1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Microchip KSZ9477 switch driver main logic 4 * 5 * Copyright (C) 2017-2024 Microchip Technology Inc. 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/iopoll.h> 11 #include <linux/platform_data/microchip-ksz.h> 12 #include <linux/phy.h> 13 #include <linux/if_bridge.h> 14 #include <linux/if_vlan.h> 15 #include <net/dsa.h> 16 #include <net/switchdev.h> 17 18 #include "ksz9477_reg.h" 19 #include "ksz_common.h" 20 #include "ksz9477.h" 21 22 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set) 23 { 24 regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0); 25 } 26 27 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits, 28 bool set) 29 { 30 regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset), 31 bits, set ? bits : 0); 32 } 33 34 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set) 35 { 36 regmap_update_bits(ksz_regmap_32(dev), addr, bits, set ? bits : 0); 37 } 38 39 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset, 40 u32 bits, bool set) 41 { 42 regmap_update_bits(ksz_regmap_32(dev), PORT_CTRL_ADDR(port, offset), 43 bits, set ? bits : 0); 44 } 45 46 int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu) 47 { 48 u16 frame_size; 49 50 if (!dsa_is_cpu_port(dev->ds, port)) 51 return 0; 52 53 frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; 54 55 return regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2, 56 REG_SW_MTU_MASK, frame_size); 57 } 58 59 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev) 60 { 61 unsigned int val; 62 63 return regmap_read_poll_timeout(ksz_regmap_8(dev), REG_SW_VLAN_CTRL, 64 val, !(val & VLAN_START), 10, 1000); 65 } 66 67 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid, 68 u32 *vlan_table) 69 { 70 int ret; 71 72 mutex_lock(&dev->vlan_mutex); 73 74 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M); 75 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START); 76 77 /* wait to be cleared */ 78 ret = ksz9477_wait_vlan_ctrl_ready(dev); 79 if (ret) { 80 dev_dbg(dev->dev, "Failed to read vlan table\n"); 81 goto exit; 82 } 83 84 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]); 85 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]); 86 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]); 87 88 ksz_write8(dev, REG_SW_VLAN_CTRL, 0); 89 90 exit: 91 mutex_unlock(&dev->vlan_mutex); 92 93 return ret; 94 } 95 96 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid, 97 u32 *vlan_table) 98 { 99 int ret; 100 101 mutex_lock(&dev->vlan_mutex); 102 103 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]); 104 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]); 105 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]); 106 107 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M); 108 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE); 109 110 /* wait to be cleared */ 111 ret = ksz9477_wait_vlan_ctrl_ready(dev); 112 if (ret) { 113 dev_dbg(dev->dev, "Failed to write vlan table\n"); 114 goto exit; 115 } 116 117 ksz_write8(dev, REG_SW_VLAN_CTRL, 0); 118 119 /* update vlan cache table */ 120 dev->vlan_cache[vid].table[0] = vlan_table[0]; 121 dev->vlan_cache[vid].table[1] = vlan_table[1]; 122 dev->vlan_cache[vid].table[2] = vlan_table[2]; 123 124 exit: 125 mutex_unlock(&dev->vlan_mutex); 126 127 return ret; 128 } 129 130 static void ksz9477_read_table(struct ksz_device *dev, u32 *table) 131 { 132 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]); 133 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]); 134 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]); 135 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]); 136 } 137 138 static void ksz9477_write_table(struct ksz_device *dev, u32 *table) 139 { 140 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]); 141 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]); 142 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]); 143 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]); 144 } 145 146 static int ksz9477_wait_alu_ready(struct ksz_device *dev) 147 { 148 unsigned int val; 149 150 return regmap_read_poll_timeout(ksz_regmap_32(dev), REG_SW_ALU_CTRL__4, 151 val, !(val & ALU_START), 10, 1000); 152 } 153 154 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev) 155 { 156 unsigned int val; 157 158 return regmap_read_poll_timeout(ksz_regmap_32(dev), 159 REG_SW_ALU_STAT_CTRL__4, 160 val, !