xref: /linux/drivers/net/dsa/microchip/ksz_common.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/ieee8021q.h>
28 #include <net/pkt_cls.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_common.h"
32 #include "ksz_dcb.h"
33 #include "ksz_ptp.h"
34 #include "ksz8.h"
35 #include "ksz9477.h"
36 #include "lan937x.h"
37 
38 #define MIB_COUNTER_NUM 0x20
39 
40 struct ksz_stats_raw {
41 	u64 rx_hi;
42 	u64 rx_undersize;
43 	u64 rx_fragments;
44 	u64 rx_oversize;
45 	u64 rx_jabbers;
46 	u64 rx_symbol_err;
47 	u64 rx_crc_err;
48 	u64 rx_align_err;
49 	u64 rx_mac_ctrl;
50 	u64 rx_pause;
51 	u64 rx_bcast;
52 	u64 rx_mcast;
53 	u64 rx_ucast;
54 	u64 rx_64_or_less;
55 	u64 rx_65_127;
56 	u64 rx_128_255;
57 	u64 rx_256_511;
58 	u64 rx_512_1023;
59 	u64 rx_1024_1522;
60 	u64 rx_1523_2000;
61 	u64 rx_2001;
62 	u64 tx_hi;
63 	u64 tx_late_col;
64 	u64 tx_pause;
65 	u64 tx_bcast;
66 	u64 tx_mcast;
67 	u64 tx_ucast;
68 	u64 tx_deferred;
69 	u64 tx_total_col;
70 	u64 tx_exc_col;
71 	u64 tx_single_col;
72 	u64 tx_mult_col;
73 	u64 rx_total;
74 	u64 tx_total;
75 	u64 rx_discards;
76 	u64 tx_discards;
77 };
78 
79 struct ksz88xx_stats_raw {
80 	u64 rx;
81 	u64 rx_hi;
82 	u64 rx_undersize;
83 	u64 rx_fragments;
84 	u64 rx_oversize;
85 	u64 rx_jabbers;
86 	u64 rx_symbol_err;
87 	u64 rx_crc_err;
88 	u64 rx_align_err;
89 	u64 rx_mac_ctrl;
90 	u64 rx_pause;
91 	u64 rx_bcast;
92 	u64 rx_mcast;
93 	u64 rx_ucast;
94 	u64 rx_64_or_less;
95 	u64 rx_65_127;
96 	u64 rx_128_255;
97 	u64 rx_256_511;
98 	u64 rx_512_1023;
99 	u64 rx_1024_1522;
100 	u64 tx;
101 	u64 tx_hi;
102 	u64 tx_late_col;
103 	u64 tx_pause;
104 	u64 tx_bcast;
105 	u64 tx_mcast;
106 	u64 tx_ucast;
107 	u64 tx_deferred;
108 	u64 tx_total_col;
109 	u64 tx_exc_col;
110 	u64 tx_single_col;
111 	u64 tx_mult_col;
112 	u64 rx_discards;
113 	u64 tx_discards;
114 };
115 
116 static const struct ksz_mib_names ksz88xx_mib_names[] = {
117 	{ 0x00, "rx" },
118 	{ 0x01, "rx_hi" },
119 	{ 0x02, "rx_undersize" },
120 	{ 0x03, "rx_fragments" },
121 	{ 0x04, "rx_oversize" },
122 	{ 0x05, "rx_jabbers" },
123 	{ 0x06, "rx_symbol_err" },
124 	{ 0x07, "rx_crc_err" },
125 	{ 0x08, "rx_align_err" },
126 	{ 0x09, "rx_mac_ctrl" },
127 	{ 0x0a, "rx_pause" },
128 	{ 0x0b, "rx_bcast" },
129 	{ 0x0c, "rx_mcast" },
130 	{ 0x0d, "rx_ucast" },
131 	{ 0x0e, "rx_64_or_less" },
132 	{ 0x0f, "rx_65_127" },
133 	{ 0x10, "rx_128_255" },
134 	{ 0x11, "rx_256_511" },
135 	{ 0x12, "rx_512_1023" },
136 	{ 0x13, "rx_1024_1522" },
137 	{ 0x14, "tx" },
138 	{ 0x15, "tx_hi" },
139 	{ 0x16, "tx_late_col" },
140 	{ 0x17, "tx_pause" },
141 	{ 0x18, "tx_bcast" },
142 	{ 0x19, "tx_mcast" },
143 	{ 0x1a, "tx_ucast" },
144 	{ 0x1b, "tx_deferred" },
145 	{ 0x1c, "tx_total_col" },
146 	{ 0x1d, "tx_exc_col" },
147 	{ 0x1e, "tx_single_col" },
148 	{ 0x1f, "tx_mult_col" },
149 	{ 0x100, "rx_discards" },
150 	{ 0x101, "tx_discards" },
151 };
152 
153 static const struct ksz_mib_names ksz9477_mib_names[] = {
154 	{ 0x00, "rx_hi" },
155 	{ 0x01, "rx_undersize" },
156 	{ 0x02, "rx_fragments" },
157 	{ 0x03, "rx_oversize" },
158 	{ 0x04, "rx_jabbers" },
159 	{ 0x05, "rx_symbol_err" },
160 	{ 0x06, "rx_crc_err" },
161 	{ 0x07, "rx_align_err" },
162 	{ 0x08, "rx_mac_ctrl" },
163 	{ 0x09, "rx_pause" },
164 	{ 0x0A, "rx_bcast" },
165 	{ 0x0B, "rx_mcast" },
166 	{ 0x0C, "rx_ucast" },
167 	{ 0x0D, "rx_64_or_less" },
168 	{ 0x0E, "rx_65_127" },
169 	{ 0x0F, "rx_128_255" },
170 	{ 0x10, "rx_256_511" },
171 	{ 0x11, "rx_512_1023" },
172 	{ 0x12, "rx_1024_1522" },
173 	{ 0x13, "rx_1523_2000" },
174 	{ 0x14, "rx_2001" },
175 	{ 0x15, "tx_hi" },
176 	{ 0x16, "tx_late_col" },
177 	{ 0x17, "tx_pause" },
178 	{ 0x18, "tx_bcast" },
179 	{ 0x19, "tx_mcast" },
180 	{ 0x1A, "tx_ucast" },
181 	{ 0x1B, "tx_deferred" },
182 	{ 0x1C, "tx_total_col" },
183 	{ 0x1D, "tx_exc_col" },
184 	{ 0x1E, "tx_single_col" },
185 	{ 0x1F, "tx_mult_col" },
186 	{ 0x80, "rx_total" },
187 	{ 0x81, "tx_total" },
188 	{ 0x82, "rx_discards" },
189 	{ 0x83, "tx_discards" },
190 };
191 
192 struct ksz_driver_strength_prop {
193 	const char *name;
194 	int offset;
195 	int value;
196 };
197 
198 enum ksz_driver_strength_type {
199 	KSZ_DRIVER_STRENGTH_HI,
200 	KSZ_DRIVER_STRENGTH_LO,
201 	KSZ_DRIVER_STRENGTH_IO,
202 };
203 
204 /**
205  * struct ksz_drive_strength - drive strength mapping
206  * @reg_val:	register value
207  * @microamp:	microamp value
208  */
209 struct ksz_drive_strength {
210 	u32 reg_val;
211 	u32 microamp;
212 };
213 
214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
215  *
216  * This values are not documented in KSZ9477 variants but confirmed by
217  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
218  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
219  *
220  * Documentation in KSZ8795CLX provides more information with some
221  * recommendations:
222  * - for high speed signals
223  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
224  *      2.5V or 3.3V VDDIO.
225  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
226  *      using 1.8V VDDIO.
227  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
228  *      or 3.3V VDDIO.
229  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
230  *   5. In same interface, the heavy loading should use higher one of the
231  *      drive current strength.
232  * - for low speed signals
233  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
234  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
235  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
236  *   4. If it is heavy loading, can use higher drive current strength.
237  */
238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
239 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
240 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
241 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
242 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
243 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
244 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
245 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
246 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
247 };
248 
249 /* ksz8830_drive_strengths - Drive strength mapping for KSZ8830, KSZ8873, ..
250  *			     variants.
251  * This values are documented in KSZ8873 and KSZ8863 datasheets.
252  */
253 static const struct ksz_drive_strength ksz8830_drive_strengths[] = {
254 	{ 0,  8000 },
255 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
256 };
257 
258 static void ksz8830_phylink_mac_config(struct phylink_config *config,
259 				       unsigned int mode,
260 				       const struct phylink_link_state *state);
261 static void ksz_phylink_mac_config(struct phylink_config *config,
262 				   unsigned int mode,
263 				   const struct phylink_link_state *state);
264 static void ksz_phylink_mac_link_down(struct phylink_config *config,
265 				      unsigned int mode,
266 				      phy_interface_t interface);
267 
268 static const struct phylink_mac_ops ksz8830_phylink_mac_ops = {
269 	.mac_config	= ksz8830_phylink_mac_config,
270 	.mac_link_down	= ksz_phylink_mac_link_down,
271 	.mac_link_up	= ksz8_phylink_mac_link_up,
272 };
273 
274 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
275 	.mac_config	= ksz_phylink_mac_config,
276 	.mac_link_down	= ksz_phylink_mac_link_down,
277 	.mac_link_up	= ksz8_phylink_mac_link_up,
278 };
279 
280 static const struct ksz_dev_ops ksz8_dev_ops = {
281 	.setup = ksz8_setup,
282 	.get_port_addr = ksz8_get_port_addr,
283 	.cfg_port_member = ksz8_cfg_port_member,
284 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
285 	.port_setup = ksz8_port_setup,
286 	.r_phy = ksz8_r_phy,
287 	.w_phy = ksz8_w_phy,
288 	.r_mib_cnt = ksz8_r_mib_cnt,
289 	.r_mib_pkt = ksz8_r_mib_pkt,
290 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
291 	.freeze_mib = ksz8_freeze_mib,
292 	.port_init_cnt = ksz8_port_init_cnt,
293 	.fdb_dump = ksz8_fdb_dump,
294 	.fdb_add = ksz8_fdb_add,
295 	.fdb_del = ksz8_fdb_del,
296 	.mdb_add = ksz8_mdb_add,
297 	.mdb_del = ksz8_mdb_del,
298 	.vlan_filtering = ksz8_port_vlan_filtering,
299 	.vlan_add = ksz8_port_vlan_add,
300 	.vlan_del = ksz8_port_vlan_del,
301 	.mirror_add = ksz8_port_mirror_add,
302 	.mirror_del = ksz8_port_mirror_del,
303 	.get_caps = ksz8_get_caps,
304 	.config_cpu_port = ksz8_config_cpu_port,
305 	.enable_stp_addr = ksz8_enable_stp_addr,
306 	.reset = ksz8_reset_switch,
307 	.init = ksz8_switch_init,
308 	.exit = ksz8_switch_exit,
309 	.change_mtu = ksz8_change_mtu,
310 };
311 
312 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
313 					struct phy_device *phydev,
314 					unsigned int mode,
315 					phy_interface_t interface,
316 					int speed, int duplex, bool tx_pause,
317 					bool rx_pause);
318 
319 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
320 	.mac_config	= ksz_phylink_mac_config,
321 	.mac_link_down	= ksz_phylink_mac_link_down,
322 	.mac_link_up	= ksz9477_phylink_mac_link_up,
323 };
324 
325 static const struct ksz_dev_ops ksz9477_dev_ops = {
326 	.setup = ksz9477_setup,
327 	.get_port_addr = ksz9477_get_port_addr,
328 	.cfg_port_member = ksz9477_cfg_port_member,
329 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
330 	.port_setup = ksz9477_port_setup,
331 	.set_ageing_time = ksz9477_set_ageing_time,
332 	.r_phy = ksz9477_r_phy,
333 	.w_phy = ksz9477_w_phy,
334 	.r_mib_cnt = ksz9477_r_mib_cnt,
335 	.r_mib_pkt = ksz9477_r_mib_pkt,
336 	.r_mib_stat64 = ksz_r_mib_stats64,
337 	.freeze_mib = ksz9477_freeze_mib,
338 	.port_init_cnt = ksz9477_port_init_cnt,
339 	.vlan_filtering = ksz9477_port_vlan_filtering,
340 	.vlan_add = ksz9477_port_vlan_add,
341 	.vlan_del = ksz9477_port_vlan_del,
342 	.mirror_add = ksz9477_port_mirror_add,
343 	.mirror_del = ksz9477_port_mirror_del,
344 	.get_caps = ksz9477_get_caps,
345 	.fdb_dump = ksz9477_fdb_dump,
346 	.fdb_add = ksz9477_fdb_add,
347 	.fdb_del = ksz9477_fdb_del,
348 	.mdb_add = ksz9477_mdb_add,
349 	.mdb_del = ksz9477_mdb_del,
350 	.change_mtu = ksz9477_change_mtu,
351 	.get_wol = ksz9477_get_wol,
352 	.set_wol = ksz9477_set_wol,
353 	.wol_pre_shutdown = ksz9477_wol_pre_shutdown,
354 	.config_cpu_port = ksz9477_config_cpu_port,
355 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
356 	.enable_stp_addr = ksz9477_enable_stp_addr,
357 	.reset = ksz9477_reset_switch,
358 	.init = ksz9477_switch_init,
359 	.exit = ksz9477_switch_exit,
360 };
361 
362 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
363 	.mac_config	= ksz_phylink_mac_config,
364 	.mac_link_down	= ksz_phylink_mac_link_down,
365 	.mac_link_up	= ksz9477_phylink_mac_link_up,
366 };
367 
368 static const struct ksz_dev_ops lan937x_dev_ops = {
369 	.setup = lan937x_setup,
370 	.teardown = lan937x_teardown,
371 	.get_port_addr = ksz9477_get_port_addr,
372 	.cfg_port_member = ksz9477_cfg_port_member,
373 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
374 	.port_setup = lan937x_port_setup,
375 	.set_ageing_time = lan937x_set_ageing_time,
376 	.r_phy = lan937x_r_phy,
377 	.w_phy = lan937x_w_phy,
378 	.r_mib_cnt = ksz9477_r_mib_cnt,
379 	.r_mib_pkt = ksz9477_r_mib_pkt,
380 	.r_mib_stat64 = ksz_r_mib_stats64,
381 	.freeze_mib = ksz9477_freeze_mib,
382 	.port_init_cnt = ksz9477_port_init_cnt,
383 	.vlan_filtering = ksz9477_port_vlan_filtering,
384 	.vlan_add = ksz9477_port_vlan_add,
385 	.vlan_del = ksz9477_port_vlan_del,
386 	.mirror_add = ksz9477_port_mirror_add,
387 	.mirror_del = ksz9477_port_mirror_del,
388 	.get_caps = lan937x_phylink_get_caps,
389 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
390 	.fdb_dump = ksz9477_fdb_dump,
391 	.fdb_add = ksz9477_fdb_add,
392 	.fdb_del = ksz9477_fdb_del,
393 	.mdb_add = ksz9477_mdb_add,
394 	.mdb_del = ksz9477_mdb_del,
395 	.change_mtu = lan937x_change_mtu,
396 	.config_cpu_port = lan937x_config_cpu_port,
397 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
398 	.enable_stp_addr = ksz9477_enable_stp_addr,
399 	.reset = lan937x_reset_switch,
400 	.init = lan937x_switch_init,
401 	.exit = lan937x_switch_exit,
402 };
403 
404 static const u16 ksz8795_regs[] = {
405 	[REG_SW_MAC_ADDR]		= 0x68,
406 	[REG_IND_CTRL_0]		= 0x6E,
407 	[REG_IND_DATA_8]		= 0x70,
408 	[REG_IND_DATA_CHECK]		= 0x72,
409 	[REG_IND_DATA_HI]		= 0x71,
410 	[REG_IND_DATA_LO]		= 0x75,
411 	[REG_IND_MIB_CHECK]		= 0x74,
412 	[REG_IND_BYTE]			= 0xA0,
413 	[P_FORCE_CTRL]			= 0x0C,
414 	[P_LINK_STATUS]			= 0x0E,
415 	[P_LOCAL_CTRL]			= 0x07,
416 	[P_NEG_RESTART_CTRL]		= 0x0D,
417 	[P_REMOTE_STATUS]		= 0x08,
418 	[P_SPEED_STATUS]		= 0x09,
419 	[S_TAIL_TAG_CTRL]		= 0x0C,
420 	[P_STP_CTRL]			= 0x02,
421 	[S_START_CTRL]			= 0x01,
422 	[S_BROADCAST_CTRL]		= 0x06,
423 	[S_MULTICAST_CTRL]		= 0x04,
424 	[P_XMII_CTRL_0]			= 0x06,
425 	[P_XMII_CTRL_1]			= 0x06,
426 };
427 
428 static const u32 ksz8795_masks[] = {
429 	[PORT_802_1P_REMAPPING]		= BIT(7),
430 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
431 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
432 	[MIB_COUNTER_VALID]		= BIT(5),
433 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
434 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
435 	[VLAN_TABLE_VALID]		= BIT(12),
436 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
437 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
438 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
439 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
440 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
441 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
442 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
443 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
444 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
445 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
446 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
447 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
448 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
449 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
450 };
451 
452 static const u8 ksz8795_xmii_ctrl0[] = {
453 	[P_MII_100MBIT]			= 0,
454 	[P_MII_10MBIT]			= 1,
455 	[P_MII_FULL_DUPLEX]		= 0,
456 	[P_MII_HALF_DUPLEX]		= 1,
457 };
458 
459 static const u8 ksz8795_xmii_ctrl1[] = {
460 	[P_RGMII_SEL]			= 3,
461 	[P_GMII_SEL]			= 2,
462 	[P_RMII_SEL]			= 1,
463 	[P_MII_SEL]			= 0,
464 	[P_GMII_1GBIT]			= 1,
465 	[P_GMII_NOT_1GBIT]		= 0,
466 };
467 
468 static const u8 ksz8795_shifts[] = {
469 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
470 	[VLAN_TABLE]			= 16,
471 	[STATIC_MAC_FWD_PORTS]		= 16,
472 	[STATIC_MAC_FID]		= 24,
473 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
474 	[DYNAMIC_MAC_ENTRIES]		= 29,
475 	[DYNAMIC_MAC_FID]		= 16,
476 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
477 	[DYNAMIC_MAC_SRC_PORT]		= 24,
478 };
479 
480 static const u16 ksz8863_regs[] = {
481 	[REG_SW_MAC_ADDR]		= 0x70,
482 	[REG_IND_CTRL_0]		= 0x79,
