xref: /linux/drivers/net/dsa/lantiq/lantiq_gswip.c (revision 9f9581ba74a931843c6d807ecfeaff9fb8c1b731)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27 
28 #include "lantiq_gswip.h"
29 #include "lantiq_pce.h"
30 
31 #include <linux/delay.h>
32 #include <linux/etherdevice.h>
33 #include <linux/firmware.h>
34 #include <linux/if_bridge.h>
35 #include <linux/if_vlan.h>
36 #include <linux/iopoll.h>
37 #include <linux/mfd/syscon.h>
38 #include <linux/module.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_net.h>
41 #include <linux/of_platform.h>
42 #include <linux/phy.h>
43 #include <linux/phylink.h>
44 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
45 
46 struct xway_gphy_match_data {
47 	char *fe_firmware_name;
48 	char *ge_firmware_name;
49 };
50 
51 struct gswip_pce_table_entry {
52 	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
53 	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
54 	u16 key[8];
55 	u16 val[5];
56 	u16 mask;
57 	u8 gmap;
58 	bool type;
59 	bool valid;
60 	bool key_mode;
61 };
62 
63 struct gswip_rmon_cnt_desc {
64 	unsigned int size;
65 	unsigned int offset;
66 	const char *name;
67 };
68 
69 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
70 
71 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
72 	/** Receive Packet Count (only packets that are accepted and not discarded). */
73 	MIB_DESC(1, 0x1F, "RxGoodPkts"),
74 	MIB_DESC(1, 0x23, "RxUnicastPkts"),
75 	MIB_DESC(1, 0x22, "RxMulticastPkts"),
76 	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
77 	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
78 	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
79 	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
80 	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
81 	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
82 	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
83 	MIB_DESC(1, 0x12, "Rx64BytePkts"),
84 	MIB_DESC(1, 0x13, "Rx127BytePkts"),
85 	MIB_DESC(1, 0x14, "Rx255BytePkts"),
86 	MIB_DESC(1, 0x15, "Rx511BytePkts"),
87 	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
88 	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
89 	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
90 	MIB_DESC(1, 0x18, "RxDroppedPkts"),
91 	MIB_DESC(1, 0x19, "RxFilteredPkts"),
92 	MIB_DESC(2, 0x24, "RxGoodBytes"),
93 	MIB_DESC(2, 0x26, "RxBadBytes"),
94 	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
95 	MIB_DESC(1, 0x0C, "TxGoodPkts"),
96 	MIB_DESC(1, 0x06, "TxUnicastPkts"),
97 	MIB_DESC(1, 0x07, "TxMulticastPkts"),
98 	MIB_DESC(1, 0x00, "Tx64BytePkts"),
99 	MIB_DESC(1, 0x01, "Tx127BytePkts"),
100 	MIB_DESC(1, 0x02, "Tx255BytePkts"),
101 	MIB_DESC(1, 0x03, "Tx511BytePkts"),
102 	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
103 	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
104 	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
105 	MIB_DESC(1, 0x08, "TxSingleCollCount"),
106 	MIB_DESC(1, 0x09, "TxMultCollCount"),
107 	MIB_DESC(1, 0x0A, "TxLateCollCount"),
108 	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
109 	MIB_DESC(1, 0x0D, "TxPauseCount"),
110 	MIB_DESC(1, 0x10, "TxDroppedPkts"),
111 	MIB_DESC(2, 0x0E, "TxGoodBytes"),
112 };
113 
114 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
115 {
116 	return __raw_readl(priv->gswip + (offset * 4));
117 }
118 
119 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
120 {
121 	__raw_writel(val, priv->gswip + (offset * 4));
122 }
123 
124 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
125 			      u32 offset)
126 {
127 	u32 val = gswip_switch_r(priv, offset);
128 
129 	val &= ~(clear);
130 	val |= set;
131 	gswip_switch_w(priv, val, offset);
132 }
133 
134 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
135 				  u32 cleared)
136 {
137 	u32 val;
138 
139 	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
140 				  (val & cleared) == 0, 20, 50000);
141 }
142 
143 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
144 {
145 	return __raw_readl(priv->mdio + (offset * 4));
146 }
147 
148 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
149 {
150 	__raw_writel(val, priv->mdio + (offset * 4));
151 }
152 
153 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
154 			    u32 offset)
155 {
156 	u32 val = gswip_mdio_r(priv, offset);
157 
158 	val &= ~(clear);
159 	val |= set;
160 	gswip_mdio_w(priv, val, offset);
161 }
162 
163 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
164 {
165 	return __raw_readl(priv->mii + (offset * 4));
166 }
167 
168 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
169 {
170 	__raw_writel(val, priv->mii + (offset * 4));
171 }
172 
173 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
174 			   u32 offset)
175 {
176 	u32 val = gswip_mii_r(priv, offset);
177 
178 	val &= ~(clear);
179 	val |= set;
180 	gswip_mii_w(priv, val, offset);
181 }
182 
183 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
184 			       int port)
185 {
186 	int reg_port;
187 
188 	/* MII_CFG register only exists for MII ports */
189 	if (!(priv->hw_info->mii_ports & BIT(port)))
190 		return;
191 
192 	reg_port = port + priv->hw_info->mii_port_reg_offset;
193 
194 	gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(reg_port));
195 }
196 
197 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
198 				int port)
199 {
200 	int reg_port;
201 
202 	/* MII_PCDU register only exists for MII ports */
203 	if (!(priv->hw_info->mii_ports & BIT(port)))
204 		return;
205 
206 	reg_port = port + priv->hw_info->mii_port_reg_offset;
207 
208 	switch (reg_port) {
209 	case 0:
210 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
211 		break;
212 	case 1:
213 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
214 		break;
215 	case 5:
216 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
217 		break;
218 	}
219 }
220 
221 static int gswip_mdio_poll(struct gswip_priv *priv)
222 {
223 	int cnt = 100;
224 
225 	while (likely(cnt--)) {
226 		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
227 
