xref: /linux/drivers/net/dsa/microchip/ksz9477.c (revision 63769819079d87dc322fefaf981589e227de2978)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <linux/if_vlan.h>
15 #include <net/dsa.h>
16 #include <net/switchdev.h>
17 
18 #include "ksz9477_reg.h"
19 #include "ksz_common.h"
20 #include "ksz9477.h"
21 
22 /* Used with variable features to indicate capabilities. */
23 #define GBIT_SUPPORT			BIT(0)
24 #define NEW_XMII			BIT(1)
25 #define IS_9893				BIT(2)
26 
27 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
28 {
29 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
30 }
31 
32 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
33 			 bool set)
34 {
35 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
36 			   bits, set ? bits : 0);
37 }
38 
39 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
40 {
41 	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
42 }
43 
44 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
45 			       u32 bits, bool set)
46 {
47 	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
48 			   bits, set ? bits : 0);
49 }
50 
51 int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
52 {
53 	u16 frame_size, max_frame = 0;
54 	int i;
55 
56 	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
57 
58 	/* Cache the per-port MTU setting */
59 	dev->ports[port].max_frame = frame_size;
60 
61 	for (i = 0; i < dev->info->port_cnt; i++)
62 		max_frame = max(max_frame, dev->ports[i].max_frame);
63 
64 	return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
65 				  REG_SW_MTU_MASK, max_frame);
66 }
67 
68 int ksz9477_max_mtu(struct ksz_device *dev, int port)
69 {
70 	return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
71 }
72 
73 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
74 {
75 	unsigned int val;
76 
77 	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
78 					val, !(val & VLAN_START), 10, 1000);
79 }
80 
81 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
82 				  u32 *vlan_table)
83 {
84 	int ret;
85 
86 	mutex_lock(&dev->vlan_mutex);
87 
88 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
89 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
90 
91 	/* wait to be cleared */
92 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
93 	if (ret) {
94 		dev_dbg(dev->dev, "Failed to read vlan table\n");
95 		goto exit;
96 	}
97 
98 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
99 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
100 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
101 
102 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
103 
104 exit:
105 	mutex_unlock(&dev->vlan_mutex);
106 
107 	return ret;
108 }
109 
110 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
111 				  u32 *vlan_table)
112 {
113 	int ret;
114 
115 	mutex_lock(&dev->vlan_mutex);
116 
117 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
118 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
119 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
120 
121 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
122 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
123 
124 	/* wait to be cleared */
125 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
126 	if (ret) {
127 		dev_dbg(dev->dev, "Failed to write vlan table\n");
128 		goto exit;
129 	}
130 
131 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
132 
133 	/* update vlan cache table */
134 	dev->vlan_cache[vid].table[0] = vlan_table[0];
135 	dev->vlan_cache[vid].table[1] = vlan_table[1];
136 	dev->vlan_cache[vid].table[2] = vlan_table[2];
137 
138 exit:
139 	mutex_unlock(&dev->vlan_mutex);
140 
141 	return ret;
142 }
143 
144 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
145 {
146 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
147 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
148 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
149 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
150 }
151 
152 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
153 {
154 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
155 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
156 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
157 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
158 }
159 
160 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
161 {
162 	unsigned int val;
163 
164 	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
165 					val, !(val & ALU_START), 10, 1000);
166 }
167 
168 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
169 {
170 	unsigned int val;
171 
172 	return regmap_read_poll_timeout(dev->regmap[2],
173 					REG_SW_ALU_STAT_CTRL__4,
174 					val, !(val & ALU_STAT_START),
175 					10, 1000);
176 }
177 
178 int ksz9477_reset_switch(struct ksz_device *dev)
179 {
180 	u8 data8;
181 	u32 data32;
182 
183 	/* reset switch */
184 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
