xref: /linux/drivers/net/dsa/microchip/ksz9477.c (revision 4201c9260a8d3c4ef238e51692a7e9b4e1e29efe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <net/dsa.h>
15 #include <net/switchdev.h>
16 
17 #include "ksz_priv.h"
18 #include "ksz9477_reg.h"
19 #include "ksz_common.h"
20 
21 /* Used with variable features to indicate capabilities. */
22 #define GBIT_SUPPORT			BIT(0)
23 #define NEW_XMII			BIT(1)
24 #define IS_9893				BIT(2)
25 
26 static const struct {
27 	int index;
28 	char string[ETH_GSTRING_LEN];
29 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
30 	{ 0x00, "rx_hi" },
31 	{ 0x01, "rx_undersize" },
32 	{ 0x02, "rx_fragments" },
33 	{ 0x03, "rx_oversize" },
34 	{ 0x04, "rx_jabbers" },
35 	{ 0x05, "rx_symbol_err" },
36 	{ 0x06, "rx_crc_err" },
37 	{ 0x07, "rx_align_err" },
38 	{ 0x08, "rx_mac_ctrl" },
39 	{ 0x09, "rx_pause" },
40 	{ 0x0A, "rx_bcast" },
41 	{ 0x0B, "rx_mcast" },
42 	{ 0x0C, "rx_ucast" },
43 	{ 0x0D, "rx_64_or_less" },
44 	{ 0x0E, "rx_65_127" },
45 	{ 0x0F, "rx_128_255" },
46 	{ 0x10, "rx_256_511" },
47 	{ 0x11, "rx_512_1023" },
48 	{ 0x12, "rx_1024_1522" },
49 	{ 0x13, "rx_1523_2000" },
50 	{ 0x14, "rx_2001" },
51 	{ 0x15, "tx_hi" },
52 	{ 0x16, "tx_late_col" },
53 	{ 0x17, "tx_pause" },
54 	{ 0x18, "tx_bcast" },
55 	{ 0x19, "tx_mcast" },
56 	{ 0x1A, "tx_ucast" },
57 	{ 0x1B, "tx_deferred" },
58 	{ 0x1C, "tx_total_col" },
59 	{ 0x1D, "tx_exc_col" },
60 	{ 0x1E, "tx_single_col" },
61 	{ 0x1F, "tx_mult_col" },
62 	{ 0x80, "rx_total" },
63 	{ 0x81, "tx_total" },
64 	{ 0x82, "rx_discards" },
65 	{ 0x83, "tx_discards" },
66 };
67 
68 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
69 {
70 	u32 data;
71 
72 	ksz_read32(dev, addr, &data);
73 	if (set)
74 		data |= bits;
75 	else
76 		data &= ~bits;
77 	ksz_write32(dev, addr, data);
78 }
79 
80 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
81 			       u32 bits, bool set)
82 {
83 	u32 addr;
84 	u32 data;
85 
86 	addr = PORT_CTRL_ADDR(port, offset);
87 	ksz_read32(dev, addr, &data);
88 
89 	if (set)
90 		data |= bits;
91 	else
92 		data &= ~bits;
93 
94 	ksz_write32(dev, addr, data);
95 }
96 
97 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton,
98 					int timeout)
99 {
100 	u8 data;
101 
102 	do {
103 		ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
104 		if (!(data & waiton))
105 			break;
106 		usleep_range(1, 10);
107 	} while (timeout-- > 0);
108 
109 	if (timeout <= 0)
110 		return -ETIMEDOUT;
111 
112 	return 0;
113 }
114 
115 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
116 				  u32 *vlan_table)
117 {
118 	int ret;
119 
120 	mutex_lock(&dev->vlan_mutex);
121 
122 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
123 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
124 
125 	/* wait to be cleared */
126 	ret = ksz9477_wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
127 	if (ret < 0) {
128 		dev_dbg(dev->dev, "Failed to read vlan table\n");
129 		goto exit;
130 	}
131 
132 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
133 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
134 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
135 
136 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
137 
138 exit:
139 	mutex_unlock(&dev->vlan_mutex);
140 
141 	return ret;
142 }
143 
144 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
145 				  u32 *vlan_table)
146 {
147 	int ret;
148 
149 	mutex_lock(&dev->vlan_mutex);
150 
151 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
152 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
153 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
154 
155 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
156 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
157 
158 	/* wait to be cleared */
159 	ret = ksz9477_wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
160 	if (ret < 0) {
161 		dev_dbg(dev->dev, "Failed to write vlan table\n");
162 		goto exit;
163 	}
164 
165 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
166 
167 	/* update vlan cache table */
168 	dev->vlan_cache[vid].table[0] = vlan_table[0];
169 	dev->vlan_cache[vid].table[1] = vlan_table[1];
170 	dev->vlan_cache[vid].table[2] = vlan_table[2];
171 
172 exit:
173 	mutex_unlock(&dev->vlan_mutex);
174 
175 	return ret;
176 }
177 
178 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
179 {
180 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
181 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
182 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
183 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
184 }
185 
186 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
187 {
188 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
189 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
190 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
191 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
192 }
193 
194 static int ksz9477_wait_alu_ready(struct ksz_device *dev, u32 waiton,
195 				  int timeout)
196 {
197 	u32 data;
198 
199 	do {
200 		ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
201 		if (!(data & waiton))
202 			break;
203 		usleep_range(1, 10);
204 	} while (timeout-- > 0);
205 
206 	if (timeout <= 0)
207 		return -ETIMEDOUT;
208 
209 	return 0;
210 }
211 
212 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev, u32 waiton,
213 				      int timeout)
214 {
215 	u32 data;
216 
217 	do {
218 		ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
219 		if (!(data & waiton))
220 			break;
221 		usleep_range(1, 10);
222 	} while (timeout-- > 0);
223 
224 	if (timeout <= 0)
225 		return -ETIMEDOUT;
226 
227 	return 0;
228 }
229 
230 static int ksz9477_reset_switch(struct ksz_device *dev)
231 {
232 	u8 data8;
233 	u16 data16;
234 	u32 data32;
235 
236 	/* reset switch */
237 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
238 
239 	/* turn off SPI DO Edge select */
240 	ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
241 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
242 	ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
243 
244 	/* default configuration */
245 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
246 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
247 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
248 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
249 
250 	/* disable interrupts */
251 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
252 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
253 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