228 		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
229 			return 0;
230 		usleep_range(20, 40);
231 	}
232 
233 	return -ETIMEDOUT;
234 }
235 
236 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
237 {
238 	struct gswip_priv *priv = bus->priv;
239 	int err;
240 
241 	err = gswip_mdio_poll(priv);
242 	if (err) {
243 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
244 		return err;
245 	}
246 
247 	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
248 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
249 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
250 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
251 		GSWIP_MDIO_CTRL);
252 
253 	return 0;
254 }
255 
256 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
257 {
258 	struct gswip_priv *priv = bus->priv;
259 	int err;
260 
261 	err = gswip_mdio_poll(priv);
262 	if (err) {
263 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
264 		return err;
265 	}
266 
267 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
268 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
269 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
270 		GSWIP_MDIO_CTRL);
271 
272 	err = gswip_mdio_poll(priv);
273 	if (err) {
274 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
275 		return err;
276 	}
277 
278 	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
279 }
280 
281 static int gswip_mdio(struct gswip_priv *priv)
282 {
283 	struct device_node *mdio_np, *switch_np = priv->dev->of_node;
284 	struct device *dev = priv->dev;
285 	struct mii_bus *bus;
286 	int err = 0;
287 
288 	mdio_np = of_get_compatible_child(switch_np, "lantiq,xrx200-mdio");
289 	if (!mdio_np)
290 		mdio_np = of_get_child_by_name(switch_np, "mdio");
291 
292 	if (!of_device_is_available(mdio_np))
293 		goto out_put_node;
294 
295 	bus = devm_mdiobus_alloc(dev);
296 	if (!bus) {
297 		err = -ENOMEM;
298 		goto out_put_node;
299 	}
300 
301 	bus->priv = priv;
302 	bus->read = gswip_mdio_rd;
303 	bus->write = gswip_mdio_wr;
304 	bus->name = "lantiq,xrx200-mdio";
305 	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(priv->dev));
306 	bus->parent = priv->dev;
307 
308 	err = devm_of_mdiobus_register(dev, bus, mdio_np);
309 
310 out_put_node:
311 	of_node_put(mdio_np);
312 
313 	return err;
314 }
315 
316 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
317 				      struct gswip_pce_table_entry *tbl)
318 {
319 	int i;
320 	int err;
321 	u16 crtl;
322 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
323 					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
324 
325 	mutex_lock(&priv->pce_table_lock);
326 
327 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
328 				     GSWIP_PCE_TBL_CTRL_BAS);
329 	if (err) {
330 		mutex_unlock(&priv->pce_table_lock);
331 		return err;
332 	}
333 
334 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
335 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
336 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
337 			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
338 			  GSWIP_PCE_TBL_CTRL);
339 
340 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
341 				     GSWIP_PCE_TBL_CTRL_BAS);
342 	if (err) {
343 		mutex_unlock(&priv->pce_table_lock);
344 		return err;
345 	}
346 
347 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
348 		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
349 
350 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
351 		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
352 
353 	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
354 
355 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
356 
357 	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
358 	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
359 	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
360 
361 	mutex_unlock(&priv->pce_table_lock);
362 
363 	return 0;
364 }
365 
366 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
367 				       struct gswip_pce_table_entry *tbl)
368 {
369 	int i;
370 	int err;
371 	u16 crtl;
372 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
373 					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
374 
375 	mutex_lock(&priv->pce_table_lock);
376 
377 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
378 				     GSWIP_PCE_TBL_CTRL_BAS);
379 	if (err) {
380 		mutex_unlock(&priv->pce_table_lock);
381 		return err;
382 	}
383 
384 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
385 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
386 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
387 			  tbl->table | addr_mode,
388 			  GSWIP_PCE_TBL_CTRL);
389 
390 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
391 		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
392 
393 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
394 		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
395 
396 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
397 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
398 			  tbl->table | addr_mode,
399 			  GSWIP_PCE_TBL_CTRL);
400 
401 	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
402 
403 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
404 	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
405 		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
406 	if (tbl->type)
407 		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
408 	if (tbl->valid)
409 		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
410 	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
411 	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
412 	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
413 
414 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
415 				     GSWIP_PCE_TBL_CTRL_BAS);
416 
417 	mutex_unlock(&priv->pce_table_lock);
418 
419 	return err;
420 }
421 
422 /* Add the LAN port into a bridge with the CPU port by
423  * default. This prevents automatic forwarding of
424  * packages between the LAN ports when no explicit
425  * bridge is configured.