(val & ALU_STAT_START), 161 10, 1000); 162 } 163 164 int ksz9477_reset_switch(struct ksz_device *dev) 165 { 166 u8 data8; 167 u32 data32; 168 169 /* reset switch */ 170 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true); 171 172 /* turn off SPI DO Edge select */ 173 regmap_update_bits(ksz_regmap_8(dev), REG_SW_GLOBAL_SERIAL_CTRL_0, 174 SPI_AUTO_EDGE_DETECTION, 0); 175 176 /* default configuration */ 177 ksz_write8(dev, REG_SW_LUE_CTRL_1, 178 SW_AGING_ENABLE | SW_LINK_AUTO_AGING | SW_SRC_ADDR_FILTER); 179 180 /* disable interrupts */ 181 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK); 182 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F); 183 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32); 184 185 /* KSZ9893 compatible chips do not support refclk configuration */ 186 if (dev->chip_id == KSZ9893_CHIP_ID || 187 dev->chip_id == KSZ8563_CHIP_ID || 188 dev->chip_id == KSZ9563_CHIP_ID) 189 return 0; 190 191 data8 = SW_ENABLE_REFCLKO; 192 if (dev->synclko_disable) 193 data8 = 0; 194 else if (dev->synclko_125) 195 data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ; 196 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8); 197 198 return 0; 199 } 200 201 void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt) 202 { 203 struct ksz_port *p = &dev->ports[port]; 204 unsigned int val; 205 u32 data; 206 int ret; 207 208 /* retain the flush/freeze bit */ 209 data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0; 210 data |= MIB_COUNTER_READ; 211 data |= (addr << MIB_COUNTER_INDEX_S); 212 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data); 213 214 ret = regmap_read_poll_timeout(ksz_regmap_32(dev), 215 PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4), 216 val, !(val & MIB_COUNTER_READ), 10, 1000); 217 /* failed to read MIB. get out of loop */ 218 if (ret) { 219 dev_dbg(dev->dev, "Failed to get MIB\n"); 220 return; 221 } 222 223 /* count resets upon read */ 224 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data); 225 *cnt += data; 226 } 227 228 void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr, 229 u64 *dropped, u64 *cnt) 230 { 231 addr = dev->info->mib_names[addr].index; 232 ksz9477_r_mib_cnt(dev, port, addr, cnt); 233 } 234 235 void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze) 236 { 237 u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0; 238 struct ksz_port *p = &dev->ports[port]; 239 240 /* enable/disable the port for flush/freeze function */ 241 mutex_lock(&p->mib.cnt_mutex); 242 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val); 243 244 /* used by MIB counter reading code to know freeze is enabled */ 245 p->freeze = freeze; 246 mutex_unlock(&p->mib.cnt_mutex); 247 } 248 249 static int ksz9477_half_duplex_monitor(struct ksz_device *dev, int port, 250 u64 tx_late_col) 251 { 252 u8 lue_ctrl; 253 u32 pmavbc; 254 u16 pqm; 255 int ret; 256 257 /* Errata DS80000754 recommends monitoring potential faults in 258 * half-duplex mode. The switch might not be able to communicate anymore 259 * in these states. If you see this message, please read the 260 * errata-sheet for more information: 261 * https://ww1.microchip.com/downloads/aemDocuments/documents/UNG/ProductDocuments/Errata/KSZ9477S-Errata-DS80000754.pdf 262 * To workaround this issue, half-duplex mode should be avoided. 263 * A software reset could be implemented to recover from this state. 264 */ 265 dev_warn_once(dev->dev, 266 "Half-duplex detected on port %d, transmission halt may occur\n", 267 port); 268 if (tx_late_col != 0) { 269 /* Transmission halt with late collisions */ 270 dev_crit_once(dev->dev, 271 "TX late collisions detected, transmission may be halted on port %d\n", 272 port); 273 } 274 ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &lue_ctrl); 275 if (ret) 276 return ret; 277 if (lue_ctrl & SW_VLAN_ENABLE) { 278 ret = ksz_pread16(dev, port, REG_PORT_QM_TX_CNT_0__4, &pqm); 279 if (ret) 280 return ret; 281 282 ret = ksz_read32(dev, REG_PMAVBC, &pmavbc); 283 if (ret) 284 return ret; 285 286 if ((FIELD_GET(PMAVBC_MASK, pmavbc) <= PMAVBC_MIN) || 287 (FIELD_GET(PORT_QM_TX_CNT_M, pqm) >= PORT_QM_TX_CNT_MAX)) { 288 /* Transmission halt with Half-Duplex and VLAN */ 289 dev_crit_once(dev->dev, 290 "resources out of limits, transmission may be halted\n"); 291 } 292 } 293 294 return ret; 295 } 296 297 int ksz9477_errata_monitor(struct ksz_device *dev, int port, 298 u64 tx_late_col) 299 { 300 u8 status; 301 int ret; 302 303 ret = ksz_pread8(dev, port, REG_PORT_STATUS_0, &status); 304 if (ret) 305 return ret; 306 307 if (!(FIELD_GET(PORT_INTF_SPEED_MASK, status) 308 == PORT_INTF_SPEED_NONE) && 309 !(status & PORT_INTF_FULL_DUPLEX)) { 310 ret = ksz9477_half_duplex_monitor(dev, port, tx_late_col); 311 } 312 313 return ret; 314 } 315 316 void ksz9477_port_init_cnt(struct ksz_device *dev, int port) 317 { 318 struct ksz_port_mib *mib = &dev->ports[port].mib; 319 320 /* flush all enabled port MIB counters */ 321 mutex_lock(&mib->cnt_mutex); 322 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 323 MIB_COUNTER_FLUSH_FREEZE); 324 ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH); 325 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0); 326 mutex_unlock(&mib->cnt_mutex); 327 } 328 329 static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg, 330 u16 *data) 331 { 332 /* KSZ8563R do not have extended registers but BMSR_ESTATEN and 333 * BMSR_ERCAP bits are set. 334 */ 335 if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR) 336 *data &= ~(BMSR_ESTATEN | BMSR_ERCAP); 337 } 338 339 int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data) 340 { 341 u16 val = 0xffff; 342 int ret; 343 344 /* No real PHY after this. Simulate the PHY. 345 * A fixed PHY can be setup in the device tree, but this function is 346 * still called for that port during initialization. 