND_DATA_LO]		= 0x75,
614 	[REG_IND_MIB_CHECK]		= 0x74,
615 	[REG_IND_BYTE]			= 0xA0,
616 	[P_FORCE_CTRL]			= 0x0C,
617 	[P_LINK_STATUS]			= 0x0E,
618 	[P_LOCAL_CTRL]			= 0x07,
619 	[P_NEG_RESTART_CTRL]		= 0x0D,
620 	[P_REMOTE_STATUS]		= 0x08,
621 	[P_SPEED_STATUS]		= 0x09,
622 	[S_TAIL_TAG_CTRL]		= 0x0C,
623 	[P_STP_CTRL]			= 0x02,
624 	[S_START_CTRL]			= 0x01,
625 	[S_BROADCAST_CTRL]		= 0x06,
626 	[S_MULTICAST_CTRL]		= 0x04,
627 	[P_XMII_CTRL_0]			= 0x06,
628 	[P_XMII_CTRL_1]			= 0x06,
629 	[REG_SW_PME_CTRL]		= 0x8003,
630 	[REG_PORT_PME_STATUS]		= 0x8003,
631 	[REG_PORT_PME_CTRL]		= 0x8007,
632 };
633 
634 static const u32 ksz8795_masks[] = {
635 	[PORT_802_1P_REMAPPING]		= BIT(7),
636 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
637 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
638 	[MIB_COUNTER_VALID]		= BIT(5),
639 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
640 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
641 	[VLAN_TABLE_VALID]		= BIT(12),
642 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
643 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
644 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
645 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
646 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
647 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
648 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
649 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
650 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
651 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
652 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
653 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
654 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
655 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
656 };
657 
658 static const u8 ksz8795_xmii_ctrl0[] = {
659 	[P_MII_100MBIT]			= 0,
660 	[P_MII_10MBIT]			= 1,
661 	[P_MII_FULL_DUPLEX]		= 0,
662 	[P_MII_HALF_DUPLEX]		= 1,
663 };
664 
665 static const u8 ksz8795_xmii_ctrl1[] = {
666 	[P_RGMII_SEL]			= 3,
667 	[P_GMII_SEL]			= 2,
668 	[P_RMII_SEL]			= 1,
669 	[P_MII_SEL]			= 0,
670 	[P_GMII_1GBIT]			= 1,
671 	[P_GMII_NOT_1GBIT]		= 0,
672 };
673 
674 static const u8 ksz8795_shifts[] = {
675 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
676 	[VLAN_TABLE]			= 16,
677 	[STATIC_MAC_FWD_PORTS]		= 16,
678 	[STATIC_MAC_FID]		= 24,
679 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
680 	[DYNAMIC_MAC_ENTRIES]		= 29,
681 	[DYNAMIC_MAC_FID]		= 16,
682 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
683 	[DYNAMIC_MAC_SRC_PORT]		= 24,
684 };
685 
686 static const u16 ksz8863_regs[] = {
687 	[REG_SW_MAC_ADDR]		= 0x70,
688 	[REG_IND_CTRL_0]		= 0x79,
689 	[REG_IND_DATA_8]		= 0x7B,
690 	[REG_IND_DATA_CHECK]		= 0x7B,
691 	[REG_IND_DATA_HI]		= 0x7C,
692 	[REG_IND_DATA_LO]		= 0x80,
693 	[REG_IND_MIB_CHECK]		= 0x80,
694 	[P_FORCE_CTRL]			= 0x0C,
695 	[P_LINK_STATUS]			= 0x0E,
696 	[P_LOCAL_CTRL]			= 0x0C,
697 	[P_NEG_RESTART_CTRL]		= 0x0D,
698 	[P_REMOTE_STATUS]		= 0x0E,
699 	[P_SPEED_STATUS]		= 0x0F,
700 	[S_TAIL_TAG_CTRL]		= 0x03,
701 	[P_STP_CTRL]			= 0x02,
702 	[S_START_CTRL]			= 0x01,
703 	[S_BROADCAST_CTRL]		= 0x06,
704 	[S_MULTICAST_CTRL]		= 0x04,
705 };
706 
707 static const u32 ksz8863_masks[] = {
708 	[PORT_802_1P_REMAPPING]		= BIT(3),
709 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
710 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
711 	[MIB_COUNTER_VALID]		= BIT(6),
712 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
713 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
714 	[VLAN_TABLE_VALID]		= BIT(19),
715 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
716 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
717 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
718 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
719 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
720 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
721 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
722 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
723 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
724 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
725 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
726 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
727 };
728 
729 static u8 ksz8863_shifts[] = {
730 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
731 	[STATIC_MAC_FWD_PORTS]		= 16,
732 	[STATIC_MAC_FID]		= 22,
733 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
734 	[DYNAMIC_MAC_ENTRIES]		= 24,
735 	[DYNAMIC_MAC_FID]		= 16,
736 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
737 	[DYNAMIC_MAC_SRC_PORT]		= 20,
738 };
739 
740 static const u16 ksz8895_regs[] = {
741 	[REG_SW_MAC_ADDR]		= 0x68,
742 	[REG_IND_CTRL_0]		= 0x6E,
743 	[REG_IND_DATA_8]		= 0x70,
744 	[REG_IND_DATA_CHECK]		= 0x72,
745 	[REG_IND_DATA_HI]		= 0x71,
746 	[REG_IND_DATA_LO]		= 0x75,
747 	[REG_IND_MIB_CHECK]		= 0x75,
748 	[P_FORCE_CTRL]			= 0x0C,
749 	[P_LINK_STATUS]			= 0x0E,
750 	[P_LOCAL_CTRL]			= 0x0C,
751 	[P_NEG_RESTART_CTRL]		= 0x0D,
752 	[P_REMOTE_STATUS]		= 0x0E,
753 	[P_SPEED_STATUS]		= 0x09,
754 	[S_TAIL_TAG_CTRL]		= 0x0C,
755 	[P_STP_CTRL]			= 0x02,
756 	[S_START_CTRL]			= 0x01,
757 	[S_BROADCAST_CTRL]		= 0x06,
758 	[S_MULTICAST_CTRL]		= 0x04,
759 };
760 
761 static const u32 ksz8895_masks[] = {
762 	[PORT_802_1P_REMAPPING]		= BIT(7),
763 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
764 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
765 	[MIB_COUNTER_VALID]		= BIT(6),
766 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
767 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
768 	[VLAN_TABLE_VALID]		= BIT(12),
769 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
770 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
771 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
772 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
773 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
774 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
775 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
776 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
777 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
778 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
779 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
780 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
781 };
782 
783 static const u8 ksz8895_shifts[] = {
784 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
785 	[VLAN_TABLE]			= 13,
786 	[STATIC_MAC_FWD_PORTS]		= 16,
787 	[STATIC_MAC_FID]		= 24,
788 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
789 	[DYNAMIC_MAC_ENTRIES]		= 29,
790 	[DYNAMIC_MAC_FID]		= 16,
791 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
792 	[DYNAMIC_MAC_SRC_PORT]		= 24,
793 };
794 
795 static const u16 ksz9477_regs[] = {
796 	[REG_SW_MAC_ADDR]		= 0x0302,
797 	[P_STP_CTRL]			= 0x0B04,
798 	[S_START_CTRL]			= 0x0300,
799 	[S_BROADCAST_CTRL]		= 0x0332,
800 	[S_MULTICAST_CTRL]		= 0x0331,
801 	[P_XMII_CTRL_0]			= 0x0300,
802 	[P_XMII_CTRL_1]			= 0x0301,
803 	[REG_SW_PME_CTRL]		= 0x0006,
804 	[REG_PORT_PME_STATUS]		= 0x0013,
805 	[REG_PORT_PME_CTRL]		= 0x0017,
806 };
807 
808 static const u32 ksz9477_masks[] = {
809 	[ALU_STAT_WRITE]		= 0,
810 	[ALU_STAT_READ]			= 1,
811 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
812 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
813 };
814 
815 static const u8 ksz9477_shifts[] = {
816 	[ALU_STAT_INDEX]		= 16,
817 };
818 
819 static const u8 ksz9477_xmii_ctrl0[] = {
820 	[P_MII_100MBIT]			= 1,
821 	[P_MII_10MBIT]			= 0,
822 	[P_MII_FULL_DUPLEX]		= 1,
823 	[P_MII_HALF_DUPLEX]		= 0,
824 };
825 
826 static const u8 ksz9477_xmii_ctrl1[] = {
827 	[P_RGMII_SEL]			= 0,
828 	[P_RMII_SEL]			= 1,
829 	[P_GMII_SEL]			= 2,
830 	[P_MII_SEL]			= 3,
831 	[P_GMII_1GBIT]			= 0,
832 	[P_GMII_NOT_1GBIT]		= 1,
833 };
834 
835 static const u32 lan937x_masks[] = {
836 	[ALU_STAT_WRITE]		= 1,
837 	[ALU_STAT_READ]			= 2,
838 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
839 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
840 };
841 
842 static const u8 lan937x_shifts[] = {
843 	[ALU_STAT_INDEX]		= 8,
844 };
845 
846 static const struct regmap_range ksz8563_valid_regs[] = {
847 	regmap_reg_range(0x0000, 0x0003),
848 	regmap_reg_range(0x0006, 0x0006),
849 	regmap_reg_range(0x000f, 0x001f),
850 	regmap_reg_range(0x0100, 0x0100),
851 	regmap_reg_range(0x0104, 0x0107),
852 	regmap_reg_range(0x010d, 0x010d),
853 	regmap_reg_range(0x0110, 0x0113),
854 	regmap_reg_range(0x0120, 0x012b),
855 	regmap_reg_range(0x0201, 0x0201),
856 	regmap_reg_range(0x0210, 0x0213),
857 	regmap_reg_range(0x0300, 0x0300),
858 	regmap_reg_range(0x0302, 0x031b),
859 	regmap_reg_range(0x0320, 0x032b),
860 	regmap_reg_range(0x0330, 0x0336),
861 	regmap_reg_range(0x0338, 0x033e),
862 	regmap_reg_range(0x0340, 0x035f),
863 	regmap_reg_range(0x0370, 0x0370),
864 	regmap_reg_range(0x0378, 0x0378),
865 	regmap_reg_range(0x037c, 0x037d),
866 	regmap_reg_range(0x0390, 0x0393),
867 	regmap_reg_range(0x0400, 0x040e),
868 	regmap_reg_range(0x0410, 0x042f),
869 	regmap_reg_range(0x0500, 0x0519),
870 	regmap_reg_range(0x0520, 0x054b),
871 	regmap_reg_range(0x0550, 0x05b3),
872 
873 	/* port 1 */
874 	regmap_reg_range(0x1000, 0x1001),
875 	regmap_reg_range(0x1004, 0x100b),
876 	regmap_reg_range(0x1013, 0x1013),
877 	regmap_reg_range(0x1017, 0x1017),
878 	regmap_reg_range(0x101b, 0x101b),
879 	regmap_reg_range(0x101f, 0x1021),
880 	regmap_reg_range(0x1030, 0x1030),
881 	regmap_reg_range(0x1100, 0x1111),
882 	regmap_reg_range(0x111a, 0x111d),
883 	regmap_reg_range(0x1122, 0x1127),
884 	regmap_reg_range(0x112a, 0x112b),
885 	regmap_reg_range(0x1136, 0x1139),
886 	regmap_reg_range(0x113e, 0x113f),
887 	regmap_reg_range(0x1400, 0x1401),
888 	regmap_reg_range(0x1403, 0x1403),
889 	regmap_reg_range(0x1410, 0x1417),
890 	regmap_reg_range(0x1420, 0x1423),
891 	regmap_reg_range(0x1500, 0x1507),
892 	regmap_reg_range(0x1600, 0x1612),
893 	regmap_reg_range(0x1800, 0x180f),
894 	regmap_reg_range(0x1900, 0x1907),
895 	regmap_reg_range(0x1914, 0x191b),
896 	regmap_reg_range(0x1a00, 0x1a03),
897 	regmap_reg_range(0x1a04, 0x1a08),
898 	regmap_reg_range(0x1b00, 0x1b01),
899 	regmap_reg_range(0x1b04, 0x1b04),
900 	regmap_reg_range(0x1c00, 0x1c05),
901 	regmap_reg_range(0x1c08, 0x1c1b),
902 
903 	/* port 2 */
904 	regmap_reg_range(0x2000, 0x2001),
905 	regmap_reg_range(0x2004, 0x200b),
906 	regmap_reg_range(0x2013, 0x2013),
907 	regmap_reg_range(0x2017, 0x2017),
908 	regmap_reg_range(0x201b, 0x201b),
909 	regmap_reg_range(0x201f, 0x2021),
910 	regmap_reg_range(0x2030, 0x2030),
911 	regmap_reg_range(0x2100, 0x2111),
912 	regmap_reg_range(0x211a, 0x211d),
913 	regmap_reg_range(0x2122, 0x2127),
914 	regmap_reg_range(0x212a, 0x212b),
915 	regmap_reg_range(0x2136, 0x2139),
916 	regmap_reg_range(0x213e, 0x213f),
917 	regmap_reg_range(0x2400, 0x2401),
918 	regmap_reg_range(0x2403, 0x2403),
919 	regmap_reg_range(0x2410, 0x2417),
920 	regmap_reg_range(0x2420, 0x2423),
921 	regmap_reg_range(0x2500, 0x2507),
922 	regmap_reg_range(0x2600, 0x2612),
923 	regmap_reg_range(0x2800, 0x280f),
924 	regmap_reg_range(0x2900, 0x2907),
925 	regmap_reg_range(0x2914, 0x291b),
926 	regmap_reg_range(0x2a00, 0x2a03),
927 	regmap_reg_range(0x2a04, 0x2a08),
928 	regmap_reg_range(0x2b00, 0x2b01),
929 	regmap_reg_range(0x2b04, 0x2b04),
930 	regmap_reg_range(0x2c00, 0x2c05),
931 	regmap_reg_range(0x2c08, 0x2c1b),
932 
933 	/* port 3 */
934 	regmap_reg_range(0x3000, 0x3001),
935 	regmap_reg_range(0x3004, 0x300b),
936 	regmap_reg_range(0x3013, 0x3013),
937 	regmap_reg_range(0x3017, 0x3017),
938 	regmap_reg_range(0x301b, 0x301b),
939 	regmap_reg_range(0x301f, 0x3021),
940 	regmap_reg_range(0x3030, 0x3030),
941 	regmap_reg_range(0x3300, 0x3301),
942 	regmap_reg_range(0x3303, 0x3303),
943 	regmap_reg_range(0x3400, 0x3401),
944 	regmap_reg_range(0x3403, 0x3403),
945 	regmap_reg_range(0x3410, 0x3417),
946 	regmap_reg_range(0x3420, 0x3423),
947 	regmap_reg_range(0x3500, 0x3507),
948 	regmap_reg_range(0x3600, 0x3612),
949 	regmap_reg_range(0x3800, 0x380f),
950 	regmap_reg_range(0x3900, 0x3907),
951 	regmap_reg_range(0x3914, 0x391b),
952 	regmap_reg_range(0x3a00, 0x3a03),
953 	regmap_reg_range(0x3a04, 0x3a08),
954 	regmap_reg_range(0x3b00, 0x3b01),
955 	regmap_reg_range(0x3b04, 0x3b04),
956 	regmap_reg_range(0x3c00, 0x3c05),
957 	regmap_reg_range(0x3c08, 0x3c1b),
958 };
959 
960 static const struct regmap_access_table ksz8563_register_set = {
961 	.yes_ranges = ksz8563_valid_regs,
962 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
963 };
964 
965 static const struct regmap_range ksz9477_valid_regs[] = {
966 	regmap_reg_range(0x0000, 0x0003),
967 	regmap_reg_range(0x0006, 0x0006),
968 	regmap_reg_range(0x0010, 0x001f),
969 	regmap_reg_range(0x0100, 0x0100),
970 	regmap_reg_range(0x0103, 0x0107),
971 	regmap_reg_range(0x010d, 0x010d),
972 	regmap_reg_range(0x0110, 0x0113),
973 	regmap_reg_range(0x0120, 0x012b),
974 	regmap_reg_range(0x0201, 0x0201),
975 	regmap_reg_range(0x0210, 0x0213),
976 	regmap_reg_range(0x0300, 0x0300),
977 	regmap_reg_range(0x0302, 0x031b),
978 	regmap_reg_range(0x0320, 0x032b),
979 	regmap_reg_range(0x0330, 0x0336),
980 	regmap_reg_range(0x0338, 0x033b),
981 	regmap_reg_range(0x033e, 0x033e),
982 	regmap_reg_range(0x0340, 0x035f),
983 	regmap_reg_range(0x0370, 0x0370),
984 	regmap_reg_range(0x0378, 0x0378),
985 	regmap_reg_range(0x037c, 0x037d),
986 	regmap_reg_range(0x0390, 0x0393),
987 	regmap_reg_range(0x0400, 0x040e),
988 	regmap_reg_range(0x0410, 0x042f),
989 	regmap_reg_range(0x0444, 0x044b),
990 	regmap_reg_range(0x0450, 0x046f),
991 	regmap_reg_range(0x0500, 0x0519),
992 	regmap_reg_range(0x0520, 0x054b),
993 	regmap_reg_range(0x0550, 0x05b3),
994 	regmap_reg_range(0x0604, 0x060b),
995 	regmap_reg_range(0x0610, 0x0612),
996 	regmap_reg_range(0x0614, 0x062c),
997 	regmap_reg_range(0x0640, 0x0645),
998 	regmap_reg_range(0x0648, 0x064d),
999 
1000 	/* port 1 */
1001 	regmap_reg_range(0x1000, 0x1001),
1002 	regmap_reg_range(0x1013, 0x1013),
1003 	regmap_reg_range(0x1017, 0x1017),
1004 	regmap_reg_range(0x101b, 0x101b),
1005 	regmap_reg_range(0x101f, 0x1020),
1006 	regmap_reg_range(0x1030, 0x1030),
1007 	regmap_reg_range(0x1100, 0x1115),
1008 	regmap_reg_range(0x111a, 0x111f),
1009 	regmap_reg_range(0x1120, 0x112b),
1010 	regmap_reg_range(0x1134, 0x113b),
1011 	regmap_reg_range(0x113c, 0x113f),
1012 	regmap_reg_range(0x1400, 0x1401),
1013 	regmap_reg_range(0x1403, 0x1403),
1014 	regmap_reg_range(0x1410, 0x1417),
1015 	regmap_reg_range(0x1420, 0x1423),
1016 	regmap_reg_range(0x1500, 0x1507),
1017 	regmap_reg_range(0x1600, 0x1613),
1018 	regmap_reg_range(0x1800, 0x180f),
1019 	regmap_reg_range(0x1820, 0x1827),
1020 	regmap_reg_range(0x1830, 0x1837),
1021 	regmap_reg_range(0x1840, 0x184b),
1022 	regmap_reg_range(0x1900, 0x1907),
1023 	regmap_reg_range(0x1914, 0x191b),
1024 	regmap_reg_range(0x1920, 0x1920),
1025 	regmap_reg_range(0x1923, 0x1927),
1026 	regmap_reg_range(0x1a00, 0x1a03),
1027 	regmap_reg_range(0x1a04, 0x1a07),
1028 	regmap_reg_range(0x1b00, 0x1b01),
1029 	regmap_reg_range(0x1b04, 0x1b04),
1030 	regmap_reg_range(0x1c00, 0x1c05),
1031 	regmap_reg_range(0x1c08, 0x1c1b),
1032 
1033 	/* port 2 */
1034 	regmap_reg_range(0x2000, 0x2001),
1035 	regmap_reg_range(0x2013, 0x2013),
1036 	regmap_reg_range(0x2017, 0x2017),
1037 	regmap_reg_range(0x201b, 0x201b),
1038 	regmap_reg_range(0x201f, 0x2020),
1039 	regmap_reg_range(0x2030, 0x2030),
1040 	regmap_reg_range(0x2100, 0x2115),
1041 	regmap_reg_range(0x211a, 0x211f),
1042 	regmap_reg_range(0x2120, 0x212b),
1043 	regmap_reg_range(0x2134, 0x213b),
1044 	regmap_reg_range(0x213c, 0x213f),
1045 	regmap_reg_range(0x2400, 0x2401),
1046 	regmap_reg_range(0x2403, 0x2403),
1047 	regmap_reg_range(0x2410, 0x2417),
1048 	regmap_reg_range(0x2420, 0x2423),
1049 	regmap_reg_range(0x2500, 0x2507),
1050 	regmap_reg_range(0x2600, 0x2613),
1051 	regmap_reg_range(0x2800, 0x280f),
1052 	regmap_reg_range(0x2820, 0x2827),
1053 	regmap_reg_range(0x2830, 0x2837),
1054 	regmap_reg_range(0x2840, 0x284b),
1055 	regmap_reg_range(0x2900, 0x2907),
1056 	regmap_reg_range(0x2914, 0x291b),
1057 	regmap_reg_range(0x2920, 0x2920),
1058 	regmap_reg_range(0x2923, 0x2927),
1059 	regmap_reg_range(0x2a00, 0x2a03),
1060 	regmap_reg_range(0x2a04, 0x2a07),
1061 	regmap_reg_range(0x2b00, 0x2b01),
1062 	regmap_reg_range(0x2b04, 0x2b04),
1063 	regmap_reg_range(0x2c00, 0x2c05),
1064 	regmap_reg_range(0x2c08, 0x2c1b),
1065 
1066 	/* port 3 */
1067 	regmap_reg_range(0x3000, 0x3001),
1068 	regmap_reg_range(0x3013, 0x3013),
1069 	regmap_reg_range(0x3017, 0x3017),
1070 	regmap_reg_range(0x301b, 0x301b),
1071 	regmap_reg_range(0x301f, 0x3020),
1072 	regmap_reg_range(0x3030, 0x3030),
1073 	regmap_reg_range(0x3100, 0x3115),
1074 	regmap_reg_range(0x311a, 0x311f),
1075 	regmap_reg_range(0x3120, 0x312b),
1076 	regmap_reg_range(0x3134, 0x313b),
1077 	regmap_reg_range(0x313c, 0x313f),
1078 	regmap_reg_range(0x3400, 0x3401),
1079 	regmap_reg_range(0x3403, 0x3403),
1080 	regmap_reg_range(0x3410, 0x3417),
1081 	regmap_reg_range(0x3420, 0x3423),
1082 	regmap_reg_range(0x3500, 0x3507),
1083 	regmap_reg_range(0x3600, 0x3613),
1084 	regmap_reg_range(0x3800, 0x380f),
1085 	regmap_reg_range(0x3820, 0x3827),
1086 	regmap_reg_range(0x3830, 0x3837),
1087 	regmap_reg_range(0x3840, 0x384b),
1088 	regmap_reg_range(0x3900, 0x3907),
1089 	regmap_reg_range(0x3914, 0x391b),
1090 	regmap_reg_range(0x3920, 0x3920),
1091 	regmap_reg_range(0x3923, 0x3927),
1092 	regmap_reg_range(0x3a00, 0x3a03),
1093 	regmap_reg_range(0x3a04, 0x3a07),
1094 	regmap_reg_range(0x3b00, 0x3b01),
1095 	regmap_reg_range(0x3b04, 0x3b04),