483 	[REG_IND_DATA_8]		= 0x7B,
484 	[REG_IND_DATA_CHECK]		= 0x7B,
485 	[REG_IND_DATA_HI]		= 0x7C,
486 	[REG_IND_DATA_LO]		= 0x80,
487 	[REG_IND_MIB_CHECK]		= 0x80,
488 	[P_FORCE_CTRL]			= 0x0C,
489 	[P_LINK_STATUS]			= 0x0E,
490 	[P_LOCAL_CTRL]			= 0x0C,
491 	[P_NEG_RESTART_CTRL]		= 0x0D,
492 	[P_REMOTE_STATUS]		= 0x0E,
493 	[P_SPEED_STATUS]		= 0x0F,
494 	[S_TAIL_TAG_CTRL]		= 0x03,
495 	[P_STP_CTRL]			= 0x02,
496 	[S_START_CTRL]			= 0x01,
497 	[S_BROADCAST_CTRL]		= 0x06,
498 	[S_MULTICAST_CTRL]		= 0x04,
499 };
500 
501 static const u32 ksz8863_masks[] = {
502 	[PORT_802_1P_REMAPPING]		= BIT(3),
503 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
504 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
505 	[MIB_COUNTER_VALID]		= BIT(6),
506 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
507 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
508 	[VLAN_TABLE_VALID]		= BIT(19),
509 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
510 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
511 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
512 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
513 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
514 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
515 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
516 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
517 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
518 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
519 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
520 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
521 };
522 
523 static u8 ksz8863_shifts[] = {
524 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
525 	[STATIC_MAC_FWD_PORTS]		= 16,
526 	[STATIC_MAC_FID]		= 22,
527 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
528 	[DYNAMIC_MAC_ENTRIES]		= 24,
529 	[DYNAMIC_MAC_FID]		= 16,
530 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
531 	[DYNAMIC_MAC_SRC_PORT]		= 20,
532 };
533 
534 static const u16 ksz9477_regs[] = {
535 	[REG_SW_MAC_ADDR]		= 0x0302,
536 	[P_STP_CTRL]			= 0x0B04,
537 	[S_START_CTRL]			= 0x0300,
538 	[S_BROADCAST_CTRL]		= 0x0332,
539 	[S_MULTICAST_CTRL]		= 0x0331,
540 	[P_XMII_CTRL_0]			= 0x0300,
541 	[P_XMII_CTRL_1]			= 0x0301,
542 };
543 
544 static const u32 ksz9477_masks[] = {
545 	[ALU_STAT_WRITE]		= 0,
546 	[ALU_STAT_READ]			= 1,
547 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
548 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
549 };
550 
551 static const u8 ksz9477_shifts[] = {
552 	[ALU_STAT_INDEX]		= 16,
553 };
554 
555 static const u8 ksz9477_xmii_ctrl0[] = {
556 	[P_MII_100MBIT]			= 1,
557 	[P_MII_10MBIT]			= 0,
558 	[P_MII_FULL_DUPLEX]		= 1,
559 	[P_MII_HALF_DUPLEX]		= 0,
560 };
561 
562 static const u8 ksz9477_xmii_ctrl1[] = {
563 	[P_RGMII_SEL]			= 0,
564 	[P_RMII_SEL]			= 1,
565 	[P_GMII_SEL]			= 2,
566 	[P_MII_SEL]			= 3,
567 	[P_GMII_1GBIT]			= 0,
568 	[P_GMII_NOT_1GBIT]		= 1,
569 };
570 
571 static const u32 lan937x_masks[] = {
572 	[ALU_STAT_WRITE]		= 1,
573 	[ALU_STAT_READ]			= 2,
574 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
575 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
576 };
577 
578 static const u8 lan937x_shifts[] = {
579 	[ALU_STAT_INDEX]		= 8,
580 };
581 
582 static const struct regmap_range ksz8563_valid_regs[] = {
583 	regmap_reg_range(0x0000, 0x0003),
584 	regmap_reg_range(0x0006, 0x0006),
585 	regmap_reg_range(0x000f, 0x001f),
586 	regmap_reg_range(0x0100, 0x0100),
587 	regmap_reg_range(0x0104, 0x0107),
588 	regmap_reg_range(0x010d, 0x010d),
589 	regmap_reg_range(0x0110, 0x0113),
590 	regmap_reg_range(0x0120, 0x012b),
591 	regmap_reg_range(0x0201, 0x0201),
592 	regmap_reg_range(0x0210, 0x0213),
593 	regmap_reg_range(0x0300, 0x0300),
594 	regmap_reg_range(0x0302, 0x031b),
595 	regmap_reg_range(0x0320, 0x032b),
596 	regmap_reg_range(0x0330, 0x0336),
597 	regmap_reg_range(0x0338, 0x033e),
598 	regmap_reg_range(0x0340, 0x035f),
599 	regmap_reg_range(0x0370, 0x0370),
600 	regmap_reg_range(0x0378, 0x0378),
601 	regmap_reg_range(0x037c, 0x037d),
602 	regmap_reg_range(0x0390, 0x0393),
603 	regmap_reg_range(0x0400, 0x040e),
604 	regmap_reg_range(0x0410, 0x042f),
605 	regmap_reg_range(0x0500, 0x0519),
606 	regmap_reg_range(0x0520, 0x054b),
607 	regmap_reg_range(0x0550, 0x05b3),
608 
609 	/* port 1 */
610 	regmap_reg_range(0x1000, 0x1001),
611 	regmap_reg_range(0x1004, 0x100b),
612 	regmap_reg_range(0x1013, 0x1013),
613 	regmap_reg_range(0x1017, 0x1017),
614 	regmap_reg_range(0x101b, 0x101b),
615 	regmap_reg_range(0x101f, 0x1021),
616 	regmap_reg_range(0x1030, 0x1030),
617 	regmap_reg_range(0x1100, 0x1111),
618 	regmap_reg_range(0x111a, 0x111d),
619 	regmap_reg_range(0x1122, 0x1127),
620 	regmap_reg_range(0x112a, 0x112b),
621 	regmap_reg_range(0x1136, 0x1139),
622 	regmap_reg_range(0x113e, 0x113f),
623 	regmap_reg_range(0x1400, 0x1401),
624 	regmap_reg_range(0x1403, 0x1403),
625 	regmap_reg_range(0x1410, 0x1417),
626 	regmap_reg_range(0x1420, 0x1423),
627 	regmap_reg_range(0x1500, 0x1507),
628 	regmap_reg_range(0x1600, 0x1612),
629 	regmap_reg_range(0x1800, 0x180f),
630 	regmap_reg_range(0x1900, 0x1907),
631 	regmap_reg_range(0x1914, 0x191b),
632 	regmap_reg_range(0x1a00, 0x1a03),
633 	regmap_reg_range(0x1a04, 0x1a08),
634 	regmap_reg_range(0x1b00, 0x1b01),
635 	regmap_reg_range(0x1b04, 0x1b04),
636 	regmap_reg_range(0x1c00, 0x1c05),
637 	regmap_reg_range(0x1c08, 0x1c1b),
638 
639 	/* port 2 */
640 	regmap_reg_range(0x2000, 0x2001),
641 	regmap_reg_range(0x2004, 0x200b),
642 	regmap_reg_range(0x2013, 0x2013),
643 	regmap_reg_range(0x2017, 0x2017),
644 	regmap_reg_range(0x201b, 0x201b),
645 	regmap_reg_range(0x201f, 0x2021),
646 	regmap_reg_range(0x2030, 0x2030),
647 	regmap_reg_range(0x2100, 0x2111),
648 	regmap_reg_range(0x211a, 0x211d),
649 	regmap_reg_range(0x2122, 0x2127),
650 	regmap_reg_range(0x212a, 0x212b),
651 	regmap_reg_range(0x2136, 0x2139),
652 	regmap_reg_range(0x213e, 0x213f),
653 	regmap_reg_range(0x2400, 0x2401),
654 	regmap_reg_range(0x2403, 0x2403),
655 	regmap_reg_range(0x2410, 0x2417),
656 	regmap_reg_range(0x2420, 0x2423),
657 	regmap_reg_range(0x2500, 0x2507),
658 	regmap_reg_range(0x2600, 0x2612),
659 	regmap_reg_range(0x2800, 0x280f),
660 	regmap_reg_range(0x2900, 0x2907),
661 	regmap_reg_range(0x2914, 0x291b),
662 	regmap_reg_range(0x2a00, 0x2a03),
663 	regmap_reg_range(0x2a04, 0x2a08),
664 	regmap_reg_range(0x2b00, 0x2b01),
665 	regmap_reg_range(0x2b04, 0x2b04),
666 	regmap_reg_range(0x2c00, 0x2c05),
667 	regmap_reg_range(0x2c08, 0x2c1b),
668 
669 	/* port 3 */
670 	regmap_reg_range(0x3000, 0x3001),
671 	regmap_reg_range(0x3004, 0x300b),
672 	regmap_reg_range(0x3013, 0x3013),
673 	regmap_reg_range(0x3017, 0x3017),
674 	regmap_reg_range(0x301b, 0x301b),
675 	regmap_reg_range(0x301f, 0x3021),
676 	regmap_reg_range(0x3030, 0x3030),
677 	regmap_reg_range(0x3300, 0x3301),
678 	regmap_reg_range(0x3303, 0x3303),
679 	regmap_reg_range(0x3400, 0x3401),
680 	regmap_reg_range(0x3403, 0x3403),
681 	regmap_reg_range(0x3410, 0x3417),
682 	regmap_reg_range(0x3420, 0x3423),
683 	regmap_reg_range(0x3500, 0x3507),
684 	regmap_reg_range(0x3600, 0x3612),
685 	regmap_reg_range(0x3800, 0x380f),
686 	regmap_reg_range(0x3900, 0x3907),
687 	regmap_reg_range(0x3914, 0x391b),
688 	regmap_reg_range(0x3a00, 0x3a03),
689 	regmap_reg_range(0x3a04, 0x3a08),
690 	regmap_reg_range(0x3b00, 0x3b01),
691 	regmap_reg_range(0x3b04, 0x3b04),
692 	regmap_reg_range(0x3c00, 0x3c05),
693 	regmap_reg_range(0x3c08, 0x3c1b),
694 };
695 
696 static const struct regmap_access_table ksz8563_register_set = {
697 	.yes_ranges = ksz8563_valid_regs,
698 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
699 };
700 
701 static const struct regmap_range ksz9477_valid_regs[] = {
702 	regmap_reg_range(0x0000, 0x0003),
703 	regmap_reg_range(0x0006, 0x0006),
704 	regmap_reg_range(0x0010, 0x001f),
705 	regmap_reg_range(0x0100, 0x0100),
706 	regmap_reg_range(0x0103, 0x0107),
707 	regmap_reg_range(0x010d, 0x010d),
708 	regmap_reg_range(0x0110, 0x0113),
709 	regmap_reg_range(0x0120, 0x012b),
710 	regmap_reg_range(0x0201, 0x0201),
711 	regmap_reg_range(0x0210, 0x0213),
712 	regmap_reg_range(0x0300, 0x0300),
713 	regmap_reg_range(0x0302, 0x031b),
714 	regmap_reg_range(0x0320, 0x032b),
715 	regmap_reg_range(0x0330, 0x0336),
716 	regmap_reg_range(0x0338, 0x033b),
717 	regmap_reg_range(0x033e, 0x033e),
718 	regmap_reg_range(0x0340, 0x035f),
719 	regmap_reg_range(0x0370, 0x0370),
720 	regmap_reg_range(0x0378, 0x0378),
721 	regmap_reg_range(0x037c, 0x037d),
722 	regmap_reg_range(0x0390, 0x0393),
723 	regmap_reg_range(0x0400, 0x040e),
724 	regmap_reg_range(0x0410, 0x042f),
725 	regmap_reg_range(0x0444, 0x044b),
726 	regmap_reg_range(0x0450, 0x046f),
727 	regmap_reg_range(0x0500, 0x0519),
728 	regmap_reg_range(0x0520, 0x054b),
729 	regmap_reg_range(0x0550, 0x05b3),
730 	regmap_reg_range(0x0604, 0x060b),
731 	regmap_reg_range(0x0610, 0x0612),
732 	regmap_reg_range(0x0614, 0x062c),
733 	regmap_reg_range(0x0640, 0x0645),
734 	regmap_reg_range(0x0648, 0x064d),
735 
736 	/* port 1 */
737 	regmap_reg_range(0x1000, 0x1001),
738 	regmap_reg_range(0x1013, 0x1013),
739 	regmap_reg_range(0x1017, 0x1017),
740 	regmap_reg_range(0x101b, 0x101b),
741 	regmap_reg_range(0x101f, 0x1020),
742 	regmap_reg_range(0x1030, 0x1030),
743 	regmap_reg_range(0x1100, 0x1115),
744 	regmap_reg_range(0x111a, 0x111f),
745 	regmap_reg_range(0x1120, 0x112b),
746 	regmap_reg_range(0x1134, 0x113b),
747 	regmap_reg_range(0x113c, 0x113f),
748 	regmap_reg_range(0x1400, 0x1401),
749 	regmap_reg_range(0x1403, 0x1403),
750 	regmap_reg_range(0x1410, 0x1417),
751 	regmap_reg_range(0x1420, 0x1423),
752 	regmap_reg_range(0x1500, 0x1507),
753 	regmap_reg_range(0x1600, 0x1613),
754 	regmap_reg_range(0x1800, 0x180f),
755 	regmap_reg_range(0x1820, 0x1827),
756 	regmap_reg_range(0x1830, 0x1837),
757 	regmap_reg_range(0x1840, 0x184b),
758 	regmap_reg_range(0x1900, 0x1907),
759 	regmap_reg_range(0x1914, 0x191b),
760 	regmap_reg_range(0x1920, 0x1920),
761 	regmap_reg_range(0x1923, 0x1927),
762 	regmap_reg_range(0x1a00, 0x1a03),
763 	regmap_reg_range(0x1a04, 0x1a07),
764 	regmap_reg_range(0x1b00, 0x1b01),
765 	regmap_reg_range(0x1b04, 0x1b04),
766 	regmap_reg_range(0x1c00, 0x1c05),
767 	regmap_reg_range(0x1c08, 0x1c1b),
768 
769 	/* port 2 */
770 	regmap_reg_range(0x2000, 0x2001),
771 	regmap_reg_range(0x2013, 0x2013),
772 	regmap_reg_range(0x2017, 0x2017),
773 	regmap_reg_range(0x201b, 0x201b),
774 	regmap_reg_range(0x201f, 0x2020),
775 	regmap_reg_range(0x2030, 0x2030),
776 	regmap_reg_range(0x2100, 0x2115),
777 	regmap_reg_range(0x211a, 0x211f),
778 	regmap_reg_range(0x2120, 0x212b),
779 	regmap_reg_range(0x2134, 0x213b),
780 	regmap_reg_range(0x213c, 0x213f),
781 	regmap_reg_range(0x2400, 0x2401),
782 	regmap_reg_range(0x2403, 0x2403),
783 	regmap_reg_range(0x2410, 0x2417),
784 	regmap_reg_range(0x2420, 0x2423),
785 	regmap_reg_range(0x2500, 0x2507),
786 	regmap_reg_range(0x2600, 0x2613),
787 	regmap_reg_range(0x2800, 0x280f),
788 	regmap_reg_range(0x2820, 0x2827),
789 	regmap_reg_range(0x2830, 0x2837),
790 	regmap_reg_range(0x2840, 0x284b),
791 	regmap_reg_range(0x2900, 0x2907),
792 	regmap_reg_range(0x2914, 0x291b),
793 	regmap_reg_range(0x2920, 0x2920),
794 	regmap_reg_range(0x2923, 0x2927),
795 	regmap_reg_range(0x2a00, 0x2a03),
796 	regmap_reg_range(0x2a04, 0x2a07),
797 	regmap_reg_range(0x2b00, 0x2b01),
798 	regmap_reg_range(0x2b04, 0x2b04),
799 	regmap_reg_range(0x2c00, 0x2c05),
800 	regmap_reg_range(0x2c08, 0x2c1b),
801 
802 	/* port 3 */
803 	regmap_reg_range(0x3000, 0x3001),
804 	regmap_reg_range(0x3013, 0x3013),
805 	regmap_reg_range(0x3017, 0x3017),
806 	regmap_reg_range(0x301b, 0x301b),
807 	regmap_reg_range(0x301f, 0x3020),
808 	regmap_reg_range(0x3030, 0x3030),
809 	regmap_reg_range(0x3100, 0x3115),
810 	regmap_reg_range(0x311a, 0x311f),
811 	regmap_reg_range(0x3120, 0x312b),
812 	regmap_reg_range(0x3134, 0x313b),
813 	regmap_reg_range(0x313c, 0x313f),
814 	regmap_reg_range(0x3400, 0x3401),
815 	regmap_reg_range(0x3403, 0x3403),
816 	regmap_reg_range(0x3410, 0x3417),
817 	regmap_reg_range(0x3420, 0x3423),
818 	regmap_reg_range(0x3500, 0x3507),
819 	regmap_reg_range(0x3600, 0x3613),
820 	regmap_reg_range(0x3800, 0x380f),
821 	regmap_reg_range(0x3820, 0x3827),
822 	regmap_reg_range(0x3830, 0x3837),
823 	regmap_reg_range(0x3840, 0x384b),
824 	regmap_reg_range(0x3900, 0x3907),
825 	regmap_reg_range(0x3914, 0x391b),
826 	regmap_reg_range(0x3920, 0x3920),
827 	regmap_reg_range(0x3923, 0x3927),
828 	regmap_reg_range(0x3a00, 0x3a03),
829 	regmap_reg_range(0x3a04, 0x3a07),
830 	regmap_reg_range(0x3b00, 0x3b01),
831 	regmap_reg_range(0x3b04, 0x3b04),
832 	regmap_reg_range(0x3c00, 0x3c05),
833 	regmap_reg_range(0x3c08, 0x3c1b),
834 
835 	/* port 4 */
836 	regmap_reg_range(0x4000, 0x4001),
837 	regmap_reg_range(0x4013, 0x4013),
838 	regmap_reg_range(0x4017, 0x4017),
839 	regmap_reg_range(0x401b, 0x401b),
840 	regmap_reg_range(0x401f, 0x4020),
841 	regmap_reg_range(0x4030, 0x4030),
842 	regmap_reg_range(0x4100, 0x4115),
843 	regmap_reg_range(0x411a, 0x411f),
844 	regmap_reg_range(0x4120, 0x412b),
845 	regmap_reg_range(0x4134, 0x413b),
846 	regmap_reg_range(0x413c, 0x413f),
847 	regmap_reg_range(0x4400, 0x4401),
848 	regmap_reg_range(0x4403, 0x4403),
849 	regmap_reg_range(0x4410, 0x4417),
850 	regmap_reg_range(0x4420, 0x4423),
851 	regmap_reg_range(0x4500, 0x4507),
852 	regmap_reg_range(0x4600, 0x4613),
853 	regmap_reg_range(0x4800, 0x480f),
854 	regmap_reg_range(0x4820, 0x4827),
855 	regmap_reg_range(0x4830, 0x4837),
856 	regmap_reg_range(0x4840, 0x484b),
857 	regmap_reg_range(0x4900, 0x4907),
858 	regmap_reg_range(0x4914, 0x491b),
859 	regmap_reg_range(0x4920, 0x4920),
860 	regmap_reg_range(0x4923, 0x4927),
861 	regmap_reg_range(0x4a00, 0x4a03),
862 	regmap_reg_range(0x4a04, 0x4a07),
863 	regmap_reg_range(0x4b00, 0x4b01),
864 	regmap_reg_range(0x4b04, 0x4b04),
865 	regmap_reg_range(0x4c00, 0x4c05),
866 	regmap_reg_range(0x4c08, 0x4c1b),
867 
868 	/* port 5 */
869 	regmap_reg_range(0x5000, 0x5001),
870 	regmap_reg_range(0x5013, 0x5013),
871 	regmap_reg_range(0x5017, 0x5017),
872 	regmap_reg_range(0x501b, 0x501b),
873 	regmap_reg_range(0x501f, 0x5020),
874 	regmap_reg_range(0x5030, 0x5030),
875 	regmap_reg_range(0x5100, 0x5115),
876 	regmap_reg_range(0x511a, 0x511f),
877 	regmap_reg_range(0x5120, 0x512b),
878 	regmap_reg_range(0x5134, 0x513b),
879 	regmap_reg_range(0x513c, 0x513f),
880 	regmap_reg_range(0x5400, 0x5401),
881 	regmap_reg_range(0x5403, 0x5403),
882 	regmap_reg_range(0x5410, 0x5417),
883 	regmap_reg_range(0x5420, 0x5423),
884 	regmap_reg_range(0x5500, 0x5507),
885 	regmap_reg_range(0x5600, 0x5613),
886 	regmap_reg_range(0x5800, 0x580f),
887 	regmap_reg_range(0x5820, 0x5827),
888 	regmap_reg_range(0x5830, 0x5837),
889 	regmap_reg_range(0x5840, 0x584b),