254 
255 	/* set broadcast storm protection 10% rate */
256 	ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
257 	data16 &= ~BROADCAST_STORM_RATE;
258 	data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
259 	ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
260 
261 	if (dev->synclko_125)
262 		ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
263 			   SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
264 
265 	return 0;
266 }
267 
268 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
269 			      u64 *cnt)
270 {
271 	struct ksz_poll_ctx ctx = {
272 		.dev = dev,
273 		.port = port,
274 		.offset = REG_PORT_MIB_CTRL_STAT__4,
275 	};
276 	struct ksz_port *p = &dev->ports[port];
277 	u32 data;
278 	int ret;
279 
280 	/* retain the flush/freeze bit */
281 	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
282 	data |= MIB_COUNTER_READ;
283 	data |= (addr << MIB_COUNTER_INDEX_S);
284 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
285 
286 	ret = readx_poll_timeout(ksz_pread32_poll, &ctx, data,
287 				 !(data & MIB_COUNTER_READ), 10, 1000);
288 
289 	/* failed to read MIB. get out of loop */
290 	if (ret < 0) {
291 		dev_dbg(dev->dev, "Failed to get MIB\n");
292 		return;
293 	}
294 
295 	/* count resets upon read */
296 	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
297 	*cnt += data;
298 }
299 
300 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
301 			      u64 *dropped, u64 *cnt)
302 {
303 	addr = ksz9477_mib_names[addr].index;
304 	ksz9477_r_mib_cnt(dev, port, addr, cnt);
305 }
306 
307 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
308 {
309 	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
310 	struct ksz_port *p = &dev->ports[port];
311 
312 	/* enable/disable the port for flush/freeze function */
313 	mutex_lock(&p->mib.cnt_mutex);
314 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
315 
316 	/* used by MIB counter reading code to know freeze is enabled */
317 	p->freeze = freeze;
318 	mutex_unlock(&p->mib.cnt_mutex);
319 }
320 
321 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
322 {
323 	struct ksz_port_mib *mib = &dev->ports[port].mib;
324 
325 	/* flush all enabled port MIB counters */
326 	mutex_lock(&mib->cnt_mutex);
327 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
328 		     MIB_COUNTER_FLUSH_FREEZE);
329 	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
330 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
331 	mutex_unlock(&mib->cnt_mutex);
332 
333 	mib->cnt_ptr = 0;
334 	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
335 }
336 
337 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
338 						      int port)
339 {
340 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
341 	struct ksz_device *dev = ds->priv;
342 
343 	if (dev->features & IS_9893)
344 		proto = DSA_TAG_PROTO_KSZ9893;
345 	return proto;
346 }
347 
348 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
349 {
350 	struct ksz_device *dev = ds->priv;
351 	u16 val = 0xffff;
352 
353 	/* No real PHY after this. Simulate the PHY.
354 	 * A fixed PHY can be setup in the device tree, but this function is
355 	 * still called for that port during initialization.
356 	 * For RGMII PHY there is no way to access it so the fixed PHY should
357 	 * be used.  For SGMII PHY the supporting code will be added later.
358 	 */
359 	if (addr >= dev->phy_port_cnt) {
360 		struct ksz_port *p = &dev->ports[addr];
361 
362 		switch (reg) {
363 		case MII_BMCR:
364 			val = 0x1140;
365 			break;
366 		case MII_BMSR:
367 			val = 0x796d;
368 			break;
369 		case MII_PHYSID1:
370 			val = 0x0022;
371 			break;
372 		case MII_PHYSID2:
373 			val = 0x1631;
374 			break;
375 		case MII_ADVERTISE:
376 			val = 0x05e1;
377 			break;
378 		case MII_LPA:
379 			val = 0xc5e1;
380 			break;
381 		case MII_CTRL1000:
382 			val = 0x0700;
383 			break;
384 		case MII_STAT1000:
385 			if (p->phydev.speed == SPEED_1000)
386 				val = 0x3800;
387 			else
388 				val = 0;
389 			break;
390 		}
391 	} else {
392 		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
393 	}
394 
395 	return val;
396 }
397 
398 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
399 			       u16 val)
400 {
401 	struct ksz_device *dev = ds->priv;
402 
403 	/* No real PHY after this. */
404 	if (addr >= dev->phy_port_cnt)
405 		return 0;
406 
407 	/* No gigabit support.  Do not write to this register. */
408 	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
409 		return 0;
410 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
411 
412 	return 0;
413 }
414 
415 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
416 				u32 stringset, uint8_t *buf)
417 {
418 	int i;
419 
420 	if (stringset != ETH_SS_STATS)
421 		return;
422 
423 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
424 		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
425 		       ETH_GSTRING_LEN);
426 	}
427 }
428 
429 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
430 				    u8 member)
431 {
432 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
433 	dev->ports[port].member = member;
434 }
435 
436 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
437 				       u8 state)
438 {
439 	struct ksz_device *dev = ds->priv;
440 	struct ksz_port *p = &dev->ports[port];
441 	u8 data;
442 	int member = -1;
443 	int forward = dev->member;
444 
445 	ksz_pread8(dev, port, P_STP_CTRL, &data);
446 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
447 
448 	switch (state) {
449 	case BR_STATE_DISABLED:
450 		data |= PORT_LEARN_DISABLE;
451 		if (port != dev->cpu_port)
452 			member = 0;
453 		break;
454 	case BR_STATE_LISTENING:
455 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
456 		if (port != dev->cpu_port &&
457 		    p->stp_state == BR_STATE_DISABLED)
458 			member = dev->host_mask | p->vid_member;
459 		break;
460 	case BR_STATE_LEARNING:
461 		data |= PORT_RX_ENABLE;
462 		break;
463 	case BR_STATE_FORWARDING:
464 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
465 
466 		/* This function is also used internally. */
467 		if (port == dev->cpu_port)
468 			break;
469 
470 		member = dev->host_mask | p->vid_member;
471 		mutex_lock(&dev->dev_mutex);
472 
473 		/* Port is a member of a bridge. */
474 		if (dev->br_member & (1 << port)) {
475 			dev->member |= (1 << port);
476 			member = dev->member;
477 		}
478 		mutex_unlock(&dev->dev_mutex);
479 		break;
480 	case BR_STATE_BLOCKING:
481 		data |= PORT_LEARN_DISABLE;
482 		if (port != dev->cpu_port &&