1096 	regmap_reg_range(0x3c00, 0x3c05),
1097 	regmap_reg_range(0x3c08, 0x3c1b),
1098 
1099 	/* port 4 */
1100 	regmap_reg_range(0x4000, 0x4001),
1101 	regmap_reg_range(0x4013, 0x4013),
1102 	regmap_reg_range(0x4017, 0x4017),
1103 	regmap_reg_range(0x401b, 0x401b),
1104 	regmap_reg_range(0x401f, 0x4020),
1105 	regmap_reg_range(0x4030, 0x4030),
1106 	regmap_reg_range(0x4100, 0x4115),
1107 	regmap_reg_range(0x411a, 0x411f),
1108 	regmap_reg_range(0x4120, 0x412b),
1109 	regmap_reg_range(0x4134, 0x413b),
1110 	regmap_reg_range(0x413c, 0x413f),
1111 	regmap_reg_range(0x4400, 0x4401),
1112 	regmap_reg_range(0x4403, 0x4403),
1113 	regmap_reg_range(0x4410, 0x4417),
1114 	regmap_reg_range(0x4420, 0x4423),
1115 	regmap_reg_range(0x4500, 0x4507),
1116 	regmap_reg_range(0x4600, 0x4613),
1117 	regmap_reg_range(0x4800, 0x480f),
1118 	regmap_reg_range(0x4820, 0x4827),
1119 	regmap_reg_range(0x4830, 0x4837),
1120 	regmap_reg_range(0x4840, 0x484b),
1121 	regmap_reg_range(0x4900, 0x4907),
1122 	regmap_reg_range(0x4914, 0x491b),
1123 	regmap_reg_range(0x4920, 0x4920),
1124 	regmap_reg_range(0x4923, 0x4927),
1125 	regmap_reg_range(0x4a00, 0x4a03),
1126 	regmap_reg_range(0x4a04, 0x4a07),
1127 	regmap_reg_range(0x4b00, 0x4b01),
1128 	regmap_reg_range(0x4b04, 0x4b04),
1129 	regmap_reg_range(0x4c00, 0x4c05),
1130 	regmap_reg_range(0x4c08, 0x4c1b),
1131 
1132 	/* port 5 */
1133 	regmap_reg_range(0x5000, 0x5001),
1134 	regmap_reg_range(0x5013, 0x5013),
1135 	regmap_reg_range(0x5017, 0x5017),
1136 	regmap_reg_range(0x501b, 0x501b),
1137 	regmap_reg_range(0x501f, 0x5020),
1138 	regmap_reg_range(0x5030, 0x5030),
1139 	regmap_reg_range(0x5100, 0x5115),
1140 	regmap_reg_range(0x511a, 0x511f),
1141 	regmap_reg_range(0x5120, 0x512b),
1142 	regmap_reg_range(0x5134, 0x513b),
1143 	regmap_reg_range(0x513c, 0x513f),
1144 	regmap_reg_range(0x5400, 0x5401),
1145 	regmap_reg_range(0x5403, 0x5403),
1146 	regmap_reg_range(0x5410, 0x5417),
1147 	regmap_reg_range(0x5420, 0x5423),
1148 	regmap_reg_range(0x5500, 0x5507),
1149 	regmap_reg_range(0x5600, 0x5613),
1150 	regmap_reg_range(0x5800, 0x580f),
1151 	regmap_reg_range(0x5820, 0x5827),
1152 	regmap_reg_range(0x5830, 0x5837),
1153 	regmap_reg_range(0x5840, 0x584b),
1154 	regmap_reg_range(0x5900, 0x5907),
1155 	regmap_reg_range(0x5914, 0x591b),
1156 	regmap_reg_range(0x5920, 0x5920),
1157 	regmap_reg_range(0x5923, 0x5927),
1158 	regmap_reg_range(0x5a00, 0x5a03),
1159 	regmap_reg_range(0x5a04, 0x5a07),
1160 	regmap_reg_range(0x5b00, 0x5b01),
1161 	regmap_reg_range(0x5b04, 0x5b04),
1162 	regmap_reg_range(0x5c00, 0x5c05),
1163 	regmap_reg_range(0x5c08, 0x5c1b),
1164 
1165 	/* port 6 */
1166 	regmap_reg_range(0x6000, 0x6001),
1167 	regmap_reg_range(0x6013, 0x6013),
1168 	regmap_reg_range(0x6017, 0x6017),
1169 	regmap_reg_range(0x601b, 0x601b),
1170 	regmap_reg_range(0x601f, 0x6020),
1171 	regmap_reg_range(0x6030, 0x6030),
1172 	regmap_reg_range(0x6300, 0x6301),
1173 	regmap_reg_range(0x6400, 0x6401),
1174 	regmap_reg_range(0x6403, 0x6403),
1175 	regmap_reg_range(0x6410, 0x6417),
1176 	regmap_reg_range(0x6420, 0x6423),
1177 	regmap_reg_range(0x6500, 0x6507),
1178 	regmap_reg_range(0x6600, 0x6613),
1179 	regmap_reg_range(0x6800, 0x680f),
1180 	regmap_reg_range(0x6820, 0x6827),
1181 	regmap_reg_range(0x6830, 0x6837),
1182 	regmap_reg_range(0x6840, 0x684b),
1183 	regmap_reg_range(0x6900, 0x6907),
1184 	regmap_reg_range(0x6914, 0x691b),
1185 	regmap_reg_range(0x6920, 0x6920),
1186 	regmap_reg_range(0x6923, 0x6927),
1187 	regmap_reg_range(0x6a00, 0x6a03),
1188 	regmap_reg_range(0x6a04, 0x6a07),
1189 	regmap_reg_range(0x6b00, 0x6b01),
1190 	regmap_reg_range(0x6b04, 0x6b04),
1191 	regmap_reg_range(0x6c00, 0x6c05),
1192 	regmap_reg_range(0x6c08, 0x6c1b),
1193 
1194 	/* port 7 */
1195 	regmap_reg_range(0x7000, 0x7001),
1196 	regmap_reg_range(0x7013, 0x7013),
1197 	regmap_reg_range(0x7017, 0x7017),
1198 	regmap_reg_range(0x701b, 0x701b),
1199 	regmap_reg_range(0x701f, 0x7020),
1200 	regmap_reg_range(0x7030, 0x7030),
1201 	regmap_reg_range(0x7200, 0x7207),
1202 	regmap_reg_range(0x7300, 0x7301),
1203 	regmap_reg_range(0x7400, 0x7401),
1204 	regmap_reg_range(0x7403, 0x7403),
1205 	regmap_reg_range(0x7410, 0x7417),
1206 	regmap_reg_range(0x7420, 0x7423),
1207 	regmap_reg_range(0x7500, 0x7507),
1208 	regmap_reg_range(0x7600, 0x7613),
1209 	regmap_reg_range(0x7800, 0x780f),
1210 	regmap_reg_range(0x7820, 0x7827),
1211 	regmap_reg_range(0x7830, 0x7837),
1212 	regmap_reg_range(0x7840, 0x784b),
1213 	regmap_reg_range(0x7900, 0x7907),
1214 	regmap_reg_range(0x7914, 0x791b),
1215 	regmap_reg_range(0x7920, 0x7920),
1216 	regmap_reg_range(0x7923, 0x7927),
1217 	regmap_reg_range(0x7a00, 0x7a03),
1218 	regmap_reg_range(0x7a04, 0x7a07),
1219 	regmap_reg_range(0x7b00, 0x7b01),
1220 	regmap_reg_range(0x7b04, 0x7b04),
1221 	regmap_reg_range(0x7c00, 0x7c05),
1222 	regmap_reg_range(0x7c08, 0x7c1b),
1223 };
1224 
1225 static const struct regmap_access_table ksz9477_register_set = {
1226 	.yes_ranges = ksz9477_valid_regs,
1227 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1228 };
1229 
1230 static const struct regmap_range ksz9896_valid_regs[] = {
1231 	regmap_reg_range(0x0000, 0x0003),
1232 	regmap_reg_range(0x0006, 0x0006),
1233 	regmap_reg_range(0x0010, 0x001f),
1234 	regmap_reg_range(0x0100, 0x0100),
1235 	regmap_reg_range(0x0103, 0x0107),
1236 	regmap_reg_range(0x010d, 0x010d),
1237 	regmap_reg_range(0x0110, 0x0113),
1238 	regmap_reg_range(0x0120, 0x0127),
1239 	regmap_reg_range(0x0201, 0x0201),
1240 	regmap_reg_range(0x0210, 0x0213),
1241 	regmap_reg_range(0x0300, 0x0300),
1242 	regmap_reg_range(0x0302, 0x030b),
1243 	regmap_reg_range(0x0310, 0x031b),
1244 	regmap_reg_range(0x0320, 0x032b),
1245 	regmap_reg_range(0x0330, 0x0336),
1246 	regmap_reg_range(0x0338, 0x033b),
1247 	regmap_reg_range(0x033e, 0x033e),
1248 	regmap_reg_range(0x0340, 0x035f),
1249 	regmap_reg_range(0x0370, 0x0370),
1250 	regmap_reg_range(0x0378, 0x0378),
1251 	regmap_reg_range(0x037c, 0x037d),
1252 	regmap_reg_range(0x0390, 0x0393),
1253 	regmap_reg_range(0x0400, 0x040e),
1254 	regmap_reg_range(0x0410, 0x042f),
1255 
1256 	/* port 1 */
1257 	regmap_reg_range(0x1000, 0x1001),
1258 	regmap_reg_range(0x1013, 0x1013),
1259 	regmap_reg_range(0x1017, 0x1017),
1260 	regmap_reg_range(0x101b, 0x101b),
1261 	regmap_reg_range(0x101f, 0x1020),
1262 	regmap_reg_range(0x1030, 0x1030),
1263 	regmap_reg_range(0x1100, 0x1115),
1264 	regmap_reg_range(0x111a, 0x111f),
1265 	regmap_reg_range(0x1120, 0x112b),
1266 	regmap_reg_range(0x1134, 0x113b),
1267 	regmap_reg_range(0x113c, 0x113f),
1268 	regmap_reg_range(0x1400, 0x1401),
1269 	regmap_reg_range(0x1403, 0x1403),
1270 	regmap_reg_range(0x1410, 0x1417),
1271 	regmap_reg_range(0x1420, 0x1423),
1272 	regmap_reg_range(0x1500, 0x1507),
1273 	regmap_reg_range(0x1600, 0x1612),
1274 	regmap_reg_range(0x1800, 0x180f),
1275 	regmap_reg_range(0x1820, 0x1827),
1276 	regmap_reg_range(0x1830, 0x1837),
1277 	regmap_reg_range(0x1840, 0x184b),
1278 	regmap_reg_range(0x1900, 0x1907),
1279 	regmap_reg_range(0x1914, 0x1915),
1280 	regmap_reg_range(0x1a00, 0x1a03),
1281 	regmap_reg_range(0x1a04, 0x1a07),
1282 	regmap_reg_range(0x1b00, 0x1b01),
1283 	regmap_reg_range(0x1b04, 0x1b04),
1284 
1285 	/* port 2 */
1286 	regmap_reg_range(0x2000, 0x2001),
1287 	regmap_reg_range(0x2013, 0x2013),
1288 	regmap_reg_range(0x2017, 0x2017),
1289 	regmap_reg_range(0x201b, 0x201b),
1290 	regmap_reg_range(0x201f, 0x2020),
1291 	regmap_reg_range(0x2030, 0x2030),
1292 	regmap_reg_range(0x2100, 0x2115),
1293 	regmap_reg_range(0x211a, 0x211f),
1294 	regmap_reg_range(0x2120, 0x212b),
1295 	regmap_reg_range(0x2134, 0x213b),
1296 	regmap_reg_range(0x213c, 0x213f),
1297 	regmap_reg_range(0x2400, 0x2401),
1298 	regmap_reg_range(0x2403, 0x2403),
1299 	regmap_reg_range(0x2410, 0x2417),
1300 	regmap_reg_range(0x2420, 0x2423),
1301 	regmap_reg_range(0x2500, 0x2507),
1302 	regmap_reg_range(0x2600, 0x2612),
1303 	regmap_reg_range(0x2800, 0x280f),
1304 	regmap_reg_range(0x2820, 0x2827),
1305 	regmap_reg_range(0x2830, 0x2837),
1306 	regmap_reg_range(0x2840, 0x284b),
1307 	regmap_reg_range(0x2900, 0x2907),
1308 	regmap_reg_range(0x2914, 0x2915),
1309 	regmap_reg_range(0x2a00, 0x2a03),
1310 	regmap_reg_range(0x2a04, 0x2a07),
1311 	regmap_reg_range(0x2b00, 0x2b01),
1312 	regmap_reg_range(0x2b04, 0x2b04),
1313 
1314 	/* port 3 */
1315 	regmap_reg_range(0x3000, 0x3001),
1316 	regmap_reg_range(0x3013, 0x3013),
1317 	regmap_reg_range(0x3017, 0x3017),
1318 	regmap_reg_range(0x301b, 0x301b),
1319 	regmap_reg_range(0x301f, 0x3020),
1320 	regmap_reg_range(0x3030, 0x3030),
1321 	regmap_reg_range(0x3100, 0x3115),
1322 	regmap_reg_range(0x311a, 0x311f),
1323 	regmap_reg_range(0x3120, 0x312b),
1324 	regmap_reg_range(0x3134, 0x313b),
1325 	regmap_reg_range(0x313c, 0x313f),
1326 	regmap_reg_range(0x3400, 0x3401),
1327 	regmap_reg_range(0x3403, 0x3403),
1328 	regmap_reg_range(0x3410, 0x3417),
1329 	regmap_reg_range(0x3420, 0x3423),
1330 	regmap_reg_range(0x3500, 0x3507),
1331 	regmap_reg_range(0x3600, 0x3612),
1332 	regmap_reg_range(0x3800, 0x380f),
1333 	regmap_reg_range(0x3820, 0x3827),
1334 	regmap_reg_range(0x3830, 0x3837),
1335 	regmap_reg_range(0x3840, 0x384b),
1336 	regmap_reg_range(0x3900, 0x3907),
1337 	regmap_reg_range(0x3914, 0x3915),
1338 	regmap_reg_range(0x3a00, 0x3a03),
1339 	regmap_reg_range(0x3a04, 0x3a07),
1340 	regmap_reg_range(0x3b00, 0x3b01),
1341 	regmap_reg_range(0x3b04, 0x3b04),
1342 
1343 	/* port 4 */
1344 	regmap_reg_range(0x4000, 0x4001),
1345 	regmap_reg_range(0x4013, 0x4013),
1346 	regmap_reg_range(0x4017, 0x4017),
1347 	regmap_reg_range(0x401b, 0x401b),
1348 	regmap_reg_range(0x401f, 0x4020),
1349 	regmap_reg_range(0x4030, 0x4030),
1350 	regmap_reg_range(0x4100, 0x4115),
1351 	regmap_reg_range(0x411a, 0x411f),
1352 	regmap_reg_range(0x4120, 0x412b),
1353 	regmap_reg_range(0x4134, 0x413b),
1354 	regmap_reg_range(0x413c, 0x413f),
1355 	regmap_reg_range(0x4400, 0x4401),
1356 	regmap_reg_range(0x4403, 0x4403),
1357 	regmap_reg_range(0x4410, 0x4417),
1358 	regmap_reg_range(0x4420, 0x4423),
1359 	regmap_reg_range(0x4500, 0x4507),
1360 	regmap_reg_range(0x4600, 0x4612),
1361 	regmap_reg_range(0x4800, 0x480f),
1362 	regmap_reg_range(0x4820, 0x4827),
1363 	regmap_reg_range(0x4830, 0x4837),
1364 	regmap_reg_range(0x4840, 0x484b),
1365 	regmap_reg_range(0x4900, 0x4907),
1366 	regmap_reg_range(0x4914, 0x4915),
1367 	regmap_reg_range(0x4a00, 0x4a03),
1368 	regmap_reg_range(0x4a04, 0x4a07),
1369 	regmap_reg_range(0x4b00, 0x4b01),
1370 	regmap_reg_range(0x4b04, 0x4b04),
1371 
1372 	/* port 5 */
1373 	regmap_reg_range(0x5000, 0x5001),
1374 	regmap_reg_range(0x5013, 0x5013),
1375 	regmap_reg_range(0x5017, 0x5017),
1376 	regmap_reg_range(0x501b, 0x501b),
1377 	regmap_reg_range(0x501f, 0x5020),
1378 	regmap_reg_range(0x5030, 0x5030),
1379 	regmap_reg_range(0x5100, 0x5115),
1380 	regmap_reg_range(0x511a, 0x511f),
1381 	regmap_reg_range(0x5120, 0x512b),
1382 	regmap_reg_range(0x5134, 0x513b),
1383 	regmap_reg_range(0x513c, 0x513f),
1384 	regmap_reg_range(0x5400, 0x5401),
1385 	regmap_reg_range(0x5403, 0x5403),
1386 	regmap_reg_range(0x5410, 0x5417),
1387 	regmap_reg_range(0x5420, 0x5423),
1388 	regmap_reg_range(0x5500, 0x5507),
1389 	regmap_reg_range(0x5600, 0x5612),
1390 	regmap_reg_range(0x5800, 0x580f),
1391 	regmap_reg_range(0x5820, 0x5827),
1392 	regmap_reg_range(0x5830, 0x5837),
1393 	regmap_reg_range(0x5840, 0x584b),
1394 	regmap_reg_range(0x5900, 0x5907),
1395 	regmap_reg_range(0x5914, 0x5915),
1396 	regmap_reg_range(0x5a00, 0x5a03),
1397 	regmap_reg_range(0x5a04, 0x5a07),
1398 	regmap_reg_range(0x5b00, 0x5b01),
1399 	regmap_reg_range(0x5b04, 0x5b04),
1400 
1401 	/* port 6 */
1402 	regmap_reg_range(0x6000, 0x6001),
1403 	regmap_reg_range(0x6013, 0x6013),
1404 	regmap_reg_range(0x6017, 0x6017),
1405 	regmap_reg_range(0x601b, 0x601b),
1406 	regmap_reg_range(0x601f, 0x6020),
1407 	regmap_reg_range(0x6030, 0x6030),
1408 	regmap_reg_range(0x6100, 0x6115),
1409 	regmap_reg_range(0x611a, 0x611f),
1410 	regmap_reg_range(0x6120, 0x612b),
1411 	regmap_reg_range(0x6134, 0x613b),
1412 	regmap_reg_range(0x613c, 0x613f),
1413 	regmap_reg_range(0x6300, 0x6301),
1414 	regmap_reg_range(0x6400, 0x6401),
1415 	regmap_reg_range(0x6403, 0x6403),
1416 	regmap_reg_range(0x6410, 0x6417),
1417 	regmap_reg_range(0x6420, 0x6423),
1418 	regmap_reg_range(0x6500, 0x6507),
1419 	regmap_reg_range(0x6600, 0x6612),
1420 	regmap_reg_range(0x6800, 0x680f),
1421 	regmap_reg_range(0x6820, 0x6827),
1422 	regmap_reg_range(0x6830, 0x6837),
1423 	regmap_reg_range(0x6840, 0x684b),
1424 	regmap_reg_range(0x6900, 0x6907),
1425 	regmap_reg_range(0x6914, 0x6915),
1426 	regmap_reg_range(0x6a00, 0x6a03),
1427 	regmap_reg_range(0x6a04, 0x6a07),
1428 	regmap_reg_range(0x6b00, 0x6b01),
1429 	regmap_reg_range(0x6b04, 0x6b04),
1430 };
1431 
1432 static const struct regmap_access_table ksz9896_register_set = {
1433 	.yes_ranges = ksz9896_valid_regs,
1434 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1435 };
1436 
1437 static const struct regmap_range ksz8873_valid_regs[] = {
1438 	regmap_reg_range(0x00, 0x01),
1439 	/* global control register */
1440 	regmap_reg_range(0x02, 0x0f),
1441 
1442 	/* port registers */
1443 	regmap_reg_range(0x10, 0x1d),
1444 	regmap_reg_range(0x1e, 0x1f),
1445 	regmap_reg_range(0x20, 0x2d),
1446 	regmap_reg_range(0x2e, 0x2f),
1447 	regmap_reg_range(0x30, 0x39),
1448 	regmap_reg_range(0x3f, 0x3f),
1449 
1450 	/* advanced control registers */
1451 	regmap_reg_range(0x43, 0x43),
1452 	regmap_reg_range(0x60, 0x6f),
1453 	regmap_reg_range(0x70, 0x75),
1454 	regmap_reg_range(0x76, 0x78),
1455 	regmap_reg_range(0x79, 0x7a),
1456 	regmap_reg_range(0x7b, 0x83),
1457 	regmap_reg_range(0x8e, 0x99),
1458 	regmap_reg_range(0x9a, 0xa5),
1459 	regmap_reg_range(0xa6, 0xa6),
1460 	regmap_reg_range(0xa7, 0xaa),
1461 	regmap_reg_range(0xab, 0xae),
1462 	regmap_reg_range(0xaf, 0xba),
1463 	regmap_reg_range(0xbb, 0xbc),
1464 	regmap_reg_range(0xbd, 0xbd),
1465 	regmap_reg_range(0xc0, 0xc0),
1466 	regmap_reg_range(0xc2, 0xc2),
1467 	regmap_reg_range(0xc3, 0xc3),
1468 	regmap_reg_range(0xc4, 0xc4),
1469 	regmap_reg_range(0xc6, 0xc6),
1470 };
1471 
1472 static const struct regmap_access_table ksz8873_register_set = {
1473 	.yes_ranges = ksz8873_valid_regs,
1474 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1475 };
1476 
1477 const struct ksz_chip_data ksz_switch_chips[] = {
1478 	[KSZ8463] = {
1479 		.chip_id = KSZ8463_CHIP_ID,
1480 		.dev_name = "KSZ8463",
1481 		.num_vlans = 16,
1482 		.num_alus = 0,
1483 		.num_statics = 8,
1484 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1485 		.port_cnt = 3,
1486 		.num_tx_queues = 4,
1487 		.num_ipms = 4,
1488 		.ops = &ksz8463_dev_ops,
1489 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1490 		.mib_names = ksz88xx_mib_names,
1491 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1492 		.reg_mib_cnt = MIB_COUNTER_NUM,
1493 		.regs = ksz8463_regs,
1494 		.masks = ksz8463_masks,
1495 		.shifts = ksz8463_shifts,
1496 		.supports_mii = {false, false, true},
1497 		.supports_rmii = {false, false, true},
1498 		.internal_phy = {true, true, false},
1499 	},
1500 
1501 	[KSZ8563] = {
1502 		.chip_id = KSZ8563_CHIP_ID,
1503 		.dev_name = "KSZ8563",
1504 		.num_vlans = 4096,
1505 		.num_alus = 4096,
1506 		.num_statics = 16,
1507 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1508 		.port_cnt = 3,		/* total port count */
1509 		.port_nirqs = 3,
1510 		.num_tx_queues = 4,
1511 		.num_ipms = 8,
1512 		.tc_cbs_supported = true,
1513 		.ops = &ksz9477_dev_ops,
1514 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1515 		.mib_names = ksz9477_mib_names,
1516 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1517 		.reg_mib_cnt = MIB_COUNTER_NUM,
1518 		.regs = ksz9477_regs,
1519 		.masks = ksz9477_masks,
1520 		.shifts = ksz9477_shifts,
1521 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1522 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1523 		.supports_mii = {false, false, true},
1524 		.supports_rmii = {false, false, true},
1525 		.supports_rgmii = {false, false, true},
1526 		.internal_phy = {true, true, false},
1527 		.gbit_capable = {false, false, true},
1528 		.ptp_capable = true,
1529 		.wr_table = &ksz8563_register_set,
1530 		.rd_table = &ksz8563_register_set,
1531 	},
1532 
1533 	[KSZ8795] = {
1534 		.chip_id = KSZ8795_CHIP_ID,
1535 		.dev_name = "KSZ8795",
1536 		.num_vlans = 4096,
1537 		.num_alus = 0,
1538 		.num_statics = 32,
1539 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1540 		.port_cnt = 5,		/* total cpu and user ports */
1541 		.num_tx_queues = 4,
1542 		.num_ipms = 4,
1543 		.ops = &ksz87xx_dev_ops,
1544 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1545 		.ksz87xx_eee_link_erratum = true,
1546 		.mib_names = ksz9477_mib_names,
1547 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1548 		.reg_mib_cnt = MIB_COUNTER_NUM,
1549 		.regs = ksz8795_regs,
1550 		.masks = ksz8795_masks,
1551 		.shifts = ksz8795_shifts,
1552 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1553 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1554 		.supports_mii = {false, false, false, false, true},
1555 		.supports_rmii = {false, false, false, false, true},
1556 		.supports_rgmii = {false, false, false, false, true},
1557 		.internal_phy = {true, true, true, true, false},
1558 	},
1559 
1560 	[KSZ8794] = {
1561 		/* WARNING
1562 		 * =======
1563 		 * KSZ8794 is similar to KSZ8795, except the port map
1564 		 * contains a gap between external and CPU ports, the
1565 		 * port map is NOT continuous. The per-port register
1566 		 * map is shifted accordingly too, i.e. registers at
1567 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1568 		 * used on KSZ8795 for external port 3.