890 	regmap_reg_range(0x5900, 0x5907),
891 	regmap_reg_range(0x5914, 0x591b),
892 	regmap_reg_range(0x5920, 0x5920),
893 	regmap_reg_range(0x5923, 0x5927),
894 	regmap_reg_range(0x5a00, 0x5a03),
895 	regmap_reg_range(0x5a04, 0x5a07),
896 	regmap_reg_range(0x5b00, 0x5b01),
897 	regmap_reg_range(0x5b04, 0x5b04),
898 	regmap_reg_range(0x5c00, 0x5c05),
899 	regmap_reg_range(0x5c08, 0x5c1b),
900 
901 	/* port 6 */
902 	regmap_reg_range(0x6000, 0x6001),
903 	regmap_reg_range(0x6013, 0x6013),
904 	regmap_reg_range(0x6017, 0x6017),
905 	regmap_reg_range(0x601b, 0x601b),
906 	regmap_reg_range(0x601f, 0x6020),
907 	regmap_reg_range(0x6030, 0x6030),
908 	regmap_reg_range(0x6300, 0x6301),
909 	regmap_reg_range(0x6400, 0x6401),
910 	regmap_reg_range(0x6403, 0x6403),
911 	regmap_reg_range(0x6410, 0x6417),
912 	regmap_reg_range(0x6420, 0x6423),
913 	regmap_reg_range(0x6500, 0x6507),
914 	regmap_reg_range(0x6600, 0x6613),
915 	regmap_reg_range(0x6800, 0x680f),
916 	regmap_reg_range(0x6820, 0x6827),
917 	regmap_reg_range(0x6830, 0x6837),
918 	regmap_reg_range(0x6840, 0x684b),
919 	regmap_reg_range(0x6900, 0x6907),
920 	regmap_reg_range(0x6914, 0x691b),
921 	regmap_reg_range(0x6920, 0x6920),
922 	regmap_reg_range(0x6923, 0x6927),
923 	regmap_reg_range(0x6a00, 0x6a03),
924 	regmap_reg_range(0x6a04, 0x6a07),
925 	regmap_reg_range(0x6b00, 0x6b01),
926 	regmap_reg_range(0x6b04, 0x6b04),
927 	regmap_reg_range(0x6c00, 0x6c05),
928 	regmap_reg_range(0x6c08, 0x6c1b),
929 
930 	/* port 7 */
931 	regmap_reg_range(0x7000, 0x7001),
932 	regmap_reg_range(0x7013, 0x7013),
933 	regmap_reg_range(0x7017, 0x7017),
934 	regmap_reg_range(0x701b, 0x701b),
935 	regmap_reg_range(0x701f, 0x7020),
936 	regmap_reg_range(0x7030, 0x7030),
937 	regmap_reg_range(0x7200, 0x7203),
938 	regmap_reg_range(0x7206, 0x7207),
939 	regmap_reg_range(0x7300, 0x7301),
940 	regmap_reg_range(0x7400, 0x7401),
941 	regmap_reg_range(0x7403, 0x7403),
942 	regmap_reg_range(0x7410, 0x7417),
943 	regmap_reg_range(0x7420, 0x7423),
944 	regmap_reg_range(0x7500, 0x7507),
945 	regmap_reg_range(0x7600, 0x7613),
946 	regmap_reg_range(0x7800, 0x780f),
947 	regmap_reg_range(0x7820, 0x7827),
948 	regmap_reg_range(0x7830, 0x7837),
949 	regmap_reg_range(0x7840, 0x784b),
950 	regmap_reg_range(0x7900, 0x7907),
951 	regmap_reg_range(0x7914, 0x791b),
952 	regmap_reg_range(0x7920, 0x7920),
953 	regmap_reg_range(0x7923, 0x7927),
954 	regmap_reg_range(0x7a00, 0x7a03),
955 	regmap_reg_range(0x7a04, 0x7a07),
956 	regmap_reg_range(0x7b00, 0x7b01),
957 	regmap_reg_range(0x7b04, 0x7b04),
958 	regmap_reg_range(0x7c00, 0x7c05),
959 	regmap_reg_range(0x7c08, 0x7c1b),
960 };
961 
962 static const struct regmap_access_table ksz9477_register_set = {
963 	.yes_ranges = ksz9477_valid_regs,
964 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
965 };
966 
967 static const struct regmap_range ksz9896_valid_regs[] = {
968 	regmap_reg_range(0x0000, 0x0003),
969 	regmap_reg_range(0x0006, 0x0006),
970 	regmap_reg_range(0x0010, 0x001f),
971 	regmap_reg_range(0x0100, 0x0100),
972 	regmap_reg_range(0x0103, 0x0107),
973 	regmap_reg_range(0x010d, 0x010d),
974 	regmap_reg_range(0x0110, 0x0113),
975 	regmap_reg_range(0x0120, 0x0127),
976 	regmap_reg_range(0x0201, 0x0201),
977 	regmap_reg_range(0x0210, 0x0213),
978 	regmap_reg_range(0x0300, 0x0300),
979 	regmap_reg_range(0x0302, 0x030b),
980 	regmap_reg_range(0x0310, 0x031b),
981 	regmap_reg_range(0x0320, 0x032b),
982 	regmap_reg_range(0x0330, 0x0336),
983 	regmap_reg_range(0x0338, 0x033b),
984 	regmap_reg_range(0x033e, 0x033e),
985 	regmap_reg_range(0x0340, 0x035f),
986 	regmap_reg_range(0x0370, 0x0370),
987 	regmap_reg_range(0x0378, 0x0378),
988 	regmap_reg_range(0x037c, 0x037d),
989 	regmap_reg_range(0x0390, 0x0393),
990 	regmap_reg_range(0x0400, 0x040e),
991 	regmap_reg_range(0x0410, 0x042f),
992 
993 	/* port 1 */
994 	regmap_reg_range(0x1000, 0x1001),
995 	regmap_reg_range(0x1013, 0x1013),
996 	regmap_reg_range(0x1017, 0x1017),
997 	regmap_reg_range(0x101b, 0x101b),
998 	regmap_reg_range(0x101f, 0x1020),
999 	regmap_reg_range(0x1030, 0x1030),
1000 	regmap_reg_range(0x1100, 0x1115),
1001 	regmap_reg_range(0x111a, 0x111f),
1002 	regmap_reg_range(0x1122, 0x1127),
1003 	regmap_reg_range(0x112a, 0x112b),
1004 	regmap_reg_range(0x1136, 0x1139),
1005 	regmap_reg_range(0x113e, 0x113f),
1006 	regmap_reg_range(0x1400, 0x1401),
1007 	regmap_reg_range(0x1403, 0x1403),
1008 	regmap_reg_range(0x1410, 0x1417),
1009 	regmap_reg_range(0x1420, 0x1423),
1010 	regmap_reg_range(0x1500, 0x1507),
1011 	regmap_reg_range(0x1600, 0x1612),
1012 	regmap_reg_range(0x1800, 0x180f),
1013 	regmap_reg_range(0x1820, 0x1827),
1014 	regmap_reg_range(0x1830, 0x1837),
1015 	regmap_reg_range(0x1840, 0x184b),
1016 	regmap_reg_range(0x1900, 0x1907),
1017 	regmap_reg_range(0x1914, 0x1915),
1018 	regmap_reg_range(0x1a00, 0x1a03),
1019 	regmap_reg_range(0x1a04, 0x1a07),
1020 	regmap_reg_range(0x1b00, 0x1b01),
1021 	regmap_reg_range(0x1b04, 0x1b04),
1022 
1023 	/* port 2 */
1024 	regmap_reg_range(0x2000, 0x2001),
1025 	regmap_reg_range(0x2013, 0x2013),
1026 	regmap_reg_range(0x2017, 0x2017),
1027 	regmap_reg_range(0x201b, 0x201b),
1028 	regmap_reg_range(0x201f, 0x2020),
1029 	regmap_reg_range(0x2030, 0x2030),
1030 	regmap_reg_range(0x2100, 0x2115),
1031 	regmap_reg_range(0x211a, 0x211f),
1032 	regmap_reg_range(0x2122, 0x2127),
1033 	regmap_reg_range(0x212a, 0x212b),
1034 	regmap_reg_range(0x2136, 0x2139),
1035 	regmap_reg_range(0x213e, 0x213f),
1036 	regmap_reg_range(0x2400, 0x2401),
1037 	regmap_reg_range(0x2403, 0x2403),
1038 	regmap_reg_range(0x2410, 0x2417),
1039 	regmap_reg_range(0x2420, 0x2423),
1040 	regmap_reg_range(0x2500, 0x2507),
1041 	regmap_reg_range(0x2600, 0x2612),
1042 	regmap_reg_range(0x2800, 0x280f),
1043 	regmap_reg_range(0x2820, 0x2827),
1044 	regmap_reg_range(0x2830, 0x2837),
1045 	regmap_reg_range(0x2840, 0x284b),
1046 	regmap_reg_range(0x2900, 0x2907),
1047 	regmap_reg_range(0x2914, 0x2915),
1048 	regmap_reg_range(0x2a00, 0x2a03),
1049 	regmap_reg_range(0x2a04, 0x2a07),
1050 	regmap_reg_range(0x2b00, 0x2b01),
1051 	regmap_reg_range(0x2b04, 0x2b04),
1052 
1053 	/* port 3 */
1054 	regmap_reg_range(0x3000, 0x3001),
1055 	regmap_reg_range(0x3013, 0x3013),
1056 	regmap_reg_range(0x3017, 0x3017),
1057 	regmap_reg_range(0x301b, 0x301b),
1058 	regmap_reg_range(0x301f, 0x3020),
1059 	regmap_reg_range(0x3030, 0x3030),
1060 	regmap_reg_range(0x3100, 0x3115),
1061 	regmap_reg_range(0x311a, 0x311f),
1062 	regmap_reg_range(0x3122, 0x3127),
1063 	regmap_reg_range(0x312a, 0x312b),
1064 	regmap_reg_range(0x3136, 0x3139),
1065 	regmap_reg_range(0x313e, 0x313f),
1066 	regmap_reg_range(0x3400, 0x3401),
1067 	regmap_reg_range(0x3403, 0x3403),
1068 	regmap_reg_range(0x3410, 0x3417),
1069 	regmap_reg_range(0x3420, 0x3423),
1070 	regmap_reg_range(0x3500, 0x3507),
1071 	regmap_reg_range(0x3600, 0x3612),
1072 	regmap_reg_range(0x3800, 0x380f),
1073 	regmap_reg_range(0x3820, 0x3827),
1074 	regmap_reg_range(0x3830, 0x3837),
1075 	regmap_reg_range(0x3840, 0x384b),
1076 	regmap_reg_range(0x3900, 0x3907),
1077 	regmap_reg_range(0x3914, 0x3915),
1078 	regmap_reg_range(0x3a00, 0x3a03),
1079 	regmap_reg_range(0x3a04, 0x3a07),
1080 	regmap_reg_range(0x3b00, 0x3b01),
1081 	regmap_reg_range(0x3b04, 0x3b04),
1082 
1083 	/* port 4 */
1084 	regmap_reg_range(0x4000, 0x4001),
1085 	regmap_reg_range(0x4013, 0x4013),
1086 	regmap_reg_range(0x4017, 0x4017),
1087 	regmap_reg_range(0x401b, 0x401b),
1088 	regmap_reg_range(0x401f, 0x4020),
1089 	regmap_reg_range(0x4030, 0x4030),
1090 	regmap_reg_range(0x4100, 0x4115),
1091 	regmap_reg_range(0x411a, 0x411f),
1092 	regmap_reg_range(0x4122, 0x4127),
1093 	regmap_reg_range(0x412a, 0x412b),
1094 	regmap_reg_range(0x4136, 0x4139),
1095 	regmap_reg_range(0x413e, 0x413f),
1096 	regmap_reg_range(0x4400, 0x4401),
1097 	regmap_reg_range(0x4403, 0x4403),
1098 	regmap_reg_range(0x4410, 0x4417),
1099 	regmap_reg_range(0x4420, 0x4423),
1100 	regmap_reg_range(0x4500, 0x4507),
1101 	regmap_reg_range(0x4600, 0x4612),
1102 	regmap_reg_range(0x4800, 0x480f),
1103 	regmap_reg_range(0x4820, 0x4827),
1104 	regmap_reg_range(0x4830, 0x4837),
1105 	regmap_reg_range(0x4840, 0x484b),
1106 	regmap_reg_range(0x4900, 0x4907),
1107 	regmap_reg_range(0x4914, 0x4915),
1108 	regmap_reg_range(0x4a00, 0x4a03),
1109 	regmap_reg_range(0x4a04, 0x4a07),
1110 	regmap_reg_range(0x4b00, 0x4b01),
1111 	regmap_reg_range(0x4b04, 0x4b04),
1112 
1113 	/* port 5 */
1114 	regmap_reg_range(0x5000, 0x5001),
1115 	regmap_reg_range(0x5013, 0x5013),
1116 	regmap_reg_range(0x5017, 0x5017),
1117 	regmap_reg_range(0x501b, 0x501b),
1118 	regmap_reg_range(0x501f, 0x5020),
1119 	regmap_reg_range(0x5030, 0x5030),
1120 	regmap_reg_range(0x5100, 0x5115),
1121 	regmap_reg_range(0x511a, 0x511f),
1122 	regmap_reg_range(0x5122, 0x5127),
1123 	regmap_reg_range(0x512a, 0x512b),
1124 	regmap_reg_range(0x5136, 0x5139),
1125 	regmap_reg_range(0x513e, 0x513f),
1126 	regmap_reg_range(0x5400, 0x5401),
1127 	regmap_reg_range(0x5403, 0x5403),
1128 	regmap_reg_range(0x5410, 0x5417),
1129 	regmap_reg_range(0x5420, 0x5423),
1130 	regmap_reg_range(0x5500, 0x5507),
1131 	regmap_reg_range(0x5600, 0x5612),
1132 	regmap_reg_range(0x5800, 0x580f),
1133 	regmap_reg_range(0x5820, 0x5827),
1134 	regmap_reg_range(0x5830, 0x5837),
1135 	regmap_reg_range(0x5840, 0x584b),
1136 	regmap_reg_range(0x5900, 0x5907),
1137 	regmap_reg_range(0x5914, 0x5915),
1138 	regmap_reg_range(0x5a00, 0x5a03),
1139 	regmap_reg_range(0x5a04, 0x5a07),
1140 	regmap_reg_range(0x5b00, 0x5b01),
1141 	regmap_reg_range(0x5b04, 0x5b04),
1142 
1143 	/* port 6 */
1144 	regmap_reg_range(0x6000, 0x6001),
1145 	regmap_reg_range(0x6013, 0x6013),
1146 	regmap_reg_range(0x6017, 0x6017),
1147 	regmap_reg_range(0x601b, 0x601b),
1148 	regmap_reg_range(0x601f, 0x6020),
1149 	regmap_reg_range(0x6030, 0x6030),
1150 	regmap_reg_range(0x6100, 0x6115),
1151 	regmap_reg_range(0x611a, 0x611f),
1152 	regmap_reg_range(0x6122, 0x6127),
1153 	regmap_reg_range(0x612a, 0x612b),
1154 	regmap_reg_range(0x6136, 0x6139),
1155 	regmap_reg_range(0x613e, 0x613f),
1156 	regmap_reg_range(0x6300, 0x6301),
1157 	regmap_reg_range(0x6400, 0x6401),
1158 	regmap_reg_range(0x6403, 0x6403),
1159 	regmap_reg_range(0x6410, 0x6417),
1160 	regmap_reg_range(0x6420, 0x6423),
1161 	regmap_reg_range(0x6500, 0x6507),
1162 	regmap_reg_range(0x6600, 0x6612),
1163 	regmap_reg_range(0x6800, 0x680f),
1164 	regmap_reg_range(0x6820, 0x6827),
1165 	regmap_reg_range(0x6830, 0x6837),
1166 	regmap_reg_range(0x6840, 0x684b),
1167 	regmap_reg_range(0x6900, 0x6907),
1168 	regmap_reg_range(0x6914, 0x6915),
1169 	regmap_reg_range(0x6a00, 0x6a03),
1170 	regmap_reg_range(0x6a04, 0x6a07),
1171 	regmap_reg_range(0x6b00, 0x6b01),
1172 	regmap_reg_range(0x6b04, 0x6b04),
1173 };
1174 
1175 static const struct regmap_access_table ksz9896_register_set = {
1176 	.yes_ranges = ksz9896_valid_regs,
1177 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1178 };
1179 
1180 static const struct regmap_range ksz8873_valid_regs[] = {
1181 	regmap_reg_range(0x00, 0x01),
1182 	/* global control register */
1183 	regmap_reg_range(0x02, 0x0f),
1184 
1185 	/* port registers */
1186 	regmap_reg_range(0x10, 0x1d),
1187 	regmap_reg_range(0x1e, 0x1f),
1188 	regmap_reg_range(0x20, 0x2d),
1189 	regmap_reg_range(0x2e, 0x2f),
1190 	regmap_reg_range(0x30, 0x39),
1191 	regmap_reg_range(0x3f, 0x3f),
1192 
1193 	/* advanced control registers */
1194 	regmap_reg_range(0x60, 0x6f),
1195 	regmap_reg_range(0x70, 0x75),
1196 	regmap_reg_range(0x76, 0x78),
1197 	regmap_reg_range(0x79, 0x7a),
1198 	regmap_reg_range(0x7b, 0x83),
1199 	regmap_reg_range(0x8e, 0x99),
1200 	regmap_reg_range(0x9a, 0xa5),
1201 	regmap_reg_range(0xa6, 0xa6),
1202 	regmap_reg_range(0xa7, 0xaa),
1203 	regmap_reg_range(0xab, 0xae),
1204 	regmap_reg_range(0xaf, 0xba),
1205 	regmap_reg_range(0xbb, 0xbc),
1206 	regmap_reg_range(0xbd, 0xbd),
1207 	regmap_reg_range(0xc0, 0xc0),
1208 	regmap_reg_range(0xc2, 0xc2),
1209 	regmap_reg_range(0xc3, 0xc3),
1210 	regmap_reg_range(0xc4, 0xc4),
1211 	regmap_reg_range(0xc6, 0xc6),
1212 };
1213 
1214 static const struct regmap_access_table ksz8873_register_set = {
1215 	.yes_ranges = ksz8873_valid_regs,
1216 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1217 };
1218 
1219 const struct ksz_chip_data ksz_switch_chips[] = {
1220 	[KSZ8563] = {
1221 		.chip_id = KSZ8563_CHIP_ID,
1222 		.dev_name = "KSZ8563",
1223 		.num_vlans = 4096,
1224 		.num_alus = 4096,
1225 		.num_statics = 16,
1226 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1227 		.port_cnt = 3,		/* total port count */
1228 		.port_nirqs = 3,
1229 		.num_tx_queues = 4,
1230 		.num_ipms = 8,
1231 		.tc_cbs_supported = true,
1232 		.ops = &ksz9477_dev_ops,
1233 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1234 		.mib_names = ksz9477_mib_names,
1235 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1236 		.reg_mib_cnt = MIB_COUNTER_NUM,
1237 		.regs = ksz9477_regs,
1238 		.masks = ksz9477_masks,
1239 		.shifts = ksz9477_shifts,
1240 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1241 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1242 		.supports_mii = {false, false, true},
1243 		.supports_rmii = {false, false, true},
1244 		.supports_rgmii = {false, false, true},
1245 		.internal_phy = {true, true, false},
1246 		.gbit_capable = {false, false, true},
1247 		.wr_table = &ksz8563_register_set,
1248 		.rd_table = &ksz8563_register_set,
1249 	},
1250 
1251 	[KSZ8795] = {
1252 		.chip_id = KSZ8795_CHIP_ID,
1253 		.dev_name = "KSZ8795",
1254 		.num_vlans = 4096,
1255 		.num_alus = 0,
1256 		.num_statics = 8,
1257 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1258 		.port_cnt = 5,		/* total cpu and user ports */
1259 		.num_tx_queues = 4,
1260 		.num_ipms = 4,
1261 		.ops = &ksz8_dev_ops,
1262 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1263 		.ksz87xx_eee_link_erratum = true,
1264 		.mib_names = ksz9477_mib_names,
1265 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1266 		.reg_mib_cnt = MIB_COUNTER_NUM,
1267 		.regs = ksz8795_regs,
1268 		.masks = ksz8795_masks,
1269 		.shifts = ksz8795_shifts,
1270 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1271 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1272 		.supports_mii = {false, false, false, false, true},
1273 		.supports_rmii = {false, false, false, false, true},
1274 		.supports_rgmii = {false, false, false, false, true},
1275 		.internal_phy = {true, true, true, true, false},
1276 	},
1277 
1278 	[KSZ8794] = {
1279 		/* WARNING
1280 		 * =======
1281 		 * KSZ8794 is similar to KSZ8795, except the port map
1282 		 * contains a gap between external and CPU ports, the
1283 		 * port map is NOT continuous. The per-port register
1284 		 * map is shifted accordingly too, i.e. registers at
1285 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1286 		 * used on KSZ8795 for external port 3.