426  */
427 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
428 {
429 	struct gswip_pce_table_entry vlan_active = {0,};
430 	struct gswip_pce_table_entry vlan_mapping = {0,};
431 	int err;
432 
433 	vlan_active.index = port + 1;
434 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
435 	vlan_active.key[0] = 0; /* vid */
436 	vlan_active.val[0] = port + 1 /* fid */;
437 	vlan_active.valid = add;
438 	err = gswip_pce_table_entry_write(priv, &vlan_active);
439 	if (err) {
440 		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
441 		return err;
442 	}
443 
444 	if (!add)
445 		return 0;
446 
447 	vlan_mapping.index = port + 1;
448 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
449 	vlan_mapping.val[0] = 0 /* vid */;
450 	vlan_mapping.val[1] = BIT(port) | dsa_cpu_ports(priv->ds);
451 	vlan_mapping.val[2] = 0;
452 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
453 	if (err) {
454 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
455 		return err;
456 	}
457 
458 	return 0;
459 }
460 
461 static int gswip_port_enable(struct dsa_switch *ds, int port,
462 			     struct phy_device *phydev)
463 {
464 	struct gswip_priv *priv = ds->priv;
465 	int err;
466 
467 	if (!dsa_is_cpu_port(ds, port)) {
468 		u32 mdio_phy = 0;
469 
470 		err = gswip_add_single_port_br(priv, port, true);
471 		if (err)
472 			return err;
473 
474 		if (phydev)
475 			mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
476 
477 		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
478 				GSWIP_MDIO_PHYp(port));
479 	}
480 
481 	/* RMON Counter Enable for port */
482 	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
483 
484 	/* enable port fetch/store dma & VLAN Modification */
485 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
486 				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
487 			 GSWIP_FDMA_PCTRLp(port));
488 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
489 			  GSWIP_SDMA_PCTRLp(port));
490 
491 	return 0;
492 }
493 
494 static void gswip_port_disable(struct dsa_switch *ds, int port)
495 {
496 	struct gswip_priv *priv = ds->priv;
497 
498 	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
499 			  GSWIP_FDMA_PCTRLp(port));
500 	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
501 			  GSWIP_SDMA_PCTRLp(port));
502 }
503 
504 static int gswip_pce_load_microcode(struct gswip_priv *priv)
505 {
506 	int i;
507 	int err;
508 
509 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
510 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
511 			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
512 	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
513 
514 	for (i = 0; i < priv->hw_info->pce_microcode_size; i++) {
515 		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
516 		gswip_switch_w(priv, (*priv->hw_info->pce_microcode)[i].val_0,
517 			       GSWIP_PCE_TBL_VAL(0));
518 		gswip_switch_w(priv, (*priv->hw_info->pce_microcode)[i].val_1,
519 			       GSWIP_PCE_TBL_VAL(1));
520 		gswip_switch_w(priv, (*priv->hw_info->pce_microcode)[i].val_2,
521 			       GSWIP_PCE_TBL_VAL(2));
522 		gswip_switch_w(priv, (*priv->hw_info->pce_microcode)[i].val_3,
523 			       GSWIP_PCE_TBL_VAL(3));
524 
525 		/* start the table access: */
526 		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
527 				  GSWIP_PCE_TBL_CTRL);
528 		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
529 					     GSWIP_PCE_TBL_CTRL_BAS);
530 		if (err)
531 			return err;
532 	}
533 
534 	/* tell the switch that the microcode is loaded */
535 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
536 			  GSWIP_PCE_GCTRL_0);
537 
538 	return 0;
539 }
540 
541 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
542 				     bool vlan_filtering,
543 				     struct netlink_ext_ack *extack)
544 {
545 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
546 	struct gswip_priv *priv = ds->priv;
547 
548 	/* Do not allow changing the VLAN filtering options while in bridge */
549 	if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
550 		NL_SET_ERR_MSG_MOD(extack,
551 				   "Dynamic toggling of vlan_filtering not supported");
552 		return -EIO;
553 	}
554 
555 	if (vlan_filtering) {
556 		/* Use tag based VLAN */
557 		gswip_switch_mask(priv,
558 				  GSWIP_PCE_VCTRL_VSR,
559 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
560 				  GSWIP_PCE_VCTRL_VEMR,
561 				  GSWIP_PCE_VCTRL(port));
562 		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
563 				  GSWIP_PCE_PCTRL_0p(port));
564 	} else {
565 		/* Use port based VLAN */
566 		gswip_switch_mask(priv,
567 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
568 				  GSWIP_PCE_VCTRL_VEMR,
569 				  GSWIP_PCE_VCTRL_VSR,
570 				  GSWIP_PCE_VCTRL(port));
571 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
572 				  GSWIP_PCE_PCTRL_0p(port));
573 	}
574 
575 	return 0;
576 }
577 
578 static int gswip_setup(struct dsa_switch *ds)
579 {
580 	unsigned int cpu_ports = dsa_cpu_ports(ds);
581 	struct gswip_priv *priv = ds->priv;
582 	struct dsa_port *cpu_dp;
583 	int err, i;
584 
585 	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
586 	usleep_range(5000, 10000);
587 	gswip_switch_w(priv, 0, GSWIP_SWRES);
588 
589 	/* disable port fetch/store dma on all ports */
590 	for (i = 0; i < priv->hw_info->max_ports; i++) {
591 		gswip_port_disable(ds, i);
592 		gswip_port_vlan_filtering(ds, i, false, NULL);
593 	}
594 
595 	/* enable Switch */
596 	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
597 
598 	err = gswip_pce_load_microcode(priv);
599 	if (err) {
600 		dev_err(priv->dev, "writing PCE microcode failed, %i\n", err);
601 		return err;
602 	}
603 
604 	/* Default unknown Broadcast/Multicast/Unicast port maps */
605 	gswip_switch_w(priv, cpu_ports, GSWIP_PCE_PMAP1);
606 	gswip_switch_w(priv, cpu_ports, GSWIP_PCE_PMAP2);
607 	gswip_switch_w(priv, cpu_ports, GSWIP_PCE_PMAP3);
608 
609 	/* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
610 	 * interoperability problem with this auto polling mechanism because
611 	 * their status registers think that the link is in a different state
612 	 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
613 	 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
614 	 * auto polling state machine consider the link being negotiated with
615 	 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
616 	 * to the switch port being completely dead (RX and TX are both not
617 	 * working).
