xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 04317b129e4eb5c6f4a58bb899b2019c1545320b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/pkt_cls.h>
28 #include <net/switchdev.h>
29 
30 #include "ksz_common.h"
31 #include "ksz_ptp.h"
32 #include "ksz8.h"
33 #include "ksz9477.h"
34 #include "lan937x.h"
35 
36 #define MIB_COUNTER_NUM 0x20
37 
38 struct ksz_stats_raw {
39 	u64 rx_hi;
40 	u64 rx_undersize;
41 	u64 rx_fragments;
42 	u64 rx_oversize;
43 	u64 rx_jabbers;
44 	u64 rx_symbol_err;
45 	u64 rx_crc_err;
46 	u64 rx_align_err;
47 	u64 rx_mac_ctrl;
48 	u64 rx_pause;
49 	u64 rx_bcast;
50 	u64 rx_mcast;
51 	u64 rx_ucast;
52 	u64 rx_64_or_less;
53 	u64 rx_65_127;
54 	u64 rx_128_255;
55 	u64 rx_256_511;
56 	u64 rx_512_1023;
57 	u64 rx_1024_1522;
58 	u64 rx_1523_2000;
59 	u64 rx_2001;
60 	u64 tx_hi;
61 	u64 tx_late_col;
62 	u64 tx_pause;
63 	u64 tx_bcast;
64 	u64 tx_mcast;
65 	u64 tx_ucast;
66 	u64 tx_deferred;
67 	u64 tx_total_col;
68 	u64 tx_exc_col;
69 	u64 tx_single_col;
70 	u64 tx_mult_col;
71 	u64 rx_total;
72 	u64 tx_total;
73 	u64 rx_discards;
74 	u64 tx_discards;
75 };
76 
77 struct ksz88xx_stats_raw {
78 	u64 rx;
79 	u64 rx_hi;
80 	u64 rx_undersize;
81 	u64 rx_fragments;
82 	u64 rx_oversize;
83 	u64 rx_jabbers;
84 	u64 rx_symbol_err;
85 	u64 rx_crc_err;
86 	u64 rx_align_err;
87 	u64 rx_mac_ctrl;
88 	u64 rx_pause;
89 	u64 rx_bcast;
90 	u64 rx_mcast;
91 	u64 rx_ucast;
92 	u64 rx_64_or_less;
93 	u64 rx_65_127;
94 	u64 rx_128_255;
95 	u64 rx_256_511;
96 	u64 rx_512_1023;
97 	u64 rx_1024_1522;
98 	u64 tx;
99 	u64 tx_hi;
100 	u64 tx_late_col;
101 	u64 tx_pause;
102 	u64 tx_bcast;
103 	u64 tx_mcast;
104 	u64 tx_ucast;
105 	u64 tx_deferred;
106 	u64 tx_total_col;
107 	u64 tx_exc_col;
108 	u64 tx_single_col;
109 	u64 tx_mult_col;
110 	u64 rx_discards;
111 	u64 tx_discards;
112 };
113 
114 static const struct ksz_mib_names ksz88xx_mib_names[] = {
115 	{ 0x00, "rx" },
116 	{ 0x01, "rx_hi" },
117 	{ 0x02, "rx_undersize" },
118 	{ 0x03, "rx_fragments" },
119 	{ 0x04, "rx_oversize" },
120 	{ 0x05, "rx_jabbers" },
121 	{ 0x06, "rx_symbol_err" },
122 	{ 0x07, "rx_crc_err" },
123 	{ 0x08, "rx_align_err" },
124 	{ 0x09, "rx_mac_ctrl" },
125 	{ 0x0a, "rx_pause" },
126 	{ 0x0b, "rx_bcast" },
127 	{ 0x0c, "rx_mcast" },
128 	{ 0x0d, "rx_ucast" },
129 	{ 0x0e, "rx_64_or_less" },
130 	{ 0x0f, "rx_65_127" },
131 	{ 0x10, "rx_128_255" },
132 	{ 0x11, "rx_256_511" },
133 	{ 0x12, "rx_512_1023" },
134 	{ 0x13, "rx_1024_1522" },
135 	{ 0x14, "tx" },
136 	{ 0x15, "tx_hi" },
137 	{ 0x16, "tx_late_col" },
138 	{ 0x17, "tx_pause" },
139 	{ 0x18, "tx_bcast" },
140 	{ 0x19, "tx_mcast" },
141 	{ 0x1a, "tx_ucast" },
142 	{ 0x1b, "tx_deferred" },
143 	{ 0x1c, "tx_total_col" },
144 	{ 0x1d, "tx_exc_col" },
145 	{ 0x1e, "tx_single_col" },
146 	{ 0x1f, "tx_mult_col" },
147 	{ 0x100, "rx_discards" },
148 	{ 0x101, "tx_discards" },
149 };
150 
151 static const struct ksz_mib_names ksz9477_mib_names[] = {
152 	{ 0x00, "rx_hi" },
153 	{ 0x01, "rx_undersize" },
154 	{ 0x02, "rx_fragments" },
155 	{ 0x03, "rx_oversize" },
156 	{ 0x04, "rx_jabbers" },
157 	{ 0x05, "rx_symbol_err" },
158 	{ 0x06, "rx_crc_err" },
159 	{ 0x07, "rx_align_err" },
160 	{ 0x08, "rx_mac_ctrl" },
161 	{ 0x09, "rx_pause" },
162 	{ 0x0A, "rx_bcast" },
163 	{ 0x0B, "rx_mcast" },
164 	{ 0x0C, "rx_ucast" },
165 	{ 0x0D, "rx_64_or_less" },
166 	{ 0x0E, "rx_65_127" },
167 	{ 0x0F, "rx_128_255" },
168 	{ 0x10, "rx_256_511" },
169 	{ 0x11, "rx_512_1023" },
170 	{ 0x12, "rx_1024_1522" },
171 	{ 0x13, "rx_1523_2000" },
172 	{ 0x14, "rx_2001" },
173 	{ 0x15, "tx_hi" },
174 	{ 0x16, "tx_late_col" },
175 	{ 0x17, "tx_pause" },
176 	{ 0x18, "tx_bcast" },
177 	{ 0x19, "tx_mcast" },
178 	{ 0x1A, "tx_ucast" },
179 	{ 0x1B, "tx_deferred" },
180 	{ 0x1C, "tx_total_col" },
181 	{ 0x1D, "tx_exc_col" },
182 	{ 0x1E, "tx_single_col" },
183 	{ 0x1F, "tx_mult_col" },
184 	{ 0x80, "rx_total" },
185 	{ 0x81, "tx_total" },
186 	{ 0x82, "rx_discards" },
187 	{ 0x83, "tx_discards" },
188 };
189 
190 struct ksz_driver_strength_prop {
191 	const char *name;
192 	int offset;
193 	int value;
194 };
195 
196 enum ksz_driver_strength_type {
197 	KSZ_DRIVER_STRENGTH_HI,
198 	KSZ_DRIVER_STRENGTH_LO,
199 	KSZ_DRIVER_STRENGTH_IO,
200 };
201 
202 /**
203  * struct ksz_drive_strength - drive strength mapping
204  * @reg_val:	register value
205  * @microamp:	microamp value
206  */
207 struct ksz_drive_strength {
208 	u32 reg_val;
209 	u32 microamp;
210 };
211 
212 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
213  *
214  * This values are not documented in KSZ9477 variants but confirmed by
215  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
216  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
217  *
218  * Documentation in KSZ8795CLX provides more information with some
219  * recommendations:
220  * - for high speed signals
221  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
222  *      2.5V or 3.3V VDDIO.
223  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
224  *      using 1.8V VDDIO.
225  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
226  *      or 3.3V VDDIO.
227  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
228  *   5. In same interface, the heavy loading should use higher one of the
229  *      drive current strength.
230  * - for low speed signals
231  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
232  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
233  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
234  *   4. If it is heavy loading, can use higher drive current strength.
235  */
236 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
237 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
238 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
239 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
240 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
241 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
242 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
243 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
244 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
245 };
246 
247 /* ksz8830_drive_strengths - Drive strength mapping for KSZ8830, KSZ8873, ..
248  *			     variants.
249  * This values are documented in KSZ8873 and KSZ8863 datasheets.
250  */
251 static const struct ksz_drive_strength ksz8830_drive_strengths[] = {
252 	{ 0,  8000 },
253 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
254 };
255 
256 static const struct ksz_dev_ops ksz8_dev_ops = {
257 	.setup = ksz8_setup,
258 	.get_port_addr = ksz8_get_port_addr,
259 	.cfg_port_member = ksz8_cfg_port_member,
260 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
261 	.port_setup = ksz8_port_setup,
262 	.r_phy = ksz8_r_phy,
263 	.w_phy = ksz8_w_phy,
264 	.r_mib_cnt = ksz8_r_mib_cnt,
265 	.r_mib_pkt = ksz8_r_mib_pkt,
266 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
267 	.freeze_mib = ksz8_freeze_mib,
268 	.port_init_cnt = ksz8_port_init_cnt,
269 	.fdb_dump = ksz8_fdb_dump,
270 	.fdb_add = ksz8_fdb_add,
271 	.fdb_del = ksz8_fdb_del,
272 	.mdb_add = ksz8_mdb_add,
273 	.mdb_del = ksz8_mdb_del,
274 	.vlan_filtering = ksz8_port_vlan_filtering,
275 	.vlan_add = ksz8_port_vlan_add,
276 	.vlan_del = ksz8_port_vlan_del,
277 	.mirror_add = ksz8_port_mirror_add,
278 	.mirror_del = ksz8_port_mirror_del,
279 	.get_caps = ksz8_get_caps,
280 	.config_cpu_port = ksz8_config_cpu_port,
281 	.enable_stp_addr = ksz8_enable_stp_addr,
282 	.reset = ksz8_reset_switch,
283 	.init = ksz8_switch_init,
284 	.exit = ksz8_switch_exit,
285 	.change_mtu = ksz8_change_mtu,
286 };
287 
288 static void ksz9477_phylink_mac_link_up(struct ksz_device *dev, int port,
289 					unsigned int mode,
290 					phy_interface_t interface,
291 					struct phy_device *phydev, int speed,
292 					int duplex, bool tx_pause,
293 					bool rx_pause);
294 
295 static const struct ksz_dev_ops ksz9477_dev_ops = {
296 	.setup = ksz9477_setup,
297 	.get_port_addr = ksz9477_get_port_addr,
298 	.cfg_port_member = ksz9477_cfg_port_member,
299 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
300 	.port_setup = ksz9477_port_setup,
301 	.set_ageing_time = ksz9477_set_ageing_time,
302 	.r_phy = ksz9477_r_phy,
303 	.w_phy = ksz9477_w_phy,
304 	.r_mib_cnt = ksz9477_r_mib_cnt,
305 	.r_mib_pkt = ksz9477_r_mib_pkt,
306 	.r_mib_stat64 = ksz_r_mib_stats64,
307 	.freeze_mib = ksz9477_freeze_mib,
308 	.port_init_cnt = ksz9477_port_init_cnt,
309 	.vlan_filtering = ksz9477_port_vlan_filtering,
310 	.vlan_add = ksz9477_port_vlan_add,
311 	.vlan_del = ksz9477_port_vlan_del,
312 	.mirror_add = ksz9477_port_mirror_add,
313 	.mirror_del = ksz9477_port_mirror_del,
314 	.get_caps = ksz9477_get_caps,
315 	.fdb_dump = ksz9477_fdb_dump,
316 	.fdb_add = ksz9477_fdb_add,
317 	.fdb_del = ksz9477_fdb_del,
318 	.mdb_add = ksz9477_mdb_add,
319 	.mdb_del = ksz9477_mdb_del,
320 	.change_mtu = ksz9477_change_mtu,
321 	.phylink_mac_link_up = ksz9477_phylink_mac_link_up,
322 	.config_cpu_port = ksz9477_config_cpu_port,
323 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
324 	.enable_stp_addr = ksz9477_enable_stp_addr,
325 	.reset = ksz9477_reset_switch,
326 	.init = ksz9477_switch_init,
327 	.exit = ksz9477_switch_exit,
328 };
329 
330 static const struct ksz_dev_ops lan937x_dev_ops = {
331 	.setup = lan937x_setup,
332 	.teardown = lan937x_teardown,
333 	.get_port_addr = ksz9477_get_port_addr,
334 	.cfg_port_member = ksz9477_cfg_port_member,
335 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
336 	.port_setup = lan937x_port_setup,
337 	.set_ageing_time = lan937x_set_ageing_time,
338 	.r_phy = lan937x_r_phy,
339 	.w_phy = lan937x_w_phy,
340 	.r_mib_cnt = ksz9477_r_mib_cnt,
341 	.r_mib_pkt = ksz9477_r_mib_pkt,
342 	.r_mib_stat64 = ksz_r_mib_stats64,
343 	.freeze_mib = ksz9477_freeze_mib,
344 	.port_init_cnt = ksz9477_port_init_cnt,
345 	.vlan_filtering = ksz9477_port_vlan_filtering,
346 	.vlan_add = ksz9477_port_vlan_add,
347 	.vlan_del = ksz9477_port_vlan_del,
348 	.mirror_add = ksz9477_port_mirror_add,
349 	.mirror_del = ksz9477_port_mirror_del,
350 	.get_caps = lan937x_phylink_get_caps,
351 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
352 	.fdb_dump = ksz9477_fdb_dump,
353 	.fdb_add = ksz9477_fdb_add,
354 	.fdb_del = ksz9477_fdb_del,
355 	.mdb_add = ksz9477_mdb_add,
356 	.mdb_del = ksz9477_mdb_del,
357 	.change_mtu = lan937x_change_mtu,
358 	.phylink_mac_link_up = ksz9477_phylink_mac_link_up,
359 	.config_cpu_port = lan937x_config_cpu_port,
360 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
361 	.enable_stp_addr = ksz9477_enable_stp_addr,
362 	.reset = lan937x_reset_switch,
363 	.init = lan937x_switch_init,
364 	.exit = lan937x_switch_exit,
365 };
366 
367 static const u16 ksz8795_regs[] = {
368 	[REG_SW_MAC_ADDR]		= 0x68,
369 	[REG_IND_CTRL_0]		= 0x6E,
370 	[REG_IND_DATA_8]		= 0x70,
371 	[REG_IND_DATA_CHECK]		= 0x72,
372 	[REG_IND_DATA_HI]		= 0x71,
373 	[REG_IND_DATA_LO]		= 0x75,
374 	[REG_IND_MIB_CHECK]		= 0x74,
375 	[REG_IND_BYTE]			= 0xA0,
376 	[P_FORCE_CTRL]			= 0x0C,
377 	[P_LINK_STATUS]			= 0x0E,
378 	[P_LOCAL_CTRL]			= 0x07,
379 	[P_NEG_RESTART_CTRL]		= 0x0D,
380 	[P_REMOTE_STATUS]		= 0x08,
381 	[P_SPEED_STATUS]		= 0x09,
382 	[S_TAIL_TAG_CTRL]		= 0x0C,
383 	[P_STP_CTRL]			= 0x02,
384 	[S_START_CTRL]			= 0x01,
385 	[S_BROADCAST_CTRL]		= 0x06,
386 	[S_MULTICAST_CTRL]		= 0x04,
387 	[P_XMII_CTRL_0]			= 0x06,
388 	[P_XMII_CTRL_1]			= 0x06,
389 };
390 
391 static const u32 ksz8795_masks[] = {
392 	[PORT_802_1P_REMAPPING]		= BIT(7),
393 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
394 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
395 	[MIB_COUNTER_VALID]		= BIT(5),
396 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
397 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
398 	[VLAN_TABLE_VALID]		= BIT(12),
399 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
400 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
401 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
402 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
403 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
404 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
405 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
406 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
407 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
408 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
409 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
410 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
411 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
412 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
413 };
414 
415 static const u8 ksz8795_xmii_ctrl0[] = {
416 	[P_MII_100MBIT]			= 0,
417 	[P_MII_10MBIT]			= 1,
418 	[P_MII_FULL_DUPLEX]		= 0,
419 	[P_MII_HALF_DUPLEX]		= 1,
420 };
421 
422 static const u8 ksz8795_xmii_ctrl1[] = {
423 	[P_RGMII_SEL]			= 3,
424 	[P_GMII_SEL]			= 2,
425 	[P_RMII_SEL]			= 1,
426 	[P_MII_SEL]			= 0,
427 	[P_GMII_1GBIT]			= 1,
428 	[P_GMII_NOT_1GBIT]		= 0,
429 };
430 
431 static const u8 ksz8795_shifts[] = {
432 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
433 	[VLAN_TABLE]			= 16,
434 	[STATIC_MAC_FWD_PORTS]		= 16,
435 	[STATIC_MAC_FID]		= 24,
436 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
437 	[DYNAMIC_MAC_ENTRIES]		= 29,
438 	[DYNAMIC_MAC_FID]		= 16,
439 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
440 	[DYNAMIC_MAC_SRC_PORT]		= 24,
441 };
442 
443 static const u16 ksz8863_regs[] = {
444 	[REG_IND_CTRL_0]		= 0x79,
445 	[REG_IND_DATA_8]		= 0x7B,
446 	[REG_IND_DATA_CHECK]		= 0x7B,
447 	[REG_IND_DATA_HI]		= 0x7C,
448 	[REG_IND_DATA_LO]		= 0x80,
449 	[REG_IND_MIB_CHECK]		= 0x80,
450 	[P_FORCE_CTRL]			= 0x0C,
451 	[P_LINK_STATUS]			= 0x0E,
452 	[P_LOCAL_CTRL]			= 0x0C,
453 	[P_NEG_RESTART_CTRL]		= 0x0D,
454 	[P_REMOTE_STATUS]		= 0x0E,
455 	[P_SPEED_STATUS]		= 0x0F,
456 	[S_TAIL_TAG_CTRL]		= 0x03,
457 	[P_STP_CTRL]			= 0x02,
458 	[S_START_CTRL]			= 0x01,
459 	[S_BROADCAST_CTRL]		= 0x06,
460 	[S_MULTICAST_CTRL]		= 0x04,
461 };
462 
463 static const u32 ksz8863_masks[] = {
464 	[PORT_802_1P_REMAPPING]		= BIT(3),
465 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
466 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
467 	[MIB_COUNTER_VALID]		= BIT(6),
468 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
469 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