1569 		 *           external  cpu
1570 		 * KSZ8794   0,1,2      4
1571 		 * KSZ8795   0,1,2,3    4
1572 		 * KSZ8765   0,1,2,3    4
1573 		 * port_cnt is configured as 5, even though it is 4
1574 		 */
1575 		.chip_id = KSZ8794_CHIP_ID,
1576 		.dev_name = "KSZ8794",
1577 		.num_vlans = 4096,
1578 		.num_alus = 0,
1579 		.num_statics = 32,
1580 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1581 		.port_cnt = 5,		/* total cpu and user ports */
1582 		.num_tx_queues = 4,
1583 		.num_ipms = 4,
1584 		.ops = &ksz87xx_dev_ops,
1585 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1586 		.ksz87xx_eee_link_erratum = true,
1587 		.mib_names = ksz9477_mib_names,
1588 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1589 		.reg_mib_cnt = MIB_COUNTER_NUM,
1590 		.regs = ksz8795_regs,
1591 		.masks = ksz8795_masks,
1592 		.shifts = ksz8795_shifts,
1593 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1594 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1595 		.supports_mii = {false, false, false, false, true},
1596 		.supports_rmii = {false, false, false, false, true},
1597 		.supports_rgmii = {false, false, false, false, true},
1598 		.internal_phy = {true, true, true, false, false},
1599 	},
1600 
1601 	[KSZ8765] = {
1602 		.chip_id = KSZ8765_CHIP_ID,
1603 		.dev_name = "KSZ8765",
1604 		.num_vlans = 4096,
1605 		.num_alus = 0,
1606 		.num_statics = 32,
1607 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1608 		.port_cnt = 5,		/* total cpu and user ports */
1609 		.num_tx_queues = 4,
1610 		.num_ipms = 4,
1611 		.ops = &ksz87xx_dev_ops,
1612 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1613 		.ksz87xx_eee_link_erratum = true,
1614 		.mib_names = ksz9477_mib_names,
1615 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1616 		.reg_mib_cnt = MIB_COUNTER_NUM,
1617 		.regs = ksz8795_regs,
1618 		.masks = ksz8795_masks,
1619 		.shifts = ksz8795_shifts,
1620 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1621 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1622 		.supports_mii = {false, false, false, false, true},
1623 		.supports_rmii = {false, false, false, false, true},
1624 		.supports_rgmii = {false, false, false, false, true},
1625 		.internal_phy = {true, true, true, true, false},
1626 	},
1627 
1628 	[KSZ88X3] = {
1629 		.chip_id = KSZ88X3_CHIP_ID,
1630 		.dev_name = "KSZ8863/KSZ8873",
1631 		.num_vlans = 16,
1632 		.num_alus = 0,
1633 		.num_statics = 8,
1634 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1635 		.port_cnt = 3,
1636 		.num_tx_queues = 4,
1637 		.num_ipms = 4,
1638 		.ops = &ksz88xx_dev_ops,
1639 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1640 		.mib_names = ksz88xx_mib_names,
1641 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1642 		.reg_mib_cnt = MIB_COUNTER_NUM,
1643 		.regs = ksz8863_regs,
1644 		.masks = ksz8863_masks,
1645 		.shifts = ksz8863_shifts,
1646 		.supports_mii = {false, false, true},
1647 		.supports_rmii = {false, false, true},
1648 		.internal_phy = {true, true, false},
1649 		.wr_table = &ksz8873_register_set,
1650 		.rd_table = &ksz8873_register_set,
1651 	},
1652 
1653 	[KSZ8864] = {
1654 		/* WARNING
1655 		 * =======
1656 		 * KSZ8864 is similar to KSZ8895, except the first port
1657 		 * does not exist.
1658 		 *           external  cpu
1659 		 * KSZ8864   1,2,3      4
1660 		 * KSZ8895   0,1,2,3    4
1661 		 * port_cnt is configured as 5, even though it is 4
1662 		 */
1663 		.chip_id = KSZ8864_CHIP_ID,
1664 		.dev_name = "KSZ8864",
1665 		.num_vlans = 4096,
1666 		.num_alus = 0,
1667 		.num_statics = 32,
1668 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1669 		.port_cnt = 5,		/* total cpu and user ports */
1670 		.num_tx_queues = 4,
1671 		.num_ipms = 4,
1672 		.ops = &ksz88xx_dev_ops,
1673 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1674 		.mib_names = ksz88xx_mib_names,
1675 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1676 		.reg_mib_cnt = MIB_COUNTER_NUM,
1677 		.regs = ksz8895_regs,
1678 		.masks = ksz8895_masks,
1679 		.shifts = ksz8895_shifts,
1680 		.supports_mii = {false, false, false, false, true},
1681 		.supports_rmii = {false, false, false, false, true},
1682 		.internal_phy = {false, true, true, true, false},
1683 	},
1684 
1685 	[KSZ8895] = {
1686 		.chip_id = KSZ8895_CHIP_ID,
1687 		.dev_name = "KSZ8895",
1688 		.num_vlans = 4096,
1689 		.num_alus = 0,
1690 		.num_statics = 32,
1691 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1692 		.port_cnt = 5,		/* total cpu and user ports */
1693 		.num_tx_queues = 4,
1694 		.num_ipms = 4,
1695 		.ops = &ksz88xx_dev_ops,
1696 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1697 		.mib_names = ksz88xx_mib_names,
1698 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1699 		.reg_mib_cnt = MIB_COUNTER_NUM,
1700 		.regs = ksz8895_regs,
1701 		.masks = ksz8895_masks,
1702 		.shifts = ksz8895_shifts,
1703 		.supports_mii = {false, false, false, false, true},
1704 		.supports_rmii = {false, false, false, false, true},
1705 		.internal_phy = {true, true, true, true, false},
1706 	},
1707 
1708 	[KSZ9477] = {
1709 		.chip_id = KSZ9477_CHIP_ID,
1710 		.dev_name = "KSZ9477",
1711 		.num_vlans = 4096,
1712 		.num_alus = 4096,
1713 		.num_statics = 16,
1714 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1715 		.port_cnt = 7,		/* total physical port count */
1716 		.port_nirqs = 4,
1717 		.num_tx_queues = 4,
1718 		.num_ipms = 8,
1719 		.tc_cbs_supported = true,
1720 		.ops = &ksz9477_dev_ops,
1721 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1722 		.phy_errata_9477 = true,
1723 		.mib_names = ksz9477_mib_names,
1724 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1725 		.reg_mib_cnt = MIB_COUNTER_NUM,
1726 		.regs = ksz9477_regs,
1727 		.masks = ksz9477_masks,
1728 		.shifts = ksz9477_shifts,
1729 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1730 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1731 		.supports_mii	= {false, false, false, false,
1732 				   false, true, false},
1733 		.supports_rmii	= {false, false, false, false,
1734 				   false, true, false},
1735 		.supports_rgmii = {false, false, false, false,
1736 				   false, true, false},
1737 		.internal_phy	= {true, true, true, true,
1738 				   true, false, false},
1739 		.gbit_capable	= {true, true, true, true, true, true, true},
1740 		.ptp_capable = true,
1741 		.sgmii_port = 7,
1742 		.wr_table = &ksz9477_register_set,
1743 		.rd_table = &ksz9477_register_set,
1744 	},
1745 
1746 	[KSZ9896] = {
1747 		.chip_id = KSZ9896_CHIP_ID,
1748 		.dev_name = "KSZ9896",
1749 		.num_vlans = 4096,
1750 		.num_alus = 4096,
1751 		.num_statics = 16,
1752 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1753 		.port_cnt = 6,		/* total physical port count */
1754 		.port_nirqs = 2,
1755 		.num_tx_queues = 4,
1756 		.num_ipms = 8,
1757 		.ops = &ksz9477_dev_ops,
1758 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1759 		.phy_errata_9477 = true,
1760 		.mib_names = ksz9477_mib_names,
1761 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1762 		.reg_mib_cnt = MIB_COUNTER_NUM,
1763 		.regs = ksz9477_regs,
1764 		.masks = ksz9477_masks,
1765 		.shifts = ksz9477_shifts,
1766 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1767 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1768 		.supports_mii	= {false, false, false, false,
1769 				   false, true},
1770 		.supports_rmii	= {false, false, false, false,
1771 				   false, true},
1772 		.supports_rgmii = {false, false, false, false,
1773 				   false, true},
1774 		.internal_phy	= {true, true, true, true,
1775 				   true, false},
1776 		.gbit_capable	= {true, true, true, true, true, true},
1777 		.wr_table = &ksz9896_register_set,
1778 		.rd_table = &ksz9896_register_set,
1779 	},
1780 
1781 	[KSZ9897] = {
1782 		.chip_id = KSZ9897_CHIP_ID,
1783 		.dev_name = "KSZ9897",
1784 		.num_vlans = 4096,
1785 		.num_alus = 4096,
1786 		.num_statics = 16,
1787 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1788 		.port_cnt = 7,		/* total physical port count */
1789 		.port_nirqs = 2,
1790 		.num_tx_queues = 4,
1791 		.num_ipms = 8,
1792 		.ops = &ksz9477_dev_ops,
1793 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1794 		.phy_errata_9477 = true,
1795 		.mib_names = ksz9477_mib_names,
1796 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1797 		.reg_mib_cnt = MIB_COUNTER_NUM,
1798 		.regs = ksz9477_regs,
1799 		.masks = ksz9477_masks,
1800 		.shifts = ksz9477_shifts,
1801 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1802 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1803 		.supports_mii	= {false, false, false, false,
1804 				   false, true, true},
1805 		.supports_rmii	= {false, false, false, false,
1806 				   false, true, true},
1807 		.supports_rgmii = {false, false, false, false,
1808 				   false, true, true},
1809 		.internal_phy	= {true, true, true, true,
1810 				   true, false, false},
1811 		.gbit_capable	= {true, true, true, true, true, true, true},
1812 	},
1813 
1814 	[KSZ9893] = {
1815 		.chip_id = KSZ9893_CHIP_ID,
1816 		.dev_name = "KSZ9893",
1817 		.num_vlans = 4096,
1818 		.num_alus = 4096,
1819 		.num_statics = 16,
1820 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1821 		.port_cnt = 3,		/* total port count */
1822 		.port_nirqs = 2,
1823 		.num_tx_queues = 4,
1824 		.num_ipms = 8,
1825 		.ops = &ksz9477_dev_ops,
1826 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1827 		.mib_names = ksz9477_mib_names,
1828 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1829 		.reg_mib_cnt = MIB_COUNTER_NUM,
1830 		.regs = ksz9477_regs,
1831 		.masks = ksz9477_masks,
1832 		.shifts = ksz9477_shifts,
1833 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1834 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1835 		.supports_mii = {false, false, true},
1836 		.supports_rmii = {false, false, true},
1837 		.supports_rgmii = {false, false, true},
1838 		.internal_phy = {true, true, false},
1839 		.gbit_capable = {true, true, true},
1840 	},
1841 
1842 	[KSZ9563] = {
1843 		.chip_id = KSZ9563_CHIP_ID,
1844 		.dev_name = "KSZ9563",
1845 		.num_vlans = 4096,
1846 		.num_alus = 4096,
1847 		.num_statics = 16,
1848 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1849 		.port_cnt = 3,		/* total port count */
1850 		.port_nirqs = 3,
1851 		.num_tx_queues = 4,
1852 		.num_ipms = 8,
1853 		.tc_cbs_supported = true,
1854 		.ops = &ksz9477_dev_ops,
1855 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1856 		.mib_names = ksz9477_mib_names,
1857 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1858 		.reg_mib_cnt = MIB_COUNTER_NUM,
1859 		.regs = ksz9477_regs,
1860 		.masks = ksz9477_masks,
1861 		.shifts = ksz9477_shifts,
1862 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1863 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1864 		.supports_mii = {false, false, true},
1865 		.supports_rmii = {false, false, true},
1866 		.supports_rgmii = {false, false, true},
1867 		.internal_phy = {true, true, false},
1868 		.gbit_capable = {true, true, true},
1869 		.ptp_capable = true,
1870 	},
1871 
1872 	[KSZ8567] = {
1873 		.chip_id = KSZ8567_CHIP_ID,
1874 		.dev_name = "KSZ8567",
1875 		.num_vlans = 4096,
1876 		.num_alus = 4096,
1877 		.num_statics = 16,
1878 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1879 		.port_cnt = 7,		/* total port count */
1880 		.port_nirqs = 3,
1881 		.num_tx_queues = 4,
1882 		.num_ipms = 8,
1883 		.tc_cbs_supported = true,
1884 		.ops = &ksz9477_dev_ops,
1885 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1886 		.phy_errata_9477 = true,
1887 		.mib_names = ksz9477_mib_names,
1888 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1889 		.reg_mib_cnt = MIB_COUNTER_NUM,
1890 		.regs = ksz9477_regs,
1891 		.masks = ksz9477_masks,
1892 		.shifts = ksz9477_shifts,
1893 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1894 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1895 		.supports_mii	= {false, false, false, false,
1896 				   false, true, true},
1897 		.supports_rmii	= {false, false, false, false,
1898 				   false, true, true},
1899 		.supports_rgmii = {false, false, false, false,
1900 				   false, true, true},
1901 		.internal_phy	= {true, true, true, true,
1902 				   true, false, false},
1903 		.gbit_capable	= {false, false, false, false, false,
1904 				   true, true},
1905 		.ptp_capable = true,
1906 	},
1907 
1908 	[KSZ9567] = {
1909 		.chip_id = KSZ9567_CHIP_ID,
1910 		.dev_name = "KSZ9567",
1911 		.num_vlans = 4096,
1912 		.num_alus = 4096,
1913 		.num_statics = 16,
1914 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1915 		.port_cnt = 7,		/* total physical port count */
1916 		.port_nirqs = 3,
1917 		.num_tx_queues = 4,
1918 		.num_ipms = 8,
1919 		.tc_cbs_supported = true,
1920 		.ops = &ksz9477_dev_ops,
1921 		.mib_names = ksz9477_mib_names,
1922 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1923 		.reg_mib_cnt = MIB_COUNTER_NUM,
1924 		.regs = ksz9477_regs,
1925 		.masks = ksz9477_masks,
1926 		.shifts = ksz9477_shifts,
1927 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1928 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1929 		.supports_mii	= {false, false, false, false,
1930 				   false, true, true},
1931 		.supports_rmii	= {false, false, false, false,
1932 				   false, true, true},
1933 		.supports_rgmii = {false, false, false, false,
1934 				   false, true, true},
1935 		.internal_phy	= {true, true, true, true,
1936 				   true, false, false},
1937 		.gbit_capable	= {true, true, true, true, true, true, true},
1938 		.ptp_capable = true,
1939 	},
1940 
1941 	[LAN9370] = {
1942 		.chip_id = LAN9370_CHIP_ID,
1943 		.dev_name = "LAN9370",
1944 		.num_vlans = 4096,
1945 		.num_alus = 1024,
1946 		.num_statics = 256,
1947 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1948 		.port_cnt = 5,		/* total physical port count */
1949 		.port_nirqs = 6,
1950 		.num_tx_queues = 8,
1951 		.num_ipms = 8,
1952 		.tc_cbs_supported = true,
1953 		.phy_side_mdio_supported = true,
1954 		.ops = &lan937x_dev_ops,
1955 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1956 		.mib_names = ksz9477_mib_names,
1957 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1958 		.reg_mib_cnt = MIB_COUNTER_NUM,
1959 		.regs = ksz9477_regs,
1960 		.masks = lan937x_masks,
1961 		.shifts = lan937x_shifts,
1962 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1963 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1964 		.supports_mii = {false, false, false, false, true},
1965 		.supports_rmii = {false, false, false, false, true},
1966 		.supports_rgmii = {false, false, false, false, true},
1967 		.internal_phy = {true, true, true, true, false},
1968 		.ptp_capable = true,
1969 	},
1970 
1971 	[LAN9371] = {
1972 		.chip_id = LAN9371_CHIP_ID,
1973 		.dev_name = "LAN9371",
1974 		.num_vlans = 4096,
1975 		.num_alus = 1024,
1976 		.num_statics = 256,
1977 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1978 		.port_cnt = 6,		/* total physical port count */
1979 		.port_nirqs = 6,
1980 		.num_tx_queues = 8,
1981 		.num_ipms = 8,
1982 		.tc_cbs_supported = true,
1983 		.phy_side_mdio_supported = true,
1984 		.ops = &lan937x_dev_ops,
1985 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1986 		.mib_names = ksz9477_mib_names,
1987 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1988 		.reg_mib_cnt = MIB_COUNTER_NUM,
1989 		.regs = ksz9477_regs,
1990 		.masks = lan937x_masks,
1991 		.shifts = lan937x_shifts,
1992 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1993 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1994 		.supports_mii = {false, false, false, false, true, true},
1995 		.supports_rmii = {false, false, false, false, true, true},
1996 		.supports_rgmii = {false, false, false, false, true, true},
1997 		.internal_phy = {true, true, true, true, false, false},
1998 		.ptp_capable = true,
1999 	},
2000 
2001 	[LAN9372] = {
2002 		.chip_id = LAN9372_CHIP_ID,
2003 		.dev_name = "LAN9372",
2004 		.num_vlans = 4096,
2005 		.num_alus = 1024,
2006 		.num_statics = 256,
2007 		.cpu_ports = 0x30,	/* can be configured as cpu port */
2008 		.port_cnt = 8,		/* total physical port count */
2009 		.port_nirqs = 6,
2010 		.num_tx_queues = 8,
2011 		.num_ipms = 8,
2012 		.tc_cbs_supported = true,
2013 		.phy_side_mdio_supported = true,
2014 		.ops = &lan937x_dev_ops,
2015 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2016 		.mib_names = ksz9477_mib_names,
2017 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2018 		.reg_mib_cnt = MIB_COUNTER_NUM,
2019 		.regs = ksz9477_regs,
2020 		.masks = lan937x_masks,
2021 		.shifts = lan937x_shifts,
2022 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2023 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2024 		.supports_mii	= {false, false, false, false,
2025 				   true, true, false, false},
2026 		.supports_rmii	= {false, false, false, false,
2027 				   true, true, false, false},
2028 		.supports_rgmii = {false, false, false, false,
2029 				   true, true, false, false},
2030 		.internal_phy	= {true, true, true, true,
2031 				   false, false, true, true},
2032 		.ptp_capable = true,
2033 	},
2034 
2035 	[LAN9373] = {
2036 		.chip_id = LAN9373_CHIP_ID,
2037 		.dev_name = "LAN9373",
2038 		.num_vlans = 4096,
2039 		.num_alus = 1024,
2040 		.num_statics = 256,
2041 		.cpu_ports = 0x38,	/* can be configured as cpu port */
2042 		.port_cnt = 5,		/* total physical port count */
2043 		.port_nirqs = 6,
2044 		.num_tx_queues = 8,
2045 		.num_ipms = 8,
2046 		.tc_cbs_supported = true,
2047 		.phy_side_mdio_supported = true,
2048 		.ops = &lan937x_dev_ops,
2049 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2050 		.mib_names = ksz9477_mib_names,
2051 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2052 		.reg_mib_cnt = MIB_COUNTER_NUM,
2053 		.regs = ksz9477_regs,
2054 		.masks = lan937x_masks,
2055 		.shifts = lan937x_shifts,
2056 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2057 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2058 		.supports_mii	= {false, false, false, false,
2059 				   true, true, false, false},
2060 		.supports_rmii	= {false, false, false, false,
2061 				   true, true, false, false},
2062 		.supports_rgmii = {false, false, false, false,
2063 				   true, true, false, false},
2064 		.internal_phy	= {true, true, true, false,
2065 				   false, false, true, true},
2066 		.ptp_capable = true,
2067 	},
2068 
2069 	[LAN9374] = {
2070 		.chip_id = LAN9374_CHIP_ID,
2071 		.dev_name = "LAN9374",
2072 		.num_vlans = 4096,
2073 		.num_alus = 1024,
2074 		.num_statics = 256,
2075 		.cpu_ports = 0x30,	/* can be configured as cpu port */
2076 		.port_cnt = 8,		/* total physical port count */
2077 		.port_nirqs = 6,
2078 		.num_tx_queues = 8,
2079 		.num_ipms = 8,
2080 		.tc_cbs_supported = true,
2081 		.phy_side_mdio_supported = true,
2082 		.ops = &lan937x_dev_ops,
2083 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
2084 		.mib_names = ksz9477_mib_names,
2085 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2086 		.reg_mib_cnt = MIB_COUNTER_NUM,
2087 		.regs = ksz9477_regs,
2088 		.masks = lan937x_masks,
2089 		.shifts = lan937x_shifts,
2090 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2091 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2092 		.supports_mii	= {false, false, false, false,
2093 				   true, true, false, false},
2094 		.supports_rmii	= {false, false, false, false,
2095 				   true, true, false, false},
2096 		.supports_rgmii = {false, false, false, false,
2097 				   true, true, false, false},
2098 		.internal_phy	= {true, true, true, true,
2099 				   false, false, true, true},
2100 		.ptp_capable = true,
2101 	},
2102 
2103 	[LAN9646] = {
2104 		.chip_id = LAN9646_CHIP_ID,
2105 		.dev_name = "LAN9646",
2106 		.num_vlans = 4096,
2107 		.num_alus = 4096,
2108 		.num_statics = 16,
2109 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
2110 		.port_cnt = 7,		/* total physical port count */
2111 		.port_nirqs = 4,
2112 		.num_tx_queues = 4,
2113 		.num_ipms = 8,
2114 		.ops = &ksz9477_dev_ops,
