xref: /linux/drivers/net/dsa/microchip/ksz9477.c (revision 57f273adbcd44172cbe0bd10b8b7408dd255699f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <linux/if_vlan.h>
15 #include <net/dsa.h>
16 #include <net/switchdev.h>
17 
18 #include "ksz9477_reg.h"
19 #include "ksz_common.h"
20 #include "ksz9477.h"
21 
22 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
23 {
24 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
25 }
26 
27 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
28 			 bool set)
29 {
30 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
31 			   bits, set ? bits : 0);
32 }
33 
34 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
35 {
36 	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
37 }
38 
39 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
40 			       u32 bits, bool set)
41 {
42 	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
43 			   bits, set ? bits : 0);
44 }
45 
46 int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
47 {
48 	u16 frame_size, max_frame = 0;
49 	int i;
50 
51 	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
52 
53 	/* Cache the per-port MTU setting */
54 	dev->ports[port].max_frame = frame_size;
55 
56 	for (i = 0; i < dev->info->port_cnt; i++)
57 		max_frame = max(max_frame, dev->ports[i].max_frame);
58 
59 	return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
60 				  REG_SW_MTU_MASK, max_frame);
61 }
62 
63 int ksz9477_max_mtu(struct ksz_device *dev, int port)
64 {
65 	return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
66 }
67 
68 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
69 {
70 	unsigned int val;
71 
72 	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
73 					val, !(val & VLAN_START), 10, 1000);
74 }
75 
76 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
77 				  u32 *vlan_table)
78 {
79 	int ret;
80 
81 	mutex_lock(&dev->vlan_mutex);
82 
83 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
84 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
85 
86 	/* wait to be cleared */
87 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
88 	if (ret) {
89 		dev_dbg(dev->dev, "Failed to read vlan table\n");
90 		goto exit;
91 	}
92 
93 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
94 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
95 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
96 
97 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
98 
99 exit:
100 	mutex_unlock(&dev->vlan_mutex);
101 
102 	return ret;
103 }
104 
105 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
106 				  u32 *vlan_table)
107 {
108 	int ret;
109 
110 	mutex_lock(&dev->vlan_mutex);
111 
112 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
113 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
114 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
115 
116 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
117 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
118 
119 	/* wait to be cleared */
120 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
121 	if (ret) {
122 		dev_dbg(dev->dev, "Failed to write vlan table\n");
123 		goto exit;
124 	}
125 
126 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
127 
128 	/* update vlan cache table */
129 	dev->vlan_cache[vid].table[0] = vlan_table[0];
130 	dev->vlan_cache[vid].table[1] = vlan_table[1];
131 	dev->vlan_cache[vid].table[2] = vlan_table[2];
132 
133 exit:
134 	mutex_unlock(&dev->vlan_mutex);
135 
136 	return ret;
137 }
138 
139 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
140 {
141 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
142 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
143 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
144 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
145 }
146 
147 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
148 {
149 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
150 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
151 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
152 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
153 }
154 
155 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
156 {
157 	unsigned int val;
158 
159 	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
160 					val, !(val & ALU_START), 10, 1000);
161 }
162 
163 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
164 {
165 	unsigned int val;
166 
167 	return regmap_read_poll_timeout(dev->regmap[2],
168 					REG_SW_ALU_STAT_CTRL__4,
169 					val, !(val & ALU_STAT_START),
170 					10, 1000);
171 }
172 
173 int ksz9477_reset_switch(struct ksz_device *dev)
174 {
175 	u8 data8;
176 	u32 data32;
177 
178 	/* reset switch */
179 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
180 
181 	/* turn off SPI DO Edge select */
182 	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
183 			   SPI_AUTO_EDGE_DETECTION, 0);
184 
185 	/* default configuration */
186 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
187 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
188 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
189 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
190 
191 	/* disable interrupts */
192 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
