xref: /linux/drivers/net/dsa/microchip/ksz9477.c (revision 31392048f55f98cb01ca709d32d06d926ab9760a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <linux/if_vlan.h>
15 #include <net/dsa.h>
16 #include <net/switchdev.h>
17 
18 #include "ksz9477_reg.h"
19 #include "ksz_common.h"
20 #include "ksz9477.h"
21 
22 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
23 {
24 	regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
25 }
26 
27 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
28 			 bool set)
29 {
30 	regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
31 			   bits, set ? bits : 0);
32 }
33 
34 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
35 {
36 	regmap_update_bits(ksz_regmap_32(dev), addr, bits, set ? bits : 0);
37 }
38 
39 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
40 			       u32 bits, bool set)
41 {
42 	regmap_update_bits(ksz_regmap_32(dev), PORT_CTRL_ADDR(port, offset),
43 			   bits, set ? bits : 0);
44 }
45 
46 int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
47 {
48 	u16 frame_size;
49 
50 	if (!dsa_is_cpu_port(dev->ds, port))
51 		return 0;
52 
53 	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
54 
55 	return regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2,
56 				  REG_SW_MTU_MASK, frame_size);
57 }
58 
59 /**
60  * ksz9477_handle_wake_reason - Handle wake reason on a specified port.
61  * @dev: The device structure.
62  * @port: The port number.
63  *
64  * This function reads the PME (Power Management Event) status register of a
65  * specified port to determine the wake reason. If there is no wake event, it
66  * returns early. Otherwise, it logs the wake reason which could be due to a
67  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
68  * is then cleared to acknowledge the handling of the wake event.
69  *
70  * Return: 0 on success, or an error code on failure.
71  */
72 static int ksz9477_handle_wake_reason(struct ksz_device *dev, int port)
73 {
74 	u8 pme_status;
75 	int ret;
76 
77 	ret = ksz_pread8(dev, port, REG_PORT_PME_STATUS, &pme_status);
78 	if (ret)
79 		return ret;
80 
81 	if (!pme_status)
82 		return 0;
83 
84 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
85 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
86 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
87 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
88 
89 	return ksz_pwrite8(dev, port, REG_PORT_PME_STATUS, pme_status);
90 }
91 
92 /**
93  * ksz9477_get_wol - Get Wake-on-LAN settings for a specified port.
94  * @dev: The device structure.
95  * @port: The port number.
96  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
97  *
98  * This function checks the PME Pin Control Register to see if  PME Pin Output
99  * Enable is set, indicating PME is enabled. If enabled, it sets the supported
100  * and active WoL flags.
101  */
102 void ksz9477_get_wol(struct ksz_device *dev, int port,
103 		     struct ethtool_wolinfo *wol)
104 {
105 	u8 pme_ctrl;
106 	int ret;
107 
108 	if (!dev->wakeup_source)
109 		return;
110 
111 	wol->supported = WAKE_PHY;
112 
113 	/* Check if the current MAC address on this port can be set
114 	 * as global for WAKE_MAGIC support. The result may vary
115 	 * dynamically based on other ports configurations.
116 	 */
117 	if (ksz_is_port_mac_global_usable(dev->ds, port))
118 		wol->supported |= WAKE_MAGIC;
119 
120 	ret = ksz_pread8(dev, port, REG_PORT_PME_CTRL, &pme_ctrl);
121 	if (ret)
122 		return;
123 
124 	if (pme_ctrl & PME_WOL_MAGICPKT)
125 		wol->wolopts |= WAKE_MAGIC;
126 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
127 		wol->wolopts |= WAKE_PHY;
128 }
129 
130 /**
131  * ksz9477_set_wol - Set Wake-on-LAN settings for a specified port.
132  * @dev: The device structure.
133  * @port: The port number.
134  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
135  *
136  * This function configures Wake-on-LAN (WoL) settings for a specified port.
137  * It validates the provided WoL options, checks if PME is enabled via the
138  * switch's PME Pin Control Register, clears any previous wake reasons,
139  * and sets the Magic Packet flag in the port's PME control register if
140  * specified.
141  *
142  * Return: 0 on success, or other error codes on failure.
143  */
144 int ksz9477_set_wol(struct ksz_device *dev, int port,
145 		    struct ethtool_wolinfo *wol)
146 {
147 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
148 	bool magic_switched_off;
149 	bool magic_switched_on;
150 	int ret;
151 
152 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
153 		return -EINVAL;
154 
155 	if (!dev->wakeup_source)
156 		return -EOPNOTSUPP;
157 
158 	ret = ksz9477_handle_wake_reason(dev, port);
159 	if (ret)
160 		return ret;
161 
162 	if (wol->wolopts & WAKE_MAGIC)
163 		pme_ctrl |= PME_WOL_MAGICPKT;
164 	if (wol->wolopts & WAKE_PHY)
165 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
166 
167 	ret = ksz_pread8(dev, port, REG_PORT_PME_CTRL, &pme_ctrl_old);
168 	if (ret)
169 		return ret;
170 
171 	if (pme_ctrl_old == pme_ctrl)
172 		return 0;
173 
174 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
175 			    !(pme_ctrl & PME_WOL_MAGICPKT);
176 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
177 			    (pme_ctrl & PME_WOL_MAGICPKT);
178 
179 	/* To keep reference count of MAC address, we should do this
180 	 * operation only on change of WOL settings.