347 * For RGMII PHY there is no way to access it so the fixed PHY should 348 * be used. For SGMII PHY the supporting code will be added later. 349 */ 350 if (!dev->info->internal_phy[addr]) { 351 struct ksz_port *p = &dev->ports[addr]; 352 353 switch (reg) { 354 case MII_BMCR: 355 val = 0x1140; 356 break; 357 case MII_BMSR: 358 val = 0x796d; 359 break; 360 case MII_PHYSID1: 361 val = 0x0022; 362 break; 363 case MII_PHYSID2: 364 val = 0x1631; 365 break; 366 case MII_ADVERTISE: 367 val = 0x05e1; 368 break; 369 case MII_LPA: 370 val = 0xc5e1; 371 break; 372 case MII_CTRL1000: 373 val = 0x0700; 374 break; 375 case MII_STAT1000: 376 if (p->phydev.speed == SPEED_1000) 377 val = 0x3800; 378 else 379 val = 0; 380 break; 381 } 382 } else { 383 ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val); 384 if (ret) 385 return ret; 386 387 ksz9477_r_phy_quirks(dev, addr, reg, &val); 388 } 389 390 *data = val; 391 392 return 0; 393 } 394 395 int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val) 396 { 397 u32 mask, val32; 398 399 /* No real PHY after this. */ 400 if (!dev->info->internal_phy[addr]) 401 return 0; 402 403 if (reg < 0x10) 404 return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val); 405 406 /* Errata: When using SPI, I2C, or in-band register access, 407 * writes to certain PHY registers should be performed as 408 * 32-bit writes instead of 16-bit writes. 409 */ 410 val32 = val; 411 mask = 0xffff; 412 if ((reg & 1) == 0) { 413 val32 <<= 16; 414 mask <<= 16; 415 } 416 reg &= ~1; 417 return ksz_prmw32(dev, addr, 0x100 + (reg << 1), mask, val32); 418 } 419 420 void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member) 421 { 422 ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member); 423 } 424 425 void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port) 426 { 427 const u16 *regs = dev->info->regs; 428 u8 data; 429 430 regmap_update_bits(ksz_regmap_8(dev), REG_SW_LUE_CTRL_2, 431 SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S, 432 SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S); 433 434 if (port < dev->info->port_cnt) { 435 /* flush individual port */ 436 ksz_pread8(dev, port, regs[P_STP_CTRL], &data); 437 if (!(data & PORT_LEARN_DISABLE)) 438 ksz_pwrite8(dev, port, regs[P_STP_CTRL], 439 data | PORT_LEARN_DISABLE); 440 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true); 441 ksz_pwrite8(dev, port, regs[P_STP_CTRL], data); 442 } else { 443 /* flush all */ 444 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true); 445 } 446 } 447 448 int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port, 449 bool flag, struct netlink_ext_ack *extack) 450 { 451 if (flag) { 452 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, 453 PORT_VLAN_LOOKUP_VID_0, true); 454 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true); 455 } else { 456 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false); 457 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, 458 PORT_VLAN_LOOKUP_VID_0, false); 459 } 460 461 return 0; 462 } 463 464 int ksz9477_port_vlan_add(struct ksz_device *dev, int port, 465 const struct switchdev_obj_port_vlan *vlan, 466 struct netlink_ext_ack *extack) 467 { 468 u32 vlan_table[3]; 469 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 470 int err; 471 472 err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table); 473 if (err) { 474 NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table"); 475 return err; 476 } 477 478 vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M); 479 if (untagged) 480 vlan_table[1] |= BIT(port); 481 else 482 vlan_table[1] &= ~BIT(port); 483 vlan_table[1] &= ~(BIT(dev->cpu_port)); 484 485 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port); 486 487 err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table); 488 if (err) { 489 NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table"); 490 return err; 491 } 492 493 /* change PVID */ 494 if (vlan->flags & BRIDGE_VLAN_INFO_PVID) 495 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid); 496 497 return 0; 498 } 499 500 int ksz9477_port_vlan_del(struct ksz_device *dev, int port, 501 const struct switchdev_obj_port_vlan *vlan) 502 { 503 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 504 u32 vlan_table[3]; 505 u16 pvid; 506 507 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid); 508 pvid = pvid & 0xFFF; 509 510 