xref: /linux/drivers/net/dsa/microchip/ksz9477.c (revision cad4977344b35ea116ec5fefe91a76b1dfa113f5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2018 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/export.h>
10 #include <linux/gpio.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/platform_data/microchip-ksz.h>
14 #include <linux/phy.h>
15 #include <linux/etherdevice.h>
16 #include <linux/if_bridge.h>
17 #include <net/dsa.h>
18 #include <net/switchdev.h>
19 
20 #include "ksz_priv.h"
21 #include "ksz_common.h"
22 #include "ksz9477_reg.h"
23 
24 static const struct {
25 	int index;
26 	char string[ETH_GSTRING_LEN];
27 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
28 	{ 0x00, "rx_hi" },
29 	{ 0x01, "rx_undersize" },
30 	{ 0x02, "rx_fragments" },
31 	{ 0x03, "rx_oversize" },
32 	{ 0x04, "rx_jabbers" },
33 	{ 0x05, "rx_symbol_err" },
34 	{ 0x06, "rx_crc_err" },
35 	{ 0x07, "rx_align_err" },
36 	{ 0x08, "rx_mac_ctrl" },
37 	{ 0x09, "rx_pause" },
38 	{ 0x0A, "rx_bcast" },
39 	{ 0x0B, "rx_mcast" },
40 	{ 0x0C, "rx_ucast" },
41 	{ 0x0D, "rx_64_or_less" },
42 	{ 0x0E, "rx_65_127" },
43 	{ 0x0F, "rx_128_255" },
44 	{ 0x10, "rx_256_511" },
45 	{ 0x11, "rx_512_1023" },
46 	{ 0x12, "rx_1024_1522" },
47 	{ 0x13, "rx_1523_2000" },
48 	{ 0x14, "rx_2001" },
49 	{ 0x15, "tx_hi" },
50 	{ 0x16, "tx_late_col" },
51 	{ 0x17, "tx_pause" },
52 	{ 0x18, "tx_bcast" },
53 	{ 0x19, "tx_mcast" },
54 	{ 0x1A, "tx_ucast" },
55 	{ 0x1B, "tx_deferred" },
56 	{ 0x1C, "tx_total_col" },
57 	{ 0x1D, "tx_exc_col" },
58 	{ 0x1E, "tx_single_col" },
59 	{ 0x1F, "tx_mult_col" },
60 	{ 0x80, "rx_total" },
61 	{ 0x81, "tx_total" },
62 	{ 0x82, "rx_discards" },
63 	{ 0x83, "tx_discards" },
64 };
65 
66 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
67 {
68 	u32 data;
69 
70 	ksz_read32(dev, addr, &data);
71 	if (set)
72 		data |= bits;
73 	else
74 		data &= ~bits;
75 	ksz_write32(dev, addr, data);
76 }
77 
78 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
79 			       u32 bits, bool set)
80 {
81 	u32 addr;
82 	u32 data;
83 
84 	addr = PORT_CTRL_ADDR(port, offset);
85 	ksz_read32(dev, addr, &data);
86 
87 	if (set)
88 		data |= bits;
89 	else
90 		data &= ~bits;
91 
92 	ksz_write32(dev, addr, data);
93 }
94 
95 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton,
96 					int timeout)
97 {
98 	u8 data;
99 
100 	do {
101 		ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
102 		if (!(data & waiton))
103 			break;
104 		usleep_range(1, 10);
105 	} while (timeout-- > 0);
106 
107 	if (timeout <= 0)
108 		return -ETIMEDOUT;
109 
110 	return 0;
111 }
112 
113 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
114 				  u32 *vlan_table)
115 {
116 	int ret;
117 
118 	mutex_lock(&dev->vlan_mutex);
119 
120 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
121 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
122 
123 	/* wait to be cleared */
124 	ret = ksz9477_wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
125 	if (ret < 0) {
126 		dev_dbg(dev->dev, "Failed to read vlan table\n");
127 		goto exit;
128 	}
129 
130 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
131 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
132 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
133 
134 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
135 
136 exit:
137 	mutex_unlock(&dev->vlan_mutex);
138 
139 	return ret;
140 }
141 
142 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
143 				  u32 *vlan_table)
144 {
145 	int ret;
146 
147 	mutex_lock(&dev->vlan_mutex);
148 
149 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
150 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
151 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
152 
153 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
154 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
155 
156 	/* wait to be cleared */
157 	ret = ksz9477_wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
158 	if (ret < 0) {
159 		dev_dbg(dev->dev, "Failed to write vlan table\n");
160 		goto exit;
161 	}
162 
163 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
164 
165 	/* update vlan cache table */
166 	dev->vlan_cache[vid].table[0] = vlan_table[0];