181 	 */
182 	if (magic_switched_on) {
183 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
184 		if (ret)
185 			return ret;
186 	} else if (magic_switched_off) {
187 		ksz_switch_macaddr_put(dev->ds);
188 	}
189 
190 	ret = ksz_pwrite8(dev, port, REG_PORT_PME_CTRL, pme_ctrl);
191 	if (ret) {
192 		if (magic_switched_on)
193 			ksz_switch_macaddr_put(dev->ds);
194 		return ret;
195 	}
196 
197 	return 0;
198 }
199 
200 /**
201  * ksz9477_wol_pre_shutdown - Prepares the switch device for shutdown while
202  *                            considering Wake-on-LAN (WoL) settings.
203  * @dev: The switch device structure.
204  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
205  *               enabled on any port.
206  *
207  * This function prepares the switch device for a safe shutdown while taking
208  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
209  * the wol_enabled flag accordingly to reflect whether WoL is active on any
210  * port.
211  */
212 void ksz9477_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
213 {
214 	struct dsa_port *dp;
215 	int ret;
216 
217 	*wol_enabled = false;
218 
219 	if (!dev->wakeup_source)
220 		return;
221 
222 	dsa_switch_for_each_user_port(dp, dev->ds) {
223 		u8 pme_ctrl = 0;
224 
225 		ret = ksz_pread8(dev, dp->index, REG_PORT_PME_CTRL, &pme_ctrl);
226 		if (!ret && pme_ctrl)
227 			*wol_enabled = true;
228 
229 		/* make sure there are no pending wake events which would
230 		 * prevent the device from going to sleep/shutdown.
231 		 */
232 		ksz9477_handle_wake_reason(dev, dp->index);
233 	}
234 
235 	/* Now we are save to enable PME pin. */
236 	if (*wol_enabled)
237 		ksz_write8(dev, REG_SW_PME_CTRL, PME_ENABLE);
238 }
239 
240 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
241 {
242 	unsigned int val;
243 
244 	return regmap_read_poll_timeout(ksz_regmap_8(dev), REG_SW_VLAN_CTRL,
245 					val, !(val & VLAN_START), 10, 1000);
246 }
247 
248 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
249 				  u32 *vlan_table)
250 {
251 	int ret;
252 
253 	mutex_lock(&dev->vlan_mutex);
254 
255 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
256 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
257 
258 	/* wait to be cleared */
259 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
260 	if (ret) {
261 		dev_dbg(dev->dev, "Failed to read vlan table\n");
262 		goto exit;
263 	}
264 
265 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
266 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
267 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
268 
269 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
270 
271 exit:
272 	mutex_unlock(&dev->vlan_mutex);
273 
274 	return ret;
275 }
276 
277 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
278 				  u32 *vlan_table)
279 {
280 	int ret;
281 
282 	mutex_lock(&dev->vlan_mutex);
283 
284 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
285 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
286 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
287 
288 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
289 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
290 
291 	/* wait to be cleared */
292 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
293 	if (ret) {
294 		dev_dbg(dev->dev, "Failed to write vlan table\n");
295 		goto exit;
296 	}
297 
298 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
299 
300 	/* update vlan cache table */
301 	dev->vlan_cache[vid].table[0] = vlan_table[0];
302 	dev->vlan_cache[vid].table[1] = vlan_table[1];
303 	dev->vlan_cache[vid].table[2] = vlan_table[2];
304 
305 exit:
306 	mutex_unlock(&dev->vlan_mutex);
307 
308 	return ret;
309 }
310 
311 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
312 {
313 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
314 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
315 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
316 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
317 }
318 
319 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
320 {
321 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
322 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
323 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
324 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
325 }
326 
327 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
328 {
329 	unsigned int val;
330 
331 	return regmap_read_poll_timeout(ksz_regmap_32(dev), REG_SW_ALU_CTRL__4,
332 					val, !(val & ALU_START), 10, 1000);
333 }
334 
335 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
336 {
337 	unsigned int val;
338 
339 	return regmap_read_poll_timeout(ksz_regmap_32(dev),
340 					REG_SW_ALU_STAT_CTRL__4,
341 					val, !(val & ALU_STAT_START),
342 					10, 1000);
343 }
344 
345 int ksz9477_reset_switch(struct ksz_device *dev)
346 {
347 	u8 data8;
348 	u32 data32;
349 
350 	/* reset switch */
351 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
352 
353 	/* turn off SPI DO Edge select */