if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) { 511 dev_dbg(dev->dev, "Failed to get vlan table\n"); 512 return -ETIMEDOUT; 513 } 514 515 vlan_table[2] &= ~BIT(port); 516 517 if (pvid == vlan->vid) 518 pvid = 1; 519 520 if (untagged) 521 vlan_table[1] &= ~BIT(port); 522 523 if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) { 524 dev_dbg(dev->dev, "Failed to set vlan table\n"); 525 return -ETIMEDOUT; 526 } 527 528 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid); 529 530 return 0; 531 } 532 533 int ksz9477_fdb_add(struct ksz_device *dev, int port, 534 const unsigned char *addr, u16 vid, struct dsa_db db) 535 { 536 u32 alu_table[4]; 537 u32 data; 538 int ret = 0; 539 540 mutex_lock(&dev->alu_mutex); 541 542 /* find any entry with mac & vid */ 543 data = vid << ALU_FID_INDEX_S; 544 data |= ((addr[0] << 8) | addr[1]); 545 ksz_write32(dev, REG_SW_ALU_INDEX_0, data); 546 547 data = ((addr[2] << 24) | (addr[3] << 16)); 548 data |= ((addr[4] << 8) | addr[5]); 549 ksz_write32(dev, REG_SW_ALU_INDEX_1, data); 550 551 /* start read operation */ 552 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START); 553 554 /* wait to be finished */ 555 ret = ksz9477_wait_alu_ready(dev); 556 if (ret) { 557 dev_dbg(dev->dev, "Failed to read ALU\n"); 558 goto exit; 559 } 560 561 /* read ALU entry */ 562 ksz9477_read_table(dev, alu_table); 563 564 /* update ALU entry */ 565 alu_table[0] = ALU_V_STATIC_VALID; 566 alu_table[1] |= BIT(port); 567 if (vid) 568 alu_table[1] |= ALU_V_USE_FID; 569 alu_table[2] = (vid << ALU_V_FID_S); 570 alu_table[2] |= ((addr[0] << 8) | addr[1]); 571 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16)); 572 alu_table[3] |= ((addr[4] << 8) | addr[5]); 573 574 ksz9477_write_table(dev, alu_table); 575 576 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START); 577 578 /* wait to be finished */ 579 ret = ksz9477_wait_alu_ready(dev); 580 if (ret) 581 dev_dbg(dev->dev, "Failed to write ALU\n"); 582 583 exit: 584 mutex_unlock(&dev->alu_mutex); 585 586 return ret; 587 } 588 589 int ksz9477_fdb_del(struct ksz_device *dev, int port, 590 const unsigned char *addr, u16 vid, struct dsa_db db) 591 { 592 u32 alu_table[4]; 593 u32 data; 594 int ret = 0; 595 596 mutex_lock(&dev->alu_mutex); 597 598 /* read any entry with mac & vid */ 599 data = vid << ALU_FID_INDEX_S; 600 data |= ((addr[0] << 8) | addr[1]); 601 ksz_write32(dev, REG_SW_ALU_INDEX_0, data); 602 603 data = ((addr[2] << 24) | (addr[3] << 16)); 604 data |= ((addr[4] << 8) | addr[5]); 605 ksz_write32(dev, REG_SW_ALU_INDEX_1, data); 606 607 /* start read operation */ 608 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START); 609 610 /* wait to be finished */ 611 ret = ksz9477_wait_alu_ready(dev); 612 if (ret) { 613 dev_dbg(dev->dev, "Failed to read ALU\n"); 614 goto exit; 615 } 616 617 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]); 618 if (alu_table[0] & ALU_V_STATIC_VALID) { 619 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]); 620 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]); 621 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]); 622 623 /* clear forwarding port */ 624 alu_table[1] &= ~BIT(port); 625 626 /* if there is no port to forward, clear table */ 627 if ((alu_table[1] & ALU_V_PORT_MAP) == 0) { 628 alu_table[0] = 0; 629 alu_table[1] = 0; 630 alu_table[2] = 0; 631 alu_table[3] = 0; 632 } 633 } else { 634 alu_table[0] = 0; 635 alu_table[1] = 0; 636 alu_table[2] = 0; 637 alu_table[3] = 0; 638 } 639 640 ksz9477_write_table(dev, alu_table); 641 642 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START); 643 644 /* wait to be finished */ 645 ret = ksz9477_wait_alu_ready(dev); 646 if (ret) 647 dev_dbg(dev->dev, "Failed to write ALU\n"); 648 649 exit: 650 mutex_unlock(&dev->alu_mutex); 651 652 return ret; 653 } 654 655 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table) 656 { 657 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID); 658 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER); 659 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER); 660 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) & 661 ALU_V_PRIO_AGE_CNT_M; 662 alu->mstp = alu_table[0] & ALU_V_MSTP_M; 663 664 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE); 665 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID); 666 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP; 667 668 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M; 669 670 alu->mac[0] = (alu_table[2] >> 8) & 0xFF; 671 alu->mac[1] = alu_table[2] & 0xFF; 672 alu->mac[2] = (alu_table[3] >> 24) & 0xFF; 673 alu->mac[3] = (alu_table[3] >> 16) & 0xFF; 674 alu->mac[4] = (alu_table[3] >> 8) & 0xFF; 675 alu->mac[5] = alu_table[3] & 0xFF; 676 } 677 678 int ksz9477_fdb_dump(struct ksz_device *dev, int port, 679 dsa_fdb_dump_cb_t *cb, void *data) 680 { 681 int ret = 0; 682 u32 ksz_data; 683 u32 alu_table[4]; 684 struct alu_struct alu; 685 int timeout; 686 687 mutex_lock(&dev->alu_mutex); 688 689 /* start ALU search */ 690 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH); 691 692 do { 693 timeout = 1000; 694 do { 695 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data); 696 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START)) 697 break; 698 usleep_range(1, 10); 699 } while (timeout-- > 0); 700 701 if (!timeout) { 702 dev_dbg(dev->dev, "Failed to search ALU\n"); 703 ret = -ETIMEDOUT; 704 goto exit; 705 } 706 707 if (!