470 	[VLAN_TABLE_VALID]		= BIT(19),
471 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
472 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
473 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
474 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
475 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
476 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
477 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
478 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
479 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
480 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
481 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
482 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
483 };
484 
485 static u8 ksz8863_shifts[] = {
486 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
487 	[STATIC_MAC_FWD_PORTS]		= 16,
488 	[STATIC_MAC_FID]		= 22,
489 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
490 	[DYNAMIC_MAC_ENTRIES]		= 24,
491 	[DYNAMIC_MAC_FID]		= 16,
492 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
493 	[DYNAMIC_MAC_SRC_PORT]		= 20,
494 };
495 
496 static const u16 ksz9477_regs[] = {
497 	[REG_SW_MAC_ADDR]		= 0x0302,
498 	[P_STP_CTRL]			= 0x0B04,
499 	[S_START_CTRL]			= 0x0300,
500 	[S_BROADCAST_CTRL]		= 0x0332,
501 	[S_MULTICAST_CTRL]		= 0x0331,
502 	[P_XMII_CTRL_0]			= 0x0300,
503 	[P_XMII_CTRL_1]			= 0x0301,
504 };
505 
506 static const u32 ksz9477_masks[] = {
507 	[ALU_STAT_WRITE]		= 0,
508 	[ALU_STAT_READ]			= 1,
509 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
510 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
511 };
512 
513 static const u8 ksz9477_shifts[] = {
514 	[ALU_STAT_INDEX]		= 16,
515 };
516 
517 static const u8 ksz9477_xmii_ctrl0[] = {
518 	[P_MII_100MBIT]			= 1,
519 	[P_MII_10MBIT]			= 0,
520 	[P_MII_FULL_DUPLEX]		= 1,
521 	[P_MII_HALF_DUPLEX]		= 0,
522 };
523 
524 static const u8 ksz9477_xmii_ctrl1[] = {
525 	[P_RGMII_SEL]			= 0,
526 	[P_RMII_SEL]			= 1,
527 	[P_GMII_SEL]			= 2,
528 	[P_MII_SEL]			= 3,
529 	[P_GMII_1GBIT]			= 0,
530 	[P_GMII_NOT_1GBIT]		= 1,
531 };
532 
533 static const u32 lan937x_masks[] = {
534 	[ALU_STAT_WRITE]		= 1,
535 	[ALU_STAT_READ]			= 2,
536 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
537 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
538 };
539 
540 static const u8 lan937x_shifts[] = {
541 	[ALU_STAT_INDEX]		= 8,
542 };
543 
544 static const struct regmap_range ksz8563_valid_regs[] = {
545 	regmap_reg_range(0x0000, 0x0003),
546 	regmap_reg_range(0x0006, 0x0006),
547 	regmap_reg_range(0x000f, 0x001f),
548 	regmap_reg_range(0x0100, 0x0100),
549 	regmap_reg_range(0x0104, 0x0107),
550 	regmap_reg_range(0x010d, 0x010d),
551 	regmap_reg_range(0x0110, 0x0113),
552 	regmap_reg_range(0x0120, 0x012b),
553 	regmap_reg_range(0x0201, 0x0201),
554 	regmap_reg_range(0x0210, 0x0213),
555 	regmap_reg_range(0x0300, 0x0300),
556 	regmap_reg_range(0x0302, 0x031b),
557 	regmap_reg_range(0x0320, 0x032b),
558 	regmap_reg_range(0x0330, 0x0336),
559 	regmap_reg_range(0x0338, 0x033e),
560 	regmap_reg_range(0x0340, 0x035f),
561 	regmap_reg_range(0x0370, 0x0370),
562 	regmap_reg_range(0x0378, 0x0378),
563 	regmap_reg_range(0x037c, 0x037d),
564 	regmap_reg_range(0x0390, 0x0393),
565 	regmap_reg_range(0x0400, 0x040e),
566 	regmap_reg_range(0x0410, 0x042f),
567 	regmap_reg_range(0x0500, 0x0519),
568 	regmap_reg_range(0x0520, 0x054b),
569 	regmap_reg_range(0x0550, 0x05b3),
570 
571 	/* port 1 */
572 	regmap_reg_range(0x1000, 0x1001),
573 	regmap_reg_range(0x1004, 0x100b),
574 	regmap_reg_range(0x1013, 0x1013),
575 	regmap_reg_range(0x1017, 0x1017),
576 	regmap_reg_range(0x101b, 0x101b),
577 	regmap_reg_range(0x101f, 0x1021),
578 	regmap_reg_range(0x1030, 0x1030),
579 	regmap_reg_range(0x1100, 0x1111),
580 	regmap_reg_range(0x111a, 0x111d),
581 	regmap_reg_range(0x1122, 0x1127),
582 	regmap_reg_range(0x112a, 0x112b),
583 	regmap_reg_range(0x1136, 0x1139),
584 	regmap_reg_range(0x113e, 0x113f),
585 	regmap_reg_range(0x1400, 0x1401),
586 	regmap_reg_range(0x1403, 0x1403),
587 	regmap_reg_range(0x1410, 0x1417),
588 	regmap_reg_range(0x1420, 0x1423),
589 	regmap_reg_range(0x1500, 0x1507),
590 	regmap_reg_range(0x1600, 0x1612),
591 	regmap_reg_range(0x1800, 0x180f),
592 	regmap_reg_range(0x1900, 0x1907),
593 	regmap_reg_range(0x1914, 0x191b),
594 	regmap_reg_range(0x1a00, 0x1a03),
595 	regmap_reg_range(0x1a04, 0x1a08),
596 	regmap_reg_range(0x1b00, 0x1b01),
597 	regmap_reg_range(0x1b04, 0x1b04),
598 	regmap_reg_range(0x1c00, 0x1c05),
599 	regmap_reg_range(0x1c08, 0x1c1b),
600 
601 	/* port 2 */
602 	regmap_reg_range(0x2000, 0x2001),
603 	regmap_reg_range(0x2004, 0x200b),
604 	regmap_reg_range(0x2013, 0x2013),
605 	regmap_reg_range(0x2017, 0x2017),
606 	regmap_reg_range(0x201b, 0x201b),
607 	regmap_reg_range(0x201f, 0x2021),
608 	regmap_reg_range(0x2030, 0x2030),
609 	regmap_reg_range(0x2100, 0x2111),
610 	regmap_reg_range(0x211a, 0x211d),
611 	regmap_reg_range(0x2122, 0x2127),
612 	regmap_reg_range(0x212a, 0x212b),
613 	regmap_reg_range(0x2136, 0x2139),
614 	regmap_reg_range(0x213e, 0x213f),
615 	regmap_reg_range(0x2400, 0x2401),
616 	regmap_reg_range(0x2403, 0x2403),
617 	regmap_reg_range(0x2410, 0x2417),
618 	regmap_reg_range(0x2420, 0x2423),
619 	regmap_reg_range(0x2500, 0x2507),
620 	regmap_reg_range(0x2600, 0x2612),
621 	regmap_reg_range(0x2800, 0x280f),
622 	regmap_reg_range(0x2900, 0x2907),
623 	regmap_reg_range(0x2914, 0x291b),
624 	regmap_reg_range(0x2a00, 0x2a03),
625 	regmap_reg_range(0x2a04, 0x2a08),
626 	regmap_reg_range(0x2b00, 0x2b01),
627 	regmap_reg_range(0x2b04, 0x2b04),
628 	regmap_reg_range(0x2c00, 0x2c05),
629 	regmap_reg_range(0x2c08, 0x2c1b),
630 
631 	/* port 3 */
632 	regmap_reg_range(0x3000, 0x3001),
633 	regmap_reg_range(0x3004, 0x300b),
634 	regmap_reg_range(0x3013, 0x3013),
635 	regmap_reg_range(0x3017, 0x3017),
636 	regmap_reg_range(0x301b, 0x301b),
637 	regmap_reg_range(0x301f, 0x3021),
638 	regmap_reg_range(0x3030, 0x3030),
639 	regmap_reg_range(0x3300, 0x3301),
640 	regmap_reg_range(0x3303, 0x3303),
641 	regmap_reg_range(0x3400, 0x3401),
642 	regmap_reg_range(0x3403, 0x3403),
643 	regmap_reg_range(0x3410, 0x3417),
644 	regmap_reg_range(0x3420, 0x3423),
645 	regmap_reg_range(0x3500, 0x3507),
646 	regmap_reg_range(0x3600, 0x3612),
647 	regmap_reg_range(0x3800, 0x380f),
648 	regmap_reg_range(0x3900, 0x3907),
649 	regmap_reg_range(0x3914, 0x391b),
650 	regmap_reg_range(0x3a00, 0x3a03),
651 	regmap_reg_range(0x3a04, 0x3a08),
652 	regmap_reg_range(0x3b00, 0x3b01),
653 	regmap_reg_range(0x3b04, 0x3b04),
654 	regmap_reg_range(0x3c00, 0x3c05),
655 	regmap_reg_range(0x3c08, 0x3c1b),
656 };
657 
658 static const struct regmap_access_table ksz8563_register_set = {
659 	.yes_ranges = ksz8563_valid_regs,
660 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
661 };
662 
663 static const struct regmap_range ksz9477_valid_regs[] = {
664 	regmap_reg_range(0x0000, 0x0003),
665 	regmap_reg_range(0x0006, 0x0006),
666 	regmap_reg_range(0x0010, 0x001f),
667 	regmap_reg_range(0x0100, 0x0100),
668 	regmap_reg_range(0x0103, 0x0107),
669 	regmap_reg_range(0x010d, 0x010d),
670 	regmap_reg_range(0x0110, 0x0113),
671 	regmap_reg_range(0x0120, 0x012b),
672 	regmap_reg_range(0x0201, 0x0201),
673 	regmap_reg_range(0x0210, 0x0213),
674 	regmap_reg_range(0x0300, 0x0300),
675 	regmap_reg_range(0x0302, 0x031b),
676 	regmap_reg_range(0x0320, 0x032b),
677 	regmap_reg_range(0x0330, 0x0336),
678 	regmap_reg_range(0x0338, 0x033b),
679 	regmap_reg_range(0x033e, 0x033e),
680 	regmap_reg_range(0x0340, 0x035f),
681 	regmap_reg_range(0x0370, 0x0370),
682 	regmap_reg_range(0x0378, 0x0378),
683 	regmap_reg_range(0x037c, 0x037d),
684 	regmap_reg_range(0x0390, 0x0393),
685 	regmap_reg_range(0x0400, 0x040e),
686 	regmap_reg_range(0x0410, 0x042f),
687 	regmap_reg_range(0x0444, 0x044b),
688 	regmap_reg_range(0x0450, 0x046f),
689 	regmap_reg_range(0x0500, 0x0519),
690 	regmap_reg_range(0x0520, 0x054b),
691 	regmap_reg_range(0x0550, 0x05b3),
692 	regmap_reg_range(0x0604, 0x060b),
693 	regmap_reg_range(0x0610, 0x0612),
694 	regmap_reg_range(0x0614, 0x062c),
695 	regmap_reg_range(0x0640, 0x0645),
696 	regmap_reg_range(0x0648, 0x064d),
697 
698 	/* port 1 */
699 	regmap_reg_range(0x1000, 0x1001),
700 	regmap_reg_range(0x1013, 0x1013),
701 	regmap_reg_range(0x1017, 0x1017),
702 	regmap_reg_range(0x101b, 0x101b),
703 	regmap_reg_range(0x101f, 0x1020),
704 	regmap_reg_range(0x1030, 0x1030),
705 	regmap_reg_range(0x1100, 0x1115),
706 	regmap_reg_range(0x111a, 0x111f),
707 	regmap_reg_range(0x1120, 0x112b),
708 	regmap_reg_range(0x1134, 0x113b),
709 	regmap_reg_range(0x113c, 0x113f),
710 	regmap_reg_range(0x1400, 0x1401),
711 	regmap_reg_range(0x1403, 0x1403),
712 	regmap_reg_range(0x1410, 0x1417),
713 	regmap_reg_range(0x1420, 0x1423),
714 	regmap_reg_range(0x1500, 0x1507),
715 	regmap_reg_range(0x1600, 0x1613),
716 	regmap_reg_range(0x1800, 0x180f),
717 	regmap_reg_range(0x1820, 0x1827),
718 	regmap_reg_range(0x1830, 0x1837),
719 	regmap_reg_range(0x1840, 0x184b),
720 	regmap_reg_range(0x1900, 0x1907),
721 	regmap_reg_range(0x1914, 0x191b),
722 	regmap_reg_range(0x1920, 0x1920),
723 	regmap_reg_range(0x1923, 0x1927),
724 	regmap_reg_range(0x1a00, 0x1a03),
725 	regmap_reg_range(0x1a04, 0x1a07),
726 	regmap_reg_range(0x1b00, 0x1b01),
727 	regmap_reg_range(0x1b04, 0x1b04),
728 	regmap_reg_range(0x1c00, 0x1c05),
729 	regmap_reg_range(0x1c08, 0x1c1b),
730 
731 	/* port 2 */
732 	regmap_reg_range(0x2000, 0x2001),
733 	regmap_reg_range(0x2013, 0x2013),
734 	regmap_reg_range(0x2017, 0x2017),
735 	regmap_reg_range(0x201b, 0x201b),
736 	regmap_reg_range(0x201f, 0x2020),
737 	regmap_reg_range(0x2030, 0x2030),
738 	regmap_reg_range(0x2100, 0x2115),
739 	regmap_reg_range(0x211a, 0x211f),
740 	regmap_reg_range(0x2120, 0x212b),
741 	regmap_reg_range(0x2134, 0x213b),
742 	regmap_reg_range(0x213c, 0x213f),
743 	regmap_reg_range(0x2400, 0x2401),
744 	regmap_reg_range(0x2403, 0x2403),
745 	regmap_reg_range(0x2410, 0x2417),
746 	regmap_reg_range(0x2420, 0x2423),
747 	regmap_reg_range(0x2500, 0x2507),
748 	regmap_reg_range(0x2600, 0x2613),
749 	regmap_reg_range(0x2800, 0x280f),
750 	regmap_reg_range(0x2820, 0x2827),
751 	regmap_reg_range(0x2830, 0x2837),
752 	regmap_reg_range(0x2840, 0x284b),
753 	regmap_reg_range(0x2900, 0x2907),
754 	regmap_reg_range(0x2914, 0x291b),
755 	regmap_reg_range(0x2920, 0x2920),
756 	regmap_reg_range(0x2923, 0x2927),
757 	regmap_reg_range(0x2a00, 0x2a03),
758 	regmap_reg_range(0x2a04, 0x2a07),
759 	regmap_reg_range(0x2b00, 0x2b01),
760 	regmap_reg_range(0x2b04, 0x2b04),
761 	regmap_reg_range(0x2c00, 0x2c05),
762 	regmap_reg_range(0x2c08, 0x2c1b),
763 
764 	/* port 3 */
765 	regmap_reg_range(0x3000, 0x3001),
766 	regmap_reg_range(0x3013, 0x3013),
767 	regmap_reg_range(0x3017, 0x3017),
768 	regmap_reg_range(0x301b, 0x301b),
769 	regmap_reg_range(0x301f, 0x3020),
770 	regmap_reg_range(0x3030, 0x3030),
771 	regmap_reg_range(0x3100, 0x3115),
772 	regmap_reg_range(0x311a, 0x311f),
773 	regmap_reg_range(0x3120, 0x312b),
774 	regmap_reg_range(0x3134, 0x313b),
775 	regmap_reg_range(0x313c, 0x313f),
776 	regmap_reg_range(0x3400, 0x3401),
777 	regmap_reg_range(0x3403, 0x3403),
778 	regmap_reg_range(0x3410, 0x3417),
779 	regmap_reg_range(0x3420, 0x3423),
780 	regmap_reg_range(0x3500, 0x3507),
781 	regmap_reg_range(0x3600, 0x3613),
782 	regmap_reg_range(0x3800, 0x380f),
783 	regmap_reg_range(0x3820, 0x3827),
784 	regmap_reg_range(0x3830, 0x3837),
785 	regmap_reg_range(0x3840, 0x384b),
786 	regmap_reg_range(0x3900, 0x3907),
787 	regmap_reg_range(0x3914, 0x391b),
788 	regmap_reg_range(0x3920, 0x3920),
789 	regmap_reg_range(0x3923, 0x3927),
790 	regmap_reg_range(0x3a00, 0x3a03),
791 	regmap_reg_range(0x3a04, 0x3a07),
792 	regmap_reg_range(0x3b00, 0x3b01),
793 	regmap_reg_range(0x3b04, 0x3b04),
794 	regmap_reg_range(0x3c00, 0x3c05),
795 	regmap_reg_range(0x3c08, 0x3c1b),
796 
797 	/* port 4 */
798 	regmap_reg_range(0x4000, 0x4001),
799 	regmap_reg_range(0x4013, 0x4013),
800 	regmap_reg_range(0x4017, 0x4017),
801 	regmap_reg_range(0x401b, 0x401b),
802 	regmap_reg_range(0x401f, 0x4020),
803 	regmap_reg_range(0x4030, 0x4030),
804 	regmap_reg_range(0x4100, 0x4115),
805 	regmap_reg_range(0x411a, 0x411f),
806 	regmap_reg_range(0x4120, 0x412b),
807 	regmap_reg_range(0x4134, 0x413b),
808 	regmap_reg_range(0x413c, 0x413f),
809 	regmap_reg_range(0x4400, 0x4401),
810 	regmap_reg_range(0x4403, 0x4403),
811 	regmap_reg_range(0x4410, 0x4417),
812 	regmap_reg_range(0x4420, 0x4423),
813 	regmap_reg_range(0x4500, 0x4507),
814 	regmap_reg_range(0x4600, 0x4613),
815 	regmap_reg_range(0x4800, 0x480f),
816 	regmap_reg_range(0x4820, 0x4827),
817 	regmap_reg_range(0x4830, 0x4837),
818 	regmap_reg_range(0x4840, 0x484b),
819 	regmap_reg_range(0x4900, 0x4907),
820 	regmap_reg_range(0x4914, 0x491b),
821 	regmap_reg_range(0x4920, 0x4920),
822 	regmap_reg_range(0x4923, 0x4927),
823 	regmap_reg_range(0x4a00, 0x4a03),
824 	regmap_reg_range(0x4a04, 0x4a07),
825 	regmap_reg_range(0x4b00, 0x4b01),
826 	regmap_reg_range(0x4b04, 0x4b04),
827 	regmap_reg_range(0x4c00, 0x4c05),
828 	regmap_reg_range(0x4c08, 0x4c1b),
829 
830 	/* port 5 */
831 	regmap_reg_range(0x5000, 0x5001),
832 	regmap_reg_range(0x5013, 0x5013),
833 	regmap_reg_range(0x5017, 0x5017),
834 	regmap_reg_range(0x501b, 0x501b),
835 	regmap_reg_range(0x501f, 0x5020),
836 	regmap_reg_range(0x5030, 0x5030),
837 	regmap_reg_range(0x5100, 0x5115),
838 	regmap_reg_range(0x511a, 0x511f),
839 	regmap_reg_range(0x5120, 0x512b),
840 	regmap_reg_range(0x5134, 0x513b),
841 	regmap_reg_range(0x513c, 0x513f),
842 	regmap_reg_range(0x5400, 0x5401),
843 	regmap_reg_range(0x5403, 0x5403),
844 	regmap_reg_range(0x5410, 0x5417),
845 	regmap_reg_range(0x5420, 0x5423),
846 	regmap_reg_range(0x5500, 0x5507),
847 	regmap_reg_range(0x5600, 0x5613),
848 	regmap_reg_range(0x5800, 0x580f),
849 	regmap_reg_range(0x5820, 0x5827),
850 	regmap_reg_range(0x5830, 0x5837),
851 	regmap_reg_range(0x5840, 0x584b),
852 	regmap_reg_range(0x5900, 0x5907),
853 	regmap_reg_range(0x5914, 0x591b),
854 	regmap_reg_range(0x5920, 0x5920),
855 	regmap_reg_range(0x5923, 0x5927),
856 	regmap_reg_range(0x5a00, 0x5a03),
857 	regmap_reg_range(0x5a04, 0x5a07),
858 	regmap_reg_range(0x5b00, 0x5b01),
859 	regmap_reg_range(0x5b04, 0x5b04),
860 	regmap_reg_range(0x5c00, 0x5c05),