193 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
194 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
195 
196 	/* KSZ9893 compatible chips do not support refclk configuration */
197 	if (dev->chip_id == KSZ9893_CHIP_ID ||
198 	    dev->chip_id == KSZ8563_CHIP_ID ||
199 	    dev->chip_id == KSZ9563_CHIP_ID)
200 		return 0;
201 
202 	data8 = SW_ENABLE_REFCLKO;
203 	if (dev->synclko_disable)
204 		data8 = 0;
205 	else if (dev->synclko_125)
206 		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
207 	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
208 
209 	return 0;
210 }
211 
212 void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
213 {
214 	struct ksz_port *p = &dev->ports[port];
215 	unsigned int val;
216 	u32 data;
217 	int ret;
218 
219 	/* retain the flush/freeze bit */
220 	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
221 	data |= MIB_COUNTER_READ;
222 	data |= (addr << MIB_COUNTER_INDEX_S);
223 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
224 
225 	ret = regmap_read_poll_timeout(dev->regmap[2],
226 			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
227 			val, !(val & MIB_COUNTER_READ), 10, 1000);
228 	/* failed to read MIB. get out of loop */
229 	if (ret) {
230 		dev_dbg(dev->dev, "Failed to get MIB\n");
231 		return;
232 	}
233 
234 	/* count resets upon read */
235 	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
236 	*cnt += data;
237 }
238 
239 void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
240 		       u64 *dropped, u64 *cnt)
241 {
242 	addr = dev->info->mib_names[addr].index;
243 	ksz9477_r_mib_cnt(dev, port, addr, cnt);
244 }
245 
246 void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
247 {
248 	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
249 	struct ksz_port *p = &dev->ports[port];
250 
251 	/* enable/disable the port for flush/freeze function */
252 	mutex_lock(&p->mib.cnt_mutex);
253 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
254 
255 	/* used by MIB counter reading code to know freeze is enabled */
256 	p->freeze = freeze;
257 	mutex_unlock(&p->mib.cnt_mutex);
258 }
259 
260 void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
261 {
262 	struct ksz_port_mib *mib = &dev->ports[port].mib;
263 
264 	/* flush all enabled port MIB counters */
265 	mutex_lock(&mib->cnt_mutex);
266 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
267 		     MIB_COUNTER_FLUSH_FREEZE);
268 	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
269 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
270 	mutex_unlock(&mib->cnt_mutex);
271 }
272 
273 static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
274 				 u16 *data)
275 {
276 	/* KSZ8563R do not have extended registers but BMSR_ESTATEN and
277 	 * BMSR_ERCAP bits are set.
278 	 */
279 	if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
280 		*data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
281 }
282 
283 int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
284 {
285 	u16 val = 0xffff;
286 	int ret;
287 
288 	/* No real PHY after this. Simulate the PHY.
289 	 * A fixed PHY can be setup in the device tree, but this function is
290 	 * still called for that port during initialization.
291 	 * For RGMII PHY there is no way to access it so the fixed PHY should
292 	 * be used.  For SGMII PHY the supporting code will be added later.
293 	 */
294 	if (!dev->info->internal_phy[addr]) {
295 		struct ksz_port *p = &dev->ports[addr];
296 
297 		switch (reg) {
298 		case MII_BMCR:
299 			val = 0x1140;
300 			break;
301 		case MII_BMSR:
302 			val = 0x796d;
303 			break;
304 		case MII_PHYSID1:
305 			val = 0x0022;
306 			break;
307 		case MII_PHYSID2:
308 			val = 0x1631;
309 			break;
310 		case MII_ADVERTISE:
311 			val = 0x05e1;
312 			break;
313 		case MII_LPA:
314 			val = 0xc5e1;
315 			break;
316 		case MII_CTRL1000:
317 			val = 0x0700;
318 			break;
319 		case MII_STAT1000:
320 			if (p->phydev.speed == SPEED_1000)
321 				val = 0x3800;
322 			else
323 				val = 0;
324 			break;
325 		}
326 	} else {
327 		ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
328 		if (ret)
329 			return ret;
330 
331 		ksz9477_r_phy_quirks(dev, addr, reg, &val);
332 	}
333 
334 	*data = val;
335 
336 	return 0;
337 }
338 
339 int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
340 {
341 	/* No real PHY after this. */
342 	if (!dev->info->internal_phy[addr])
343 		return 0;
344 
345 	return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
346 }
347 
348 void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
349 {
350 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
351 }
352 
353 void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
354 {
355 	const u16 *regs = dev->info->regs;
356 	u8 data;
357 
358 	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
359 			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
360 			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
361 
362 	if (port < dev->info->port_cnt) {
363 		/* flush individual port */
364 		ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
365 		if (!(data & PORT_LEARN_DISABLE))
366 			ksz_pwrite8(dev, port, regs[P_STP_CTRL],
367 				    data | PORT_LEARN_DISABLE);