167 	dev->vlan_cache[vid].table[1] = vlan_table[1];
168 	dev->vlan_cache[vid].table[2] = vlan_table[2];
169 
170 exit:
171 	mutex_unlock(&dev->vlan_mutex);
172 
173 	return ret;
174 }
175 
176 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
177 {
178 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
179 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
180 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
181 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
182 }
183 
184 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
185 {
186 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
187 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
188 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
189 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
190 }
191 
192 static int ksz9477_wait_alu_ready(struct ksz_device *dev, u32 waiton,
193 				  int timeout)
194 {
195 	u32 data;
196 
197 	do {
198 		ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
199 		if (!(data & waiton))
200 			break;
201 		usleep_range(1, 10);
202 	} while (timeout-- > 0);
203 
204 	if (timeout <= 0)
205 		return -ETIMEDOUT;
206 
207 	return 0;
208 }
209 
210 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev, u32 waiton,
211 				      int timeout)
212 {
213 	u32 data;
214 
215 	do {
216 		ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
217 		if (!(data & waiton))
218 			break;
219 		usleep_range(1, 10);
220 	} while (timeout-- > 0);
221 
222 	if (timeout <= 0)
223 		return -ETIMEDOUT;
224 
225 	return 0;
226 }
227 
228 static int ksz9477_reset_switch(struct ksz_device *dev)
229 {
230 	u8 data8;
231 	u16 data16;
232 	u32 data32;
233 
234 	/* reset switch */
235 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
236 
237 	/* turn off SPI DO Edge select */
238 	ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
239 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
240 	ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
241 
242 	/* default configuration */
243 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
244 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
245 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
246 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
247 
248 	/* disable interrupts */
249 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
250 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
251 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
252 
253 	/* set broadcast storm protection 10% rate */
254 	ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
255 	data16 &= ~BROADCAST_STORM_RATE;
256 	data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
257 	ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
258 
259 	return 0;
260 }
261 
262 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
263 						      int port)
264 {
265 	return DSA_TAG_PROTO_KSZ;
266 }
267 
268 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
269 {
270 	struct ksz_device *dev = ds->priv;
271 	u16 val = 0xffff;
272 
273 	/* No real PHY after this. Simulate the PHY.
274 	 * A fixed PHY can be setup in the device tree, but this function is
275 	 * still called for that port during initialization.
276 	 * For RGMII PHY there is no way to access it so the fixed PHY should
277 	 * be used.  For SGMII PHY the supporting code will be added later.
278 	 */
279 	if (addr >= dev->phy_port_cnt) {
280 		struct ksz_port *p = &dev->ports[addr];
281 
282 		switch (reg) {
283 		case MII_BMCR:
284 			val = 0x1140;
285 			break;
286 		case MII_BMSR:
287 			val = 0x796d;
288 			break;
289 		case MII_PHYSID1:
290 			val = 0x0022;
291 			break;
292 		case MII_PHYSID2:
293 			val = 0x1631;
294 			break;
295 		case MII_ADVERTISE:
296 			val = 0x05e1;
297 			break;
298 		case MII_LPA:
299 			val = 0xc5e1;
300 			break;
301 		case MII_CTRL1000:
302 			val = 0x0700;
303 			break;
304 		case MII_STAT1000:
305 			if (p->phydev.speed == SPEED_1000)
306 				val = 0x3800;
307 			else
308 				val = 0;
309 			break;
310 		}
311 	} else {
312 		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
313 	}
314 
315 	return val;
316 }
317 
318 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
319 			       u16 val)
320 {
321 	struct ksz_device *dev = ds->priv;
