xref: /linux/drivers/net/dsa/microchip/ksz9477.c (revision 1f8d99de1d1b4b3764203ae02db57041475dab84)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <net/dsa.h>
15 #include <net/switchdev.h>
16 
17 #include "ksz9477_reg.h"
18 #include "ksz_common.h"
19 
20 /* Used with variable features to indicate capabilities. */
21 #define GBIT_SUPPORT			BIT(0)
22 #define NEW_XMII			BIT(1)
23 #define IS_9893				BIT(2)
24 
25 static const struct {
26 	int index;
27 	char string[ETH_GSTRING_LEN];
28 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29 	{ 0x00, "rx_hi" },
30 	{ 0x01, "rx_undersize" },
31 	{ 0x02, "rx_fragments" },
32 	{ 0x03, "rx_oversize" },
33 	{ 0x04, "rx_jabbers" },
34 	{ 0x05, "rx_symbol_err" },
35 	{ 0x06, "rx_crc_err" },
36 	{ 0x07, "rx_align_err" },
37 	{ 0x08, "rx_mac_ctrl" },
38 	{ 0x09, "rx_pause" },
39 	{ 0x0A, "rx_bcast" },
40 	{ 0x0B, "rx_mcast" },
41 	{ 0x0C, "rx_ucast" },
42 	{ 0x0D, "rx_64_or_less" },
43 	{ 0x0E, "rx_65_127" },
44 	{ 0x0F, "rx_128_255" },
45 	{ 0x10, "rx_256_511" },
46 	{ 0x11, "rx_512_1023" },
47 	{ 0x12, "rx_1024_1522" },
48 	{ 0x13, "rx_1523_2000" },
49 	{ 0x14, "rx_2001" },
50 	{ 0x15, "tx_hi" },
51 	{ 0x16, "tx_late_col" },
52 	{ 0x17, "tx_pause" },
53 	{ 0x18, "tx_bcast" },
54 	{ 0x19, "tx_mcast" },
55 	{ 0x1A, "tx_ucast" },
56 	{ 0x1B, "tx_deferred" },
57 	{ 0x1C, "tx_total_col" },
58 	{ 0x1D, "tx_exc_col" },
59 	{ 0x1E, "tx_single_col" },
60 	{ 0x1F, "tx_mult_col" },
61 	{ 0x80, "rx_total" },
62 	{ 0x81, "tx_total" },
63 	{ 0x82, "rx_discards" },
64 	{ 0x83, "tx_discards" },
65 };
66 
67 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68 {
69 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70 }
71 
72 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73 			 bool set)
74 {
75 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76 			   bits, set ? bits : 0);
77 }
78 
79 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80 {
81 	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82 }
83 
84 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85 			       u32 bits, bool set)
86 {
87 	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88 			   bits, set ? bits : 0);
89 }
90 
91 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92 {
93 	unsigned int val;
94 
95 	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96 					val, !(val & VLAN_START), 10, 1000);
97 }
98 
99 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100 				  u32 *vlan_table)
101 {
102 	int ret;
103 
104 	mutex_lock(&dev->vlan_mutex);
105 
106 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108 
109 	/* wait to be cleared */
110 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
111 	if (ret) {
112 		dev_dbg(dev->dev, "Failed to read vlan table\n");
113 		goto exit;
114 	}
115 
116 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119 
120 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121 
122 exit:
123 	mutex_unlock(&dev->vlan_mutex);
124 
125 	return ret;
126 }
127 
128 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129 				  u32 *vlan_table)
130 {
131 	int ret;
132 
133 	mutex_lock(&dev->vlan_mutex);
134 
135 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138 
139 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141 
142 	/* wait to be cleared */
143 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
144 	if (ret) {
145 		dev_dbg(dev->dev, "Failed to write vlan table\n");
146 		goto exit;
147 	}
148 
149 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150 
151 	/* update vlan cache table */
152 	dev->vlan_cache[vid].table[0] = vlan_table[0];
153 	dev->vlan_cache[vid].table[1] = vlan_table[1];
154 	dev->vlan_cache[vid].table[2] = vlan_table[2];
155 
156 exit:
157 	mutex_unlock(&dev->vlan_mutex);
158 
159 	return ret;
160 }
161 
162 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163 {
164 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168 }
169 
170 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171 {
172 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176 }
177 
178 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179 {
180 	unsigned int val;
181 
182 	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183 					val, !(val & ALU_START), 10, 1000);
184 }
185 
186 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187 {
188 	unsigned int val;
189 
190 	return regmap_read_poll_timeout(dev->regmap[2],
191 					REG_SW_ALU_STAT_CTRL__4,
192 					val, !(val & ALU_STAT_START),
193 					10, 1000);
194 }
195 
196 static int ksz9477_reset_switch(struct ksz_device *dev)
197 {
198 	u8 data8;
199 	u32 data32;
200 
201 	/* reset switch */
202 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203 
204 	/* turn off SPI DO Edge select */
205 	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206 			   SPI_AUTO_EDGE_DETECTION, 0);
207 
208 	/* default configuration */
209 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213 
214 	/* disable interrupts */
215 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218 
219 	/* set broadcast storm protection 10% rate */
220 	regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221 			   BROADCAST_STORM_RATE,
222 			   (BROADCAST_STORM_VALUE *
223 			   BROADCAST_STORM_PROT_RATE) / 100);
224 
225 	data8 = SW_ENABLE_REFCLKO;
226 	if (dev->synclko_disable)
227 		data8 = 0;
228 	else if (dev->synclko_125)
229 		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
230 	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
231 
232 	return 0;
233 }
234 
235 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
236 			      u64 *cnt)
237 {
238 	struct ksz_port *p = &dev->ports[port];
239 	unsigned int val;
240 	u32 data;
241 	int ret;
242 
243 	/* retain the flush/freeze bit */
244 	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
245 	data |= MIB_COUNTER_READ;