368 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
369 		ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
370 	} else {
371 		/* flush all */
372 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
373 	}
374 }
375 
376 int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
377 				bool flag, struct netlink_ext_ack *extack)
378 {
379 	if (flag) {
380 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
381 			     PORT_VLAN_LOOKUP_VID_0, true);
382 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
383 	} else {
384 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
385 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
386 			     PORT_VLAN_LOOKUP_VID_0, false);
387 	}
388 
389 	return 0;
390 }
391 
392 int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
393 			  const struct switchdev_obj_port_vlan *vlan,
394 			  struct netlink_ext_ack *extack)
395 {
396 	u32 vlan_table[3];
397 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
398 	int err;
399 
400 	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
401 	if (err) {
402 		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
403 		return err;
404 	}
405 
406 	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
407 	if (untagged)
408 		vlan_table[1] |= BIT(port);
409 	else
410 		vlan_table[1] &= ~BIT(port);
411 	vlan_table[1] &= ~(BIT(dev->cpu_port));
412 
413 	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
414 
415 	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
416 	if (err) {
417 		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
418 		return err;
419 	}
420 
421 	/* change PVID */
422 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
423 		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
424 
425 	return 0;
426 }
427 
428 int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
429 			  const struct switchdev_obj_port_vlan *vlan)
430 {
431 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
432 	u32 vlan_table[3];
433 	u16 pvid;
434 
435 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
436 	pvid = pvid & 0xFFF;
437 
438 	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
439 		dev_dbg(dev->dev, "Failed to get vlan table\n");
440 		return -ETIMEDOUT;
441 	}
442 
443 	vlan_table[2] &= ~BIT(port);
444 
445 	if (pvid == vlan->vid)
446 		pvid = 1;
447 
448 	if (untagged)
449 		vlan_table[1] &= ~BIT(port);
450 
451 	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
452 		dev_dbg(dev->dev, "Failed to set vlan table\n");
453 		return -ETIMEDOUT;
454 	}
455 
456 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
457 
458 	return 0;
459 }
460 
461 int ksz9477_fdb_add(struct ksz_device *dev, int port,
462 		    const unsigned char *addr, u16 vid, struct dsa_db db)
463 {
464 	u32 alu_table[4];
465 	u32 data;
466 	int ret = 0;
467 
468 	mutex_lock(&dev->alu_mutex);
469 
470 	/* find any entry with mac & vid */
471 	data = vid << ALU_FID_INDEX_S;
472 	data |= ((addr[0] << 8) | addr[1]);
473 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
474 
475 	data = ((addr[2] << 24) | (addr[3] << 16));
476 	data |= ((addr[4] << 8) | addr[5]);
477 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
478 
479 	/* start read operation */
480 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
481 
482 	/* wait to be finished */
483 	ret = ksz9477_wait_alu_ready(dev);
484 	if (ret) {
485 		dev_dbg(dev->dev, "Failed to read ALU\n");
486 		goto exit;
487 	}
488 
489 	/* read ALU entry */
490 	ksz9477_read_table(dev, alu_table);
491 
492 	/* update ALU entry */
493 	alu_table[0] = ALU_V_STATIC_VALID;
494 	alu_table[1] |= BIT(port);
495 	if (vid)
496 		alu_table[1] |= ALU_V_USE_FID;
497 	alu_table[2] = (vid << ALU_V_FID_S);
498 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
499 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
500 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
501 
502 	ksz9477_write_table(dev, alu_table);
503 
504 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
505 
506 	/* wait to be finished */
507 	ret = ksz9477_wait_alu_ready(dev);
508 	if (ret)
509 		dev_dbg(dev->dev, "Failed to write ALU\n");
510 
511 exit:
512 	mutex_unlock(&dev->alu_mutex);
513 
514 	return ret;
515 }
516 
517 int ksz9477_fdb_del(struct ksz_device *dev, int port,
518 		    const unsigned char *addr, u16 vid, struct dsa_db db)
519 {
520 	u32 alu_table[4];
521 	u32 data;
522 	int ret = 0;
523 
524 	mutex_lock(&dev->alu_mutex);
525 
526 	/* read any entry with mac & vid */
527 	data = vid << ALU_FID_INDEX_S;
528 	data |= ((addr[0] << 8) | addr[1]);
529 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
530 
531 	data = ((addr[2] << 24) | (addr[3] << 16));
532 	data |= ((addr[4] << 8) | addr[5]);
533 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
534 
535 	/* start read operation */
536 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
537 
538 	/* wait to be finished */
539 	ret = ksz9477_wait_alu_ready(dev);
540 	if (ret) {
541 		dev_dbg(dev->dev, "Failed to read ALU\n");
542 		goto exit;
543 	}
544 
545 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
546 	if (alu_table[0] & ALU_V_STATIC_VALID) {
547 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