322 
323 	/* No real PHY after this. */
324 	if (addr >= dev->phy_port_cnt)
325 		return 0;
326 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
327 
328 	return 0;
329 }
330 
331 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
332 				u32 stringset, uint8_t *buf)
333 {
334 	int i;
335 
336 	if (stringset != ETH_SS_STATS)
337 		return;
338 
339 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
340 		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
341 		       ETH_GSTRING_LEN);
342 	}
343 }
344 
345 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
346 				  uint64_t *buf)
347 {
348 	struct ksz_device *dev = ds->priv;
349 	int i;
350 	u32 data;
351 	int timeout;
352 
353 	mutex_lock(&dev->stats_mutex);
354 
355 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
356 		data = MIB_COUNTER_READ;
357 		data |= ((ksz9477_mib_names[i].index & 0xFF) <<
358 			MIB_COUNTER_INDEX_S);
359 		ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
360 
361 		timeout = 1000;
362 		do {
363 			ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
364 				    &data);
365 			usleep_range(1, 10);
366 			if (!(data & MIB_COUNTER_READ))
367 				break;
368 		} while (timeout-- > 0);
369 
370 		/* failed to read MIB. get out of loop */
371 		if (!timeout) {
372 			dev_dbg(dev->dev, "Failed to get MIB\n");
373 			break;
374 		}
375 
376 		/* count resets upon read */
377 		ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
378 
379 		dev->mib_value[i] += (uint64_t)data;
380 		buf[i] = dev->mib_value[i];
381 	}
382 
383 	mutex_unlock(&dev->stats_mutex);
384 }
385 
386 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
387 				    u8 member)
388 {
389 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
390 	dev->ports[port].member = member;
391 }
392 
393 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
394 				       u8 state)
395 {
396 	struct ksz_device *dev = ds->priv;
397 	struct ksz_port *p = &dev->ports[port];
398 	u8 data;
399 	int member = -1;
400 
401 	ksz_pread8(dev, port, P_STP_CTRL, &data);
402 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
403 
404 	switch (state) {
405 	case BR_STATE_DISABLED:
406 		data |= PORT_LEARN_DISABLE;
407 		if (port != dev->cpu_port)
408 			member = 0;
409 		break;
410 	case BR_STATE_LISTENING:
411 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
412 		if (port != dev->cpu_port &&
413 		    p->stp_state == BR_STATE_DISABLED)
414 			member = dev->host_mask | p->vid_member;
415 		break;
416 	case BR_STATE_LEARNING:
417 		data |= PORT_RX_ENABLE;
418 		break;
419 	case BR_STATE_FORWARDING:
420 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
421 
422 		/* This function is also used internally. */
423 		if (port == dev->cpu_port)
424 			break;
425 
426 		member = dev->host_mask | p->vid_member;
427 
428 		/* Port is a member of a bridge. */
429 		if (dev->br_member & (1 << port)) {
430 			dev->member |= (1 << port);
431 			member = dev->member;
432 		}
433 		break;
434 	case BR_STATE_BLOCKING:
435 		data |= PORT_LEARN_DISABLE;
436 		if (port != dev->cpu_port &&
437 		    p->stp_state == BR_STATE_DISABLED)
438 			member = dev->host_mask | p->vid_member;
439 		break;
440 	default:
441 		dev_err(ds->dev, "invalid STP state: %d\n", state);
442 		return;
443 	}
444 
445 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
446 	p->stp_state = state;
447 	if (data & PORT_RX_ENABLE)
448 		dev->rx_ports |= (1 << port);
449 	else
450 		dev->rx_ports &= ~(1 << port);
451 	if (data & PORT_TX_ENABLE)
452 		dev->tx_ports |= (1 << port);
453 	else
454 		dev->tx_ports &= ~(1 << port);
455 
456 	/* Port membership may share register with STP state. */
457 	if (member >= 0 && member != p->member)
458 		ksz9477_cfg_port_member(dev, port, (u8)member);
459 
460 	/* Check if forwarding needs to be updated. */
461 	if (state != BR_STATE_FORWARDING) {
462 		if (dev->br_member & (1 << port))
463 			dev->member &= ~(1 << port);
464 	}
465 
466 	/* When topology has changed the function ksz_update_port_member
467 	 * should be called to modify port forwarding behavior.  However
468 	 * as the offload_fwd_mark indication cannot be reported here
469 	 * the switch forwarding function is not enabled.