246 	data |= (addr << MIB_COUNTER_INDEX_S);
247 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
248 
249 	ret = regmap_read_poll_timeout(dev->regmap[2],
250 			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
251 			val, !(val & MIB_COUNTER_READ), 10, 1000);
252 	/* failed to read MIB. get out of loop */
253 	if (ret) {
254 		dev_dbg(dev->dev, "Failed to get MIB\n");
255 		return;
256 	}
257 
258 	/* count resets upon read */
259 	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
260 	*cnt += data;
261 }
262 
263 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
264 			      u64 *dropped, u64 *cnt)
265 {
266 	addr = ksz9477_mib_names[addr].index;
267 	ksz9477_r_mib_cnt(dev, port, addr, cnt);
268 }
269 
270 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
271 {
272 	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
273 	struct ksz_port *p = &dev->ports[port];
274 
275 	/* enable/disable the port for flush/freeze function */
276 	mutex_lock(&p->mib.cnt_mutex);
277 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
278 
279 	/* used by MIB counter reading code to know freeze is enabled */
280 	p->freeze = freeze;
281 	mutex_unlock(&p->mib.cnt_mutex);
282 }
283 
284 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
285 {
286 	struct ksz_port_mib *mib = &dev->ports[port].mib;
287 
288 	/* flush all enabled port MIB counters */
289 	mutex_lock(&mib->cnt_mutex);
290 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
291 		     MIB_COUNTER_FLUSH_FREEZE);
292 	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
293 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
294 	mutex_unlock(&mib->cnt_mutex);
295 
296 	mib->cnt_ptr = 0;
297 	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
298 }
299 
300 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
301 						      int port,
302 						      enum dsa_tag_protocol mp)
303 {
304 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
305 	struct ksz_device *dev = ds->priv;
306 
307 	if (dev->features & IS_9893)
308 		proto = DSA_TAG_PROTO_KSZ9893;
309 	return proto;
310 }
311 
312 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
313 {
314 	struct ksz_device *dev = ds->priv;
315 	u16 val = 0xffff;
316 
317 	/* No real PHY after this. Simulate the PHY.
318 	 * A fixed PHY can be setup in the device tree, but this function is
319 	 * still called for that port during initialization.
320 	 * For RGMII PHY there is no way to access it so the fixed PHY should
321 	 * be used.  For SGMII PHY the supporting code will be added later.
322 	 */
323 	if (addr >= dev->phy_port_cnt) {
324 		struct ksz_port *p = &dev->ports[addr];
325 
326 		switch (reg) {
327 		case MII_BMCR:
328 			val = 0x1140;
329 			break;
330 		case MII_BMSR:
331 			val = 0x796d;
332 			break;
333 		case MII_PHYSID1:
334 			val = 0x0022;
335 			break;
336 		case MII_PHYSID2:
337 			val = 0x1631;
338 			break;
339 		case MII_ADVERTISE:
340 			val = 0x05e1;
341 			break;
342 		case MII_LPA:
343 			val = 0xc5e1;
344 			break;
345 		case MII_CTRL1000:
346 			val = 0x0700;
347 			break;
348 		case MII_STAT1000:
349 			if (p->phydev.speed == SPEED_1000)
350 				val = 0x3800;
351 			else
352 				val = 0;
353 			break;
354 		}
355 	} else {
356 		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
357 	}
358 
359 	return val;
360 }
361 
362 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
363 			       u16 val)
364 {
365 	struct ksz_device *dev = ds->priv;
366 
367 	/* No real PHY after this. */
368 	if (addr >= dev->phy_port_cnt)
369 		return 0;
370 
371 	/* No gigabit support.  Do not write to this register. */
372 	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
373 		return 0;
374 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
375 
376 	return 0;
377 }
378 
379 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
380 				u32 stringset, uint8_t *buf)
381 {
382 	int i;
383 
384 	if (stringset != ETH_SS_STATS)
385 		return;
386 
387 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
388 		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
389 		       ETH_GSTRING_LEN);
390 	}
391 }
392 
393 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
394 				    u8 member)
395 {
396 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
397 }
398 
399 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
400 				       u8 state)
401 {
402 	struct ksz_device *dev = ds->priv;
403 	struct ksz_port *p = &dev->ports[port];
404 	u8 data;
405 
406 	ksz_pread8(dev, port, P_STP_CTRL, &data);
407 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
408 
409 	switch (state) {
410 	case BR_STATE_DISABLED:
411 		data |= PORT_LEARN_DISABLE;
412 		break;
413 	case BR_STATE_LISTENING:
414 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
415 		break;
416 	case BR_STATE_LEARNING:
417 		data |= PORT_RX_ENABLE;
418 		break;
419 	case BR_STATE_FORWARDING:
420 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
421 		break;
422 	case BR_STATE_BLOCKING:
423 		data |= PORT_LEARN_DISABLE;
424 		break;
425 	default:
426 		dev_err(ds->dev, "invalid STP state: %d\n", state);
427 		return;
428 	}
429 
430 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
431 	p->stp_state = state;
432 
433 	ksz_update_port_member(dev, port);
434 }
435 
436 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
437 {
438 	u8 data;
439 
440 	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
441 			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
442 			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
443 
444 	if (port < dev->port_cnt) {
445 		/* flush individual port */
446 		ksz_pread8(dev, port, P_STP_CTRL, &data);
447 		if (!(data & PORT_LEARN_DISABLE))
448 			ksz_pwrite8(dev, port, P_STP_CTRL,
449 				    data | PORT_LEARN_DISABLE);
450 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
451 		ksz_pwrite8(dev, port, P_STP_CTRL, data);