618 	 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
619 	 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
620 	 * it would work fine for a few minutes to hours and then stop, on
621 	 * other device it would no traffic could be sent or received at all.
622 	 * Testing shows that when PHY auto polling is disabled these problems
623 	 * go away.
624 	 */
625 	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
626 
627 	/* Configure the MDIO Clock 2.5 MHz */
628 	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
629 
630 	/* bring up the mdio bus */
631 	err = gswip_mdio(priv);
632 	if (err) {
633 		dev_err(priv->dev, "mdio bus setup failed\n");
634 		return err;
635 	}
636 
637 	/* Disable the xMII interface and clear it's isolation bit */
638 	for (i = 0; i < priv->hw_info->max_ports; i++)
639 		gswip_mii_mask_cfg(priv,
640 				   GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
641 				   0, i);
642 
643 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
644 		/* enable special tag insertion on cpu port */
645 		gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
646 				  GSWIP_FDMA_PCTRLp(cpu_dp->index));
647 
648 		/* accept special tag in ingress direction */
649 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
650 				  GSWIP_PCE_PCTRL_0p(cpu_dp->index));
651 	}
652 
653 	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
654 			  GSWIP_BM_QUEUE_GCTRL);
655 
656 	/* VLAN aware Switching */
657 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
658 
659 	/* Flush MAC Table */
660 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
661 
662 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
663 				     GSWIP_PCE_GCTRL_0_MTFL);
664 	if (err) {
665 		dev_err(priv->dev, "MAC flushing didn't finish\n");
666 		return err;
667 	}
668 
669 	ds->mtu_enforcement_ingress = true;
670 
671 	ds->configure_vlan_while_not_filtering = false;
672 
673 	return 0;
674 }
675 
676 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
677 						    int port,
678 						    enum dsa_tag_protocol mp)
679 {
680 	struct gswip_priv *priv = ds->priv;
681 
682 	return priv->hw_info->tag_protocol;
683 }
684 
685 static int gswip_vlan_active_create(struct gswip_priv *priv,
686 				    struct net_device *bridge,
687 				    int fid, u16 vid)
688 {
689 	struct gswip_pce_table_entry vlan_active = {0,};
690 	unsigned int max_ports = priv->hw_info->max_ports;
691 	int idx = -1;
692 	int err;
693 	int i;
694 
695 	/* Look for a free slot */
696 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
697 		if (!priv->vlans[i].bridge) {
698 			idx = i;
699 			break;
700 		}
701 	}
702 
703 	if (idx == -1)
704 		return -ENOSPC;
705 
706 	if (fid == -1)
707 		fid = idx;
708 
709 	vlan_active.index = idx;
710 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
711 	vlan_active.key[0] = vid;
712 	vlan_active.val[0] = fid;
713 	vlan_active.valid = true;
714 
715 	err = gswip_pce_table_entry_write(priv, &vlan_active);
716 	if (err) {
717 		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
718 		return err;
719 	}
720 
721 	priv->vlans[idx].bridge = bridge;
722 	priv->vlans[idx].vid = vid;
723 	priv->vlans[idx].fid = fid;
724 
725 	return idx;
726 }
727 
728 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
729 {
730 	struct gswip_pce_table_entry vlan_active = {0,};
731 	int err;
732 
733 	vlan_active.index = idx;
734 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
735 	vlan_active.valid = false;
736 	err = gswip_pce_table_entry_write(priv, &vlan_active);
737 	if (err)
738 		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
739 	priv->vlans[idx].bridge = NULL;
740 
741 	return err;
742 }
743 
744 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
745 				  struct net_device *bridge, int port)
746 {
747 	struct gswip_pce_table_entry vlan_mapping = {0,};
748 	unsigned int max_ports = priv->hw_info->max_ports;
749 	bool active_vlan_created = false;
750 	int idx = -1;
751 	int i;
752 	int err;
753 
754 	/* Check if there is already a page for this bridge */
755 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
756 		if (priv->vlans[i].bridge == bridge) {
757 			idx = i;
758 			break;
759 		}
760 	}
761 
762 	/* If this bridge is not programmed yet, add a Active VLAN table
763 	 * entry in a free slot and prepare the VLAN mapping table entry.