354 	regmap_update_bits(ksz_regmap_8(dev), REG_SW_GLOBAL_SERIAL_CTRL_0,
355 			   SPI_AUTO_EDGE_DETECTION, 0);
356 
357 	/* default configuration */
358 	ksz_write8(dev, REG_SW_LUE_CTRL_1,
359 		   SW_AGING_ENABLE | SW_LINK_AUTO_AGING | SW_SRC_ADDR_FILTER);
360 
361 	/* disable interrupts */
362 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
363 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
364 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
365 
366 	/* KSZ9893 compatible chips do not support refclk configuration */
367 	if (dev->chip_id == KSZ9893_CHIP_ID ||
368 	    dev->chip_id == KSZ8563_CHIP_ID ||
369 	    dev->chip_id == KSZ9563_CHIP_ID)
370 		return 0;
371 
372 	data8 = SW_ENABLE_REFCLKO;
373 	if (dev->synclko_disable)
374 		data8 = 0;
375 	else if (dev->synclko_125)
376 		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
377 	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
378 
379 	return 0;
380 }
381 
382 void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
383 {
384 	struct ksz_port *p = &dev->ports[port];
385 	unsigned int val;
386 	u32 data;
387 	int ret;
388 
389 	/* retain the flush/freeze bit */
390 	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
391 	data |= MIB_COUNTER_READ;
392 	data |= (addr << MIB_COUNTER_INDEX_S);
393 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
394 
395 	ret = regmap_read_poll_timeout(ksz_regmap_32(dev),
396 			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
397 			val, !(val & MIB_COUNTER_READ), 10, 1000);
398 	/* failed to read MIB. get out of loop */
399 	if (ret) {
400 		dev_dbg(dev->dev, "Failed to get MIB\n");
401 		return;
402 	}
403 
404 	/* count resets upon read */
405 	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
406 	*cnt += data;
407 }
408 
409 void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
410 		       u64 *dropped, u64 *cnt)
411 {
412 	addr = dev->info->mib_names[addr].index;
413 	ksz9477_r_mib_cnt(dev, port, addr, cnt);
414 }
415 
416 void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
417 {
418 	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
419 	struct ksz_port *p = &dev->ports[port];
420 
421 	/* enable/disable the port for flush/freeze function */
422 	mutex_lock(&p->mib.cnt_mutex);
423 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
424 
425 	/* used by MIB counter reading code to know freeze is enabled */
426 	p->freeze = freeze;
427 	mutex_unlock(&p->mib.cnt_mutex);
428 }
429 
430 void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
431 {
432 	struct ksz_port_mib *mib = &dev->ports[port].mib;
433 
434 	/* flush all enabled port MIB counters */
435 	mutex_lock(&mib->cnt_mutex);
436 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
437 		     MIB_COUNTER_FLUSH_FREEZE);
438 	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
439 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
440 	mutex_unlock(&mib->cnt_mutex);
441 }
442 
443 static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
444 				 u16 *data)
445 {
446 	/* KSZ8563R do not have extended registers but BMSR_ESTATEN and
447 	 * BMSR_ERCAP bits are set.
448 	 */
449 	if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
450 		*data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
451 }
452 
453 int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
454 {
455 	u16 val = 0xffff;
456 	int ret;
457 
458 	/* No real PHY after this. Simulate the PHY.
459 	 * A fixed PHY can be setup in the device tree, but this function is
460 	 * still called for that port during initialization.
461 	 * For RGMII PHY there is no way to access it so the fixed PHY should
462 	 * be used.  For SGMII PHY the supporting code will be added later.
463 	 */
464 	if (!dev->info->internal_phy[addr]) {
465 		struct ksz_port *p = &dev->ports[addr];
466 
467 		switch (reg) {
468 		case MII_BMCR:
469 			val = 0x1140;
470 			break;
471 		case MII_BMSR:
472 			val = 0x796d;
473 			break;
474 		case MII_PHYSID1:
475 			val = 0x0022;
476 			break;
477 		case MII_PHYSID2:
478 			val = 0x1631;
479 			break;
480 		case MII_ADVERTISE:
481 			val = 0x05e1;
482 			break;
483 		case MII_LPA:
484 			val = 0xc5e1;
485 			break;
486 		case MII_CTRL1000:
487 			val = 0x0700;
488 			break;
489 		case MII_STAT1000:
490 			if (p->phydev.speed == SPEED_1000)
491 				val = 0x3800;
492 			else
493 				val = 0;
494 			break;
495 		}
496 	} else {
497 		ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
498 		if (ret)
499 			return ret;
500 
501 		ksz9477_r_phy_quirks(dev, addr, reg, &val);
502 	}
503 
504 	*data = val;
505 
506 	return 0;
507 }
508 
509 int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
510 {
511 	u32 mask, val32;
512 
513 	/* No real PHY after this. */
514 	if (!dev->info->internal_phy[addr])
515 		return 0;
516 
517 	if (reg < 0x10)
518 		return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
519 
520 	/* Errata: When using SPI, I2C, or in-band register access,
521 	 * writes to certain PHY registers should be performed as
522 	 * 32-bit writes instead of 16-bit writes.