185 
186 	/* turn off SPI DO Edge select */
187 	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
188 			   SPI_AUTO_EDGE_DETECTION, 0);
189 
190 	/* default configuration */
191 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
192 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
193 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
194 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
195 
196 	/* disable interrupts */
197 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
198 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
199 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
200 
201 	data8 = SW_ENABLE_REFCLKO;
202 	if (dev->synclko_disable)
203 		data8 = 0;
204 	else if (dev->synclko_125)
205 		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
206 	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
207 
208 	return 0;
209 }
210 
211 void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
212 {
213 	struct ksz_port *p = &dev->ports[port];
214 	unsigned int val;
215 	u32 data;
216 	int ret;
217 
218 	/* retain the flush/freeze bit */
219 	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
220 	data |= MIB_COUNTER_READ;
221 	data |= (addr << MIB_COUNTER_INDEX_S);
222 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
223 
224 	ret = regmap_read_poll_timeout(dev->regmap[2],
225 			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
226 			val, !(val & MIB_COUNTER_READ), 10, 1000);
227 	/* failed to read MIB. get out of loop */
228 	if (ret) {
229 		dev_dbg(dev->dev, "Failed to get MIB\n");
230 		return;
231 	}
232 
233 	/* count resets upon read */
234 	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
235 	*cnt += data;
236 }
237 
238 void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
239 		       u64 *dropped, u64 *cnt)
240 {
241 	addr = dev->info->mib_names[addr].index;
242 	ksz9477_r_mib_cnt(dev, port, addr, cnt);
243 }
244 
245 void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
246 {
247 	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
248 	struct ksz_port *p = &dev->ports[port];
249 
250 	/* enable/disable the port for flush/freeze function */
251 	mutex_lock(&p->mib.cnt_mutex);
252 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
253 
254 	/* used by MIB counter reading code to know freeze is enabled */
255 	p->freeze = freeze;
256 	mutex_unlock(&p->mib.cnt_mutex);
257 }
258 
259 void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
260 {
261 	struct ksz_port_mib *mib = &dev->ports[port].mib;
262 
263 	/* flush all enabled port MIB counters */
264 	mutex_lock(&mib->cnt_mutex);
265 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
266 		     MIB_COUNTER_FLUSH_FREEZE);
267 	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
268 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
269 	mutex_unlock(&mib->cnt_mutex);
270 }
271 
272 void ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
273 {
274 	u16 val = 0xffff;
275 
276 	/* No real PHY after this. Simulate the PHY.
277 	 * A fixed PHY can be setup in the device tree, but this function is
278 	 * still called for that port during initialization.
279 	 * For RGMII PHY there is no way to access it so the fixed PHY should
280 	 * be used.  For SGMII PHY the supporting code will be added later.
281 	 */
282 	if (addr >= dev->phy_port_cnt) {
283 		struct ksz_port *p = &dev->ports[addr];
284 
285 		switch (reg) {
286 		case MII_BMCR:
287 			val = 0x1140;
288 			break;
289 		case MII_BMSR:
290 			val = 0x796d;
291 			break;
292 		case MII_PHYSID1:
293 			val = 0x0022;
294 			break;
295 		case MII_PHYSID2:
296 			val = 0x1631;
297 			break;
298 		case MII_ADVERTISE:
299 			val = 0x05e1;
300 			break;
301 		case MII_LPA:
302 			val = 0xc5e1;
303 			break;
304 		case MII_CTRL1000:
305 			val = 0x0700;
306 			break;
307 		case MII_STAT1000:
308 			if (p->phydev.speed == SPEED_1000)
309 				val = 0x3800;
310 			else
311 				val = 0;
312 			break;
313 		}
314 	} else {
315 		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
316 	}
317 
318 	*data = val;
319 }
320 
321 void ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
322 {
323 	/* No real PHY after this. */
324 	if (addr >= dev->phy_port_cnt)
325 		return;
326 
327 	/* No gigabit support.  Do not write to this register. */
328 	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
329 		return;
330 
331 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
332 }
333 
334 void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
335 {
336 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
337 }
338 
339 void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
340 {
341 	u8 data;
342 
343 	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
344 			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
345 			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
346 
347 	if (port < dev->info->port_cnt) {