470 	 */
471 }
472 
473 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
474 {
475 	u8 data;
476 
477 	ksz_read8(dev, REG_SW_LUE_CTRL_2, &data);
478 	data &= ~(SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S);
479 	data |= (SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
480 	ksz_write8(dev, REG_SW_LUE_CTRL_2, data);
481 	if (port < dev->mib_port_cnt) {
482 		/* flush individual port */
483 		ksz_pread8(dev, port, P_STP_CTRL, &data);
484 		if (!(data & PORT_LEARN_DISABLE))
485 			ksz_pwrite8(dev, port, P_STP_CTRL,
486 				    data | PORT_LEARN_DISABLE);
487 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
488 		ksz_pwrite8(dev, port, P_STP_CTRL, data);
489 	} else {
490 		/* flush all */
491 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
492 	}
493 }
494 
495 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
496 				       bool flag)
497 {
498 	struct ksz_device *dev = ds->priv;
499 
500 	if (flag) {
501 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
502 			     PORT_VLAN_LOOKUP_VID_0, true);
503 		ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
504 			      true);
505 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
506 	} else {
507 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
508 		ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
509 			      false);
510 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
511 			     PORT_VLAN_LOOKUP_VID_0, false);
512 	}
513 
514 	return 0;
515 }
516 
517 static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
518 				  const struct switchdev_obj_port_vlan *vlan)
519 {
520 	struct ksz_device *dev = ds->priv;
521 	u32 vlan_table[3];
522 	u16 vid;
523 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
524 
525 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
526 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
527 			dev_dbg(dev->dev, "Failed to get vlan table\n");
528 			return;
529 		}
530 
531 		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
532 		if (untagged)
533 			vlan_table[1] |= BIT(port);
534 		else
535 			vlan_table[1] &= ~BIT(port);
536 		vlan_table[1] &= ~(BIT(dev->cpu_port));
537 
538 		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
539 
540 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
541 			dev_dbg(dev->dev, "Failed to set vlan table\n");
542 			return;
543 		}
544 
545 		/* change PVID */
546 		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
547 			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
548 	}
549 }
550 
551 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
552 				 const struct switchdev_obj_port_vlan *vlan)
553 {
554 	struct ksz_device *dev = ds->priv;
555 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
556 	u32 vlan_table[3];
557 	u16 vid;
558 	u16 pvid;
559 
560 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
561 	pvid = pvid & 0xFFF;
562 
563 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
564 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
565 			dev_dbg(dev->dev, "Failed to get vlan table\n");
566 			return -ETIMEDOUT;
567 		}
568 
569 		vlan_table[2] &= ~BIT(port);
570 
571 		if (pvid == vid)
572 			pvid = 1;
573 
574 		if (untagged)
575 			vlan_table[1] &= ~BIT(port);
576 
577 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
578 			dev_dbg(dev->dev, "Failed to set vlan table\n");
579 			return -ETIMEDOUT;
580 		}
581 	}
582 
583 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
584 
585 	return 0;
586 }
587 
588 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
589 				const unsigned char *addr, u16 vid)
590 {
591 	struct ksz_device *dev = ds->priv;
592 	u32 alu_table[4];
593 	u32 data;
594 	int ret = 0;
595 
596 	mutex_lock(&dev->alu_mutex);
597 
598 	/* find any entry with mac & vid */
599 	data = vid << ALU_FID_INDEX_S;
600 	data |= ((addr[0] << 8) | addr[1]);
601 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
602 
603 	data = ((addr[2] << 24) | (addr[3] << 16));
604 	data |= ((addr[4] << 8) | addr[5]);
605 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
606 
607 	/* start read operation */
608 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
609 
610 	/* wait to be finished */
611 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
612 	if (ret < 0) {
613 		dev_dbg(dev->dev, "Failed to read ALU\n");
614 		goto exit;
615 	}
616 
617 	/* read ALU entry */
618 	ksz9477_read_table(dev, alu_table);
619 
620 	/* update ALU entry */
621 	alu_table[0] = ALU_V_STATIC_VALID;
622 	alu_table[1] |= BIT(port);
623 	if (vid)
624 		alu_table[1] |= ALU_V_USE_FID;
625 	alu_table[2] = (vid << ALU_V_FID_S);
626 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
627 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
628 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
629 
630 	ksz9477_write_table(dev, alu_table);
631 
632 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
633 
634 	/* wait to be finished */
635 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
636 	if (ret < 0)
637 		dev_dbg(dev->dev, "Failed to write ALU\n");