548 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
549 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
550 
551 		/* clear forwarding port */
552 		alu_table[2] &= ~BIT(port);
553 
554 		/* if there is no port to forward, clear table */
555 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
556 			alu_table[0] = 0;
557 			alu_table[1] = 0;
558 			alu_table[2] = 0;
559 			alu_table[3] = 0;
560 		}
561 	} else {
562 		alu_table[0] = 0;
563 		alu_table[1] = 0;
564 		alu_table[2] = 0;
565 		alu_table[3] = 0;
566 	}
567 
568 	ksz9477_write_table(dev, alu_table);
569 
570 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
571 
572 	/* wait to be finished */
573 	ret = ksz9477_wait_alu_ready(dev);
574 	if (ret)
575 		dev_dbg(dev->dev, "Failed to write ALU\n");
576 
577 exit:
578 	mutex_unlock(&dev->alu_mutex);
579 
580 	return ret;
581 }
582 
583 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
584 {
585 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
586 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
587 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
588 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
589 			ALU_V_PRIO_AGE_CNT_M;
590 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
591 
592 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
593 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
594 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
595 
596 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
597 
598 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
599 	alu->mac[1] = alu_table[2] & 0xFF;
600 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
601 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
602 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
603 	alu->mac[5] = alu_table[3] & 0xFF;
604 }
605 
606 int ksz9477_fdb_dump(struct ksz_device *dev, int port,
607 		     dsa_fdb_dump_cb_t *cb, void *data)
608 {
609 	int ret = 0;
610 	u32 ksz_data;
611 	u32 alu_table[4];
612 	struct alu_struct alu;
613 	int timeout;
614 
615 	mutex_lock(&dev->alu_mutex);
616 
617 	/* start ALU search */
618 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
619 
620 	do {
621 		timeout = 1000;
622 		do {
623 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
624 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
625 				break;
626 			usleep_range(1, 10);
627 		} while (timeout-- > 0);
628 
629 		if (!timeout) {
630 			dev_dbg(dev->dev, "Failed to search ALU\n");
631 			ret = -ETIMEDOUT;
632 			goto exit;
633 		}
634 
635 		if (!(ksz_data & ALU_VALID))
636 			continue;
637 
638 		/* read ALU table */
639 		ksz9477_read_table(dev, alu_table);
640 
641 		ksz9477_convert_alu(&alu, alu_table);
642 
643 		if (alu.port_forward & BIT(port)) {
644 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
645 			if (ret)
646 				goto exit;
647 		}
648 	} while (ksz_data & ALU_START);
649 
650 exit:
651 
652 	/* stop ALU search */
653 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
654 
655 	mutex_unlock(&dev->alu_mutex);
656 
657 	return ret;
658 }
659 
660 int ksz9477_mdb_add(struct ksz_device *dev, int port,
661 		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
662 {
663 	u32 static_table[4];
664 	const u8 *shifts;
665 	const u32 *masks;
666 	u32 data;
667 	int index;
668 	u32 mac_hi, mac_lo;
669 	int err = 0;
670 
671 	shifts = dev->info->shifts;
672 	masks = dev->info->masks;
673 
674 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
675 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
676 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
677 
678 	mutex_lock(&dev->alu_mutex);
679 
680 	for (index = 0; index < dev->info->num_statics; index++) {
681 		/* find empty slot first */
682 		data = (index << shifts[ALU_STAT_INDEX]) |
683 			masks[ALU_STAT_READ] | ALU_STAT_START;
684 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
685 
686 		/* wait to be finished */
687 		err = ksz9477_wait_alu_sta_ready(dev);
688 		if (err) {
689 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
690 			goto exit;
691 		}
692 
693 		/* read ALU static table */
694 		ksz9477_read_table(dev, static_table);
695 
696 		if (static_table[0] & ALU_V_STATIC_VALID) {
697 			/* check this has same vid & mac address */
698 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
699 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
700 			    static_table[3] == mac_lo) {
701 				/* found matching one */
702 				break;
703 			}
704 		} else {
705 			/* found empty one */
706 			break;
707 		}
708 	}
709 
710 	/* no available entry */
711 	if (index == dev->info->num_statics) {
712 		err = -ENOSPC;
713 		goto exit;
714 	}
715 
716 	/* add entry */
717 	static_table[0] = ALU_V_STATIC_VALID;
718 	static_table[1] |= BIT(port);
719 	if (mdb->vid)
720 		static_table[1] |= ALU_V_USE_FID;
721 	static_table[2] = (mdb->vid << ALU_V_FID_S);
722 	static_table[2] |= mac_hi;
723 	static_table[3] = mac_lo;
724 
725 	ksz9477_write_table(dev, static_table);
726 
727 	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
728 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
729 
730 	/* wait to be finished */
731 	if (ksz9477_wait_alu_sta_ready(dev))
732 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