2115 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
2116 		.phy_errata_9477 = true,
2117 		.mib_names = ksz9477_mib_names,
2118 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
2119 		.reg_mib_cnt = MIB_COUNTER_NUM,
2120 		.regs = ksz9477_regs,
2121 		.masks = ksz9477_masks,
2122 		.shifts = ksz9477_shifts,
2123 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
2124 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
2125 		.supports_mii	= {false, false, false, false,
2126 				   false, true, true},
2127 		.supports_rmii	= {false, false, false, false,
2128 				   false, true, true},
2129 		.supports_rgmii = {false, false, false, false,
2130 				   false, true, true},
2131 		.internal_phy	= {true, true, true, true,
2132 				   true, false, false},
2133 		.gbit_capable	= {true, true, true, true, true, true, true},
2134 		.sgmii_port = 7,
2135 		.wr_table = &ksz9477_register_set,
2136 		.rd_table = &ksz9477_register_set,
2137 	},
2138 };
2139 EXPORT_SYMBOL_GPL(ksz_switch_chips);
2140 
2141 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
2142 {
2143 	int i;
2144 
2145 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
2146 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
2147 
2148 		if (chip->chip_id == prod_num)
2149 			return chip;
2150 	}
2151 
2152 	return NULL;
2153 }
2154 
2155 static int ksz_check_device_id(struct ksz_device *dev)
2156 {
2157 	const struct ksz_chip_data *expected_chip_data;
2158 	u32 expected_chip_id;
2159 
2160 	if (dev->pdata) {
2161 		expected_chip_id = dev->pdata->chip_id;
2162 		expected_chip_data = ksz_lookup_info(expected_chip_id);
2163 		if (WARN_ON(!expected_chip_data))
2164 			return -ENODEV;
2165 	} else {
2166 		expected_chip_data = of_device_get_match_data(dev->dev);
2167 		expected_chip_id = expected_chip_data->chip_id;
2168 	}
2169 
2170 	if (expected_chip_id != dev->chip_id) {
2171 		dev_err(dev->dev,
2172 			"Device tree specifies chip %s but found %s, please fix it!\n",
2173 			expected_chip_data->dev_name, dev->info->dev_name);
2174 		return -ENODEV;
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
2181 				 struct phylink_config *config)
2182 {
2183 	struct ksz_device *dev = ds->priv;
2184 
2185 	if (dev->info->supports_mii[port])
2186 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
2187 
2188 	if (dev->info->supports_rmii[port])
2189 		__set_bit(PHY_INTERFACE_MODE_RMII,
2190 			  config->supported_interfaces);
2191 
2192 	if (dev->info->supports_rgmii[port])
2193 		phy_interface_set_rgmii(config->supported_interfaces);
2194 
2195 	if (dev->info->internal_phy[port]) {
2196 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2197 			  config->supported_interfaces);
2198 		/* Compatibility for phylib's default interface type when the
2199 		 * phy-mode property is absent
2200 		 */
2201 		__set_bit(PHY_INTERFACE_MODE_GMII,
2202 			  config->supported_interfaces);
2203 	}
2204 
2205 	if (dev->dev_ops->get_caps)
2206 		dev->dev_ops->get_caps(dev, port, config);
2207 
2208 	if (ds->ops->support_eee && ds->ops->support_eee(ds, port)) {
2209 		memcpy(config->lpi_interfaces, config->supported_interfaces,
2210 		       sizeof(config->lpi_interfaces));
2211 
2212 		config->lpi_capabilities = MAC_100FD;
2213 		if (dev->info->gbit_capable[port])
2214 			config->lpi_capabilities |= MAC_1000FD;
2215 
2216 		/* EEE is fully operational */
2217 		config->eee_enabled_default = true;
2218 	}
2219 }
2220 
2221 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
2222 {
2223 	struct ethtool_pause_stats *pstats;
2224 	struct rtnl_link_stats64 *stats;
2225 	struct ksz_stats_raw *raw;
2226 	struct ksz_port_mib *mib;
2227 	int ret;
2228 
2229 	mib = &dev->ports[port].mib;
2230 	stats = &mib->stats64;
2231 	pstats = &mib->pause_stats;
2232 	raw = (struct ksz_stats_raw *)mib->counters;
2233 
2234 	spin_lock(&mib->stats64_lock);
2235 
2236 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2237 		raw->rx_pause;
2238 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2239 		raw->tx_pause;
2240 
2241 	/* HW counters are counting bytes + FCS which is not acceptable
2242 	 * for rtnl_link_stats64 interface
2243 	 */
2244 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
2245 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
2246 
2247 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2248 		raw->rx_oversize;
2249 
2250 	stats->rx_crc_errors = raw->rx_crc_err;
2251 	stats->rx_frame_errors = raw->rx_align_err;
2252 	stats->rx_dropped = raw->rx_discards;
2253 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2254 		stats->rx_frame_errors  + stats->rx_dropped;
2255 
2256 	stats->tx_window_errors = raw->tx_late_col;
2257 	stats->tx_fifo_errors = raw->tx_discards;
2258 	stats->tx_aborted_errors = raw->tx_exc_col;
2259 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2260 		stats->tx_aborted_errors;
2261 
2262 	stats->multicast = raw->rx_mcast;
2263 	stats->collisions = raw->tx_total_col;
2264 
2265 	pstats->tx_pause_frames = raw->tx_pause;
2266 	pstats->rx_pause_frames = raw->rx_pause;
2267 
2268 	spin_unlock(&mib->stats64_lock);
2269 
2270 	if (dev->info->phy_errata_9477 && !ksz_is_sgmii_port(dev, port)) {
2271 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
2272 		if (ret)
2273 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
2274 	}
2275 }
2276 
2277 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
2278 {
2279 	struct ethtool_pause_stats *pstats;
2280 	struct rtnl_link_stats64 *stats;
2281 	struct ksz88xx_stats_raw *raw;
2282 	struct ksz_port_mib *mib;
2283 
2284 	mib = &dev->ports[port].mib;
2285 	stats = &mib->stats64;
2286 	pstats = &mib->pause_stats;
2287 	raw = (struct ksz88xx_stats_raw *)mib->counters;
2288 
2289 	spin_lock(&mib->stats64_lock);
2290 
2291 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2292 		raw->rx_pause;
2293 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2294 		raw->tx_pause;
2295 
2296 	/* HW counters are counting bytes + FCS which is not acceptable
2297 	 * for rtnl_link_stats64 interface
2298 	 */
2299 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
2300 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
2301 
2302 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2303 		raw->rx_oversize;
2304 
2305 	stats->rx_crc_errors = raw->rx_crc_err;
2306 	stats->rx_frame_errors = raw->rx_align_err;
2307 	stats->rx_dropped = raw->rx_discards;
2308 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2309 		stats->rx_frame_errors  + stats->rx_dropped;
2310 
2311 	stats->tx_window_errors = raw->tx_late_col;
2312 	stats->tx_fifo_errors = raw->tx_discards;
2313 	stats->tx_aborted_errors = raw->tx_exc_col;
2314 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2315 		stats->tx_aborted_errors;
2316 
2317 	stats->multicast = raw->rx_mcast;
2318 	stats->collisions = raw->tx_total_col;
2319 
2320 	pstats->tx_pause_frames = raw->tx_pause;
2321 	pstats->rx_pause_frames = raw->rx_pause;
2322 
2323 	spin_unlock(&mib->stats64_lock);
2324 }
2325 
2326 static void ksz_get_stats64(struct dsa_switch *ds, int port,
2327 			    struct rtnl_link_stats64 *s)
2328 {
2329 	struct ksz_device *dev = ds->priv;
2330 	struct ksz_port_mib *mib;
2331 
2332 	mib = &dev->ports[port].mib;
2333 
2334 	spin_lock(&mib->stats64_lock);
2335 	memcpy(s, &mib->stats64, sizeof(*s));
2336 	spin_unlock(&mib->stats64_lock);
2337 }
2338 
2339 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
2340 				struct ethtool_pause_stats *pause_stats)
2341 {
2342 	struct ksz_device *dev = ds->priv;
2343 	struct ksz_port_mib *mib;
2344 
2345 	mib = &dev->ports[port].mib;
2346 
2347 	spin_lock(&mib->stats64_lock);
2348 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
2349 	spin_unlock(&mib->stats64_lock);
2350 }
2351 
2352 static void ksz_get_strings(struct dsa_switch *ds, int port,
2353 			    u32 stringset, uint8_t *buf)
2354 {
2355 	struct ksz_device *dev = ds->priv;
2356 	int i;
2357 
2358 	if (stringset != ETH_SS_STATS)
2359 		return;
2360 
2361 	for (i = 0; i < dev->info->mib_cnt; i++)
2362 		ethtool_puts(&buf, dev->info->mib_names[i].string);
2363 }
2364 
2365 /**
2366  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2367  *			    isolation settings.
2368  * @dev: A pointer to the struct ksz_device representing the device.
2369  * @port: The port number to adjust.
2370  *
2371  * This function dynamically adjusts the port membership configuration for a
2372  * specified port and other device ports, based on Spanning Tree Protocol (STP)
2373  * states and port isolation settings. Each port, including the CPU port, has a
2374  * membership register, represented as a bitfield, where each bit corresponds
2375  * to a port number. A set bit indicates permission to forward frames to that
2376  * port. This function iterates over all ports, updating the membership register
2377  * to reflect current forwarding permissions:
2378  *
2379  * 1. Forwards frames only to ports that are part of the same bridge group and
2380  *    in the BR_STATE_FORWARDING state.
2381  * 2. Takes into account the isolation status of ports; ports in the
2382  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2383  *    frames to each other, even if they are in the same bridge group.
2384  * 3. Ensures that the CPU port is included in the membership based on its
2385  *    upstream port configuration, allowing for management and control traffic
2386  *    to flow as required.
2387  */
2388 static void ksz_update_port_member(struct ksz_device *dev, int port)
2389 {
2390 	struct ksz_port *p = &dev->ports[port];
2391 	struct dsa_switch *ds = dev->ds;
2392 	u8 port_member = 0, cpu_port;
2393 	const struct dsa_port *dp;
2394 	int i, j;
2395 
2396 	if (!dsa_is_user_port(ds, port))
2397 		return;
2398 
2399 	dp = dsa_to_port(ds, port);
2400 	cpu_port = BIT(dsa_upstream_port(ds, port));
2401 
2402 	for (i = 0; i < ds->num_ports; i++) {
2403 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2404 		struct ksz_port *other_p = &dev->ports[i];
2405 		u8 val = 0;
2406 
2407 		if (!dsa_is_user_port(ds, i))
2408 			continue;
2409 		if (port == i)
2410 			continue;
2411 		if (!dsa_port_bridge_same(dp, other_dp))
2412 			continue;
2413 		if (other_p->stp_state != BR_STATE_FORWARDING)
2414 			continue;
2415 
2416 		/* At this point we know that "port" and "other" port [i] are in
2417 		 * the same bridge group and that "other" port [i] is in
2418 		 * forwarding stp state. If "port" is also in forwarding stp
2419 		 * state, we can allow forwarding from port [port] to port [i].
2420 		 * Except if both ports are isolated.
2421 		 */
2422 		if (p->stp_state == BR_STATE_FORWARDING &&
2423 		    !(p->isolated && other_p->isolated)) {
2424 			val |= BIT(port);
2425 			port_member |= BIT(i);
2426 		}
2427 
2428 		/* Retain port [i]'s relationship to other ports than [port] */
2429 		for (j = 0; j < ds->num_ports; j++) {
2430 			const struct dsa_port *third_dp;
2431 			struct ksz_port *third_p;
2432 
2433 			if (j == i)
2434 				continue;
2435 			if (j == port)
2436 				continue;
2437 			if (!dsa_is_user_port(ds, j))
2438 				continue;
2439 			third_p = &dev->ports[j];
2440 			if (third_p->stp_state != BR_STATE_FORWARDING)
2441 				continue;
2442 
2443 			third_dp = dsa_to_port(ds, j);
2444 
2445 			/* Now we updating relation of the "other" port [i] to
2446 			 * the "third" port [j]. We already know that "other"
2447 			 * port [i] is in forwarding stp state and that "third"
2448 			 * port [j] is in forwarding stp state too.
2449 			 * We need to check if "other" port [i] and "third" port
2450 			 * [j] are in the same bridge group and not isolated
2451 			 * before allowing forwarding from port [i] to port [j].
2452 			 */
2453 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2454 			    !(other_p->isolated && third_p->isolated))
2455 				val |= BIT(j);
2456 		}
2457 
2458 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2459 	}
2460 
2461 	/* HSR ports are setup once so need to use the assigned membership
2462 	 * when the port is enabled.
2463 	 */
2464 	if (!port_member && p->stp_state == BR_STATE_FORWARDING &&
2465 	    (dev->hsr_ports & BIT(port)))
2466 		port_member = dev->hsr_ports;
2467 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2468 }
2469 
2470 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2471 {
2472 	struct ksz_device *dev = bus->priv;
2473 	u16 val;
2474 	int ret;
2475 
2476 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2477 	if (ret < 0)
2478 		return ret;
2479 
2480 	return val;
2481 }
2482 
2483 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2484 			     u16 val)
2485 {
2486 	struct ksz_device *dev = bus->priv;
2487 
2488 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2489 }
2490 
2491 /**
2492  * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus.
2493  * @bus: MDIO bus structure.
2494  * @addr: PHY address on the parent MDIO bus.
2495  * @regnum: Register number to read.
2496  *
2497  * This function provides a direct read operation on the parent MDIO bus for
2498  * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus
2499  * to retrieve data from the PHY registers at the specified address and register
2500  * number.
2501  *
2502  * Return: Value of the PHY register, or a negative error code on failure.
2503  */
2504 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum)
2505 {
2506 	struct ksz_device *dev = bus->priv;
2507 
2508 	return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum);
2509 }
2510 
2511 /**
2512  * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus.
2513  * @bus: MDIO bus structure.
2514  * @addr: PHY address on the parent MDIO bus.
2515  * @regnum: Register number to write to.
2516  * @val: Value to write to the PHY register.
2517  *
2518  * This function provides a direct write operation on the parent MDIO bus for
2519  * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus
2520  * to modify the PHY register values at the specified address.
2521  *
2522  * Return: 0 on success, or a negative error code on failure.
2523  */
2524 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum,
2525 				 u16 val)
2526 {
2527 	struct ksz_device *dev = bus->priv;
2528 
2529 	return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val);
2530 }
2531 
2532 /**
2533  * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port.
2534  * @dev: Pointer to device structure.
2535  * @addr: PHY address to map to a port.
2536  *
2537  * This function finds the corresponding switch port for a given PHY address by
2538  * iterating over all user ports on the device. It checks if a port's PHY
2539  * address in `phy_addr_map` matches the specified address and if the port
2540  * contains an internal PHY. If a match is found, the index of the port is
2541  * returned.
2542  *
2543  * Return: Port index on success, or -EINVAL if no matching port is found.
2544  */
2545 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr)
2546 {
2547 	struct dsa_switch *ds = dev->ds;
2548 	struct dsa_port *dp;
2549 
2550 	dsa_switch_for_each_user_port(dp, ds) {
2551 		if (dev->info->internal_phy[dp->index] &&
2552 		    dev->phy_addr_map[dp->index] == addr)
2553 			return dp->index;
2554 	}
2555 
2556 	return -EINVAL;
2557 }
2558 
2559 /**
2560  * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device.
2561  * @dev: Pointer to the KSZ device structure.
2562  *
2563  * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the
2564  * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in
2565  * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain.
2566  *
2567  * Return: 0 on success, or a negative error code on failure.
2568  */
2569 static int ksz_irq_phy_setup(struct ksz_device *dev)
2570 {
2571 	struct dsa_switch *ds = dev->ds;
2572 	int phy, port;
2573 	int irq;
2574 	int ret;
2575 
2576 	for (phy = 0; phy < PHY_MAX_ADDR; phy++) {
2577 		if (BIT(phy) & ds->phys_mii_mask) {
2578 			port = ksz_phy_addr_to_port(dev, phy);
2579 			if (port < 0) {
2580 				ret = port;
2581 				goto out;
2582 			}
2583 
2584 			irq = irq_find_mapping(dev->ports[port].pirq.domain,
2585 					       PORT_SRC_PHY_INT);
2586 			if (irq < 0) {
2587 				ret = irq;
2588 				goto out;
2589 			}
2590 			ds->user_mii_bus->irq[phy] = irq;
2591 		}
2592 	}
2593 	return 0;
2594 out:
2595 	while (phy--)
2596 		if (BIT(phy) & ds->phys_mii_mask)
2597 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2598 
2599 	return ret;
2600 }
2601 
2602 /**
2603  * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device.
2604  * @dev: Pointer to the KSZ device structure.
2605  *
2606  * Releases any IRQ mappings previously assigned to active PHYs in the KSZ
2607  * switch by disposing of each mapped IRQ in the `user_mii_bus` structure.
2608  */
2609 static void ksz_irq_phy_free(struct ksz_device *dev)
2610 {
2611 	struct dsa_switch *ds = dev->ds;
2612 	int phy;
2613 
2614 	for (phy = 0; phy < PHY_MAX_ADDR; phy++)
2615 		if (BIT(phy) & ds->phys_mii_mask)
2616 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2617 }
2618 
2619 /**
2620  * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT
2621  * @dev: pointer to the KSZ device structure
2622  * @bus: pointer to the MII bus structure
2623  * @mdio_np: pointer to the MDIO node in the device tree
2624  *
2625  * This function parses and validates PHY configurations for each user port
2626  * defined in the device tree for a KSZ switch device. It verifies that the
2627  * `phy-handle` properties are correctly set and that the internal PHYs match
2628  * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if
2629  * all validations pass. Logs error messages for any mismatches or missing data.
2630  *
2631  * Return: 0 on success, or a negative error code on failure.
2632  */
2633 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus,
2634 				   struct device_node *mdio_np)
2635 {
2636 	struct device_node *phy_node, *phy_parent_node;
2637 	bool phys_are_valid = true;
2638 	struct dsa_port *dp;
2639 	u32 phy_addr;
2640 	int ret;
2641 
2642 	dsa_switch_for_each_user_port(dp, dev->ds) {
2643 		if (!dev->info->internal_phy[dp->index])
2644 			continue;
2645 
2646 		phy_node = of_parse_phandle(dp->dn, "phy-handle", 0);
2647 		if (!phy_node) {
2648 			dev_err(dev->dev, "failed to parse phy-handle for port %d.\n",
2649 				dp->index);
2650 			phys_are_valid = false;
2651 			continue;
2652 		}
2653 
2654 		phy_parent_node = of_get_parent(phy_node);
2655 		if (!phy_parent_node) {
2656 			dev_err(dev->dev, "failed to get PHY-parent node for port %d\n",
2657 				dp->index);
2658 			phys_are_valid = false;
2659 		} else if (phy_parent_node != mdio_np) {
2660 			dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n",
2661 				dp->index, mdio_np, phy_parent_node);
2662 			phys_are_valid = false;
2663 		} else {
2664 			ret = of_property_read_u32(phy_node, "reg", &phy_addr);
2665 			if (ret < 0) {
2666 				dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n",
2667 					dp->index, ret);
2668 				phys_are_valid = false;
2669 			} else if (phy_addr != dev->phy_addr_map[dp->index]) {
2670 				dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n",
2671 					dp->index, dev->phy_addr_map[dp->index],
2672 					phy_addr);
2673 				phys_are_valid = false;
2674 			} else {
2675 				bus->phy_mask |= BIT(phy_addr);
2676 			}
2677 		}
2678 
2679 		of_node_put(phy_node);
2680 		of_node_put(phy_parent_node);
2681 	}
2682 
2683 	if (!phys_are_valid)
2684 		return -EINVAL;
2685 
2686 	return 0;
2687 }
2688 
2689 /**
2690  * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device.
2691  * @dev: Pointer to the KSZ device structure.
2692  *
2693  * This function sets up and registers an MDIO bus for the KSZ switch device,
2694  * allowing access to its internal PHYs. If the device supports side MDIO,
2695  * the function will configure the external MDIO controller specified by the
2696  * "mdio-parent-bus" device tree property to directly manage internal PHYs.
2697  * Otherwise, SPI or I2C access is set up for PHY access.
2698  *
2699  * Return: 0 on success, or a negative error code on failure.