638 
639 exit:
640 	mutex_unlock(&dev->alu_mutex);
641 
642 	return ret;
643 }
644 
645 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
646 				const unsigned char *addr, u16 vid)
647 {
648 	struct ksz_device *dev = ds->priv;
649 	u32 alu_table[4];
650 	u32 data;
651 	int ret = 0;
652 
653 	mutex_lock(&dev->alu_mutex);
654 
655 	/* read any entry with mac & vid */
656 	data = vid << ALU_FID_INDEX_S;
657 	data |= ((addr[0] << 8) | addr[1]);
658 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
659 
660 	data = ((addr[2] << 24) | (addr[3] << 16));
661 	data |= ((addr[4] << 8) | addr[5]);
662 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
663 
664 	/* start read operation */
665 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
666 
667 	/* wait to be finished */
668 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
669 	if (ret < 0) {
670 		dev_dbg(dev->dev, "Failed to read ALU\n");
671 		goto exit;
672 	}
673 
674 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
675 	if (alu_table[0] & ALU_V_STATIC_VALID) {
676 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
677 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
678 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
679 
680 		/* clear forwarding port */
681 		alu_table[2] &= ~BIT(port);
682 
683 		/* if there is no port to forward, clear table */
684 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
685 			alu_table[0] = 0;
686 			alu_table[1] = 0;
687 			alu_table[2] = 0;
688 			alu_table[3] = 0;
689 		}
690 	} else {
691 		alu_table[0] = 0;
692 		alu_table[1] = 0;
693 		alu_table[2] = 0;
694 		alu_table[3] = 0;
695 	}
696 
697 	ksz9477_write_table(dev, alu_table);
698 
699 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
700 
701 	/* wait to be finished */
702 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
703 	if (ret < 0)
704 		dev_dbg(dev->dev, "Failed to write ALU\n");
705 
706 exit:
707 	mutex_unlock(&dev->alu_mutex);
708 
709 	return ret;
710 }
711 
712 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
713 {
714 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
715 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
716 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
717 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
718 			ALU_V_PRIO_AGE_CNT_M;
719 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
720 
721 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
722 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
723 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
724 
725 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
726 
727 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
728 	alu->mac[1] = alu_table[2] & 0xFF;
729 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
730 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
731 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
732 	alu->mac[5] = alu_table[3] & 0xFF;
733 }
734 
735 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
736 				 dsa_fdb_dump_cb_t *cb, void *data)
737 {
738 	struct ksz_device *dev = ds->priv;
739 	int ret = 0;
740 	u32 ksz_data;
741 	u32 alu_table[4];
742 	struct alu_struct alu;
743 	int timeout;
744 
745 	mutex_lock(&dev->alu_mutex);
746 
747 	/* start ALU search */
748 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
749 
750 	do {
751 		timeout = 1000;
752 		do {
753 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
754 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
755 				break;
756 			usleep_range(1, 10);
757 		} while (timeout-- > 0);
758 
759 		if (!timeout) {
760 			dev_dbg(dev->dev, "Failed to search ALU\n");
761 			ret = -ETIMEDOUT;
762 			goto exit;
763 		}
764 
765 		/* read ALU table */
766 		ksz9477_read_table(dev, alu_table);
767 
768 		ksz9477_convert_alu(&alu, alu_table);
769 
770 		if (alu.port_forward & BIT(port)) {
771 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
772 			if (ret)
773 				goto exit;
774 		}
775 	} while (ksz_data & ALU_START);
776 
777 exit:
778 
779 	/* stop ALU search */
780 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
781 
782 	mutex_unlock(&dev->alu_mutex);
783 
784 	return ret;
785 }
786 
787 static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
788 				 const struct switchdev_obj_port_mdb *mdb)
789 {
790 	struct ksz_device *dev = ds->priv;
791 	u32 static_table[4];
792 	u32 data;
793 	int index;
794 	u32 mac_hi, mac_lo;
795 
796 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
797 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
798 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
799 
800 	mutex_lock(&dev->alu_mutex);
801 
802 	for (index = 0; index < dev->num_statics; index++) {
803 		/* find empty slot first */
804 		data = (index << ALU_STAT_INDEX_S) |
805 			ALU_STAT_READ | ALU_STAT_START;
806 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
807 
808 		/* wait to be finished */
809 		if (ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
810 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