(ksz_data & ALU_VALID)) 708 continue; 709 710 /* read ALU table */ 711 ksz9477_read_table(dev, alu_table); 712 713 ksz9477_convert_alu(&alu, alu_table); 714 715 if (alu.port_forward & BIT(port)) { 716 ret = cb(alu.mac, alu.fid, alu.is_static, data); 717 if (ret) 718 goto exit; 719 } 720 } while (ksz_data & ALU_START); 721 722 exit: 723 724 /* stop ALU search */ 725 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0); 726 727 mutex_unlock(&dev->alu_mutex); 728 729 return ret; 730 } 731 732 int ksz9477_mdb_add(struct ksz_device *dev, int port, 733 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) 734 { 735 u32 static_table[4]; 736 const u8 *shifts; 737 const u32 *masks; 738 u32 data; 739 int index; 740 u32 mac_hi, mac_lo; 741 int err = 0; 742 743 shifts = dev->info->shifts; 744 masks = dev->info->masks; 745 746 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]); 747 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16)); 748 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]); 749 750 mutex_lock(&dev->alu_mutex); 751 752 for (index = 0; index < dev->info->num_statics; index++) { 753 /* find empty slot first */ 754 data = (index << shifts[ALU_STAT_INDEX]) | 755 masks[ALU_STAT_READ] | ALU_STAT_START; 756 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); 757 758 /* wait to be finished */ 759 err = ksz9477_wait_alu_sta_ready(dev); 760 if (err) { 761 dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); 762 goto exit; 763 } 764 765 /* read ALU static table */ 766 ksz9477_read_table(dev, static_table); 767 768 if (static_table[0] & ALU_V_STATIC_VALID) { 769 /* check this has same vid & mac address */ 770 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) && 771 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) && 772 static_table[3] == mac_lo) { 773 /* found matching one */ 774 break; 775 } 776 } else { 777 /* found empty one */ 778 break; 779 } 780 } 781 782 /* no available entry */ 783 if (index == dev->info->num_statics) { 784 err = -ENOSPC; 785 goto exit; 786 } 787 788 /* add entry */ 789 static_table[0] = ALU_V_STATIC_VALID; 790 static_table[1] |= BIT(port); 791 if (mdb->vid) 792 static_table[1] |= ALU_V_USE_FID; 793 static_table[2] = (mdb->vid << ALU_V_FID_S); 794 static_table[2] |= mac_hi; 795 static_table[3] = mac_lo; 796 797 ksz9477_write_table(dev, static_table); 798 799 data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START; 800 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); 801 802 /* wait to be finished */ 803 if (ksz9477_wait_alu_sta_ready(dev)) 804 dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); 805 806 exit: 807 mutex_unlock(&dev->alu_mutex); 808 return err; 809 } 810 811 int ksz9477_mdb_del(struct ksz_device *dev, int port, 812 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) 813 { 814 u32 static_table[4]; 815 const u8 *shifts; 816 const u32 *masks; 817 u32 data; 818 int index; 819 int ret = 0; 820 u32 mac_hi, mac_lo; 821 822 shifts = dev->info->shifts; 823 masks = dev->info->masks; 824 825 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]); 826 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16)); 827 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]); 828 829 mutex_lock(&dev->alu_mutex); 830 831 for (index = 0; index < dev->info->num_statics; index++) { 832 /* find empty slot first */ 833 data = (index << shifts[ALU_STAT_INDEX]) | 834 masks[ALU_STAT_READ] | ALU_STAT_START; 835 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); 836 837 /* wait to be finished */ 838 ret = ksz9477_wait_alu_sta_ready(dev); 839 if (ret) { 840 dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); 841 goto exit; 842 } 843 844 /* read ALU static table */ 845 ksz9477_read_table(dev, static_table); 846 847 if (static_table[0] & ALU_V_STATIC_VALID) { 848 /* check this has same vid & mac address */ 849 850 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) && 851 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) && 852 static_table[3] == mac_lo) { 853 /* found matching one */ 854 break; 855 } 856 } 857 } 858 859 /* no available entry */ 860 if (index == dev->info->num_statics) 861 goto exit; 862 863 /* clear port */ 864 static_table[1] &= ~BIT(port); 865 866 if ((static_table[1] & ALU_V_PORT_MAP) == 0) { 867 /* delete entry */ 868 static_table[0] = 0; 869 static_table[1] = 0; 870 