348 		/* flush individual port */
349 		ksz_pread8(dev, port, P_STP_CTRL, &data);
350 		if (!(data & PORT_LEARN_DISABLE))
351 			ksz_pwrite8(dev, port, P_STP_CTRL,
352 				    data | PORT_LEARN_DISABLE);
353 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
354 		ksz_pwrite8(dev, port, P_STP_CTRL, data);
355 	} else {
356 		/* flush all */
357 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
358 	}
359 }
360 
361 int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
362 				bool flag, struct netlink_ext_ack *extack)
363 {
364 	if (flag) {
365 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
366 			     PORT_VLAN_LOOKUP_VID_0, true);
367 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
368 	} else {
369 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
370 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
371 			     PORT_VLAN_LOOKUP_VID_0, false);
372 	}
373 
374 	return 0;
375 }
376 
377 int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
378 			  const struct switchdev_obj_port_vlan *vlan,
379 			  struct netlink_ext_ack *extack)
380 {
381 	u32 vlan_table[3];
382 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
383 	int err;
384 
385 	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
386 	if (err) {
387 		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
388 		return err;
389 	}
390 
391 	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
392 	if (untagged)
393 		vlan_table[1] |= BIT(port);
394 	else
395 		vlan_table[1] &= ~BIT(port);
396 	vlan_table[1] &= ~(BIT(dev->cpu_port));
397 
398 	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
399 
400 	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
401 	if (err) {
402 		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
403 		return err;
404 	}
405 
406 	/* change PVID */
407 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
408 		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
409 
410 	return 0;
411 }
412 
413 int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
414 			  const struct switchdev_obj_port_vlan *vlan)
415 {
416 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
417 	u32 vlan_table[3];
418 	u16 pvid;
419 
420 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
421 	pvid = pvid & 0xFFF;
422 
423 	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
424 		dev_dbg(dev->dev, "Failed to get vlan table\n");
425 		return -ETIMEDOUT;
426 	}
427 
428 	vlan_table[2] &= ~BIT(port);
429 
430 	if (pvid == vlan->vid)
431 		pvid = 1;
432 
433 	if (untagged)
434 		vlan_table[1] &= ~BIT(port);
435 
436 	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
437 		dev_dbg(dev->dev, "Failed to set vlan table\n");
438 		return -ETIMEDOUT;
439 	}
440 
441 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
442 
443 	return 0;
444 }
445 
446 int ksz9477_fdb_add(struct ksz_device *dev, int port,
447 		    const unsigned char *addr, u16 vid, struct dsa_db db)
448 {
449 	u32 alu_table[4];
450 	u32 data;
451 	int ret = 0;
452 
453 	mutex_lock(&dev->alu_mutex);
454 
455 	/* find any entry with mac & vid */
456 	data = vid << ALU_FID_INDEX_S;
457 	data |= ((addr[0] << 8) | addr[1]);
458 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
459 
460 	data = ((addr[2] << 24) | (addr[3] << 16));
461 	data |= ((addr[4] << 8) | addr[5]);
462 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
463 
464 	/* start read operation */
465 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
466 
467 	/* wait to be finished */
468 	ret = ksz9477_wait_alu_ready(dev);
469 	if (ret) {
470 		dev_dbg(dev->dev, "Failed to read ALU\n");
471 		goto exit;
472 	}
473 
474 	/* read ALU entry */
475 	ksz9477_read_table(dev, alu_table);
476 
477 	/* update ALU entry */
478 	alu_table[0] = ALU_V_STATIC_VALID;
479 	alu_table[1] |= BIT(port);
480 	if (vid)
481 		alu_table[1] |= ALU_V_USE_FID;
482 	alu_table[2] = (vid << ALU_V_FID_S);
483 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
484 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
485 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
486 
487 	ksz9477_write_table(dev, alu_table);
488 
489 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
490 
491 	/* wait to be finished */
492 	ret = ksz9477_wait_alu_ready(dev);
493 	if (ret)
494 		dev_dbg(dev->dev, "Failed to write ALU\n");
495 
496 exit:
497 	mutex_unlock(&dev->alu_mutex);
498 
499 	return ret;
500 }
501 
502 int ksz9477_fdb_del(struct ksz_device *dev, int port,
503 		    const unsigned char *addr, u16 vid, struct dsa_db db)
504 {
505 	u32 alu_table[4];
506 	u32 data;
507 	int ret = 0;
508 
509 	mutex_lock(&dev->alu_mutex);
510 
511 	/* read any entry with mac & vid */
512 	data = vid << ALU_FID_INDEX_S;
513 	data |= ((addr[0] << 8) | addr[1]);
514 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
515 
516 	data = ((addr[2] << 24) | (addr[3] << 16));
517 	data |= ((addr[4] << 8) | addr[5]);