483 		    p->stp_state == BR_STATE_DISABLED)
484 			member = dev->host_mask | p->vid_member;
485 		break;
486 	default:
487 		dev_err(ds->dev, "invalid STP state: %d\n", state);
488 		return;
489 	}
490 
491 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
492 	p->stp_state = state;
493 	mutex_lock(&dev->dev_mutex);
494 	if (data & PORT_RX_ENABLE)
495 		dev->rx_ports |= (1 << port);
496 	else
497 		dev->rx_ports &= ~(1 << port);
498 	if (data & PORT_TX_ENABLE)
499 		dev->tx_ports |= (1 << port);
500 	else
501 		dev->tx_ports &= ~(1 << port);
502 
503 	/* Port membership may share register with STP state. */
504 	if (member >= 0 && member != p->member)
505 		ksz9477_cfg_port_member(dev, port, (u8)member);
506 
507 	/* Check if forwarding needs to be updated. */
508 	if (state != BR_STATE_FORWARDING) {
509 		if (dev->br_member & (1 << port))
510 			dev->member &= ~(1 << port);
511 	}
512 
513 	/* When topology has changed the function ksz_update_port_member
514 	 * should be called to modify port forwarding behavior.
515 	 */
516 	if (forward != dev->member)
517 		ksz_update_port_member(dev, port);
518 	mutex_unlock(&dev->dev_mutex);
519 }
520 
521 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
522 {
523 	u8 data;
524 
525 	ksz_read8(dev, REG_SW_LUE_CTRL_2, &data);
526 	data &= ~(SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S);
527 	data |= (SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
528 	ksz_write8(dev, REG_SW_LUE_CTRL_2, data);
529 	if (port < dev->mib_port_cnt) {
530 		/* flush individual port */
531 		ksz_pread8(dev, port, P_STP_CTRL, &data);
532 		if (!(data & PORT_LEARN_DISABLE))
533 			ksz_pwrite8(dev, port, P_STP_CTRL,
534 				    data | PORT_LEARN_DISABLE);
535 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
536 		ksz_pwrite8(dev, port, P_STP_CTRL, data);
537 	} else {
538 		/* flush all */
539 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
540 	}
541 }
542 
543 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
544 				       bool flag)
545 {
546 	struct ksz_device *dev = ds->priv;
547 
548 	if (flag) {
549 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
550 			     PORT_VLAN_LOOKUP_VID_0, true);
551 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
552 	} else {
553 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
554 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
555 			     PORT_VLAN_LOOKUP_VID_0, false);
556 	}
557 
558 	return 0;
559 }
560 
561 static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
562 				  const struct switchdev_obj_port_vlan *vlan)
563 {
564 	struct ksz_device *dev = ds->priv;
565 	u32 vlan_table[3];
566 	u16 vid;
567 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
568 
569 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
570 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
571 			dev_dbg(dev->dev, "Failed to get vlan table\n");
572 			return;
573 		}
574 
575 		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
576 		if (untagged)
577 			vlan_table[1] |= BIT(port);
578 		else
579 			vlan_table[1] &= ~BIT(port);
580 		vlan_table[1] &= ~(BIT(dev->cpu_port));
581 
582 		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
583 
584 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
585 			dev_dbg(dev->dev, "Failed to set vlan table\n");
586 			return;
587 		}
588 
589 		/* change PVID */
590 		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
591 			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
592 	}
593 }
594 
595 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
596 				 const struct switchdev_obj_port_vlan *vlan)
597 {
598 	struct ksz_device *dev = ds->priv;
599 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
600 	u32 vlan_table[3];
601 	u16 vid;
602 	u16 pvid;
603 
604 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
605 	pvid = pvid & 0xFFF;
606 
607 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
608 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
609 			dev_dbg(dev->dev, "Failed to get vlan table\n");
610 			return -ETIMEDOUT;
611 		}
612 
613 		vlan_table[2] &= ~BIT(port);
614 
615 		if (pvid == vid)
616 			pvid = 1;
617 
618 		if (untagged)
619 			vlan_table[1] &= ~BIT(port);
620 
621 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
622 			dev_dbg(dev->dev, "Failed to set vlan table\n");
623 			return -ETIMEDOUT;
624 		}
625 	}
626 
627 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
628 
629 	return 0;
630 }
631 
632 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
633 				const unsigned char *addr, u16 vid)
634 {
635 	struct ksz_device *dev = ds->priv;
636 	u32 alu_table[4];
637 	u32 data;
638 	int ret = 0;
639 
640 	mutex_lock(&dev->alu_mutex);
641 
642 	/* find any entry with mac & vid */
643 	data = vid << ALU_FID_INDEX_S;
644 	data |= ((addr[0] << 8) | addr[1]);
645 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
646 
647 	data = ((addr[2] << 24) | (addr[3] << 16));
648 	data |= ((addr[4] << 8) | addr[5]);
649 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
650 
651 	/* start read operation */
652 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
653 
654 	/* wait to be finished */
655 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
656 	if (ret < 0) {
657 		dev_dbg(dev->dev, "Failed to read ALU\n");
658 		goto exit;
659 	}
660 
661 	/* read ALU entry */
662 	ksz9477_read_table(dev, alu_table);
663 
664 	/* update ALU entry */
665 	alu_table[0] = ALU_V_STATIC_VALID;
666 	alu_table[1] |= BIT(port);
667 	if (vid)
668 		alu_table[1] |= ALU_V_USE_FID;
669 	alu_table[2] = (vid << ALU_V_FID_S);
670 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
671 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
672 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
673 
674 	ksz9477_write_table(dev, alu_table);
675 
676 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
677 
678 	/* wait to be finished */
679 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
680 	if (ret < 0)
681 		dev_dbg(dev->dev, "Failed to write ALU\n");
682 
683 exit:
684 	mutex_unlock(&dev->alu_mutex);
685 
686 	return ret;
687 }
688 
689 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
690 				const unsigned char *addr, u16 vid)
691 {
692 	struct ksz_device *dev = ds->priv;
693 	u32 alu_table[4];
694 	u32 data;
695 	int ret = 0;
696 
697 	mutex_lock(&dev->alu_mutex);
698 
699 	/* read any entry with mac & vid */
700 	data = vid << ALU_FID_INDEX_S;
701 	data |= ((addr[0] << 8) | addr[1]);