811 			goto exit;
812 		}
813 
814 		/* read ALU static table */
815 		ksz9477_read_table(dev, static_table);
816 
817 		if (static_table[0] & ALU_V_STATIC_VALID) {
818 			/* check this has same vid & mac address */
819 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
820 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
821 			    static_table[3] == mac_lo) {
822 				/* found matching one */
823 				break;
824 			}
825 		} else {
826 			/* found empty one */
827 			break;
828 		}
829 	}
830 
831 	/* no available entry */
832 	if (index == dev->num_statics)
833 		goto exit;
834 
835 	/* add entry */
836 	static_table[0] = ALU_V_STATIC_VALID;
837 	static_table[1] |= BIT(port);
838 	if (mdb->vid)
839 		static_table[1] |= ALU_V_USE_FID;
840 	static_table[2] = (mdb->vid << ALU_V_FID_S);
841 	static_table[2] |= mac_hi;
842 	static_table[3] = mac_lo;
843 
844 	ksz9477_write_table(dev, static_table);
845 
846 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
847 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
848 
849 	/* wait to be finished */
850 	if (ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
851 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
852 
853 exit:
854 	mutex_unlock(&dev->alu_mutex);
855 }
856 
857 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
858 				const struct switchdev_obj_port_mdb *mdb)
859 {
860 	struct ksz_device *dev = ds->priv;
861 	u32 static_table[4];
862 	u32 data;
863 	int index;
864 	int ret = 0;
865 	u32 mac_hi, mac_lo;
866 
867 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
868 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
869 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
870 
871 	mutex_lock(&dev->alu_mutex);
872 
873 	for (index = 0; index < dev->num_statics; index++) {
874 		/* find empty slot first */
875 		data = (index << ALU_STAT_INDEX_S) |
876 			ALU_STAT_READ | ALU_STAT_START;
877 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
878 
879 		/* wait to be finished */
880 		ret = ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
881 		if (ret < 0) {
882 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
883 			goto exit;
884 		}
885 
886 		/* read ALU static table */
887 		ksz9477_read_table(dev, static_table);
888 
889 		if (static_table[0] & ALU_V_STATIC_VALID) {
890 			/* check this has same vid & mac address */
891 
892 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
893 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
894 			    static_table[3] == mac_lo) {
895 				/* found matching one */
896 				break;
897 			}
898 		}
899 	}
900 
901 	/* no available entry */
902 	if (index == dev->num_statics)
903 		goto exit;
904 
905 	/* clear port */
906 	static_table[1] &= ~BIT(port);
907 
908 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
909 		/* delete entry */
910 		static_table[0] = 0;
911 		static_table[1] = 0;
912 		static_table[2] = 0;
913 		static_table[3] = 0;
914 	}
915 
916 	ksz9477_write_table(dev, static_table);
917 
918 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
919 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
920 
921 	/* wait to be finished */
922 	ret = ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
923 	if (ret < 0)
924 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
925 
926 exit:
927 	mutex_unlock(&dev->alu_mutex);
928 
929 	return ret;
930 }
931 
932 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
933 				   struct dsa_mall_mirror_tc_entry *mirror,
934 				   bool ingress)
935 {
936 	struct ksz_device *dev = ds->priv;
937 
938 	if (ingress)
939 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
940 	else
941 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
942 
943 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
944 
945 	/* configure mirror port */
946 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
947 		     PORT_MIRROR_SNIFFER, true);
948 
949 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
950 
951 	return 0;
952 }
953 
954 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
955 				    struct dsa_mall_mirror_tc_entry *mirror)
956 {
957 	struct ksz_device *dev = ds->priv;
958 	u8 data;
959 
960 	if (mirror->ingress)
961 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
962 	else
963 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
964 
965 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
966 
967 	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
968 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
969 			     PORT_MIRROR_SNIFFER, false);
970 }
971 
972 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
973 {
974 	u8 data8;
975 	u8 member;
976 	u16 data16;
977 	struct ksz_port *p = &dev->ports[port];
978 
979 	/* enable tag tail for host port */
980 	if (cpu_port)
981 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
982 			     true);
983 
984 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
985 
986 	/* set back pressure */
987 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
988 