452 	} else {
453 		/* flush all */
454 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
455 	}
456 }
457 
458 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
459 				       bool flag,
460 				       struct netlink_ext_ack *extack)
461 {
462 	struct ksz_device *dev = ds->priv;
463 
464 	if (flag) {
465 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
466 			     PORT_VLAN_LOOKUP_VID_0, true);
467 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
468 	} else {
469 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
470 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
471 			     PORT_VLAN_LOOKUP_VID_0, false);
472 	}
473 
474 	return 0;
475 }
476 
477 static int ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
478 				 const struct switchdev_obj_port_vlan *vlan,
479 				 struct netlink_ext_ack *extack)
480 {
481 	struct ksz_device *dev = ds->priv;
482 	u32 vlan_table[3];
483 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
484 	int err;
485 
486 	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
487 	if (err) {
488 		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
489 		return err;
490 	}
491 
492 	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
493 	if (untagged)
494 		vlan_table[1] |= BIT(port);
495 	else
496 		vlan_table[1] &= ~BIT(port);
497 	vlan_table[1] &= ~(BIT(dev->cpu_port));
498 
499 	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
500 
501 	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
502 	if (err) {
503 		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
504 		return err;
505 	}
506 
507 	/* change PVID */
508 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
509 		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
510 
511 	return 0;
512 }
513 
514 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
515 				 const struct switchdev_obj_port_vlan *vlan)
516 {
517 	struct ksz_device *dev = ds->priv;
518 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
519 	u32 vlan_table[3];
520 	u16 pvid;
521 
522 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
523 	pvid = pvid & 0xFFF;
524 
525 	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
526 		dev_dbg(dev->dev, "Failed to get vlan table\n");
527 		return -ETIMEDOUT;
528 	}
529 
530 	vlan_table[2] &= ~BIT(port);
531 
532 	if (pvid == vlan->vid)
533 		pvid = 1;
534 
535 	if (untagged)
536 		vlan_table[1] &= ~BIT(port);
537 
538 	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
539 		dev_dbg(dev->dev, "Failed to set vlan table\n");
540 		return -ETIMEDOUT;
541 	}
542 
543 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
544 
545 	return 0;
546 }
547 
548 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
549 				const unsigned char *addr, u16 vid)
550 {
551 	struct ksz_device *dev = ds->priv;
552 	u32 alu_table[4];
553 	u32 data;
554 	int ret = 0;
555 
556 	mutex_lock(&dev->alu_mutex);
557 
558 	/* find any entry with mac & vid */
559 	data = vid << ALU_FID_INDEX_S;
560 	data |= ((addr[0] << 8) | addr[1]);
561 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
562 
563 	data = ((addr[2] << 24) | (addr[3] << 16));
564 	data |= ((addr[4] << 8) | addr[5]);
565 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
566 
567 	/* start read operation */
568 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
569 
570 	/* wait to be finished */
571 	ret = ksz9477_wait_alu_ready(dev);
572 	if (ret) {
573 		dev_dbg(dev->dev, "Failed to read ALU\n");
574 		goto exit;
575 	}
576 
577 	/* read ALU entry */
578 	ksz9477_read_table(dev, alu_table);
579 
580 	/* update ALU entry */
581 	alu_table[0] = ALU_V_STATIC_VALID;
582 	alu_table[1] |= BIT(port);
583 	if (vid)
584 		alu_table[1] |= ALU_V_USE_FID;
585 	alu_table[2] = (vid << ALU_V_FID_S);
586 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
587 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
588 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
589 
590 	ksz9477_write_table(dev, alu_table);
591 
592 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
593 
594 	/* wait to be finished */
595 	ret = ksz9477_wait_alu_ready(dev);
596 	if (ret)
597 		dev_dbg(dev->dev, "Failed to write ALU\n");
598 
599 exit:
600 	mutex_unlock(&dev->alu_mutex);
601 
602 	return ret;
603 }
604 
605 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
606 				const unsigned char *addr, u16 vid)
607 {
608 	struct ksz_device *dev = ds->priv;
609 	u32 alu_table[4];
610 	u32 data;
611 	int ret = 0;
612 
613 	mutex_lock(&dev->alu_mutex);
614 
615 	/* read any entry with mac & vid */
616 	data = vid << ALU_FID_INDEX_S;
617 	data |= ((addr[0] << 8) | addr[1]);
618 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
619 
620 	data = ((addr[2] << 24) | (addr[3] << 16));
621 	data |= ((addr[4] << 8) | addr[5]);
622 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
623 
624 	/* start read operation */
625 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
626 
627 	/* wait to be finished */
628 	ret = ksz9477_wait_alu_ready(dev);
629 	if (ret) {
630 		dev_dbg(dev->dev, "Failed to read ALU\n");
631 		goto exit;
632 	}
633 
634 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
635 	if (alu_table[0] & ALU_V_STATIC_VALID) {
636 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
637 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
638 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
639 
640 		/* clear forwarding port */
641 		alu_table[2] &= ~BIT(port);
642 
643 		/* if there is no port to forward, clear table */
644 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
645 			alu_table[0] = 0;
646 			alu_table[1] = 0;
647 			alu_table[2] = 0;
648 			alu_table[3] = 0;
649 		}
650 	} else {
651 		alu_table[0] = 0;
652 		alu_table[1] = 0;
653 		alu_table[2] = 0;
654 		alu_table[3] = 0;
655 	}
656 