518 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
519 
520 	/* start read operation */
521 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
522 
523 	/* wait to be finished */
524 	ret = ksz9477_wait_alu_ready(dev);
525 	if (ret) {
526 		dev_dbg(dev->dev, "Failed to read ALU\n");
527 		goto exit;
528 	}
529 
530 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
531 	if (alu_table[0] & ALU_V_STATIC_VALID) {
532 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
533 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
534 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
535 
536 		/* clear forwarding port */
537 		alu_table[2] &= ~BIT(port);
538 
539 		/* if there is no port to forward, clear table */
540 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
541 			alu_table[0] = 0;
542 			alu_table[1] = 0;
543 			alu_table[2] = 0;
544 			alu_table[3] = 0;
545 		}
546 	} else {
547 		alu_table[0] = 0;
548 		alu_table[1] = 0;
549 		alu_table[2] = 0;
550 		alu_table[3] = 0;
551 	}
552 
553 	ksz9477_write_table(dev, alu_table);
554 
555 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
556 
557 	/* wait to be finished */
558 	ret = ksz9477_wait_alu_ready(dev);
559 	if (ret)
560 		dev_dbg(dev->dev, "Failed to write ALU\n");
561 
562 exit:
563 	mutex_unlock(&dev->alu_mutex);
564 
565 	return ret;
566 }
567 
568 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
569 {
570 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
571 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
572 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
573 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
574 			ALU_V_PRIO_AGE_CNT_M;
575 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
576 
577 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
578 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
579 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
580 
581 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
582 
583 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
584 	alu->mac[1] = alu_table[2] & 0xFF;
585 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
586 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
587 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
588 	alu->mac[5] = alu_table[3] & 0xFF;
589 }
590 
591 int ksz9477_fdb_dump(struct ksz_device *dev, int port,
592 		     dsa_fdb_dump_cb_t *cb, void *data)
593 {
594 	int ret = 0;
595 	u32 ksz_data;
596 	u32 alu_table[4];
597 	struct alu_struct alu;
598 	int timeout;
599 
600 	mutex_lock(&dev->alu_mutex);
601 
602 	/* start ALU search */
603 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
604 
605 	do {
606 		timeout = 1000;
607 		do {
608 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
609 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
610 				break;
611 			usleep_range(1, 10);
612 		} while (timeout-- > 0);
613 
614 		if (!timeout) {
615 			dev_dbg(dev->dev, "Failed to search ALU\n");
616 			ret = -ETIMEDOUT;
617 			goto exit;
618 		}
619 
620 		/* read ALU table */
621 		ksz9477_read_table(dev, alu_table);
622 
623 		ksz9477_convert_alu(&alu, alu_table);
624 
625 		if (alu.port_forward & BIT(port)) {
626 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
627 			if (ret)
628 				goto exit;
629 		}
630 	} while (ksz_data & ALU_START);
631 
632 exit:
633 
634 	/* stop ALU search */
635 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
636 
637 	mutex_unlock(&dev->alu_mutex);
638 
639 	return ret;
640 }
641 
642 int ksz9477_mdb_add(struct ksz_device *dev, int port,
643 		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
644 {
645 	u32 static_table[4];
646 	u32 data;
647 	int index;
648 	u32 mac_hi, mac_lo;
649 	int err = 0;
650 
651 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
652 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
653 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
654 
655 	mutex_lock(&dev->alu_mutex);
656 
657 	for (index = 0; index < dev->info->num_statics; index++) {
658 		/* find empty slot first */
659 		data = (index << ALU_STAT_INDEX_S) |
660 			ALU_STAT_READ | ALU_STAT_START;
661 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
662 
663 		/* wait to be finished */
664 		err = ksz9477_wait_alu_sta_ready(dev);
665 		if (err) {
666 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
667 			goto exit;
668 		}
669 
670 		/* read ALU static table */
671 		ksz9477_read_table(dev, static_table);
672 
673 		if (static_table[0] & ALU_V_STATIC_VALID) {
674 			/* check this has same vid & mac address */
675 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
676 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
677 			    static_table[3] == mac_lo) {
678 				/* found matching one */
679 				break;
680 			}
681 		} else {
682 			/* found empty one */
683 			break;
684 		}
685 	}
686 
687 	/* no available entry */