702 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
703 
704 	data = ((addr[2] << 24) | (addr[3] << 16));
705 	data |= ((addr[4] << 8) | addr[5]);
706 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
707 
708 	/* start read operation */
709 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
710 
711 	/* wait to be finished */
712 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
713 	if (ret < 0) {
714 		dev_dbg(dev->dev, "Failed to read ALU\n");
715 		goto exit;
716 	}
717 
718 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
719 	if (alu_table[0] & ALU_V_STATIC_VALID) {
720 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
721 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
722 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
723 
724 		/* clear forwarding port */
725 		alu_table[2] &= ~BIT(port);
726 
727 		/* if there is no port to forward, clear table */
728 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
729 			alu_table[0] = 0;
730 			alu_table[1] = 0;
731 			alu_table[2] = 0;
732 			alu_table[3] = 0;
733 		}
734 	} else {
735 		alu_table[0] = 0;
736 		alu_table[1] = 0;
737 		alu_table[2] = 0;
738 		alu_table[3] = 0;
739 	}
740 
741 	ksz9477_write_table(dev, alu_table);
742 
743 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
744 
745 	/* wait to be finished */
746 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
747 	if (ret < 0)
748 		dev_dbg(dev->dev, "Failed to write ALU\n");
749 
750 exit:
751 	mutex_unlock(&dev->alu_mutex);
752 
753 	return ret;
754 }
755 
756 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
757 {
758 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
759 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
760 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
761 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
762 			ALU_V_PRIO_AGE_CNT_M;
763 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
764 
765 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
766 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
767 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
768 
769 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
770 
771 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
772 	alu->mac[1] = alu_table[2] & 0xFF;
773 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
774 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
775 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
776 	alu->mac[5] = alu_table[3] & 0xFF;
777 }
778 
779 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
780 				 dsa_fdb_dump_cb_t *cb, void *data)
781 {
782 	struct ksz_device *dev = ds->priv;
783 	int ret = 0;
784 	u32 ksz_data;
785 	u32 alu_table[4];
786 	struct alu_struct alu;
787 	int timeout;
788 
789 	mutex_lock(&dev->alu_mutex);
790 
791 	/* start ALU search */
792 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
793 
794 	do {
795 		timeout = 1000;
796 		do {
797 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
798 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
799 				break;
800 			usleep_range(1, 10);
801 		} while (timeout-- > 0);
802 
803 		if (!timeout) {
804 			dev_dbg(dev->dev, "Failed to search ALU\n");
805 			ret = -ETIMEDOUT;
806 			goto exit;
807 		}
808 
809 		/* read ALU table */
810 		ksz9477_read_table(dev, alu_table);
811 
812 		ksz9477_convert_alu(&alu, alu_table);
813 
814 		if (alu.port_forward & BIT(port)) {
815 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
816 			if (ret)
817 				goto exit;
818 		}
819 	} while (ksz_data & ALU_START);
820 
821 exit:
822 
823 	/* stop ALU search */
824 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
825 
826 	mutex_unlock(&dev->alu_mutex);
827 
828 	return ret;
829 }
830 
831 static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
832 				 const struct switchdev_obj_port_mdb *mdb)
833 {
834 	struct ksz_device *dev = ds->priv;
835 	u32 static_table[4];
836 	u32 data;
837 	int index;
838 	u32 mac_hi, mac_lo;
839 
840 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
841 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
842 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
843 
844 	mutex_lock(&dev->alu_mutex);
845 
846 	for (index = 0; index < dev->num_statics; index++) {
847 		/* find empty slot first */
848 		data = (index << ALU_STAT_INDEX_S) |
849 			ALU_STAT_READ | ALU_STAT_START;
850 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
851 
852 		/* wait to be finished */
853 		if (ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
854 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
855 			goto exit;
856 		}
857 
858 		/* read ALU static table */
859 		ksz9477_read_table(dev, static_table);
860 
861 		if (static_table[0] & ALU_V_STATIC_VALID) {
862 			/* check this has same vid & mac address */
863 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
864 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
865 			    static_table[3] == mac_lo) {
866 				/* found matching one */
867 				break;
868 			}
869 		} else {
870 			/* found empty one */
871 			break;
872 		}
873 	}
874 
875 	/* no available entry */
876 	if (index == dev->num_statics)
877 		goto exit;
878 
879 	/* add entry */
880 	static_table[0] = ALU_V_STATIC_VALID;
881 	static_table[1] |= BIT(port);
882 	if (mdb->vid)
883 		static_table[1] |= ALU_V_USE_FID;
884 	static_table[2] = (mdb->vid << ALU_V_FID_S);
885 	static_table[2] |= mac_hi;
886 	static_table[3] = mac_lo;
887 
888 	ksz9477_write_table(dev, static_table);
889 
890 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
891 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
892 
893 	/* wait to be finished */
894 	if (ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
895 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
896 
897 exit:
898 	mutex_unlock(&dev->alu_mutex);
899 }
900 
901 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
902 				const struct switchdev_obj_port_mdb *mdb)
903 {
904 	struct ksz_device *dev = ds->priv;
905 	u32 static_table[4];
906 	u32 data;
907 	int index;
908 	int ret = 0;
909 	u32 mac_hi, mac_lo;
910 
911 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
912 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
913 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
914 
915 	mutex_lock(&dev->alu_mutex);
916 
917 	for (index = 0; index < dev->num_statics; index++) {
918 		/* find empty slot first */
919 		data = (index << ALU_STAT_INDEX_S) |
920 			ALU_STAT_READ | ALU_STAT_START;
921 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