1287 		 *           external  cpu
1288 		 * KSZ8794   0,1,2      4
1289 		 * KSZ8795   0,1,2,3    4
1290 		 * KSZ8765   0,1,2,3    4
1291 		 * port_cnt is configured as 5, even though it is 4
1292 		 */
1293 		.chip_id = KSZ8794_CHIP_ID,
1294 		.dev_name = "KSZ8794",
1295 		.num_vlans = 4096,
1296 		.num_alus = 0,
1297 		.num_statics = 8,
1298 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1299 		.port_cnt = 5,		/* total cpu and user ports */
1300 		.num_tx_queues = 4,
1301 		.num_ipms = 4,
1302 		.ops = &ksz8_dev_ops,
1303 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1304 		.ksz87xx_eee_link_erratum = true,
1305 		.mib_names = ksz9477_mib_names,
1306 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1307 		.reg_mib_cnt = MIB_COUNTER_NUM,
1308 		.regs = ksz8795_regs,
1309 		.masks = ksz8795_masks,
1310 		.shifts = ksz8795_shifts,
1311 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1312 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1313 		.supports_mii = {false, false, false, false, true},
1314 		.supports_rmii = {false, false, false, false, true},
1315 		.supports_rgmii = {false, false, false, false, true},
1316 		.internal_phy = {true, true, true, false, false},
1317 	},
1318 
1319 	[KSZ8765] = {
1320 		.chip_id = KSZ8765_CHIP_ID,
1321 		.dev_name = "KSZ8765",
1322 		.num_vlans = 4096,
1323 		.num_alus = 0,
1324 		.num_statics = 8,
1325 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1326 		.port_cnt = 5,		/* total cpu and user ports */
1327 		.num_tx_queues = 4,
1328 		.num_ipms = 4,
1329 		.ops = &ksz8_dev_ops,
1330 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1331 		.ksz87xx_eee_link_erratum = true,
1332 		.mib_names = ksz9477_mib_names,
1333 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1334 		.reg_mib_cnt = MIB_COUNTER_NUM,
1335 		.regs = ksz8795_regs,
1336 		.masks = ksz8795_masks,
1337 		.shifts = ksz8795_shifts,
1338 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1339 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1340 		.supports_mii = {false, false, false, false, true},
1341 		.supports_rmii = {false, false, false, false, true},
1342 		.supports_rgmii = {false, false, false, false, true},
1343 		.internal_phy = {true, true, true, true, false},
1344 	},
1345 
1346 	[KSZ8830] = {
1347 		.chip_id = KSZ8830_CHIP_ID,
1348 		.dev_name = "KSZ8863/KSZ8873",
1349 		.num_vlans = 16,
1350 		.num_alus = 0,
1351 		.num_statics = 8,
1352 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1353 		.port_cnt = 3,
1354 		.num_tx_queues = 4,
1355 		.num_ipms = 4,
1356 		.ops = &ksz8_dev_ops,
1357 		.phylink_mac_ops = &ksz8830_phylink_mac_ops,
1358 		.mib_names = ksz88xx_mib_names,
1359 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1360 		.reg_mib_cnt = MIB_COUNTER_NUM,
1361 		.regs = ksz8863_regs,
1362 		.masks = ksz8863_masks,
1363 		.shifts = ksz8863_shifts,
1364 		.supports_mii = {false, false, true},
1365 		.supports_rmii = {false, false, true},
1366 		.internal_phy = {true, true, false},
1367 		.wr_table = &ksz8873_register_set,
1368 		.rd_table = &ksz8873_register_set,
1369 	},
1370 
1371 	[KSZ9477] = {
1372 		.chip_id = KSZ9477_CHIP_ID,
1373 		.dev_name = "KSZ9477",
1374 		.num_vlans = 4096,
1375 		.num_alus = 4096,
1376 		.num_statics = 16,
1377 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1378 		.port_cnt = 7,		/* total physical port count */
1379 		.port_nirqs = 4,
1380 		.num_tx_queues = 4,
1381 		.num_ipms = 8,
1382 		.tc_cbs_supported = true,
1383 		.ops = &ksz9477_dev_ops,
1384 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1385 		.mib_names = ksz9477_mib_names,
1386 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1387 		.reg_mib_cnt = MIB_COUNTER_NUM,
1388 		.regs = ksz9477_regs,
1389 		.masks = ksz9477_masks,
1390 		.shifts = ksz9477_shifts,
1391 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1392 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1393 		.supports_mii	= {false, false, false, false,
1394 				   false, true, false},
1395 		.supports_rmii	= {false, false, false, false,
1396 				   false, true, false},
1397 		.supports_rgmii = {false, false, false, false,
1398 				   false, true, false},
1399 		.internal_phy	= {true, true, true, true,
1400 				   true, false, false},
1401 		.gbit_capable	= {true, true, true, true, true, true, true},
1402 		.wr_table = &ksz9477_register_set,
1403 		.rd_table = &ksz9477_register_set,
1404 	},
1405 
1406 	[KSZ9896] = {
1407 		.chip_id = KSZ9896_CHIP_ID,
1408 		.dev_name = "KSZ9896",
1409 		.num_vlans = 4096,
1410 		.num_alus = 4096,
1411 		.num_statics = 16,
1412 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1413 		.port_cnt = 6,		/* total physical port count */
1414 		.port_nirqs = 2,
1415 		.num_tx_queues = 4,
1416 		.num_ipms = 8,
1417 		.ops = &ksz9477_dev_ops,
1418 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1419 		.mib_names = ksz9477_mib_names,
1420 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1421 		.reg_mib_cnt = MIB_COUNTER_NUM,
1422 		.regs = ksz9477_regs,
1423 		.masks = ksz9477_masks,
1424 		.shifts = ksz9477_shifts,
1425 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1426 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1427 		.supports_mii	= {false, false, false, false,
1428 				   false, true},
1429 		.supports_rmii	= {false, false, false, false,
1430 				   false, true},
1431 		.supports_rgmii = {false, false, false, false,
1432 				   false, true},
1433 		.internal_phy	= {true, true, true, true,
1434 				   true, false},
1435 		.gbit_capable	= {true, true, true, true, true, true},
1436 		.wr_table = &ksz9896_register_set,
1437 		.rd_table = &ksz9896_register_set,
1438 	},
1439 
1440 	[KSZ9897] = {
1441 		.chip_id = KSZ9897_CHIP_ID,
1442 		.dev_name = "KSZ9897",
1443 		.num_vlans = 4096,
1444 		.num_alus = 4096,
1445 		.num_statics = 16,
1446 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1447 		.port_cnt = 7,		/* total physical port count */
1448 		.port_nirqs = 2,
1449 		.num_tx_queues = 4,
1450 		.num_ipms = 8,
1451 		.ops = &ksz9477_dev_ops,
1452 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1453 		.mib_names = ksz9477_mib_names,
1454 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1455 		.reg_mib_cnt = MIB_COUNTER_NUM,
1456 		.regs = ksz9477_regs,
1457 		.masks = ksz9477_masks,
1458 		.shifts = ksz9477_shifts,
1459 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1460 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1461 		.supports_mii	= {false, false, false, false,
1462 				   false, true, true},
1463 		.supports_rmii	= {false, false, false, false,
1464 				   false, true, true},
1465 		.supports_rgmii = {false, false, false, false,
1466 				   false, true, true},
1467 		.internal_phy	= {true, true, true, true,
1468 				   true, false, false},
1469 		.gbit_capable	= {true, true, true, true, true, true, true},
1470 	},
1471 
1472 	[KSZ9893] = {
1473 		.chip_id = KSZ9893_CHIP_ID,
1474 		.dev_name = "KSZ9893",
1475 		.num_vlans = 4096,
1476 		.num_alus = 4096,
1477 		.num_statics = 16,
1478 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1479 		.port_cnt = 3,		/* total port count */
1480 		.port_nirqs = 2,
1481 		.num_tx_queues = 4,
1482 		.num_ipms = 8,
1483 		.ops = &ksz9477_dev_ops,
1484 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1485 		.mib_names = ksz9477_mib_names,
1486 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1487 		.reg_mib_cnt = MIB_COUNTER_NUM,
1488 		.regs = ksz9477_regs,
1489 		.masks = ksz9477_masks,
1490 		.shifts = ksz9477_shifts,
1491 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1492 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1493 		.supports_mii = {false, false, true},
1494 		.supports_rmii = {false, false, true},
1495 		.supports_rgmii = {false, false, true},
1496 		.internal_phy = {true, true, false},
1497 		.gbit_capable = {true, true, true},
1498 	},
1499 
1500 	[KSZ9563] = {
1501 		.chip_id = KSZ9563_CHIP_ID,
1502 		.dev_name = "KSZ9563",
1503 		.num_vlans = 4096,
1504 		.num_alus = 4096,
1505 		.num_statics = 16,
1506 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1507 		.port_cnt = 3,		/* total port count */
1508 		.port_nirqs = 3,
1509 		.num_tx_queues = 4,
1510 		.num_ipms = 8,
1511 		.tc_cbs_supported = true,
1512 		.ops = &ksz9477_dev_ops,
1513 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1514 		.mib_names = ksz9477_mib_names,
1515 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1516 		.reg_mib_cnt = MIB_COUNTER_NUM,
1517 		.regs = ksz9477_regs,
1518 		.masks = ksz9477_masks,
1519 		.shifts = ksz9477_shifts,
1520 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1521 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1522 		.supports_mii = {false, false, true},
1523 		.supports_rmii = {false, false, true},
1524 		.supports_rgmii = {false, false, true},
1525 		.internal_phy = {true, true, false},
1526 		.gbit_capable = {true, true, true},
1527 	},
1528 
1529 	[KSZ8567] = {
1530 		.chip_id = KSZ8567_CHIP_ID,
1531 		.dev_name = "KSZ8567",
1532 		.num_vlans = 4096,
1533 		.num_alus = 4096,
1534 		.num_statics = 16,
1535 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1536 		.port_cnt = 7,		/* total port count */
1537 		.port_nirqs = 3,
1538 		.num_tx_queues = 4,
1539 		.num_ipms = 8,
1540 		.tc_cbs_supported = true,
1541 		.ops = &ksz9477_dev_ops,
1542 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1543 		.mib_names = ksz9477_mib_names,
1544 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1545 		.reg_mib_cnt = MIB_COUNTER_NUM,
1546 		.regs = ksz9477_regs,
1547 		.masks = ksz9477_masks,
1548 		.shifts = ksz9477_shifts,
1549 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1550 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1551 		.supports_mii	= {false, false, false, false,
1552 				   false, true, true},
1553 		.supports_rmii	= {false, false, false, false,
1554 				   false, true, true},
1555 		.supports_rgmii = {false, false, false, false,
1556 				   false, true, true},
1557 		.internal_phy	= {true, true, true, true,
1558 				   true, false, false},
1559 		.gbit_capable	= {false, false, false, false, false,
1560 				   true, true},
1561 	},
1562 
1563 	[KSZ9567] = {
1564 		.chip_id = KSZ9567_CHIP_ID,
1565 		.dev_name = "KSZ9567",
1566 		.num_vlans = 4096,
1567 		.num_alus = 4096,
1568 		.num_statics = 16,
1569 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1570 		.port_cnt = 7,		/* total physical port count */
1571 		.port_nirqs = 3,
1572 		.num_tx_queues = 4,
1573 		.num_ipms = 8,
1574 		.tc_cbs_supported = true,
1575 		.ops = &ksz9477_dev_ops,
1576 		.mib_names = ksz9477_mib_names,
1577 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1578 		.reg_mib_cnt = MIB_COUNTER_NUM,
1579 		.regs = ksz9477_regs,
1580 		.masks = ksz9477_masks,
1581 		.shifts = ksz9477_shifts,
1582 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1583 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1584 		.supports_mii	= {false, false, false, false,
1585 				   false, true, true},
1586 		.supports_rmii	= {false, false, false, false,
1587 				   false, true, true},
1588 		.supports_rgmii = {false, false, false, false,
1589 				   false, true, true},
1590 		.internal_phy	= {true, true, true, true,
1591 				   true, false, false},
1592 		.gbit_capable	= {true, true, true, true, true, true, true},
1593 	},
1594 
1595 	[LAN9370] = {
1596 		.chip_id = LAN9370_CHIP_ID,
1597 		.dev_name = "LAN9370",
1598 		.num_vlans = 4096,
1599 		.num_alus = 1024,
1600 		.num_statics = 256,
1601 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1602 		.port_cnt = 5,		/* total physical port count */
1603 		.port_nirqs = 6,
1604 		.num_tx_queues = 8,
1605 		.num_ipms = 8,
1606 		.tc_cbs_supported = true,
1607 		.ops = &lan937x_dev_ops,
1608 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1609 		.mib_names = ksz9477_mib_names,
1610 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1611 		.reg_mib_cnt = MIB_COUNTER_NUM,
1612 		.regs = ksz9477_regs,
1613 		.masks = lan937x_masks,
1614 		.shifts = lan937x_shifts,
1615 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1616 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1617 		.supports_mii = {false, false, false, false, true},
1618 		.supports_rmii = {false, false, false, false, true},
1619 		.supports_rgmii = {false, false, false, false, true},
1620 		.internal_phy = {true, true, true, true, false},
1621 	},
1622 
1623 	[LAN9371] = {
1624 		.chip_id = LAN9371_CHIP_ID,
1625 		.dev_name = "LAN9371",
1626 		.num_vlans = 4096,
1627 		.num_alus = 1024,
1628 		.num_statics = 256,
1629 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1630 		.port_cnt = 6,		/* total physical port count */
1631 		.port_nirqs = 6,
1632 		.num_tx_queues = 8,
1633 		.num_ipms = 8,
1634 		.tc_cbs_supported = true,
1635 		.ops = &lan937x_dev_ops,
1636 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1637 		.mib_names = ksz9477_mib_names,
1638 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1639 		.reg_mib_cnt = MIB_COUNTER_NUM,
1640 		.regs = ksz9477_regs,
1641 		.masks = lan937x_masks,
1642 		.shifts = lan937x_shifts,
1643 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1644 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1645 		.supports_mii = {false, false, false, false, true, true},
1646 		.supports_rmii = {false, false, false, false, true, true},
1647 		.supports_rgmii = {false, false, false, false, true, true},
1648 		.internal_phy = {true, true, true, true, false, false},
1649 	},
1650 
1651 	[LAN9372] = {
1652 		.chip_id = LAN9372_CHIP_ID,
1653 		.dev_name = "LAN9372",
1654 		.num_vlans = 4096,
1655 		.num_alus = 1024,
1656 		.num_statics = 256,
1657 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1658 		.port_cnt = 8,		/* total physical port count */
1659 		.port_nirqs = 6,
1660 		.num_tx_queues = 8,
1661 		.num_ipms = 8,
1662 		.tc_cbs_supported = true,
1663 		.ops = &lan937x_dev_ops,
1664 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1665 		.mib_names = ksz9477_mib_names,
1666 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1667 		.reg_mib_cnt = MIB_COUNTER_NUM,
1668 		.regs = ksz9477_regs,
1669 		.masks = lan937x_masks,
1670 		.shifts = lan937x_shifts,
1671 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1672 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1673 		.supports_mii	= {false, false, false, false,
1674 				   true, true, false, false},
1675 		.supports_rmii	= {false, false, false, false,
1676 				   true, true, false, false},
1677 		.supports_rgmii = {false, false, false, false,
1678 				   true, true, false, false},
1679 		.internal_phy	= {true, true, true, true,
1680 				   false, false, true, true},
1681 	},
1682 
1683 	[LAN9373] = {
1684 		.chip_id = LAN9373_CHIP_ID,
1685 		.dev_name = "LAN9373",
1686 		.num_vlans = 4096,
1687 		.num_alus = 1024,
1688 		.num_statics = 256,
1689 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1690 		.port_cnt = 5,		/* total physical port count */
1691 		.port_nirqs = 6,
1692 		.num_tx_queues = 8,
1693 		.num_ipms = 8,
1694 		.tc_cbs_supported = true,
1695 		.ops = &lan937x_dev_ops,
1696 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1697 		.mib_names = ksz9477_mib_names,
1698 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1699 		.reg_mib_cnt = MIB_COUNTER_NUM,
1700 		.regs = ksz9477_regs,
1701 		.masks = lan937x_masks,
1702 		.shifts = lan937x_shifts,
1703 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1704 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1705 		.supports_mii	= {false, false, false, false,
1706 				   true, true, false, false},
1707 		.supports_rmii	= {false, false, false, false,
1708 				   true, true, false, false},
1709 		.supports_rgmii = {false, false, false, false,
1710 				   true, true, false, false},
1711 		.internal_phy	= {true, true, true, false,
1712 				   false, false, true, true},
1713 	},
1714 
1715 	[LAN9374] = {
1716 		.chip_id = LAN9374_CHIP_ID,
1717 		.dev_name = "LAN9374",
1718 		.num_vlans = 4096,
1719 		.num_alus = 1024,
1720 		.num_statics = 256,
1721 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1722 		.port_cnt = 8,		/* total physical port count */
1723 		.port_nirqs = 6,
1724 		.num_tx_queues = 8,
1725 		.num_ipms = 8,
1726 		.tc_cbs_supported = true,
1727 		.ops = &lan937x_dev_ops,
1728 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1729 		.mib_names = ksz9477_mib_names,
1730 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1731 		.reg_mib_cnt = MIB_COUNTER_NUM,
1732 		.regs = ksz9477_regs,
1733 		.masks = lan937x_masks,
1734 		.shifts = lan937x_shifts,
1735 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1736 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1737 		.supports_mii	= {false, false, false, false,
1738 				   true, true, false, false},
1739 		.supports_rmii	= {false, false, false, false,
1740 				   true, true, false, false},
1741 		.supports_rgmii = {false, false, false, false,
1742 				   true, true, false, false},
1743 		.internal_phy	= {true, true, true, true,
1744 				   false, false, true, true},
1745 	},
1746 };
1747 EXPORT_SYMBOL_GPL(ksz_switch_chips);
1748 
1749 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1750 {
1751 	int i;
1752 
1753 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1754 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1755 
1756 		if (chip->chip_id == prod_num)
1757 			return chip;
1758 	}
1759 
1760 	return NULL;
1761 }
1762 
1763 static int ksz_check_device_id(struct ksz_device *dev)
1764 {
1765 	const struct ksz_chip_data *expected_chip_data;
1766 	u32 expected_chip_id;
1767 
1768 	if (dev->pdata) {
1769 		expected_chip_id = dev->pdata->chip_id;
1770 		expected_chip_data = ksz_lookup_info(expected_chip_id);
1771 		if (WARN_ON(!expected_chip_data))
1772 			return -ENODEV;
1773 	} else {
1774 		expected_chip_data = of_device_get_match_data(dev->dev);
1775 		expected_chip_id = expected_chip_data->chip_id;
1776 	}
1777 
1778 	if (expected_chip_id != dev->chip_id) {
1779 		dev_err(dev->dev,
1780 			"Device tree specifies chip %s but found %s, please fix it!\n",
1781 			expected_chip_data->dev_name, dev->info->dev_name);
1782 		return -ENODEV;
1783 	}
1784 
1785 	return 0;
1786 }
1787 
1788 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1789 				 struct phylink_config *config)
1790 {
1791 	struct ksz_device *dev = ds->priv;
1792 
1793 	if (dev->info->supports_mii[port])
1794 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1795 
1796 	if (dev->info->supports_rmii[port])
1797 		__set_bit(PHY_INTERFACE_MODE_RMII,
1798 			  config->supported_interfaces);
1799 
1800 	if (dev->info->supports_rgmii[port])
1801 		phy_interface_set_rgmii(config->supported_interfaces);
1802 
1803 	if (dev->info->internal_phy[port]) {
1804 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1805 			  config->supported_interfaces);
1806 		/* Compatibility for phylib's default interface type when the
1807 		 * phy-mode property is absent
1808 		 */
1809 		__set_bit(PHY_INTERFACE_MODE_GMII,
1810 			  config->supported_interfaces);
1811 	}
1812 
1813 	if (dev->dev_ops->get_caps)
1814 		dev->dev_ops->get_caps(dev, port, config);
1815 }
1816 
1817 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
1818 {
1819 	struct ethtool_pause_stats *pstats;
1820 	struct rtnl_link_stats64 *stats;
1821 	struct ksz_stats_raw *raw;
1822 	struct ksz_port_mib *mib;
1823 
1824 	mib = &dev->ports[port].mib;
1825 	stats = &mib->stats64;
1826 	pstats = &mib->pause_stats;
1827 	raw = (struct ksz_stats_raw *)mib->counters;
1828 
1829 	spin_lock(&mib->stats64_lock);
1830 
1831 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1832 		raw->rx_pause;
1833 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1834 		raw->tx_pause;
1835 
1836 	/* HW counters are counting bytes + FCS which is not acceptable
1837 	 * for rtnl_link_stats64 interface
1838 	 */
1839 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
1840 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
1841 
1842 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1843 		raw->rx_oversize;
1844 
1845 	stats->rx_crc_errors = raw->rx_crc_err;
1846 	stats->rx_frame_errors = raw->rx_align_err;
1847 	stats->rx_dropped = raw->rx_discards;
1848 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1849 		stats->rx_frame_errors  + stats->rx_dropped;
1850 
1851 	stats->tx_window_errors = raw->tx_late_col;
1852 	stats->tx_fifo_errors = raw->tx_discards;
1853 	stats->tx_aborted_errors = raw->tx_exc_col;
1854 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1855 		stats->tx_aborted_errors;
1856 
1857 	stats->multicast = raw->rx_mcast;
1858 	stats->collisions = raw->tx_total_col;
1859 
1860 	pstats->tx_pause_frames = raw->tx_pause;
1861 	pstats->rx_pause_frames = raw->rx_pause;
1862 
1863 	spin_unlock(&mib->stats64_lock);
1864 }
1865 
1866 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
1867 {
1868 	struct ethtool_pause_stats *pstats;
1869 	struct rtnl_link_stats64 *stats;
1870 	struct ksz88xx_stats_raw *raw;
1871 	struct ksz_port_mib *mib;
1872 
1873 	mib = &dev->ports[port].mib;
1874 	stats = &mib->stats64;
1875 	pstats = &mib->pause_stats;
1876 	raw = (struct ksz88xx_stats_raw *)mib->counters;
1877 
1878 	spin_lock(&mib->stats64_lock);
1879 
1880 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1881 		raw->rx_pause;
1882 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1883 		raw->tx_pause;
1884 
1885 	/* HW counters are counting bytes + FCS which is not acceptable
1886 	 * for rtnl_link_stats64 interface
1887 	 */
1888 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
1889 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
1890 
1891 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1892 		raw->rx_oversize;
1893 
1894 	stats->rx_crc_errors = raw->rx_crc_err;
1895 	stats->rx_frame_errors = raw->rx_align_err;
1896 	stats->rx_dropped = raw->rx_discards;
1897 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1898 		stats->rx_frame_errors  + stats->rx_dropped;
1899 
1900 	stats->tx_window_errors = raw->tx_late_col;
1901 	stats->tx_fifo_errors = raw->tx_discards;
1902 	stats->tx_aborted_errors = raw->tx_exc_col;
1903 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1904 		stats->tx_aborted_errors;
1905 
1906 	stats->multicast = raw->rx_mcast;
1907 	stats->collisions = raw->tx_total_col;
1908 
1909 	pstats->tx_pause_frames = raw->tx_pause;
1910 	pstats->rx_pause_frames = raw->rx_pause;
1911 
1912 	spin_unlock(&mib->stats64_lock);
1913 }
1914 
1915 static void ksz_get_stats64(struct dsa_switch *ds, int port,
1916 			    struct rtnl_link_stats64 *s)
1917 {
1918 	struct ksz_device *dev = ds->priv;
1919 	struct ksz_port_mib *mib;
1920 
1921 	mib = &dev->ports[port].mib;
1922 
1923 	spin_lock(&mib->stats64_lock);
1924 	memcpy(s, &mib->stats64, sizeof(*s));
1925 	spin_unlock(&mib->stats64_lock);
1926 }
1927 
1928 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
1929 				struct ethtool_pause_stats *pause_stats)
1930 {
1931 	struct ksz_device *dev = ds->priv;
1932 	struct ksz_port_mib *mib;
1933 
1934 	mib = &dev->ports[port].mib;
1935 
1936 	spin_lock(&mib->stats64_lock);
1937 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
1938 	spin_unlock(&mib->stats64_lock);
1939 }
1940 
1941 static void ksz_get_strings(struct dsa_switch *ds, int port,
1942 			    u32 stringset, uint8_t *buf)
1943 {
1944 	struct ksz_device *dev = ds->priv;
1945 	int i;
1946 
1947 	if (stringset != ETH_SS_STATS)
1948 		return;
1949 
1950 	for (i = 0; i < dev->info->mib_cnt; i++) {
1951 		memcpy(buf + i * ETH_GSTRING_LEN,
1952 		       dev->info->mib_names[i].string, ETH_GSTRING_LEN);
1953 	}
1954 }
1955 
1956 /**
1957  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
1958  *			    isolation settings.