989 	/* enable broadcast storm limit */
990 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
991 
992 	/* disable DiffServ priority */
993 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
994 
995 	/* replace priority */
996 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
997 		     false);
998 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
999 			   MTI_PVID_REPLACE, false);
1000 
1001 	/* enable 802.1p priority */
1002 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1003 
1004 	if (port < dev->phy_port_cnt) {
1005 		/* do not force flow control */
1006 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1007 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1008 			     false);
1009 
1010 	} else {
1011 		/* force flow control */
1012 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1013 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1014 			     true);
1015 
1016 		/* configure MAC to 1G & RGMII mode */
1017 		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1018 		data8 &= ~PORT_MII_NOT_1GBIT;
1019 		data8 &= ~PORT_MII_SEL_M;
1020 		switch (dev->interface) {
1021 		case PHY_INTERFACE_MODE_MII:
1022 			data8 |= PORT_MII_NOT_1GBIT;
1023 			data8 |= PORT_MII_SEL;
1024 			p->phydev.speed = SPEED_100;
1025 			break;
1026 		case PHY_INTERFACE_MODE_RMII:
1027 			data8 |= PORT_MII_NOT_1GBIT;
1028 			data8 |= PORT_RMII_SEL;
1029 			p->phydev.speed = SPEED_100;
1030 			break;
1031 		case PHY_INTERFACE_MODE_GMII:
1032 			data8 |= PORT_GMII_SEL;
1033 			p->phydev.speed = SPEED_1000;
1034 			break;
1035 		default:
1036 			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1037 			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1038 			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1039 			    dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1040 				data8 |= PORT_RGMII_ID_IG_ENABLE;
1041 			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1042 			    dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1043 				data8 |= PORT_RGMII_ID_EG_ENABLE;
1044 			data8 |= PORT_RGMII_SEL;
1045 			p->phydev.speed = SPEED_1000;
1046 			break;
1047 		}
1048 		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1049 		p->phydev.duplex = 1;
1050 	}
1051 	if (cpu_port) {
1052 		member = dev->port_mask;
1053 		dev->on_ports = dev->host_mask;
1054 		dev->live_ports = dev->host_mask;
1055 	} else {
1056 		member = dev->host_mask | p->vid_member;
1057 		dev->on_ports |= (1 << port);
1058 
1059 		/* Link was detected before port is enabled. */
1060 		if (p->phydev.link)
1061 			dev->live_ports |= (1 << port);
1062 	}
1063 	ksz9477_cfg_port_member(dev, port, member);
1064 
1065 	/* clear pending interrupts */
1066 	if (port < dev->phy_port_cnt)
1067 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1068 }
1069 
1070 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1071 {
1072 	struct ksz_device *dev = ds->priv;
1073 	struct ksz_port *p;
1074 	int i;
1075 
1076 	ds->num_ports = dev->port_cnt;
1077 
1078 	for (i = 0; i < dev->port_cnt; i++) {
1079 		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1080 			dev->cpu_port = i;
1081 			dev->host_mask = (1 << dev->cpu_port);
1082 			dev->port_mask |= dev->host_mask;
1083 
1084 			/* enable cpu port */
1085 			ksz9477_port_setup(dev, i, true);
1086 			p = &dev->ports[dev->cpu_port];
1087 			p->vid_member = dev->port_mask;
1088 			p->on = 1;
1089 		}
1090 	}
1091 
1092 	dev->member = dev->host_mask;
1093 
1094 	for (i = 0; i < dev->mib_port_cnt; i++) {
1095 		if (i == dev->cpu_port)
1096 			continue;
1097 		p = &dev->ports[i];
1098 
1099 		/* Initialize to non-zero so that ksz_cfg_port_member() will
1100 		 * be called.
1101 		 */
1102 		p->vid_member = (1 << i);
1103 		p->member = dev->port_mask;
1104 		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1105 		p->on = 1;
1106 		if (i < dev->phy_port_cnt)
1107 			p->phy = 1;
1108 		if (dev->chip_id == 0x00947700 && i == 6) {
1109 			p->sgmii = 1;
1110 
1111 			/* SGMII PHY detection code is not implemented yet. */
1112 			p->phy = 0;
1113 		}
1114 	}
1115 }
1116 
1117 static int ksz9477_setup(struct dsa_switch *ds)
1118 {
1119 	struct ksz_device *dev = ds->priv;
1120 	int ret = 0;
1121 
1122 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1123 				       dev->num_vlans, GFP_KERNEL);
1124 	if (!dev->vlan_cache)
1125 		return -ENOMEM;
1126 
1127 	ret = ksz9477_reset_switch(dev);
1128 	if (ret) {
1129 		dev_err(ds->dev, "failed to reset switch\n");
1130 		return ret;
1131 	}
1132 
1133 	/* accept packet up to 2000bytes */
1134 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1135 
1136 	ksz9477_config_cpu_port(ds);
1137 
1138 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1139 
1140 	/* queue based egress rate limit */
1141 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1142 
1143 	/* start switch */
1144 	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1145 
1146 	return 0;
1147 }
1148 
1149 static const struct dsa_switch_ops ksz9477_switch_ops = {
1150 	.get_tag_protocol	= ksz9477_get_tag_protocol,
1151 	.setup			= ksz9477_setup,