922 
923 		/* wait to be finished */
924 		ret = ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
925 		if (ret < 0) {
926 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
927 			goto exit;
928 		}
929 
930 		/* read ALU static table */
931 		ksz9477_read_table(dev, static_table);
932 
933 		if (static_table[0] & ALU_V_STATIC_VALID) {
934 			/* check this has same vid & mac address */
935 
936 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
937 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
938 			    static_table[3] == mac_lo) {
939 				/* found matching one */
940 				break;
941 			}
942 		}
943 	}
944 
945 	/* no available entry */
946 	if (index == dev->num_statics)
947 		goto exit;
948 
949 	/* clear port */
950 	static_table[1] &= ~BIT(port);
951 
952 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
953 		/* delete entry */
954 		static_table[0] = 0;
955 		static_table[1] = 0;
956 		static_table[2] = 0;
957 		static_table[3] = 0;
958 	}
959 
960 	ksz9477_write_table(dev, static_table);
961 
962 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
963 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
964 
965 	/* wait to be finished */
966 	ret = ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
967 	if (ret < 0)
968 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
969 
970 exit:
971 	mutex_unlock(&dev->alu_mutex);
972 
973 	return ret;
974 }
975 
976 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
977 				   struct dsa_mall_mirror_tc_entry *mirror,
978 				   bool ingress)
979 {
980 	struct ksz_device *dev = ds->priv;
981 
982 	if (ingress)
983 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
984 	else
985 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
986 
987 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
988 
989 	/* configure mirror port */
990 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
991 		     PORT_MIRROR_SNIFFER, true);
992 
993 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
994 
995 	return 0;
996 }
997 
998 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
999 				    struct dsa_mall_mirror_tc_entry *mirror)
1000 {
1001 	struct ksz_device *dev = ds->priv;
1002 	u8 data;
1003 
1004 	if (mirror->ingress)
1005 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1006 	else
1007 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1008 
1009 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1010 
1011 	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1012 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1013 			     PORT_MIRROR_SNIFFER, false);
1014 }
1015 
1016 static void ksz9477_phy_setup(struct ksz_device *dev, int port,
1017 			      struct phy_device *phy)
1018 {
1019 	/* Only apply to port with PHY. */
1020 	if (port >= dev->phy_port_cnt)
1021 		return;
1022 
1023 	/* The MAC actually cannot run in 1000 half-duplex mode. */
1024 	phy_remove_link_mode(phy,
1025 			     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1026 
1027 	/* PHY does not support gigabit. */
1028 	if (!(dev->features & GBIT_SUPPORT))
1029 		phy_remove_link_mode(phy,
1030 				     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1031 }
1032 
1033 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
1034 {
1035 	bool gbit;
1036 
1037 	if (dev->features & NEW_XMII)
1038 		gbit = !(data & PORT_MII_NOT_1GBIT);
1039 	else
1040 		gbit = !!(data & PORT_MII_1000MBIT_S1);
1041 	return gbit;
1042 }
1043 
1044 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
1045 {
1046 	if (dev->features & NEW_XMII) {
1047 		if (gbit)
1048 			*data &= ~PORT_MII_NOT_1GBIT;
1049 		else
1050 			*data |= PORT_MII_NOT_1GBIT;
1051 	} else {
1052 		if (gbit)
1053 			*data |= PORT_MII_1000MBIT_S1;
1054 		else
1055 			*data &= ~PORT_MII_1000MBIT_S1;
1056 	}
1057 }
1058 
1059 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1060 {
1061 	int mode;
1062 
1063 	if (dev->features & NEW_XMII) {
1064 		switch (data & PORT_MII_SEL_M) {
1065 		case PORT_MII_SEL:
1066 			mode = 0;
1067 			break;
1068 		case PORT_RMII_SEL:
1069 			mode = 1;
1070 			break;
1071 		case PORT_GMII_SEL:
1072 			mode = 2;
1073 			break;
1074 		default:
1075 			mode = 3;
1076 		}
1077 	} else {
1078 		switch (data & PORT_MII_SEL_M) {
1079 		case PORT_MII_SEL_S1:
1080 			mode = 0;
1081 			break;
1082 		case PORT_RMII_SEL_S1:
1083 			mode = 1;
1084 			break;
1085 		case PORT_GMII_SEL_S1:
1086 			mode = 2;
1087 			break;
1088 		default:
1089 			mode = 3;
1090 		}
1091 	}
1092 	return mode;
1093 }
1094 
1095 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1096 {
1097 	u8 xmii;
1098 
1099 	if (dev->features & NEW_XMII) {
1100 		switch (mode) {
1101 		case 0:
1102 			xmii = PORT_MII_SEL;
1103 			break;
1104 		case 1:
1105 			xmii = PORT_RMII_SEL;
1106 			break;
1107 		case 2:
1108 			xmii = PORT_GMII_SEL;
1109 			break;
1110 		default:
1111 			xmii = PORT_RGMII_SEL;
1112 			break;
1113 		}
1114 	} else {
1115 		switch (mode) {
1116 		case 0:
1117 			xmii = PORT_MII_SEL_S1;
1118 			break;
1119 		case 1:
1120 			xmii = PORT_RMII_SEL_S1;
1121 			break;
1122 		case 2:
1123 			xmii = PORT_GMII_SEL_S1;
1124 			break;
1125 		default:
1126 			xmii = PORT_RGMII_SEL_S1;
1127 			break;
1128 		}
1129 	}
1130 	*data &= ~PORT_MII_SEL_M;
1131 	*data |= xmii;
1132 }
1133 
1134 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1135 {
1136 	phy_interface_t interface;
1137 	bool gbit;
1138 	int mode;
1139 	u8 data8;
1140 
1141 	if (port < dev->phy_port_cnt)
1142 		return PHY_INTERFACE_MODE_NA;
1143 	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1144 	gbit = ksz9477_get_gbit(dev, data8);
1145 	mode = ksz9477_get_xmii(dev, data8);
1146 	switch (mode) {
1147 	case 2:
1148 		interface = PHY_INTERFACE_MODE_GMII;
1149 		if (gbit)
1150 			break;
1151 		/* fall through */
1152 	case 0:
1153 		interface = PHY_INTERFACE_MODE_MII;
1154 		break;
1155 	case 1:
1156 		interface = PHY_INTERFACE_MODE_RMII;
1157 		break;
1158 	default:
1159 		interface = PHY_INTERFACE_MODE_RGMII;
1160 		if (data8 & PORT_RGMII_ID_EG_ENABLE)
1161 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
1162 		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1163 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
1164 			if (data8 & PORT_RGMII_ID_EG_ENABLE)
1165 				interface = PHY_INTERFACE_MODE_RGMII_ID;
1166 		}
1167 		break;
1168 	}
1169 	return interface;
1170 }
1171 
1172 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1173 				   u8 dev_addr, u16 reg_addr, u16 val)
1174 {