1959  * @dev: A pointer to the struct ksz_device representing the device.
1960  * @port: The port number to adjust.
1961  *
1962  * This function dynamically adjusts the port membership configuration for a
1963  * specified port and other device ports, based on Spanning Tree Protocol (STP)
1964  * states and port isolation settings. Each port, including the CPU port, has a
1965  * membership register, represented as a bitfield, where each bit corresponds
1966  * to a port number. A set bit indicates permission to forward frames to that
1967  * port. This function iterates over all ports, updating the membership register
1968  * to reflect current forwarding permissions:
1969  *
1970  * 1. Forwards frames only to ports that are part of the same bridge group and
1971  *    in the BR_STATE_FORWARDING state.
1972  * 2. Takes into account the isolation status of ports; ports in the
1973  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
1974  *    frames to each other, even if they are in the same bridge group.
1975  * 3. Ensures that the CPU port is included in the membership based on its
1976  *    upstream port configuration, allowing for management and control traffic
1977  *    to flow as required.
1978  */
1979 static void ksz_update_port_member(struct ksz_device *dev, int port)
1980 {
1981 	struct ksz_port *p = &dev->ports[port];
1982 	struct dsa_switch *ds = dev->ds;
1983 	u8 port_member = 0, cpu_port;
1984 	const struct dsa_port *dp;
1985 	int i, j;
1986 
1987 	if (!dsa_is_user_port(ds, port))
1988 		return;
1989 
1990 	dp = dsa_to_port(ds, port);
1991 	cpu_port = BIT(dsa_upstream_port(ds, port));
1992 
1993 	for (i = 0; i < ds->num_ports; i++) {
1994 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
1995 		struct ksz_port *other_p = &dev->ports[i];
1996 		u8 val = 0;
1997 
1998 		if (!dsa_is_user_port(ds, i))
1999 			continue;
2000 		if (port == i)
2001 			continue;
2002 		if (!dsa_port_bridge_same(dp, other_dp))
2003 			continue;
2004 		if (other_p->stp_state != BR_STATE_FORWARDING)
2005 			continue;
2006 
2007 		/* At this point we know that "port" and "other" port [i] are in
2008 		 * the same bridge group and that "other" port [i] is in
2009 		 * forwarding stp state. If "port" is also in forwarding stp
2010 		 * state, we can allow forwarding from port [port] to port [i].
2011 		 * Except if both ports are isolated.
2012 		 */
2013 		if (p->stp_state == BR_STATE_FORWARDING &&
2014 		    !(p->isolated && other_p->isolated)) {
2015 			val |= BIT(port);
2016 			port_member |= BIT(i);
2017 		}
2018 
2019 		/* Retain port [i]'s relationship to other ports than [port] */
2020 		for (j = 0; j < ds->num_ports; j++) {
2021 			const struct dsa_port *third_dp;
2022 			struct ksz_port *third_p;
2023 
2024 			if (j == i)
2025 				continue;
2026 			if (j == port)
2027 				continue;
2028 			if (!dsa_is_user_port(ds, j))
2029 				continue;
2030 			third_p = &dev->ports[j];
2031 			if (third_p->stp_state != BR_STATE_FORWARDING)
2032 				continue;
2033 
2034 			third_dp = dsa_to_port(ds, j);
2035 
2036 			/* Now we updating relation of the "other" port [i] to
2037 			 * the "third" port [j]. We already know that "other"
2038 			 * port [i] is in forwarding stp state and that "third"
2039 			 * port [j] is in forwarding stp state too.
2040 			 * We need to check if "other" port [i] and "third" port
2041 			 * [j] are in the same bridge group and not isolated
2042 			 * before allowing forwarding from port [i] to port [j].
2043 			 */
2044 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2045 			    !(other_p->isolated && third_p->isolated))
2046 				val |= BIT(j);
2047 		}
2048 
2049 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2050 	}
2051 
2052 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2053 }
2054 
2055 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2056 {
2057 	struct ksz_device *dev = bus->priv;
2058 	u16 val;
2059 	int ret;
2060 
2061 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2062 	if (ret < 0)
2063 		return ret;
2064 
2065 	return val;
2066 }
2067 
2068 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2069 			     u16 val)
2070 {
2071 	struct ksz_device *dev = bus->priv;
2072 
2073 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2074 }
2075 
2076 static int ksz_irq_phy_setup(struct ksz_device *dev)
2077 {
2078 	struct dsa_switch *ds = dev->ds;
2079 	int phy;
2080 	int irq;
2081 	int ret;
2082 
2083 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) {
2084 		if (BIT(phy) & ds->phys_mii_mask) {
2085 			irq = irq_find_mapping(dev->ports[phy].pirq.domain,
2086 					       PORT_SRC_PHY_INT);
2087 			if (irq < 0) {
2088 				ret = irq;
2089 				goto out;
2090 			}
2091 			ds->user_mii_bus->irq[phy] = irq;
2092 		}
2093 	}
2094 	return 0;
2095 out:
2096 	while (phy--)
2097 		if (BIT(phy) & ds->phys_mii_mask)
2098 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2099 
2100 	return ret;
2101 }
2102 
2103 static void ksz_irq_phy_free(struct ksz_device *dev)
2104 {
2105 	struct dsa_switch *ds = dev->ds;
2106 	int phy;
2107 
2108 	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++)
2109 		if (BIT(phy) & ds->phys_mii_mask)
2110 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2111 }
2112 
2113 static int ksz_mdio_register(struct ksz_device *dev)
2114 {
2115 	struct dsa_switch *ds = dev->ds;
2116 	struct device_node *mdio_np;
2117 	struct mii_bus *bus;
2118 	int ret;
2119 
2120 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2121 	if (!mdio_np)
2122 		return 0;
2123 
2124 	bus = devm_mdiobus_alloc(ds->dev);
2125 	if (!bus) {
2126 		of_node_put(mdio_np);
2127 		return -ENOMEM;
2128 	}
2129 
2130 	bus->priv = dev;
2131 	bus->read = ksz_sw_mdio_read;
2132 	bus->write = ksz_sw_mdio_write;
2133 	bus->name = "ksz user smi";
2134 	snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2135 	bus->parent = ds->dev;
2136 	bus->phy_mask = ~ds->phys_mii_mask;
2137 
2138 	ds->user_mii_bus = bus;
2139 
2140 	if (dev->irq > 0) {
2141 		ret = ksz_irq_phy_setup(dev);
2142 		if (ret) {
2143 			of_node_put(mdio_np);
2144 			return ret;
2145 		}
2146 	}
2147 
2148 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2149 	if (ret) {
2150 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2151 			bus->id);
2152 		if (dev->irq > 0)
2153 			ksz_irq_phy_free(dev);
2154 	}
2155 
2156 	of_node_put(mdio_np);
2157 
2158 	return ret;
2159 }
2160 
2161 static void ksz_irq_mask(struct irq_data *d)
2162 {
2163 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2164 
2165 	kirq->masked |= BIT(d->hwirq);
2166 }
2167 
2168 static void ksz_irq_unmask(struct irq_data *d)
2169 {
2170 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2171 
2172 	kirq->masked &= ~BIT(d->hwirq);
2173 }
2174 
2175 static void ksz_irq_bus_lock(struct irq_data *d)
2176 {
2177 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2178 
2179 	mutex_lock(&kirq->dev->lock_irq);
2180 }
2181 
2182 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2183 {
2184 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2185 	struct ksz_device *dev = kirq->dev;
2186 	int ret;
2187 
2188 	ret = ksz_write32(dev, kirq->reg_mask, kirq->masked);
2189 	if (ret)
2190 		dev_err(dev->dev, "failed to change IRQ mask\n");
2191 
2192 	mutex_unlock(&dev->lock_irq);
2193 }
2194 
2195 static const struct irq_chip ksz_irq_chip = {
2196 	.name			= "ksz-irq",
2197 	.irq_mask		= ksz_irq_mask,
2198 	.irq_unmask		= ksz_irq_unmask,
2199 	.irq_bus_lock		= ksz_irq_bus_lock,
2200 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2201 };
2202 
2203 static int ksz_irq_domain_map(struct irq_domain *d,
2204 			      unsigned int irq, irq_hw_number_t hwirq)
2205 {
2206 	irq_set_chip_data(irq, d->host_data);
2207 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2208 	irq_set_noprobe(irq);
2209 
2210 	return 0;
2211 }
2212 
2213 static const struct irq_domain_ops ksz_irq_domain_ops = {
2214 	.map	= ksz_irq_domain_map,
2215 	.xlate	= irq_domain_xlate_twocell,
2216 };
2217 
2218 static void ksz_irq_free(struct ksz_irq *kirq)
2219 {
2220 	int irq, virq;
2221 
2222 	free_irq(kirq->irq_num, kirq);
2223 
2224 	for (irq = 0; irq < kirq->nirqs; irq++) {
2225 		virq = irq_find_mapping(kirq->domain, irq);
2226 		irq_dispose_mapping(virq);
2227 	}
2228 
2229 	irq_domain_remove(kirq->domain);
2230 }
2231 
2232 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2233 {
2234 	struct ksz_irq *kirq = dev_id;
2235 	unsigned int nhandled = 0;
2236 	struct ksz_device *dev;
2237 	unsigned int sub_irq;
2238 	u8 data;
2239 	int ret;
2240 	u8 n;
2241 
2242 	dev = kirq->dev;
2243 
2244 	/* Read interrupt status register */
2245 	ret = ksz_read8(dev, kirq->reg_status, &data);
2246 	if (ret)
2247 		goto out;
2248 
2249 	for (n = 0; n < kirq->nirqs; ++n) {
2250 		if (data & BIT(n)) {
2251 			sub_irq = irq_find_mapping(kirq->domain, n);
2252 			handle_nested_irq(sub_irq);
2253 			++nhandled;
2254 		}
2255 	}
2256 out:
2257 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2258 }
2259 
2260 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2261 {
2262 	int ret, n;
2263 
2264 	kirq->dev = dev;
2265 	kirq->masked = ~0;
2266 
2267 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2268 					     &ksz_irq_domain_ops, kirq);
2269 	if (!kirq->domain)
2270 		return -ENOMEM;
2271 
2272 	for (n = 0; n < kirq->nirqs; n++)
2273 		irq_create_mapping(kirq->domain, n);
2274 
2275 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2276 				   IRQF_ONESHOT, kirq->name, kirq);
2277 	if (ret)
2278 		goto out;
2279 
2280 	return 0;
2281 
2282 out:
2283 	ksz_irq_free(kirq);
2284 
2285 	return ret;
2286 }
2287 
2288 static int ksz_girq_setup(struct ksz_device *dev)
2289 {
2290 	struct ksz_irq *girq = &dev->girq;
2291 
2292 	girq->nirqs = dev->info->port_cnt;
2293 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2294 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2295 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2296 
2297 	girq->irq_num = dev->irq;
2298 
2299 	return ksz_irq_common_setup(dev, girq);
2300 }
2301 
2302 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2303 {
2304 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2305 
2306 	pirq->nirqs = dev->info->port_nirqs;
2307 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2308 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2309 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2310 
2311 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2312 	if (pirq->irq_num < 0)
2313 		return pirq->irq_num;
2314 
2315 	return ksz_irq_common_setup(dev, pirq);
2316 }
2317 
2318 static int ksz_parse_drive_strength(struct ksz_device *dev);
2319 
2320 static int ksz_setup(struct dsa_switch *ds)
2321 {
2322 	struct ksz_device *dev = ds->priv;
2323 	struct dsa_port *dp;
2324 	struct ksz_port *p;
2325 	const u16 *regs;
2326 	int ret;
2327 
2328 	regs = dev->info->regs;
2329 
2330 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2331 				       dev->info->num_vlans, GFP_KERNEL);
2332 	if (!dev->vlan_cache)
2333 		return -ENOMEM;
2334 
2335 	ret = dev->dev_ops->reset(dev);
2336 	if (ret) {
2337 		dev_err(ds->dev, "failed to reset switch\n");
2338 		return ret;
2339 	}
2340 
2341 	ret = ksz_parse_drive_strength(dev);
2342 	if (ret)
2343 		return ret;
2344 
2345 	/* set broadcast storm protection 10% rate */
2346 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2347 			   BROADCAST_STORM_RATE,
2348 			   (BROADCAST_STORM_VALUE *
2349 			   BROADCAST_STORM_PROT_RATE) / 100);
2350 
2351 	dev->dev_ops->config_cpu_port(ds);
2352 
2353 	dev->dev_ops->enable_stp_addr(dev);
2354 
2355 	ds->num_tx_queues = dev->info->num_tx_queues;
2356 
2357 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2358 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2359 
2360 	ksz_init_mib_timer(dev);
2361 
2362 	ds->configure_vlan_while_not_filtering = false;
2363 	ds->dscp_prio_mapping_is_global = true;
2364 
2365 	if (dev->dev_ops->setup) {
2366 		ret = dev->dev_ops->setup(ds);
2367 		if (ret)
2368 			return ret;
2369 	}
2370 
2371 	/* Start with learning disabled on standalone user ports, and enabled
2372 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2373 	 * CPU port will avoid flooding bridge local addresses on the network
2374 	 * in some cases.
2375 	 */
2376 	p = &dev->ports[dev->cpu_port];
2377 	p->learning = true;
2378 
2379 	if (dev->irq > 0) {
2380 		ret = ksz_girq_setup(dev);
2381 		if (ret)
2382 			return ret;
2383 
2384 		dsa_switch_for_each_user_port(dp, dev->ds) {
2385 			ret = ksz_pirq_setup(dev, dp->index);
2386 			if (ret)
2387 				goto out_girq;
2388 
2389 			ret = ksz_ptp_irq_setup(ds, dp->index);
2390 			if (ret)
2391 				goto out_pirq;
2392 		}
2393 	}
2394 
2395 	ret = ksz_ptp_clock_register(ds);
2396 	if (ret) {
2397 		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2398 		goto out_ptpirq;
2399 	}
2400 
2401 	ret = ksz_mdio_register(dev);
2402 	if (ret < 0) {
2403 		dev_err(dev->dev, "failed to register the mdio");
2404 		goto out_ptp_clock_unregister;
2405 	}
2406 
2407 	ret = ksz_dcb_init(dev);
2408 	if (ret)
2409 		goto out_ptp_clock_unregister;
2410 
2411 	/* start switch */
2412 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2413 			   SW_START, SW_START);
2414 
2415 	return 0;
2416 
2417 out_ptp_clock_unregister:
2418 	ksz_ptp_clock_unregister(ds);
2419 out_ptpirq:
2420 	if (dev->irq > 0)
2421 		dsa_switch_for_each_user_port(dp, dev->ds)
2422 			ksz_ptp_irq_free(ds, dp->index);
2423 out_pirq:
2424 	if (dev->irq > 0)
2425 		dsa_switch_for_each_user_port(dp, dev->ds)
2426 			ksz_irq_free(&dev->ports[dp->index].pirq);
2427 out_girq:
2428 	if (dev->irq > 0)
2429 		ksz_irq_free(&dev->girq);
2430 
2431 	return ret;
2432 }
2433 
2434 static void ksz_teardown(struct dsa_switch *ds)
2435 {
2436 	struct ksz_device *dev = ds->priv;
2437 	struct dsa_port *dp;
2438 
2439 	ksz_ptp_clock_unregister(ds);
2440 
2441 	if (dev->irq > 0) {
2442 		dsa_switch_for_each_user_port(dp, dev->ds) {
2443 			ksz_ptp_irq_free(ds, dp->index);
2444 
2445 			ksz_irq_free(&dev->ports[dp->index].pirq);
2446 		}
2447 
2448 		ksz_irq_free(&dev->girq);
2449 	}
2450 
2451 	if (dev->dev_ops->teardown)
2452 		dev->dev_ops->teardown(ds);
2453 }
2454 
2455 static void port_r_cnt(struct ksz_device *dev, int port)
2456 {
2457 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2458 	u64 *dropped;
2459 
2460 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2461 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2462 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2463 					&mib->counters[mib->cnt_ptr]);
2464 		++mib->cnt_ptr;
2465 	}
2466 
2467 	/* last one in storage */
2468 	dropped = &mib->counters[dev->info->mib_cnt];
2469 
2470 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2471 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2472 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2473 					dropped, &mib->counters[mib->cnt_ptr]);
2474 		++mib->cnt_ptr;
2475 	}
2476 	mib->cnt_ptr = 0;
2477 }
2478 
2479 static void ksz_mib_read_work(struct work_struct *work)
2480 {
2481 	struct ksz_device *dev = container_of(work, struct ksz_device,
2482 					      mib_read.work);
2483 	struct ksz_port_mib *mib;
2484 	struct ksz_port *p;
2485 	int i;
2486 
2487 	for (i = 0; i < dev->info->port_cnt; i++) {
2488 		if (dsa_is_unused_port(dev->ds, i))
2489 			continue;
2490 
2491 		p = &dev->ports[i];
2492 		mib = &p->mib;
2493 		mutex_lock(&mib->cnt_mutex);
2494 
2495 		/* Only read MIB counters when the port is told to do.
2496 		 * If not, read only dropped counters when link is not up.
2497 		 */
2498 		if (!p->read) {
2499 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2500 
2501 			if (!netif_carrier_ok(dp->user))
2502 				mib->cnt_ptr = dev->info->reg_mib_cnt;
2503 		}
2504 		port_r_cnt(dev, i);
2505 		p->read = false;
2506 
2507 		if (dev->dev_ops->r_mib_stat64)
2508 			dev->dev_ops->r_mib_stat64(dev, i);
2509 
2510 		mutex_unlock(&mib->cnt_mutex);
2511 	}
2512 
2513 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2514 }
2515 
2516 void ksz_init_mib_timer(struct ksz_device *dev)
2517 {
2518 	int i;
2519 
2520 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2521 
2522 	for (i = 0; i < dev->info->port_cnt; i++) {
2523 		struct ksz_port_mib *mib = &dev->ports[i].mib;
2524 
2525 		dev->dev_ops->port_init_cnt(dev, i);
2526 
2527 		mib->cnt_ptr = 0;
2528 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2529 	}
2530 }
2531 
2532 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2533 {
2534 	struct ksz_device *dev = ds->priv;
2535 	u16 val = 0xffff;
2536 	int ret;
2537 
2538 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2539 	if (ret)
2540 		return ret;
2541 
2542 	return val;
2543 }
2544 
2545 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2546 {
2547 	struct ksz_device *dev = ds->priv;
2548 	int ret;
2549 
2550 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2551 	if (ret)
2552 		return ret;
2553 
2554 	return 0;
2555 }
2556 
2557 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2558 {
2559 	struct ksz_device *dev = ds->priv;
2560 
2561 	switch (dev->chip_id) {
2562 	case KSZ8830_CHIP_ID:
2563 		/* Silicon Errata Sheet (DS80000830A):
2564 		 * Port 1 does not work with LinkMD Cable-Testing.