523 	 */
524 	val32 = val;
525 	mask = 0xffff;
526 	if ((reg & 1) == 0) {
527 		val32 <<= 16;
528 		mask <<= 16;
529 	}
530 	reg &= ~1;
531 	return ksz_prmw32(dev, addr, 0x100 + (reg << 1), mask, val32);
532 }
533 
534 void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
535 {
536 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
537 }
538 
539 void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
540 {
541 	const u16 *regs = dev->info->regs;
542 	u8 data;
543 
544 	regmap_update_bits(ksz_regmap_8(dev), REG_SW_LUE_CTRL_2,
545 			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
546 			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
547 
548 	if (port < dev->info->port_cnt) {
549 		/* flush individual port */
550 		ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
551 		if (!(data & PORT_LEARN_DISABLE))
552 			ksz_pwrite8(dev, port, regs[P_STP_CTRL],
553 				    data | PORT_LEARN_DISABLE);
554 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
555 		ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
556 	} else {
557 		/* flush all */
558 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
559 	}
560 }
561 
562 int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
563 				bool flag, struct netlink_ext_ack *extack)
564 {
565 	if (flag) {
566 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
567 			     PORT_VLAN_LOOKUP_VID_0, true);
568 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
569 	} else {
570 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
571 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
572 			     PORT_VLAN_LOOKUP_VID_0, false);
573 	}
574 
575 	return 0;
576 }
577 
578 int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
579 			  const struct switchdev_obj_port_vlan *vlan,
580 			  struct netlink_ext_ack *extack)
581 {
582 	u32 vlan_table[3];
583 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
584 	int err;
585 
586 	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
587 	if (err) {
588 		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
589 		return err;
590 	}
591 
592 	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
593 	if (untagged)
594 		vlan_table[1] |= BIT(port);
595 	else
596 		vlan_table[1] &= ~BIT(port);
597 	vlan_table[1] &= ~(BIT(dev->cpu_port));
598 
599 	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
600 
601 	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
602 	if (err) {
603 		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
604 		return err;
605 	}
606 
607 	/* change PVID */
608 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
609 		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
610 
611 	return 0;
612 }
613 
614 int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
615 			  const struct switchdev_obj_port_vlan *vlan)
616 {
617 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
618 	u32 vlan_table[3];
619 	u16 pvid;
620 
621 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
622 	pvid = pvid & 0xFFF;
623 
624 	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
625 		dev_dbg(dev->dev, "Failed to get vlan table\n");
626 		return -ETIMEDOUT;
627 	}
628 
629 	vlan_table[2] &= ~BIT(port);
630 
631 	if (pvid == vlan->vid)
632 		pvid = 1;
633 
634 	if (untagged)
635 		vlan_table[1] &= ~BIT(port);
636 
637 	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
638 		dev_dbg(dev->dev, "Failed to set vlan table\n");
639 		return -ETIMEDOUT;
640 	}
641 
642 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
643 
644 	return 0;
645 }
646 
647 int ksz9477_fdb_add(struct ksz_device *dev, int port,
648 		    const unsigned char *addr, u16 vid, struct dsa_db db)
649 {
650 	u32 alu_table[4];
651 	u32 data;
652 	int ret = 0;
653 
654 	mutex_lock(&dev->alu_mutex);
655 
656 	/* find any entry with mac & vid */
657 	data = vid << ALU_FID_INDEX_S;
658 	data |= ((addr[0] << 8) | addr[1]);
659 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
660 
661 	data = ((addr[2] << 24) | (addr[3] << 16));
662 	data |= ((addr[4] << 8) | addr[5]);
663 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
664 
665 	/* start read operation */
666 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
667 
668 	/* wait to be finished */
669 	ret = ksz9477_wait_alu_ready(dev);
670 	if (ret) {
671 		dev_dbg(dev->dev, "Failed to read ALU\n");
672 		goto exit;
673 	}
674 
675 	/* read ALU entry */
676 	ksz9477_read_table(dev, alu_table);
677 
678 	/* update ALU entry */
679 	alu_table[0] = ALU_V_STATIC_VALID;
680 	alu_table[1] |= BIT(port);
681 	if (vid)
682 		alu_table[1] |= ALU_V_USE_FID;
683 	alu_table[2] = (vid << ALU_V_FID_S);
684 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
685 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
686 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
687 
688 	ksz9477_write_table(dev, alu_table);
689 
690 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
691 
692 	/* wait to be finished */
693 	ret = ksz9477_wait_alu_ready(dev);
694 	if (ret)
695 		dev_dbg(dev->dev, "Failed to write ALU\n");
696 
697 exit:
698 	mutex_unlock(&dev->alu_mutex);
699 
700 	return ret;
701 }
702 
703 int ksz9477_fdb_del(struct ksz_device *dev, int port,
704 		    const unsigned char *addr, u16 vid, struct dsa_db db)
705 {
706 	u32 alu_table[4];
707 	u32 data;
708 	int ret = 0;
709 
710 	mutex_lock(&dev->alu_mutex);
711 
712 	/* read any entry with mac & vid */
713 	data = vid << ALU_FID_INDEX_S;
714 	data |= ((addr[0] << 8) | addr[1]);
715 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
716 
717 	data = ((addr[2] << 24) | (addr[3] << 16));
718 	data |= ((addr[4] << 8) | addr[5]);
719 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
720 
721 	/* start read operation */