1175 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1176 		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1177 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1178 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1179 		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1180 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1181 }
1182 
1183 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1184 {
1185 	/* Apply PHY settings to address errata listed in
1186 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1187 	 * Silicon Errata and Data Sheet Clarification documents:
1188 	 *
1189 	 * Register settings are needed to improve PHY receive performance
1190 	 */
1191 	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1192 	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1193 	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1194 	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1195 	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1196 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1197 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1198 
1199 	/* Transmit waveform amplitude can be improved
1200 	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1201 	 */
1202 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1203 
1204 	/* Energy Efficient Ethernet (EEE) feature select must
1205 	 * be manually disabled (except on KSZ8565 which is 100Mbit)
1206 	 */
1207 	if (dev->features & GBIT_SUPPORT)
1208 		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1209 
1210 	/* Register settings are required to meet data sheet
1211 	 * supply current specifications
1212 	 */
1213 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1214 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1215 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1216 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1217 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1218 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1219 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1220 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1221 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1222 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1223 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1224 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1225 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1226 }
1227 
1228 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1229 {
1230 	u8 data8;
1231 	u8 member;
1232 	u16 data16;
1233 	struct ksz_port *p = &dev->ports[port];
1234 
1235 	/* enable tag tail for host port */
1236 	if (cpu_port)
1237 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1238 			     true);
1239 
1240 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1241 
1242 	/* set back pressure */
1243 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1244 
1245 	/* enable broadcast storm limit */
1246 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1247 
1248 	/* disable DiffServ priority */
1249 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1250 
1251 	/* replace priority */
1252 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1253 		     false);
1254 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1255 			   MTI_PVID_REPLACE, false);
1256 
1257 	/* enable 802.1p priority */
1258 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1259 
1260 	if (port < dev->phy_port_cnt) {
1261 		/* do not force flow control */
1262 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1263 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1264 			     false);
1265 
1266 		if (dev->phy_errata_9477)
1267 			ksz9477_phy_errata_setup(dev, port);
1268 	} else {
1269 		/* force flow control */
1270 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1271 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1272 			     true);
1273 
1274 		/* configure MAC to 1G & RGMII mode */
1275 		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1276 		switch (dev->interface) {
1277 		case PHY_INTERFACE_MODE_MII:
1278 			ksz9477_set_xmii(dev, 0, &data8);
1279 			ksz9477_set_gbit(dev, false, &data8);
1280 			p->phydev.speed = SPEED_100;
1281 			break;
1282 		case PHY_INTERFACE_MODE_RMII:
1283 			ksz9477_set_xmii(dev, 1, &data8);
1284 			ksz9477_set_gbit(dev, false, &data8);
1285 			p->phydev.speed = SPEED_100;
1286 			break;
1287 		case PHY_INTERFACE_MODE_GMII:
1288 			ksz9477_set_xmii(dev, 2, &data8);
1289 			ksz9477_set_gbit(dev, true, &data8);
1290 			p->phydev.speed = SPEED_1000;
1291 			break;
1292 		default:
1293 			ksz9477_set_xmii(dev, 3, &data8);
1294 			ksz9477_set_gbit(dev, true, &data8);
1295 			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1296 			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1297 			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1298 			    dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1299 				data8 |= PORT_RGMII_ID_IG_ENABLE;
1300 			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1301 			    dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1302 				data8 |= PORT_RGMII_ID_EG_ENABLE;
1303 			p->phydev.speed = SPEED_1000;
1304 			break;
1305 		}
1306 		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1307 		p->phydev.duplex = 1;
1308 	}
1309 	mutex_lock(&dev->dev_mutex);
1310 	if (cpu_port) {
1311 		member = dev->port_mask;
1312 		dev->on_ports = dev->host_mask;
1313 		dev->live_ports = dev->host_mask;
1314 	} else {
1315 		member = dev->host_mask | p->vid_member;
1316 		dev->on_ports |= (1 << port);
1317 
1318 		/* Link was detected before port is enabled. */
1319 		if (p->phydev.link)
1320 			dev->live_ports |= (1 << port);
1321 	}
1322 	mutex_unlock(&dev->dev_mutex);
1323 	ksz9477_cfg_port_member(dev, port, member);
1324 
1325 	/* clear pending interrupts */
1326 	if (port < dev->phy_port_cnt)
1327 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1328 }
1329 
1330 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1331 {
1332 	struct ksz_device *dev = ds->priv;
1333 	struct ksz_port *p;
1334 	int i;
1335 
1336 	ds->num_ports = dev->port_cnt;
1337 
1338 	for (i = 0; i < dev->port_cnt; i++) {
1339 		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1340 			phy_interface_t interface;
1341 
1342 			dev->cpu_port = i;
1343 			dev->host_mask = (1 << dev->cpu_port);
1344 			dev->port_mask |= dev->host_mask;
1345 
1346 			/* Read from XMII register to determine host port
1347 			 * interface.  If set specifically in device tree
1348 			 * note the difference to help debugging.