2565 		 * Port 1 does not respond to received PAUSE control frames.
2566 		 */
2567 		if (!port)
2568 			return MICREL_KSZ8_P1_ERRATA;
2569 		break;
2570 	case KSZ9477_CHIP_ID:
2571 		/* KSZ9477 Errata DS80000754C
2572 		 *
2573 		 * Module 4: Energy Efficient Ethernet (EEE) feature select must
2574 		 * be manually disabled
2575 		 *   The EEE feature is enabled by default, but it is not fully
2576 		 *   operational. It must be manually disabled through register
2577 		 *   controls. If not disabled, the PHY ports can auto-negotiate
2578 		 *   to enable EEE, and this feature can cause link drops when
2579 		 *   linked to another device supporting EEE.
2580 		 */
2581 		return MICREL_NO_EEE;
2582 	}
2583 
2584 	return 0;
2585 }
2586 
2587 static void ksz_phylink_mac_link_down(struct phylink_config *config,
2588 				      unsigned int mode,
2589 				      phy_interface_t interface)
2590 {
2591 	struct dsa_port *dp = dsa_phylink_to_port(config);
2592 	struct ksz_device *dev = dp->ds->priv;
2593 
2594 	/* Read all MIB counters when the link is going down. */
2595 	dev->ports[dp->index].read = true;
2596 	/* timer started */
2597 	if (dev->mib_read_interval)
2598 		schedule_delayed_work(&dev->mib_read, 0);
2599 }
2600 
2601 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
2602 {
2603 	struct ksz_device *dev = ds->priv;
2604 
2605 	if (sset != ETH_SS_STATS)
2606 		return 0;
2607 
2608 	return dev->info->mib_cnt;
2609 }
2610 
2611 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
2612 				  uint64_t *buf)
2613 {
2614 	const struct dsa_port *dp = dsa_to_port(ds, port);
2615 	struct ksz_device *dev = ds->priv;
2616 	struct ksz_port_mib *mib;
2617 
2618 	mib = &dev->ports[port].mib;
2619 	mutex_lock(&mib->cnt_mutex);
2620 
2621 	/* Only read dropped counters if no link. */
2622 	if (!netif_carrier_ok(dp->user))
2623 		mib->cnt_ptr = dev->info->reg_mib_cnt;
2624 	port_r_cnt(dev, port);
2625 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
2626 	mutex_unlock(&mib->cnt_mutex);
2627 }
2628 
2629 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
2630 				struct dsa_bridge bridge,
2631 				bool *tx_fwd_offload,
2632 				struct netlink_ext_ack *extack)
2633 {
2634 	/* port_stp_state_set() will be called after to put the port in
2635 	 * appropriate state so there is no need to do anything.
2636 	 */
2637 
2638 	return 0;
2639 }
2640 
2641 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
2642 				  struct dsa_bridge bridge)
2643 {
2644 	/* port_stp_state_set() will be called after to put the port in
2645 	 * forwarding state so there is no need to do anything.
2646 	 */
2647 }
2648 
2649 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
2650 {
2651 	struct ksz_device *dev = ds->priv;
2652 
2653 	dev->dev_ops->flush_dyn_mac_table(dev, port);
2654 }
2655 
2656 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
2657 {
2658 	struct ksz_device *dev = ds->priv;
2659 
2660 	if (!dev->dev_ops->set_ageing_time)
2661 		return -EOPNOTSUPP;
2662 
2663 	return dev->dev_ops->set_ageing_time(dev, msecs);
2664 }
2665 
2666 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
2667 			    const unsigned char *addr, u16 vid,
2668 			    struct dsa_db db)
2669 {
2670 	struct ksz_device *dev = ds->priv;
2671 
2672 	if (!dev->dev_ops->fdb_add)
2673 		return -EOPNOTSUPP;
2674 
2675 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
2676 }
2677 
2678 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
2679 			    const unsigned char *addr,
2680 			    u16 vid, struct dsa_db db)
2681 {
2682 	struct ksz_device *dev = ds->priv;
2683 
2684 	if (!dev->dev_ops->fdb_del)
2685 		return -EOPNOTSUPP;
2686 
2687 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
2688 }
2689 
2690 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
2691 			     dsa_fdb_dump_cb_t *cb, void *data)
2692 {
2693 	struct ksz_device *dev = ds->priv;
2694 
2695 	if (!dev->dev_ops->fdb_dump)
2696 		return -EOPNOTSUPP;
2697 
2698 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
2699 }
2700 
2701 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
2702 			    const struct switchdev_obj_port_mdb *mdb,
2703 			    struct dsa_db db)
2704 {
2705 	struct ksz_device *dev = ds->priv;
2706 
2707 	if (!dev->dev_ops->mdb_add)
2708 		return -EOPNOTSUPP;
2709 
2710 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
2711 }
2712 
2713 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
2714 			    const struct switchdev_obj_port_mdb *mdb,
2715 			    struct dsa_db db)
2716 {
2717 	struct ksz_device *dev = ds->priv;
2718 
2719 	if (!dev->dev_ops->mdb_del)
2720 		return -EOPNOTSUPP;
2721 
2722 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
2723 }
2724 
2725 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
2726 						  int port)
2727 {
2728 	u32 queue_map = 0;
2729 	int ipm;
2730 
2731 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
2732 		int queue;
2733 
2734 		/* Traffic Type (TT) is corresponding to the Internal Priority
2735 		 * Map (IPM) in the switch. Traffic Class (TC) is
2736 		 * corresponding to the queue in the switch.
2737 		 */
2738 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
2739 		if (queue < 0)
2740 			return queue;
2741 
2742 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
2743 	}
2744 
2745 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
2746 }
2747 
2748 static int ksz_port_setup(struct dsa_switch *ds, int port)
2749 {
2750 	struct ksz_device *dev = ds->priv;
2751 	int ret;
2752 
2753 	if (!dsa_is_user_port(ds, port))
2754 		return 0;
2755 
2756 	/* setup user port */
2757 	dev->dev_ops->port_setup(dev, port, false);
2758 
2759 	if (!is_ksz8(dev)) {
2760 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
2761 		if (ret)
2762 			return ret;
2763 	}
2764 
2765 	/* port_stp_state_set() will be called after to enable the port so
2766 	 * there is no need to do anything.
2767 	 */
2768 
2769 	return ksz_dcb_init_port(dev, port);
2770 }
2771 
2772 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
2773 {
2774 	struct ksz_device *dev = ds->priv;
2775 	struct ksz_port *p;
2776 	const u16 *regs;
2777 	u8 data;
2778 
2779 	regs = dev->info->regs;
2780 
2781 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
2782 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2783 
2784 	p = &dev->ports[port];
2785 
2786 	switch (state) {
2787 	case BR_STATE_DISABLED:
2788 		data |= PORT_LEARN_DISABLE;
2789 		break;
2790 	case BR_STATE_LISTENING:
2791 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2792 		break;
2793 	case BR_STATE_LEARNING:
2794 		data |= PORT_RX_ENABLE;
2795 		if (!p->learning)
2796 			data |= PORT_LEARN_DISABLE;
2797 		break;
2798 	case BR_STATE_FORWARDING:
2799 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2800 		if (!p->learning)
2801 			data |= PORT_LEARN_DISABLE;
2802 		break;
2803 	case BR_STATE_BLOCKING:
2804 		data |= PORT_LEARN_DISABLE;
2805 		break;
2806 	default:
2807 		dev_err(ds->dev, "invalid STP state: %d\n", state);
2808 		return;
2809 	}
2810 
2811 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
2812 
2813 	p->stp_state = state;
2814 
2815 	ksz_update_port_member(dev, port);
2816 }
2817 
2818 static void ksz_port_teardown(struct dsa_switch *ds, int port)
2819 {
2820 	struct ksz_device *dev = ds->priv;
2821 
2822 	switch (dev->chip_id) {
2823 	case KSZ8563_CHIP_ID:
2824 	case KSZ8567_CHIP_ID:
2825 	case KSZ9477_CHIP_ID:
2826 	case KSZ9563_CHIP_ID:
2827 	case KSZ9567_CHIP_ID:
2828 	case KSZ9893_CHIP_ID:
2829 	case KSZ9896_CHIP_ID:
2830 	case KSZ9897_CHIP_ID:
2831 		if (dsa_is_user_port(ds, port))
2832 			ksz9477_port_acl_free(dev, port);
2833 	}
2834 }
2835 
2836 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
2837 				     struct switchdev_brport_flags flags,
2838 				     struct netlink_ext_ack *extack)
2839 {
2840 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
2841 		return -EINVAL;
2842 
2843 	return 0;
2844 }
2845 
2846 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
2847 				 struct switchdev_brport_flags flags,
2848 				 struct netlink_ext_ack *extack)
2849 {
2850 	struct ksz_device *dev = ds->priv;
2851 	struct ksz_port *p = &dev->ports[port];
2852 
2853 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
2854 		if (flags.mask & BR_LEARNING)
2855 			p->learning = !!(flags.val & BR_LEARNING);
2856 
2857 		if (flags.mask & BR_ISOLATED)
2858 			p->isolated = !!(flags.val & BR_ISOLATED);
2859 
2860 		/* Make the change take effect immediately */
2861 		ksz_port_stp_state_set(ds, port, p->stp_state);
2862 	}
2863 
2864 	return 0;
2865 }
2866 
2867 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
2868 						  int port,
2869 						  enum dsa_tag_protocol mp)
2870 {
2871 	struct ksz_device *dev = ds->priv;
2872 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
2873 
2874 	if (dev->chip_id == KSZ8795_CHIP_ID ||
2875 	    dev->chip_id == KSZ8794_CHIP_ID ||
2876 	    dev->chip_id == KSZ8765_CHIP_ID)
2877 		proto = DSA_TAG_PROTO_KSZ8795;
2878 
2879 	if (dev->chip_id == KSZ8830_CHIP_ID ||
2880 	    dev->chip_id == KSZ8563_CHIP_ID ||
2881 	    dev->chip_id == KSZ9893_CHIP_ID ||
2882 	    dev->chip_id == KSZ9563_CHIP_ID)
2883 		proto = DSA_TAG_PROTO_KSZ9893;
2884 
2885 	if (dev->chip_id == KSZ8567_CHIP_ID ||
2886 	    dev->chip_id == KSZ9477_CHIP_ID ||
2887 	    dev->chip_id == KSZ9896_CHIP_ID ||
2888 	    dev->chip_id == KSZ9897_CHIP_ID ||
2889 	    dev->chip_id == KSZ9567_CHIP_ID)
2890 		proto = DSA_TAG_PROTO_KSZ9477;
2891 
2892 	if (is_lan937x(dev))
2893 		proto = DSA_TAG_PROTO_LAN937X;
2894 
2895 	return proto;
2896 }
2897 
2898 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
2899 				    enum dsa_tag_protocol proto)
2900 {
2901 	struct ksz_tagger_data *tagger_data;
2902 
2903 	switch (proto) {
2904 	case DSA_TAG_PROTO_KSZ8795:
2905 		return 0;
2906 	case DSA_TAG_PROTO_KSZ9893:
2907 	case DSA_TAG_PROTO_KSZ9477:
2908 	case DSA_TAG_PROTO_LAN937X:
2909 		tagger_data = ksz_tagger_data(ds);
2910 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
2911 		return 0;
2912 	default:
2913 		return -EPROTONOSUPPORT;
2914 	}
2915 }
2916 
2917 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
2918 				   bool flag, struct netlink_ext_ack *extack)
2919 {
2920 	struct ksz_device *dev = ds->priv;
2921 
2922 	if (!dev->dev_ops->vlan_filtering)
2923 		return -EOPNOTSUPP;
2924 
2925 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
2926 }
2927 
2928 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
2929 			     const struct switchdev_obj_port_vlan *vlan,
2930 			     struct netlink_ext_ack *extack)
2931 {
2932 	struct ksz_device *dev = ds->priv;
2933 
2934 	if (!dev->dev_ops->vlan_add)
2935 		return -EOPNOTSUPP;
2936 
2937 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
2938 }
2939 
2940 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
2941 			     const struct switchdev_obj_port_vlan *vlan)
2942 {
2943 	struct ksz_device *dev = ds->priv;
2944 
2945 	if (!dev->dev_ops->vlan_del)
2946 		return -EOPNOTSUPP;
2947 
2948 	return dev->dev_ops->vlan_del(dev, port, vlan);
2949 }
2950 
2951 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
2952 			       struct dsa_mall_mirror_tc_entry *mirror,
2953 			       bool ingress, struct netlink_ext_ack *extack)
2954 {
2955 	struct ksz_device *dev = ds->priv;
2956 
2957 	if (!dev->dev_ops->mirror_add)
2958 		return -EOPNOTSUPP;
2959 
2960 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
2961 }
2962 
2963 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
2964 				struct dsa_mall_mirror_tc_entry *mirror)
2965 {
2966 	struct ksz_device *dev = ds->priv;
2967 
2968 	if (dev->dev_ops->mirror_del)
2969 		dev->dev_ops->mirror_del(dev, port, mirror);
2970 }
2971 
2972 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
2973 {
2974 	struct ksz_device *dev = ds->priv;
2975 
2976 	if (!dev->dev_ops->change_mtu)
2977 		return -EOPNOTSUPP;
2978 
2979 	return dev->dev_ops->change_mtu(dev, port, mtu);
2980 }
2981 
2982 static int ksz_max_mtu(struct dsa_switch *ds, int port)
2983 {
2984 	struct ksz_device *dev = ds->priv;
2985 
2986 	switch (dev->chip_id) {
2987 	case KSZ8795_CHIP_ID:
2988 	case KSZ8794_CHIP_ID:
2989 	case KSZ8765_CHIP_ID:
2990 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2991 	case KSZ8830_CHIP_ID:
2992 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2993 	case KSZ8563_CHIP_ID:
2994 	case KSZ8567_CHIP_ID:
2995 	case KSZ9477_CHIP_ID:
2996 	case KSZ9563_CHIP_ID:
2997 	case KSZ9567_CHIP_ID:
2998 	case KSZ9893_CHIP_ID:
2999 	case KSZ9896_CHIP_ID:
3000 	case KSZ9897_CHIP_ID:
3001 	case LAN9370_CHIP_ID:
3002 	case LAN9371_CHIP_ID:
3003 	case LAN9372_CHIP_ID:
3004 	case LAN9373_CHIP_ID:
3005 	case LAN9374_CHIP_ID:
3006 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3007 	}
3008 
3009 	return -EOPNOTSUPP;
3010 }
3011 
3012 static int ksz_validate_eee(struct dsa_switch *ds, int port)
3013 {
3014 	struct ksz_device *dev = ds->priv;
3015 
3016 	if (!dev->info->internal_phy[port])
3017 		return -EOPNOTSUPP;
3018 
3019 	switch (dev->chip_id) {
3020 	case KSZ8563_CHIP_ID:
3021 	case KSZ8567_CHIP_ID:
3022 	case KSZ9477_CHIP_ID:
3023 	case KSZ9563_CHIP_ID:
3024 	case KSZ9567_CHIP_ID:
3025 	case KSZ9893_CHIP_ID:
3026 	case KSZ9896_CHIP_ID:
3027 	case KSZ9897_CHIP_ID:
3028 		return 0;
3029 	}
3030 
3031 	return -EOPNOTSUPP;
3032 }
3033 
3034 static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
3035 			   struct ethtool_keee *e)
3036 {
3037 	int ret;
3038 
3039 	ret = ksz_validate_eee(ds, port);
3040 	if (ret)
3041 		return ret;
3042 
3043 	/* There is no documented control of Tx LPI configuration. */
3044 	e->tx_lpi_enabled = true;
3045 
3046 	/* There is no documented control of Tx LPI timer. According to tests
3047 	 * Tx LPI timer seems to be set by default to minimal value.