688 	if (index == dev->info->num_statics) {
689 		err = -ENOSPC;
690 		goto exit;
691 	}
692 
693 	/* add entry */
694 	static_table[0] = ALU_V_STATIC_VALID;
695 	static_table[1] |= BIT(port);
696 	if (mdb->vid)
697 		static_table[1] |= ALU_V_USE_FID;
698 	static_table[2] = (mdb->vid << ALU_V_FID_S);
699 	static_table[2] |= mac_hi;
700 	static_table[3] = mac_lo;
701 
702 	ksz9477_write_table(dev, static_table);
703 
704 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
705 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
706 
707 	/* wait to be finished */
708 	if (ksz9477_wait_alu_sta_ready(dev))
709 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
710 
711 exit:
712 	mutex_unlock(&dev->alu_mutex);
713 	return err;
714 }
715 
716 int ksz9477_mdb_del(struct ksz_device *dev, int port,
717 		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
718 {
719 	u32 static_table[4];
720 	u32 data;
721 	int index;
722 	int ret = 0;
723 	u32 mac_hi, mac_lo;
724 
725 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
726 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
727 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
728 
729 	mutex_lock(&dev->alu_mutex);
730 
731 	for (index = 0; index < dev->info->num_statics; index++) {
732 		/* find empty slot first */
733 		data = (index << ALU_STAT_INDEX_S) |
734 			ALU_STAT_READ | ALU_STAT_START;
735 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
736 
737 		/* wait to be finished */
738 		ret = ksz9477_wait_alu_sta_ready(dev);
739 		if (ret) {
740 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
741 			goto exit;
742 		}
743 
744 		/* read ALU static table */
745 		ksz9477_read_table(dev, static_table);
746 
747 		if (static_table[0] & ALU_V_STATIC_VALID) {
748 			/* check this has same vid & mac address */
749 
750 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
751 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
752 			    static_table[3] == mac_lo) {
753 				/* found matching one */
754 				break;
755 			}
756 		}
757 	}
758 
759 	/* no available entry */
760 	if (index == dev->info->num_statics)
761 		goto exit;
762 
763 	/* clear port */
764 	static_table[1] &= ~BIT(port);
765 
766 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
767 		/* delete entry */
768 		static_table[0] = 0;
769 		static_table[1] = 0;
770 		static_table[2] = 0;
771 		static_table[3] = 0;
772 	}
773 
774 	ksz9477_write_table(dev, static_table);
775 
776 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
777 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
778 
779 	/* wait to be finished */
780 	ret = ksz9477_wait_alu_sta_ready(dev);
781 	if (ret)
782 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
783 
784 exit:
785 	mutex_unlock(&dev->alu_mutex);
786 
787 	return ret;
788 }
789 
790 int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
791 			    struct dsa_mall_mirror_tc_entry *mirror,
792 			    bool ingress, struct netlink_ext_ack *extack)
793 {
794 	u8 data;
795 	int p;
796 
797 	/* Limit to one sniffer port
798 	 * Check if any of the port is already set for sniffing
799 	 * If yes, instruct the user to remove the previous entry & exit
800 	 */
801 	for (p = 0; p < dev->info->port_cnt; p++) {
802 		/* Skip the current sniffing port */
803 		if (p == mirror->to_local_port)
804 			continue;
805 
806 		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
807 
808 		if (data & PORT_MIRROR_SNIFFER) {
809 			NL_SET_ERR_MSG_MOD(extack,
810 					   "Sniffer port is already configured, delete existing rules & retry");
811 			return -EBUSY;
812 		}
813 	}
814 
815 	if (ingress)
816 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
817 	else
818 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
819 
820 	/* configure mirror port */
821 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
822 		     PORT_MIRROR_SNIFFER, true);
823 
824 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
825 
826 	return 0;
827 }
828 
829 void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
830 			     struct dsa_mall_mirror_tc_entry *mirror)
831 {
832 	bool in_use = false;
833 	u8 data;
834 	int p;
835 
836 	if (mirror->ingress)
837 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
838 	else
839 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
840 
841 
842 	/* Check if any of the port is still referring to sniffer port */
843 	for (p = 0; p < dev->info->port_cnt; p++) {
844 		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
845 
846 		if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
847 			in_use = true;
848 			break;
849 		}
850 	}
851 
852 	/* delete sniffing if there are no other mirroring rules */
853 	if (!in_use)
854 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
855 			     PORT_MIRROR_SNIFFER, false);
856 }
857 
858 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
859 {
860 	bool gbit;