722 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
723 
724 	/* wait to be finished */
725 	ret = ksz9477_wait_alu_ready(dev);
726 	if (ret) {
727 		dev_dbg(dev->dev, "Failed to read ALU\n");
728 		goto exit;
729 	}
730 
731 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
732 	if (alu_table[0] & ALU_V_STATIC_VALID) {
733 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
734 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
735 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
736 
737 		/* clear forwarding port */
738 		alu_table[1] &= ~BIT(port);
739 
740 		/* if there is no port to forward, clear table */
741 		if ((alu_table[1] & ALU_V_PORT_MAP) == 0) {
742 			alu_table[0] = 0;
743 			alu_table[1] = 0;
744 			alu_table[2] = 0;
745 			alu_table[3] = 0;
746 		}
747 	} else {
748 		alu_table[0] = 0;
749 		alu_table[1] = 0;
750 		alu_table[2] = 0;
751 		alu_table[3] = 0;
752 	}
753 
754 	ksz9477_write_table(dev, alu_table);
755 
756 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
757 
758 	/* wait to be finished */
759 	ret = ksz9477_wait_alu_ready(dev);
760 	if (ret)
761 		dev_dbg(dev->dev, "Failed to write ALU\n");
762 
763 exit:
764 	mutex_unlock(&dev->alu_mutex);
765 
766 	return ret;
767 }
768 
769 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
770 {
771 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
772 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
773 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
774 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
775 			ALU_V_PRIO_AGE_CNT_M;
776 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
777 
778 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
779 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
780 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
781 
782 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
783 
784 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
785 	alu->mac[1] = alu_table[2] & 0xFF;
786 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
787 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
788 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
789 	alu->mac[5] = alu_table[3] & 0xFF;
790 }
791 
792 int ksz9477_fdb_dump(struct ksz_device *dev, int port,
793 		     dsa_fdb_dump_cb_t *cb, void *data)
794 {
795 	int ret = 0;
796 	u32 ksz_data;
797 	u32 alu_table[4];
798 	struct alu_struct alu;
799 	int timeout;
800 
801 	mutex_lock(&dev->alu_mutex);
802 
803 	/* start ALU search */
804 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
805 
806 	do {
807 		timeout = 1000;
808 		do {
809 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
810 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
811 				break;
812 			usleep_range(1, 10);
813 		} while (timeout-- > 0);
814 
815 		if (!timeout) {
816 			dev_dbg(dev->dev, "Failed to search ALU\n");
817 			ret = -ETIMEDOUT;
818 			goto exit;
819 		}
820 
821 		if (!(ksz_data & ALU_VALID))
822 			continue;
823 
824 		/* read ALU table */
825 		ksz9477_read_table(dev, alu_table);
826 
827 		ksz9477_convert_alu(&alu, alu_table);
828 
829 		if (alu.port_forward & BIT(port)) {
830 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
831 			if (ret)
832 				goto exit;
833 		}
834 	} while (ksz_data & ALU_START);
835 
836 exit:
837 
838 	/* stop ALU search */
839 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
840 
841 	mutex_unlock(&dev->alu_mutex);
842 
843 	return ret;
844 }
845 
846 int ksz9477_mdb_add(struct ksz_device *dev, int port,
847 		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
848 {
849 	u32 static_table[4];
850 	const u8 *shifts;
851 	const u32 *masks;
852 	u32 data;
853 	int index;
854 	u32 mac_hi, mac_lo;
855 	int err = 0;
856 
857 	shifts = dev->info->shifts;
858 	masks = dev->info->masks;
859 
860 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
861 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
862 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
863 
864 	mutex_lock(&dev->alu_mutex);
865 
866 	for (index = 0; index < dev->info->num_statics; index++) {
867 		/* find empty slot first */
868 		data = (index << shifts[ALU_STAT_INDEX]) |
869 			masks[ALU_STAT_READ] | ALU_STAT_START;
870 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
871 
872 		/* wait to be finished */
873 		err = ksz9477_wait_alu_sta_ready(dev);
874 		if (err) {
875 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
876 			goto exit;
877 		}
878 
879 		/* read ALU static table */
880 		ksz9477_read_table(dev, static_table);
881 
882 		if (static_table[0] & ALU_V_STATIC_VALID) {
883 			/* check this has same vid & mac address */
884 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
885 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
886 			    static_table[3] == mac_lo) {
887 				/* found matching one */
888 				break;
889 			}
890 		} else {
891 			/* found empty one */
892 			break;
893 		}
894 	}
895 
896 	/* no available entry */
897 	if (index == dev->info->num_statics) {
898 		err = -ENOSPC;
899 		goto exit;
900 	}
901 
902 	/* add entry */
903 	static_table[0] = ALU_V_STATIC_VALID;
904 	static_table[1] |= BIT(port);
905 	if (mdb->vid)
906 		static_table[1] |= ALU_V_USE_FID;
907 	static_table[2] = (mdb->vid << ALU_V_FID_S);
908 	static_table[2] |= mac_hi;
909 	static_table[3] = mac_lo;
910 
911 	ksz9477_write_table(dev, static_table);
912 
913 	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
914 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
915 
916 	/* wait to be finished */
917 	if (ksz9477_wait_alu_sta_ready(dev))
918 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
919 
920 exit:
921 	mutex_unlock(&dev->alu_mutex);
922 	return err;
923 }
924 