657 	ksz9477_write_table(dev, alu_table);
658 
659 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
660 
661 	/* wait to be finished */
662 	ret = ksz9477_wait_alu_ready(dev);
663 	if (ret)
664 		dev_dbg(dev->dev, "Failed to write ALU\n");
665 
666 exit:
667 	mutex_unlock(&dev->alu_mutex);
668 
669 	return ret;
670 }
671 
672 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
673 {
674 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
675 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
676 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
677 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
678 			ALU_V_PRIO_AGE_CNT_M;
679 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
680 
681 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
682 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
683 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
684 
685 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
686 
687 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
688 	alu->mac[1] = alu_table[2] & 0xFF;
689 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
690 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
691 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
692 	alu->mac[5] = alu_table[3] & 0xFF;
693 }
694 
695 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
696 				 dsa_fdb_dump_cb_t *cb, void *data)
697 {
698 	struct ksz_device *dev = ds->priv;
699 	int ret = 0;
700 	u32 ksz_data;
701 	u32 alu_table[4];
702 	struct alu_struct alu;
703 	int timeout;
704 
705 	mutex_lock(&dev->alu_mutex);
706 
707 	/* start ALU search */
708 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
709 
710 	do {
711 		timeout = 1000;
712 		do {
713 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
714 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
715 				break;
716 			usleep_range(1, 10);
717 		} while (timeout-- > 0);
718 
719 		if (!timeout) {
720 			dev_dbg(dev->dev, "Failed to search ALU\n");
721 			ret = -ETIMEDOUT;
722 			goto exit;
723 		}
724 
725 		/* read ALU table */
726 		ksz9477_read_table(dev, alu_table);
727 
728 		ksz9477_convert_alu(&alu, alu_table);
729 
730 		if (alu.port_forward & BIT(port)) {
731 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
732 			if (ret)
733 				goto exit;
734 		}
735 	} while (ksz_data & ALU_START);
736 
737 exit:
738 
739 	/* stop ALU search */
740 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
741 
742 	mutex_unlock(&dev->alu_mutex);
743 
744 	return ret;
745 }
746 
747 static int ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
748 				const struct switchdev_obj_port_mdb *mdb)
749 {
750 	struct ksz_device *dev = ds->priv;
751 	u32 static_table[4];
752 	u32 data;
753 	int index;
754 	u32 mac_hi, mac_lo;
755 	int err = 0;
756 
757 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
758 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
759 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
760 
761 	mutex_lock(&dev->alu_mutex);
762 
763 	for (index = 0; index < dev->num_statics; index++) {
764 		/* find empty slot first */
765 		data = (index << ALU_STAT_INDEX_S) |
766 			ALU_STAT_READ | ALU_STAT_START;
767 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
768 
769 		/* wait to be finished */
770 		err = ksz9477_wait_alu_sta_ready(dev);
771 		if (err) {
772 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
773 			goto exit;
774 		}
775 
776 		/* read ALU static table */
777 		ksz9477_read_table(dev, static_table);
778 
779 		if (static_table[0] & ALU_V_STATIC_VALID) {
780 			/* check this has same vid & mac address */
781 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
782 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
783 			    static_table[3] == mac_lo) {
784 				/* found matching one */
785 				break;
786 			}
787 		} else {
788 			/* found empty one */
789 			break;
790 		}
791 	}
792 
793 	/* no available entry */
794 	if (index == dev->num_statics) {
795 		err = -ENOSPC;
796 		goto exit;
797 	}
798 
799 	/* add entry */
800 	static_table[0] = ALU_V_STATIC_VALID;
801 	static_table[1] |= BIT(port);
802 	if (mdb->vid)
803 		static_table[1] |= ALU_V_USE_FID;
804 	static_table[2] = (mdb->vid << ALU_V_FID_S);
805 	static_table[2] |= mac_hi;
806 	static_table[3] = mac_lo;
807 
808 	ksz9477_write_table(dev, static_table);
809 
810 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
811 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
812 
813 	/* wait to be finished */
814 	if (ksz9477_wait_alu_sta_ready(dev))
815 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
816 
817 exit:
818 	mutex_unlock(&dev->alu_mutex);
819 	return err;
820 }
821 
822 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
823 				const struct switchdev_obj_port_mdb *mdb)
824 {
825 	struct ksz_device *dev = ds->priv;
826 	u32 static_table[4];
827 	u32 data;
828 	int index;
829 	int ret = 0;
830 	u32 mac_hi, mac_lo;
831 
832 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
833 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
834 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
835 
836 	mutex_lock(&dev->alu_mutex);
837 
838 	for (index = 0; index < dev->num_statics; index++) {
839 		/* find empty slot first */
840 		data = (index << ALU_STAT_INDEX_S) |
841 			ALU_STAT_READ | ALU_STAT_START;
842 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
843 
844 		/* wait to be finished */
845 		ret = ksz9477_wait_alu_sta_ready(dev);
846 		if (ret) {
847 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
848 			goto exit;
849 		}
850 
851 		/* read ALU static table */
852 		ksz9477_read_table(dev, static_table);
853 
854 		if (static_table[0] & ALU_V_STATIC_VALID) {
855 			/* check this has same vid & mac address */
856 
857 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
858 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