861 
862 	if (dev->features & NEW_XMII)
863 		gbit = !(data & PORT_MII_NOT_1GBIT);
864 	else
865 		gbit = !!(data & PORT_MII_1000MBIT_S1);
866 	return gbit;
867 }
868 
869 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
870 {
871 	if (dev->features & NEW_XMII) {
872 		if (gbit)
873 			*data &= ~PORT_MII_NOT_1GBIT;
874 		else
875 			*data |= PORT_MII_NOT_1GBIT;
876 	} else {
877 		if (gbit)
878 			*data |= PORT_MII_1000MBIT_S1;
879 		else
880 			*data &= ~PORT_MII_1000MBIT_S1;
881 	}
882 }
883 
884 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
885 {
886 	int mode;
887 
888 	if (dev->features & NEW_XMII) {
889 		switch (data & PORT_MII_SEL_M) {
890 		case PORT_MII_SEL:
891 			mode = 0;
892 			break;
893 		case PORT_RMII_SEL:
894 			mode = 1;
895 			break;
896 		case PORT_GMII_SEL:
897 			mode = 2;
898 			break;
899 		default:
900 			mode = 3;
901 		}
902 	} else {
903 		switch (data & PORT_MII_SEL_M) {
904 		case PORT_MII_SEL_S1:
905 			mode = 0;
906 			break;
907 		case PORT_RMII_SEL_S1:
908 			mode = 1;
909 			break;
910 		case PORT_GMII_SEL_S1:
911 			mode = 2;
912 			break;
913 		default:
914 			mode = 3;
915 		}
916 	}
917 	return mode;
918 }
919 
920 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
921 {
922 	u8 xmii;
923 
924 	if (dev->features & NEW_XMII) {
925 		switch (mode) {
926 		case 0:
927 			xmii = PORT_MII_SEL;
928 			break;
929 		case 1:
930 			xmii = PORT_RMII_SEL;
931 			break;
932 		case 2:
933 			xmii = PORT_GMII_SEL;
934 			break;
935 		default:
936 			xmii = PORT_RGMII_SEL;
937 			break;
938 		}
939 	} else {
940 		switch (mode) {
941 		case 0:
942 			xmii = PORT_MII_SEL_S1;
943 			break;
944 		case 1:
945 			xmii = PORT_RMII_SEL_S1;
946 			break;
947 		case 2:
948 			xmii = PORT_GMII_SEL_S1;
949 			break;
950 		default:
951 			xmii = PORT_RGMII_SEL_S1;
952 			break;
953 		}
954 	}
955 	*data &= ~PORT_MII_SEL_M;
956 	*data |= xmii;
957 }
958 
959 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
960 {
961 	phy_interface_t interface;
962 	bool gbit;
963 	int mode;
964 	u8 data8;
965 
966 	if (port < dev->phy_port_cnt)
967 		return PHY_INTERFACE_MODE_NA;
968 	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
969 	gbit = ksz9477_get_gbit(dev, data8);
970 	mode = ksz9477_get_xmii(dev, data8);
971 	switch (mode) {
972 	case 2:
973 		interface = PHY_INTERFACE_MODE_GMII;
974 		if (gbit)
975 			break;
976 		fallthrough;
977 	case 0:
978 		interface = PHY_INTERFACE_MODE_MII;
979 		break;
980 	case 1:
981 		interface = PHY_INTERFACE_MODE_RMII;
982 		break;
983 	default:
984 		interface = PHY_INTERFACE_MODE_RGMII;
985 		if (data8 & PORT_RGMII_ID_EG_ENABLE)
986 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
987 		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
988 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
989 			if (data8 & PORT_RGMII_ID_EG_ENABLE)
990 				interface = PHY_INTERFACE_MODE_RGMII_ID;
991 		}
992 		break;
993 	}
994 	return interface;
995 }
996 
997 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
998 				   u8 dev_addr, u16 reg_addr, u16 val)
999 {
1000 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1001 		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1002 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1003 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1004 		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1005 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1006 }
1007 
1008 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1009 {
1010 	/* Apply PHY settings to address errata listed in
1011 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1012 	 * Silicon Errata and Data Sheet Clarification documents:
1013 	 *
1014 	 * Register settings are needed to improve PHY receive performance
1015 	 */
1016 	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1017 	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1018 	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1019 	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1020 	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1021 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1022 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1023 
1024 	/* Transmit waveform amplitude can be improved
1025 	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1026 	 */
1027 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1028 
1029 	/* Energy Efficient Ethernet (EEE) feature select must
1030 	 * be manually disabled (except on KSZ8565 which is 100Mbit)
1031 	 */
1032 	if (dev->features & GBIT_SUPPORT)
1033 		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1034 
1035 	/* Register settings are required to meet data sheet
1036 	 * supply current specifications
1037 	 */