861 	regmap_reg_range(0x5c08, 0x5c1b),
862 
863 	/* port 6 */
864 	regmap_reg_range(0x6000, 0x6001),
865 	regmap_reg_range(0x6013, 0x6013),
866 	regmap_reg_range(0x6017, 0x6017),
867 	regmap_reg_range(0x601b, 0x601b),
868 	regmap_reg_range(0x601f, 0x6020),
869 	regmap_reg_range(0x6030, 0x6030),
870 	regmap_reg_range(0x6300, 0x6301),
871 	regmap_reg_range(0x6400, 0x6401),
872 	regmap_reg_range(0x6403, 0x6403),
873 	regmap_reg_range(0x6410, 0x6417),
874 	regmap_reg_range(0x6420, 0x6423),
875 	regmap_reg_range(0x6500, 0x6507),
876 	regmap_reg_range(0x6600, 0x6613),
877 	regmap_reg_range(0x6800, 0x680f),
878 	regmap_reg_range(0x6820, 0x6827),
879 	regmap_reg_range(0x6830, 0x6837),
880 	regmap_reg_range(0x6840, 0x684b),
881 	regmap_reg_range(0x6900, 0x6907),
882 	regmap_reg_range(0x6914, 0x691b),
883 	regmap_reg_range(0x6920, 0x6920),
884 	regmap_reg_range(0x6923, 0x6927),
885 	regmap_reg_range(0x6a00, 0x6a03),
886 	regmap_reg_range(0x6a04, 0x6a07),
887 	regmap_reg_range(0x6b00, 0x6b01),
888 	regmap_reg_range(0x6b04, 0x6b04),
889 	regmap_reg_range(0x6c00, 0x6c05),
890 	regmap_reg_range(0x6c08, 0x6c1b),
891 
892 	/* port 7 */
893 	regmap_reg_range(0x7000, 0x7001),
894 	regmap_reg_range(0x7013, 0x7013),
895 	regmap_reg_range(0x7017, 0x7017),
896 	regmap_reg_range(0x701b, 0x701b),
897 	regmap_reg_range(0x701f, 0x7020),
898 	regmap_reg_range(0x7030, 0x7030),
899 	regmap_reg_range(0x7200, 0x7203),
900 	regmap_reg_range(0x7206, 0x7207),
901 	regmap_reg_range(0x7300, 0x7301),
902 	regmap_reg_range(0x7400, 0x7401),
903 	regmap_reg_range(0x7403, 0x7403),
904 	regmap_reg_range(0x7410, 0x7417),
905 	regmap_reg_range(0x7420, 0x7423),
906 	regmap_reg_range(0x7500, 0x7507),
907 	regmap_reg_range(0x7600, 0x7613),
908 	regmap_reg_range(0x7800, 0x780f),
909 	regmap_reg_range(0x7820, 0x7827),
910 	regmap_reg_range(0x7830, 0x7837),
911 	regmap_reg_range(0x7840, 0x784b),
912 	regmap_reg_range(0x7900, 0x7907),
913 	regmap_reg_range(0x7914, 0x791b),
914 	regmap_reg_range(0x7920, 0x7920),
915 	regmap_reg_range(0x7923, 0x7927),
916 	regmap_reg_range(0x7a00, 0x7a03),
917 	regmap_reg_range(0x7a04, 0x7a07),
918 	regmap_reg_range(0x7b00, 0x7b01),
919 	regmap_reg_range(0x7b04, 0x7b04),
920 	regmap_reg_range(0x7c00, 0x7c05),
921 	regmap_reg_range(0x7c08, 0x7c1b),
922 };
923 
924 static const struct regmap_access_table ksz9477_register_set = {
925 	.yes_ranges = ksz9477_valid_regs,
926 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
927 };
928 
929 static const struct regmap_range ksz9896_valid_regs[] = {
930 	regmap_reg_range(0x0000, 0x0003),
931 	regmap_reg_range(0x0006, 0x0006),
932 	regmap_reg_range(0x0010, 0x001f),
933 	regmap_reg_range(0x0100, 0x0100),
934 	regmap_reg_range(0x0103, 0x0107),
935 	regmap_reg_range(0x010d, 0x010d),
936 	regmap_reg_range(0x0110, 0x0113),
937 	regmap_reg_range(0x0120, 0x0127),
938 	regmap_reg_range(0x0201, 0x0201),
939 	regmap_reg_range(0x0210, 0x0213),
940 	regmap_reg_range(0x0300, 0x0300),
941 	regmap_reg_range(0x0302, 0x030b),
942 	regmap_reg_range(0x0310, 0x031b),
943 	regmap_reg_range(0x0320, 0x032b),
944 	regmap_reg_range(0x0330, 0x0336),
945 	regmap_reg_range(0x0338, 0x033b),
946 	regmap_reg_range(0x033e, 0x033e),
947 	regmap_reg_range(0x0340, 0x035f),
948 	regmap_reg_range(0x0370, 0x0370),
949 	regmap_reg_range(0x0378, 0x0378),
950 	regmap_reg_range(0x037c, 0x037d),
951 	regmap_reg_range(0x0390, 0x0393),
952 	regmap_reg_range(0x0400, 0x040e),
953 	regmap_reg_range(0x0410, 0x042f),
954 
955 	/* port 1 */
956 	regmap_reg_range(0x1000, 0x1001),
957 	regmap_reg_range(0x1013, 0x1013),
958 	regmap_reg_range(0x1017, 0x1017),
959 	regmap_reg_range(0x101b, 0x101b),
960 	regmap_reg_range(0x101f, 0x1020),
961 	regmap_reg_range(0x1030, 0x1030),
962 	regmap_reg_range(0x1100, 0x1115),
963 	regmap_reg_range(0x111a, 0x111f),
964 	regmap_reg_range(0x1122, 0x1127),
965 	regmap_reg_range(0x112a, 0x112b),
966 	regmap_reg_range(0x1136, 0x1139),
967 	regmap_reg_range(0x113e, 0x113f),
968 	regmap_reg_range(0x1400, 0x1401),
969 	regmap_reg_range(0x1403, 0x1403),
970 	regmap_reg_range(0x1410, 0x1417),
971 	regmap_reg_range(0x1420, 0x1423),
972 	regmap_reg_range(0x1500, 0x1507),
973 	regmap_reg_range(0x1600, 0x1612),
974 	regmap_reg_range(0x1800, 0x180f),
975 	regmap_reg_range(0x1820, 0x1827),
976 	regmap_reg_range(0x1830, 0x1837),
977 	regmap_reg_range(0x1840, 0x184b),
978 	regmap_reg_range(0x1900, 0x1907),
979 	regmap_reg_range(0x1914, 0x1915),
980 	regmap_reg_range(0x1a00, 0x1a03),
981 	regmap_reg_range(0x1a04, 0x1a07),
982 	regmap_reg_range(0x1b00, 0x1b01),
983 	regmap_reg_range(0x1b04, 0x1b04),
984 
985 	/* port 2 */
986 	regmap_reg_range(0x2000, 0x2001),
987 	regmap_reg_range(0x2013, 0x2013),
988 	regmap_reg_range(0x2017, 0x2017),
989 	regmap_reg_range(0x201b, 0x201b),
990 	regmap_reg_range(0x201f, 0x2020),
991 	regmap_reg_range(0x2030, 0x2030),
992 	regmap_reg_range(0x2100, 0x2115),
993 	regmap_reg_range(0x211a, 0x211f),
994 	regmap_reg_range(0x2122, 0x2127),
995 	regmap_reg_range(0x212a, 0x212b),
996 	regmap_reg_range(0x2136, 0x2139),
997 	regmap_reg_range(0x213e, 0x213f),
998 	regmap_reg_range(0x2400, 0x2401),
999 	regmap_reg_range(0x2403, 0x2403),
1000 	regmap_reg_range(0x2410, 0x2417),
1001 	regmap_reg_range(0x2420, 0x2423),
1002 	regmap_reg_range(0x2500, 0x2507),
1003 	regmap_reg_range(0x2600, 0x2612),
1004 	regmap_reg_range(0x2800, 0x280f),
1005 	regmap_reg_range(0x2820, 0x2827),
1006 	regmap_reg_range(0x2830, 0x2837),
1007 	regmap_reg_range(0x2840, 0x284b),
1008 	regmap_reg_range(0x2900, 0x2907),
1009 	regmap_reg_range(0x2914, 0x2915),
1010 	regmap_reg_range(0x2a00, 0x2a03),
1011 	regmap_reg_range(0x2a04, 0x2a07),
1012 	regmap_reg_range(0x2b00, 0x2b01),
1013 	regmap_reg_range(0x2b04, 0x2b04),
1014 
1015 	/* port 3 */
1016 	regmap_reg_range(0x3000, 0x3001),
1017 	regmap_reg_range(0x3013, 0x3013),
1018 	regmap_reg_range(0x3017, 0x3017),
1019 	regmap_reg_range(0x301b, 0x301b),
1020 	regmap_reg_range(0x301f, 0x3020),
1021 	regmap_reg_range(0x3030, 0x3030),
1022 	regmap_reg_range(0x3100, 0x3115),
1023 	regmap_reg_range(0x311a, 0x311f),
1024 	regmap_reg_range(0x3122, 0x3127),
1025 	regmap_reg_range(0x312a, 0x312b),
1026 	regmap_reg_range(0x3136, 0x3139),
1027 	regmap_reg_range(0x313e, 0x313f),
1028 	regmap_reg_range(0x3400, 0x3401),
1029 	regmap_reg_range(0x3403, 0x3403),
1030 	regmap_reg_range(0x3410, 0x3417),
1031 	regmap_reg_range(0x3420, 0x3423),
1032 	regmap_reg_range(0x3500, 0x3507),
1033 	regmap_reg_range(0x3600, 0x3612),
1034 	regmap_reg_range(0x3800, 0x380f),
1035 	regmap_reg_range(0x3820, 0x3827),
1036 	regmap_reg_range(0x3830, 0x3837),
1037 	regmap_reg_range(0x3840, 0x384b),
1038 	regmap_reg_range(0x3900, 0x3907),
1039 	regmap_reg_range(0x3914, 0x3915),
1040 	regmap_reg_range(0x3a00, 0x3a03),
1041 	regmap_reg_range(0x3a04, 0x3a07),
1042 	regmap_reg_range(0x3b00, 0x3b01),
1043 	regmap_reg_range(0x3b04, 0x3b04),
1044 
1045 	/* port 4 */
1046 	regmap_reg_range(0x4000, 0x4001),
1047 	regmap_reg_range(0x4013, 0x4013),
1048 	regmap_reg_range(0x4017, 0x4017),
1049 	regmap_reg_range(0x401b, 0x401b),
1050 	regmap_reg_range(0x401f, 0x4020),
1051 	regmap_reg_range(0x4030, 0x4030),
1052 	regmap_reg_range(0x4100, 0x4115),
1053 	regmap_reg_range(0x411a, 0x411f),
1054 	regmap_reg_range(0x4122, 0x4127),
1055 	regmap_reg_range(0x412a, 0x412b),
1056 	regmap_reg_range(0x4136, 0x4139),
1057 	regmap_reg_range(0x413e, 0x413f),
1058 	regmap_reg_range(0x4400, 0x4401),
1059 	regmap_reg_range(0x4403, 0x4403),
1060 	regmap_reg_range(0x4410, 0x4417),
1061 	regmap_reg_range(0x4420, 0x4423),
1062 	regmap_reg_range(0x4500, 0x4507),
1063 	regmap_reg_range(0x4600, 0x4612),
1064 	regmap_reg_range(0x4800, 0x480f),
1065 	regmap_reg_range(0x4820, 0x4827),
1066 	regmap_reg_range(0x4830, 0x4837),
1067 	regmap_reg_range(0x4840, 0x484b),
1068 	regmap_reg_range(0x4900, 0x4907),
1069 	regmap_reg_range(0x4914, 0x4915),
1070 	regmap_reg_range(0x4a00, 0x4a03),
1071 	regmap_reg_range(0x4a04, 0x4a07),
1072 	regmap_reg_range(0x4b00, 0x4b01),
1073 	regmap_reg_range(0x4b04, 0x4b04),
1074 
1075 	/* port 5 */
1076 	regmap_reg_range(0x5000, 0x5001),
1077 	regmap_reg_range(0x5013, 0x5013),
1078 	regmap_reg_range(0x5017, 0x5017),
1079 	regmap_reg_range(0x501b, 0x501b),
1080 	regmap_reg_range(0x501f, 0x5020),
1081 	regmap_reg_range(0x5030, 0x5030),
1082 	regmap_reg_range(0x5100, 0x5115),
1083 	regmap_reg_range(0x511a, 0x511f),
1084 	regmap_reg_range(0x5122, 0x5127),
1085 	regmap_reg_range(0x512a, 0x512b),
1086 	regmap_reg_range(0x5136, 0x5139),
1087 	regmap_reg_range(0x513e, 0x513f),
1088 	regmap_reg_range(0x5400, 0x5401),
1089 	regmap_reg_range(0x5403, 0x5403),
1090 	regmap_reg_range(0x5410, 0x5417),
1091 	regmap_reg_range(0x5420, 0x5423),
1092 	regmap_reg_range(0x5500, 0x5507),
1093 	regmap_reg_range(0x5600, 0x5612),
1094 	regmap_reg_range(0x5800, 0x580f),
1095 	regmap_reg_range(0x5820, 0x5827),
1096 	regmap_reg_range(0x5830, 0x5837),
1097 	regmap_reg_range(0x5840, 0x584b),
1098 	regmap_reg_range(0x5900, 0x5907),
1099 	regmap_reg_range(0x5914, 0x5915),
1100 	regmap_reg_range(0x5a00, 0x5a03),
1101 	regmap_reg_range(0x5a04, 0x5a07),
1102 	regmap_reg_range(0x5b00, 0x5b01),
1103 	regmap_reg_range(0x5b04, 0x5b04),
1104 
1105 	/* port 6 */
1106 	regmap_reg_range(0x6000, 0x6001),
1107 	regmap_reg_range(0x6013, 0x6013),
1108 	regmap_reg_range(0x6017, 0x6017),
1109 	regmap_reg_range(0x601b, 0x601b),
1110 	regmap_reg_range(0x601f, 0x6020),
1111 	regmap_reg_range(0x6030, 0x6030),
1112 	regmap_reg_range(0x6100, 0x6115),
1113 	regmap_reg_range(0x611a, 0x611f),
1114 	regmap_reg_range(0x6122, 0x6127),
1115 	regmap_reg_range(0x612a, 0x612b),
1116 	regmap_reg_range(0x6136, 0x6139),
1117 	regmap_reg_range(0x613e, 0x613f),
1118 	regmap_reg_range(0x6300, 0x6301),
1119 	regmap_reg_range(0x6400, 0x6401),
1120 	regmap_reg_range(0x6403, 0x6403),
1121 	regmap_reg_range(0x6410, 0x6417),
1122 	regmap_reg_range(0x6420, 0x6423),
1123 	regmap_reg_range(0x6500, 0x6507),
1124 	regmap_reg_range(0x6600, 0x6612),
1125 	regmap_reg_range(0x6800, 0x680f),
1126 	regmap_reg_range(0x6820, 0x6827),
1127 	regmap_reg_range(0x6830, 0x6837),
1128 	regmap_reg_range(0x6840, 0x684b),
1129 	regmap_reg_range(0x6900, 0x6907),
1130 	regmap_reg_range(0x6914, 0x6915),
1131 	regmap_reg_range(0x6a00, 0x6a03),
1132 	regmap_reg_range(0x6a04, 0x6a07),
1133 	regmap_reg_range(0x6b00, 0x6b01),
1134 	regmap_reg_range(0x6b04, 0x6b04),
1135 };
1136 
1137 static const struct regmap_access_table ksz9896_register_set = {
1138 	.yes_ranges = ksz9896_valid_regs,
1139 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1140 };
1141 
1142 static const struct regmap_range ksz8873_valid_regs[] = {
1143 	regmap_reg_range(0x00, 0x01),
1144 	/* global control register */
1145 	regmap_reg_range(0x02, 0x0f),
1146 
1147 	/* port registers */
1148 	regmap_reg_range(0x10, 0x1d),
1149 	regmap_reg_range(0x1e, 0x1f),
1150 	regmap_reg_range(0x20, 0x2d),
1151 	regmap_reg_range(0x2e, 0x2f),
1152 	regmap_reg_range(0x30, 0x39),
1153 	regmap_reg_range(0x3f, 0x3f),
1154 
1155 	/* advanced control registers */
1156 	regmap_reg_range(0x60, 0x6f),
1157 	regmap_reg_range(0x70, 0x75),
1158 	regmap_reg_range(0x76, 0x78),
1159 	regmap_reg_range(0x79, 0x7a),
1160 	regmap_reg_range(0x7b, 0x83),
1161 	regmap_reg_range(0x8e, 0x99),
1162 	regmap_reg_range(0x9a, 0xa5),
1163 	regmap_reg_range(0xa6, 0xa6),
1164 	regmap_reg_range(0xa7, 0xaa),
1165 	regmap_reg_range(0xab, 0xae),
1166 	regmap_reg_range(0xaf, 0xba),
1167 	regmap_reg_range(0xbb, 0xbc),
1168 	regmap_reg_range(0xbd, 0xbd),
1169 	regmap_reg_range(0xc0, 0xc0),
1170 	regmap_reg_range(0xc2, 0xc2),
1171 	regmap_reg_range(0xc3, 0xc3),
1172 	regmap_reg_range(0xc4, 0xc4),
1173 	regmap_reg_range(0xc6, 0xc6),
1174 };
1175 
1176 static const struct regmap_access_table ksz8873_register_set = {
1177 	.yes_ranges = ksz8873_valid_regs,
1178 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1179 };
1180 
1181 const struct ksz_chip_data ksz_switch_chips[] = {
1182 	[KSZ8563] = {
1183 		.chip_id = KSZ8563_CHIP_ID,
1184 		.dev_name = "KSZ8563",
1185 		.num_vlans = 4096,
1186 		.num_alus = 4096,
1187 		.num_statics = 16,
1188 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1189 		.port_cnt = 3,		/* total port count */
1190 		.port_nirqs = 3,
1191 		.num_tx_queues = 4,
1192 		.tc_cbs_supported = true,
1193 		.tc_ets_supported = true,
1194 		.ops = &ksz9477_dev_ops,
1195 		.mib_names = ksz9477_mib_names,
1196 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1197 		.reg_mib_cnt = MIB_COUNTER_NUM,
1198 		.regs = ksz9477_regs,
1199 		.masks = ksz9477_masks,
1200 		.shifts = ksz9477_shifts,
1201 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1202 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1203 		.supports_mii = {false, false, true},
1204 		.supports_rmii = {false, false, true},
1205 		.supports_rgmii = {false, false, true},
1206 		.internal_phy = {true, true, false},
1207 		.gbit_capable = {false, false, true},
1208 		.wr_table = &ksz8563_register_set,
1209 		.rd_table = &ksz8563_register_set,
1210 	},
1211 
1212 	[KSZ8795] = {
1213 		.chip_id = KSZ8795_CHIP_ID,
1214 		.dev_name = "KSZ8795",
1215 		.num_vlans = 4096,
1216 		.num_alus = 0,
1217 		.num_statics = 8,
1218 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1219 		.port_cnt = 5,		/* total cpu and user ports */
1220 		.num_tx_queues = 4,
1221 		.ops = &ksz8_dev_ops,
1222 		.ksz87xx_eee_link_erratum = true,
1223 		.mib_names = ksz9477_mib_names,
1224 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1225 		.reg_mib_cnt = MIB_COUNTER_NUM,
1226 		.regs = ksz8795_regs,
1227 		.masks = ksz8795_masks,
1228 		.shifts = ksz8795_shifts,
1229 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1230 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1231 		.supports_mii = {false, false, false, false, true},
1232 		.supports_rmii = {false, false, false, false, true},
1233 		.supports_rgmii = {false, false, false, false, true},
1234 		.internal_phy = {true, true, true, true, false},
1235 	},
1236 
1237 	[KSZ8794] = {
1238 		/* WARNING
1239 		 * =======
1240 		 * KSZ8794 is similar to KSZ8795, except the port map
1241 		 * contains a gap between external and CPU ports, the
1242 		 * port map is NOT continuous. The per-port register
1243 		 * map is shifted accordingly too, i.e. registers at
1244 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1245 		 * used on KSZ8795 for external port 3.