859 			    static_table[3] == mac_lo) {
860 				/* found matching one */
861 				break;
862 			}
863 		}
864 	}
865 
866 	/* no available entry */
867 	if (index == dev->num_statics)
868 		goto exit;
869 
870 	/* clear port */
871 	static_table[1] &= ~BIT(port);
872 
873 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
874 		/* delete entry */
875 		static_table[0] = 0;
876 		static_table[1] = 0;
877 		static_table[2] = 0;
878 		static_table[3] = 0;
879 	}
880 
881 	ksz9477_write_table(dev, static_table);
882 
883 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
884 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
885 
886 	/* wait to be finished */
887 	ret = ksz9477_wait_alu_sta_ready(dev);
888 	if (ret)
889 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
890 
891 exit:
892 	mutex_unlock(&dev->alu_mutex);
893 
894 	return ret;
895 }
896 
897 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
898 				   struct dsa_mall_mirror_tc_entry *mirror,
899 				   bool ingress)
900 {
901 	struct ksz_device *dev = ds->priv;
902 
903 	if (ingress)
904 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
905 	else
906 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
907 
908 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
909 
910 	/* configure mirror port */
911 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
912 		     PORT_MIRROR_SNIFFER, true);
913 
914 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
915 
916 	return 0;
917 }
918 
919 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
920 				    struct dsa_mall_mirror_tc_entry *mirror)
921 {
922 	struct ksz_device *dev = ds->priv;
923 	u8 data;
924 
925 	if (mirror->ingress)
926 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
927 	else
928 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
929 
930 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
931 
932 	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
933 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
934 			     PORT_MIRROR_SNIFFER, false);
935 }
936 
937 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
938 {
939 	bool gbit;
940 
941 	if (dev->features & NEW_XMII)
942 		gbit = !(data & PORT_MII_NOT_1GBIT);
943 	else
944 		gbit = !!(data & PORT_MII_1000MBIT_S1);
945 	return gbit;
946 }
947 
948 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
949 {
950 	if (dev->features & NEW_XMII) {
951 		if (gbit)
952 			*data &= ~PORT_MII_NOT_1GBIT;
953 		else
954 			*data |= PORT_MII_NOT_1GBIT;
955 	} else {
956 		if (gbit)
957 			*data |= PORT_MII_1000MBIT_S1;
958 		else
959 			*data &= ~PORT_MII_1000MBIT_S1;
960 	}
961 }
962 
963 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
964 {
965 	int mode;
966 
967 	if (dev->features & NEW_XMII) {
968 		switch (data & PORT_MII_SEL_M) {
969 		case PORT_MII_SEL:
970 			mode = 0;
971 			break;
972 		case PORT_RMII_SEL:
973 			mode = 1;
974 			break;
975 		case PORT_GMII_SEL:
976 			mode = 2;
977 			break;
978 		default:
979 			mode = 3;
980 		}
981 	} else {
982 		switch (data & PORT_MII_SEL_M) {
983 		case PORT_MII_SEL_S1:
984 			mode = 0;
985 			break;
986 		case PORT_RMII_SEL_S1:
987 			mode = 1;
988 			break;
989 		case PORT_GMII_SEL_S1:
990 			mode = 2;
991 			break;
992 		default:
993 			mode = 3;
994 		}
995 	}
996 	return mode;
997 }
998 
999 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1000 {
1001 	u8 xmii;
1002 
1003 	if (dev->features & NEW_XMII) {
1004 		switch (mode) {
1005 		case 0:
1006 			xmii = PORT_MII_SEL;
1007 			break;
1008 		case 1:
1009 			xmii = PORT_RMII_SEL;
1010 			break;
1011 		case 2:
1012 			xmii = PORT_GMII_SEL;
1013 			break;
1014 		default:
1015 			xmii = PORT_RGMII_SEL;
1016 			break;
1017 		}
1018 	} else {
1019 		switch (mode) {
1020 		case 0:
1021 			xmii = PORT_MII_SEL_S1;
1022 			break;
1023 		case 1:
1024 			xmii = PORT_RMII_SEL_S1;
1025 			break;
1026 		case 2:
1027 			xmii = PORT_GMII_SEL_S1;
1028 			break;
1029 		default:
1030 			xmii = PORT_RGMII_SEL_S1;
1031 			break;
1032 		}
1033 	}
1034 	*data &= ~PORT_MII_SEL_M;
1035 	*data |= xmii;
1036 }
1037 
1038 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1039 {
1040 	phy_interface_t interface;
1041 	bool gbit;
1042 	int mode;
1043 	u8 data8;
1044 
1045 	if (port < dev->phy_port_cnt)
1046 		return PHY_INTERFACE_MODE_NA;
1047 	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1048 	gbit = ksz9477_get_gbit(dev, data8);
1049 	mode = ksz9477_get_xmii(dev, data8);
1050 	switch (mode) {
1051 	case 2:
1052 		interface = PHY_INTERFACE_MODE_GMII;
1053 		if (gbit)
1054 			break;
1055 		fallthrough;
1056 	case 0:
1057 		interface = PHY_INTERFACE_MODE_MII;
1058 		break;
1059 	case 1:
1060 		interface = PHY_INTERFACE_MODE_RMII;
1061 		break;
1062 	default:
1063 		interface = PHY_INTERFACE_MODE_RGMII;
1064 		if (data8 & PORT_RGMII_ID_EG_ENABLE)
1065 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
1066 		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1067 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
1068 			if (data8 & PORT_RGMII_ID_EG_ENABLE)
1069 				interface = PHY_INTERFACE_MODE_RGMII_ID;
1070 		}
1071 		break;
1072 	}
1073 	return interface;
1074 }
1075 
1076 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1077 				   u8 dev_addr, u16 reg_addr, u16 val)
1078 {
1079 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1080 		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1081 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1082 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1083 		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1084 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1085 }
1086 
1087 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1088 {
1089 	/* Apply PHY settings to address errata listed in