1038 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1039 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1040 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1041 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1042 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1043 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1044 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1045 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1046 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1047 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1048 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1049 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1050 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1051 }
1052 
1053 void ksz9477_get_caps(struct ksz_device *dev, int port,
1054 		      struct phylink_config *config)
1055 {
1056 	config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
1057 				   MAC_SYM_PAUSE;
1058 
1059 	if (dev->features & GBIT_SUPPORT)
1060 		config->mac_capabilities |= MAC_1000FD;
1061 }
1062 
1063 void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1064 {
1065 	struct ksz_port *p = &dev->ports[port];
1066 	struct dsa_switch *ds = dev->ds;
1067 	u8 data8, member;
1068 	u16 data16;
1069 
1070 	/* enable tag tail for host port */
1071 	if (cpu_port)
1072 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1073 			     true);
1074 
1075 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1076 
1077 	/* set back pressure */
1078 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1079 
1080 	/* enable broadcast storm limit */
1081 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1082 
1083 	/* disable DiffServ priority */
1084 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1085 
1086 	/* replace priority */
1087 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1088 		     false);
1089 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1090 			   MTI_PVID_REPLACE, false);
1091 
1092 	/* enable 802.1p priority */
1093 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1094 
1095 	if (port < dev->phy_port_cnt) {
1096 		/* do not force flow control */
1097 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1098 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1099 			     false);
1100 
1101 		if (dev->info->phy_errata_9477)
1102 			ksz9477_phy_errata_setup(dev, port);
1103 	} else {
1104 		/* force flow control */
1105 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1106 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1107 			     true);
1108 
1109 		/* configure MAC to 1G & RGMII mode */
1110 		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1111 		switch (p->interface) {
1112 		case PHY_INTERFACE_MODE_MII:
1113 			ksz9477_set_xmii(dev, 0, &data8);
1114 			ksz9477_set_gbit(dev, false, &data8);
1115 			p->phydev.speed = SPEED_100;
1116 			break;
1117 		case PHY_INTERFACE_MODE_RMII:
1118 			ksz9477_set_xmii(dev, 1, &data8);
1119 			ksz9477_set_gbit(dev, false, &data8);
1120 			p->phydev.speed = SPEED_100;
1121 			break;
1122 		case PHY_INTERFACE_MODE_GMII:
1123 			ksz9477_set_xmii(dev, 2, &data8);
1124 			ksz9477_set_gbit(dev, true, &data8);
1125 			p->phydev.speed = SPEED_1000;
1126 			break;
1127 		default:
1128 			ksz9477_set_xmii(dev, 3, &data8);
1129 			ksz9477_set_gbit(dev, true, &data8);
1130 			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1131 			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1132 			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1133 			    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1134 				data8 |= PORT_RGMII_ID_IG_ENABLE;
1135 			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1136 			    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1137 				data8 |= PORT_RGMII_ID_EG_ENABLE;
1138 			/* On KSZ9893, disable RGMII in-band status support */
1139 			if (dev->features & IS_9893)
1140 				data8 &= ~PORT_MII_MAC_MODE;
1141 			p->phydev.speed = SPEED_1000;
1142 			break;
1143 		}
1144 		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1145 		p->phydev.duplex = 1;
1146 	}
1147 
1148 	if (cpu_port)
1149 		member = dsa_user_ports(ds);
1150 	else
1151 		member = BIT(dsa_upstream_port(ds, port));
1152 
1153 	ksz9477_cfg_port_member(dev, port, member);
1154 
1155 	/* clear pending interrupts */
1156 	if (port < dev->phy_port_cnt)
1157 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1158 }
1159 
1160 void ksz9477_config_cpu_port(struct dsa_switch *ds)
1161 {
1162 	struct ksz_device *dev = ds->priv;
1163 	struct ksz_port *p;
1164 	int i;
1165 
1166 	for (i = 0; i < dev->info->port_cnt; i++) {
1167 		if (dsa_is_cpu_port(ds, i) &&
1168 		    (dev->info->cpu_ports & (1 << i))) {
1169 			phy_interface_t interface;
1170 			const char *prev_msg;
1171 			const char *prev_mode;
1172 
1173 			dev->cpu_port = i;
1174 			p = &dev->ports[i];
1175 
1176 			/* Read from XMII register to determine host port
1177 			 * interface.  If set specifically in device tree
1178 			 * note the difference to help debugging.