764 	 */
765 	if (idx == -1) {
766 		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
767 		if (idx < 0)
768 			return idx;
769 		active_vlan_created = true;
770 
771 		vlan_mapping.index = idx;
772 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
773 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
774 		vlan_mapping.val[0] = 0;
775 	} else {
776 		/* Read the existing VLAN mapping entry from the switch */
777 		vlan_mapping.index = idx;
778 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
779 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
780 		if (err) {
781 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
782 				err);
783 			return err;
784 		}
785 	}
786 
787 	/* Update the VLAN mapping entry and write it to the switch */
788 	vlan_mapping.val[1] |= dsa_cpu_ports(priv->ds);
789 	vlan_mapping.val[1] |= BIT(port);
790 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
791 	if (err) {
792 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
793 		/* In case an Active VLAN was creaetd delete it again */
794 		if (active_vlan_created)
795 			gswip_vlan_active_remove(priv, idx);
796 		return err;
797 	}
798 
799 	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
800 	return 0;
801 }
802 
803 static int gswip_vlan_add_aware(struct gswip_priv *priv,
804 				struct net_device *bridge, int port,
805 				u16 vid, bool untagged,
806 				bool pvid)
807 {
808 	struct gswip_pce_table_entry vlan_mapping = {0,};
809 	unsigned int max_ports = priv->hw_info->max_ports;
810 	unsigned int cpu_ports = dsa_cpu_ports(priv->ds);
811 	bool active_vlan_created = false;
812 	int idx = -1;
813 	int fid = -1;
814 	int i;
815 	int err;
816 
817 	/* Check if there is already a page for this bridge */
818 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
819 		if (priv->vlans[i].bridge == bridge) {
820 			if (fid != -1 && fid != priv->vlans[i].fid)
821 				dev_err(priv->dev, "one bridge with multiple flow ids\n");
822 			fid = priv->vlans[i].fid;
823 			if (priv->vlans[i].vid == vid) {
824 				idx = i;
825 				break;
826 			}
827 		}
828 	}
829 
830 	/* If this bridge is not programmed yet, add a Active VLAN table
831 	 * entry in a free slot and prepare the VLAN mapping table entry.
832 	 */
833 	if (idx == -1) {
834 		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
835 		if (idx < 0)
836 			return idx;
837 		active_vlan_created = true;
838 
839 		vlan_mapping.index = idx;
840 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
841 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
842 		vlan_mapping.val[0] = vid;
843 	} else {
844 		/* Read the existing VLAN mapping entry from the switch */
845 		vlan_mapping.index = idx;
846 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
847 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
848 		if (err) {
849 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
850 				err);
851 			return err;
852 		}
853 	}
854 
855 	vlan_mapping.val[0] = vid;
856 	/* Update the VLAN mapping entry and write it to the switch */
857 	vlan_mapping.val[1] |= cpu_ports;
858 	vlan_mapping.val[2] |= cpu_ports;
859 	vlan_mapping.val[1] |= BIT(port);
860 	if (untagged)
861 		vlan_mapping.val[2] &= ~BIT(port);
862 	else
863 		vlan_mapping.val[2] |= BIT(port);
864 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
865 	if (err) {
866 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
867 		/* In case an Active VLAN was creaetd delete it again */
868 		if (active_vlan_created)
869 			gswip_vlan_active_remove(priv, idx);
870 		return err;
871 	}
872 
873 	if (pvid)
874 		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
875 
876 	return 0;
877 }
878 
879 static int gswip_vlan_remove(struct gswip_priv *priv,
880 			     struct net_device *bridge, int port,
881 			     u16 vid, bool pvid, bool vlan_aware)
882 {
883 	struct gswip_pce_table_entry vlan_mapping = {0,};
884 	unsigned int max_ports = priv->hw_info->max_ports;
885 	int idx = -1;
886 	int i;
887 	int err;
888 
889 	/* Check if there is already a page for this bridge */
890 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
891 		if (priv->vlans[i].bridge == bridge &&
892 		    (!vlan_aware || priv->vlans[i].vid == vid)) {
893 			idx = i;
894 			break;
895 		}
896 	}
897 
898 	if (idx == -1) {
899 		dev_err(priv->dev, "bridge to leave does not exists\n");
900 		return -ENOENT;
901 	}
902 
903 	vlan_mapping.index = idx;
904 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
905 	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
906 	if (err) {
907 		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
908 		return err;
909 	}
910 
911 	vlan_mapping.val[1] &= ~BIT(port);
912 	vlan_mapping.val[2] &= ~BIT(port);
913 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
914 	if (err) {
915 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
916 		return err;
917 	}
918 
919 	/* In case all ports are removed from the bridge, remove the VLAN */
920 	if (!(vlan_mapping.val[1] & ~dsa_cpu_ports(priv->ds))) {
921 		err = gswip_vlan_active_remove(priv, idx);
922 		if (err) {
923 			dev_err(priv->dev, "failed to write active VLAN: %d\n",
924 				err);
925 			return err;
926 		}
927 	}
928 
929 	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
930 	if (pvid)
931 		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
932 
933 	return 0;
934 }
935 
936 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
937 				  struct dsa_bridge bridge,
938 				  bool *tx_fwd_offload,
939 				  struct netlink_ext_ack *extack)
940 {
941 	struct net_device *br = bridge.dev;
942 	struct gswip_priv *priv = ds->priv;
943 	int err;
944 
945 	/* When the bridge uses VLAN filtering we have to configure VLAN
946 	 * specific bridges. No bridge is configured here.
947 	 */
948 	if (!br_vlan_enabled(br)) {
949 		err = gswip_vlan_add_unaware(priv, br, port);
950 		if (err)
951 			return err;
952 		priv->port_vlan_filter &= ~BIT(port);
953 	} else {
954 		priv->port_vlan_filter |= BIT(port);
955 	}
956 	return gswip_add_single_port_br(priv, port, false);
957 }
958 
959 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
960 				    struct dsa_bridge bridge)
961 {
962 	struct net_device *br = bridge.dev;
963 	struct gswip_priv *priv = ds->priv;
964 
965 	gswip_add_single_port_br(priv, port, true);
966 
967 	/* When the bridge uses VLAN filtering we have to configure VLAN
968 	 * specific bridges. No bridge is configured here.