1090 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1091 	 * Silicon Errata and Data Sheet Clarification documents:
1092 	 *
1093 	 * Register settings are needed to improve PHY receive performance
1094 	 */
1095 	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1096 	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1097 	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1098 	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1099 	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1100 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1101 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1102 
1103 	/* Transmit waveform amplitude can be improved
1104 	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1105 	 */
1106 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1107 
1108 	/* Energy Efficient Ethernet (EEE) feature select must
1109 	 * be manually disabled (except on KSZ8565 which is 100Mbit)
1110 	 */
1111 	if (dev->features & GBIT_SUPPORT)
1112 		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1113 
1114 	/* Register settings are required to meet data sheet
1115 	 * supply current specifications
1116 	 */
1117 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1118 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1119 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1120 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1121 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1122 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1123 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1124 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1125 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1126 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1127 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1128 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1129 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1130 }
1131 
1132 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1133 {
1134 	struct ksz_port *p = &dev->ports[port];
1135 	struct dsa_switch *ds = dev->ds;
1136 	u8 data8, member;
1137 	u16 data16;
1138 
1139 	/* enable tag tail for host port */
1140 	if (cpu_port)
1141 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1142 			     true);
1143 
1144 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1145 
1146 	/* set back pressure */
1147 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1148 
1149 	/* enable broadcast storm limit */
1150 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1151 
1152 	/* disable DiffServ priority */
1153 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1154 
1155 	/* replace priority */
1156 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1157 		     false);
1158 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1159 			   MTI_PVID_REPLACE, false);
1160 
1161 	/* enable 802.1p priority */
1162 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1163 
1164 	if (port < dev->phy_port_cnt) {
1165 		/* do not force flow control */
1166 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1167 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1168 			     false);
1169 
1170 		if (dev->phy_errata_9477)
1171 			ksz9477_phy_errata_setup(dev, port);
1172 	} else {
1173 		/* force flow control */
1174 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1175 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1176 			     true);
1177 
1178 		/* configure MAC to 1G & RGMII mode */
1179 		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1180 		switch (p->interface) {
1181 		case PHY_INTERFACE_MODE_MII:
1182 			ksz9477_set_xmii(dev, 0, &data8);
1183 			ksz9477_set_gbit(dev, false, &data8);
1184 			p->phydev.speed = SPEED_100;
1185 			break;
1186 		case PHY_INTERFACE_MODE_RMII:
1187 			ksz9477_set_xmii(dev, 1, &data8);
1188 			ksz9477_set_gbit(dev, false, &data8);
1189 			p->phydev.speed = SPEED_100;
1190 			break;
1191 		case PHY_INTERFACE_MODE_GMII:
1192 			ksz9477_set_xmii(dev, 2, &data8);
1193 			ksz9477_set_gbit(dev, true, &data8);
1194 			p->phydev.speed = SPEED_1000;
1195 			break;
1196 		default:
1197 			ksz9477_set_xmii(dev, 3, &data8);
1198 			ksz9477_set_gbit(dev, true, &data8);
1199 			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1200 			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1201 			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1202 			    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1203 				data8 |= PORT_RGMII_ID_IG_ENABLE;
1204 			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1205 			    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1206 				data8 |= PORT_RGMII_ID_EG_ENABLE;
1207 			/* On KSZ9893, disable RGMII in-band status support */
1208 			if (dev->features & IS_9893)
1209 				data8 &= ~PORT_MII_MAC_MODE;
1210 			p->phydev.speed = SPEED_1000;
1211 			break;
1212 		}
1213 		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1214 		p->phydev.duplex = 1;
1215 	}
1216 
1217 	if (cpu_port)
1218 		member = dsa_user_ports(ds);
1219 	else
1220 		member = BIT(dsa_upstream_port(ds, port));
1221 
1222 	ksz9477_cfg_port_member(dev, port, member);
1223 
1224 	/* clear pending interrupts */
1225 	if (port < dev->phy_port_cnt)
1226 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1227 }
1228 
1229 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1230 {
1231 	struct ksz_device *dev = ds->priv;
1232 	struct ksz_port *p;
1233 	int i;
1234 
1235 	for (i = 0; i < dev->port_cnt; i++) {
1236 		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1237 			phy_interface_t interface;
1238 			const char *prev_msg;
1239 			const char *prev_mode;
1240 
1241 			dev->cpu_port = i;
1242 			p = &dev->ports[i];
1243 
1244 			/* Read from XMII register to determine host port
1245 			 * interface.  If set specifically in device tree
1246 			 * note the difference to help debugging.