static_table[2] = 0; 871 static_table[3] = 0; 872 } 873 874 ksz9477_write_table(dev, static_table); 875 876 data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START; 877 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); 878 879 /* wait to be finished */ 880 ret = ksz9477_wait_alu_sta_ready(dev); 881 if (ret) 882 dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); 883 884 exit: 885 mutex_unlock(&dev->alu_mutex); 886 887 return ret; 888 } 889 890 int ksz9477_port_mirror_add(struct ksz_device *dev, int port, 891 struct dsa_mall_mirror_tc_entry *mirror, 892 bool ingress, struct netlink_ext_ack *extack) 893 { 894 u8 data; 895 int p; 896 897 /* Limit to one sniffer port 898 * Check if any of the port is already set for sniffing 899 * If yes, instruct the user to remove the previous entry & exit 900 */ 901 for (p = 0; p < dev->info->port_cnt; p++) { 902 /* Skip the current sniffing port */ 903 if (p == mirror->to_local_port) 904 continue; 905 906 ksz_pread8(dev, p, P_MIRROR_CTRL, &data); 907 908 if (data & PORT_MIRROR_SNIFFER) { 909 NL_SET_ERR_MSG_MOD(extack, 910 "Sniffer port is already configured, delete existing rules & retry"); 911 return -EBUSY; 912 } 913 } 914 915 if (ingress) 916 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true); 917 else 918 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true); 919 920 /* configure mirror port */ 921 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL, 922 PORT_MIRROR_SNIFFER, true); 923 924 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false); 925 926 return 0; 927 } 928 929 void ksz9477_port_mirror_del(struct ksz_device *dev, int port, 930 struct dsa_mall_mirror_tc_entry *mirror) 931 { 932 bool in_use = false; 933 u8 data; 934 int p; 935 936 if (mirror->ingress) 937 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false); 938 else 939 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false); 940 941 942 /* Check if any of the port is still referring to sniffer port */ 943 for (p = 0; p < dev->info->port_cnt; p++) { 944 ksz_pread8(dev, p, P_MIRROR_CTRL, &data); 945 946 if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) { 947 in_use = true; 948 break; 949 } 950 } 951 952 /* delete sniffing if there are no other mirroring rules */ 953 if (!in_use) 954 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL, 955 PORT_MIRROR_SNIFFER, false); 956 } 957 958 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port) 959 { 960 phy_interface_t interface; 961 bool gbit; 962 963 if (dev->info->internal_phy[port]) 964 return PHY_INTERFACE_MODE_NA; 965 966 gbit = ksz_get_gbit(dev, port); 967 968 interface = ksz_get_xmii(dev, port, gbit); 969 970 return interface; 971 } 972 973 void ksz9477_get_caps(struct ksz_device *dev, int port, 974 struct phylink_config *config) 975 { 976 config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE | 977 MAC_SYM_PAUSE; 978 979 if (dev->info->gbit_capable[port]) 980 config->mac_capabilities |= MAC_1000FD; 981 } 982 983 int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs) 984 { 985 u32 secs = msecs / 1000; 986 u8 data, mult, value; 987 u32 max_val; 988 int ret; 989 990 #define MAX_TIMER_VAL ((1 << 8) - 1) 991 992 /* The aging timer comprises a 3-bit multiplier and an 8-bit second 993 * value. Either of them cannot be zero. The maximum timer is then 994 * 7 * 255 = 1785 seconds. 995 */ 996 if (!secs) 997 secs = 1; 998 999 /* Return error if too large. */ 1000 else if (secs > 7 * MAX_TIMER_VAL) 1001 return -EINVAL; 1002 1003 ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value); 1004 if (ret < 0) 1005 return ret; 1006 1007 /* Check whether there is need to update the multiplier. */ 1008 mult = FIELD_GET(SW_AGE_CNT_M, value); 1009 max_val = MAX_TIMER_VAL; 1010 if (mult > 0) { 1011 /* Try to use the same multiplier already in the register as 1012 * the hardware default uses multiplier 4 and 75 seconds for 1013 * 300 seconds. 1014 */ 1015 max_val = DIV_ROUND_UP(secs, mult); 1016 if (max_val > MAX_TIMER_VAL || max_val * mult != secs) 1017 max_val = MAX_TIMER_VAL; 1018 } 1019 1020 data = DIV_ROUND_UP(secs, max_val); 1021 if (mult != data) { 1022 value &= ~SW_AGE_CNT_M; 1023 value |= FIELD_PREP(SW_AGE_CNT_M, data); 1024 ret = ksz_write8(dev, REG_SW_LUE_CTRL_0, value); 1025 if (ret < 0) 1026 return ret; 1027 } 1028 1029 value = DIV_ROUND_UP(secs, data); 1030 return ksz_write8(dev, REG_SW_LUE_CTRL_3, value); 1031 } 1032 1033 void ksz9477_port_queue_split(struct ksz_device *dev, int port) 1034 { 1035 u8 data; 1036 1037 if (dev->info->num_tx_queues == 8) 1038 data = PORT_EIGHT_QUEUE; 1039 else if (dev->info->num_tx_queues == 4) 1040 data = PORT_FOUR_QUEUE; 1041 else if (dev->info->num_tx_queues == 2) 1042 data = PORT_TWO_QUEUE; 1043 else 1044 data = PORT_SINGLE_QUEUE; 1045 1046 ksz_prmw8(dev, port, REG_PORT_CTRL_0, PORT_QUEUE_SPLIT_MASK, data); 1047 } 1048 1049 