1349 			 */
1350 			interface = ksz9477_get_interface(dev, i);
1351 			if (!dev->interface)
1352 				dev->interface = interface;
1353 			if (interface && interface != dev->interface)
1354 				dev_info(dev->dev,
1355 					 "use %s instead of %s\n",
1356 					  phy_modes(dev->interface),
1357 					  phy_modes(interface));
1358 
1359 			/* enable cpu port */
1360 			ksz9477_port_setup(dev, i, true);
1361 			p = &dev->ports[dev->cpu_port];
1362 			p->vid_member = dev->port_mask;
1363 			p->on = 1;
1364 		}
1365 	}
1366 
1367 	dev->member = dev->host_mask;
1368 
1369 	for (i = 0; i < dev->mib_port_cnt; i++) {
1370 		if (i == dev->cpu_port)
1371 			continue;
1372 		p = &dev->ports[i];
1373 
1374 		/* Initialize to non-zero so that ksz_cfg_port_member() will
1375 		 * be called.
1376 		 */
1377 		p->vid_member = (1 << i);
1378 		p->member = dev->port_mask;
1379 		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1380 		p->on = 1;
1381 		if (i < dev->phy_port_cnt)
1382 			p->phy = 1;
1383 		if (dev->chip_id == 0x00947700 && i == 6) {
1384 			p->sgmii = 1;
1385 
1386 			/* SGMII PHY detection code is not implemented yet. */
1387 			p->phy = 0;
1388 		}
1389 	}
1390 }
1391 
1392 static int ksz9477_setup(struct dsa_switch *ds)
1393 {
1394 	struct ksz_device *dev = ds->priv;
1395 	int ret = 0;
1396 
1397 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1398 				       dev->num_vlans, GFP_KERNEL);
1399 	if (!dev->vlan_cache)
1400 		return -ENOMEM;
1401 
1402 	ret = ksz9477_reset_switch(dev);
1403 	if (ret) {
1404 		dev_err(ds->dev, "failed to reset switch\n");
1405 		return ret;
1406 	}
1407 
1408 	/* Required for port partitioning. */
1409 	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1410 		      true);
1411 
1412 	/* Do not work correctly with tail tagging. */
1413 	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1414 
1415 	/* accept packet up to 2000bytes */
1416 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1417 
1418 	ksz9477_config_cpu_port(ds);
1419 
1420 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1421 
1422 	/* queue based egress rate limit */
1423 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1424 
1425 	/* enable global MIB counter freeze function */
1426 	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1427 
1428 	/* start switch */
1429 	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1430 
1431 	ksz_init_mib_timer(dev);
1432 
1433 	return 0;
1434 }
1435 
1436 static const struct dsa_switch_ops ksz9477_switch_ops = {
1437 	.get_tag_protocol	= ksz9477_get_tag_protocol,
1438 	.setup			= ksz9477_setup,
1439 	.phy_read		= ksz9477_phy_read16,
1440 	.phy_write		= ksz9477_phy_write16,
1441 	.adjust_link		= ksz_adjust_link,
1442 	.port_enable		= ksz_enable_port,
1443 	.port_disable		= ksz_disable_port,
1444 	.get_strings		= ksz9477_get_strings,
1445 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1446 	.get_sset_count		= ksz_sset_count,
1447 	.port_bridge_join	= ksz_port_bridge_join,
1448 	.port_bridge_leave	= ksz_port_bridge_leave,
1449 	.port_stp_state_set	= ksz9477_port_stp_state_set,
1450 	.port_fast_age		= ksz_port_fast_age,
1451 	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1452 	.port_vlan_prepare	= ksz_port_vlan_prepare,
1453 	.port_vlan_add		= ksz9477_port_vlan_add,
1454 	.port_vlan_del		= ksz9477_port_vlan_del,
1455 	.port_fdb_dump		= ksz9477_port_fdb_dump,
1456 	.port_fdb_add		= ksz9477_port_fdb_add,
1457 	.port_fdb_del		= ksz9477_port_fdb_del,
1458 	.port_mdb_prepare       = ksz_port_mdb_prepare,
1459 	.port_mdb_add           = ksz9477_port_mdb_add,
1460 	.port_mdb_del           = ksz9477_port_mdb_del,
1461 	.port_mirror_add	= ksz9477_port_mirror_add,
1462 	.port_mirror_del	= ksz9477_port_mirror_del,
1463 };
1464 
1465 static u32 ksz9477_get_port_addr(int port, int offset)
1466 {
1467 	return PORT_CTRL_ADDR(port, offset);
1468 }
1469 
1470 static int ksz9477_switch_detect(struct ksz_device *dev)
1471 {
1472 	u8 data8;
1473 	u8 id_hi;
1474 	u8 id_lo;
1475 	u32 id32;
1476 	int ret;
1477 
1478 	/* turn off SPI DO Edge select */
1479 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1480 	if (ret)
1481 		return ret;
1482 
1483 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1484 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1485 	if (ret)
1486 		return ret;
1487 
1488 	/* read chip id */
1489 	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1490 	if (ret)
1491 		return ret;
1492 	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1493 	if (ret)
1494 		return ret;
1495 
1496 	/* Number of ports can be reduced depending on chip. */