3048 	 */
3049 	e->tx_lpi_timer = 0;
3050 
3051 	return 0;
3052 }
3053 
3054 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3055 			   struct ethtool_keee *e)
3056 {
3057 	struct ksz_device *dev = ds->priv;
3058 	int ret;
3059 
3060 	ret = ksz_validate_eee(ds, port);
3061 	if (ret)
3062 		return ret;
3063 
3064 	if (!e->tx_lpi_enabled) {
3065 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3066 		return -EINVAL;
3067 	}
3068 
3069 	if (e->tx_lpi_timer) {
3070 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3071 		return -EINVAL;
3072 	}
3073 
3074 	return 0;
3075 }
3076 
3077 static void ksz_set_xmii(struct ksz_device *dev, int port,
3078 			 phy_interface_t interface)
3079 {
3080 	const u8 *bitval = dev->info->xmii_ctrl1;
3081 	struct ksz_port *p = &dev->ports[port];
3082 	const u16 *regs = dev->info->regs;
3083 	u8 data8;
3084 
3085 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3086 
3087 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3088 		   P_RGMII_ID_EG_ENABLE);
3089 
3090 	switch (interface) {
3091 	case PHY_INTERFACE_MODE_MII:
3092 		data8 |= bitval[P_MII_SEL];
3093 		break;
3094 	case PHY_INTERFACE_MODE_RMII:
3095 		data8 |= bitval[P_RMII_SEL];
3096 		break;
3097 	case PHY_INTERFACE_MODE_GMII:
3098 		data8 |= bitval[P_GMII_SEL];
3099 		break;
3100 	case PHY_INTERFACE_MODE_RGMII:
3101 	case PHY_INTERFACE_MODE_RGMII_ID:
3102 	case PHY_INTERFACE_MODE_RGMII_TXID:
3103 	case PHY_INTERFACE_MODE_RGMII_RXID:
3104 		data8 |= bitval[P_RGMII_SEL];
3105 		/* On KSZ9893, disable RGMII in-band status support */
3106 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3107 		    dev->chip_id == KSZ8563_CHIP_ID ||
3108 		    dev->chip_id == KSZ9563_CHIP_ID)
3109 			data8 &= ~P_MII_MAC_MODE;
3110 		break;
3111 	default:
3112 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3113 			phy_modes(interface), port);
3114 		return;
3115 	}
3116 
3117 	if (p->rgmii_tx_val)
3118 		data8 |= P_RGMII_ID_EG_ENABLE;
3119 
3120 	if (p->rgmii_rx_val)
3121 		data8 |= P_RGMII_ID_IG_ENABLE;
3122 
3123 	/* Write the updated value */
3124 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3125 }
3126 
3127 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3128 {
3129 	const u8 *bitval = dev->info->xmii_ctrl1;
3130 	const u16 *regs = dev->info->regs;
3131 	phy_interface_t interface;
3132 	u8 data8;
3133 	u8 val;
3134 
3135 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3136 
3137 	val = FIELD_GET(P_MII_SEL_M, data8);
3138 
3139 	if (val == bitval[P_MII_SEL]) {
3140 		if (gbit)
3141 			interface = PHY_INTERFACE_MODE_GMII;
3142 		else
3143 			interface = PHY_INTERFACE_MODE_MII;
3144 	} else if (val == bitval[P_RMII_SEL]) {
3145 		interface = PHY_INTERFACE_MODE_RGMII;
3146 	} else {
3147 		interface = PHY_INTERFACE_MODE_RGMII;
3148 		if (data8 & P_RGMII_ID_EG_ENABLE)
3149 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3150 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3151 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3152 			if (data8 & P_RGMII_ID_EG_ENABLE)
3153 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3154 		}
3155 	}
3156 
3157 	return interface;
3158 }
3159 
3160 static void ksz8830_phylink_mac_config(struct phylink_config *config,
3161 				       unsigned int mode,
3162 				       const struct phylink_link_state *state)
3163 {
3164 	struct dsa_port *dp = dsa_phylink_to_port(config);
3165 	struct ksz_device *dev = dp->ds->priv;
3166 
3167 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3168 }
3169 
3170 static void ksz_phylink_mac_config(struct phylink_config *config,
3171 				   unsigned int mode,
3172 				   const struct phylink_link_state *state)
3173 {
3174 	struct dsa_port *dp = dsa_phylink_to_port(config);
3175 	struct ksz_device *dev = dp->ds->priv;
3176 	int port = dp->index;
3177 
3178 	/* Internal PHYs */
3179 	if (dev->info->internal_phy[port])
3180 		return;
3181 
3182 	if (phylink_autoneg_inband(mode)) {
3183 		dev_err(dev->dev, "In-band AN not supported!\n");
3184 		return;
3185 	}
3186 
3187 	ksz_set_xmii(dev, port, state->interface);
3188 
3189 	if (dev->dev_ops->setup_rgmii_delay)
3190 		dev->dev_ops->setup_rgmii_delay(dev, port);
3191 }
3192 
3193 bool ksz_get_gbit(struct ksz_device *dev, int port)
3194 {
3195 	const u8 *bitval = dev->info->xmii_ctrl1;
3196 	const u16 *regs = dev->info->regs;
3197 	bool gbit = false;
3198 	u8 data8;
3199 	bool val;
3200 
3201 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3202 
3203 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3204 
3205 	if (val == bitval[P_GMII_1GBIT])
3206 		gbit = true;
3207 
3208 	return gbit;
3209 }
3210 
3211 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3212 {
3213 	const u8 *bitval = dev->info->xmii_ctrl1;
3214 	const u16 *regs = dev->info->regs;
3215 	u8 data8;
3216 
3217 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3218 
3219 	data8 &= ~P_GMII_1GBIT_M;
3220 
3221 	if (gbit)
3222 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3223 	else
3224 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3225 
3226 	/* Write the updated value */
3227 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3228 }
3229 
3230 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3231 {
3232 	const u8 *bitval = dev->info->xmii_ctrl0;
3233 	const u16 *regs = dev->info->regs;
3234 	u8 data8;
3235 
3236 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3237 
3238 	data8 &= ~P_MII_100MBIT_M;
3239 
3240 	if (speed == SPEED_100)
3241 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3242 	else
3243 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3244 
3245 	/* Write the updated value */
3246 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3247 }
3248 
3249 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3250 {
3251 	if (speed == SPEED_1000)
3252 		ksz_set_gbit(dev, port, true);
3253 	else
3254 		ksz_set_gbit(dev, port, false);
3255 
3256 	if (speed == SPEED_100 || speed == SPEED_10)
3257 		ksz_set_100_10mbit(dev, port, speed);
3258 }
3259 
3260 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3261 				bool tx_pause, bool rx_pause)
3262 {
3263 	const u8 *bitval = dev->info->xmii_ctrl0;
3264 	const u32 *masks = dev->info->masks;
3265 	const u16 *regs = dev->info->regs;
3266 	u8 mask;
3267 	u8 val;
3268 
3269 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3270 	       masks[P_MII_RX_FLOW_CTRL];
3271 
3272 	if (duplex == DUPLEX_FULL)
3273 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3274 	else
3275 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3276 
3277 	if (tx_pause)
3278 		val |= masks[P_MII_TX_FLOW_CTRL];
3279 
3280 	if (rx_pause)
3281 		val |= masks[P_MII_RX_FLOW_CTRL];
3282 
3283 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3284 }
3285 
3286 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3287 					struct phy_device *phydev,
3288 					unsigned int mode,
3289 					phy_interface_t interface,
3290 					int speed, int duplex, bool tx_pause,
3291 					bool rx_pause)
3292 {
3293 	struct dsa_port *dp = dsa_phylink_to_port(config);
3294 	struct ksz_device *dev = dp->ds->priv;
3295 	int port = dp->index;
3296 	struct ksz_port *p;
3297 
3298 	p = &dev->ports[port];
3299 
3300 	/* Internal PHYs */
3301 	if (dev->info->internal_phy[port])
3302 		return;
3303 
3304 	p->phydev.speed = speed;
3305 
3306 	ksz_port_set_xmii_speed(dev, port, speed);
3307 
3308 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3309 }
3310 
3311 static int ksz_switch_detect(struct ksz_device *dev)
3312 {
3313 	u8 id1, id2, id4;
3314 	u16 id16;
3315 	u32 id32;
3316 	int ret;
3317 
3318 	/* read chip id */
3319 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3320 	if (ret)
3321 		return ret;
3322 
3323 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3324 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3325 
3326 	switch (id1) {
3327 	case KSZ87_FAMILY_ID:
3328 		if (id2 == KSZ87_CHIP_ID_95) {
3329 			u8 val;
3330 
3331 			dev->chip_id = KSZ8795_CHIP_ID;
3332 
3333 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3334 			if (val & KSZ8_PORT_FIBER_MODE)
3335 				dev->chip_id = KSZ8765_CHIP_ID;
3336 		} else if (id2 == KSZ87_CHIP_ID_94) {
3337 			dev->chip_id = KSZ8794_CHIP_ID;
3338 		} else {
3339 			return -ENODEV;
3340 		}
3341 		break;
3342 	case KSZ88_FAMILY_ID:
3343 		if (id2 == KSZ88_CHIP_ID_63)
3344 			dev->chip_id = KSZ8830_CHIP_ID;
3345 		else
3346 			return -ENODEV;
3347 		break;
3348 	default:
3349 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3350 		if (ret)
3351 			return ret;
3352 
3353 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3354 		id32 &= ~0xFF;
3355 
3356 		switch (id32) {
3357 		case KSZ9477_CHIP_ID:
3358 		case KSZ9896_CHIP_ID:
3359 		case KSZ9897_CHIP_ID:
3360 		case KSZ9567_CHIP_ID:
3361 		case KSZ8567_CHIP_ID:
3362 		case LAN9370_CHIP_ID:
3363 		case LAN9371_CHIP_ID:
3364 		case LAN9372_CHIP_ID:
3365 		case LAN9373_CHIP_ID:
3366 		case LAN9374_CHIP_ID:
3367 			dev->chip_id = id32;
3368 			break;
3369 		case KSZ9893_CHIP_ID:
3370 			ret = ksz_read8(dev, REG_CHIP_ID4,
3371 					&id4);
3372 			if (ret)
3373 				return ret;
3374 
3375 			if (id4 == SKU_ID_KSZ8563)
3376 				dev->chip_id = KSZ8563_CHIP_ID;
3377 			else if (id4 == SKU_ID_KSZ9563)
3378 				dev->chip_id = KSZ9563_CHIP_ID;
3379 			else
3380 				dev->chip_id = KSZ9893_CHIP_ID;
3381 
3382 			break;
3383 		default:
3384 			dev_err(dev->dev,
3385 				"unsupported switch detected %x)\n", id32);
3386 			return -ENODEV;
3387 		}
3388 	}
3389 	return 0;
3390 }
3391 
3392 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3393 			      struct flow_cls_offload *cls, bool ingress)
3394 {
3395 	struct ksz_device *dev = ds->priv;
3396 
3397 	switch (dev->chip_id) {
3398 	case KSZ8563_CHIP_ID:
3399 	case KSZ8567_CHIP_ID:
3400 	case KSZ9477_CHIP_ID:
3401 	case KSZ9563_CHIP_ID:
3402 	case KSZ9567_CHIP_ID:
3403 	case KSZ9893_CHIP_ID:
3404 	case KSZ9896_CHIP_ID:
3405 	case KSZ9897_CHIP_ID:
3406 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3407 	}
3408 
3409 	return -EOPNOTSUPP;
3410 }
3411 
3412 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3413 			      struct flow_cls_offload *cls, bool ingress)
3414 {
3415 	struct ksz_device *dev = ds->priv;
3416 
3417 	switch (dev->chip_id) {
3418 	case KSZ8563_CHIP_ID:
3419 	case KSZ8567_CHIP_ID:
3420 	case KSZ9477_CHIP_ID:
3421 	case KSZ9563_CHIP_ID:
3422 	case KSZ9567_CHIP_ID:
3423 	case KSZ9893_CHIP_ID:
3424 	case KSZ9896_CHIP_ID:
3425 	case KSZ9897_CHIP_ID:
3426 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3427 	}
3428 
3429 	return -EOPNOTSUPP;
3430 }
3431 
3432 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3433  * is converted to Hex-decimal using the successive multiplication method. On
3434  * every step, integer part is taken and decimal part is carry forwarded.
3435  */
3436 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3437 {
3438 	u32 cinc = 0;
3439 	u32 txrate;
3440 	u32 rate;
3441 	u8 temp;
3442 	u8 i;
3443 
3444 	txrate = idle_slope - send_slope;
3445 
3446 	if (!txrate)
3447 		return -EINVAL;
3448 
3449 	rate = idle_slope;
3450 
3451 	/* 24 bit register */
3452 	for (i = 0; i < 6; i++) {
3453 		rate = rate * 16;
3454 
3455 		temp = rate / txrate;
3456 
3457 		rate %= txrate;
3458 
3459 		cinc = ((cinc << 4) | temp);
3460 	}
3461 
3462 	*bw = cinc;
3463 
3464 	return 0;
3465 }
3466 
3467 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3468 			     u8 shaper)
3469 {
3470 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3471 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3472 			   FIELD_PREP(MTI_SHAPING_M, shaper));
3473 }
3474 
3475 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3476 			    struct tc_cbs_qopt_offload *qopt)
3477 {
3478 	struct ksz_device *dev = ds->priv;
3479 	int ret;
3480 	u32 bw;
3481 
3482 	if (!dev->info->tc_cbs_supported)
3483 		return -EOPNOTSUPP;
3484 
3485 	if (qopt->queue > dev->info->num_tx_queues)
3486 		return -EINVAL;
3487 
3488 	/* Queue Selection */
3489 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3490 	if (ret)
3491 		return ret;
3492 
3493 	if (!qopt->enable)
3494 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3495 					 MTI_SHAPING_OFF);
3496 
3497 	/* High Credit */
3498 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3499 			   qopt->hicredit);
3500 	if (ret)
3501 		return ret;
3502 
3503 	/* Low Credit */
3504 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3505 			   qopt->locredit);
3506 	if (ret)
3507 		return ret;
3508 
3509 	/* Credit Increment Register */
3510 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3511 	if (ret)
3512 		return ret;
3513 
3514 	if (dev->dev_ops->tc_cbs_set_cinc) {
3515 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3516 		if (ret)
3517 			return ret;
3518 	}
3519 
3520 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3521 				 MTI_SHAPING_SRP);
3522 }
3523 
3524 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3525 {
3526 	int queue, ret;
3527 
3528 	/* Configuration will not take effect until the last Port Queue X
3529 	 * Egress Limit Control Register is written.
3530 	 */
3531 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3532 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3533 				  KSZ9477_OUT_RATE_NO_LIMIT);
3534 		if (ret)
3535 			return ret;
3536 	}
3537 
3538 	return 0;
3539 }
3540 
3541 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
3542 				 int band)
3543 {
3544 	/* Compared to queues, bands prioritize packets differently. In strict
3545 	 * priority mode, the lowest priority is assigned to Queue 0 while the
3546 	 * highest priority is given to Band 0.
3547 	 */
3548 	return p->bands - 1 - band;
3549 }
3550 
3551 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
3552 {
3553 	int ret;
3554 
3555 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3556 	if (ret)
3557 		return ret;
3558 
3559 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3560 				 MTI_SHAPING_OFF);
3561 }
3562 
3563 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
3564 			     int weight)
3565 {
3566 	int ret;
3567 
3568 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3569 	if (ret)
3570 		return ret;
3571 
3572 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3573 				MTI_SHAPING_OFF);
3574 	if (ret)
3575 		return ret;
3576 
3577 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
3578 }
3579 
3580 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
3581 			  struct tc_ets_qopt_offload_replace_params *p)
3582 {
3583 	int ret, band, tc_prio;
3584 	u32 queue_map = 0;
3585 
3586 	/* In order to ensure proper prioritization, it is necessary to set the
3587 	 * rate limit for the related queue to zero. Otherwise strict priority
3588 	 * or WRR mode will not work. This is a hardware limitation.
3589 	 */
3590 	ret = ksz_disable_egress_rate_limit(dev, port);
3591 	if (ret)
3592 		return ret;
3593 
3594 	/* Configure queue scheduling mode for all bands. Currently only strict
3595 	 * prio mode is supported.
3596 	 */
3597 	for (band = 0; band < p->bands; band++) {
3598 		int queue = ksz_ets_band_to_queue(p, band);
3599 
3600 		ret = ksz_queue_set_strict(dev, port, queue);
3601 		if (ret)
3602 			return ret;
3603 	}
3604 
3605 	/* Configure the mapping between traffic classes and queues. Note:
3606 	 * priomap variable support 16 traffic classes, but the chip can handle
3607 	 * only 8 classes.
3608 	 */
3609 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
3610 		int queue;
3611 
3612 		if (tc_prio >= dev->info->num_ipms)
3613 			break;
3614 
3615 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
3616 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3617 	}
3618 
3619 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3620 }
3621 
3622 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
3623 {
3624 	int ret, queue;
3625 
3626 	/* To restore the default chip configuration, set all queues to use the
3627 	 * WRR scheduler with a weight of 1.
3628 	 */
3629 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3630 		ret = ksz_queue_set_wrr(dev, port, queue,
3631 					KSZ9477_DEFAULT_WRR_WEIGHT);
3632 		if (ret)
3633 			return ret;
3634 	}
3635 
3636 	/* Revert the queue mapping for TC-priority to its default setting on
3637 	 * the chip.
3638 	 */
3639 	return ksz9477_set_default_prio_queue_mapping(dev, port);
3640 }
3641 
3642 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
3643 			       struct tc_ets_qopt_offload_replace_params *p)
3644 {
3645 	int band;
3646 
3647 	/* Since it is not feasible to share one port among multiple qdisc,
3648 	 * the user must configure all available queues appropriately.
3649 	 */
3650 	if (p->bands != dev->info->num_tx_queues) {
3651 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
3652 			dev->info->num_tx_queues);
3653 		return -EOPNOTSUPP;
3654 	}
3655 
3656 	for (band = 0; band < p->bands; ++band) {
3657 		/* The KSZ switches utilize a weighted round robin configuration
3658 		 * where a certain number of packets can be transmitted from a
3659 		 * queue before the next queue is serviced. For more information
3660 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
3661 		 * documentation on the Port Transmit Queue Control 1 Register.
3662 		 * However, the current ETS Qdisc implementation (as of February
3663 		 * 2023) assigns a weight to each queue based on the number of
3664 		 * bytes or extrapolated bandwidth in percentages. Since this
3665 		 * differs from the KSZ switches' method and we don't want to
3666 		 * fake support by converting bytes to packets, it is better to
3667 		 * return an error instead.
3668 		 */
3669 		if (p->quanta[band]) {
3670 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
3671 			return -EOPNOTSUPP;
3672 		}
3673 	}
3674 
3675 	return 0;
3676 }
3677 
3678 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
3679 				  struct tc_ets_qopt_offload *qopt)
3680 {
3681 	struct ksz_device *dev = ds->priv;
3682 	int ret;
3683 
3684 	if (is_ksz8(dev))
3685 		return -EOPNOTSUPP;
3686 
3687 	if (qopt->parent != TC_H_ROOT) {
3688 		dev_err(dev->dev, "Parent should be \"root\"\n");
3689 		return -EOPNOTSUPP;
3690 	}
3691 
3692 	switch (qopt->command) {
3693 	case TC_ETS_REPLACE:
3694 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
3695 		if (ret)
3696 			return ret;
3697 
3698 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
3699 	case TC_ETS_DESTROY:
3700 		return ksz_tc_ets_del(dev, port);
3701 	case TC_ETS_STATS:
3702 	case TC_ETS_GRAFT:
3703 		return -EOPNOTSUPP;
3704 	}
3705 
3706 	return -EOPNOTSUPP;
3707 }
3708 
3709 static int ksz_setup_tc(struct dsa_switch *ds, int port,
3710 			enum tc_setup_type type, void *type_data)
3711 {
3712 	switch (type) {
3713 	case TC_SETUP_QDISC_CBS:
3714 		return ksz_setup_tc_cbs(ds, port, type_data);
3715 	case TC_SETUP_QDISC_ETS:
3716 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
3717 	default:
3718 		return -EOPNOTSUPP;
3719 	}
3720 }
3721 
3722 static void ksz_get_wol(struct dsa_switch *ds, int port,
3723 			struct ethtool_wolinfo *wol)
3724 {
3725 	struct ksz_device *dev = ds->priv;
3726 
3727 	if (dev->dev_ops->get_wol)
3728 		dev->dev_ops->get_wol(dev, port, wol);
3729 }
3730 
3731 static int ksz_set_wol(struct dsa_switch *ds, int port,
3732 		       struct ethtool_wolinfo *wol)
3733 {
3734 	struct ksz_device *dev = ds->priv;
3735 
3736 	if (dev->dev_ops->set_wol)
3737 		return dev->dev_ops->set_wol(dev, port, wol);
3738 
3739 	return -EOPNOTSUPP;
3740 }
3741 
3742 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
3743 				    const unsigned char *addr)
3744 {
3745 	struct dsa_port *dp = dsa_to_port(ds, port);
3746 	struct ethtool_wolinfo wol;
3747 
3748 	if (dp->hsr_dev) {
3749 		dev_err(ds->dev,
3750 			"Cannot change MAC address on port %d with active HSR offload\n",
3751 			port);
3752 		return -EBUSY;
3753 	}
3754 
3755 	ksz_get_wol(ds, dp->index, &wol);
3756 	if (wol.wolopts & WAKE_MAGIC) {
3757 		dev_err(ds->dev,
3758 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
3759 			port);
3760 		return -EBUSY;
3761 	}
3762 
3763 	return 0;
3764 }
3765 
3766 /**
3767  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
3768  *                                 can be used as a global address.
3769  * @ds: Pointer to the DSA switch structure.
3770  * @port: The port number on which the MAC address is to be checked.
3771  *
3772  * This function examines the MAC address set on the specified port and
3773  * determines if it can be used as a global address for the switch.
3774  *
3775  * Return: true if the port's MAC address can be used as a global address, false
3776  * otherwise.
3777  */
3778 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
3779 {
3780 	struct net_device *user = dsa_to_port(ds, port)->user;
3781 	const unsigned char *addr = user->dev_addr;
3782 	struct ksz_switch_macaddr *switch_macaddr;
3783 	struct ksz_device *dev = ds->priv;
3784 
3785 	ASSERT_RTNL();
3786 
3787 	switch_macaddr = dev->switch_macaddr;
3788 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
3789 		return false;
3790 
3791 	return true;
3792 }
3793 
3794 /**
3795  * ksz_switch_macaddr_get - Program the switch's MAC address register.
3796  * @ds: DSA switch instance.
3797  * @port: Port number.
3798  * @extack: Netlink extended acknowledgment.
3799  *
3800  * This function programs the switch's MAC address register with the MAC address
3801  * of the requesting user port. This single address is used by the switch for
3802  * multiple features like HSR self-address filtering and WoL. Other user ports
3803  * can share ownership of this address as long as their MAC address is the same.
3804  * The MAC addresses of user ports must not change while they have ownership of
3805  * the switch MAC address.
3806  *
3807  * Return: 0 on success, or other error codes on failure.
3808  */
3809 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
3810 			   struct netlink_ext_ack *extack)
3811 {
3812 	struct net_device *user = dsa_to_port(ds, port)->user;
3813 	const unsigned char *addr = user->dev_addr;
3814 	struct ksz_switch_macaddr *switch_macaddr;
3815 	struct ksz_device *dev = ds->priv;
3816 	const u16 *regs = dev->info->regs;
3817 	int i, ret;
3818 
3819 	/* Make sure concurrent MAC address changes are blocked */
3820 	ASSERT_RTNL();
3821 
3822 	switch_macaddr = dev->switch_macaddr;
3823 	if (switch_macaddr) {
3824 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
3825 			NL_SET_ERR_MSG_FMT_MOD(extack,
3826 					       "Switch already configured for MAC address %pM",
3827 					       switch_macaddr->addr);
3828 			return -EBUSY;
3829 		}
3830 
3831 		refcount_inc(&switch_macaddr->refcount);
3832 		return 0;
3833 	}
3834 
3835 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
3836 	if (!switch_macaddr)
3837 		return -ENOMEM;
3838 
3839 	ether_addr_copy(switch_macaddr->addr, addr);
3840 	refcount_set(&switch_macaddr->refcount, 1);
3841 	dev->switch_macaddr = switch_macaddr;
3842 
3843 	/* Program the switch MAC address to hardware */
3844 	for (i = 0; i < ETH_ALEN; i++) {
3845 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
3846 		if (ret)
3847 			goto macaddr_drop;
3848 	}
3849 
3850 	return 0;
3851 
3852 macaddr_drop:
3853 	dev->switch_macaddr = NULL;
3854 	refcount_set(&switch_macaddr->refcount, 0);
3855 	kfree(switch_macaddr);
3856 
3857 	return ret;
3858 }
3859 
3860 void ksz_switch_macaddr_put(struct dsa_switch *ds)
3861 {
3862 	struct ksz_switch_macaddr *switch_macaddr;
3863 	struct ksz_device *dev = ds->priv;
3864 	const u16 *regs = dev->info->regs;
3865 	int i;
3866 
3867 	/* Make sure concurrent MAC address changes are blocked */
3868 	ASSERT_RTNL();
3869 
3870 	switch_macaddr = dev->switch_macaddr;
3871 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
3872 		return;
3873 
3874 	for (i = 0; i < ETH_ALEN; i++)
3875 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
3876 
3877 	dev->switch_macaddr = NULL;
3878 	kfree(switch_macaddr);
3879 }
3880 
3881 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
3882 			struct netlink_ext_ack *extack)
3883 {
3884 	struct ksz_device *dev = ds->priv;
3885 	enum hsr_version ver;
3886 	int ret;
3887 
3888 	ret = hsr_get_version(hsr, &ver);
3889 	if (ret)
3890 		return ret;
3891 
3892 	if (dev->chip_id != KSZ9477_CHIP_ID) {
3893 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
3894 		return -EOPNOTSUPP;
3895 	}
3896 
3897 	/* KSZ9477 can support HW offloading of only 1 HSR device */
3898 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
3899 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
3900 		return -EOPNOTSUPP;
3901 	}
3902 
3903 	/* KSZ9477 only supports HSR v0 and v1 */
3904 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
3905 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
3906 		return -EOPNOTSUPP;
3907 	}
3908 
3909 	/* Self MAC address filtering, to avoid frames traversing
3910 	 * the HSR ring more than once.