1246 		 *           external  cpu
1247 		 * KSZ8794   0,1,2      4
1248 		 * KSZ8795   0,1,2,3    4
1249 		 * KSZ8765   0,1,2,3    4
1250 		 * port_cnt is configured as 5, even though it is 4
1251 		 */
1252 		.chip_id = KSZ8794_CHIP_ID,
1253 		.dev_name = "KSZ8794",
1254 		.num_vlans = 4096,
1255 		.num_alus = 0,
1256 		.num_statics = 8,
1257 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1258 		.port_cnt = 5,		/* total cpu and user ports */
1259 		.num_tx_queues = 4,
1260 		.ops = &ksz8_dev_ops,
1261 		.ksz87xx_eee_link_erratum = true,
1262 		.mib_names = ksz9477_mib_names,
1263 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1264 		.reg_mib_cnt = MIB_COUNTER_NUM,
1265 		.regs = ksz8795_regs,
1266 		.masks = ksz8795_masks,
1267 		.shifts = ksz8795_shifts,
1268 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1269 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1270 		.supports_mii = {false, false, false, false, true},
1271 		.supports_rmii = {false, false, false, false, true},
1272 		.supports_rgmii = {false, false, false, false, true},
1273 		.internal_phy = {true, true, true, false, false},
1274 	},
1275 
1276 	[KSZ8765] = {
1277 		.chip_id = KSZ8765_CHIP_ID,
1278 		.dev_name = "KSZ8765",
1279 		.num_vlans = 4096,
1280 		.num_alus = 0,
1281 		.num_statics = 8,
1282 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1283 		.port_cnt = 5,		/* total cpu and user ports */
1284 		.num_tx_queues = 4,
1285 		.ops = &ksz8_dev_ops,
1286 		.ksz87xx_eee_link_erratum = true,
1287 		.mib_names = ksz9477_mib_names,
1288 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1289 		.reg_mib_cnt = MIB_COUNTER_NUM,
1290 		.regs = ksz8795_regs,
1291 		.masks = ksz8795_masks,
1292 		.shifts = ksz8795_shifts,
1293 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1294 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1295 		.supports_mii = {false, false, false, false, true},
1296 		.supports_rmii = {false, false, false, false, true},
1297 		.supports_rgmii = {false, false, false, false, true},
1298 		.internal_phy = {true, true, true, true, false},
1299 	},
1300 
1301 	[KSZ8830] = {
1302 		.chip_id = KSZ8830_CHIP_ID,
1303 		.dev_name = "KSZ8863/KSZ8873",
1304 		.num_vlans = 16,
1305 		.num_alus = 0,
1306 		.num_statics = 8,
1307 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1308 		.port_cnt = 3,
1309 		.num_tx_queues = 4,
1310 		.ops = &ksz8_dev_ops,
1311 		.mib_names = ksz88xx_mib_names,
1312 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1313 		.reg_mib_cnt = MIB_COUNTER_NUM,
1314 		.regs = ksz8863_regs,
1315 		.masks = ksz8863_masks,
1316 		.shifts = ksz8863_shifts,
1317 		.supports_mii = {false, false, true},
1318 		.supports_rmii = {false, false, true},
1319 		.internal_phy = {true, true, false},
1320 		.wr_table = &ksz8873_register_set,
1321 		.rd_table = &ksz8873_register_set,
1322 	},
1323 
1324 	[KSZ9477] = {
1325 		.chip_id = KSZ9477_CHIP_ID,
1326 		.dev_name = "KSZ9477",
1327 		.num_vlans = 4096,
1328 		.num_alus = 4096,
1329 		.num_statics = 16,
1330 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1331 		.port_cnt = 7,		/* total physical port count */
1332 		.port_nirqs = 4,
1333 		.num_tx_queues = 4,
1334 		.tc_cbs_supported = true,
1335 		.tc_ets_supported = true,
1336 		.ops = &ksz9477_dev_ops,
1337 		.mib_names = ksz9477_mib_names,
1338 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1339 		.reg_mib_cnt = MIB_COUNTER_NUM,
1340 		.regs = ksz9477_regs,
1341 		.masks = ksz9477_masks,
1342 		.shifts = ksz9477_shifts,
1343 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1344 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1345 		.supports_mii	= {false, false, false, false,
1346 				   false, true, false},
1347 		.supports_rmii	= {false, false, false, false,
1348 				   false, true, false},
1349 		.supports_rgmii = {false, false, false, false,
1350 				   false, true, false},
1351 		.internal_phy	= {true, true, true, true,
1352 				   true, false, false},
1353 		.gbit_capable	= {true, true, true, true, true, true, true},
1354 		.wr_table = &ksz9477_register_set,
1355 		.rd_table = &ksz9477_register_set,
1356 	},
1357 
1358 	[KSZ9896] = {
1359 		.chip_id = KSZ9896_CHIP_ID,
1360 		.dev_name = "KSZ9896",
1361 		.num_vlans = 4096,
1362 		.num_alus = 4096,
1363 		.num_statics = 16,
1364 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1365 		.port_cnt = 6,		/* total physical port count */
1366 		.port_nirqs = 2,
1367 		.num_tx_queues = 4,
1368 		.ops = &ksz9477_dev_ops,
1369 		.mib_names = ksz9477_mib_names,
1370 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1371 		.reg_mib_cnt = MIB_COUNTER_NUM,
1372 		.regs = ksz9477_regs,
1373 		.masks = ksz9477_masks,
1374 		.shifts = ksz9477_shifts,
1375 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1376 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1377 		.supports_mii	= {false, false, false, false,
1378 				   false, true},
1379 		.supports_rmii	= {false, false, false, false,
1380 				   false, true},
1381 		.supports_rgmii = {false, false, false, false,
1382 				   false, true},
1383 		.internal_phy	= {true, true, true, true,
1384 				   true, false},
1385 		.gbit_capable	= {true, true, true, true, true, true},
1386 		.wr_table = &ksz9896_register_set,
1387 		.rd_table = &ksz9896_register_set,
1388 	},
1389 
1390 	[KSZ9897] = {
1391 		.chip_id = KSZ9897_CHIP_ID,
1392 		.dev_name = "KSZ9897",
1393 		.num_vlans = 4096,
1394 		.num_alus = 4096,
1395 		.num_statics = 16,
1396 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1397 		.port_cnt = 7,		/* total physical port count */
1398 		.port_nirqs = 2,
1399 		.num_tx_queues = 4,
1400 		.ops = &ksz9477_dev_ops,
1401 		.mib_names = ksz9477_mib_names,
1402 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1403 		.reg_mib_cnt = MIB_COUNTER_NUM,
1404 		.regs = ksz9477_regs,
1405 		.masks = ksz9477_masks,
1406 		.shifts = ksz9477_shifts,
1407 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1408 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1409 		.supports_mii	= {false, false, false, false,
1410 				   false, true, true},
1411 		.supports_rmii	= {false, false, false, false,
1412 				   false, true, true},
1413 		.supports_rgmii = {false, false, false, false,
1414 				   false, true, true},
1415 		.internal_phy	= {true, true, true, true,
1416 				   true, false, false},
1417 		.gbit_capable	= {true, true, true, true, true, true, true},
1418 	},
1419 
1420 	[KSZ9893] = {
1421 		.chip_id = KSZ9893_CHIP_ID,
1422 		.dev_name = "KSZ9893",
1423 		.num_vlans = 4096,
1424 		.num_alus = 4096,
1425 		.num_statics = 16,
1426 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1427 		.port_cnt = 3,		/* total port count */
1428 		.port_nirqs = 2,
1429 		.num_tx_queues = 4,
1430 		.ops = &ksz9477_dev_ops,
1431 		.mib_names = ksz9477_mib_names,
1432 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1433 		.reg_mib_cnt = MIB_COUNTER_NUM,
1434 		.regs = ksz9477_regs,
1435 		.masks = ksz9477_masks,
1436 		.shifts = ksz9477_shifts,
1437 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1438 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1439 		.supports_mii = {false, false, true},
1440 		.supports_rmii = {false, false, true},
1441 		.supports_rgmii = {false, false, true},
1442 		.internal_phy = {true, true, false},
1443 		.gbit_capable = {true, true, true},
1444 	},
1445 
1446 	[KSZ9563] = {
1447 		.chip_id = KSZ9563_CHIP_ID,
1448 		.dev_name = "KSZ9563",
1449 		.num_vlans = 4096,
1450 		.num_alus = 4096,
1451 		.num_statics = 16,
1452 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1453 		.port_cnt = 3,		/* total port count */
1454 		.port_nirqs = 3,
1455 		.num_tx_queues = 4,
1456 		.tc_cbs_supported = true,
1457 		.tc_ets_supported = true,
1458 		.ops = &ksz9477_dev_ops,
1459 		.mib_names = ksz9477_mib_names,
1460 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1461 		.reg_mib_cnt = MIB_COUNTER_NUM,
1462 		.regs = ksz9477_regs,
1463 		.masks = ksz9477_masks,
1464 		.shifts = ksz9477_shifts,
1465 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1466 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1467 		.supports_mii = {false, false, true},
1468 		.supports_rmii = {false, false, true},
1469 		.supports_rgmii = {false, false, true},
1470 		.internal_phy = {true, true, false},
1471 		.gbit_capable = {true, true, true},
1472 	},
1473 
1474 	[KSZ9567] = {
1475 		.chip_id = KSZ9567_CHIP_ID,
1476 		.dev_name = "KSZ9567",
1477 		.num_vlans = 4096,
1478 		.num_alus = 4096,
1479 		.num_statics = 16,
1480 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1481 		.port_cnt = 7,		/* total physical port count */
1482 		.port_nirqs = 3,
1483 		.num_tx_queues = 4,
1484 		.tc_cbs_supported = true,
1485 		.tc_ets_supported = true,
1486 		.ops = &ksz9477_dev_ops,
1487 		.mib_names = ksz9477_mib_names,
1488 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1489 		.reg_mib_cnt = MIB_COUNTER_NUM,
1490 		.regs = ksz9477_regs,
1491 		.masks = ksz9477_masks,
1492 		.shifts = ksz9477_shifts,
1493 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1494 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1495 		.supports_mii	= {false, false, false, false,
1496 				   false, true, true},
1497 		.supports_rmii	= {false, false, false, false,
1498 				   false, true, true},
1499 		.supports_rgmii = {false, false, false, false,
1500 				   false, true, true},
1501 		.internal_phy	= {true, true, true, true,
1502 				   true, false, false},
1503 		.gbit_capable	= {true, true, true, true, true, true, true},
1504 	},
1505 
1506 	[LAN9370] = {
1507 		.chip_id = LAN9370_CHIP_ID,
1508 		.dev_name = "LAN9370",
1509 		.num_vlans = 4096,
1510 		.num_alus = 1024,
1511 		.num_statics = 256,
1512 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1513 		.port_cnt = 5,		/* total physical port count */
1514 		.port_nirqs = 6,
1515 		.num_tx_queues = 8,
1516 		.tc_cbs_supported = true,
1517 		.tc_ets_supported = true,
1518 		.ops = &lan937x_dev_ops,
1519 		.mib_names = ksz9477_mib_names,
1520 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1521 		.reg_mib_cnt = MIB_COUNTER_NUM,
1522 		.regs = ksz9477_regs,
1523 		.masks = lan937x_masks,
1524 		.shifts = lan937x_shifts,
1525 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1526 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1527 		.supports_mii = {false, false, false, false, true},
1528 		.supports_rmii = {false, false, false, false, true},
1529 		.supports_rgmii = {false, false, false, false, true},
1530 		.internal_phy = {true, true, true, true, false},
1531 	},
1532 
1533 	[LAN9371] = {
1534 		.chip_id = LAN9371_CHIP_ID,
1535 		.dev_name = "LAN9371",
1536 		.num_vlans = 4096,
1537 		.num_alus = 1024,
1538 		.num_statics = 256,
1539 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1540 		.port_cnt = 6,		/* total physical port count */
1541 		.port_nirqs = 6,
1542 		.num_tx_queues = 8,
1543 		.tc_cbs_supported = true,
1544 		.tc_ets_supported = true,
1545 		.ops = &lan937x_dev_ops,
1546 		.mib_names = ksz9477_mib_names,
1547 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1548 		.reg_mib_cnt = MIB_COUNTER_NUM,
1549 		.regs = ksz9477_regs,
1550 		.masks = lan937x_masks,
1551 		.shifts = lan937x_shifts,
1552 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1553 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1554 		.supports_mii = {false, false, false, false, true, true},
1555 		.supports_rmii = {false, false, false, false, true, true},
1556 		.supports_rgmii = {false, false, false, false, true, true},
1557 		.internal_phy = {true, true, true, true, false, false},
1558 	},
1559 
1560 	[LAN9372] = {
1561 		.chip_id = LAN9372_CHIP_ID,
1562 		.dev_name = "LAN9372",
1563 		.num_vlans = 4096,
1564 		.num_alus = 1024,
1565 		.num_statics = 256,
1566 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1567 		.port_cnt = 8,		/* total physical port count */
1568 		.port_nirqs = 6,
1569 		.num_tx_queues = 8,
1570 		.tc_cbs_supported = true,
1571 		.tc_ets_supported = true,
1572 		.ops = &lan937x_dev_ops,
1573 		.mib_names = ksz9477_mib_names,
1574 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1575 		.reg_mib_cnt = MIB_COUNTER_NUM,
1576 		.regs = ksz9477_regs,
1577 		.masks = lan937x_masks,
1578 		.shifts = lan937x_shifts,
1579 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1580 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1581 		.supports_mii	= {false, false, false, false,
1582 				   true, true, false, false},
1583 		.supports_rmii	= {false, false, false, false,
1584 				   true, true, false, false},
1585 		.supports_rgmii = {false, false, false, false,
1586 				   true, true, false, false},
1587 		.internal_phy	= {true, true, true, true,
1588 				   false, false, true, true},
1589 	},
1590 
1591 	[LAN9373] = {
1592 		.chip_id = LAN9373_CHIP_ID,
1593 		.dev_name = "LAN9373",
1594 		.num_vlans = 4096,
1595 		.num_alus = 1024,
1596 		.num_statics = 256,
1597 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1598 		.port_cnt = 5,		/* total physical port count */
1599 		.port_nirqs = 6,
1600 		.num_tx_queues = 8,
1601 		.tc_cbs_supported = true,
1602 		.tc_ets_supported = true,
1603 		.ops = &lan937x_dev_ops,
1604 		.mib_names = ksz9477_mib_names,
1605 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1606 		.reg_mib_cnt = MIB_COUNTER_NUM,
1607 		.regs = ksz9477_regs,
1608 		.masks = lan937x_masks,
1609 		.shifts = lan937x_shifts,
1610 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1611 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1612 		.supports_mii	= {false, false, false, false,
1613 				   true, true, false, false},
1614 		.supports_rmii	= {false, false, false, false,
1615 				   true, true, false, false},
1616 		.supports_rgmii = {false, false, false, false,
1617 				   true, true, false, false},
1618 		.internal_phy	= {true, true, true, false,
1619 				   false, false, true, true},
1620 	},
1621 
1622 	[LAN9374] = {
1623 		.chip_id = LAN9374_CHIP_ID,
1624 		.dev_name = "LAN9374",
1625 		.num_vlans = 4096,
1626 		.num_alus = 1024,
1627 		.num_statics = 256,
1628 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1629 		.port_cnt = 8,		/* total physical port count */
1630 		.port_nirqs = 6,
1631 		.num_tx_queues = 8,
1632 		.tc_cbs_supported = true,
1633 		.tc_ets_supported = true,
1634 		.ops = &lan937x_dev_ops,
1635 		.mib_names = ksz9477_mib_names,
1636 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1637 		.reg_mib_cnt = MIB_COUNTER_NUM,
1638 		.regs = ksz9477_regs,
1639 		.masks = lan937x_masks,
1640 		.shifts = lan937x_shifts,
1641 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1642 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1643 		.supports_mii	= {false, false, false, false,
1644 				   true, true, false, false},
1645 		.supports_rmii	= {false, false, false, false,
1646 				   true, true, false, false},
1647 		.supports_rgmii = {false, false, false, false,
1648 				   true, true, false, false},
1649 		.internal_phy	= {true, true, true, true,
1650 				   false, false, true, true},
1651 	},
1652 };
1653 EXPORT_SYMBOL_GPL(ksz_switch_chips);
1654 
1655 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1656 {
1657 	int i;
1658 
1659 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1660 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1661 
1662 		if (chip->chip_id == prod_num)
1663 			return chip;
1664 	}
1665 
1666 	return NULL;
1667 }
1668 
1669 static int ksz_check_device_id(struct ksz_device *dev)
1670 {
1671 	const struct ksz_chip_data *dt_chip_data;
1672 
1673 	dt_chip_data = of_device_get_match_data(dev->dev);
1674 
1675 	/* Check for Device Tree and Chip ID */
1676 	if (dt_chip_data->chip_id != dev->chip_id) {
1677 		dev_err(dev->dev,
1678 			"Device tree specifies chip %s but found %s, please fix it!\n",
1679 			dt_chip_data->dev_name, dev->info->dev_name);
1680 		return -ENODEV;
1681 	}
1682 
1683 	return 0;
1684 }
1685 
1686 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1687 				 struct phylink_config *config)
1688 {
1689 	struct ksz_device *dev = ds->priv;
1690 
1691 	if (dev->info->supports_mii[port])
1692 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1693 
1694 	if (dev->info->supports_rmii[port])
1695 		__set_bit(PHY_INTERFACE_MODE_RMII,
1696 			  config->supported_interfaces);
1697 
1698 	if (dev->info->supports_rgmii[port])
1699 		phy_interface_set_rgmii(config->supported_interfaces);
1700 
1701 	if (dev->info->internal_phy[port]) {
1702 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1703 			  config->supported_interfaces);
1704 		/* Compatibility for phylib's default interface type when the
1705 		 * phy-mode property is absent
1706 		 */
1707 		__set_bit(PHY_INTERFACE_MODE_GMII,
1708 			  config->supported_interfaces);
1709 	}
1710 
1711 	if (dev->dev_ops->get_caps)
1712 		dev->dev_ops->get_caps(dev, port, config);
1713 }
1714 
1715 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
1716 {
1717 	struct ethtool_pause_stats *pstats;
1718 	struct rtnl_link_stats64 *stats;
1719 	struct ksz_stats_raw *raw;
1720 	struct ksz_port_mib *mib;
1721 
1722 	mib = &dev->ports[port].mib;
1723 	stats = &mib->stats64;
1724 	pstats = &mib->pause_stats;
1725 	raw = (struct ksz_stats_raw *)mib->counters;
1726 
1727 	spin_lock(&mib->stats64_lock);
1728 
1729 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1730 		raw->rx_pause;
1731 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1732 		raw->tx_pause;
1733 
1734 	/* HW counters are counting bytes + FCS which is not acceptable
1735 	 * for rtnl_link_stats64 interface
1736 	 */
1737 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
1738 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
1739 
1740 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1741 		raw->rx_oversize;
1742 
1743 	stats->rx_crc_errors = raw->rx_crc_err;
1744 	stats->rx_frame_errors = raw->rx_align_err;
1745 	stats->rx_dropped = raw->rx_discards;
1746 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1747 		stats->rx_frame_errors  + stats->rx_dropped;
1748 
1749 	stats->tx_window_errors = raw->tx_late_col;