925 int ksz9477_mdb_del(struct ksz_device *dev, int port,
926 		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
927 {
928 	u32 static_table[4];
929 	const u8 *shifts;
930 	const u32 *masks;
931 	u32 data;
932 	int index;
933 	int ret = 0;
934 	u32 mac_hi, mac_lo;
935 
936 	shifts = dev->info->shifts;
937 	masks = dev->info->masks;
938 
939 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
940 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
941 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
942 
943 	mutex_lock(&dev->alu_mutex);
944 
945 	for (index = 0; index < dev->info->num_statics; index++) {
946 		/* find empty slot first */
947 		data = (index << shifts[ALU_STAT_INDEX]) |
948 			masks[ALU_STAT_READ] | ALU_STAT_START;
949 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
950 
951 		/* wait to be finished */
952 		ret = ksz9477_wait_alu_sta_ready(dev);
953 		if (ret) {
954 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
955 			goto exit;
956 		}
957 
958 		/* read ALU static table */
959 		ksz9477_read_table(dev, static_table);
960 
961 		if (static_table[0] & ALU_V_STATIC_VALID) {
962 			/* check this has same vid & mac address */
963 
964 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
965 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
966 			    static_table[3] == mac_lo) {
967 				/* found matching one */
968 				break;
969 			}
970 		}
971 	}
972 
973 	/* no available entry */
974 	if (index == dev->info->num_statics)
975 		goto exit;
976 
977 	/* clear port */
978 	static_table[1] &= ~BIT(port);
979 
980 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
981 		/* delete entry */
982 		static_table[0] = 0;
983 		static_table[1] = 0;
984 		static_table[2] = 0;
985 		static_table[3] = 0;
986 	}
987 
988 	ksz9477_write_table(dev, static_table);
989 
990 	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
991 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
992 
993 	/* wait to be finished */
994 	ret = ksz9477_wait_alu_sta_ready(dev);
995 	if (ret)
996 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
997 
998 exit:
999 	mutex_unlock(&dev->alu_mutex);
1000 
1001 	return ret;
1002 }
1003 
1004 int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
1005 			    struct dsa_mall_mirror_tc_entry *mirror,
1006 			    bool ingress, struct netlink_ext_ack *extack)
1007 {
1008 	u8 data;
1009 	int p;
1010 
1011 	/* Limit to one sniffer port
1012 	 * Check if any of the port is already set for sniffing
1013 	 * If yes, instruct the user to remove the previous entry & exit
1014 	 */
1015 	for (p = 0; p < dev->info->port_cnt; p++) {
1016 		/* Skip the current sniffing port */
1017 		if (p == mirror->to_local_port)
1018 			continue;
1019 
1020 		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
1021 
1022 		if (data & PORT_MIRROR_SNIFFER) {
1023 			NL_SET_ERR_MSG_MOD(extack,
1024 					   "Sniffer port is already configured, delete existing rules & retry");
1025 			return -EBUSY;
1026 		}
1027 	}
1028 
1029 	if (ingress)
1030 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1031 	else
1032 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1033 
1034 	/* configure mirror port */
1035 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1036 		     PORT_MIRROR_SNIFFER, true);
1037 
1038 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1039 
1040 	return 0;
1041 }
1042 
1043 void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
1044 			     struct dsa_mall_mirror_tc_entry *mirror)
1045 {
1046 	bool in_use = false;
1047 	u8 data;
1048 	int p;
1049 
1050 	if (mirror->ingress)
1051 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1052 	else
1053 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1054 
1055 
1056 	/* Check if any of the port is still referring to sniffer port */
1057 	for (p = 0; p < dev->info->port_cnt; p++) {
1058 		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
1059 
1060 		if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
1061 			in_use = true;
1062 			break;
1063 		}
1064 	}
1065 
1066 	/* delete sniffing if there are no other mirroring rules */
1067 	if (!in_use)
1068 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1069 			     PORT_MIRROR_SNIFFER, false);
1070 }
1071 
1072 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1073 {
1074 	phy_interface_t interface;
1075 	bool gbit;
1076 
1077 	if (dev->info->internal_phy[port])
1078 		return PHY_INTERFACE_MODE_NA;
1079 
1080 	gbit = ksz_get_gbit(dev, port);
1081 
1082 	interface = ksz_get_xmii(dev, port, gbit);
1083 
1084 	return interface;
1085 }
1086 
1087 void ksz9477_get_caps(struct ksz_device *dev, int port,
1088 		      struct phylink_config *config)
1089 {
1090 	config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
1091 				   MAC_SYM_PAUSE;
1092 
1093 	if (dev->info->gbit_capable[port])
1094 		config->mac_capabilities |= MAC_1000FD;
1095 }
1096 
1097 int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
1098 {
1099 	u32 secs = msecs / 1000;
1100 	u8 value;
1101 	u8 data;
1102 	int ret;
1103 
1104 	value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs);
1105 
1106 	ret = ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
1107 	if (ret < 0)
1108 		return ret;
1109 
1110 	data = FIELD_GET(SW_AGE_PERIOD_10_8_M, secs);
1111 
1112 	ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
1113 	if (ret < 0)
1114 		return ret;
1115 
1116 	value &= ~SW_AGE_CNT_M;
1117 	value |= FIELD_PREP(SW_AGE_CNT_M, data);
1118 
1119 	return ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
1120 }
1121 
1122 void ksz9477_port_queue_split(struct ksz_device *dev, int port)
1123 {
1124 	u8 data;
1125 
1126 	if (dev->info->num_tx_queues == 8)
1127 		data = PORT_EIGHT_QUEUE;