2700  */
2701 static int ksz_mdio_register(struct ksz_device *dev)
2702 {
2703 	struct device_node *parent_bus_node;
2704 	struct mii_bus *parent_bus = NULL;
2705 	struct dsa_switch *ds = dev->ds;
2706 	struct device_node *mdio_np;
2707 	struct mii_bus *bus;
2708 	int ret, i;
2709 
2710 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2711 	if (!mdio_np)
2712 		return 0;
2713 
2714 	parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0);
2715 	if (parent_bus_node && !dev->info->phy_side_mdio_supported) {
2716 		dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n");
2717 		ret = -EINVAL;
2718 
2719 		goto put_mdio_node;
2720 	} else if (parent_bus_node) {
2721 		parent_bus = of_mdio_find_bus(parent_bus_node);
2722 		if (!parent_bus) {
2723 			ret = -EPROBE_DEFER;
2724 
2725 			goto put_mdio_node;
2726 		}
2727 
2728 		dev->parent_mdio_bus = parent_bus;
2729 	}
2730 
2731 	bus = devm_mdiobus_alloc(ds->dev);
2732 	if (!bus) {
2733 		ret = -ENOMEM;
2734 		goto put_mdio_node;
2735 	}
2736 
2737 	if (dev->dev_ops->mdio_bus_preinit) {
2738 		ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus);
2739 		if (ret)
2740 			goto put_mdio_node;
2741 	}
2742 
2743 	if (dev->dev_ops->create_phy_addr_map) {
2744 		ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus);
2745 		if (ret)
2746 			goto put_mdio_node;
2747 	} else {
2748 		for (i = 0; i < dev->info->port_cnt; i++)
2749 			dev->phy_addr_map[i] = i;
2750 	}
2751 
2752 	bus->priv = dev;
2753 	if (parent_bus) {
2754 		bus->read = ksz_parent_mdio_read;
2755 		bus->write = ksz_parent_mdio_write;
2756 		bus->name = "KSZ side MDIO";
2757 		snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d",
2758 			 ds->index);
2759 	} else {
2760 		bus->read = ksz_sw_mdio_read;
2761 		bus->write = ksz_sw_mdio_write;
2762 		bus->name = "ksz user smi";
2763 		if (ds->dst->index != 0) {
2764 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d-%d", ds->dst->index, ds->index);
2765 		} else {
2766 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2767 		}
2768 	}
2769 
2770 	ret = ksz_parse_dt_phy_config(dev, bus, mdio_np);
2771 	if (ret)
2772 		goto put_mdio_node;
2773 
2774 	ds->phys_mii_mask = bus->phy_mask;
2775 	bus->parent = ds->dev;
2776 
2777 	ds->user_mii_bus = bus;
2778 
2779 	if (dev->irq > 0) {
2780 		ret = ksz_irq_phy_setup(dev);
2781 		if (ret)
2782 			goto put_mdio_node;
2783 	}
2784 
2785 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2786 	if (ret) {
2787 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2788 			bus->id);
2789 		if (dev->irq > 0)
2790 			ksz_irq_phy_free(dev);
2791 	}
2792 
2793 put_mdio_node:
2794 	of_node_put(mdio_np);
2795 	of_node_put(parent_bus_node);
2796 
2797 	return ret;
2798 }
2799 
2800 static void ksz_irq_mask(struct irq_data *d)
2801 {
2802 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2803 
2804 	kirq->masked |= BIT(d->hwirq);
2805 }
2806 
2807 static void ksz_irq_unmask(struct irq_data *d)
2808 {
2809 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2810 
2811 	kirq->masked &= ~BIT(d->hwirq);
2812 }
2813 
2814 static void ksz_irq_bus_lock(struct irq_data *d)
2815 {
2816 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2817 
2818 	mutex_lock(&kirq->dev->lock_irq);
2819 }
2820 
2821 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2822 {
2823 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2824 	struct ksz_device *dev = kirq->dev;
2825 	int ret;
2826 
2827 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2828 	if (ret)
2829 		dev_err(dev->dev, "failed to change IRQ mask\n");
2830 
2831 	mutex_unlock(&dev->lock_irq);
2832 }
2833 
2834 static const struct irq_chip ksz_irq_chip = {
2835 	.name			= "ksz-irq",
2836 	.irq_mask		= ksz_irq_mask,
2837 	.irq_unmask		= ksz_irq_unmask,
2838 	.irq_bus_lock		= ksz_irq_bus_lock,
2839 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2840 };
2841 
2842 static int ksz_irq_domain_map(struct irq_domain *d,
2843 			      unsigned int irq, irq_hw_number_t hwirq)
2844 {
2845 	irq_set_chip_data(irq, d->host_data);
2846 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2847 	irq_set_noprobe(irq);
2848 
2849 	return 0;
2850 }
2851 
2852 static const struct irq_domain_ops ksz_irq_domain_ops = {
2853 	.map	= ksz_irq_domain_map,
2854 	.xlate	= irq_domain_xlate_twocell,
2855 };
2856 
2857 static void ksz_irq_free(struct ksz_irq *kirq)
2858 {
2859 	int irq, virq;
2860 
2861 	free_irq(kirq->irq_num, kirq);
2862 
2863 	for (irq = 0; irq < kirq->nirqs; irq++) {
2864 		virq = irq_find_mapping(kirq->domain, irq);
2865 		irq_dispose_mapping(virq);
2866 	}
2867 
2868 	irq_domain_remove(kirq->domain);
2869 }
2870 
2871 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2872 {
2873 	struct ksz_irq *kirq = dev_id;
2874 	unsigned int nhandled = 0;
2875 	struct ksz_device *dev;
2876 	unsigned int sub_irq;
2877 	u8 data;
2878 	int ret;
2879 	u8 n;
2880 
2881 	dev = kirq->dev;
2882 
2883 	/* Read interrupt status register */
2884 	ret = ksz_read8(dev, kirq->reg_status, &data);
2885 	if (ret)
2886 		goto out;
2887 
2888 	for (n = 0; n < kirq->nirqs; ++n) {
2889 		if (data & BIT(n)) {
2890 			sub_irq = irq_find_mapping(kirq->domain, n);
2891 			handle_nested_irq(sub_irq);
2892 			++nhandled;
2893 		}
2894 	}
2895 out:
2896 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2897 }
2898 
2899 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2900 {
2901 	int ret, n;
2902 
2903 	kirq->dev = dev;
2904 	kirq->masked = ~0;
2905 
2906 	kirq->domain = irq_domain_create_simple(dev_fwnode(dev->dev), kirq->nirqs, 0,
2907 						&ksz_irq_domain_ops, kirq);
2908 	if (!kirq->domain)
2909 		return -ENOMEM;
2910 
2911 	for (n = 0; n < kirq->nirqs; n++)
2912 		irq_create_mapping(kirq->domain, n);
2913 
2914 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2915 				   IRQF_ONESHOT, kirq->name, kirq);
2916 	if (ret)
2917 		goto out;
2918 
2919 	return 0;
2920 
2921 out:
2922 	ksz_irq_free(kirq);
2923 
2924 	return ret;
2925 }
2926 
2927 static int ksz_girq_setup(struct ksz_device *dev)
2928 {
2929 	struct ksz_irq *girq = &dev->girq;
2930 
2931 	girq->nirqs = dev->info->port_cnt;
2932 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2933 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2934 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2935 
2936 	girq->irq_num = dev->irq;
2937 
2938 	return ksz_irq_common_setup(dev, girq);
2939 }
2940 
2941 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2942 {
2943 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2944 
2945 	pirq->nirqs = dev->info->port_nirqs;
2946 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2947 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2948 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2949 
2950 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2951 	if (pirq->irq_num < 0)
2952 		return pirq->irq_num;
2953 
2954 	return ksz_irq_common_setup(dev, pirq);
2955 }
2956 
2957 static int ksz_parse_drive_strength(struct ksz_device *dev);
2958 
2959 static int ksz_setup(struct dsa_switch *ds)
2960 {
2961 	struct ksz_device *dev = ds->priv;
2962 	u16 storm_mask, storm_rate;
2963 	struct dsa_port *dp;
2964 	struct ksz_port *p;
2965 	const u16 *regs;
2966 	int ret;
2967 
2968 	regs = dev->info->regs;
2969 
2970 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2971 				       dev->info->num_vlans, GFP_KERNEL);
2972 	if (!dev->vlan_cache)
2973 		return -ENOMEM;
2974 
2975 	ret = dev->dev_ops->reset(dev);
2976 	if (ret) {
2977 		dev_err(ds->dev, "failed to reset switch\n");
2978 		return ret;
2979 	}
2980 
2981 	ret = ksz_parse_drive_strength(dev);
2982 	if (ret)
2983 		return ret;
2984 
2985 	if (ksz_has_sgmii_port(dev) && dev->dev_ops->pcs_create) {
2986 		ret = dev->dev_ops->pcs_create(dev);
2987 		if (ret)
2988 			return ret;
2989 	}
2990 
2991 	/* set broadcast storm protection 10% rate */
2992 	storm_mask = BROADCAST_STORM_RATE;
2993 	storm_rate = (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
2994 	if (ksz_is_ksz8463(dev)) {
2995 		storm_mask = swab16(storm_mask);
2996 		storm_rate = swab16(storm_rate);
2997 	}
2998 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2999 			   storm_mask, storm_rate);
3000 
3001 	dev->dev_ops->config_cpu_port(ds);
3002 
3003 	dev->dev_ops->enable_stp_addr(dev);
3004 
3005 	ds->num_tx_queues = dev->info->num_tx_queues;
3006 
3007 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
3008 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
3009 
3010 	ksz_init_mib_timer(dev);
3011 
3012 	ds->configure_vlan_while_not_filtering = false;
3013 	ds->dscp_prio_mapping_is_global = true;
3014 
3015 	if (dev->dev_ops->setup) {
3016 		ret = dev->dev_ops->setup(ds);
3017 		if (ret)
3018 			return ret;
3019 	}
3020 
3021 	/* Start with learning disabled on standalone user ports, and enabled
3022 	 * on the CPU port. In lack of other finer mechanisms, learning on the
3023 	 * CPU port will avoid flooding bridge local addresses on the network
3024 	 * in some cases.
3025 	 */
3026 	p = &dev->ports[dev->cpu_port];
3027 	p->learning = true;
3028 
3029 	if (dev->irq > 0) {
3030 		ret = ksz_girq_setup(dev);
3031 		if (ret)
3032 			return ret;
3033 
3034 		dsa_switch_for_each_user_port(dp, dev->ds) {
3035 			ret = ksz_pirq_setup(dev, dp->index);
3036 			if (ret)
3037 				goto out_girq;
3038 
3039 			if (dev->info->ptp_capable) {
3040 				ret = ksz_ptp_irq_setup(ds, dp->index);
3041 				if (ret)
3042 					goto out_pirq;
3043 			}
3044 		}
3045 	}
3046 
3047 	if (dev->info->ptp_capable) {
3048 		ret = ksz_ptp_clock_register(ds);
3049 		if (ret) {
3050 			dev_err(dev->dev, "Failed to register PTP clock: %d\n",
3051 				ret);
3052 			goto out_ptpirq;
3053 		}
3054 	}
3055 
3056 	ret = ksz_mdio_register(dev);
3057 	if (ret < 0) {
3058 		dev_err(dev->dev, "failed to register the mdio");
3059 		goto out_ptp_clock_unregister;
3060 	}
3061 
3062 	ret = ksz_dcb_init(dev);
3063 	if (ret)
3064 		goto out_ptp_clock_unregister;
3065 
3066 	/* start switch */
3067 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
3068 			   SW_START, SW_START);
3069 
3070 	return 0;
3071 
3072 out_ptp_clock_unregister:
3073 	if (dev->info->ptp_capable)
3074 		ksz_ptp_clock_unregister(ds);
3075 out_ptpirq:
3076 	if (dev->irq > 0 && dev->info->ptp_capable)
3077 		dsa_switch_for_each_user_port(dp, dev->ds)
3078 			ksz_ptp_irq_free(ds, dp->index);
3079 out_pirq:
3080 	if (dev->irq > 0)
3081 		dsa_switch_for_each_user_port(dp, dev->ds)
3082 			ksz_irq_free(&dev->ports[dp->index].pirq);
3083 out_girq:
3084 	if (dev->irq > 0)
3085 		ksz_irq_free(&dev->girq);
3086 
3087 	return ret;
3088 }
3089 
3090 static void ksz_teardown(struct dsa_switch *ds)
3091 {
3092 	struct ksz_device *dev = ds->priv;
3093 	struct dsa_port *dp;
3094 
3095 	if (dev->info->ptp_capable)
3096 		ksz_ptp_clock_unregister(ds);
3097 
3098 	if (dev->irq > 0) {
3099 		dsa_switch_for_each_user_port(dp, dev->ds) {
3100 			if (dev->info->ptp_capable)
3101 				ksz_ptp_irq_free(ds, dp->index);
3102 
3103 			ksz_irq_free(&dev->ports[dp->index].pirq);
3104 		}
3105 
3106 		ksz_irq_free(&dev->girq);
3107 	}
3108 
3109 	if (dev->dev_ops->teardown)
3110 		dev->dev_ops->teardown(ds);
3111 }
3112 
3113 static void port_r_cnt(struct ksz_device *dev, int port)
3114 {
3115 	struct ksz_port_mib *mib = &dev->ports[port].mib;
3116 	u64 *dropped;
3117 
3118 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
3119 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
3120 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
3121 					&mib->counters[mib->cnt_ptr]);
3122 		++mib->cnt_ptr;
3123 	}
3124 
3125 	/* last one in storage */
3126 	dropped = &mib->counters[dev->info->mib_cnt];
3127 
3128 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
3129 	while (mib->cnt_ptr < dev->info->mib_cnt) {
3130 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
3131 					dropped, &mib->counters[mib->cnt_ptr]);
3132 		++mib->cnt_ptr;
3133 	}
3134 	mib->cnt_ptr = 0;
3135 }
3136 
3137 static void ksz_mib_read_work(struct work_struct *work)
3138 {
3139 	struct ksz_device *dev = container_of(work, struct ksz_device,
3140 					      mib_read.work);
3141 	struct ksz_port_mib *mib;
3142 	struct ksz_port *p;
3143 	int i;
3144 
3145 	for (i = 0; i < dev->info->port_cnt; i++) {
3146 		if (dsa_is_unused_port(dev->ds, i))
3147 			continue;
3148 
3149 		p = &dev->ports[i];
3150 		mib = &p->mib;
3151 		mutex_lock(&mib->cnt_mutex);
3152 
3153 		/* Only read MIB counters when the port is told to do.
3154 		 * If not, read only dropped counters when link is not up.
3155 		 */
3156 		if (!p->read) {
3157 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
3158 
3159 			if (!netif_carrier_ok(dp->user))
3160 				mib->cnt_ptr = dev->info->reg_mib_cnt;
3161 		}
3162 		port_r_cnt(dev, i);
3163 		p->read = false;
3164 
3165 		if (dev->dev_ops->r_mib_stat64)
3166 			dev->dev_ops->r_mib_stat64(dev, i);
3167 
3168 		mutex_unlock(&mib->cnt_mutex);
3169 	}
3170 
3171 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
3172 }
3173 
3174 void ksz_init_mib_timer(struct ksz_device *dev)
3175 {
3176 	int i;
3177 
3178 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
3179 
3180 	for (i = 0; i < dev->info->port_cnt; i++) {
3181 		struct ksz_port_mib *mib = &dev->ports[i].mib;
3182 
3183 		dev->dev_ops->port_init_cnt(dev, i);
3184 
3185 		mib->cnt_ptr = 0;
3186 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
3187 	}
3188 }
3189 
3190 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
3191 {
3192 	struct ksz_device *dev = ds->priv;
3193 	u16 val = 0xffff;
3194 	int ret;
3195 
3196 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
3197 	if (ret)
3198 		return ret;
3199 
3200 	return val;
3201 }
3202 
3203 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
3204 {
3205 	struct ksz_device *dev = ds->priv;
3206 	int ret;
3207 
3208 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
3209 	if (ret)
3210 		return ret;
3211 
3212 	return 0;
3213 }
3214 
3215 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
3216 {
3217 	struct ksz_device *dev = ds->priv;
3218 
3219 	switch (dev->chip_id) {
3220 	case KSZ88X3_CHIP_ID:
3221 		/* Silicon Errata Sheet (DS80000830A):
3222 		 * Port 1 does not work with LinkMD Cable-Testing.
3223 		 * Port 1 does not respond to received PAUSE control frames.
3224 		 */
3225 		if (!port)
3226 			return MICREL_KSZ8_P1_ERRATA;
3227 		break;
3228 	}
3229 
3230 	return 0;
3231 }
3232 
3233 static void ksz_phylink_mac_link_down(struct phylink_config *config,
3234 				      unsigned int mode,
3235 				      phy_interface_t interface)
3236 {
3237 	struct dsa_port *dp = dsa_phylink_to_port(config);
3238 	struct ksz_device *dev = dp->ds->priv;
3239 
3240 	/* Read all MIB counters when the link is going down. */
3241 	dev->ports[dp->index].read = true;
3242 	/* timer started */
3243 	if (dev->mib_read_interval)
3244 		schedule_delayed_work(&dev->mib_read, 0);
3245 }
3246 
3247 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
3248 {
3249 	struct ksz_device *dev = ds->priv;
3250 
3251 	if (sset != ETH_SS_STATS)
3252 		return 0;
3253 
3254 	return dev->info->mib_cnt;
3255 }
3256 
3257 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
3258 				  uint64_t *buf)
3259 {
3260 	const struct dsa_port *dp = dsa_to_port(ds, port);
3261 	struct ksz_device *dev = ds->priv;
3262 	struct ksz_port_mib *mib;
3263 
3264 	mib = &dev->ports[port].mib;
3265 	mutex_lock(&mib->cnt_mutex);
3266 
3267 	/* Only read dropped counters if no link. */
3268 	if (!netif_carrier_ok(dp->user))
3269 		mib->cnt_ptr = dev->info->reg_mib_cnt;
3270 	port_r_cnt(dev, port);
3271 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
3272 	mutex_unlock(&mib->cnt_mutex);
3273 }
3274 
3275 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
3276 				struct dsa_bridge bridge,
3277 				bool *tx_fwd_offload,
3278 				struct netlink_ext_ack *extack)
3279 {
3280 	/* port_stp_state_set() will be called after to put the port in
3281 	 * appropriate state so there is no need to do anything.
3282 	 */
3283 
3284 	return 0;
3285 }
3286 
3287 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
3288 				  struct dsa_bridge bridge)
3289 {
3290 	/* port_stp_state_set() will be called after to put the port in
3291 	 * forwarding state so there is no need to do anything.
3292 	 */
3293 }
3294 
3295 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
3296 {
3297 	struct ksz_device *dev = ds->priv;
3298 
3299 	dev->dev_ops->flush_dyn_mac_table(dev, port);
3300 }
3301 
3302 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
3303 {
3304 	struct ksz_device *dev = ds->priv;
3305 
3306 	if (!dev->dev_ops->set_ageing_time)
3307 		return -EOPNOTSUPP;
3308 
3309 	return dev->dev_ops->set_ageing_time(dev, msecs);
3310 }
3311 
3312 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
3313 			    const unsigned char *addr, u16 vid,
3314 			    struct dsa_db db)
3315 {
3316 	struct ksz_device *dev = ds->priv;
3317 
3318 	if (!dev->dev_ops->fdb_add)
3319 		return -EOPNOTSUPP;
3320 
3321 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
3322 }
3323 
3324 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
3325 			    const unsigned char *addr,
3326 			    u16 vid, struct dsa_db db)
3327 {
3328 	struct ksz_device *dev = ds->priv;
3329 
3330 	if (!dev->dev_ops->fdb_del)
3331 		return -EOPNOTSUPP;
3332 
3333 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
3334 }
3335 
3336 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
3337 			     dsa_fdb_dump_cb_t *cb, void *data)
3338 {
3339 	struct ksz_device *dev = ds->priv;
3340 
3341 	if (!dev->dev_ops->fdb_dump)
3342 		return -EOPNOTSUPP;
3343 
3344 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
3345 }
3346 
3347 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
3348 			    const struct switchdev_obj_port_mdb *mdb,
3349 			    struct dsa_db db)
3350 {
3351 	struct ksz_device *dev = ds->priv;
3352 
3353 	if (!dev->dev_ops->mdb_add)
3354 		return -EOPNOTSUPP;
3355 
3356 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
3357 }
3358 
3359 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
3360 			    const struct switchdev_obj_port_mdb *mdb,
3361 			    struct dsa_db db)
3362 {
3363 	struct ksz_device *dev = ds->priv;
3364 
3365 	if (!dev->dev_ops->mdb_del)
3366 		return -EOPNOTSUPP;
3367 
3368 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
3369 }
3370 
3371 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
3372 						  int port)
3373 {
3374 	u32 queue_map = 0;
3375 	int ipm;
3376 
3377 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
3378 		int queue;
3379 
3380 		/* Traffic Type (TT) is corresponding to the Internal Priority
3381 		 * Map (IPM) in the switch. Traffic Class (TC) is
3382 		 * corresponding to the queue in the switch.
3383 		 */
3384 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
3385 		if (queue < 0)
3386 			return queue;
3387 
3388 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
3389 	}
3390 
3391 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3392 }
3393 
3394 static int ksz_port_setup(struct dsa_switch *ds, int port)
3395 {
3396 	struct ksz_device *dev = ds->priv;
3397 	int ret;
3398 
3399 	if (!dsa_is_user_port(ds, port))
3400 		return 0;
3401 
3402 	/* setup user port */
3403 	dev->dev_ops->port_setup(dev, port, false);
3404 
3405 	if (!is_ksz8(dev)) {
3406 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
3407 		if (ret)
3408 			return ret;
3409 	}
3410 
3411 	/* port_stp_state_set() will be called after to enable the port so
3412 	 * there is no need to do anything.