969 	 */
970 	if (!br_vlan_enabled(br))
971 		gswip_vlan_remove(priv, br, port, 0, true, false);
972 }
973 
974 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
975 				   const struct switchdev_obj_port_vlan *vlan,
976 				   struct netlink_ext_ack *extack)
977 {
978 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
979 	struct gswip_priv *priv = ds->priv;
980 	unsigned int max_ports = priv->hw_info->max_ports;
981 	int pos = max_ports;
982 	int i, idx = -1;
983 
984 	/* We only support VLAN filtering on bridges */
985 	if (!dsa_is_cpu_port(ds, port) && !bridge)
986 		return -EOPNOTSUPP;
987 
988 	/* Check if there is already a page for this VLAN */
989 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
990 		if (priv->vlans[i].bridge == bridge &&
991 		    priv->vlans[i].vid == vlan->vid) {
992 			idx = i;
993 			break;
994 		}
995 	}
996 
997 	/* If this VLAN is not programmed yet, we have to reserve
998 	 * one entry in the VLAN table. Make sure we start at the
999 	 * next position round.
1000 	 */
1001 	if (idx == -1) {
1002 		/* Look for a free slot */
1003 		for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1004 			if (!priv->vlans[pos].bridge) {
1005 				idx = pos;
1006 				pos++;
1007 				break;
1008 			}
1009 		}
1010 
1011 		if (idx == -1) {
1012 			NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1013 			return -ENOSPC;
1014 		}
1015 	}
1016 
1017 	return 0;
1018 }
1019 
1020 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1021 			       const struct switchdev_obj_port_vlan *vlan,
1022 			       struct netlink_ext_ack *extack)
1023 {
1024 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1025 	struct gswip_priv *priv = ds->priv;
1026 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1027 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1028 	int err;
1029 
1030 	err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1031 	if (err)
1032 		return err;
1033 
1034 	/* We have to receive all packets on the CPU port and should not
1035 	 * do any VLAN filtering here. This is also called with bridge
1036 	 * NULL and then we do not know for which bridge to configure
1037 	 * this.
1038 	 */
1039 	if (dsa_is_cpu_port(ds, port))
1040 		return 0;
1041 
1042 	return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1043 				    untagged, pvid);
1044 }
1045 
1046 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1047 			       const struct switchdev_obj_port_vlan *vlan)
1048 {
1049 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1050 	struct gswip_priv *priv = ds->priv;
1051 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1052 
1053 	/* We have to receive all packets on the CPU port and should not
1054 	 * do any VLAN filtering here. This is also called with bridge
1055 	 * NULL and then we do not know for which bridge to configure
1056 	 * this.
1057 	 */
1058 	if (dsa_is_cpu_port(ds, port))
1059 		return 0;
1060 
1061 	return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1062 }
1063 
1064 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1065 {
1066 	struct gswip_priv *priv = ds->priv;
1067 	struct gswip_pce_table_entry mac_bridge = {0,};
1068 	int i;
1069 	int err;
1070 
1071 	for (i = 0; i < 2048; i++) {
1072 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1073 		mac_bridge.index = i;
1074 
1075 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1076 		if (err) {
1077 			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1078 				err);
1079 			return;
1080 		}
1081 
1082 		if (!mac_bridge.valid)
1083 			continue;
1084 
1085 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC)
1086 			continue;
1087 
1088 		if (port != FIELD_GET(GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT,
1089 				      mac_bridge.val[0]))
1090 			continue;
1091 
1092 		mac_bridge.valid = false;
1093 		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1094 		if (err) {
1095 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1096 				err);
1097 			return;
1098 		}
1099 	}
1100 }
1101 
1102 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1103 {
1104 	struct gswip_priv *priv = ds->priv;
1105 	u32 stp_state;
1106 
1107 	switch (state) {
1108 	case BR_STATE_DISABLED:
1109 		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1110 				  GSWIP_SDMA_PCTRLp(port));
1111 		return;
1112 	case BR_STATE_BLOCKING:
1113 	case BR_STATE_LISTENING:
1114 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1115 		break;
1116 	case BR_STATE_LEARNING:
1117 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1118 		break;
1119 	case BR_STATE_FORWARDING:
1120 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1121 		break;
1122 	default:
1123 		dev_err(priv->dev, "invalid STP state: %d\n", state);
1124 		return;
1125 	}
1126 
1127 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1128 			  GSWIP_SDMA_PCTRLp(port));
1129 	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1130 			  GSWIP_PCE_PCTRL_0p(port));
1131 }
1132 
1133 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1134 			  const unsigned char *addr, u16 vid, bool add)
1135 {
1136 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1137 	struct gswip_priv *priv = ds->priv;
1138 	struct gswip_pce_table_entry mac_bridge = {0,};
1139 	unsigned int max_ports = priv->hw_info->max_ports;
1140 	int fid = -1;
1141 	int i;
1142 	int err;
1143 
1144 	if (!bridge)
1145 		return -EINVAL;
1146 
1147 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1148 		if (priv->vlans[i].bridge == bridge) {
1149 			fid = priv->vlans[i].fid;
1150 			break;
1151 		}
1152 	}
1153 
1154 	if (fid == -1) {
1155 		dev_err(priv->dev, "no FID found for bridge %s\n",
1156 			bridge->name);
1157 		return -EINVAL;
1158 	}
1159 