void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port) 1050 { 1051 const u16 *regs = dev->info->regs; 1052 struct dsa_switch *ds = dev->ds; 1053 u16 data16; 1054 u8 member; 1055 1056 /* enable tag tail for host port */ 1057 if (cpu_port) 1058 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE, 1059 true); 1060 1061 ksz9477_port_queue_split(dev, port); 1062 1063 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false); 1064 1065 /* set back pressure */ 1066 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true); 1067 1068 /* enable broadcast storm limit */ 1069 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true); 1070 1071 /* replace priority */ 1072 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING, 1073 false); 1074 ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4, 1075 MTI_PVID_REPLACE, false); 1076 1077 /* force flow control for non-PHY ports only */ 1078 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, 1079 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, 1080 !dev->info->internal_phy[port]); 1081 1082 if (cpu_port) 1083 member = dsa_user_ports(ds); 1084 else 1085 member = BIT(dsa_upstream_port(ds, port)); 1086 1087 ksz9477_cfg_port_member(dev, port, member); 1088 1089 /* clear pending interrupts */ 1090 if (dev->info->internal_phy[port]) 1091 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16); 1092 1093 ksz9477_port_acl_init(dev, port); 1094 1095 /* clear pending wake flags */ 1096 ksz_handle_wake_reason(dev, port); 1097 1098 /* Disable all WoL options by default. Otherwise 1099 * ksz_switch_macaddr_get/put logic will not work properly. 1100 */ 1101 ksz_pwrite8(dev, port, regs[REG_PORT_PME_CTRL], 0); 1102 } 1103 1104 void ksz9477_config_cpu_port(struct dsa_switch *ds) 1105 { 1106 struct ksz_device *dev = ds->priv; 1107 struct ksz_port *p; 1108 int i; 1109 1110 for (i = 0; i < dev->info->port_cnt; i++) { 1111 if (dsa_is_cpu_port(ds, i) && 1112 (dev->info->cpu_ports & (1 << i))) { 1113 phy_interface_t interface; 1114 const char *prev_msg; 1115 const char *prev_mode; 1116 1117 dev->cpu_port = i; 1118 p = &dev->ports[i]; 1119 1120 /* Read from XMII register to determine host port 1121 * interface. If set specifically in device tree 1122 * note the difference to help debugging. 1123 */ 1124 interface = ksz9477_get_interface(dev, i); 1125 if (!p->interface) { 1126 if (dev->compat_interface) { 1127 dev_warn(dev->dev, 1128 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. " 1129 "Please update your device tree.\n", 1130 i); 1131 p->interface = dev->compat_interface; 1132 } else { 1133 p->interface = interface; 1134 } 1135 } 1136 if (interface && interface != p->interface) { 1137 prev_msg = " instead of "; 1138 prev_mode = phy_modes(interface); 1139 } else { 1140 prev_msg = ""; 1141 prev_mode = ""; 1142 } 1143 dev_info(dev->dev, 1144 "Port%d: using phy mode %s%s%s\n", 1145 i, 1146 phy_modes(p->interface), 1147 prev_msg, 1148 prev_mode); 1149 1150 /* enable cpu port */ 1151 ksz9477_port_setup(dev, i, true); 1152 } 1153 } 1154 1155 for (i = 0; i < dev->info->port_cnt; i++) { 1156 if (i == dev->cpu_port) 1157 continue; 1158 ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED); 1159 1160 /* Power down the internal PHY if port is unused. */ 1161 if (dsa_is_unused_port(ds, i) && dev->info->internal_phy[i]) 1162 ksz_pwrite16(dev, i, 0x100, BMCR_PDOWN); 1163 } 1164 } 1165 1166 int ksz9477_enable_stp_addr(struct ksz_device *dev) 1167 { 1168 const u32 *masks; 1169 u32 data; 1170 int ret; 1171 1172 masks = dev->info->masks; 1173 1174 /* Enable Reserved multicast table */ 1175 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true); 1176 1177 /* Set the Override bit for forwarding BPDU packet to CPU */ 1178 ret = ksz_write32(dev, REG_SW_ALU_VAL_B, 1179 ALU_V_OVERRIDE | BIT(dev->cpu_port)); 1180 if (ret < 0) 1181 return ret; 1182 1183 data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE]; 1184 1185 ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); 1186 if (ret < 0) 1187 return ret; 1188 1189 /* wait to be finished */ 1190 ret = ksz9477_wait_alu_sta_ready(dev); 1191 if (ret < 0) { 1192 dev_err(dev->dev, "Failed to update Reserved Multicast table\n"); 1193 return ret; 1194 } 1195 1196 return 0; 1197 } 1198 1199 int ksz9477_setup(struct dsa_switch *ds) 1200 { 1201 struct ksz_device *dev = ds->priv; 1202 const u16 *regs = dev->info->regs; 1203 int ret = 0; 1204 1205 ds->mtu_enforcement_ingress = true; 1206 1207 /* Required for port partitioning. */ 1208 ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, 1209 true); 1210 1211 /* Do not work correctly with tail tagging. */ 1212 ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false); 1213 1214 /* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */ 1215 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true); 1216 1217 /* Use collision based back pressure mode. */ 1218 