1247 			 */
1248 			interface = ksz9477_get_interface(dev, i);
1249 			if (!p->interface) {
1250 				if (dev->compat_interface) {
1251 					dev_warn(dev->dev,
1252 						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1253 						 "Please update your device tree.\n",
1254 						 i);
1255 					p->interface = dev->compat_interface;
1256 				} else {
1257 					p->interface = interface;
1258 				}
1259 			}
1260 			if (interface && interface != p->interface) {
1261 				prev_msg = " instead of ";
1262 				prev_mode = phy_modes(interface);
1263 			} else {
1264 				prev_msg = "";
1265 				prev_mode = "";
1266 			}
1267 			dev_info(dev->dev,
1268 				 "Port%d: using phy mode %s%s%s\n",
1269 				 i,
1270 				 phy_modes(p->interface),
1271 				 prev_msg,
1272 				 prev_mode);
1273 
1274 			/* enable cpu port */
1275 			ksz9477_port_setup(dev, i, true);
1276 			p->on = 1;
1277 		}
1278 	}
1279 
1280 	for (i = 0; i < dev->port_cnt; i++) {
1281 		if (i == dev->cpu_port)
1282 			continue;
1283 		p = &dev->ports[i];
1284 
1285 		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1286 		p->on = 1;
1287 		if (i < dev->phy_port_cnt)
1288 			p->phy = 1;
1289 		if (dev->chip_id == 0x00947700 && i == 6) {
1290 			p->sgmii = 1;
1291 
1292 			/* SGMII PHY detection code is not implemented yet. */
1293 			p->phy = 0;
1294 		}
1295 	}
1296 }
1297 
1298 static int ksz9477_setup(struct dsa_switch *ds)
1299 {
1300 	struct ksz_device *dev = ds->priv;
1301 	int ret = 0;
1302 
1303 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1304 				       dev->num_vlans, GFP_KERNEL);
1305 	if (!dev->vlan_cache)
1306 		return -ENOMEM;
1307 
1308 	ret = ksz9477_reset_switch(dev);
1309 	if (ret) {
1310 		dev_err(ds->dev, "failed to reset switch\n");
1311 		return ret;
1312 	}
1313 
1314 	/* Required for port partitioning. */
1315 	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1316 		      true);
1317 
1318 	/* Do not work correctly with tail tagging. */
1319 	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1320 
1321 	/* accept packet up to 2000bytes */
1322 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1323 
1324 	ksz9477_config_cpu_port(ds);
1325 
1326 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1327 
1328 	/* queue based egress rate limit */
1329 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1330 
1331 	/* enable global MIB counter freeze function */
1332 	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1333 
1334 	/* start switch */
1335 	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1336 
1337 	ksz_init_mib_timer(dev);
1338 
1339 	ds->configure_vlan_while_not_filtering = false;
1340 
1341 	return 0;
1342 }
1343 
1344 static const struct dsa_switch_ops ksz9477_switch_ops = {
1345 	.get_tag_protocol	= ksz9477_get_tag_protocol,
1346 	.setup			= ksz9477_setup,
1347 	.phy_read		= ksz9477_phy_read16,
1348 	.phy_write		= ksz9477_phy_write16,
1349 	.phylink_mac_link_down	= ksz_mac_link_down,
1350 	.port_enable		= ksz_enable_port,
1351 	.get_strings		= ksz9477_get_strings,
1352 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1353 	.get_sset_count		= ksz_sset_count,
1354 	.port_bridge_join	= ksz_port_bridge_join,
1355 	.port_bridge_leave	= ksz_port_bridge_leave,
1356 	.port_stp_state_set	= ksz9477_port_stp_state_set,
1357 	.port_fast_age		= ksz_port_fast_age,
1358 	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1359 	.port_vlan_add		= ksz9477_port_vlan_add,
1360 	.port_vlan_del		= ksz9477_port_vlan_del,
1361 	.port_fdb_dump		= ksz9477_port_fdb_dump,
1362 	.port_fdb_add		= ksz9477_port_fdb_add,
1363 	.port_fdb_del		= ksz9477_port_fdb_del,
1364 	.port_mdb_add           = ksz9477_port_mdb_add,
1365 	.port_mdb_del           = ksz9477_port_mdb_del,
1366 	.port_mirror_add	= ksz9477_port_mirror_add,
1367 	.port_mirror_del	= ksz9477_port_mirror_del,
1368 };
1369 
1370 static u32 ksz9477_get_port_addr(int port, int offset)
1371 {
1372 	return PORT_CTRL_ADDR(port, offset);
1373 }
1374 
1375 static int ksz9477_switch_detect(struct ksz_device *dev)
1376 {
1377 	u8 data8;
1378 	u8 id_hi;
1379 	u8 id_lo;
1380 	u32 id32;
1381 	int ret;
1382 
1383 	/* turn off SPI DO Edge select */
1384 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1385 	if (ret)
1386 		return ret;
1387 
1388 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1389 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1390 	if (ret)
1391 		return ret;
1392 
1393 	/* read chip id */
1394 	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1395 	if (ret)
1396 		return ret;
1397 	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1398 	if (ret)
1399 		return ret;
1400 
1401 	/* Number of ports can be reduced depending on chip. */
1402 	dev->phy_port_cnt = 5;
1403 
1404 	/* Default capability is gigabit capable. */
1405 	dev->features = GBIT_SUPPORT;
1406 
1407 	dev_dbg(dev->dev, "Switch detect: ID=%08x%02x\n", id32, data8);
1408 	id_hi = (u8)(id32 >> 16);
1409 	id_lo = (u8)(id32 >> 8);
1410 	if ((id_lo & 0xf) == 3) {
1411 		/* Chip is from KSZ9893 design. */
1412 		dev_info(dev->dev, "Found KSZ9893\n");
1413 		dev->features |= IS_9893;
1414 
1415 		/* Chip does not support gigabit. */
1416 		if (data8 & SW_QW_ABLE)
1417 			dev->features &= ~GBIT_SUPPORT;