1128 	else if (dev->info->num_tx_queues == 4)
1129 		data = PORT_FOUR_QUEUE;
1130 	else if (dev->info->num_tx_queues == 2)
1131 		data = PORT_TWO_QUEUE;
1132 	else
1133 		data = PORT_SINGLE_QUEUE;
1134 
1135 	ksz_prmw8(dev, port, REG_PORT_CTRL_0, PORT_QUEUE_SPLIT_MASK, data);
1136 }
1137 
1138 void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1139 {
1140 	struct dsa_switch *ds = dev->ds;
1141 	u16 data16;
1142 	u8 member;
1143 
1144 	/* enable tag tail for host port */
1145 	if (cpu_port)
1146 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1147 			     true);
1148 
1149 	ksz9477_port_queue_split(dev, port);
1150 
1151 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1152 
1153 	/* set back pressure */
1154 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1155 
1156 	/* enable broadcast storm limit */
1157 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1158 
1159 	/* replace priority */
1160 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1161 		     false);
1162 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1163 			   MTI_PVID_REPLACE, false);
1164 
1165 	/* force flow control for non-PHY ports only */
1166 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1167 		     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1168 		     !dev->info->internal_phy[port]);
1169 
1170 	if (cpu_port)
1171 		member = dsa_user_ports(ds);
1172 	else
1173 		member = BIT(dsa_upstream_port(ds, port));
1174 
1175 	ksz9477_cfg_port_member(dev, port, member);
1176 
1177 	/* clear pending interrupts */
1178 	if (dev->info->internal_phy[port])
1179 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1180 
1181 	ksz9477_port_acl_init(dev, port);
1182 
1183 	/* clear pending wake flags */
1184 	ksz9477_handle_wake_reason(dev, port);
1185 
1186 	/* Disable all WoL options by default. Otherwise
1187 	 * ksz_switch_macaddr_get/put logic will not work properly.
1188 	 */
1189 	ksz_pwrite8(dev, port, REG_PORT_PME_CTRL, 0);
1190 }
1191 
1192 void ksz9477_config_cpu_port(struct dsa_switch *ds)
1193 {
1194 	struct ksz_device *dev = ds->priv;
1195 	struct ksz_port *p;
1196 	int i;
1197 
1198 	for (i = 0; i < dev->info->port_cnt; i++) {
1199 		if (dsa_is_cpu_port(ds, i) &&
1200 		    (dev->info->cpu_ports & (1 << i))) {
1201 			phy_interface_t interface;
1202 			const char *prev_msg;
1203 			const char *prev_mode;
1204 
1205 			dev->cpu_port = i;
1206 			p = &dev->ports[i];
1207 
1208 			/* Read from XMII register to determine host port
1209 			 * interface.  If set specifically in device tree
1210 			 * note the difference to help debugging.
1211 			 */
1212 			interface = ksz9477_get_interface(dev, i);
1213 			if (!p->interface) {
1214 				if (dev->compat_interface) {
1215 					dev_warn(dev->dev,
1216 						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1217 						 "Please update your device tree.\n",
1218 						 i);
1219 					p->interface = dev->compat_interface;
1220 				} else {
1221 					p->interface = interface;
1222 				}
1223 			}
1224 			if (interface && interface != p->interface) {
1225 				prev_msg = " instead of ";
1226 				prev_mode = phy_modes(interface);
1227 			} else {
1228 				prev_msg = "";
1229 				prev_mode = "";
1230 			}
1231 			dev_info(dev->dev,
1232 				 "Port%d: using phy mode %s%s%s\n",
1233 				 i,
1234 				 phy_modes(p->interface),
1235 				 prev_msg,
1236 				 prev_mode);
1237 
1238 			/* enable cpu port */
1239 			ksz9477_port_setup(dev, i, true);
1240 		}
1241 	}
1242 
1243 	for (i = 0; i < dev->info->port_cnt; i++) {
1244 		if (i == dev->cpu_port)
1245 			continue;
1246 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1247 	}
1248 }
1249 
1250 int ksz9477_enable_stp_addr(struct ksz_device *dev)
1251 {
1252 	const u32 *masks;
1253 	u32 data;
1254 	int ret;
1255 
1256 	masks = dev->info->masks;
1257 
1258 	/* Enable Reserved multicast table */
1259 	ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1260 
1261 	/* Set the Override bit for forwarding BPDU packet to CPU */
1262 	ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1263 			  ALU_V_OVERRIDE | BIT(dev->cpu_port));
1264 	if (ret < 0)
1265 		return ret;
1266 
1267 	data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1268 
1269 	ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1270 	if (ret < 0)
1271 		return ret;
1272 
1273 	/* wait to be finished */
1274 	ret = ksz9477_wait_alu_sta_ready(dev);
1275 	if (ret < 0) {
1276 		dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1277 		return ret;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 int ksz9477_setup(struct dsa_switch *ds)
1284 {
1285 	struct ksz_device *dev = ds->priv;
1286 	int ret = 0;
1287 
1288 	ds->mtu_enforcement_ingress = true;
1289 
1290 	/* Required for port partitioning. */
1291 	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1292 		      true);
1293 
1294 	/* Do not work correctly with tail tagging. */
1295 	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1296 
1297 	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1298 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1299 
1300 	/* Now we can configure default MTU value */
1301 	ret = regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2, REG_SW_MTU_MASK,
1302 				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1303 	if (ret)
1304 		return ret;
1305 
1306 	/* queue based egress rate limit */
1307 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1308 
1309 	/* enable global MIB counter freeze function */
1310 	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1311 
1312 	/* Make sure PME (WoL) is not enabled. If requested, it will be
1313 	 * enabled by ksz9477_wol_pre_shutdown(). Otherwise, some PMICs do not
1314 	 * like PME events changes before shutdown.