1497 	dev->mib_port_cnt = TOTAL_PORT_NUM;
1498 	dev->phy_port_cnt = 5;
1499 
1500 	/* Default capability is gigabit capable. */
1501 	dev->features = GBIT_SUPPORT;
1502 
1503 	id_hi = (u8)(id32 >> 16);
1504 	id_lo = (u8)(id32 >> 8);
1505 	if ((id_lo & 0xf) == 3) {
1506 		/* Chip is from KSZ9893 design. */
1507 		dev->features |= IS_9893;
1508 
1509 		/* Chip does not support gigabit. */
1510 		if (data8 & SW_QW_ABLE)
1511 			dev->features &= ~GBIT_SUPPORT;
1512 		dev->mib_port_cnt = 3;
1513 		dev->phy_port_cnt = 2;
1514 	} else {
1515 		/* Chip uses new XMII register definitions. */
1516 		dev->features |= NEW_XMII;
1517 
1518 		/* Chip does not support gigabit. */
1519 		if (!(data8 & SW_GIGABIT_ABLE))
1520 			dev->features &= ~GBIT_SUPPORT;
1521 	}
1522 
1523 	/* Change chip id to known ones so it can be matched against them. */
1524 	id32 = (id_hi << 16) | (id_lo << 8);
1525 
1526 	dev->chip_id = id32;
1527 
1528 	return 0;
1529 }
1530 
1531 struct ksz_chip_data {
1532 	u32 chip_id;
1533 	const char *dev_name;
1534 	int num_vlans;
1535 	int num_alus;
1536 	int num_statics;
1537 	int cpu_ports;
1538 	int port_cnt;
1539 	bool phy_errata_9477;
1540 };
1541 
1542 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1543 	{
1544 		.chip_id = 0x00947700,
1545 		.dev_name = "KSZ9477",
1546 		.num_vlans = 4096,
1547 		.num_alus = 4096,
1548 		.num_statics = 16,
1549 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1550 		.port_cnt = 7,		/* total physical port count */
1551 		.phy_errata_9477 = true,
1552 	},
1553 	{
1554 		.chip_id = 0x00989700,
1555 		.dev_name = "KSZ9897",
1556 		.num_vlans = 4096,
1557 		.num_alus = 4096,
1558 		.num_statics = 16,
1559 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1560 		.port_cnt = 7,		/* total physical port count */
1561 		.phy_errata_9477 = true,
1562 	},
1563 	{
1564 		.chip_id = 0x00989300,
1565 		.dev_name = "KSZ9893",
1566 		.num_vlans = 4096,
1567 		.num_alus = 4096,
1568 		.num_statics = 16,
1569 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1570 		.port_cnt = 3,		/* total port count */
1571 	},
1572 };
1573 
1574 static int ksz9477_switch_init(struct ksz_device *dev)
1575 {
1576 	int i;
1577 
1578 	dev->ds->ops = &ksz9477_switch_ops;
1579 
1580 	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1581 		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1582 
1583 		if (dev->chip_id == chip->chip_id) {
1584 			dev->name = chip->dev_name;
1585 			dev->num_vlans = chip->num_vlans;
1586 			dev->num_alus = chip->num_alus;
1587 			dev->num_statics = chip->num_statics;
1588 			dev->port_cnt = chip->port_cnt;
1589 			dev->cpu_ports = chip->cpu_ports;
1590 			dev->phy_errata_9477 = chip->phy_errata_9477;
1591 
1592 			break;
1593 		}
1594 	}
1595 
1596 	/* no switch found */
1597 	if (!dev->port_cnt)
1598 		return -ENODEV;
1599 
1600 	dev->port_mask = (1 << dev->port_cnt) - 1;
1601 
1602 	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1603 	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1604 
1605 	i = dev->mib_port_cnt;
1606 	dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1607 				  GFP_KERNEL);
1608 	if (!dev->ports)
1609 		return -ENOMEM;
1610 	for (i = 0; i < dev->mib_port_cnt; i++) {
1611 		mutex_init(&dev->ports[i].mib.cnt_mutex);
1612 		dev->ports[i].mib.counters =
1613 			devm_kzalloc(dev->dev,
1614 				     sizeof(u64) *
1615 				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1616 				     GFP_KERNEL);
1617 		if (!dev->ports[i].mib.counters)
1618 			return -ENOMEM;
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 static void ksz9477_switch_exit(struct ksz_device *dev)
1625 {
1626 	ksz9477_reset_switch(dev);
1627 }
1628 
1629 static const struct ksz_dev_ops ksz9477_dev_ops = {
1630 	.get_port_addr = ksz9477_get_port_addr,
1631 	.cfg_port_member = ksz9477_cfg_port_member,
1632 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1633 	.phy_setup = ksz9477_phy_setup,
1634 	.port_setup = ksz9477_port_setup,
1635 	.r_mib_cnt = ksz9477_r_mib_cnt,
1636 	.r_mib_pkt = ksz9477_r_mib_pkt,
1637 	.freeze_mib = ksz9477_freeze_mib,
1638 	.port_init_cnt = ksz9477_port_init_cnt,
1639 	.shutdown = ksz9477_reset_switch,
1640 	.detect = ksz9477_switch_detect,
1641 	.init = ksz9477_switch_init,
1642 	.exit = ksz9477_switch_exit,
1643 };
1644 
1645 int ksz9477_switch_register(struct ksz_device *dev)
1646 {
1647 	return ksz_switch_register(dev, &ksz9477_dev_ops);
1648 }
1649 EXPORT_SYMBOL(ksz9477_switch_register);
1650 
1651 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1652 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1653 MODULE_LICENSE("GPL");
1654