3413 	 */
3414 
3415 	return ksz_dcb_init_port(dev, port);
3416 }
3417 
3418 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
3419 {
3420 	struct ksz_device *dev = ds->priv;
3421 	struct ksz_port *p;
3422 	const u16 *regs;
3423 	u8 data;
3424 
3425 	regs = dev->info->regs;
3426 
3427 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
3428 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3429 
3430 	p = &dev->ports[port];
3431 
3432 	switch (state) {
3433 	case BR_STATE_DISABLED:
3434 		data |= PORT_LEARN_DISABLE;
3435 		break;
3436 	case BR_STATE_LISTENING:
3437 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3438 		break;
3439 	case BR_STATE_LEARNING:
3440 		data |= PORT_RX_ENABLE;
3441 		if (!p->learning)
3442 			data |= PORT_LEARN_DISABLE;
3443 		break;
3444 	case BR_STATE_FORWARDING:
3445 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
3446 		if (!p->learning)
3447 			data |= PORT_LEARN_DISABLE;
3448 		break;
3449 	case BR_STATE_BLOCKING:
3450 		data |= PORT_LEARN_DISABLE;
3451 		break;
3452 	default:
3453 		dev_err(ds->dev, "invalid STP state: %d\n", state);
3454 		return;
3455 	}
3456 
3457 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
3458 
3459 	p->stp_state = state;
3460 
3461 	ksz_update_port_member(dev, port);
3462 }
3463 
3464 static void ksz_port_teardown(struct dsa_switch *ds, int port)
3465 {
3466 	struct ksz_device *dev = ds->priv;
3467 
3468 	switch (dev->chip_id) {
3469 	case KSZ8563_CHIP_ID:
3470 	case KSZ8567_CHIP_ID:
3471 	case KSZ9477_CHIP_ID:
3472 	case KSZ9563_CHIP_ID:
3473 	case KSZ9567_CHIP_ID:
3474 	case KSZ9893_CHIP_ID:
3475 	case KSZ9896_CHIP_ID:
3476 	case KSZ9897_CHIP_ID:
3477 	case LAN9646_CHIP_ID:
3478 		if (dsa_is_user_port(ds, port))
3479 			ksz9477_port_acl_free(dev, port);
3480 	}
3481 }
3482 
3483 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3484 				     struct switchdev_brport_flags flags,
3485 				     struct netlink_ext_ack *extack)
3486 {
3487 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
3488 		return -EINVAL;
3489 
3490 	return 0;
3491 }
3492 
3493 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
3494 				 struct switchdev_brport_flags flags,
3495 				 struct netlink_ext_ack *extack)
3496 {
3497 	struct ksz_device *dev = ds->priv;
3498 	struct ksz_port *p = &dev->ports[port];
3499 
3500 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
3501 		if (flags.mask & BR_LEARNING)
3502 			p->learning = !!(flags.val & BR_LEARNING);
3503 
3504 		if (flags.mask & BR_ISOLATED)
3505 			p->isolated = !!(flags.val & BR_ISOLATED);
3506 
3507 		/* Make the change take effect immediately */
3508 		ksz_port_stp_state_set(ds, port, p->stp_state);
3509 	}
3510 
3511 	return 0;
3512 }
3513 
3514 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
3515 						  int port,
3516 						  enum dsa_tag_protocol mp)
3517 {
3518 	struct ksz_device *dev = ds->priv;
3519 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
3520 
3521 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
3522 		proto = DSA_TAG_PROTO_KSZ8795;
3523 
3524 	if (dev->chip_id == KSZ88X3_CHIP_ID ||
3525 	    dev->chip_id == KSZ8463_CHIP_ID ||
3526 	    dev->chip_id == KSZ8563_CHIP_ID ||
3527 	    dev->chip_id == KSZ9893_CHIP_ID ||
3528 	    dev->chip_id == KSZ9563_CHIP_ID)
3529 		proto = DSA_TAG_PROTO_KSZ9893;
3530 
3531 	if (dev->chip_id == KSZ8567_CHIP_ID ||
3532 	    dev->chip_id == KSZ9477_CHIP_ID ||
3533 	    dev->chip_id == KSZ9896_CHIP_ID ||
3534 	    dev->chip_id == KSZ9897_CHIP_ID ||
3535 	    dev->chip_id == KSZ9567_CHIP_ID ||
3536 	    dev->chip_id == LAN9646_CHIP_ID)
3537 		proto = DSA_TAG_PROTO_KSZ9477;
3538 
3539 	if (is_lan937x(dev))
3540 		proto = DSA_TAG_PROTO_LAN937X;
3541 
3542 	return proto;
3543 }
3544 
3545 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
3546 				    enum dsa_tag_protocol proto)
3547 {
3548 	struct ksz_tagger_data *tagger_data;
3549 
3550 	switch (proto) {
3551 	case DSA_TAG_PROTO_KSZ8795:
3552 		return 0;
3553 	case DSA_TAG_PROTO_KSZ9893:
3554 	case DSA_TAG_PROTO_KSZ9477:
3555 	case DSA_TAG_PROTO_LAN937X:
3556 		tagger_data = ksz_tagger_data(ds);
3557 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
3558 		return 0;
3559 	default:
3560 		return -EPROTONOSUPPORT;
3561 	}
3562 }
3563 
3564 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
3565 				   bool flag, struct netlink_ext_ack *extack)
3566 {
3567 	struct ksz_device *dev = ds->priv;
3568 
3569 	if (!dev->dev_ops->vlan_filtering)
3570 		return -EOPNOTSUPP;
3571 
3572 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
3573 }
3574 
3575 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
3576 			     const struct switchdev_obj_port_vlan *vlan,
3577 			     struct netlink_ext_ack *extack)
3578 {
3579 	struct ksz_device *dev = ds->priv;
3580 
3581 	if (!dev->dev_ops->vlan_add)
3582 		return -EOPNOTSUPP;
3583 
3584 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
3585 }
3586 
3587 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3588 			     const struct switchdev_obj_port_vlan *vlan)
3589 {
3590 	struct ksz_device *dev = ds->priv;
3591 
3592 	if (!dev->dev_ops->vlan_del)
3593 		return -EOPNOTSUPP;
3594 
3595 	return dev->dev_ops->vlan_del(dev, port, vlan);
3596 }
3597 
3598 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3599 			       struct dsa_mall_mirror_tc_entry *mirror,
3600 			       bool ingress, struct netlink_ext_ack *extack)
3601 {
3602 	struct ksz_device *dev = ds->priv;
3603 
3604 	if (!dev->dev_ops->mirror_add)
3605 		return -EOPNOTSUPP;
3606 
3607 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3608 }
3609 
3610 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3611 				struct dsa_mall_mirror_tc_entry *mirror)
3612 {
3613 	struct ksz_device *dev = ds->priv;
3614 
3615 	if (dev->dev_ops->mirror_del)
3616 		dev->dev_ops->mirror_del(dev, port, mirror);
3617 }
3618 
3619 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3620 {
3621 	struct ksz_device *dev = ds->priv;
3622 
3623 	if (!dev->dev_ops->change_mtu)
3624 		return -EOPNOTSUPP;
3625 
3626 	return dev->dev_ops->change_mtu(dev, port, mtu);
3627 }
3628 
3629 static int ksz_max_mtu(struct dsa_switch *ds, int port)
3630 {
3631 	struct ksz_device *dev = ds->priv;
3632 
3633 	switch (dev->chip_id) {
3634 	case KSZ8795_CHIP_ID:
3635 	case KSZ8794_CHIP_ID:
3636 	case KSZ8765_CHIP_ID:
3637 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3638 	case KSZ8463_CHIP_ID:
3639 	case KSZ88X3_CHIP_ID:
3640 	case KSZ8864_CHIP_ID:
3641 	case KSZ8895_CHIP_ID:
3642 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3643 	case KSZ8563_CHIP_ID:
3644 	case KSZ8567_CHIP_ID:
3645 	case KSZ9477_CHIP_ID:
3646 	case KSZ9563_CHIP_ID:
3647 	case KSZ9567_CHIP_ID:
3648 	case KSZ9893_CHIP_ID:
3649 	case KSZ9896_CHIP_ID:
3650 	case KSZ9897_CHIP_ID:
3651 	case LAN9370_CHIP_ID:
3652 	case LAN9371_CHIP_ID:
3653 	case LAN9372_CHIP_ID:
3654 	case LAN9373_CHIP_ID:
3655 	case LAN9374_CHIP_ID:
3656 	case LAN9646_CHIP_ID:
3657 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3658 	}
3659 
3660 	return -EOPNOTSUPP;
3661 }
3662 
3663 /**
3664  * ksz_support_eee - Determine Energy Efficient Ethernet (EEE) support for a
3665  *                   port
3666  * @ds: Pointer to the DSA switch structure
3667  * @port: Port number to check
3668  *
3669  * This function also documents devices where EEE was initially advertised but
3670  * later withdrawn due to reliability issues, as described in official errata
3671  * documents. These devices are explicitly listed to record known limitations,
3672  * even if there is no technical necessity for runtime checks.
3673  *
3674  * Returns: true if the internal PHY on the given port supports fully
3675  * operational EEE, false otherwise.
3676  */
3677 static bool ksz_support_eee(struct dsa_switch *ds, int port)
3678 {
3679 	struct ksz_device *dev = ds->priv;
3680 
3681 	if (!dev->info->internal_phy[port])
3682 		return false;
3683 
3684 	switch (dev->chip_id) {
3685 	case KSZ8563_CHIP_ID:
3686 	case KSZ9563_CHIP_ID:
3687 	case KSZ9893_CHIP_ID:
3688 		return true;
3689 	case KSZ8567_CHIP_ID:
3690 		/* KSZ8567R Errata DS80000752C Module 4 */
3691 	case KSZ8765_CHIP_ID:
3692 	case KSZ8794_CHIP_ID:
3693 	case KSZ8795_CHIP_ID:
3694 		/* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */
3695 	case KSZ9477_CHIP_ID:
3696 		/* KSZ9477S Errata DS80000754A Module 4 */
3697 	case KSZ9567_CHIP_ID:
3698 		/* KSZ9567S Errata DS80000756A Module 4 */
3699 	case KSZ9896_CHIP_ID:
3700 		/* KSZ9896C Errata DS80000757A Module 3 */
3701 	case KSZ9897_CHIP_ID:
3702 	case LAN9646_CHIP_ID:
3703 		/* KSZ9897R Errata DS80000758C Module 4 */
3704 		/* Energy Efficient Ethernet (EEE) feature select must be
3705 		 * manually disabled
3706 		 *   The EEE feature is enabled by default, but it is not fully
3707 		 *   operational. It must be manually disabled through register
3708 		 *   controls. If not disabled, the PHY ports can auto-negotiate
3709 		 *   to enable EEE, and this feature can cause link drops when
3710 		 *   linked to another device supporting EEE.
3711 		 *
3712 		 * The same item appears in the errata for all switches above.
3713 		 */
3714 		break;
3715 	}
3716 
3717 	return false;
3718 }
3719 
3720 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3721 			   struct ethtool_keee *e)
3722 {
3723 	struct ksz_device *dev = ds->priv;
3724 
3725 	if (!e->tx_lpi_enabled) {
3726 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3727 		return -EINVAL;
3728 	}
3729 
3730 	if (e->tx_lpi_timer) {
3731 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3732 		return -EINVAL;
3733 	}
3734 
3735 	return 0;
3736 }
3737 
3738 static void ksz_set_xmii(struct ksz_device *dev, int port,
3739 			 phy_interface_t interface)
3740 {
3741 	const u8 *bitval = dev->info->xmii_ctrl1;
3742 	struct ksz_port *p = &dev->ports[port];
3743 	const u16 *regs = dev->info->regs;
3744 	u8 data8;
3745 
3746 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3747 
3748 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3749 		   P_RGMII_ID_EG_ENABLE);
3750 
3751 	switch (interface) {
3752 	case PHY_INTERFACE_MODE_MII:
3753 		data8 |= bitval[P_MII_SEL];
3754 		break;
3755 	case PHY_INTERFACE_MODE_RMII:
3756 		data8 |= bitval[P_RMII_SEL];
3757 		break;
3758 	case PHY_INTERFACE_MODE_GMII:
3759 		data8 |= bitval[P_GMII_SEL];
3760 		break;
3761 	case PHY_INTERFACE_MODE_RGMII:
3762 	case PHY_INTERFACE_MODE_RGMII_ID:
3763 	case PHY_INTERFACE_MODE_RGMII_TXID:
3764 	case PHY_INTERFACE_MODE_RGMII_RXID:
3765 		data8 |= bitval[P_RGMII_SEL];
3766 		/* On KSZ9893, disable RGMII in-band status support */
3767 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3768 		    dev->chip_id == KSZ8563_CHIP_ID ||
3769 		    dev->chip_id == KSZ9563_CHIP_ID ||
3770 		    is_lan937x(dev))
3771 			data8 &= ~P_MII_MAC_MODE;
3772 		break;
3773 	default:
3774 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3775 			phy_modes(interface), port);
3776 		return;
3777 	}
3778 
3779 	if (p->rgmii_tx_val)
3780 		data8 |= P_RGMII_ID_EG_ENABLE;
3781 
3782 	if (p->rgmii_rx_val)
3783 		data8 |= P_RGMII_ID_IG_ENABLE;
3784 
3785 	/* Write the updated value */
3786 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3787 }
3788 
3789 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3790 {
3791 	const u8 *bitval = dev->info->xmii_ctrl1;
3792 	const u16 *regs = dev->info->regs;
3793 	phy_interface_t interface;
3794 	u8 data8;
3795 	u8 val;
3796 
3797 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3798 
3799 	val = FIELD_GET(P_MII_SEL_M, data8);
3800 
3801 	if (val == bitval[P_MII_SEL]) {
3802 		if (gbit)
3803 			interface = PHY_INTERFACE_MODE_GMII;
3804 		else
3805 			interface = PHY_INTERFACE_MODE_MII;
3806 	} else if (val == bitval[P_RMII_SEL]) {
3807 		interface = PHY_INTERFACE_MODE_RMII;
3808 	} else {
3809 		interface = PHY_INTERFACE_MODE_RGMII;
3810 		if (data8 & P_RGMII_ID_EG_ENABLE)
3811 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3812 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3813 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3814 			if (data8 & P_RGMII_ID_EG_ENABLE)
3815 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3816 		}
3817 	}
3818 
3819 	return interface;
3820 }
3821 
3822 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
3823 				       unsigned int mode,
3824 				       const struct phylink_link_state *state)
3825 {
3826 	struct dsa_port *dp = dsa_phylink_to_port(config);
3827 	struct ksz_device *dev = dp->ds->priv;
3828 
3829 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3830 }
3831 
3832 static void ksz_phylink_mac_config(struct phylink_config *config,
3833 				   unsigned int mode,
3834 				   const struct phylink_link_state *state)
3835 {
3836 	struct dsa_port *dp = dsa_phylink_to_port(config);
3837 	struct ksz_device *dev = dp->ds->priv;
3838 	int port = dp->index;
3839 
3840 	/* Internal PHYs */
3841 	if (dev->info->internal_phy[port])
3842 		return;
3843 
3844 	/* No need to configure XMII control register when using SGMII. */
3845 	if (ksz_is_sgmii_port(dev, port))
3846 		return;
3847 
3848 	if (phylink_autoneg_inband(mode)) {
3849 		dev_err(dev->dev, "In-band AN not supported!\n");
3850 		return;
3851 	}
3852 
3853 	ksz_set_xmii(dev, port, state->interface);
3854 
3855 	if (dev->dev_ops->setup_rgmii_delay)
3856 		dev->dev_ops->setup_rgmii_delay(dev, port);
3857 }
3858 
3859 bool ksz_get_gbit(struct ksz_device *dev, int port)
3860 {
3861 	const u8 *bitval = dev->info->xmii_ctrl1;
3862 	const u16 *regs = dev->info->regs;
3863 	bool gbit = false;
3864 	u8 data8;
3865 	bool val;
3866 
3867 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3868 
3869 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3870 
3871 	if (val == bitval[P_GMII_1GBIT])
3872 		gbit = true;
3873 
3874 	return gbit;
3875 }
3876 
3877 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3878 {
3879 	const u8 *bitval = dev->info->xmii_ctrl1;
3880 	const u16 *regs = dev->info->regs;
3881 	u8 data8;
3882 
3883 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3884 
3885 	data8 &= ~P_GMII_1GBIT_M;
3886 
3887 	if (gbit)
3888 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3889 	else
3890 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3891 
3892 	/* Write the updated value */
3893 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3894 }
3895 
3896 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3897 {
3898 	const u8 *bitval = dev->info->xmii_ctrl0;
3899 	const u16 *regs = dev->info->regs;
3900 	u8 data8;
3901 
3902 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3903 
3904 	data8 &= ~P_MII_100MBIT_M;
3905 
3906 	if (speed == SPEED_100)
3907 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3908 	else
3909 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3910 
3911 	/* Write the updated value */
3912 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3913 }
3914 
3915 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3916 {
3917 	if (speed == SPEED_1000)
3918 		ksz_set_gbit(dev, port, true);
3919 	else
3920 		ksz_set_gbit(dev, port, false);
3921 
3922 	if (speed == SPEED_100 || speed == SPEED_10)
3923 		ksz_set_100_10mbit(dev, port, speed);
3924 }
3925 
3926 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3927 				bool tx_pause, bool rx_pause)
3928 {
3929 	const u8 *bitval = dev->info->xmii_ctrl0;
3930 	const u32 *masks = dev->info->masks;
3931 	const u16 *regs = dev->info->regs;
3932 	u8 mask;
3933 	u8 val;
3934 
3935 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3936 	       masks[P_MII_RX_FLOW_CTRL];
3937 
3938 	if (duplex == DUPLEX_FULL)
3939 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3940 	else
3941 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3942 
3943 	if (tx_pause)
3944 		val |= masks[P_MII_TX_FLOW_CTRL];
3945 
3946 	if (rx_pause)
3947 		val |= masks[P_MII_RX_FLOW_CTRL];
3948 
3949 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3950 }
3951 
3952 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3953 					struct phy_device *phydev,
3954 					unsigned int mode,
3955 					phy_interface_t interface,
3956 					int speed, int duplex, bool tx_pause,
3957 					bool rx_pause)
3958 {
3959 	struct dsa_port *dp = dsa_phylink_to_port(config);
3960 	struct ksz_device *dev = dp->ds->priv;
3961 	int port = dp->index;
3962 	struct ksz_port *p;
3963 
3964 	p = &dev->ports[port];
3965 
3966 	/* Internal PHYs */
3967 	if (dev->info->internal_phy[port])
3968 		return;
3969 
3970 	p->phydev.speed = speed;
3971 
3972 	ksz_port_set_xmii_speed(dev, port, speed);
3973 
3974 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3975 }
3976 
3977 static int ksz_switch_detect(struct ksz_device *dev)
3978 {
3979 	u8 id1, id2, id4;
3980 	u16 id16;
3981 	u32 id32;
3982 	int ret;
3983 
3984 	/* read chip id */
3985 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3986 	if (ret)
3987 		return ret;
3988 
3989 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3990 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3991 
3992 	switch (id1) {
3993 	case KSZ84_FAMILY_ID:
3994 		dev->chip_id = KSZ8463_CHIP_ID;
3995 		break;
3996 	case KSZ87_FAMILY_ID:
3997 		if (id2 == KSZ87_CHIP_ID_95) {
3998 			u8 val;
3999 
4000 			dev->chip_id = KSZ8795_CHIP_ID;
4001 
4002 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
4003 			if (val & KSZ8_PORT_FIBER_MODE)
4004 				dev->chip_id = KSZ8765_CHIP_ID;
4005 		} else if (id2 == KSZ87_CHIP_ID_94) {
4006 			dev->chip_id = KSZ8794_CHIP_ID;
4007 		} else {
4008 			return -ENODEV;
4009 		}
4010 		break;
4011 	case KSZ88_FAMILY_ID:
4012 		if (id2 == KSZ88_CHIP_ID_63)
4013 			dev->chip_id = KSZ88X3_CHIP_ID;
4014 		else
4015 			return -ENODEV;
4016 		break;
4017 	case KSZ8895_FAMILY_ID:
4018 		if (id2 == KSZ8895_CHIP_ID_95 ||
4019 		    id2 == KSZ8895_CHIP_ID_95R)
4020 			dev->chip_id = KSZ8895_CHIP_ID;
4021 		else
4022 			return -ENODEV;
4023 		ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4);
4024 		if (ret)
4025 			return ret;
4026 		if (id4 & SW_KSZ8864)
4027 			dev->chip_id = KSZ8864_CHIP_ID;
4028 		break;
4029 	default:
4030 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
4031 		if (ret)
4032 			return ret;
4033 
4034 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
4035 		id32 &= ~0xFF;
4036 
4037 		switch (id32) {
4038 		case KSZ9477_CHIP_ID:
4039 		case KSZ9896_CHIP_ID:
4040 		case KSZ9897_CHIP_ID:
4041 		case KSZ9567_CHIP_ID:
4042 		case KSZ8567_CHIP_ID:
4043 		case LAN9370_CHIP_ID:
4044 		case LAN9371_CHIP_ID:
4045 		case LAN9372_CHIP_ID:
4046 		case LAN9373_CHIP_ID:
4047 		case LAN9374_CHIP_ID:
4048 
4049 			/* LAN9646 does not have its own chip id. */
4050 			if (dev->chip_id != LAN9646_CHIP_ID)
4051 				dev->chip_id = id32;
4052 			break;
4053 		case KSZ9893_CHIP_ID:
4054 			ret = ksz_read8(dev, REG_CHIP_ID4,
4055 					&id4);
4056 			if (ret)
4057 				return ret;
4058 
4059 			if (id4 == SKU_ID_KSZ8563)
4060 				dev->chip_id = KSZ8563_CHIP_ID;
4061 			else if (id4 == SKU_ID_KSZ9563)
4062 				dev->chip_id = KSZ9563_CHIP_ID;
4063 			else
4064 				dev->chip_id = KSZ9893_CHIP_ID;
4065 
4066 			break;
4067 		default:
4068 			dev_err(dev->dev,
4069 				"unsupported switch detected %x)\n", id32);
4070 			return -ENODEV;
4071 		}
4072 	}
4073 	return 0;
4074 }
4075 
4076 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
4077 			      struct flow_cls_offload *cls, bool ingress)
4078 {
4079 	struct ksz_device *dev = ds->priv;
4080 
4081 	switch (dev->chip_id) {
4082 	case KSZ8563_CHIP_ID:
4083 	case KSZ8567_CHIP_ID:
4084 	case KSZ9477_CHIP_ID:
4085 	case KSZ9563_CHIP_ID:
4086 	case KSZ9567_CHIP_ID:
4087 	case KSZ9893_CHIP_ID:
4088 	case KSZ9896_CHIP_ID:
4089 	case KSZ9897_CHIP_ID:
4090 	case LAN9646_CHIP_ID:
4091 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
4092 	}
4093 
4094 	return -EOPNOTSUPP;
4095 }
4096 
4097 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
4098 			      struct flow_cls_offload *cls, bool ingress)
4099 {
4100 	struct ksz_device *dev = ds->priv;
4101 
4102 	switch (dev->chip_id) {
4103 	case KSZ8563_CHIP_ID:
4104 	case KSZ8567_CHIP_ID:
4105 	case KSZ9477_CHIP_ID:
4106 	case KSZ9563_CHIP_ID:
4107 	case KSZ9567_CHIP_ID:
4108 	case KSZ9893_CHIP_ID:
4109 	case KSZ9896_CHIP_ID:
4110 	case KSZ9897_CHIP_ID:
4111 	case LAN9646_CHIP_ID:
4112 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
4113 	}
4114 
4115 	return -EOPNOTSUPP;
4116 }
4117 
4118 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
4119  * is converted to Hex-decimal using the successive multiplication method. On
4120  * every step, integer part is taken and decimal part is carry forwarded.
4121  */
4122 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
4123 {
4124 	u32 cinc = 0;
4125 	u32 txrate;
4126 	u32 rate;
4127 	u8 temp;
4128 	u8 i;
4129 
4130 	txrate = idle_slope - send_slope;
4131 
4132 	if (!txrate)
4133 		return -EINVAL;
4134 
4135 	rate = idle_slope;
4136 
4137 	/* 24 bit register */
4138 	for (i = 0; i < 6; i++) {
4139 		rate = rate * 16;
4140 
4141 		temp = rate / txrate;
4142 
4143 		rate %= txrate;
4144 
4145 		cinc = ((cinc << 4) | temp);
4146 	}
4147 
4148 	*bw = cinc;
4149 
4150 	return 0;
4151 }
4152 
4153 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
4154 			     u8 shaper)
4155 {
4156 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
4157 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
4158 			   FIELD_PREP(MTI_SHAPING_M, shaper));
4159 }
4160 
4161 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
4162 			    struct tc_cbs_qopt_offload *qopt)
4163 {
4164 	struct ksz_device *dev = ds->priv;
4165 	int ret;
4166 	u32 bw;
4167 
4168 	if (!dev->info->tc_cbs_supported)
4169 		return -EOPNOTSUPP;
4170 
4171 	if (qopt->queue > dev->info->num_tx_queues)
4172 		return -EINVAL;
4173 
4174 	/* Queue Selection */
4175 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
4176 	if (ret)
4177 		return ret;
4178 
4179 	if (!qopt->enable)
4180 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4181 					 MTI_SHAPING_OFF);
4182 
4183 	/* High Credit */
4184 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
4185 			   qopt->hicredit);
4186 	if (ret)
4187 		return ret;
4188 
4189 	/* Low Credit */
4190 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
4191 			   qopt->locredit);
4192 	if (ret)
4193 		return ret;
4194 
4195 	/* Credit Increment Register */
4196 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
4197 	if (ret)
4198 		return ret;
4199 
4200 	if (dev->dev_ops->tc_cbs_set_cinc) {
4201 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
4202 		if (ret)
4203 			return ret;
4204 	}
4205 
4206 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4207 				 MTI_SHAPING_SRP);
4208 }
4209 
4210 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
4211 {
4212 	int queue, ret;
4213 
4214 	/* Configuration will not take effect until the last Port Queue X
4215 	 * Egress Limit Control Register is written.