1315 	 */
1316 	ksz_write8(dev, REG_SW_PME_CTRL, 0);
1317 
1318 	return 0;
1319 }
1320 
1321 u32 ksz9477_get_port_addr(int port, int offset)
1322 {
1323 	return PORT_CTRL_ADDR(port, offset);
1324 }
1325 
1326 int ksz9477_tc_cbs_set_cinc(struct ksz_device *dev, int port, u32 val)
1327 {
1328 	val = val >> 8;
1329 
1330 	return ksz_pwrite16(dev, port, REG_PORT_MTI_CREDIT_INCREMENT, val);
1331 }
1332 
1333 /* The KSZ9477 provides following HW features to accelerate
1334  * HSR frames handling:
1335  *
1336  * 1. TX PACKET DUPLICATION FROM HOST TO SWITCH
1337  * 2. RX PACKET DUPLICATION DISCARDING
1338  * 3. PREVENTING PACKET LOOP IN THE RING BY SELF-ADDRESS FILTERING
1339  *
1340  * Only one from point 1. has the NETIF_F* flag available.
1341  *
1342  * Ones from point 2 and 3 are "best effort" - i.e. those will
1343  * work correctly most of the time, but it may happen that some
1344  * frames will not be caught - to be more specific; there is a race
1345  * condition in hardware such that, when duplicate packets are received
1346  * on member ports very close in time to each other, the hardware fails
1347  * to detect that they are duplicates.
1348  *
1349  * Hence, the SW needs to handle those special cases. However, the speed
1350  * up gain is considerable when above features are used.
1351  *
1352  * Moreover, the NETIF_F_HW_HSR_FWD feature is also enabled, as HSR frames
1353  * can be forwarded in the switch fabric between HSR ports.
1354  */
1355 #define KSZ9477_SUPPORTED_HSR_FEATURES (NETIF_F_HW_HSR_DUP | NETIF_F_HW_HSR_FWD)
1356 
1357 void ksz9477_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr)
1358 {
1359 	struct ksz_device *dev = ds->priv;
1360 	struct net_device *user;
1361 	struct dsa_port *hsr_dp;
1362 	u8 data, hsr_ports = 0;
1363 
1364 	/* Program which port(s) shall support HSR */
1365 	ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), BIT(port));
1366 
1367 	/* Forward frames between HSR ports (i.e. bridge together HSR ports) */
1368 	if (dev->hsr_ports) {
1369 		dsa_hsr_foreach_port(hsr_dp, ds, hsr)
1370 			hsr_ports |= BIT(hsr_dp->index);
1371 
1372 		hsr_ports |= BIT(dsa_upstream_port(ds, port));
1373 		dsa_hsr_foreach_port(hsr_dp, ds, hsr)
1374 			ksz9477_cfg_port_member(dev, hsr_dp->index, hsr_ports);
1375 	}
1376 
1377 	if (!dev->hsr_ports) {
1378 		/* Enable discarding of received HSR frames */
1379 		ksz_read8(dev, REG_HSR_ALU_CTRL_0__1, &data);
1380 		data |= HSR_DUPLICATE_DISCARD;
1381 		data &= ~HSR_NODE_UNICAST;
1382 		ksz_write8(dev, REG_HSR_ALU_CTRL_0__1, data);
1383 	}
1384 
1385 	/* Enable per port self-address filtering.
1386 	 * The global self-address filtering has already been enabled in the
1387 	 * ksz9477_reset_switch() function.
1388 	 */
1389 	ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, true);
1390 
1391 	/* Setup HW supported features for lan HSR ports */
1392 	user = dsa_to_port(ds, port)->user;
1393 	user->features |= KSZ9477_SUPPORTED_HSR_FEATURES;
1394 }
1395 
1396 void ksz9477_hsr_leave(struct dsa_switch *ds, int port, struct net_device *hsr)
1397 {
1398 	struct ksz_device *dev = ds->priv;
1399 
1400 	/* Clear port HSR support */
1401 	ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), 0);
1402 
1403 	/* Disable forwarding frames between HSR ports */
1404 	ksz9477_cfg_port_member(dev, port, BIT(dsa_upstream_port(ds, port)));
1405 
1406 	/* Disable per port self-address filtering */
1407 	ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, false);
1408 }
1409 
1410 int ksz9477_switch_init(struct ksz_device *dev)
1411 {
1412 	u8 data8;
1413 	int ret;
1414 
1415 	dev->port_mask = (1 << dev->info->port_cnt) - 1;
1416 
1417 	/* turn off SPI DO Edge select */
1418 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1419 	if (ret)
1420 		return ret;
1421 
1422 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1423 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1424 	if (ret)
1425 		return ret;
1426 
1427 	return 0;
1428 }
1429 
1430 void ksz9477_switch_exit(struct ksz_device *dev)
1431 {
1432 	ksz9477_reset_switch(dev);
1433 }
1434 
1435 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1436 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1437 MODULE_LICENSE("GPL");
1438