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_BACK_PRESSURE, 1219 SW_BACK_PRESSURE_COLLISION); 1220 1221 /* Now we can configure default MTU value */ 1222 ret = regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2, REG_SW_MTU_MASK, 1223 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN); 1224 if (ret) 1225 return ret; 1226 1227 /* queue based egress rate limit */ 1228 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true); 1229 1230 /* enable global MIB counter freeze function */ 1231 ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true); 1232 1233 /* Make sure PME (WoL) is not enabled. If requested, it will 1234 * be enabled by ksz_wol_pre_shutdown(). Otherwise, some PMICs 1235 * do not like PME events changes before shutdown. 1236 */ 1237 return ksz_write8(dev, regs[REG_SW_PME_CTRL], 0); 1238 } 1239 1240 u32 ksz9477_get_port_addr(int port, int offset) 1241 { 1242 return PORT_CTRL_ADDR(port, offset); 1243 } 1244 1245 int ksz9477_tc_cbs_set_cinc(struct ksz_device *dev, int port, u32 val) 1246 { 1247 val = val >> 8; 1248 1249 return ksz_pwrite16(dev, port, REG_PORT_MTI_CREDIT_INCREMENT, val); 1250 } 1251 1252 /* The KSZ9477 provides following HW features to accelerate 1253 * HSR frames handling: 1254 * 1255 * 1. TX PACKET DUPLICATION FROM HOST TO SWITCH 1256 * 2. RX PACKET DUPLICATION DISCARDING 1257 * 3. PREVENTING PACKET LOOP IN THE RING BY SELF-ADDRESS FILTERING 1258 * 1259 * Only one from point 1. has the NETIF_F* flag available. 1260 * 1261 * Ones from point 2 and 3 are "best effort" - i.e. those will 1262 * work correctly most of the time, but it may happen that some 1263 * frames will not be caught - to be more specific; there is a race 1264 * condition in hardware such that, when duplicate packets are received 1265 * on member ports very close in time to each other, the hardware fails 1266 * to detect that they are duplicates. 1267 * 1268 * Hence, the SW needs to handle those special cases. However, the speed 1269 * up gain is considerable when above features are used. 1270 * 1271 * Moreover, the NETIF_F_HW_HSR_FWD feature is also enabled, as HSR frames 1272 * can be forwarded in the switch fabric between HSR ports. 1273 */ 1274 #define KSZ9477_SUPPORTED_HSR_FEATURES (NETIF_F_HW_HSR_DUP | NETIF_F_HW_HSR_FWD) 1275 1276 void ksz9477_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr) 1277 { 1278 struct ksz_device *dev = ds->priv; 1279 struct net_device *user; 1280 struct dsa_port *hsr_dp; 1281 u8 data, hsr_ports = 0; 1282 1283 /* Program which port(s) shall support HSR */ 1284 ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), BIT(port)); 1285 1286 /* Forward frames between HSR ports (i.e. bridge together HSR ports) */ 1287 if (dev->hsr_ports) { 1288 dsa_hsr_foreach_port(hsr_dp, ds, hsr) 1289 hsr_ports |= BIT(hsr_dp->index); 1290 1291 hsr_ports |= BIT(dsa_upstream_port(ds, port)); 1292 dsa_hsr_foreach_port(hsr_dp, ds, hsr) 1293 ksz9477_cfg_port_member(dev, hsr_dp->index, hsr_ports); 1294 } 1295 1296 if (!dev->hsr_ports) { 1297 /* Enable discarding of received HSR frames */ 1298 ksz_read8(dev, REG_HSR_ALU_CTRL_0__1, &data); 1299 data |= HSR_DUPLICATE_DISCARD; 1300 data &= ~HSR_NODE_UNICAST; 1301 ksz_write8(dev, REG_HSR_ALU_CTRL_0__1, data); 1302 } 1303 1304 /* Enable per port self-address filtering. 1305 * The global self-address filtering has already been enabled in the 1306 * ksz9477_reset_switch() function. 1307 */ 1308 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, true); 1309 1310 /* Setup HW supported features for lan HSR ports */ 1311 user = dsa_to_port(ds, port)->user; 1312 user->features |= KSZ9477_SUPPORTED_HSR_FEATURES; 1313 } 1314 1315 void ksz9477_hsr_leave(struct dsa_switch *ds, int port, struct net_device *hsr) 1316 { 1317 struct ksz_device *dev = ds->priv; 1318 1319 /* Clear port HSR support */ 1320 ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), 0); 1321 1322 /* Disable forwarding frames between HSR ports */ 1323 ksz9477_cfg_port_member(dev, port, BIT(dsa_upstream_port(ds, port))); 1324 1325 /* Disable per port self-address filtering */ 1326 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, false); 1327 } 1328 1329 int ksz9477_switch_init(struct ksz_device *dev) 1330 { 1331 u8 data8; 1332 int ret; 1333 1334 dev->port_mask = (1 << dev->info->port_cnt) - 1; 1335 1336 /* turn off SPI DO Edge select */ 1337 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8); 1338 if (ret) 1339 return ret; 1340 1341 data8 &= ~SPI_AUTO_EDGE_DETECTION; 1342 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8); 1343 if (ret) 1344 return ret; 1345 1346 return 0; 1347 } 1348 1349 void ksz9477_switch_exit(struct ksz_device *dev) 1350 { 1351 ksz9477_reset_switch(dev); 1352 } 1353 1354 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>"); 1355 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver"); 1356 MODULE_LICENSE("GPL"); 1357