4216 	 */
4217 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4218 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
4219 				  KSZ9477_OUT_RATE_NO_LIMIT);
4220 		if (ret)
4221 			return ret;
4222 	}
4223 
4224 	return 0;
4225 }
4226 
4227 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
4228 				 int band)
4229 {
4230 	/* Compared to queues, bands prioritize packets differently. In strict
4231 	 * priority mode, the lowest priority is assigned to Queue 0 while the
4232 	 * highest priority is given to Band 0.
4233 	 */
4234 	return p->bands - 1 - band;
4235 }
4236 
4237 static u8 ksz8463_tc_ctrl(int port, int queue)
4238 {
4239 	u8 reg;
4240 
4241 	reg = 0xC8 + port * 4;
4242 	reg += ((3 - queue) / 2) * 2;
4243 	reg++;
4244 	reg -= (queue & 1);
4245 	return reg;
4246 }
4247 
4248 /**
4249  * ksz88x3_tc_ets_add - Configure ETS (Enhanced Transmission Selection)
4250  *                      for a port on KSZ88x3 switch
4251  * @dev: Pointer to the KSZ switch device structure
4252  * @port: Port number to configure
4253  * @p: Pointer to offload replace parameters describing ETS bands and mapping
4254  *
4255  * The KSZ88x3 supports two scheduling modes: Strict Priority and
4256  * Weighted Fair Queuing (WFQ). Both modes have fixed behavior:
4257  *   - No configurable queue-to-priority mapping
4258  *   - No weight adjustment in WFQ mode
4259  *
4260  * This function configures the switch to use strict priority mode by
4261  * clearing the WFQ enable bit for all queues associated with ETS bands.
4262  * If strict priority is not explicitly requested, the switch will default
4263  * to WFQ mode.
4264  *
4265  * Return: 0 on success, or a negative error code on failure
4266  */
4267 static int ksz88x3_tc_ets_add(struct ksz_device *dev, int port,
4268 			      struct tc_ets_qopt_offload_replace_params *p)
4269 {
4270 	int ret, band;
4271 
4272 	/* Only strict priority mode is supported for now.
4273 	 * WFQ is implicitly enabled when strict mode is disabled.
4274 	 */
4275 	for (band = 0; band < p->bands; band++) {
4276 		int queue = ksz_ets_band_to_queue(p, band);
4277 		u8 reg;
4278 
4279 		/* Calculate TXQ Split Control register address for this
4280 		 * port/queue
4281 		 */
4282 		reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue);
4283 		if (ksz_is_ksz8463(dev))
4284 			reg = ksz8463_tc_ctrl(port, queue);
4285 
4286 		/* Clear WFQ enable bit to select strict priority scheduling */
4287 		ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE, 0);
4288 		if (ret)
4289 			return ret;
4290 	}
4291 
4292 	return 0;
4293 }
4294 
4295 /**
4296  * ksz88x3_tc_ets_del - Reset ETS (Enhanced Transmission Selection) config
4297  *                      for a port on KSZ88x3 switch
4298  * @dev: Pointer to the KSZ switch device structure
4299  * @port: Port number to reset
4300  *
4301  * The KSZ88x3 supports only fixed scheduling modes: Strict Priority or
4302  * Weighted Fair Queuing (WFQ), with no reconfiguration of weights or
4303  * queue mapping. This function resets the port’s scheduling mode to
4304  * the default, which is WFQ, by enabling the WFQ bit for all queues.
4305  *
4306  * Return: 0 on success, or a negative error code on failure
4307  */
4308 static int ksz88x3_tc_ets_del(struct ksz_device *dev, int port)
4309 {
4310 	int ret, queue;
4311 
4312 	/* Iterate over all transmit queues for this port */
4313 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4314 		u8 reg;
4315 
4316 		/* Calculate TXQ Split Control register address for this
4317 		 * port/queue
4318 		 */
4319 		reg = KSZ8873_TXQ_SPLIT_CTRL_REG(port, queue);
4320 		if (ksz_is_ksz8463(dev))
4321 			reg = ksz8463_tc_ctrl(port, queue);
4322 
4323 		/* Set WFQ enable bit to revert back to default scheduling
4324 		 * mode
4325 		 */
4326 		ret = ksz_rmw8(dev, reg, KSZ8873_TXQ_WFQ_ENABLE,
4327 			       KSZ8873_TXQ_WFQ_ENABLE);
4328 		if (ret)
4329 			return ret;
4330 	}
4331 
4332 	return 0;
4333 }
4334 
4335 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
4336 {
4337 	int ret;
4338 
4339 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4340 	if (ret)
4341 		return ret;
4342 
4343 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4344 				 MTI_SHAPING_OFF);
4345 }
4346 
4347 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
4348 			     int weight)
4349 {
4350 	int ret;
4351 
4352 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4353 	if (ret)
4354 		return ret;
4355 
4356 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4357 				MTI_SHAPING_OFF);
4358 	if (ret)
4359 		return ret;
4360 
4361 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
4362 }
4363 
4364 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
4365 			  struct tc_ets_qopt_offload_replace_params *p)
4366 {
4367 	int ret, band, tc_prio;
4368 	u32 queue_map = 0;
4369 
4370 	/* In order to ensure proper prioritization, it is necessary to set the
4371 	 * rate limit for the related queue to zero. Otherwise strict priority
4372 	 * or WRR mode will not work. This is a hardware limitation.
4373 	 */
4374 	ret = ksz_disable_egress_rate_limit(dev, port);
4375 	if (ret)
4376 		return ret;
4377 
4378 	/* Configure queue scheduling mode for all bands. Currently only strict
4379 	 * prio mode is supported.
4380 	 */
4381 	for (band = 0; band < p->bands; band++) {
4382 		int queue = ksz_ets_band_to_queue(p, band);
4383 
4384 		ret = ksz_queue_set_strict(dev, port, queue);
4385 		if (ret)
4386 			return ret;
4387 	}
4388 
4389 	/* Configure the mapping between traffic classes and queues. Note:
4390 	 * priomap variable support 16 traffic classes, but the chip can handle
4391 	 * only 8 classes.
4392 	 */
4393 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
4394 		int queue;
4395 
4396 		if (tc_prio >= dev->info->num_ipms)
4397 			break;
4398 
4399 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
4400 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
4401 	}
4402 
4403 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
4404 }
4405 
4406 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
4407 {
4408 	int ret, queue;
4409 
4410 	/* To restore the default chip configuration, set all queues to use the
4411 	 * WRR scheduler with a weight of 1.
4412 	 */
4413 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4414 		ret = ksz_queue_set_wrr(dev, port, queue,
4415 					KSZ9477_DEFAULT_WRR_WEIGHT);
4416 
4417 		if (ret)
4418 			return ret;
4419 	}
4420 
4421 	/* Revert the queue mapping for TC-priority to its default setting on
4422 	 * the chip.
4423 	 */
4424 	return ksz9477_set_default_prio_queue_mapping(dev, port);
4425 }
4426 
4427 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
4428 			       struct tc_ets_qopt_offload_replace_params *p)
4429 {
4430 	int band;
4431 
4432 	/* Since it is not feasible to share one port among multiple qdisc,
4433 	 * the user must configure all available queues appropriately.
4434 	 */
4435 	if (p->bands != dev->info->num_tx_queues) {
4436 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
4437 			dev->info->num_tx_queues);
4438 		return -EOPNOTSUPP;
4439 	}
4440 
4441 	for (band = 0; band < p->bands; ++band) {
4442 		/* The KSZ switches utilize a weighted round robin configuration
4443 		 * where a certain number of packets can be transmitted from a
4444 		 * queue before the next queue is serviced. For more information
4445 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
4446 		 * documentation on the Port Transmit Queue Control 1 Register.
4447 		 * However, the current ETS Qdisc implementation (as of February
4448 		 * 2023) assigns a weight to each queue based on the number of
4449 		 * bytes or extrapolated bandwidth in percentages. Since this
4450 		 * differs from the KSZ switches' method and we don't want to
4451 		 * fake support by converting bytes to packets, it is better to
4452 		 * return an error instead.
4453 		 */
4454 		if (p->quanta[band]) {
4455 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
4456 			return -EOPNOTSUPP;
4457 		}
4458 	}
4459 
4460 	return 0;
4461 }
4462 
4463 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
4464 				  struct tc_ets_qopt_offload *qopt)
4465 {
4466 	struct ksz_device *dev = ds->priv;
4467 	int ret;
4468 
4469 	if (is_ksz8(dev) && !(ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev)))
4470 		return -EOPNOTSUPP;
4471 
4472 	if (qopt->parent != TC_H_ROOT) {
4473 		dev_err(dev->dev, "Parent should be \"root\"\n");
4474 		return -EOPNOTSUPP;
4475 	}
4476 
4477 	switch (qopt->command) {
4478 	case TC_ETS_REPLACE:
4479 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
4480 		if (ret)
4481 			return ret;
4482 
4483 		if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
4484 			return ksz88x3_tc_ets_add(dev, port,
4485 						  &qopt->replace_params);
4486 		else
4487 			return ksz_tc_ets_add(dev, port, &qopt->replace_params);
4488 	case TC_ETS_DESTROY:
4489 		if (ksz_is_ksz88x3(dev) || ksz_is_ksz8463(dev))
4490 			return ksz88x3_tc_ets_del(dev, port);
4491 		else
4492 			return ksz_tc_ets_del(dev, port);
4493 	case TC_ETS_STATS:
4494 	case TC_ETS_GRAFT:
4495 		return -EOPNOTSUPP;
4496 	}
4497 
4498 	return -EOPNOTSUPP;
4499 }
4500 
4501 static int ksz_setup_tc(struct dsa_switch *ds, int port,
4502 			enum tc_setup_type type, void *type_data)
4503 {
4504 	switch (type) {
4505 	case TC_SETUP_QDISC_CBS:
4506 		return ksz_setup_tc_cbs(ds, port, type_data);
4507 	case TC_SETUP_QDISC_ETS:
4508 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
4509 	default:
4510 		return -EOPNOTSUPP;
4511 	}
4512 }
4513 
4514 /**
4515  * ksz_handle_wake_reason - Handle wake reason on a specified port.
4516  * @dev: The device structure.
4517  * @port: The port number.
4518  *
4519  * This function reads the PME (Power Management Event) status register of a
4520  * specified port to determine the wake reason. If there is no wake event, it
4521  * returns early. Otherwise, it logs the wake reason which could be due to a
4522  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
4523  * is then cleared to acknowledge the handling of the wake event.
4524  *
4525  * Return: 0 on success, or an error code on failure.
4526  */
4527 int ksz_handle_wake_reason(struct ksz_device *dev, int port)
4528 {
4529 	const struct ksz_dev_ops *ops = dev->dev_ops;
4530 	const u16 *regs = dev->info->regs;
4531 	u8 pme_status;
4532 	int ret;
4533 
4534 	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
4535 			      &pme_status);
4536 	if (ret)
4537 		return ret;
4538 
4539 	if (!pme_status)
4540 		return 0;
4541 
4542 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
4543 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
4544 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
4545 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
4546 
4547 	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
4548 				pme_status);
4549 }
4550 
4551 /**
4552  * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
4553  * @ds: The dsa_switch structure.
4554  * @port: The port number.
4555  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4556  *
4557  * This function checks the device PME wakeup_source flag and chip_id.
4558  * If enabled and supported, it sets the supported and active WoL
4559  * flags.
4560  */
4561 static void ksz_get_wol(struct dsa_switch *ds, int port,
4562 			struct ethtool_wolinfo *wol)
4563 {
4564 	struct ksz_device *dev = ds->priv;
4565 	const u16 *regs = dev->info->regs;
4566 	u8 pme_ctrl;
4567 	int ret;
4568 
4569 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4570 		return;
4571 
4572 	if (!dev->wakeup_source)
4573 		return;
4574 
4575 	wol->supported = WAKE_PHY;
4576 
4577 	/* Check if the current MAC address on this port can be set
4578 	 * as global for WAKE_MAGIC support. The result may vary
4579 	 * dynamically based on other ports configurations.
4580 	 */
4581 	if (ksz_is_port_mac_global_usable(dev->ds, port))
4582 		wol->supported |= WAKE_MAGIC;
4583 
4584 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4585 				       &pme_ctrl);
4586 	if (ret)
4587 		return;
4588 
4589 	if (pme_ctrl & PME_WOL_MAGICPKT)
4590 		wol->wolopts |= WAKE_MAGIC;
4591 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
4592 		wol->wolopts |= WAKE_PHY;
4593 }
4594 
4595 /**
4596  * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
4597  * @ds: The dsa_switch structure.
4598  * @port: The port number.
4599  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4600  *
4601  * This function configures Wake-on-LAN (WoL) settings for a specified
4602  * port. It validates the provided WoL options, checks if PME is
4603  * enabled and supported, clears any previous wake reasons, and sets
4604  * the Magic Packet flag in the port's PME control register if
4605  * specified.
4606  *
4607  * Return: 0 on success, or other error codes on failure.
4608  */
4609 static int ksz_set_wol(struct dsa_switch *ds, int port,
4610 		       struct ethtool_wolinfo *wol)
4611 {
4612 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
4613 	struct ksz_device *dev = ds->priv;
4614 	const u16 *regs = dev->info->regs;
4615 	bool magic_switched_off;
4616 	bool magic_switched_on;
4617 	int ret;
4618 
4619 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
4620 		return -EINVAL;
4621 
4622 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4623 		return -EOPNOTSUPP;
4624 
4625 	if (!dev->wakeup_source)
4626 		return -EOPNOTSUPP;
4627 
4628 	ret = ksz_handle_wake_reason(dev, port);
4629 	if (ret)
4630 		return ret;
4631 
4632 	if (wol->wolopts & WAKE_MAGIC)
4633 		pme_ctrl |= PME_WOL_MAGICPKT;
4634 	if (wol->wolopts & WAKE_PHY)
4635 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
4636 
4637 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4638 				       &pme_ctrl_old);
4639 	if (ret)
4640 		return ret;
4641 
4642 	if (pme_ctrl_old == pme_ctrl)
4643 		return 0;
4644 
4645 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
4646 			    !(pme_ctrl & PME_WOL_MAGICPKT);
4647 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
4648 			    (pme_ctrl & PME_WOL_MAGICPKT);
4649 
4650 	/* To keep reference count of MAC address, we should do this
4651 	 * operation only on change of WOL settings.
4652 	 */
4653 	if (magic_switched_on) {
4654 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
4655 		if (ret)
4656 			return ret;
4657 	} else if (magic_switched_off) {
4658 		ksz_switch_macaddr_put(dev->ds);
4659 	}
4660 
4661 	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
4662 					pme_ctrl);
4663 	if (ret) {
4664 		if (magic_switched_on)
4665 			ksz_switch_macaddr_put(dev->ds);
4666 		return ret;
4667 	}
4668 
4669 	return 0;
4670 }
4671 
4672 /**
4673  * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
4674  *                        considering Wake-on-LAN (WoL) settings.
4675  * @dev: The switch device structure.
4676  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
4677  *               enabled on any port.
4678  *
4679  * This function prepares the switch device for a safe shutdown while taking
4680  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
4681  * the wol_enabled flag accordingly to reflect whether WoL is active on any
4682  * port.
4683  */
4684 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
4685 {
4686 	const struct ksz_dev_ops *ops = dev->dev_ops;
4687 	const u16 *regs = dev->info->regs;
4688 	u8 pme_pin_en = PME_ENABLE;
4689 	struct dsa_port *dp;
4690 	int ret;
4691 
4692 	*wol_enabled = false;
4693 
4694 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4695 		return;
4696 
4697 	if (!dev->wakeup_source)
4698 		return;
4699 
4700 	dsa_switch_for_each_user_port(dp, dev->ds) {
4701 		u8 pme_ctrl = 0;
4702 
4703 		ret = ops->pme_pread8(dev, dp->index,
4704 				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
4705 		if (!ret && pme_ctrl)
4706 			*wol_enabled = true;
4707 
4708 		/* make sure there are no pending wake events which would
4709 		 * prevent the device from going to sleep/shutdown.
4710 		 */
4711 		ksz_handle_wake_reason(dev, dp->index);
4712 	}
4713 
4714 	/* Now we are save to enable PME pin. */
4715 	if (*wol_enabled) {
4716 		if (dev->pme_active_high)
4717 			pme_pin_en |= PME_POLARITY;
4718 		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
4719 		if (ksz_is_ksz87xx(dev))
4720 			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
4721 	}
4722 }
4723 
4724 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4725 				    const unsigned char *addr)
4726 {
4727 	struct dsa_port *dp = dsa_to_port(ds, port);
4728 	struct ethtool_wolinfo wol;
4729 
4730 	if (dp->hsr_dev) {
4731 		dev_err(ds->dev,
4732 			"Cannot change MAC address on port %d with active HSR offload\n",
4733 			port);
4734 		return -EBUSY;
4735 	}
4736 
4737 	/* Need to initialize variable as the code to fill in settings may
4738 	 * not be executed.
4739 	 */
4740 	wol.wolopts = 0;
4741 
4742 	ksz_get_wol(ds, dp->index, &wol);
4743 	if (wol.wolopts & WAKE_MAGIC) {
4744 		dev_err(ds->dev,
4745 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4746 			port);
4747 		return -EBUSY;
4748 	}
4749 
4750 	return 0;
4751 }
4752 
4753 /**
4754  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4755  *                                 can be used as a global address.
4756  * @ds: Pointer to the DSA switch structure.
4757  * @port: The port number on which the MAC address is to be checked.
4758  *
4759  * This function examines the MAC address set on the specified port and
4760  * determines if it can be used as a global address for the switch.
4761  *
4762  * Return: true if the port's MAC address can be used as a global address, false
4763  * otherwise.
4764  */
4765 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4766 {
4767 	struct net_device *user = dsa_to_port(ds, port)->user;
4768 	const unsigned char *addr = user->dev_addr;
4769 	struct ksz_switch_macaddr *switch_macaddr;
4770 	struct ksz_device *dev = ds->priv;
4771 
4772 	ASSERT_RTNL();
4773 
4774 	switch_macaddr = dev->switch_macaddr;
4775 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4776 		return false;
4777 
4778 	return true;
4779 }
4780 
4781 /**
4782  * ksz_switch_macaddr_get - Program the switch's MAC address register.
4783  * @ds: DSA switch instance.
4784  * @port: Port number.
4785  * @extack: Netlink extended acknowledgment.
4786  *
4787  * This function programs the switch's MAC address register with the MAC address
4788  * of the requesting user port. This single address is used by the switch for
4789  * multiple features like HSR self-address filtering and WoL. Other user ports
4790  * can share ownership of this address as long as their MAC address is the same.
4791  * The MAC addresses of user ports must not change while they have ownership of
4792  * the switch MAC address.
4793  *
4794  * Return: 0 on success, or other error codes on failure.
4795  */
4796 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4797 			   struct netlink_ext_ack *extack)
4798 {
4799 	struct net_device *user = dsa_to_port(ds, port)->user;
4800 	const unsigned char *addr = user->dev_addr;
4801 	struct ksz_switch_macaddr *switch_macaddr;
4802 	struct ksz_device *dev = ds->priv;
4803 	const u16 *regs = dev->info->regs;
4804 	int i, ret;
4805 
4806 	/* Make sure concurrent MAC address changes are blocked */
4807 	ASSERT_RTNL();
4808 
4809 	switch_macaddr = dev->switch_macaddr;
4810 	if (switch_macaddr) {
4811 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4812 			NL_SET_ERR_MSG_FMT_MOD(extack,
4813 					       "Switch already configured for MAC address %pM",
4814 					       switch_macaddr->addr);
4815 			return -EBUSY;
4816 		}
4817 
4818 		refcount_inc(&switch_macaddr->refcount);
4819 		return 0;
4820 	}
4821 
4822 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4823 	if (!switch_macaddr)
4824 		return -ENOMEM;
4825 
4826 	ether_addr_copy(switch_macaddr->addr, addr);
4827 	refcount_set(&switch_macaddr->refcount, 1);
4828 	dev->switch_macaddr = switch_macaddr;
4829 
4830 	/* Program the switch MAC address to hardware */
4831 	for (i = 0; i < ETH_ALEN; i++) {
4832 		if (ksz_is_ksz8463(dev)) {
4833 			u16 addr16 = ((u16)addr[i] << 8) | addr[i + 1];
4834 
4835 			ret = ksz_write16(dev, regs[REG_SW_MAC_ADDR] + i,
4836 					  addr16);
4837 			i++;
4838 		} else {
4839 			ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i,
4840 					 addr[i]);
4841 		}
4842 		if (ret)
4843 			goto macaddr_drop;
4844 	}
4845 
4846 	return 0;
4847 
4848 macaddr_drop:
4849 	dev->switch_macaddr = NULL;
4850 	refcount_set(&switch_macaddr->refcount, 0);
4851 	kfree(switch_macaddr);
4852 
4853 	return ret;
4854 }
4855 
4856 void ksz_switch_macaddr_put(struct dsa_switch *ds)
4857 {
4858 	struct ksz_switch_macaddr *switch_macaddr;
4859 	struct ksz_device *dev = ds->priv;
4860 	const u16 *regs = dev->info->regs;
4861 	int i;
4862 
4863 	/* Make sure concurrent MAC address changes are blocked */
4864 	ASSERT_RTNL();
4865 
4866 	switch_macaddr = dev->switch_macaddr;
4867 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4868 		return;
4869 
4870 	for (i = 0; i < ETH_ALEN; i++)
4871 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4872 
4873 	dev->switch_macaddr = NULL;
4874 	kfree(switch_macaddr);
4875 }
4876 
4877 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4878 			struct netlink_ext_ack *extack)
4879 {
4880 	struct ksz_device *dev = ds->priv;
4881 	enum hsr_version ver;
4882 	int ret;
4883 
4884 	ret = hsr_get_version(hsr, &ver);
4885 	if (ret)
4886 		return ret;
4887 
4888 	if (dev->chip_id != KSZ9477_CHIP_ID) {
4889 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4890 		return -EOPNOTSUPP;
4891 	}
4892 
4893 	/* KSZ9477 can support HW offloading of only 1 HSR device */
4894 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4895 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4896 		return -EOPNOTSUPP;
4897 	}
4898 
4899 	/* KSZ9477 only supports HSR v0 and v1 */
4900 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4901 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4902 		return -EOPNOTSUPP;
4903 	}
4904 
4905 	/* KSZ9477 can only perform HSR offloading for up to two ports */
4906 	if (hweight8(dev->hsr_ports) >= 2) {
4907 		NL_SET_ERR_MSG_MOD(extack,
4908 				   "Cannot offload more than two ports - using software HSR");
4909 		return -EOPNOTSUPP;
4910 	}
4911 
4912 	/* Self MAC address filtering, to avoid frames traversing
4913 	 * the HSR ring more than once.