1179 			 */
1180 			interface = ksz9477_get_interface(dev, i);
1181 			if (!p->interface) {
1182 				if (dev->compat_interface) {
1183 					dev_warn(dev->dev,
1184 						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1185 						 "Please update your device tree.\n",
1186 						 i);
1187 					p->interface = dev->compat_interface;
1188 				} else {
1189 					p->interface = interface;
1190 				}
1191 			}
1192 			if (interface && interface != p->interface) {
1193 				prev_msg = " instead of ";
1194 				prev_mode = phy_modes(interface);
1195 			} else {
1196 				prev_msg = "";
1197 				prev_mode = "";
1198 			}
1199 			dev_info(dev->dev,
1200 				 "Port%d: using phy mode %s%s%s\n",
1201 				 i,
1202 				 phy_modes(p->interface),
1203 				 prev_msg,
1204 				 prev_mode);
1205 
1206 			/* enable cpu port */
1207 			ksz9477_port_setup(dev, i, true);
1208 			p->on = 1;
1209 		}
1210 	}
1211 
1212 	for (i = 0; i < dev->info->port_cnt; i++) {
1213 		if (i == dev->cpu_port)
1214 			continue;
1215 		p = &dev->ports[i];
1216 
1217 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1218 		p->on = 1;
1219 		if (i < dev->phy_port_cnt)
1220 			p->phy = 1;
1221 		if (dev->chip_id == 0x00947700 && i == 6) {
1222 			p->sgmii = 1;
1223 
1224 			/* SGMII PHY detection code is not implemented yet. */
1225 			p->phy = 0;
1226 		}
1227 	}
1228 }
1229 
1230 int ksz9477_enable_stp_addr(struct ksz_device *dev)
1231 {
1232 	u32 data;
1233 	int ret;
1234 
1235 	/* Enable Reserved multicast table */
1236 	ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1237 
1238 	/* Set the Override bit for forwarding BPDU packet to CPU */
1239 	ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1240 			  ALU_V_OVERRIDE | BIT(dev->cpu_port));
1241 	if (ret < 0)
1242 		return ret;
1243 
1244 	data = ALU_STAT_START | ALU_RESV_MCAST_ADDR;
1245 
1246 	ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1247 	if (ret < 0)
1248 		return ret;
1249 
1250 	/* wait to be finished */
1251 	ret = ksz9477_wait_alu_sta_ready(dev);
1252 	if (ret < 0) {
1253 		dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1254 		return ret;
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 int ksz9477_setup(struct dsa_switch *ds)
1261 {
1262 	struct ksz_device *dev = ds->priv;
1263 	int ret = 0;
1264 
1265 	/* Required for port partitioning. */
1266 	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1267 		      true);
1268 
1269 	/* Do not work correctly with tail tagging. */
1270 	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1271 
1272 	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1273 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1274 
1275 	/* Now we can configure default MTU value */
1276 	ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
1277 				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1278 	if (ret)
1279 		return ret;
1280 
1281 	/* queue based egress rate limit */
1282 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1283 
1284 	/* enable global MIB counter freeze function */
1285 	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1286 
1287 	return 0;
1288 }
1289 
1290 u32 ksz9477_get_port_addr(int port, int offset)
1291 {
1292 	return PORT_CTRL_ADDR(port, offset);
1293 }
1294 
1295 int ksz9477_switch_init(struct ksz_device *dev)
1296 {
1297 	u8 data8;
1298 	int ret;
1299 
1300 	dev->port_mask = (1 << dev->info->port_cnt) - 1;
1301 
1302 	/* turn off SPI DO Edge select */
1303 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1304 	if (ret)
1305 		return ret;
1306 
1307 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1308 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1309 	if (ret)
1310 		return ret;
1311 
1312 	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1313 	if (ret)
1314 		return ret;
1315 
1316 	/* Number of ports can be reduced depending on chip. */
1317 	dev->phy_port_cnt = 5;
1318 
1319 	/* Default capability is gigabit capable. */
1320 	dev->features = GBIT_SUPPORT;
1321 
1322 	if (dev->chip_id == KSZ9893_CHIP_ID) {
1323 		dev->features |= IS_9893;
1324 
1325 		/* Chip does not support gigabit. */
1326 		if (data8 & SW_QW_ABLE)
1327 			dev->features &= ~GBIT_SUPPORT;
1328 		dev->phy_port_cnt = 2;
1329 	} else {
1330 		/* Chip uses new XMII register definitions. */
1331 		dev->features |= NEW_XMII;
1332 
1333 		/* Chip does not support gigabit. */
1334 		if (!(data8 & SW_GIGABIT_ABLE))
1335 			dev->features &= ~GBIT_SUPPORT;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 void ksz9477_switch_exit(struct ksz_device *dev)
1342 {
1343 	ksz9477_reset_switch(dev);
1344 }
1345 
1346 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1347 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1348 MODULE_LICENSE("GPL");
1349