1160 	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1161 	mac_bridge.key_mode = true;
1162 	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1163 	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1164 	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1165 	mac_bridge.key[3] = FIELD_PREP(GSWIP_TABLE_MAC_BRIDGE_KEY3_FID, fid);
1166 	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1167 	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC;
1168 	mac_bridge.valid = add;
1169 
1170 	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1171 	if (err)
1172 		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1173 
1174 	return err;
1175 }
1176 
1177 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1178 			      const unsigned char *addr, u16 vid,
1179 			      struct dsa_db db)
1180 {
1181 	return gswip_port_fdb(ds, port, addr, vid, true);
1182 }
1183 
1184 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1185 			      const unsigned char *addr, u16 vid,
1186 			      struct dsa_db db)
1187 {
1188 	return gswip_port_fdb(ds, port, addr, vid, false);
1189 }
1190 
1191 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1192 			       dsa_fdb_dump_cb_t *cb, void *data)
1193 {
1194 	struct gswip_priv *priv = ds->priv;
1195 	struct gswip_pce_table_entry mac_bridge = {0,};
1196 	unsigned char addr[ETH_ALEN];
1197 	int i;
1198 	int err;
1199 
1200 	for (i = 0; i < 2048; i++) {
1201 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1202 		mac_bridge.index = i;
1203 
1204 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1205 		if (err) {
1206 			dev_err(priv->dev,
1207 				"failed to read mac bridge entry %d: %d\n",
1208 				i, err);
1209 			return err;
1210 		}
1211 
1212 		if (!mac_bridge.valid)
1213 			continue;
1214 
1215 		addr[5] = mac_bridge.key[0] & 0xff;
1216 		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1217 		addr[3] = mac_bridge.key[1] & 0xff;
1218 		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1219 		addr[1] = mac_bridge.key[2] & 0xff;
1220 		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1221 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC) {
1222 			if (mac_bridge.val[0] & BIT(port)) {
1223 				err = cb(addr, 0, true, data);
1224 				if (err)
1225 					return err;
1226 			}
1227 		} else {
1228 			if (port == FIELD_GET(GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT,
1229 					      mac_bridge.val[0])) {
1230 				err = cb(addr, 0, false, data);
1231 				if (err)
1232 					return err;
1233 			}
1234 		}
1235 	}
1236 	return 0;
1237 }
1238 
1239 static int gswip_port_max_mtu(struct dsa_switch *ds, int port)
1240 {
1241 	/* Includes 8 bytes for special header. */
1242 	return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN;
1243 }
1244 
1245 static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1246 {
1247 	struct gswip_priv *priv = ds->priv;
1248 
1249 	/* CPU port always has maximum mtu of user ports, so use it to set
1250 	 * switch frame size, including 8 byte special header.
1251 	 */
1252 	if (dsa_is_cpu_port(ds, port)) {
1253 		new_mtu += 8;
1254 		gswip_switch_w(priv, VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN,
1255 			       GSWIP_MAC_FLEN);
1256 	}
1257 
1258 	/* Enable MLEN for ports with non-standard MTUs, including the special
1259 	 * header on the CPU port added above.
1260 	 */
1261 	if (new_mtu != ETH_DATA_LEN)
1262 		gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
1263 				  GSWIP_MAC_CTRL_2p(port));
1264 	else
1265 		gswip_switch_mask(priv, GSWIP_MAC_CTRL_2_MLEN, 0,
1266 				  GSWIP_MAC_CTRL_2p(port));
1267 
1268 	return 0;
1269 }
1270 
1271 static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port,
1272 					  struct phylink_config *config)
1273 {
1274 	switch (port) {
1275 	case 0:
1276 	case 1:
1277 		phy_interface_set_rgmii(config->supported_interfaces);
1278 		__set_bit(PHY_INTERFACE_MODE_MII,
1279 			  config->supported_interfaces);
1280 		__set_bit(PHY_INTERFACE_MODE_REVMII,
1281 			  config->supported_interfaces);
1282 		__set_bit(PHY_INTERFACE_MODE_RMII,
1283 			  config->supported_interfaces);
1284 		break;
1285 
1286 	case 2:
1287 	case 3:
1288 	case 4:
1289 	case 6:
1290 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1291 			  config->supported_interfaces);
1292 		break;
1293 
1294 	case 5:
1295 		phy_interface_set_rgmii(config->supported_interfaces);
1296 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1297 			  config->supported_interfaces);
1298 		break;
1299 	}
1300 
1301 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1302 		MAC_10 | MAC_100 | MAC_1000;
1303 }
1304 
1305 static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port,
1306 					  struct phylink_config *config)
1307 {
1308 	switch (port) {
1309 	case 0:
1310 		phy_interface_set_rgmii(config->supported_interfaces);
1311 		__set_bit(PHY_INTERFACE_MODE_GMII,
1312 			  config->supported_interfaces);
1313 		__set_bit(PHY_INTERFACE_MODE_RMII,
1314 			  config->supported_interfaces);
1315 		break;
1316 
1317 	case 1:
1318 	case 2:
1319 	case 3:
1320 	case 4:
1321 	case 6:
1322 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1323 			  config->supported_interfaces);
1324 		break;
1325 
1326 	case 5:
1327 		phy_interface_set_rgmii(config->supported_interfaces);
1328 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1329 			  config->supported_interfaces);
1330 		__set_bit(PHY_INTERFACE_MODE_RMII,
1331 			  config->supported_interfaces);
1332 		break;
1333 	}
1334 
1335 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1336 		MAC_10 | MAC_100 | MAC_1000;
1337 }
1338 
1339 static void gswip_phylink_get_caps(struct dsa_switch *ds, int port,
1340 				   struct phylink_config *config)
1341 {
1342 	struct gswip_priv *priv = ds->priv;