1418 		dev->phy_port_cnt = 2;
1419 	} else {
1420 		dev_info(dev->dev, "Found KSZ9477 or compatible\n");
1421 		/* Chip uses new XMII register definitions. */
1422 		dev->features |= NEW_XMII;
1423 
1424 		/* Chip does not support gigabit. */
1425 		if (!(data8 & SW_GIGABIT_ABLE))
1426 			dev->features &= ~GBIT_SUPPORT;
1427 	}
1428 
1429 	/* Change chip id to known ones so it can be matched against them. */
1430 	id32 = (id_hi << 16) | (id_lo << 8);
1431 
1432 	dev->chip_id = id32;
1433 
1434 	return 0;
1435 }
1436 
1437 struct ksz_chip_data {
1438 	u32 chip_id;
1439 	const char *dev_name;
1440 	int num_vlans;
1441 	int num_alus;
1442 	int num_statics;
1443 	int cpu_ports;
1444 	int port_cnt;
1445 	bool phy_errata_9477;
1446 };
1447 
1448 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1449 	{
1450 		.chip_id = 0x00947700,
1451 		.dev_name = "KSZ9477",
1452 		.num_vlans = 4096,
1453 		.num_alus = 4096,
1454 		.num_statics = 16,
1455 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1456 		.port_cnt = 7,		/* total physical port count */
1457 		.phy_errata_9477 = true,
1458 	},
1459 	{
1460 		.chip_id = 0x00989700,
1461 		.dev_name = "KSZ9897",
1462 		.num_vlans = 4096,
1463 		.num_alus = 4096,
1464 		.num_statics = 16,
1465 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1466 		.port_cnt = 7,		/* total physical port count */
1467 		.phy_errata_9477 = true,
1468 	},
1469 	{
1470 		.chip_id = 0x00989300,
1471 		.dev_name = "KSZ9893",
1472 		.num_vlans = 4096,
1473 		.num_alus = 4096,
1474 		.num_statics = 16,
1475 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1476 		.port_cnt = 3,		/* total port count */
1477 	},
1478 	{
1479 		.chip_id = 0x00956700,
1480 		.dev_name = "KSZ9567",
1481 		.num_vlans = 4096,
1482 		.num_alus = 4096,
1483 		.num_statics = 16,
1484 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1485 		.port_cnt = 7,		/* total physical port count */
1486 		.phy_errata_9477 = true,
1487 	},
1488 };
1489 
1490 static int ksz9477_switch_init(struct ksz_device *dev)
1491 {
1492 	int i;
1493 
1494 	dev->ds->ops = &ksz9477_switch_ops;
1495 
1496 	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1497 		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1498 
1499 		if (dev->chip_id == chip->chip_id) {
1500 			dev->name = chip->dev_name;
1501 			dev->num_vlans = chip->num_vlans;
1502 			dev->num_alus = chip->num_alus;
1503 			dev->num_statics = chip->num_statics;
1504 			dev->port_cnt = chip->port_cnt;
1505 			dev->cpu_ports = chip->cpu_ports;
1506 			dev->phy_errata_9477 = chip->phy_errata_9477;
1507 
1508 			break;
1509 		}
1510 	}
1511 
1512 	/* no switch found */
1513 	if (!dev->port_cnt)
1514 		return -ENODEV;
1515 
1516 	dev->port_mask = (1 << dev->port_cnt) - 1;
1517 
1518 	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1519 	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1520 
1521 	dev->ports = devm_kzalloc(dev->dev,
1522 				  dev->port_cnt * sizeof(struct ksz_port),
1523 				  GFP_KERNEL);
1524 	if (!dev->ports)
1525 		return -ENOMEM;
1526 	for (i = 0; i < dev->port_cnt; i++) {
1527 		mutex_init(&dev->ports[i].mib.cnt_mutex);
1528 		dev->ports[i].mib.counters =
1529 			devm_kzalloc(dev->dev,
1530 				     sizeof(u64) *
1531 				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1532 				     GFP_KERNEL);
1533 		if (!dev->ports[i].mib.counters)
1534 			return -ENOMEM;
1535 	}
1536 
1537 	/* set the real number of ports */
1538 	dev->ds->num_ports = dev->port_cnt;
1539 
1540 	return 0;
1541 }
1542 
1543 static void ksz9477_switch_exit(struct ksz_device *dev)
1544 {
1545 	ksz9477_reset_switch(dev);
1546 }
1547 
1548 static const struct ksz_dev_ops ksz9477_dev_ops = {
1549 	.get_port_addr = ksz9477_get_port_addr,
1550 	.cfg_port_member = ksz9477_cfg_port_member,
1551 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1552 	.port_setup = ksz9477_port_setup,
1553 	.r_mib_cnt = ksz9477_r_mib_cnt,
1554 	.r_mib_pkt = ksz9477_r_mib_pkt,
1555 	.freeze_mib = ksz9477_freeze_mib,
1556 	.port_init_cnt = ksz9477_port_init_cnt,
1557 	.shutdown = ksz9477_reset_switch,
1558 	.detect = ksz9477_switch_detect,
1559 	.init = ksz9477_switch_init,
1560 	.exit = ksz9477_switch_exit,
1561 };
1562 
1563 int ksz9477_switch_register(struct ksz_device *dev)
1564 {
1565 	int ret, i;
1566 	struct phy_device *phydev;
1567 
1568 	ret = ksz_switch_register(dev, &ksz9477_dev_ops);
1569 	if (ret)
1570 		return ret;
1571 
1572 	for (i = 0; i < dev->phy_port_cnt; ++i) {
1573 		if (!dsa_is_user_port(dev->ds, i))
1574 			continue;
1575 
1576 		phydev = dsa_to_port(dev->ds, i)->slave->phydev;
1577 
1578 		/* The MAC actually cannot run in 1000 half-duplex mode. */
1579 		phy_remove_link_mode(phydev,
1580 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1581 
1582 		/* PHY does not support gigabit. */
1583 		if (!(dev->features & GBIT_SUPPORT))
1584 			phy_remove_link_mode(phydev,
1585 					     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1586 	}
1587 	return ret;
1588 }
1589 EXPORT_SYMBOL(ksz9477_switch_register);
1590 
1591 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1592 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1593 MODULE_LICENSE("GPL");
1594