1750 	stats->tx_fifo_errors = raw->tx_discards;
1751 	stats->tx_aborted_errors = raw->tx_exc_col;
1752 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1753 		stats->tx_aborted_errors;
1754 
1755 	stats->multicast = raw->rx_mcast;
1756 	stats->collisions = raw->tx_total_col;
1757 
1758 	pstats->tx_pause_frames = raw->tx_pause;
1759 	pstats->rx_pause_frames = raw->rx_pause;
1760 
1761 	spin_unlock(&mib->stats64_lock);
1762 }
1763 
1764 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
1765 {
1766 	struct ethtool_pause_stats *pstats;
1767 	struct rtnl_link_stats64 *stats;
1768 	struct ksz88xx_stats_raw *raw;
1769 	struct ksz_port_mib *mib;
1770 
1771 	mib = &dev->ports[port].mib;
1772 	stats = &mib->stats64;
1773 	pstats = &mib->pause_stats;
1774 	raw = (struct ksz88xx_stats_raw *)mib->counters;
1775 
1776 	spin_lock(&mib->stats64_lock);
1777 
1778 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1779 		raw->rx_pause;
1780 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1781 		raw->tx_pause;
1782 
1783 	/* HW counters are counting bytes + FCS which is not acceptable
1784 	 * for rtnl_link_stats64 interface
1785 	 */
1786 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
1787 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
1788 
1789 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1790 		raw->rx_oversize;
1791 
1792 	stats->rx_crc_errors = raw->rx_crc_err;
1793 	stats->rx_frame_errors = raw->rx_align_err;
1794 	stats->rx_dropped = raw->rx_discards;
1795 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1796 		stats->rx_frame_errors  + stats->rx_dropped;
1797 
1798 	stats->tx_window_errors = raw->tx_late_col;
1799 	stats->tx_fifo_errors = raw->tx_discards;
1800 	stats->tx_aborted_errors = raw->tx_exc_col;
1801 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1802 		stats->tx_aborted_errors;
1803 
1804 	stats->multicast = raw->rx_mcast;
1805 	stats->collisions = raw->tx_total_col;
1806 
1807 	pstats->tx_pause_frames = raw->tx_pause;
1808 	pstats->rx_pause_frames = raw->rx_pause;
1809 
1810 	spin_unlock(&mib->stats64_lock);
1811 }
1812 
1813 static void ksz_get_stats64(struct dsa_switch *ds, int port,
1814 			    struct rtnl_link_stats64 *s)
1815 {
1816 	struct ksz_device *dev = ds->priv;
1817 	struct ksz_port_mib *mib;
1818 
1819 	mib = &dev->ports[port].mib;
1820 
1821 	spin_lock(&mib->stats64_lock);
1822 	memcpy(s, &mib->stats64, sizeof(*s));
1823 	spin_unlock(&mib->stats64_lock);
1824 }
1825 
1826 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
1827 				struct ethtool_pause_stats *pause_stats)
1828 {
1829 	struct ksz_device *dev = ds->priv;
1830 	struct ksz_port_mib *mib;
1831 
1832 	mib = &dev->ports[port].mib;
1833 
1834 	spin_lock(&mib->stats64_lock);
1835 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
1836 	spin_unlock(&mib->stats64_lock);
1837 }
1838 
1839 static void ksz_get_strings(struct dsa_switch *ds, int port,
1840 			    u32 stringset, uint8_t *buf)
1841 {
1842 	struct ksz_device *dev = ds->priv;
1843 	int i;
1844 
1845 	if (stringset != ETH_SS_STATS)
1846 		return;
1847 
1848 	for (i = 0; i < dev->info->mib_cnt; i++) {
1849 		memcpy(buf + i * ETH_GSTRING_LEN,
1850 		       dev->info->mib_names[i].string, ETH_GSTRING_LEN);
1851 	}
1852 }
1853 
1854 static void ksz_update_port_member(struct ksz_device *dev, int port)
1855 {
1856 	struct ksz_port *p = &dev->ports[port];
1857 	struct dsa_switch *ds = dev->ds;
1858 	u8 port_member = 0, cpu_port;
1859 	const struct dsa_port *dp;
1860 	int i, j;
1861 
1862 	if (!dsa_is_user_port(ds, port))
1863 		return;
1864 
1865 	dp = dsa_to_port(ds, port);
1866 	cpu_port = BIT(dsa_upstream_port(ds, port));
1867 
1868 	for (i = 0; i < ds->num_ports; i++) {
1869 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
1870 		struct ksz_port *other_p = &dev->ports[i];
1871 		u8 val = 0;
1872 
1873 		if (!dsa_is_user_port(ds, i))
1874 			continue;
1875 		if (port == i)
1876 			continue;
1877 		if (!dsa_port_bridge_same(dp, other_dp))
1878 			continue;
1879 		if (other_p->stp_state != BR_STATE_FORWARDING)
1880 			continue;
1881 
1882 		if (p->stp_state == BR_STATE_FORWARDING) {
1883 			val |= BIT(port);
1884 			port_member |= BIT(i);
1885 		}
1886 
1887 		/* Retain port [i]'s relationship to other ports than [port] */
1888 		for (j = 0; j < ds->num_ports; j++) {
1889 			const struct dsa_port *third_dp;
1890 			struct ksz_port *third_p;
1891 
1892 			if (j == i)
1893 				continue;
1894 			if (j == port)
1895 				continue;
1896 			if (!dsa_is_user_port(ds, j))
1897 				continue;
1898 			third_p = &dev->ports[j];
1899 			if (third_p->stp_state != BR_STATE_FORWARDING)
1900 				continue;
1901 			third_dp = dsa_to_port(ds, j);
1902 			if (dsa_port_bridge_same(other_dp, third_dp))
1903 				val |= BIT(j);
1904 		}
1905 
1906 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
1907 	}
1908 
1909 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
1910 }
1911 
1912 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
1913 {
1914 	struct ksz_device *dev = bus->priv;
1915 	u16 val;
1916 	int ret;
1917 
1918 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
1919 	if (ret < 0)
1920 		return ret;
1921 
1922 	return val;
1923 }
1924 
1925 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
1926 			     u16 val)
1927 {
1928 	struct ksz_device *dev = bus->priv;
1929 
1930 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
1931 }
1932 
1933 static int ksz_irq_phy_setup(struct ksz_device *dev)
1934 {
1935 	struct dsa_switch *ds = dev->ds;
1936 	int phy;
1937 	int irq;
1938 	int ret;
1939 
1940 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) {
1941 		if (BIT(phy) & ds->phys_mii_mask) {
1942 			irq = irq_find_mapping(dev->ports[phy].pirq.domain,
1943 					       PORT_SRC_PHY_INT);
1944 			if (irq < 0) {
1945 				ret = irq;
1946 				goto out;
1947 			}
1948 			ds->slave_mii_bus->irq[phy] = irq;
1949 		}
1950 	}
1951 	return 0;
1952 out:
1953 	while (phy--)
1954 		if (BIT(phy) & ds->phys_mii_mask)
1955 			irq_dispose_mapping(ds->slave_mii_bus->irq[phy]);
1956 
1957 	return ret;
1958 }
1959 
1960 static void ksz_irq_phy_free(struct ksz_device *dev)
1961 {
1962 	struct dsa_switch *ds = dev->ds;
1963 	int phy;
1964 
1965 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++)
1966 		if (BIT(phy) & ds->phys_mii_mask)
1967 			irq_dispose_mapping(ds->slave_mii_bus->irq[phy]);
1968 }
1969 
1970 static int ksz_mdio_register(struct ksz_device *dev)
1971 {
1972 	struct dsa_switch *ds = dev->ds;
1973 	struct device_node *mdio_np;
1974 	struct mii_bus *bus;
1975 	int ret;
1976 
1977 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
1978 	if (!mdio_np)
1979 		return 0;
1980 
1981 	bus = devm_mdiobus_alloc(ds->dev);
1982 	if (!bus) {
1983 		of_node_put(mdio_np);
1984 		return -ENOMEM;
1985 	}
1986 
1987 	bus->priv = dev;
1988 	bus->read = ksz_sw_mdio_read;
1989 	bus->write = ksz_sw_mdio_write;
1990 	bus->name = "ksz slave smi";
1991 	snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
1992 	bus->parent = ds->dev;
1993 	bus->phy_mask = ~ds->phys_mii_mask;
1994 
1995 	ds->slave_mii_bus = bus;
1996 
1997 	if (dev->irq > 0) {
1998 		ret = ksz_irq_phy_setup(dev);
1999 		if (ret) {
2000 			of_node_put(mdio_np);
2001 			return ret;
2002 		}
2003 	}
2004 
2005 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2006 	if (ret) {
2007 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2008 			bus->id);
2009 		if (dev->irq > 0)
2010 			ksz_irq_phy_free(dev);
2011 	}
2012 
2013 	of_node_put(mdio_np);
2014 
2015 	return ret;
2016 }
2017 
2018 static void ksz_irq_mask(struct irq_data *d)
2019 {
2020 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2021 
2022 	kirq->masked |= BIT(d->hwirq);
2023 }
2024 
2025 static void ksz_irq_unmask(struct irq_data *d)
2026 {
2027 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2028 
2029 	kirq->masked &= ~BIT(d->hwirq);
2030 }
2031 
2032 static void ksz_irq_bus_lock(struct irq_data *d)
2033 {
2034 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2035 
2036 	mutex_lock(&kirq->dev->lock_irq);
2037 }
2038 
2039 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2040 {
2041 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2042 	struct ksz_device *dev = kirq->dev;
2043 	int ret;
2044 
2045 	ret = ksz_write32(dev, kirq->reg_mask, kirq->masked);
2046 	if (ret)
2047 		dev_err(dev->dev, "failed to change IRQ mask\n");
2048 
2049 	mutex_unlock(&dev->lock_irq);
2050 }
2051 
2052 static const struct irq_chip ksz_irq_chip = {
2053 	.name			= "ksz-irq",
2054 	.irq_mask		= ksz_irq_mask,
2055 	.irq_unmask		= ksz_irq_unmask,
2056 	.irq_bus_lock		= ksz_irq_bus_lock,
2057 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2058 };
2059 
2060 static int ksz_irq_domain_map(struct irq_domain *d,
2061 			      unsigned int irq, irq_hw_number_t hwirq)
2062 {
2063 	irq_set_chip_data(irq, d->host_data);
2064 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2065 	irq_set_noprobe(irq);
2066 
2067 	return 0;
2068 }
2069 
2070 static const struct irq_domain_ops ksz_irq_domain_ops = {
2071 	.map	= ksz_irq_domain_map,
2072 	.xlate	= irq_domain_xlate_twocell,
2073 };
2074 
2075 static void ksz_irq_free(struct ksz_irq *kirq)
2076 {
2077 	int irq, virq;
2078 
2079 	free_irq(kirq->irq_num, kirq);
2080 
2081 	for (irq = 0; irq < kirq->nirqs; irq++) {
2082 		virq = irq_find_mapping(kirq->domain, irq);
2083 		irq_dispose_mapping(virq);
2084 	}
2085 
2086 	irq_domain_remove(kirq->domain);
2087 }
2088 
2089 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2090 {
2091 	struct ksz_irq *kirq = dev_id;
2092 	unsigned int nhandled = 0;
2093 	struct ksz_device *dev;
2094 	unsigned int sub_irq;
2095 	u8 data;
2096 	int ret;
2097 	u8 n;
2098 
2099 	dev = kirq->dev;
2100 
2101 	/* Read interrupt status register */
2102 	ret = ksz_read8(dev, kirq->reg_status, &data);
2103 	if (ret)
2104 		goto out;
2105 
2106 	for (n = 0; n < kirq->nirqs; ++n) {
2107 		if (data & BIT(n)) {
2108 			sub_irq = irq_find_mapping(kirq->domain, n);
2109 			handle_nested_irq(sub_irq);
2110 			++nhandled;
2111 		}
2112 	}
2113 out:
2114 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2115 }
2116 
2117 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2118 {
2119 	int ret, n;
2120 
2121 	kirq->dev = dev;
2122 	kirq->masked = ~0;
2123 
2124 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2125 					     &ksz_irq_domain_ops, kirq);
2126 	if (!kirq->domain)
2127 		return -ENOMEM;
2128 
2129 	for (n = 0; n < kirq->nirqs; n++)
2130 		irq_create_mapping(kirq->domain, n);
2131 
2132 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2133 				   IRQF_ONESHOT, kirq->name, kirq);
2134 	if (ret)
2135 		goto out;
2136 
2137 	return 0;
2138 
2139 out:
2140 	ksz_irq_free(kirq);
2141 
2142 	return ret;
2143 }
2144 
2145 static int ksz_girq_setup(struct ksz_device *dev)
2146 {
2147 	struct ksz_irq *girq = &dev->girq;
2148 
2149 	girq->nirqs = dev->info->port_cnt;
2150 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2151 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2152 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2153 
2154 	girq->irq_num = dev->irq;
2155 
2156 	return ksz_irq_common_setup(dev, girq);
2157 }
2158 
2159 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2160 {
2161 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2162 
2163 	pirq->nirqs = dev->info->port_nirqs;
2164 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2165 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2166 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2167 
2168 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2169 	if (pirq->irq_num < 0)
2170 		return pirq->irq_num;
2171 
2172 	return ksz_irq_common_setup(dev, pirq);
2173 }
2174 
2175 static int ksz_setup(struct dsa_switch *ds)
2176 {
2177 	struct ksz_device *dev = ds->priv;
2178 	struct dsa_port *dp;
2179 	struct ksz_port *p;
2180 	const u16 *regs;
2181 	int ret;
2182 
2183 	regs = dev->info->regs;
2184 
2185 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2186 				       dev->info->num_vlans, GFP_KERNEL);
2187 	if (!dev->vlan_cache)
2188 		return -ENOMEM;
2189 
2190 	ret = dev->dev_ops->reset(dev);
2191 	if (ret) {
2192 		dev_err(ds->dev, "failed to reset switch\n");
2193 		return ret;
2194 	}
2195 
2196 	/* set broadcast storm protection 10% rate */
2197 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2198 			   BROADCAST_STORM_RATE,
2199 			   (BROADCAST_STORM_VALUE *
2200 			   BROADCAST_STORM_PROT_RATE) / 100);
2201 
2202 	dev->dev_ops->config_cpu_port(ds);
2203 
2204 	dev->dev_ops->enable_stp_addr(dev);
2205 
2206 	ds->num_tx_queues = dev->info->num_tx_queues;
2207 
2208 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2209 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2210 
2211 	ksz_init_mib_timer(dev);
2212 
2213 	ds->configure_vlan_while_not_filtering = false;
2214 
2215 	if (dev->dev_ops->setup) {
2216 		ret = dev->dev_ops->setup(ds);
2217 		if (ret)
2218 			return ret;
2219 	}
2220 
2221 	/* Start with learning disabled on standalone user ports, and enabled
2222 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2223 	 * CPU port will avoid flooding bridge local addresses on the network
2224 	 * in some cases.
2225 	 */
2226 	p = &dev->ports[dev->cpu_port];
2227 	p->learning = true;
2228 
2229 	if (dev->irq > 0) {
2230 		ret = ksz_girq_setup(dev);
2231 		if (ret)
2232 			return ret;
2233 
2234 		dsa_switch_for_each_user_port(dp, dev->ds) {
2235 			ret = ksz_pirq_setup(dev, dp->index);
2236 			if (ret)
2237 				goto out_girq;
2238 
2239 			ret = ksz_ptp_irq_setup(ds, dp->index);
2240 			if (ret)
2241 				goto out_pirq;
2242 		}
2243 	}
2244 
2245 	ret = ksz_ptp_clock_register(ds);
2246 	if (ret) {
2247 		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2248 		goto out_ptpirq;
2249 	}
2250 
2251 	ret = ksz_mdio_register(dev);
2252 	if (ret < 0) {
2253 		dev_err(dev->dev, "failed to register the mdio");
2254 		goto out_ptp_clock_unregister;
2255 	}
2256 
2257 	/* start switch */
2258 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2259 			   SW_START, SW_START);
2260 
2261 	return 0;
2262 
2263 out_ptp_clock_unregister:
2264 	ksz_ptp_clock_unregister(ds);
2265 out_ptpirq:
2266 	if (dev->irq > 0)
2267 		dsa_switch_for_each_user_port(dp, dev->ds)
2268 			ksz_ptp_irq_free(ds, dp->index);
2269 out_pirq:
2270 	if (dev->irq > 0)
2271 		dsa_switch_for_each_user_port(dp, dev->ds)
2272 			ksz_irq_free(&dev->ports[dp->index].pirq);
2273 out_girq:
2274 	if (dev->irq > 0)
2275 		ksz_irq_free(&dev->girq);
2276 
2277 	return ret;
2278 }
2279 
2280 static void ksz_teardown(struct dsa_switch *ds)
2281 {
2282 	struct ksz_device *dev = ds->priv;
2283 	struct dsa_port *dp;
2284 
2285 	ksz_ptp_clock_unregister(ds);
2286 
2287 	if (dev->irq > 0) {
2288 		dsa_switch_for_each_user_port(dp, dev->ds) {
2289 			ksz_ptp_irq_free(ds, dp->index);
2290 
2291 			ksz_irq_free(&dev->ports[dp->index].pirq);
2292 		}
2293 
2294 		ksz_irq_free(&dev->girq);
2295 	}
2296 
2297 	if (dev->dev_ops->teardown)
2298 		dev->dev_ops->teardown(ds);
2299 }
2300 
2301 static void port_r_cnt(struct ksz_device *dev, int port)
2302 {
2303 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2304 	u64 *dropped;
2305 
2306 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2307 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2308 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2309 					&mib->counters[mib->cnt_ptr]);
2310 		++mib->cnt_ptr;
2311 	}
2312 
2313 	/* last one in storage */
2314 	dropped = &mib->counters[dev->info->mib_cnt];
2315 
2316 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2317 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2318 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2319 					dropped, &mib->counters[mib->cnt_ptr]);
2320 		++mib->cnt_ptr;
2321 	}
2322 	mib->cnt_ptr = 0;
2323 }
2324 
2325 static void ksz_mib_read_work(struct work_struct *work)
2326 {
2327 	struct ksz_device *dev = container_of(work, struct ksz_device,
2328 					      mib_read.work);
2329 	struct ksz_port_mib *mib;
2330 	struct ksz_port *p;
2331 	int i;
2332 
2333 	for (i = 0; i < dev->info->port_cnt; i++) {
2334 		if (dsa_is_unused_port(dev->ds, i))
2335 			continue;
2336 
2337 		p = &dev->ports[i];
2338 		mib = &p->mib;
2339 		mutex_lock(&mib->cnt_mutex);
2340 
2341 		/* Only read MIB counters when the port is told to do.
2342 		 * If not, read only dropped counters when link is not up.
2343 		 */
2344 		if (!p->read) {
2345 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2346 
2347 			if (!netif_carrier_ok(dp->slave))
2348 				mib->cnt_ptr = dev->info->reg_mib_cnt;
2349 		}
2350 		port_r_cnt(dev, i);
2351 		p->read = false;
2352 
2353 		if (dev->dev_ops->r_mib_stat64)
2354 			dev->dev_ops->r_mib_stat64(dev, i);
2355 
2356 		mutex_unlock(&mib->cnt_mutex);
2357 	}
2358 
2359 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2360 }
2361 
2362 void ksz_init_mib_timer(struct ksz_device *dev)
2363 {
2364 	int i;
2365 
2366 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2367 
2368 	for (i = 0; i < dev->info->port_cnt; i++) {
2369 		struct ksz_port_mib *mib = &dev->ports[i].mib;
2370 
2371 		dev->dev_ops->port_init_cnt(dev, i);
2372 
2373 		mib->cnt_ptr = 0;
2374 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2375 	}
2376 }
2377 
2378 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2379 {
2380 	struct ksz_device *dev = ds->priv;
2381 	u16 val = 0xffff;
2382 	int ret;
2383 
2384 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2385 	if (ret)
2386 		return ret;
2387 
2388 	return val;
2389 }
2390 
2391 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2392 {
2393 	struct ksz_device *dev = ds->priv;
2394 	int ret;
2395 
2396 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2397 	if (ret)
2398 		return ret;
2399 
2400 	return 0;
2401 }
2402 
2403 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2404 {
2405 	struct ksz_device *dev = ds->priv;
2406 
2407 	switch (dev->chip_id) {
2408 	case KSZ8830_CHIP_ID:
2409 		/* Silicon Errata Sheet (DS80000830A):
2410 		 * Port 1 does not work with LinkMD Cable-Testing.