733 
734 exit:
735 	mutex_unlock(&dev->alu_mutex);
736 	return err;
737 }
738 
739 int ksz9477_mdb_del(struct ksz_device *dev, int port,
740 		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
741 {
742 	u32 static_table[4];
743 	const u8 *shifts;
744 	const u32 *masks;
745 	u32 data;
746 	int index;
747 	int ret = 0;
748 	u32 mac_hi, mac_lo;
749 
750 	shifts = dev->info->shifts;
751 	masks = dev->info->masks;
752 
753 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
754 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
755 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
756 
757 	mutex_lock(&dev->alu_mutex);
758 
759 	for (index = 0; index < dev->info->num_statics; index++) {
760 		/* find empty slot first */
761 		data = (index << shifts[ALU_STAT_INDEX]) |
762 			masks[ALU_STAT_READ] | ALU_STAT_START;
763 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
764 
765 		/* wait to be finished */
766 		ret = ksz9477_wait_alu_sta_ready(dev);
767 		if (ret) {
768 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
769 			goto exit;
770 		}
771 
772 		/* read ALU static table */
773 		ksz9477_read_table(dev, static_table);
774 
775 		if (static_table[0] & ALU_V_STATIC_VALID) {
776 			/* check this has same vid & mac address */
777 
778 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
779 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
780 			    static_table[3] == mac_lo) {
781 				/* found matching one */
782 				break;
783 			}
784 		}
785 	}
786 
787 	/* no available entry */
788 	if (index == dev->info->num_statics)
789 		goto exit;
790 
791 	/* clear port */
792 	static_table[1] &= ~BIT(port);
793 
794 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
795 		/* delete entry */
796 		static_table[0] = 0;
797 		static_table[1] = 0;
798 		static_table[2] = 0;
799 		static_table[3] = 0;
800 	}
801 
802 	ksz9477_write_table(dev, static_table);
803 
804 	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
805 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
806 
807 	/* wait to be finished */
808 	ret = ksz9477_wait_alu_sta_ready(dev);
809 	if (ret)
810 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
811 
812 exit:
813 	mutex_unlock(&dev->alu_mutex);
814 
815 	return ret;
816 }
817 
818 int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
819 			    struct dsa_mall_mirror_tc_entry *mirror,
820 			    bool ingress, struct netlink_ext_ack *extack)
821 {
822 	u8 data;
823 	int p;
824 
825 	/* Limit to one sniffer port
826 	 * Check if any of the port is already set for sniffing
827 	 * If yes, instruct the user to remove the previous entry & exit
828 	 */
829 	for (p = 0; p < dev->info->port_cnt; p++) {
830 		/* Skip the current sniffing port */
831 		if (p == mirror->to_local_port)
832 			continue;
833 
834 		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
835 
836 		if (data & PORT_MIRROR_SNIFFER) {
837 			NL_SET_ERR_MSG_MOD(extack,
838 					   "Sniffer port is already configured, delete existing rules & retry");
839 			return -EBUSY;
840 		}
841 	}
842 
843 	if (ingress)
844 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
845 	else
846 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
847 
848 	/* configure mirror port */
849 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
850 		     PORT_MIRROR_SNIFFER, true);
851 
852 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
853 
854 	return 0;
855 }
856 
857 void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
858 			     struct dsa_mall_mirror_tc_entry *mirror)
859 {
860 	bool in_use = false;
861 	u8 data;
862 	int p;
863 
864 	if (mirror->ingress)
865 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
866 	else
867 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
868 
869 
870 	/* Check if any of the port is still referring to sniffer port */
871 	for (p = 0; p < dev->info->port_cnt; p++) {
872 		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
873 
874 		if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
875 			in_use = true;
876 			break;
877 		}
878 	}
879 
880 	/* delete sniffing if there are no other mirroring rules */
881 	if (!in_use)
882 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
883 			     PORT_MIRROR_SNIFFER, false);
884 }
885 
886 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
887 {
888 	phy_interface_t interface;
889 	bool gbit;
890 
891 	if (dev->info->internal_phy[port])
892 		return PHY_INTERFACE_MODE_NA;
893 
894 	gbit = ksz_get_gbit(dev, port);
895 
896 	interface = ksz_get_xmii(dev, port, gbit);
897 
898 	return interface;
899 }
900 
901 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
902 				   u8 dev_addr, u16 reg_addr, u16 val)
903 {
904 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
905 		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
906 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
907 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
908 		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
909 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
910 }
911 
912 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
913 {
914 	/* Apply PHY settings to address errata listed in
915 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