4914 	 */
4915 	ret = ksz_switch_macaddr_get(ds, port, extack);
4916 	if (ret)
4917 		return ret;
4918 
4919 	ksz9477_hsr_join(ds, port, hsr);
4920 	dev->hsr_dev = hsr;
4921 	dev->hsr_ports |= BIT(port);
4922 
4923 	return 0;
4924 }
4925 
4926 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4927 			 struct net_device *hsr)
4928 {
4929 	struct ksz_device *dev = ds->priv;
4930 
4931 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4932 
4933 	ksz9477_hsr_leave(ds, port, hsr);
4934 	dev->hsr_ports &= ~BIT(port);
4935 	if (!dev->hsr_ports)
4936 		dev->hsr_dev = NULL;
4937 
4938 	ksz_switch_macaddr_put(ds);
4939 
4940 	return 0;
4941 }
4942 
4943 static int ksz_suspend(struct dsa_switch *ds)
4944 {
4945 	struct ksz_device *dev = ds->priv;
4946 
4947 	cancel_delayed_work_sync(&dev->mib_read);
4948 	return 0;
4949 }
4950 
4951 static int ksz_resume(struct dsa_switch *ds)
4952 {
4953 	struct ksz_device *dev = ds->priv;
4954 
4955 	if (dev->mib_read_interval)
4956 		schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
4957 	return 0;
4958 }
4959 
4960 static const struct dsa_switch_ops ksz_switch_ops = {
4961 	.get_tag_protocol	= ksz_get_tag_protocol,
4962 	.connect_tag_protocol   = ksz_connect_tag_protocol,
4963 	.get_phy_flags		= ksz_get_phy_flags,
4964 	.setup			= ksz_setup,
4965 	.teardown		= ksz_teardown,
4966 	.phy_read		= ksz_phy_read16,
4967 	.phy_write		= ksz_phy_write16,
4968 	.phylink_get_caps	= ksz_phylink_get_caps,
4969 	.port_setup		= ksz_port_setup,
4970 	.set_ageing_time	= ksz_set_ageing_time,
4971 	.get_strings		= ksz_get_strings,
4972 	.get_ethtool_stats	= ksz_get_ethtool_stats,
4973 	.get_sset_count		= ksz_sset_count,
4974 	.port_bridge_join	= ksz_port_bridge_join,
4975 	.port_bridge_leave	= ksz_port_bridge_leave,
4976 	.port_hsr_join		= ksz_hsr_join,
4977 	.port_hsr_leave		= ksz_hsr_leave,
4978 	.port_set_mac_address	= ksz_port_set_mac_address,
4979 	.port_stp_state_set	= ksz_port_stp_state_set,
4980 	.port_teardown		= ksz_port_teardown,
4981 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4982 	.port_bridge_flags	= ksz_port_bridge_flags,
4983 	.port_fast_age		= ksz_port_fast_age,
4984 	.port_vlan_filtering	= ksz_port_vlan_filtering,
4985 	.port_vlan_add		= ksz_port_vlan_add,
4986 	.port_vlan_del		= ksz_port_vlan_del,
4987 	.port_fdb_dump		= ksz_port_fdb_dump,
4988 	.port_fdb_add		= ksz_port_fdb_add,
4989 	.port_fdb_del		= ksz_port_fdb_del,
4990 	.port_mdb_add           = ksz_port_mdb_add,
4991 	.port_mdb_del           = ksz_port_mdb_del,
4992 	.port_mirror_add	= ksz_port_mirror_add,
4993 	.port_mirror_del	= ksz_port_mirror_del,
4994 	.get_stats64		= ksz_get_stats64,
4995 	.get_pause_stats	= ksz_get_pause_stats,
4996 	.port_change_mtu	= ksz_change_mtu,
4997 	.port_max_mtu		= ksz_max_mtu,
4998 	.get_wol		= ksz_get_wol,
4999 	.set_wol		= ksz_set_wol,
5000 	.suspend		= ksz_suspend,
5001 	.resume			= ksz_resume,
5002 	.get_ts_info		= ksz_get_ts_info,
5003 	.port_hwtstamp_get	= ksz_hwtstamp_get,
5004 	.port_hwtstamp_set	= ksz_hwtstamp_set,
5005 	.port_txtstamp		= ksz_port_txtstamp,
5006 	.port_rxtstamp		= ksz_port_rxtstamp,
5007 	.cls_flower_add		= ksz_cls_flower_add,
5008 	.cls_flower_del		= ksz_cls_flower_del,
5009 	.port_setup_tc		= ksz_setup_tc,
5010 	.support_eee		= ksz_support_eee,
5011 	.set_mac_eee		= ksz_set_mac_eee,
5012 	.port_get_default_prio	= ksz_port_get_default_prio,
5013 	.port_set_default_prio	= ksz_port_set_default_prio,
5014 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
5015 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
5016 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
5017 	.port_get_apptrust	= ksz_port_get_apptrust,
5018 	.port_set_apptrust	= ksz_port_set_apptrust,
5019 };
5020 
5021 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
5022 {
5023 	struct dsa_switch *ds;
5024 	struct ksz_device *swdev;
5025 
5026 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
5027 	if (!ds)
5028 		return NULL;
5029 
5030 	ds->dev = base;
5031 	ds->num_ports = DSA_MAX_PORTS;
5032 	ds->ops = &ksz_switch_ops;
5033 
5034 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
5035 	if (!swdev)
5036 		return NULL;
5037 
5038 	ds->priv = swdev;
5039 	swdev->dev = base;
5040 
5041 	swdev->ds = ds;
5042 	swdev->priv = priv;
5043 
5044 	return swdev;
5045 }
5046 EXPORT_SYMBOL(ksz_switch_alloc);
5047 
5048 /**
5049  * ksz_switch_shutdown - Shutdown routine for the switch device.
5050  * @dev: The switch device structure.
5051  *
5052  * This function is responsible for initiating a shutdown sequence for the
5053  * switch device. It invokes the reset operation defined in the device
5054  * operations, if available, to reset the switch. Subsequently, it calls the
5055  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
5056  * switch.
5057  */
5058 void ksz_switch_shutdown(struct ksz_device *dev)
5059 {
5060 	bool wol_enabled = false;
5061 
5062 	ksz_wol_pre_shutdown(dev, &wol_enabled);
5063 
5064 	if (dev->dev_ops->reset && !wol_enabled)
5065 		dev->dev_ops->reset(dev);
5066 
5067 	dsa_switch_shutdown(dev->ds);
5068 }
5069 EXPORT_SYMBOL(ksz_switch_shutdown);
5070 
5071 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
5072 				  struct device_node *port_dn)
5073 {
5074 	phy_interface_t phy_mode = dev->ports[port_num].interface;
5075 	int rx_delay = -1, tx_delay = -1;
5076 
5077 	if (!phy_interface_mode_is_rgmii(phy_mode))
5078 		return;
5079 
5080 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
5081 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
5082 
5083 	if (rx_delay == -1 && tx_delay == -1) {
5084 		dev_warn(dev->dev,
5085 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
5086 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
5087 			 "\"tx-internal-delay-ps\"",
5088 			 port_num);
5089 
5090 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
5091 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
5092 			rx_delay = 2000;
5093 
5094 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
5095 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
5096 			tx_delay = 2000;
5097 	}
5098 
5099 	if (rx_delay < 0)
5100 		rx_delay = 0;
5101 	if (tx_delay < 0)
5102 		tx_delay = 0;
5103 
5104 	dev->ports[port_num].rgmii_rx_val = rx_delay;
5105 	dev->ports[port_num].rgmii_tx_val = tx_delay;
5106 }
5107 
5108 /**
5109  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
5110  *				 register value.
5111  * @array:	The array of drive strength values to search.
5112  * @array_size:	The size of the array.
5113  * @microamp:	The drive strength value in microamp to be converted.
5114  *
5115  * This function searches the array of drive strength values for the given
5116  * microamp value and returns the corresponding register value for that drive.
5117  *
5118  * Returns: If found, the corresponding register value for that drive strength
5119  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
5120  */
5121 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
5122 				     size_t array_size, int microamp)
5123 {
5124 	int i;
5125 
5126 	for (i = 0; i < array_size; i++) {
5127 		if (array[i].microamp == microamp)
5128 			return array[i].reg_val;
5129 	}
5130 
5131 	return -EINVAL;
5132 }
5133 
5134 /**
5135  * ksz_drive_strength_error() - Report invalid drive strength value
5136  * @dev:	ksz device
5137  * @array:	The array of drive strength values to search.
5138  * @array_size:	The size of the array.
5139  * @microamp:	Invalid drive strength value in microamp
5140  *
5141  * This function logs an error message when an unsupported drive strength value
5142  * is detected. It lists out all the supported drive strength values for
5143  * reference in the error message.
5144  */
5145 static void ksz_drive_strength_error(struct ksz_device *dev,
5146 				     const struct ksz_drive_strength *array,
5147 				     size_t array_size, int microamp)
5148 {
5149 	char supported_values[100];
5150 	size_t remaining_size;
5151 	int added_len;
5152 	char *ptr;
5153 	int i;
5154 
5155 	remaining_size = sizeof(supported_values);
5156 	ptr = supported_values;
5157 
5158 	for (i = 0; i < array_size; i++) {
5159 		added_len = snprintf(ptr, remaining_size,
5160 				     i == 0 ? "%d" : ", %d", array[i].microamp);
5161 
5162 		if (added_len >= remaining_size)
5163 			break;
5164 
5165 		ptr += added_len;
5166 		remaining_size -= added_len;
5167 	}
5168 
5169 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
5170 		microamp, supported_values);
5171 }
5172 
5173 /**
5174  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
5175  *				    chip variants.
5176  * @dev:       ksz device
5177  * @props:     Array of drive strength properties to be applied
5178  * @num_props: Number of properties in the array
5179  *
5180  * This function configures the drive strength for various KSZ9477 chip variants
5181  * based on the provided properties. It handles chip-specific nuances and
5182  * ensures only valid drive strengths are written to the respective chip.
5183  *
5184  * Return: 0 on successful configuration, a negative error code on failure.
5185  */
5186 static int ksz9477_drive_strength_write(struct ksz_device *dev,
5187 					struct ksz_driver_strength_prop *props,
5188 					int num_props)
5189 {
5190 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
5191 	int i, ret, reg;
5192 	u8 mask = 0;
5193 	u8 val = 0;
5194 
5195 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
5196 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5197 			 props[KSZ_DRIVER_STRENGTH_IO].name);
5198 
5199 	if (dev->chip_id == KSZ8795_CHIP_ID ||
5200 	    dev->chip_id == KSZ8794_CHIP_ID ||
5201 	    dev->chip_id == KSZ8765_CHIP_ID)
5202 		reg = KSZ8795_REG_SW_CTRL_20;
5203 	else
5204 		reg = KSZ9477_REG_SW_IO_STRENGTH;
5205 
5206 	for (i = 0; i < num_props; i++) {
5207 		if (props[i].value == -1)
5208 			continue;
5209 
5210 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
5211 						array_size, props[i].value);
5212 		if (ret < 0) {
5213 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
5214 						 array_size, props[i].value);
5215 			return ret;
5216 		}
5217 
5218 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
5219 		val |= ret << props[i].offset;
5220 	}
5221 
5222 	return ksz_rmw8(dev, reg, mask, val);
5223 }
5224 
5225 /**
5226  * ksz88x3_drive_strength_write() - Set the drive strength configuration for
5227  *				    KSZ8863 compatible chip variants.
5228  * @dev:       ksz device
5229  * @props:     Array of drive strength properties to be set
5230  * @num_props: Number of properties in the array
5231  *
5232  * This function applies the specified drive strength settings to KSZ88X3 chip
5233  * variants (KSZ8873, KSZ8863).
5234  * It ensures the configurations align with what the chip variant supports and
5235  * warns or errors out on unsupported settings.
5236  *
5237  * Return: 0 on success, error code otherwise
5238  */
5239 static int ksz88x3_drive_strength_write(struct ksz_device *dev,
5240 					struct ksz_driver_strength_prop *props,
5241 					int num_props)
5242 {
5243 	size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths);
5244 	int microamp;
5245 	int i, ret;
5246 
5247 	for (i = 0; i < num_props; i++) {
5248 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
5249 			continue;
5250 
5251 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5252 			 props[i].name);
5253 	}
5254 
5255 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
5256 	ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size,
5257 					microamp);
5258 	if (ret < 0) {
5259 		ksz_drive_strength_error(dev, ksz88x3_drive_strengths,
5260 					 array_size, microamp);
5261 		return ret;
5262 	}
5263 
5264 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
5265 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
5266 }
5267 
5268 /**
5269  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
5270  *				from device tree properties.
5271  * @dev:	ksz device
5272  *
5273  * This function reads the specified drive strength properties from the
5274  * device tree, validates against the supported chip variants, and sets
5275  * them accordingly. An error should be critical here, as the drive strength
5276  * settings are crucial for EMI compliance.
5277  *
5278  * Return: 0 on success, error code otherwise
5279  */
5280 static int ksz_parse_drive_strength(struct ksz_device *dev)
5281 {
5282 	struct ksz_driver_strength_prop of_props[] = {
5283 		[KSZ_DRIVER_STRENGTH_HI] = {
5284 			.name = "microchip,hi-drive-strength-microamp",
5285 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
5286 			.value = -1,
5287 		},
5288 		[KSZ_DRIVER_STRENGTH_LO] = {
5289 			.name = "microchip,lo-drive-strength-microamp",
5290 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
5291 			.value = -1,
5292 		},
5293 		[KSZ_DRIVER_STRENGTH_IO] = {
5294 			.name = "microchip,io-drive-strength-microamp",
5295 			.offset = 0, /* don't care */
5296 			.value = -1,
5297 		},
5298 	};
5299 	struct device_node *np = dev->dev->of_node;
5300 	bool have_any_prop = false;
5301 	int i, ret;
5302 
5303 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5304 		ret = of_property_read_u32(np, of_props[i].name,
5305 					   &of_props[i].value);
5306 		if (ret && ret != -EINVAL)
5307 			dev_warn(dev->dev, "Failed to read %s\n",
5308 				 of_props[i].name);
5309 		if (ret)
5310 			continue;
5311 
5312 		have_any_prop = true;
5313 	}
5314 
5315 	if (!have_any_prop)
5316 		return 0;
5317 
5318 	switch (dev->chip_id) {
5319 	case KSZ88X3_CHIP_ID:
5320 		return ksz88x3_drive_strength_write(dev, of_props,
5321 						    ARRAY_SIZE(of_props));
5322 	case KSZ8795_CHIP_ID:
5323 	case KSZ8794_CHIP_ID:
5324 	case KSZ8765_CHIP_ID:
5325 	case KSZ8563_CHIP_ID:
5326 	case KSZ8567_CHIP_ID:
5327 	case KSZ9477_CHIP_ID:
5328 	case KSZ9563_CHIP_ID:
5329 	case KSZ9567_CHIP_ID:
5330 	case KSZ9893_CHIP_ID:
5331 	case KSZ9896_CHIP_ID:
5332 	case KSZ9897_CHIP_ID:
5333 	case LAN9646_CHIP_ID:
5334 		return ksz9477_drive_strength_write(dev, of_props,
5335 						    ARRAY_SIZE(of_props));
5336 	default:
5337 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5338 			if (of_props[i].value == -1)
5339 				continue;
5340 
5341 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5342 				 of_props[i].name);
5343 		}
5344 	}
5345 
5346 	return 0;
5347 }
5348 
5349 static int ksz8463_configure_straps_spi(struct ksz_device *dev)
5350 {
5351 	struct pinctrl *pinctrl;
5352 	struct gpio_desc *rxd0;
5353 	struct gpio_desc *rxd1;
5354 
5355 	rxd0 = devm_gpiod_get_index_optional(dev->dev, "straps-rxd", 0, GPIOD_OUT_LOW);
5356 	if (IS_ERR(rxd0))
5357 		return PTR_ERR(rxd0);
5358 
5359 	rxd1 = devm_gpiod_get_index_optional(dev->dev, "straps-rxd", 1, GPIOD_OUT_HIGH);
5360 	if (IS_ERR(rxd1))
5361 		return PTR_ERR(rxd1);
5362 
5363 	if (!rxd0 && !rxd1)
5364 		return 0;
5365 
5366 	if ((rxd0 && !rxd1) || (rxd1 && !rxd0))
5367 		return -EINVAL;
5368 
5369 	pinctrl = devm_pinctrl_get_select(dev->dev, "reset");
5370 	if (IS_ERR(pinctrl))
5371 		return PTR_ERR(pinctrl);
5372 
5373 	return 0;
5374 }
5375 
5376 static int ksz8463_release_straps_spi(struct ksz_device *dev)
5377 {
5378 	return pinctrl_select_default_state(dev->dev);
5379 }
5380 
5381 int ksz_switch_register(struct ksz_device *dev)
5382 {
5383 	const struct ksz_chip_data *info;
5384 	struct device_node *ports;
5385 	phy_interface_t interface;
5386 	unsigned int port_num;
5387 	int ret;
5388 	int i;
5389 
5390 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
5391 						  GPIOD_OUT_LOW);
5392 	if (IS_ERR(dev->reset_gpio))
5393 		return PTR_ERR(dev->reset_gpio);
5394 
5395 	if (dev->reset_gpio) {
5396 		if (of_device_is_compatible(dev->dev->of_node, "microchip,ksz8463")) {
5397 			ret = ksz8463_configure_straps_spi(dev);
5398 			if (ret)
5399 				return ret;
5400 		}
5401 
5402 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5403 		usleep_range(10000, 12000);
5404 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
5405 		msleep(100);
5406 
5407 		if (of_device_is_compatible(dev->dev->of_node, "microchip,ksz8463")) {
5408 			ret = ksz8463_release_straps_spi(dev);
5409 			if (ret)
5410 				return ret;
5411 		}
5412 	}
5413 
5414 	mutex_init(&dev->dev_mutex);
5415 	mutex_init(&dev->regmap_mutex);
5416 	mutex_init(&dev->alu_mutex);
5417 	mutex_init(&dev->vlan_mutex);
5418 
5419 	ret = ksz_switch_detect(dev);
5420 	if (ret)
5421 		return ret;
5422 
5423 	info = ksz_lookup_info(dev->chip_id);
5424 	if (!info)
5425 		return -ENODEV;
5426 
5427 	/* Update the compatible info with the probed one */
5428 	dev->info = info;
5429 
5430 	dev_info(dev->dev, "found switch: %s, rev %i\n",
5431 		 dev->info->dev_name, dev->chip_rev);
5432 
5433 	ret = ksz_check_device_id(dev);
5434 	if (ret)
5435 		return ret;
5436 
5437 	dev->dev_ops = dev->info->ops;
5438 
5439 	ret = dev->dev_ops->init(dev);
5440 	if (ret)
5441 		return ret;
5442 
5443 	dev->ports = devm_kzalloc(dev->dev,
5444 				  dev->info->port_cnt * sizeof(struct ksz_port),
5445 				  GFP_KERNEL);
5446 	if (!dev->ports)
5447 		return -ENOMEM;
5448 
5449 	for (i = 0; i < dev->info->port_cnt; i++) {
5450 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
5451 		mutex_init(&dev->ports[i].mib.cnt_mutex);
5452 		dev->ports[i].mib.counters =
5453 			devm_kzalloc(dev->dev,
5454 				     sizeof(u64) * (dev->info->mib_cnt + 1),
5455 				     GFP_KERNEL);
5456 		if (!dev->ports[i].mib.counters)
5457 			return -ENOMEM;
5458 
5459 		dev->ports[i].ksz_dev = dev;
5460 		dev->ports[i].num = i;
5461 	}
5462 
5463 	/* set the real number of ports */
5464 	dev->ds->num_ports = dev->info->port_cnt;
5465 
5466 	/* set the phylink ops */
5467 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
5468 
5469 	/* Host port interface will be self detected, or specifically set in
5470 	 * device tree.
5471 	 */
5472 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
5473 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
5474 	if (dev->dev->of_node) {
5475 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
5476 		if (ret == 0)
5477 			dev->compat_interface = interface;
5478 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
5479 		if (!ports)
5480 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
5481 		if (ports) {
5482 			for_each_available_child_of_node_scoped(ports, port) {
5483 				if (of_property_read_u32(port, "reg",
5484 							 &port_num))
5485 					continue;
5486 				if (!(dev->port_mask & BIT(port_num))) {
5487 					of_node_put(ports);
5488 					return -EINVAL;
5489 				}
5490 				of_get_phy_mode(port,
5491 						&dev->ports[port_num].interface);
5492 
5493 				ksz_parse_rgmii_delay(dev, port_num, port);
5494 				dev->ports[port_num].fiber =
5495 					of_property_read_bool(port,
5496 							      "micrel,fiber-mode");
5497 			}
5498 			of_node_put(ports);
5499 		}
5500 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
5501 							 "microchip,synclko-125");
5502 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
5503 							     "microchip,synclko-disable");
5504 		if (dev->synclko_125 && dev->synclko_disable) {
5505 			dev_err(dev->dev, "inconsistent synclko settings\n");
5506 			return -EINVAL;
5507 		}
5508 
5509 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
5510 							   "wakeup-source");
5511 		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
5512 							     "microchip,pme-active-high");
5513 	}
5514 
5515 	ret = dsa_register_switch(dev->ds);
5516 	if (ret) {
5517 		dev->dev_ops->exit(dev);
5518 		return ret;
5519 	}
5520 
5521 	/* Read MIB counters every 30 seconds to avoid overflow. */
5522 	dev->mib_read_interval = msecs_to_jiffies(5000);
5523 
5524 	/* Start the MIB timer. */
5525 	schedule_delayed_work(&dev->mib_read, 0);
5526 
5527 	return ret;
5528 }
5529 EXPORT_SYMBOL(ksz_switch_register);
5530 
5531 void ksz_switch_remove(struct ksz_device *dev)
5532 {
5533 	/* timer started */
5534 	if (dev->mib_read_interval) {
5535 		dev->mib_read_interval = 0;
5536 		cancel_delayed_work_sync(&dev->mib_read);
5537 	}
5538 
5539 	dev->dev_ops->exit(dev);
5540 	dsa_unregister_switch(dev->ds);
5541 
5542 	if (dev->reset_gpio)
5543 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5544 
5545 }
5546 EXPORT_SYMBOL(ksz_switch_remove);
5547 
5548 #ifdef CONFIG_PM_SLEEP
5549 int ksz_switch_suspend(struct device *dev)
5550 {
5551 	struct ksz_device *priv = dev_get_drvdata(dev);
5552 
5553 	return dsa_switch_suspend(priv->ds);
5554 }
5555 EXPORT_SYMBOL(ksz_switch_suspend);
5556 
5557 int ksz_switch_resume(struct device *dev)
5558 {
5559 	struct ksz_device *priv = dev_get_drvdata(dev);
5560 
5561 	return dsa_switch_resume(priv->ds);
5562 }
5563 EXPORT_SYMBOL(ksz_switch_resume);
5564 #endif
5565 
5566 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
5567 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
5568 MODULE_LICENSE("GPL");
5569