2411 		 * Port 1 does not respond to received PAUSE control frames.
2412 		 */
2413 		if (!port)
2414 			return MICREL_KSZ8_P1_ERRATA;
2415 		break;
2416 	case KSZ9477_CHIP_ID:
2417 		/* KSZ9477 Errata DS80000754C
2418 		 *
2419 		 * Module 4: Energy Efficient Ethernet (EEE) feature select must
2420 		 * be manually disabled
2421 		 *   The EEE feature is enabled by default, but it is not fully
2422 		 *   operational. It must be manually disabled through register
2423 		 *   controls. If not disabled, the PHY ports can auto-negotiate
2424 		 *   to enable EEE, and this feature can cause link drops when
2425 		 *   linked to another device supporting EEE.
2426 		 */
2427 		return MICREL_NO_EEE;
2428 	}
2429 
2430 	return 0;
2431 }
2432 
2433 static void ksz_mac_link_down(struct dsa_switch *ds, int port,
2434 			      unsigned int mode, phy_interface_t interface)
2435 {
2436 	struct ksz_device *dev = ds->priv;
2437 	struct ksz_port *p = &dev->ports[port];
2438 
2439 	/* Read all MIB counters when the link is going down. */
2440 	p->read = true;
2441 	/* timer started */
2442 	if (dev->mib_read_interval)
2443 		schedule_delayed_work(&dev->mib_read, 0);
2444 }
2445 
2446 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
2447 {
2448 	struct ksz_device *dev = ds->priv;
2449 
2450 	if (sset != ETH_SS_STATS)
2451 		return 0;
2452 
2453 	return dev->info->mib_cnt;
2454 }
2455 
2456 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
2457 				  uint64_t *buf)
2458 {
2459 	const struct dsa_port *dp = dsa_to_port(ds, port);
2460 	struct ksz_device *dev = ds->priv;
2461 	struct ksz_port_mib *mib;
2462 
2463 	mib = &dev->ports[port].mib;
2464 	mutex_lock(&mib->cnt_mutex);
2465 
2466 	/* Only read dropped counters if no link. */
2467 	if (!netif_carrier_ok(dp->slave))
2468 		mib->cnt_ptr = dev->info->reg_mib_cnt;
2469 	port_r_cnt(dev, port);
2470 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
2471 	mutex_unlock(&mib->cnt_mutex);
2472 }
2473 
2474 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
2475 				struct dsa_bridge bridge,
2476 				bool *tx_fwd_offload,
2477 				struct netlink_ext_ack *extack)
2478 {
2479 	/* port_stp_state_set() will be called after to put the port in
2480 	 * appropriate state so there is no need to do anything.
2481 	 */
2482 
2483 	return 0;
2484 }
2485 
2486 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
2487 				  struct dsa_bridge bridge)
2488 {
2489 	/* port_stp_state_set() will be called after to put the port in
2490 	 * forwarding state so there is no need to do anything.
2491 	 */
2492 }
2493 
2494 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
2495 {
2496 	struct ksz_device *dev = ds->priv;
2497 
2498 	dev->dev_ops->flush_dyn_mac_table(dev, port);
2499 }
2500 
2501 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
2502 {
2503 	struct ksz_device *dev = ds->priv;
2504 
2505 	if (!dev->dev_ops->set_ageing_time)
2506 		return -EOPNOTSUPP;
2507 
2508 	return dev->dev_ops->set_ageing_time(dev, msecs);
2509 }
2510 
2511 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
2512 			    const unsigned char *addr, u16 vid,
2513 			    struct dsa_db db)
2514 {
2515 	struct ksz_device *dev = ds->priv;
2516 
2517 	if (!dev->dev_ops->fdb_add)
2518 		return -EOPNOTSUPP;
2519 
2520 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
2521 }
2522 
2523 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
2524 			    const unsigned char *addr,
2525 			    u16 vid, struct dsa_db db)
2526 {
2527 	struct ksz_device *dev = ds->priv;
2528 
2529 	if (!dev->dev_ops->fdb_del)
2530 		return -EOPNOTSUPP;
2531 
2532 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
2533 }
2534 
2535 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
2536 			     dsa_fdb_dump_cb_t *cb, void *data)
2537 {
2538 	struct ksz_device *dev = ds->priv;
2539 
2540 	if (!dev->dev_ops->fdb_dump)
2541 		return -EOPNOTSUPP;
2542 
2543 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
2544 }
2545 
2546 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
2547 			    const struct switchdev_obj_port_mdb *mdb,
2548 			    struct dsa_db db)
2549 {
2550 	struct ksz_device *dev = ds->priv;
2551 
2552 	if (!dev->dev_ops->mdb_add)
2553 		return -EOPNOTSUPP;
2554 
2555 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
2556 }
2557 
2558 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
2559 			    const struct switchdev_obj_port_mdb *mdb,
2560 			    struct dsa_db db)
2561 {
2562 	struct ksz_device *dev = ds->priv;
2563 
2564 	if (!dev->dev_ops->mdb_del)
2565 		return -EOPNOTSUPP;
2566 
2567 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
2568 }
2569 
2570 static int ksz_port_setup(struct dsa_switch *ds, int port)
2571 {
2572 	struct ksz_device *dev = ds->priv;
2573 
2574 	if (!dsa_is_user_port(ds, port))
2575 		return 0;
2576 
2577 	/* setup slave port */
2578 	dev->dev_ops->port_setup(dev, port, false);
2579 
2580 	/* port_stp_state_set() will be called after to enable the port so
2581 	 * there is no need to do anything.
2582 	 */
2583 
2584 	return 0;
2585 }
2586 
2587 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
2588 {
2589 	struct ksz_device *dev = ds->priv;
2590 	struct ksz_port *p;
2591 	const u16 *regs;
2592 	u8 data;
2593 
2594 	regs = dev->info->regs;
2595 
2596 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
2597 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2598 
2599 	p = &dev->ports[port];
2600 
2601 	switch (state) {
2602 	case BR_STATE_DISABLED:
2603 		data |= PORT_LEARN_DISABLE;
2604 		break;
2605 	case BR_STATE_LISTENING:
2606 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2607 		break;
2608 	case BR_STATE_LEARNING:
2609 		data |= PORT_RX_ENABLE;
2610 		if (!p->learning)
2611 			data |= PORT_LEARN_DISABLE;
2612 		break;
2613 	case BR_STATE_FORWARDING:
2614 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2615 		if (!p->learning)
2616 			data |= PORT_LEARN_DISABLE;
2617 		break;
2618 	case BR_STATE_BLOCKING:
2619 		data |= PORT_LEARN_DISABLE;
2620 		break;
2621 	default:
2622 		dev_err(ds->dev, "invalid STP state: %d\n", state);
2623 		return;
2624 	}
2625 
2626 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
2627 
2628 	p->stp_state = state;
2629 
2630 	ksz_update_port_member(dev, port);
2631 }
2632 
2633 static void ksz_port_teardown(struct dsa_switch *ds, int port)
2634 {
2635 	struct ksz_device *dev = ds->priv;
2636 
2637 	switch (dev->chip_id) {
2638 	case KSZ8563_CHIP_ID:
2639 	case KSZ9477_CHIP_ID:
2640 	case KSZ9563_CHIP_ID:
2641 	case KSZ9567_CHIP_ID:
2642 	case KSZ9893_CHIP_ID:
2643 	case KSZ9896_CHIP_ID:
2644 	case KSZ9897_CHIP_ID:
2645 		if (dsa_is_user_port(ds, port))
2646 			ksz9477_port_acl_free(dev, port);
2647 	}
2648 }
2649 
2650 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
2651 				     struct switchdev_brport_flags flags,
2652 				     struct netlink_ext_ack *extack)
2653 {
2654 	if (flags.mask & ~BR_LEARNING)
2655 		return -EINVAL;
2656 
2657 	return 0;
2658 }
2659 
2660 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
2661 				 struct switchdev_brport_flags flags,
2662 				 struct netlink_ext_ack *extack)
2663 {
2664 	struct ksz_device *dev = ds->priv;
2665 	struct ksz_port *p = &dev->ports[port];
2666 
2667 	if (flags.mask & BR_LEARNING) {
2668 		p->learning = !!(flags.val & BR_LEARNING);
2669 
2670 		/* Make the change take effect immediately */
2671 		ksz_port_stp_state_set(ds, port, p->stp_state);
2672 	}
2673 
2674 	return 0;
2675 }
2676 
2677 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
2678 						  int port,
2679 						  enum dsa_tag_protocol mp)
2680 {
2681 	struct ksz_device *dev = ds->priv;
2682 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
2683 
2684 	if (dev->chip_id == KSZ8795_CHIP_ID ||
2685 	    dev->chip_id == KSZ8794_CHIP_ID ||
2686 	    dev->chip_id == KSZ8765_CHIP_ID)
2687 		proto = DSA_TAG_PROTO_KSZ8795;
2688 
2689 	if (dev->chip_id == KSZ8830_CHIP_ID ||
2690 	    dev->chip_id == KSZ8563_CHIP_ID ||
2691 	    dev->chip_id == KSZ9893_CHIP_ID ||
2692 	    dev->chip_id == KSZ9563_CHIP_ID)
2693 		proto = DSA_TAG_PROTO_KSZ9893;
2694 
2695 	if (dev->chip_id == KSZ9477_CHIP_ID ||
2696 	    dev->chip_id == KSZ9896_CHIP_ID ||
2697 	    dev->chip_id == KSZ9897_CHIP_ID ||
2698 	    dev->chip_id == KSZ9567_CHIP_ID)
2699 		proto = DSA_TAG_PROTO_KSZ9477;
2700 
2701 	if (is_lan937x(dev))
2702 		proto = DSA_TAG_PROTO_LAN937X_VALUE;
2703 
2704 	return proto;
2705 }
2706 
2707 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
2708 				    enum dsa_tag_protocol proto)
2709 {
2710 	struct ksz_tagger_data *tagger_data;
2711 
2712 	tagger_data = ksz_tagger_data(ds);
2713 	tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
2714 
2715 	return 0;
2716 }
2717 
2718 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
2719 				   bool flag, struct netlink_ext_ack *extack)
2720 {
2721 	struct ksz_device *dev = ds->priv;
2722 
2723 	if (!dev->dev_ops->vlan_filtering)
2724 		return -EOPNOTSUPP;
2725 
2726 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
2727 }
2728 
2729 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
2730 			     const struct switchdev_obj_port_vlan *vlan,
2731 			     struct netlink_ext_ack *extack)
2732 {
2733 	struct ksz_device *dev = ds->priv;
2734 
2735 	if (!dev->dev_ops->vlan_add)
2736 		return -EOPNOTSUPP;
2737 
2738 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
2739 }
2740 
2741 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
2742 			     const struct switchdev_obj_port_vlan *vlan)
2743 {
2744 	struct ksz_device *dev = ds->priv;
2745 
2746 	if (!dev->dev_ops->vlan_del)
2747 		return -EOPNOTSUPP;
2748 
2749 	return dev->dev_ops->vlan_del(dev, port, vlan);
2750 }
2751 
2752 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
2753 			       struct dsa_mall_mirror_tc_entry *mirror,
2754 			       bool ingress, struct netlink_ext_ack *extack)
2755 {
2756 	struct ksz_device *dev = ds->priv;
2757 
2758 	if (!dev->dev_ops->mirror_add)
2759 		return -EOPNOTSUPP;
2760 
2761 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
2762 }
2763 
2764 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
2765 				struct dsa_mall_mirror_tc_entry *mirror)
2766 {
2767 	struct ksz_device *dev = ds->priv;
2768 
2769 	if (dev->dev_ops->mirror_del)
2770 		dev->dev_ops->mirror_del(dev, port, mirror);
2771 }
2772 
2773 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
2774 {
2775 	struct ksz_device *dev = ds->priv;
2776 
2777 	if (!dev->dev_ops->change_mtu)
2778 		return -EOPNOTSUPP;
2779 
2780 	return dev->dev_ops->change_mtu(dev, port, mtu);
2781 }
2782 
2783 static int ksz_max_mtu(struct dsa_switch *ds, int port)
2784 {
2785 	struct ksz_device *dev = ds->priv;
2786 
2787 	switch (dev->chip_id) {
2788 	case KSZ8795_CHIP_ID:
2789 	case KSZ8794_CHIP_ID:
2790 	case KSZ8765_CHIP_ID:
2791 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2792 	case KSZ8830_CHIP_ID:
2793 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2794 	case KSZ8563_CHIP_ID:
2795 	case KSZ9477_CHIP_ID:
2796 	case KSZ9563_CHIP_ID:
2797 	case KSZ9567_CHIP_ID:
2798 	case KSZ9893_CHIP_ID:
2799 	case KSZ9896_CHIP_ID:
2800 	case KSZ9897_CHIP_ID:
2801 	case LAN9370_CHIP_ID:
2802 	case LAN9371_CHIP_ID:
2803 	case LAN9372_CHIP_ID:
2804 	case LAN9373_CHIP_ID:
2805 	case LAN9374_CHIP_ID:
2806 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2807 	}
2808 
2809 	return -EOPNOTSUPP;
2810 }
2811 
2812 static int ksz_validate_eee(struct dsa_switch *ds, int port)
2813 {
2814 	struct ksz_device *dev = ds->priv;
2815 
2816 	if (!dev->info->internal_phy[port])
2817 		return -EOPNOTSUPP;
2818 
2819 	switch (dev->chip_id) {
2820 	case KSZ8563_CHIP_ID:
2821 	case KSZ9477_CHIP_ID:
2822 	case KSZ9563_CHIP_ID:
2823 	case KSZ9567_CHIP_ID:
2824 	case KSZ9893_CHIP_ID:
2825 	case KSZ9896_CHIP_ID:
2826 	case KSZ9897_CHIP_ID:
2827 		return 0;
2828 	}
2829 
2830 	return -EOPNOTSUPP;
2831 }
2832 
2833 static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
2834 			   struct ethtool_eee *e)
2835 {
2836 	int ret;
2837 
2838 	ret = ksz_validate_eee(ds, port);
2839 	if (ret)
2840 		return ret;
2841 
2842 	/* There is no documented control of Tx LPI configuration. */
2843 	e->tx_lpi_enabled = true;
2844 
2845 	/* There is no documented control of Tx LPI timer. According to tests
2846 	 * Tx LPI timer seems to be set by default to minimal value.