916 	 * Silicon Errata and Data Sheet Clarification documents:
917 	 *
918 	 * Register settings are needed to improve PHY receive performance
919 	 */
920 	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
921 	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
922 	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
923 	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
924 	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
925 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
926 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
927 
928 	/* Transmit waveform amplitude can be improved
929 	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
930 	 */
931 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
932 
933 	/* Energy Efficient Ethernet (EEE) feature select must
934 	 * be manually disabled (except on KSZ8565 which is 100Mbit)
935 	 */
936 	if (dev->info->gbit_capable[port])
937 		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
938 
939 	/* Register settings are required to meet data sheet
940 	 * supply current specifications
941 	 */
942 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
943 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
944 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
945 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
946 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
947 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
948 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
949 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
950 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
951 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
952 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
953 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
954 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
955 }
956 
957 void ksz9477_get_caps(struct ksz_device *dev, int port,
958 		      struct phylink_config *config)
959 {
960 	config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
961 				   MAC_SYM_PAUSE;
962 
963 	if (dev->info->gbit_capable[port])
964 		config->mac_capabilities |= MAC_1000FD;
965 }
966 
967 int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
968 {
969 	u32 secs = msecs / 1000;
970 	u8 value;
971 	u8 data;
972 	int ret;
973 
974 	value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs);
975 
976 	ret = ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
977 	if (ret < 0)
978 		return ret;
979 
980 	data = FIELD_GET(SW_AGE_PERIOD_10_8_M, secs);
981 
982 	ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
983 	if (ret < 0)
984 		return ret;
985 
986 	value &= ~SW_AGE_CNT_M;
987 	value |= FIELD_PREP(SW_AGE_CNT_M, data);
988 
989 	return ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
990 }
991 
992 void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
993 {
994 	struct dsa_switch *ds = dev->ds;
995 	u16 data16;
996 	u8 member;
997 
998 	/* enable tag tail for host port */
999 	if (cpu_port)
1000 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1001 			     true);
1002 
1003 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1004 
1005 	/* set back pressure */
1006 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1007 
1008 	/* enable broadcast storm limit */
1009 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1010 
1011 	/* disable DiffServ priority */
1012 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1013 
1014 	/* replace priority */
1015 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1016 		     false);
1017 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1018 			   MTI_PVID_REPLACE, false);
1019 
1020 	/* enable 802.1p priority */
1021 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1022 
1023 	if (dev->info->internal_phy[port]) {
1024 		/* do not force flow control */
1025 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1026 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1027 			     false);
1028 
1029 		if (dev->info->phy_errata_9477)
1030 			ksz9477_phy_errata_setup(dev, port);
1031 	} else {
1032 		/* force flow control */
1033 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1034 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1035 			     true);
1036 	}
1037 
1038 	if (cpu_port)
1039 		member = dsa_user_ports(ds);
1040 	else
1041 		member = BIT(dsa_upstream_port(ds, port));
1042 
1043 	ksz9477_cfg_port_member(dev, port, member);
1044 
1045 	/* clear pending interrupts */
1046 	if (dev->info->internal_phy[port])
1047 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1048 }
1049 
1050 void ksz9477_config_cpu_port(struct dsa_switch *ds)
1051 {
1052 	struct ksz_device *dev = ds->priv;
1053 	struct ksz_port *p;
1054 	int i;
1055 
1056 	for (i = 0; i < dev->info->port_cnt; i++) {
1057 		if (dsa_is_cpu_port(ds, i) &&
1058 		    (dev->info->cpu_ports & (1 << i))) {
1059 			phy_interface_t interface;
1060 			const char *prev_msg;
1061 			const char *prev_mode;
1062 
1063 			dev->cpu_port = i;
1064 			p = &dev->ports[i];
1065 
1066 			/* Read from XMII register to determine host port
1067 			 * interface.  If set specifically in device tree
1068 			 * note the difference to help debugging.