1152 	.phy_read		= ksz9477_phy_read16,
1153 	.phy_write		= ksz9477_phy_write16,
1154 	.port_enable		= ksz_enable_port,
1155 	.port_disable		= ksz_disable_port,
1156 	.get_strings		= ksz9477_get_strings,
1157 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1158 	.get_sset_count		= ksz_sset_count,
1159 	.port_bridge_join	= ksz_port_bridge_join,
1160 	.port_bridge_leave	= ksz_port_bridge_leave,
1161 	.port_stp_state_set	= ksz9477_port_stp_state_set,
1162 	.port_fast_age		= ksz_port_fast_age,
1163 	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1164 	.port_vlan_prepare	= ksz_port_vlan_prepare,
1165 	.port_vlan_add		= ksz9477_port_vlan_add,
1166 	.port_vlan_del		= ksz9477_port_vlan_del,
1167 	.port_fdb_dump		= ksz9477_port_fdb_dump,
1168 	.port_fdb_add		= ksz9477_port_fdb_add,
1169 	.port_fdb_del		= ksz9477_port_fdb_del,
1170 	.port_mdb_prepare       = ksz_port_mdb_prepare,
1171 	.port_mdb_add           = ksz9477_port_mdb_add,
1172 	.port_mdb_del           = ksz9477_port_mdb_del,
1173 	.port_mirror_add	= ksz9477_port_mirror_add,
1174 	.port_mirror_del	= ksz9477_port_mirror_del,
1175 };
1176 
1177 static u32 ksz9477_get_port_addr(int port, int offset)
1178 {
1179 	return PORT_CTRL_ADDR(port, offset);
1180 }
1181 
1182 static int ksz9477_switch_detect(struct ksz_device *dev)
1183 {
1184 	u8 data8;
1185 	u32 id32;
1186 	int ret;
1187 
1188 	/* turn off SPI DO Edge select */
1189 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1190 	if (ret)
1191 		return ret;
1192 
1193 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1194 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1195 	if (ret)
1196 		return ret;
1197 
1198 	/* read chip id */
1199 	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1200 	if (ret)
1201 		return ret;
1202 
1203 	/* Number of ports can be reduced depending on chip. */
1204 	dev->mib_port_cnt = TOTAL_PORT_NUM;
1205 	dev->phy_port_cnt = 5;
1206 
1207 	dev->chip_id = id32;
1208 
1209 	return 0;
1210 }
1211 
1212 struct ksz_chip_data {
1213 	u32 chip_id;
1214 	const char *dev_name;
1215 	int num_vlans;
1216 	int num_alus;
1217 	int num_statics;
1218 	int cpu_ports;
1219 	int port_cnt;
1220 };
1221 
1222 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1223 	{
1224 		.chip_id = 0x00947700,
1225 		.dev_name = "KSZ9477",
1226 		.num_vlans = 4096,
1227 		.num_alus = 4096,
1228 		.num_statics = 16,
1229 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1230 		.port_cnt = 7,		/* total physical port count */
1231 	},
1232 	{
1233 		.chip_id = 0x00989700,
1234 		.dev_name = "KSZ9897",
1235 		.num_vlans = 4096,
1236 		.num_alus = 4096,
1237 		.num_statics = 16,
1238 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1239 		.port_cnt = 7,		/* total physical port count */
1240 	},
1241 };
1242 
1243 static int ksz9477_switch_init(struct ksz_device *dev)
1244 {
1245 	int i;
1246 
1247 	dev->ds->ops = &ksz9477_switch_ops;
1248 
1249 	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1250 		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1251 
1252 		if (dev->chip_id == chip->chip_id) {
1253 			dev->name = chip->dev_name;
1254 			dev->num_vlans = chip->num_vlans;
1255 			dev->num_alus = chip->num_alus;
1256 			dev->num_statics = chip->num_statics;
1257 			dev->port_cnt = chip->port_cnt;
1258 			dev->cpu_ports = chip->cpu_ports;
1259 
1260 			break;
1261 		}
1262 	}
1263 
1264 	/* no switch found */
1265 	if (!dev->port_cnt)
1266 		return -ENODEV;
1267 
1268 	dev->port_mask = (1 << dev->port_cnt) - 1;
1269 
1270 	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1271 	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1272 
1273 	i = dev->mib_port_cnt;
1274 	dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1275 				  GFP_KERNEL);
1276 	if (!dev->ports)
1277 		return -ENOMEM;
1278 	for (i = 0; i < dev->mib_port_cnt; i++) {
1279 		dev->ports[i].mib.counters =
1280 			devm_kzalloc(dev->dev,
1281 				     sizeof(u64) *
1282 				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1283 				     GFP_KERNEL);
1284 		if (!dev->ports[i].mib.counters)
1285 			return -ENOMEM;
1286 	}
1287 	dev->interface = PHY_INTERFACE_MODE_RGMII_TXID;
1288 
1289 	return 0;
1290 }
1291 
1292 static void ksz9477_switch_exit(struct ksz_device *dev)
1293 {
1294 	ksz9477_reset_switch(dev);
1295 }
1296 
1297 static const struct ksz_dev_ops ksz9477_dev_ops = {
1298 	.get_port_addr = ksz9477_get_port_addr,
1299 	.cfg_port_member = ksz9477_cfg_port_member,
1300 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1301 	.port_setup = ksz9477_port_setup,
1302 	.shutdown = ksz9477_reset_switch,
1303 	.detect = ksz9477_switch_detect,
1304 	.init = ksz9477_switch_init,
1305 	.exit = ksz9477_switch_exit,
1306 };
1307 
1308 int ksz9477_switch_register(struct ksz_device *dev)
1309 {
1310 	return ksz_switch_register(dev, &ksz9477_dev_ops);
1311 }
1312 EXPORT_SYMBOL(ksz9477_switch_register);
1313 
1314 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1315 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1316 MODULE_LICENSE("GPL");
1317