2847 	 */
2848 	e->tx_lpi_timer = 0;
2849 
2850 	return 0;
2851 }
2852 
2853 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
2854 			   struct ethtool_eee *e)
2855 {
2856 	struct ksz_device *dev = ds->priv;
2857 	int ret;
2858 
2859 	ret = ksz_validate_eee(ds, port);
2860 	if (ret)
2861 		return ret;
2862 
2863 	if (!e->tx_lpi_enabled) {
2864 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
2865 		return -EINVAL;
2866 	}
2867 
2868 	if (e->tx_lpi_timer) {
2869 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
2870 		return -EINVAL;
2871 	}
2872 
2873 	return 0;
2874 }
2875 
2876 static void ksz_set_xmii(struct ksz_device *dev, int port,
2877 			 phy_interface_t interface)
2878 {
2879 	const u8 *bitval = dev->info->xmii_ctrl1;
2880 	struct ksz_port *p = &dev->ports[port];
2881 	const u16 *regs = dev->info->regs;
2882 	u8 data8;
2883 
2884 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
2885 
2886 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
2887 		   P_RGMII_ID_EG_ENABLE);
2888 
2889 	switch (interface) {
2890 	case PHY_INTERFACE_MODE_MII:
2891 		data8 |= bitval[P_MII_SEL];
2892 		break;
2893 	case PHY_INTERFACE_MODE_RMII:
2894 		data8 |= bitval[P_RMII_SEL];
2895 		break;
2896 	case PHY_INTERFACE_MODE_GMII:
2897 		data8 |= bitval[P_GMII_SEL];
2898 		break;
2899 	case PHY_INTERFACE_MODE_RGMII:
2900 	case PHY_INTERFACE_MODE_RGMII_ID:
2901 	case PHY_INTERFACE_MODE_RGMII_TXID:
2902 	case PHY_INTERFACE_MODE_RGMII_RXID:
2903 		data8 |= bitval[P_RGMII_SEL];
2904 		/* On KSZ9893, disable RGMII in-band status support */
2905 		if (dev->chip_id == KSZ9893_CHIP_ID ||
2906 		    dev->chip_id == KSZ8563_CHIP_ID ||
2907 		    dev->chip_id == KSZ9563_CHIP_ID)
2908 			data8 &= ~P_MII_MAC_MODE;
2909 		break;
2910 	default:
2911 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
2912 			phy_modes(interface), port);
2913 		return;
2914 	}
2915 
2916 	if (p->rgmii_tx_val)
2917 		data8 |= P_RGMII_ID_EG_ENABLE;
2918 
2919 	if (p->rgmii_rx_val)
2920 		data8 |= P_RGMII_ID_IG_ENABLE;
2921 
2922 	/* Write the updated value */
2923 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
2924 }
2925 
2926 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
2927 {
2928 	const u8 *bitval = dev->info->xmii_ctrl1;
2929 	const u16 *regs = dev->info->regs;
2930 	phy_interface_t interface;
2931 	u8 data8;
2932 	u8 val;
2933 
2934 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
2935 
2936 	val = FIELD_GET(P_MII_SEL_M, data8);
2937 
2938 	if (val == bitval[P_MII_SEL]) {
2939 		if (gbit)
2940 			interface = PHY_INTERFACE_MODE_GMII;
2941 		else
2942 			interface = PHY_INTERFACE_MODE_MII;
2943 	} else if (val == bitval[P_RMII_SEL]) {
2944 		interface = PHY_INTERFACE_MODE_RGMII;
2945 	} else {
2946 		interface = PHY_INTERFACE_MODE_RGMII;
2947 		if (data8 & P_RGMII_ID_EG_ENABLE)
2948 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
2949 		if (data8 & P_RGMII_ID_IG_ENABLE) {
2950 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
2951 			if (data8 & P_RGMII_ID_EG_ENABLE)
2952 				interface = PHY_INTERFACE_MODE_RGMII_ID;
2953 		}
2954 	}
2955 
2956 	return interface;
2957 }
2958 
2959 static void ksz_phylink_mac_config(struct dsa_switch *ds, int port,
2960 				   unsigned int mode,
2961 				   const struct phylink_link_state *state)
2962 {
2963 	struct ksz_device *dev = ds->priv;
2964 
2965 	if (ksz_is_ksz88x3(dev))
2966 		return;
2967 
2968 	/* Internal PHYs */
2969 	if (dev->info->internal_phy[port])
2970 		return;
2971 
2972 	if (phylink_autoneg_inband(mode)) {
2973 		dev_err(dev->dev, "In-band AN not supported!\n");
2974 		return;
2975 	}
2976 
2977 	ksz_set_xmii(dev, port, state->interface);
2978 
2979 	if (dev->dev_ops->phylink_mac_config)
2980 		dev->dev_ops->phylink_mac_config(dev, port, mode, state);
2981 
2982 	if (dev->dev_ops->setup_rgmii_delay)
2983 		dev->dev_ops->setup_rgmii_delay(dev, port);
2984 }
2985 
2986 bool ksz_get_gbit(struct ksz_device *dev, int port)
2987 {
2988 	const u8 *bitval = dev->info->xmii_ctrl1;
2989 	const u16 *regs = dev->info->regs;
2990 	bool gbit = false;
2991 	u8 data8;
2992 	bool val;
2993 
2994 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
2995 
2996 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
2997 
2998 	if (val == bitval[P_GMII_1GBIT])
2999 		gbit = true;
3000 
3001 	return gbit;
3002 }
3003 
3004 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3005 {
3006 	const u8 *bitval = dev->info->xmii_ctrl1;
3007 	const u16 *regs = dev->info->regs;
3008 	u8 data8;
3009 
3010 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3011 
3012 	data8 &= ~P_GMII_1GBIT_M;
3013 
3014 	if (gbit)
3015 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3016 	else
3017 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3018 
3019 	/* Write the updated value */
3020 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3021 }
3022 
3023 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3024 {
3025 	const u8 *bitval = dev->info->xmii_ctrl0;
3026 	const u16 *regs = dev->info->regs;
3027 	u8 data8;
3028 
3029 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3030 
3031 	data8 &= ~P_MII_100MBIT_M;
3032 
3033 	if (speed == SPEED_100)
3034 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3035 	else
3036 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3037 
3038 	/* Write the updated value */
3039 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3040 }
3041 
3042 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3043 {
3044 	if (speed == SPEED_1000)
3045 		ksz_set_gbit(dev, port, true);
3046 	else
3047 		ksz_set_gbit(dev, port, false);
3048 
3049 	if (speed == SPEED_100 || speed == SPEED_10)
3050 		ksz_set_100_10mbit(dev, port, speed);
3051 }
3052 
3053 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3054 				bool tx_pause, bool rx_pause)
3055 {
3056 	const u8 *bitval = dev->info->xmii_ctrl0;
3057 	const u32 *masks = dev->info->masks;
3058 	const u16 *regs = dev->info->regs;
3059 	u8 mask;
3060 	u8 val;
3061 
3062 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3063 	       masks[P_MII_RX_FLOW_CTRL];
3064 
3065 	if (duplex == DUPLEX_FULL)
3066 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3067 	else
3068 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3069 
3070 	if (tx_pause)
3071 		val |= masks[P_MII_TX_FLOW_CTRL];
3072 
3073 	if (rx_pause)
3074 		val |= masks[P_MII_RX_FLOW_CTRL];
3075 
3076 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3077 }
3078 
3079 static void ksz9477_phylink_mac_link_up(struct ksz_device *dev, int port,
3080 					unsigned int mode,
3081 					phy_interface_t interface,
3082 					struct phy_device *phydev, int speed,
3083 					int duplex, bool tx_pause,
3084 					bool rx_pause)
3085 {
3086 	struct ksz_port *p;
3087 
3088 	p = &dev->ports[port];
3089 
3090 	/* Internal PHYs */
3091 	if (dev->info->internal_phy[port])
3092 		return;
3093 
3094 	p->phydev.speed = speed;
3095 
3096 	ksz_port_set_xmii_speed(dev, port, speed);
3097 
3098 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3099 }
3100 
3101 static void ksz_phylink_mac_link_up(struct dsa_switch *ds, int port,
3102 				    unsigned int mode,
3103 				    phy_interface_t interface,
3104 				    struct phy_device *phydev, int speed,
3105 				    int duplex, bool tx_pause, bool rx_pause)
3106 {
3107 	struct ksz_device *dev = ds->priv;
3108 
3109 	if (dev->dev_ops->phylink_mac_link_up)
3110 		dev->dev_ops->phylink_mac_link_up(dev, port, mode, interface,
3111 						  phydev, speed, duplex,
3112 						  tx_pause, rx_pause);
3113 }
3114 
3115 static int ksz_switch_detect(struct ksz_device *dev)
3116 {
3117 	u8 id1, id2, id4;
3118 	u16 id16;
3119 	u32 id32;
3120 	int ret;
3121 
3122 	/* read chip id */
3123 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3124 	if (ret)
3125 		return ret;
3126 
3127 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3128 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3129 
3130 	switch (id1) {
3131 	case KSZ87_FAMILY_ID:
3132 		if (id2 == KSZ87_CHIP_ID_95) {
3133 			u8 val;
3134 
3135 			dev->chip_id = KSZ8795_CHIP_ID;
3136 
3137 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3138 			if (val & KSZ8_PORT_FIBER_MODE)
3139 				dev->chip_id = KSZ8765_CHIP_ID;
3140 		} else if (id2 == KSZ87_CHIP_ID_94) {
3141 			dev->chip_id = KSZ8794_CHIP_ID;
3142 		} else {
3143 			return -ENODEV;
3144 		}
3145 		break;
3146 	case KSZ88_FAMILY_ID:
3147 		if (id2 == KSZ88_CHIP_ID_63)
3148 			dev->chip_id = KSZ8830_CHIP_ID;
3149 		else
3150 			return -ENODEV;
3151 		break;
3152 	default:
3153 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3154 		if (ret)
3155 			return ret;
3156 
3157 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3158 		id32 &= ~0xFF;
3159 
3160 		switch (id32) {
3161 		case KSZ9477_CHIP_ID:
3162 		case KSZ9896_CHIP_ID:
3163 		case KSZ9897_CHIP_ID:
3164 		case KSZ9567_CHIP_ID:
3165 		case LAN9370_CHIP_ID:
3166 		case LAN9371_CHIP_ID:
3167 		case LAN9372_CHIP_ID:
3168 		case LAN9373_CHIP_ID:
3169 		case LAN9374_CHIP_ID:
3170 			dev->chip_id = id32;
3171 			break;
3172 		case KSZ9893_CHIP_ID:
3173 			ret = ksz_read8(dev, REG_CHIP_ID4,
3174 					&id4);
3175 			if (ret)
3176 				return ret;
3177 
3178 			if (id4 == SKU_ID_KSZ8563)
3179 				dev->chip_id = KSZ8563_CHIP_ID;
3180 			else if (id4 == SKU_ID_KSZ9563)
3181 				dev->chip_id = KSZ9563_CHIP_ID;
3182 			else
3183 				dev->chip_id = KSZ9893_CHIP_ID;
3184 
3185 			break;
3186 		default:
3187 			dev_err(dev->dev,
3188 				"unsupported switch detected %x)\n", id32);
3189 			return -ENODEV;
3190 		}
3191 	}
3192 	return 0;
3193 }
3194 
3195 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3196 			      struct flow_cls_offload *cls, bool ingress)
3197 {
3198 	struct ksz_device *dev = ds->priv;
3199 
3200 	switch (dev->chip_id) {
3201 	case KSZ8563_CHIP_ID:
3202 	case KSZ9477_CHIP_ID:
3203 	case KSZ9563_CHIP_ID:
3204 	case KSZ9567_CHIP_ID:
3205 	case KSZ9893_CHIP_ID:
3206 	case KSZ9896_CHIP_ID:
3207 	case KSZ9897_CHIP_ID:
3208 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3209 	}
3210 
3211 	return -EOPNOTSUPP;
3212 }
3213 
3214 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3215 			      struct flow_cls_offload *cls, bool ingress)
3216 {
3217 	struct ksz_device *dev = ds->priv;
3218 
3219 	switch (dev->chip_id) {
3220 	case KSZ8563_CHIP_ID:
3221 	case KSZ9477_CHIP_ID:
3222 	case KSZ9563_CHIP_ID:
3223 	case KSZ9567_CHIP_ID:
3224 	case KSZ9893_CHIP_ID:
3225 	case KSZ9896_CHIP_ID:
3226 	case KSZ9897_CHIP_ID:
3227 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3228 	}
3229 
3230 	return -EOPNOTSUPP;
3231 }
3232 
3233 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3234  * is converted to Hex-decimal using the successive multiplication method. On
3235  * every step, integer part is taken and decimal part is carry forwarded.
3236  */
3237 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3238 {
3239 	u32 cinc = 0;
3240 	u32 txrate;
3241 	u32 rate;
3242 	u8 temp;
3243 	u8 i;
3244 
3245 	txrate = idle_slope - send_slope;
3246 
3247 	if (!txrate)
3248 		return -EINVAL;
3249 
3250 	rate = idle_slope;
3251 
3252 	/* 24 bit register */
3253 	for (i = 0; i < 6; i++) {
3254 		rate = rate * 16;
3255 
3256 		temp = rate / txrate;
3257 
3258 		rate %= txrate;
3259 
3260 		cinc = ((cinc << 4) | temp);
3261 	}
3262 
3263 	*bw = cinc;
3264 
3265 	return 0;
3266 }
3267 
3268 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3269 			     u8 shaper)
3270 {
3271 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3272 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3273 			   FIELD_PREP(MTI_SHAPING_M, shaper));
3274 }
3275 
3276 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3277 			    struct tc_cbs_qopt_offload *qopt)
3278 {
3279 	struct ksz_device *dev = ds->priv;
3280 	int ret;
3281 	u32 bw;
3282 
3283 	if (!dev->info->tc_cbs_supported)
3284 		return -EOPNOTSUPP;
3285 
3286 	if (qopt->queue > dev->info->num_tx_queues)
3287 		return -EINVAL;
3288 
3289 	/* Queue Selection */
3290 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3291 	if (ret)
3292 		return ret;
3293 
3294 	if (!qopt->enable)
3295 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3296 					 MTI_SHAPING_OFF);
3297 
3298 	/* High Credit */
3299 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3300 			   qopt->hicredit);
3301 	if (ret)
3302 		return ret;
3303 
3304 	/* Low Credit */
3305 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3306 			   qopt->locredit);
3307 	if (ret)
3308 		return ret;
3309 
3310 	/* Credit Increment Register */
3311 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3312 	if (ret)
3313 		return ret;
3314 
3315 	if (dev->dev_ops->tc_cbs_set_cinc) {
3316 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3317 		if (ret)
3318 			return ret;
3319 	}
3320 
3321 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3322 				 MTI_SHAPING_SRP);
3323 }
3324 
3325 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3326 {
3327 	int queue, ret;
3328 
3329 	/* Configuration will not take effect until the last Port Queue X
3330 	 * Egress Limit Control Register is written.
3331 	 */
3332 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3333 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3334 				  KSZ9477_OUT_RATE_NO_LIMIT);
3335 		if (ret)
3336 			return ret;
3337 	}
3338 
3339 	return 0;
3340 }
3341 
3342 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
3343 				 int band)
3344 {
3345 	/* Compared to queues, bands prioritize packets differently. In strict
3346 	 * priority mode, the lowest priority is assigned to Queue 0 while the
3347 	 * highest priority is given to Band 0.
3348 	 */
3349 	return p->bands - 1 - band;
3350 }
3351 
3352 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
3353 {
3354 	int ret;
3355 
3356 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3357 	if (ret)
3358 		return ret;
3359 
3360 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3361 				 MTI_SHAPING_OFF);
3362 }
3363 
3364 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
3365 			     int weight)
3366 {
3367 	int ret;
3368 
3369 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3370 	if (ret)
3371 		return ret;
3372 
3373 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3374 				MTI_SHAPING_OFF);
3375 	if (ret)
3376 		return ret;
3377 
3378 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
3379 }
3380 
3381 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
3382 			  struct tc_ets_qopt_offload_replace_params *p)
3383 {
3384 	int ret, band, tc_prio;
3385 	u32 queue_map = 0;
3386 
3387 	/* In order to ensure proper prioritization, it is necessary to set the
3388 	 * rate limit for the related queue to zero. Otherwise strict priority
3389 	 * or WRR mode will not work. This is a hardware limitation.
3390 	 */
3391 	ret = ksz_disable_egress_rate_limit(dev, port);
3392 	if (ret)
3393 		return ret;
3394 
3395 	/* Configure queue scheduling mode for all bands. Currently only strict
3396 	 * prio mode is supported.
3397 	 */
3398 	for (band = 0; band < p->bands; band++) {
3399 		int queue = ksz_ets_band_to_queue(p, band);
3400 
3401 		ret = ksz_queue_set_strict(dev, port, queue);
3402 		if (ret)
3403 			return ret;
3404 	}
3405 
3406 	/* Configure the mapping between traffic classes and queues. Note:
3407 	 * priomap variable support 16 traffic classes, but the chip can handle
3408 	 * only 8 classes.
3409 	 */
3410 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
3411 		int queue;
3412 
3413 		if (tc_prio > KSZ9477_MAX_TC_PRIO)
3414 			break;
3415 
3416 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
3417 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3418 	}
3419 
3420 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3421 }
3422 
3423 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
3424 {
3425 	int ret, queue, tc_prio, s;
3426 	u32 queue_map = 0;
3427 
3428 	/* To restore the default chip configuration, set all queues to use the
3429 	 * WRR scheduler with a weight of 1.
3430 	 */
3431 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3432 		ret = ksz_queue_set_wrr(dev, port, queue,
3433 					KSZ9477_DEFAULT_WRR_WEIGHT);
3434 		if (ret)
3435 			return ret;
3436 	}
3437 
3438 	switch (dev->info->num_tx_queues) {
3439 	case 2:
3440 		s = 2;
3441 		break;
3442 	case 4:
3443 		s = 1;
3444 		break;
3445 	case 8:
3446 		s = 0;
3447 		break;
3448 	default:
3449 		return -EINVAL;
3450 	}
3451 
3452 	/* Revert the queue mapping for TC-priority to its default setting on
3453 	 * the chip.
3454 	 */
3455 	for (tc_prio = 0; tc_prio <= KSZ9477_MAX_TC_PRIO; tc_prio++) {
3456 		int queue;
3457 
3458 		queue = tc_prio >> s;
3459 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3460 	}
3461 
3462 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3463 }
3464 
3465 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
3466 			       struct tc_ets_qopt_offload_replace_params *p)
3467 {
3468 	int band;
3469 
3470 	/* Since it is not feasible to share one port among multiple qdisc,
3471 	 * the user must configure all available queues appropriately.
3472 	 */
3473 	if (p->bands != dev->info->num_tx_queues) {
3474 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
3475 			dev->info->num_tx_queues);
3476 		return -EOPNOTSUPP;
3477 	}
3478 
3479 	for (band = 0; band < p->bands; ++band) {
3480 		/* The KSZ switches utilize a weighted round robin configuration
3481 		 * where a certain number of packets can be transmitted from a
3482 		 * queue before the next queue is serviced. For more information
3483 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
3484 		 * documentation on the Port Transmit Queue Control 1 Register.
3485 		 * However, the current ETS Qdisc implementation (as of February
3486 		 * 2023) assigns a weight to each queue based on the number of
3487 		 * bytes or extrapolated bandwidth in percentages. Since this
3488 		 * differs from the KSZ switches' method and we don't want to
3489 		 * fake support by converting bytes to packets, it is better to
3490 		 * return an error instead.
3491 		 */
3492 		if (p->quanta[band]) {
3493 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
3494 			return -EOPNOTSUPP;
3495 		}
3496 	}
3497 
3498 	return 0;
3499 }
3500 
3501 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
3502 				  struct tc_ets_qopt_offload *qopt)
3503 {
3504 	struct ksz_device *dev = ds->priv;
3505 	int ret;
3506 
3507 	if (!dev->info->tc_ets_supported)
3508 		return -EOPNOTSUPP;
3509 
3510 	if (qopt->parent != TC_H_ROOT) {
3511 		dev_err(dev->dev, "Parent should be \"root\"\n");
3512 		return -EOPNOTSUPP;
3513 	}
3514 
3515 	switch (qopt->command) {
3516 	case TC_ETS_REPLACE:
3517 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
3518 		if (ret)
3519 			return ret;
3520 
3521 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
3522 	case TC_ETS_DESTROY:
3523 		return ksz_tc_ets_del(dev, port);
3524 	case TC_ETS_STATS:
3525 	case TC_ETS_GRAFT:
3526 		return -EOPNOTSUPP;
3527 	}
3528 
3529 	return -EOPNOTSUPP;
3530 }
3531 
3532 static int ksz_setup_tc(struct dsa_switch *ds, int port,
3533 			enum tc_setup_type type, void *type_data)
3534 {
3535 	switch (type) {
3536 	case TC_SETUP_QDISC_CBS:
3537 		return ksz_setup_tc_cbs(ds, port, type_data);
3538 	case TC_SETUP_QDISC_ETS:
3539 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
3540 	default:
3541 		return -EOPNOTSUPP;
3542 	}
3543 }
3544 
3545 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
3546 				    const unsigned char *addr)
3547 {
3548 	struct dsa_port *dp = dsa_to_port(ds, port);
3549 
3550 	if (dp->hsr_dev) {
3551 		dev_err(ds->dev,
3552 			"Cannot change MAC address on port %d with active HSR offload\n",
3553 			port);
3554 		return -EBUSY;
3555 	}
3556 
3557 	return 0;
3558 }
3559 
3560 /* Program the switch's MAC address register with the MAC address of the
3561  * requesting user port. This single address is used by the switch for multiple
3562  * features, like HSR self-address filtering and WoL. Other user ports are
3563  * allowed to share ownership of this address as long as their MAC address is
3564  * the same. The user ports' MAC addresses must not change while they have
3565  * ownership of the switch MAC address.
3566  */
3567 static int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
3568 				  struct netlink_ext_ack *extack)
3569 {
3570 	struct net_device *slave = dsa_to_port(ds, port)->slave;
3571 	const unsigned char *addr = slave->dev_addr;
3572 	struct ksz_switch_macaddr *switch_macaddr;
3573 	struct ksz_device *dev = ds->priv;
3574 	const u16 *regs = dev->info->regs;
3575 	int i;
3576 
3577 	/* Make sure concurrent MAC address changes are blocked */
3578 	ASSERT_RTNL();
3579 
3580 	switch_macaddr = dev->switch_macaddr;
3581 	if (switch_macaddr) {
3582 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
3583 			NL_SET_ERR_MSG_FMT_MOD(extack,
3584 					       "Switch already configured for MAC address %pM",
3585 					       switch_macaddr->addr);
3586 			return -EBUSY;
3587 		}
3588 
3589 		refcount_inc(&switch_macaddr->refcount);
3590 		return 0;
3591 	}
3592 
3593 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
3594 	if (!switch_macaddr)
3595 		return -ENOMEM;
3596 
3597 	ether_addr_copy(switch_macaddr->addr, addr);
3598 	refcount_set(&switch_macaddr->refcount, 1);
3599 	dev->switch_macaddr = switch_macaddr;
3600 
3601 	/* Program the switch MAC address to hardware */
3602 	for (i = 0; i < ETH_ALEN; i++)
3603 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
3604 
3605 	return 0;
3606 }
3607 
3608 static void ksz_switch_macaddr_put(struct dsa_switch *ds)
3609 {
3610 	struct ksz_switch_macaddr *switch_macaddr;
3611 	struct ksz_device *dev = ds->priv;
3612 	const u16 *regs = dev->info->regs;
3613 	int i;
3614 
3615 	/* Make sure concurrent MAC address changes are blocked */
3616 	ASSERT_RTNL();
3617 
3618 	switch_macaddr = dev->switch_macaddr;
3619 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
3620 		return;
3621 
3622 	for (i = 0; i < ETH_ALEN; i++)
3623 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
3624 
3625 	dev->switch_macaddr = NULL;
3626 	kfree(switch_macaddr);
3627 }
3628 
3629 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
3630 			struct netlink_ext_ack *extack)
3631 {
3632 	struct ksz_device *dev = ds->priv;
3633 	enum hsr_version ver;
3634 	int ret;
3635 
3636 	ret = hsr_get_version(hsr, &ver);
3637 	if (ret)
3638 		return ret;
3639 
3640 	if (dev->chip_id != KSZ9477_CHIP_ID) {
3641 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
3642 		return -EOPNOTSUPP;
3643 	}
3644 
3645 	/* KSZ9477 can support HW offloading of only 1 HSR device */
3646 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
3647 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
3648 		return -EOPNOTSUPP;
3649 	}
3650 
3651 	/* KSZ9477 only supports HSR v0 and v1 */
3652 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
3653 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
3654 		return -EOPNOTSUPP;
3655 	}
3656 
3657 	/* Self MAC address filtering, to avoid frames traversing
3658 	 * the HSR ring more than once.