1069 			 */
1070 			interface = ksz9477_get_interface(dev, i);
1071 			if (!p->interface) {
1072 				if (dev->compat_interface) {
1073 					dev_warn(dev->dev,
1074 						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1075 						 "Please update your device tree.\n",
1076 						 i);
1077 					p->interface = dev->compat_interface;
1078 				} else {
1079 					p->interface = interface;
1080 				}
1081 			}
1082 			if (interface && interface != p->interface) {
1083 				prev_msg = " instead of ";
1084 				prev_mode = phy_modes(interface);
1085 			} else {
1086 				prev_msg = "";
1087 				prev_mode = "";
1088 			}
1089 			dev_info(dev->dev,
1090 				 "Port%d: using phy mode %s%s%s\n",
1091 				 i,
1092 				 phy_modes(p->interface),
1093 				 prev_msg,
1094 				 prev_mode);
1095 
1096 			/* enable cpu port */
1097 			ksz9477_port_setup(dev, i, true);
1098 		}
1099 	}
1100 
1101 	for (i = 0; i < dev->info->port_cnt; i++) {
1102 		if (i == dev->cpu_port)
1103 			continue;
1104 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1105 	}
1106 }
1107 
1108 int ksz9477_enable_stp_addr(struct ksz_device *dev)
1109 {
1110 	const u32 *masks;
1111 	u32 data;
1112 	int ret;
1113 
1114 	masks = dev->info->masks;
1115 
1116 	/* Enable Reserved multicast table */
1117 	ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1118 
1119 	/* Set the Override bit for forwarding BPDU packet to CPU */
1120 	ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1121 			  ALU_V_OVERRIDE | BIT(dev->cpu_port));
1122 	if (ret < 0)
1123 		return ret;
1124 
1125 	data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1126 
1127 	ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1128 	if (ret < 0)
1129 		return ret;
1130 
1131 	/* wait to be finished */
1132 	ret = ksz9477_wait_alu_sta_ready(dev);
1133 	if (ret < 0) {
1134 		dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1135 		return ret;
1136 	}
1137 
1138 	return 0;
1139 }
1140 
1141 int ksz9477_setup(struct dsa_switch *ds)
1142 {
1143 	struct ksz_device *dev = ds->priv;
1144 	int ret = 0;
1145 
1146 	/* Required for port partitioning. */
1147 	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1148 		      true);
1149 
1150 	/* Do not work correctly with tail tagging. */
1151 	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1152 
1153 	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1154 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1155 
1156 	/* Now we can configure default MTU value */
1157 	ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
1158 				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1159 	if (ret)
1160 		return ret;
1161 
1162 	/* queue based egress rate limit */
1163 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1164 
1165 	/* enable global MIB counter freeze function */
1166 	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1167 
1168 	return 0;
1169 }
1170 
1171 u32 ksz9477_get_port_addr(int port, int offset)
1172 {
1173 	return PORT_CTRL_ADDR(port, offset);
1174 }
1175 
1176 int ksz9477_switch_init(struct ksz_device *dev)
1177 {
1178 	u8 data8;
1179 	int ret;
1180 
1181 	dev->port_mask = (1 << dev->info->port_cnt) - 1;
1182 
1183 	/* turn off SPI DO Edge select */
1184 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1185 	if (ret)
1186 		return ret;
1187 
1188 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1189 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1190 	if (ret)
1191 		return ret;
1192 
1193 	return 0;
1194 }
1195 
1196 void ksz9477_switch_exit(struct ksz_device *dev)
1197 {
1198 	ksz9477_reset_switch(dev);
1199 }
1200 
1201 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1202 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1203 MODULE_LICENSE("GPL");
1204