3911 	 */
3912 	ret = ksz_switch_macaddr_get(ds, port, extack);
3913 	if (ret)
3914 		return ret;
3915 
3916 	ksz9477_hsr_join(ds, port, hsr);
3917 	dev->hsr_dev = hsr;
3918 	dev->hsr_ports |= BIT(port);
3919 
3920 	return 0;
3921 }
3922 
3923 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
3924 			 struct net_device *hsr)
3925 {
3926 	struct ksz_device *dev = ds->priv;
3927 
3928 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
3929 
3930 	ksz9477_hsr_leave(ds, port, hsr);
3931 	dev->hsr_ports &= ~BIT(port);
3932 	if (!dev->hsr_ports)
3933 		dev->hsr_dev = NULL;
3934 
3935 	ksz_switch_macaddr_put(ds);
3936 
3937 	return 0;
3938 }
3939 
3940 static const struct dsa_switch_ops ksz_switch_ops = {
3941 	.get_tag_protocol	= ksz_get_tag_protocol,
3942 	.connect_tag_protocol   = ksz_connect_tag_protocol,
3943 	.get_phy_flags		= ksz_get_phy_flags,
3944 	.setup			= ksz_setup,
3945 	.teardown		= ksz_teardown,
3946 	.phy_read		= ksz_phy_read16,
3947 	.phy_write		= ksz_phy_write16,
3948 	.phylink_get_caps	= ksz_phylink_get_caps,
3949 	.port_setup		= ksz_port_setup,
3950 	.set_ageing_time	= ksz_set_ageing_time,
3951 	.get_strings		= ksz_get_strings,
3952 	.get_ethtool_stats	= ksz_get_ethtool_stats,
3953 	.get_sset_count		= ksz_sset_count,
3954 	.port_bridge_join	= ksz_port_bridge_join,
3955 	.port_bridge_leave	= ksz_port_bridge_leave,
3956 	.port_hsr_join		= ksz_hsr_join,
3957 	.port_hsr_leave		= ksz_hsr_leave,
3958 	.port_set_mac_address	= ksz_port_set_mac_address,
3959 	.port_stp_state_set	= ksz_port_stp_state_set,
3960 	.port_teardown		= ksz_port_teardown,
3961 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
3962 	.port_bridge_flags	= ksz_port_bridge_flags,
3963 	.port_fast_age		= ksz_port_fast_age,
3964 	.port_vlan_filtering	= ksz_port_vlan_filtering,
3965 	.port_vlan_add		= ksz_port_vlan_add,
3966 	.port_vlan_del		= ksz_port_vlan_del,
3967 	.port_fdb_dump		= ksz_port_fdb_dump,
3968 	.port_fdb_add		= ksz_port_fdb_add,
3969 	.port_fdb_del		= ksz_port_fdb_del,
3970 	.port_mdb_add           = ksz_port_mdb_add,
3971 	.port_mdb_del           = ksz_port_mdb_del,
3972 	.port_mirror_add	= ksz_port_mirror_add,
3973 	.port_mirror_del	= ksz_port_mirror_del,
3974 	.get_stats64		= ksz_get_stats64,
3975 	.get_pause_stats	= ksz_get_pause_stats,
3976 	.port_change_mtu	= ksz_change_mtu,
3977 	.port_max_mtu		= ksz_max_mtu,
3978 	.get_wol		= ksz_get_wol,
3979 	.set_wol		= ksz_set_wol,
3980 	.get_ts_info		= ksz_get_ts_info,
3981 	.port_hwtstamp_get	= ksz_hwtstamp_get,
3982 	.port_hwtstamp_set	= ksz_hwtstamp_set,
3983 	.port_txtstamp		= ksz_port_txtstamp,
3984 	.port_rxtstamp		= ksz_port_rxtstamp,
3985 	.cls_flower_add		= ksz_cls_flower_add,
3986 	.cls_flower_del		= ksz_cls_flower_del,
3987 	.port_setup_tc		= ksz_setup_tc,
3988 	.get_mac_eee		= ksz_get_mac_eee,
3989 	.set_mac_eee		= ksz_set_mac_eee,
3990 	.port_get_default_prio	= ksz_port_get_default_prio,
3991 	.port_set_default_prio	= ksz_port_set_default_prio,
3992 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
3993 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
3994 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
3995 	.port_get_apptrust	= ksz_port_get_apptrust,
3996 	.port_set_apptrust	= ksz_port_set_apptrust,
3997 };
3998 
3999 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
4000 {
4001 	struct dsa_switch *ds;
4002 	struct ksz_device *swdev;
4003 
4004 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
4005 	if (!ds)
4006 		return NULL;
4007 
4008 	ds->dev = base;
4009 	ds->num_ports = DSA_MAX_PORTS;
4010 	ds->ops = &ksz_switch_ops;
4011 
4012 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
4013 	if (!swdev)
4014 		return NULL;
4015 
4016 	ds->priv = swdev;
4017 	swdev->dev = base;
4018 
4019 	swdev->ds = ds;
4020 	swdev->priv = priv;
4021 
4022 	return swdev;
4023 }
4024 EXPORT_SYMBOL(ksz_switch_alloc);
4025 
4026 /**
4027  * ksz_switch_shutdown - Shutdown routine for the switch device.
4028  * @dev: The switch device structure.
4029  *
4030  * This function is responsible for initiating a shutdown sequence for the
4031  * switch device. It invokes the reset operation defined in the device
4032  * operations, if available, to reset the switch. Subsequently, it calls the
4033  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
4034  * switch.
4035  */
4036 void ksz_switch_shutdown(struct ksz_device *dev)
4037 {
4038 	bool wol_enabled = false;
4039 
4040 	if (dev->dev_ops->wol_pre_shutdown)
4041 		dev->dev_ops->wol_pre_shutdown(dev, &wol_enabled);
4042 
4043 	if (dev->dev_ops->reset && !wol_enabled)
4044 		dev->dev_ops->reset(dev);
4045 
4046 	dsa_switch_shutdown(dev->ds);
4047 }
4048 EXPORT_SYMBOL(ksz_switch_shutdown);
4049 
4050 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
4051 				  struct device_node *port_dn)
4052 {
4053 	phy_interface_t phy_mode = dev->ports[port_num].interface;
4054 	int rx_delay = -1, tx_delay = -1;
4055 
4056 	if (!phy_interface_mode_is_rgmii(phy_mode))
4057 		return;
4058 
4059 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
4060 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
4061 
4062 	if (rx_delay == -1 && tx_delay == -1) {
4063 		dev_warn(dev->dev,
4064 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
4065 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
4066 			 "\"tx-internal-delay-ps\"",
4067 			 port_num);
4068 
4069 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4070 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4071 			rx_delay = 2000;
4072 
4073 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4074 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4075 			tx_delay = 2000;
4076 	}
4077 
4078 	if (rx_delay < 0)
4079 		rx_delay = 0;
4080 	if (tx_delay < 0)
4081 		tx_delay = 0;
4082 
4083 	dev->ports[port_num].rgmii_rx_val = rx_delay;
4084 	dev->ports[port_num].rgmii_tx_val = tx_delay;
4085 }
4086 
4087 /**
4088  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4089  *				 register value.
4090  * @array:	The array of drive strength values to search.
4091  * @array_size:	The size of the array.
4092  * @microamp:	The drive strength value in microamp to be converted.
4093  *
4094  * This function searches the array of drive strength values for the given
4095  * microamp value and returns the corresponding register value for that drive.
4096  *
4097  * Returns: If found, the corresponding register value for that drive strength
4098  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4099  */
4100 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4101 				     size_t array_size, int microamp)
4102 {
4103 	int i;
4104 
4105 	for (i = 0; i < array_size; i++) {
4106 		if (array[i].microamp == microamp)
4107 			return array[i].reg_val;
4108 	}
4109 
4110 	return -EINVAL;
4111 }
4112 
4113 /**
4114  * ksz_drive_strength_error() - Report invalid drive strength value
4115  * @dev:	ksz device
4116  * @array:	The array of drive strength values to search.
4117  * @array_size:	The size of the array.
4118  * @microamp:	Invalid drive strength value in microamp
4119  *
4120  * This function logs an error message when an unsupported drive strength value
4121  * is detected. It lists out all the supported drive strength values for
4122  * reference in the error message.
4123  */
4124 static void ksz_drive_strength_error(struct ksz_device *dev,
4125 				     const struct ksz_drive_strength *array,
4126 				     size_t array_size, int microamp)
4127 {
4128 	char supported_values[100];
4129 	size_t remaining_size;
4130 	int added_len;
4131 	char *ptr;
4132 	int i;
4133 
4134 	remaining_size = sizeof(supported_values);
4135 	ptr = supported_values;
4136 
4137 	for (i = 0; i < array_size; i++) {
4138 		added_len = snprintf(ptr, remaining_size,
4139 				     i == 0 ? "%d" : ", %d", array[i].microamp);
4140 
4141 		if (added_len >= remaining_size)
4142 			break;
4143 
4144 		ptr += added_len;
4145 		remaining_size -= added_len;
4146 	}
4147 
4148 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
4149 		microamp, supported_values);
4150 }
4151 
4152 /**
4153  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
4154  *				    chip variants.
4155  * @dev:       ksz device
4156  * @props:     Array of drive strength properties to be applied
4157  * @num_props: Number of properties in the array
4158  *
4159  * This function configures the drive strength for various KSZ9477 chip variants
4160  * based on the provided properties. It handles chip-specific nuances and
4161  * ensures only valid drive strengths are written to the respective chip.
4162  *
4163  * Return: 0 on successful configuration, a negative error code on failure.
4164  */
4165 static int ksz9477_drive_strength_write(struct ksz_device *dev,
4166 					struct ksz_driver_strength_prop *props,
4167 					int num_props)
4168 {
4169 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4170 	int i, ret, reg;
4171 	u8 mask = 0;
4172 	u8 val = 0;
4173 
4174 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4175 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4176 			 props[KSZ_DRIVER_STRENGTH_IO].name);
4177 
4178 	if (dev->chip_id == KSZ8795_CHIP_ID ||
4179 	    dev->chip_id == KSZ8794_CHIP_ID ||
4180 	    dev->chip_id == KSZ8765_CHIP_ID)
4181 		reg = KSZ8795_REG_SW_CTRL_20;
4182 	else
4183 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4184 
4185 	for (i = 0; i < num_props; i++) {
4186 		if (props[i].value == -1)
4187 			continue;
4188 
4189 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4190 						array_size, props[i].value);
4191 		if (ret < 0) {
4192 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4193 						 array_size, props[i].value);
4194 			return ret;
4195 		}
4196 
4197 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4198 		val |= ret << props[i].offset;
4199 	}
4200 
4201 	return ksz_rmw8(dev, reg, mask, val);
4202 }
4203 
4204 /**
4205  * ksz8830_drive_strength_write() - Set the drive strength configuration for
4206  *				    KSZ8830 compatible chip variants.
4207  * @dev:       ksz device
4208  * @props:     Array of drive strength properties to be set
4209  * @num_props: Number of properties in the array
4210  *
4211  * This function applies the specified drive strength settings to KSZ8830 chip
4212  * variants (KSZ8873, KSZ8863).
4213  * It ensures the configurations align with what the chip variant supports and
4214  * warns or errors out on unsupported settings.
4215  *
4216  * Return: 0 on success, error code otherwise
4217  */
4218 static int ksz8830_drive_strength_write(struct ksz_device *dev,
4219 					struct ksz_driver_strength_prop *props,
4220 					int num_props)
4221 {
4222 	size_t array_size = ARRAY_SIZE(ksz8830_drive_strengths);
4223 	int microamp;
4224 	int i, ret;
4225 
4226 	for (i = 0; i < num_props; i++) {
4227 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4228 			continue;
4229 
4230 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4231 			 props[i].name);
4232 	}
4233 
4234 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4235 	ret = ksz_drive_strength_to_reg(ksz8830_drive_strengths, array_size,
4236 					microamp);
4237 	if (ret < 0) {
4238 		ksz_drive_strength_error(dev, ksz8830_drive_strengths,
4239 					 array_size, microamp);
4240 		return ret;
4241 	}
4242 
4243 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4244 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4245 }
4246 
4247 /**
4248  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4249  *				from device tree properties.
4250  * @dev:	ksz device
4251  *
4252  * This function reads the specified drive strength properties from the
4253  * device tree, validates against the supported chip variants, and sets
4254  * them accordingly. An error should be critical here, as the drive strength
4255  * settings are crucial for EMI compliance.
4256  *
4257  * Return: 0 on success, error code otherwise
4258  */
4259 static int ksz_parse_drive_strength(struct ksz_device *dev)
4260 {
4261 	struct ksz_driver_strength_prop of_props[] = {
4262 		[KSZ_DRIVER_STRENGTH_HI] = {
4263 			.name = "microchip,hi-drive-strength-microamp",
4264 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4265 			.value = -1,
4266 		},
4267 		[KSZ_DRIVER_STRENGTH_LO] = {
4268 			.name = "microchip,lo-drive-strength-microamp",
4269 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4270 			.value = -1,
4271 		},
4272 		[KSZ_DRIVER_STRENGTH_IO] = {
4273 			.name = "microchip,io-drive-strength-microamp",
4274 			.offset = 0, /* don't care */
4275 			.value = -1,
4276 		},
4277 	};
4278 	struct device_node *np = dev->dev->of_node;
4279 	bool have_any_prop = false;
4280 	int i, ret;
4281 
4282 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4283 		ret = of_property_read_u32(np, of_props[i].name,
4284 					   &of_props[i].value);
4285 		if (ret && ret != -EINVAL)
4286 			dev_warn(dev->dev, "Failed to read %s\n",
4287 				 of_props[i].name);
4288 		if (ret)
4289 			continue;
4290 
4291 		have_any_prop = true;
4292 	}
4293 
4294 	if (!have_any_prop)
4295 		return 0;
4296 
4297 	switch (dev->chip_id) {
4298 	case KSZ8830_CHIP_ID:
4299 		return ksz8830_drive_strength_write(dev, of_props,
4300 						    ARRAY_SIZE(of_props));
4301 	case KSZ8795_CHIP_ID:
4302 	case KSZ8794_CHIP_ID:
4303 	case KSZ8765_CHIP_ID:
4304 	case KSZ8563_CHIP_ID:
4305 	case KSZ8567_CHIP_ID:
4306 	case KSZ9477_CHIP_ID:
4307 	case KSZ9563_CHIP_ID:
4308 	case KSZ9567_CHIP_ID:
4309 	case KSZ9893_CHIP_ID:
4310 	case KSZ9896_CHIP_ID:
4311 	case KSZ9897_CHIP_ID:
4312 		return ksz9477_drive_strength_write(dev, of_props,
4313 						    ARRAY_SIZE(of_props));
4314 	default:
4315 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4316 			if (of_props[i].value == -1)
4317 				continue;
4318 
4319 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4320 				 of_props[i].name);
4321 		}
4322 	}
4323 
4324 	return 0;
4325 }
4326 
4327 int ksz_switch_register(struct ksz_device *dev)
4328 {
4329 	const struct ksz_chip_data *info;
4330 	struct device_node *port, *ports;
4331 	phy_interface_t interface;
4332 	unsigned int port_num;
4333 	int ret;
4334 	int i;
4335 
4336 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4337 						  GPIOD_OUT_LOW);
4338 	if (IS_ERR(dev->reset_gpio))
4339 		return PTR_ERR(dev->reset_gpio);
4340 
4341 	if (dev->reset_gpio) {
4342 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4343 		usleep_range(10000, 12000);
4344 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
4345 		msleep(100);
4346 	}
4347 
4348 	mutex_init(&dev->dev_mutex);
4349 	mutex_init(&dev->regmap_mutex);
4350 	mutex_init(&dev->alu_mutex);
4351 	mutex_init(&dev->vlan_mutex);
4352 
4353 	ret = ksz_switch_detect(dev);
4354 	if (ret)
4355 		return ret;
4356 
4357 	info = ksz_lookup_info(dev->chip_id);
4358 	if (!info)
4359 		return -ENODEV;
4360 
4361 	/* Update the compatible info with the probed one */
4362 	dev->info = info;
4363 
4364 	dev_info(dev->dev, "found switch: %s, rev %i\n",
4365 		 dev->info->dev_name, dev->chip_rev);
4366 
4367 	ret = ksz_check_device_id(dev);
4368 	if (ret)
4369 		return ret;
4370 
4371 	dev->dev_ops = dev->info->ops;
4372 
4373 	ret = dev->dev_ops->init(dev);
4374 	if (ret)
4375 		return ret;
4376 
4377 	dev->ports = devm_kzalloc(dev->dev,
4378 				  dev->info->port_cnt * sizeof(struct ksz_port),
4379 				  GFP_KERNEL);
4380 	if (!dev->ports)
4381 		return -ENOMEM;
4382 
4383 	for (i = 0; i < dev->info->port_cnt; i++) {
4384 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
4385 		mutex_init(&dev->ports[i].mib.cnt_mutex);
4386 		dev->ports[i].mib.counters =
4387 			devm_kzalloc(dev->dev,
4388 				     sizeof(u64) * (dev->info->mib_cnt + 1),
4389 				     GFP_KERNEL);
4390 		if (!dev->ports[i].mib.counters)
4391 			return -ENOMEM;
4392 
4393 		dev->ports[i].ksz_dev = dev;
4394 		dev->ports[i].num = i;
4395 	}
4396 
4397 	/* set the real number of ports */
4398 	dev->ds->num_ports = dev->info->port_cnt;
4399 
4400 	/* set the phylink ops */
4401 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
4402 
4403 	/* Host port interface will be self detected, or specifically set in
4404 	 * device tree.
4405 	 */
4406 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
4407 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
4408 	if (dev->dev->of_node) {
4409 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
4410 		if (ret == 0)
4411 			dev->compat_interface = interface;
4412 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
4413 		if (!ports)
4414 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
4415 		if (ports) {
4416 			for_each_available_child_of_node(ports, port) {
4417 				if (of_property_read_u32(port, "reg",
4418 							 &port_num))
4419 					continue;
4420 				if (!(dev->port_mask & BIT(port_num))) {
4421 					of_node_put(port);
4422 					of_node_put(ports);
4423 					return -EINVAL;
4424 				}
4425 				of_get_phy_mode(port,
4426 						&dev->ports[port_num].interface);
4427 
4428 				ksz_parse_rgmii_delay(dev, port_num, port);
4429 			}
4430 			of_node_put(ports);
4431 		}
4432 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
4433 							 "microchip,synclko-125");
4434 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
4435 							     "microchip,synclko-disable");
4436 		if (dev->synclko_125 && dev->synclko_disable) {
4437 			dev_err(dev->dev, "inconsistent synclko settings\n");
4438 			return -EINVAL;
4439 		}
4440 
4441 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
4442 							   "wakeup-source");
4443 	}
4444 
4445 	ret = dsa_register_switch(dev->ds);
4446 	if (ret) {
4447 		dev->dev_ops->exit(dev);
4448 		return ret;
4449 	}
4450 
4451 	/* Read MIB counters every 30 seconds to avoid overflow. */
4452 	dev->mib_read_interval = msecs_to_jiffies(5000);
4453 
4454 	/* Start the MIB timer. */
4455 	schedule_delayed_work(&dev->mib_read, 0);
4456 
4457 	return ret;
4458 }
4459 EXPORT_SYMBOL(ksz_switch_register);
4460 
4461 void ksz_switch_remove(struct ksz_device *dev)
4462 {
4463 	/* timer started */
4464 	if (dev->mib_read_interval) {
4465 		dev->mib_read_interval = 0;
4466 		cancel_delayed_work_sync(&dev->mib_read);
4467 	}
4468 
4469 	dev->dev_ops->exit(dev);
4470 	dsa_unregister_switch(dev->ds);
4471 
4472 	if (dev->reset_gpio)
4473 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4474 
4475 }
4476 EXPORT_SYMBOL(ksz_switch_remove);
4477 
4478 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
4479 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
4480 MODULE_LICENSE("GPL");
4481