3659 	 */
3660 	ret = ksz_switch_macaddr_get(ds, port, extack);
3661 	if (ret)
3662 		return ret;
3663 
3664 	ksz9477_hsr_join(ds, port, hsr);
3665 	dev->hsr_dev = hsr;
3666 	dev->hsr_ports |= BIT(port);
3667 
3668 	return 0;
3669 }
3670 
3671 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
3672 			 struct net_device *hsr)
3673 {
3674 	struct ksz_device *dev = ds->priv;
3675 
3676 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
3677 
3678 	ksz9477_hsr_leave(ds, port, hsr);
3679 	dev->hsr_ports &= ~BIT(port);
3680 	if (!dev->hsr_ports)
3681 		dev->hsr_dev = NULL;
3682 
3683 	ksz_switch_macaddr_put(ds);
3684 
3685 	return 0;
3686 }
3687 
3688 static const struct dsa_switch_ops ksz_switch_ops = {
3689 	.get_tag_protocol	= ksz_get_tag_protocol,
3690 	.connect_tag_protocol   = ksz_connect_tag_protocol,
3691 	.get_phy_flags		= ksz_get_phy_flags,
3692 	.setup			= ksz_setup,
3693 	.teardown		= ksz_teardown,
3694 	.phy_read		= ksz_phy_read16,
3695 	.phy_write		= ksz_phy_write16,
3696 	.phylink_get_caps	= ksz_phylink_get_caps,
3697 	.phylink_mac_config	= ksz_phylink_mac_config,
3698 	.phylink_mac_link_up	= ksz_phylink_mac_link_up,
3699 	.phylink_mac_link_down	= ksz_mac_link_down,
3700 	.port_setup		= ksz_port_setup,
3701 	.set_ageing_time	= ksz_set_ageing_time,
3702 	.get_strings		= ksz_get_strings,
3703 	.get_ethtool_stats	= ksz_get_ethtool_stats,
3704 	.get_sset_count		= ksz_sset_count,
3705 	.port_bridge_join	= ksz_port_bridge_join,
3706 	.port_bridge_leave	= ksz_port_bridge_leave,
3707 	.port_hsr_join		= ksz_hsr_join,
3708 	.port_hsr_leave		= ksz_hsr_leave,
3709 	.port_set_mac_address	= ksz_port_set_mac_address,
3710 	.port_stp_state_set	= ksz_port_stp_state_set,
3711 	.port_teardown		= ksz_port_teardown,
3712 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
3713 	.port_bridge_flags	= ksz_port_bridge_flags,
3714 	.port_fast_age		= ksz_port_fast_age,
3715 	.port_vlan_filtering	= ksz_port_vlan_filtering,
3716 	.port_vlan_add		= ksz_port_vlan_add,
3717 	.port_vlan_del		= ksz_port_vlan_del,
3718 	.port_fdb_dump		= ksz_port_fdb_dump,
3719 	.port_fdb_add		= ksz_port_fdb_add,
3720 	.port_fdb_del		= ksz_port_fdb_del,
3721 	.port_mdb_add           = ksz_port_mdb_add,
3722 	.port_mdb_del           = ksz_port_mdb_del,
3723 	.port_mirror_add	= ksz_port_mirror_add,
3724 	.port_mirror_del	= ksz_port_mirror_del,
3725 	.get_stats64		= ksz_get_stats64,
3726 	.get_pause_stats	= ksz_get_pause_stats,
3727 	.port_change_mtu	= ksz_change_mtu,
3728 	.port_max_mtu		= ksz_max_mtu,
3729 	.get_ts_info		= ksz_get_ts_info,
3730 	.port_hwtstamp_get	= ksz_hwtstamp_get,
3731 	.port_hwtstamp_set	= ksz_hwtstamp_set,
3732 	.port_txtstamp		= ksz_port_txtstamp,
3733 	.port_rxtstamp		= ksz_port_rxtstamp,
3734 	.cls_flower_add		= ksz_cls_flower_add,
3735 	.cls_flower_del		= ksz_cls_flower_del,
3736 	.port_setup_tc		= ksz_setup_tc,
3737 	.get_mac_eee		= ksz_get_mac_eee,
3738 	.set_mac_eee		= ksz_set_mac_eee,
3739 };
3740 
3741 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
3742 {
3743 	struct dsa_switch *ds;
3744 	struct ksz_device *swdev;
3745 
3746 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
3747 	if (!ds)
3748 		return NULL;
3749 
3750 	ds->dev = base;
3751 	ds->num_ports = DSA_MAX_PORTS;
3752 	ds->ops = &ksz_switch_ops;
3753 
3754 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
3755 	if (!swdev)
3756 		return NULL;
3757 
3758 	ds->priv = swdev;
3759 	swdev->dev = base;
3760 
3761 	swdev->ds = ds;
3762 	swdev->priv = priv;
3763 
3764 	return swdev;
3765 }
3766 EXPORT_SYMBOL(ksz_switch_alloc);
3767 
3768 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
3769 				  struct device_node *port_dn)
3770 {
3771 	phy_interface_t phy_mode = dev->ports[port_num].interface;
3772 	int rx_delay = -1, tx_delay = -1;
3773 
3774 	if (!phy_interface_mode_is_rgmii(phy_mode))
3775 		return;
3776 
3777 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
3778 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
3779 
3780 	if (rx_delay == -1 && tx_delay == -1) {
3781 		dev_warn(dev->dev,
3782 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
3783 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
3784 			 "\"tx-internal-delay-ps\"",
3785 			 port_num);
3786 
3787 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
3788 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
3789 			rx_delay = 2000;
3790 
3791 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
3792 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
3793 			tx_delay = 2000;
3794 	}
3795 
3796 	if (rx_delay < 0)
3797 		rx_delay = 0;
3798 	if (tx_delay < 0)
3799 		tx_delay = 0;
3800 
3801 	dev->ports[port_num].rgmii_rx_val = rx_delay;
3802 	dev->ports[port_num].rgmii_tx_val = tx_delay;
3803 }
3804 
3805 /**
3806  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
3807  *				 register value.
3808  * @array:	The array of drive strength values to search.
3809  * @array_size:	The size of the array.
3810  * @microamp:	The drive strength value in microamp to be converted.
3811  *
3812  * This function searches the array of drive strength values for the given
3813  * microamp value and returns the corresponding register value for that drive.
3814  *
3815  * Returns: If found, the corresponding register value for that drive strength
3816  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
3817  */
3818 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
3819 				     size_t array_size, int microamp)
3820 {
3821 	int i;
3822 
3823 	for (i = 0; i < array_size; i++) {
3824 		if (array[i].microamp == microamp)
3825 			return array[i].reg_val;
3826 	}
3827 
3828 	return -EINVAL;
3829 }
3830 
3831 /**
3832  * ksz_drive_strength_error() - Report invalid drive strength value
3833  * @dev:	ksz device
3834  * @array:	The array of drive strength values to search.
3835  * @array_size:	The size of the array.
3836  * @microamp:	Invalid drive strength value in microamp
3837  *
3838  * This function logs an error message when an unsupported drive strength value
3839  * is detected. It lists out all the supported drive strength values for
3840  * reference in the error message.
3841  */
3842 static void ksz_drive_strength_error(struct ksz_device *dev,
3843 				     const struct ksz_drive_strength *array,
3844 				     size_t array_size, int microamp)
3845 {
3846 	char supported_values[100];
3847 	size_t remaining_size;
3848 	int added_len;
3849 	char *ptr;
3850 	int i;
3851 
3852 	remaining_size = sizeof(supported_values);
3853 	ptr = supported_values;
3854 
3855 	for (i = 0; i < array_size; i++) {
3856 		added_len = snprintf(ptr, remaining_size,
3857 				     i == 0 ? "%d" : ", %d", array[i].microamp);
3858 
3859 		if (added_len >= remaining_size)
3860 			break;
3861 
3862 		ptr += added_len;
3863 		remaining_size -= added_len;
3864 	}
3865 
3866 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
3867 		microamp, supported_values);
3868 }
3869 
3870 /**
3871  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
3872  *				    chip variants.
3873  * @dev:       ksz device
3874  * @props:     Array of drive strength properties to be applied
3875  * @num_props: Number of properties in the array
3876  *
3877  * This function configures the drive strength for various KSZ9477 chip variants
3878  * based on the provided properties. It handles chip-specific nuances and
3879  * ensures only valid drive strengths are written to the respective chip.
3880  *
3881  * Return: 0 on successful configuration, a negative error code on failure.
3882  */
3883 static int ksz9477_drive_strength_write(struct ksz_device *dev,
3884 					struct ksz_driver_strength_prop *props,
3885 					int num_props)
3886 {
3887 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
3888 	int i, ret, reg;
3889 	u8 mask = 0;
3890 	u8 val = 0;
3891 
3892 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
3893 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
3894 			 props[KSZ_DRIVER_STRENGTH_IO].name);
3895 
3896 	if (dev->chip_id == KSZ8795_CHIP_ID ||
3897 	    dev->chip_id == KSZ8794_CHIP_ID ||
3898 	    dev->chip_id == KSZ8765_CHIP_ID)
3899 		reg = KSZ8795_REG_SW_CTRL_20;
3900 	else
3901 		reg = KSZ9477_REG_SW_IO_STRENGTH;
3902 
3903 	for (i = 0; i < num_props; i++) {
3904 		if (props[i].value == -1)
3905 			continue;
3906 
3907 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
3908 						array_size, props[i].value);
3909 		if (ret < 0) {
3910 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
3911 						 array_size, props[i].value);
3912 			return ret;
3913 		}
3914 
3915 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
3916 		val |= ret << props[i].offset;
3917 	}
3918 
3919 	return ksz_rmw8(dev, reg, mask, val);
3920 }
3921 
3922 /**
3923  * ksz8830_drive_strength_write() - Set the drive strength configuration for
3924  *				    KSZ8830 compatible chip variants.
3925  * @dev:       ksz device
3926  * @props:     Array of drive strength properties to be set
3927  * @num_props: Number of properties in the array
3928  *
3929  * This function applies the specified drive strength settings to KSZ8830 chip
3930  * variants (KSZ8873, KSZ8863).
3931  * It ensures the configurations align with what the chip variant supports and
3932  * warns or errors out on unsupported settings.
3933  *
3934  * Return: 0 on success, error code otherwise
3935  */
3936 static int ksz8830_drive_strength_write(struct ksz_device *dev,
3937 					struct ksz_driver_strength_prop *props,
3938 					int num_props)
3939 {
3940 	size_t array_size = ARRAY_SIZE(ksz8830_drive_strengths);
3941 	int microamp;
3942 	int i, ret;
3943 
3944 	for (i = 0; i < num_props; i++) {
3945 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
3946 			continue;
3947 
3948 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
3949 			 props[i].name);
3950 	}
3951 
3952 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
3953 	ret = ksz_drive_strength_to_reg(ksz8830_drive_strengths, array_size,
3954 					microamp);
3955 	if (ret < 0) {
3956 		ksz_drive_strength_error(dev, ksz8830_drive_strengths,
3957 					 array_size, microamp);
3958 		return ret;
3959 	}
3960 
3961 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
3962 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
3963 }
3964 
3965 /**
3966  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
3967  *				from device tree properties.
3968  * @dev:	ksz device
3969  *
3970  * This function reads the specified drive strength properties from the
3971  * device tree, validates against the supported chip variants, and sets
3972  * them accordingly. An error should be critical here, as the drive strength
3973  * settings are crucial for EMI compliance.
3974  *
3975  * Return: 0 on success, error code otherwise
3976  */
3977 static int ksz_parse_drive_strength(struct ksz_device *dev)
3978 {
3979 	struct ksz_driver_strength_prop of_props[] = {
3980 		[KSZ_DRIVER_STRENGTH_HI] = {
3981 			.name = "microchip,hi-drive-strength-microamp",
3982 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
3983 			.value = -1,
3984 		},
3985 		[KSZ_DRIVER_STRENGTH_LO] = {
3986 			.name = "microchip,lo-drive-strength-microamp",
3987 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
3988 			.value = -1,
3989 		},
3990 		[KSZ_DRIVER_STRENGTH_IO] = {
3991 			.name = "microchip,io-drive-strength-microamp",
3992 			.offset = 0, /* don't care */
3993 			.value = -1,
3994 		},
3995 	};
3996 	struct device_node *np = dev->dev->of_node;
3997 	bool have_any_prop = false;
3998 	int i, ret;
3999 
4000 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4001 		ret = of_property_read_u32(np, of_props[i].name,
4002 					   &of_props[i].value);
4003 		if (ret && ret != -EINVAL)
4004 			dev_warn(dev->dev, "Failed to read %s\n",
4005 				 of_props[i].name);
4006 		if (ret)
4007 			continue;
4008 
4009 		have_any_prop = true;
4010 	}
4011 
4012 	if (!have_any_prop)
4013 		return 0;
4014 
4015 	switch (dev->chip_id) {
4016 	case KSZ8830_CHIP_ID:
4017 		return ksz8830_drive_strength_write(dev, of_props,
4018 						    ARRAY_SIZE(of_props));
4019 	case KSZ8795_CHIP_ID:
4020 	case KSZ8794_CHIP_ID:
4021 	case KSZ8765_CHIP_ID:
4022 	case KSZ8563_CHIP_ID:
4023 	case KSZ9477_CHIP_ID:
4024 	case KSZ9563_CHIP_ID:
4025 	case KSZ9567_CHIP_ID:
4026 	case KSZ9893_CHIP_ID:
4027 	case KSZ9896_CHIP_ID:
4028 	case KSZ9897_CHIP_ID:
4029 		return ksz9477_drive_strength_write(dev, of_props,
4030 						    ARRAY_SIZE(of_props));
4031 	default:
4032 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4033 			if (of_props[i].value == -1)
4034 				continue;
4035 
4036 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4037 				 of_props[i].name);
4038 		}
4039 	}
4040 
4041 	return 0;
4042 }
4043 
4044 int ksz_switch_register(struct ksz_device *dev)
4045 {
4046 	const struct ksz_chip_data *info;
4047 	struct device_node *port, *ports;
4048 	phy_interface_t interface;
4049 	unsigned int port_num;
4050 	int ret;
4051 	int i;
4052 
4053 	if (dev->pdata)
4054 		dev->chip_id = dev->pdata->chip_id;
4055 
4056 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4057 						  GPIOD_OUT_LOW);
4058 	if (IS_ERR(dev->reset_gpio))
4059 		return PTR_ERR(dev->reset_gpio);
4060 
4061 	if (dev->reset_gpio) {
4062 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4063 		usleep_range(10000, 12000);
4064 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
4065 		msleep(100);
4066 	}
4067 
4068 	mutex_init(&dev->dev_mutex);
4069 	mutex_init(&dev->regmap_mutex);
4070 	mutex_init(&dev->alu_mutex);
4071 	mutex_init(&dev->vlan_mutex);
4072 
4073 	ret = ksz_switch_detect(dev);
4074 	if (ret)
4075 		return ret;
4076 
4077 	info = ksz_lookup_info(dev->chip_id);
4078 	if (!info)
4079 		return -ENODEV;
4080 
4081 	/* Update the compatible info with the probed one */
4082 	dev->info = info;
4083 
4084 	dev_info(dev->dev, "found switch: %s, rev %i\n",
4085 		 dev->info->dev_name, dev->chip_rev);
4086 
4087 	ret = ksz_check_device_id(dev);
4088 	if (ret)
4089 		return ret;
4090 
4091 	dev->dev_ops = dev->info->ops;
4092 
4093 	ret = dev->dev_ops->init(dev);
4094 	if (ret)
4095 		return ret;
4096 
4097 	dev->ports = devm_kzalloc(dev->dev,
4098 				  dev->info->port_cnt * sizeof(struct ksz_port),
4099 				  GFP_KERNEL);
4100 	if (!dev->ports)
4101 		return -ENOMEM;
4102 
4103 	for (i = 0; i < dev->info->port_cnt; i++) {
4104 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
4105 		mutex_init(&dev->ports[i].mib.cnt_mutex);
4106 		dev->ports[i].mib.counters =
4107 			devm_kzalloc(dev->dev,
4108 				     sizeof(u64) * (dev->info->mib_cnt + 1),
4109 				     GFP_KERNEL);
4110 		if (!dev->ports[i].mib.counters)
4111 			return -ENOMEM;
4112 
4113 		dev->ports[i].ksz_dev = dev;
4114 		dev->ports[i].num = i;
4115 	}
4116 
4117 	/* set the real number of ports */
4118 	dev->ds->num_ports = dev->info->port_cnt;
4119 
4120 	/* Host port interface will be self detected, or specifically set in
4121 	 * device tree.
4122 	 */
4123 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
4124 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
4125 	if (dev->dev->of_node) {
4126 		ret = ksz_parse_drive_strength(dev);
4127 		if (ret)
4128 			return ret;
4129 
4130 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
4131 		if (ret == 0)
4132 			dev->compat_interface = interface;
4133 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
4134 		if (!ports)
4135 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
4136 		if (ports) {
4137 			for_each_available_child_of_node(ports, port) {
4138 				if (of_property_read_u32(port, "reg",
4139 							 &port_num))
4140 					continue;
4141 				if (!(dev->port_mask & BIT(port_num))) {
4142 					of_node_put(port);
4143 					of_node_put(ports);
4144 					return -EINVAL;
4145 				}
4146 				of_get_phy_mode(port,
4147 						&dev->ports[port_num].interface);
4148 
4149 				ksz_parse_rgmii_delay(dev, port_num, port);
4150 			}
4151 			of_node_put(ports);
4152 		}
4153 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
4154 							 "microchip,synclko-125");
4155 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
4156 							     "microchip,synclko-disable");
4157 		if (dev->synclko_125 && dev->synclko_disable) {
4158 			dev_err(dev->dev, "inconsistent synclko settings\n");
4159 			return -EINVAL;
4160 		}
4161 	}
4162 
4163 	ret = dsa_register_switch(dev->ds);
4164 	if (ret) {
4165 		dev->dev_ops->exit(dev);
4166 		return ret;
4167 	}
4168 
4169 	/* Read MIB counters every 30 seconds to avoid overflow. */
4170 	dev->mib_read_interval = msecs_to_jiffies(5000);
4171 
4172 	/* Start the MIB timer. */
4173 	schedule_delayed_work(&dev->mib_read, 0);
4174 
4175 	return ret;
4176 }
4177 EXPORT_SYMBOL(ksz_switch_register);
4178 
4179 void ksz_switch_remove(struct ksz_device *dev)
4180 {
4181 	/* timer started */
4182 	if (dev->mib_read_interval) {
4183 		dev->mib_read_interval = 0;
4184 		cancel_delayed_work_sync(&dev->mib_read);
4185 	}
4186 
4187 	dev->dev_ops->exit(dev);
4188 	dsa_unregister_switch(dev->ds);
4189 
4190 	if (dev->reset_gpio)
4191 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4192 
4193 }
4194 EXPORT_SYMBOL(ksz_switch_remove);
4195 
4196 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
4197 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
4198 MODULE_LICENSE("GPL");
4199