1343 
1344 	priv->hw_info->phylink_get_caps(ds, port, config);
1345 }
1346 
1347 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1348 {
1349 	u32 mdio_phy;
1350 
1351 	if (link)
1352 		mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1353 	else
1354 		mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1355 
1356 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1357 			GSWIP_MDIO_PHYp(port));
1358 }
1359 
1360 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1361 				 phy_interface_t interface)
1362 {
1363 	u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1364 
1365 	switch (speed) {
1366 	case SPEED_10:
1367 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1368 
1369 		if (interface == PHY_INTERFACE_MODE_RMII)
1370 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1371 		else
1372 			mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1373 
1374 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1375 		break;
1376 
1377 	case SPEED_100:
1378 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1379 
1380 		if (interface == PHY_INTERFACE_MODE_RMII)
1381 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1382 		else
1383 			mii_cfg = GSWIP_MII_CFG_RATE_M25;
1384 
1385 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1386 		break;
1387 
1388 	case SPEED_1000:
1389 		mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1390 
1391 		mii_cfg = GSWIP_MII_CFG_RATE_M125;
1392 
1393 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1394 		break;
1395 	}
1396 
1397 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1398 			GSWIP_MDIO_PHYp(port));
1399 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1400 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1401 			  GSWIP_MAC_CTRL_0p(port));
1402 }
1403 
1404 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1405 {
1406 	u32 mac_ctrl_0, mdio_phy;
1407 
1408 	if (duplex == DUPLEX_FULL) {
1409 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1410 		mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1411 	} else {
1412 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1413 		mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1414 	}
1415 
1416 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1417 			  GSWIP_MAC_CTRL_0p(port));
1418 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1419 			GSWIP_MDIO_PHYp(port));
1420 }
1421 
1422 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1423 				 bool tx_pause, bool rx_pause)
1424 {
1425 	u32 mac_ctrl_0, mdio_phy;
1426 
1427 	if (tx_pause && rx_pause) {
1428 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1429 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1430 			   GSWIP_MDIO_PHY_FCONRX_EN;
1431 	} else if (tx_pause) {
1432 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1433 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1434 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1435 	} else if (rx_pause) {
1436 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1437 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1438 			   GSWIP_MDIO_PHY_FCONRX_EN;
1439 	} else {
1440 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1441 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1442 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1443 	}
1444 
1445 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1446 			  mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1447 	gswip_mdio_mask(priv,
1448 			GSWIP_MDIO_PHY_FCONTX_MASK |
1449 			GSWIP_MDIO_PHY_FCONRX_MASK,
1450 			mdio_phy, GSWIP_MDIO_PHYp(port));
1451 }
1452 
1453 static void gswip_phylink_mac_config(struct phylink_config *config,
1454 				     unsigned int mode,
1455 				     const struct phylink_link_state *state)
1456 {
1457 	struct dsa_port *dp = dsa_phylink_to_port(config);
1458 	struct gswip_priv *priv = dp->ds->priv;
1459 	int port = dp->index;
1460 	u32 miicfg = 0;
1461 
1462 	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1463 
1464 	switch (state->interface) {
1465 	case PHY_INTERFACE_MODE_SGMII:
1466 	case PHY_INTERFACE_MODE_1000BASEX:
1467 	case PHY_INTERFACE_MODE_2500BASEX:
1468 		return;
1469 	case PHY_INTERFACE_MODE_MII:
1470 	case PHY_INTERFACE_MODE_INTERNAL:
1471 		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1472 		break;
1473 	case PHY_INTERFACE_MODE_REVMII:
1474 		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1475 		break;
1476 	case PHY_INTERFACE_MODE_RMII:
1477 		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1478 		break;
1479 	case PHY_INTERFACE_MODE_RGMII:
1480 	case PHY_INTERFACE_MODE_RGMII_ID:
1481 	case PHY_INTERFACE_MODE_RGMII_RXID:
1482 	case PHY_INTERFACE_MODE_RGMII_TXID:
1483 		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1484 		break;
1485 	case PHY_INTERFACE_MODE_GMII:
1486 		miicfg |= GSWIP_MII_CFG_MODE_GMII;
1487 		break;
1488 	default:
1489 		dev_err(dp->ds->dev,
1490 			"Unsupported interface: %d\n", state->interface);
1491 		return;
1492 	}
1493 
1494 	gswip_mii_mask_cfg(priv,
1495 			   GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1496 			   GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1497 			   miicfg, port);
1498 
1499 	switch (state->interface) {
1500 	case PHY_INTERFACE_MODE_RGMII_ID:
1501 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1502 					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1503 		break;
1504 	case PHY_INTERFACE_MODE_RGMII_RXID:
1505 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1506 		break;
1507 	case PHY_INTERFACE_MODE_RGMII_TXID:
1508 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1509 		break;
1510 	default:
1511 		break;
1512 	}
1513 }
1514 
1515 static void gswip_phylink_mac_link_down(struct phylink_config *config,
1516 					unsigned int mode,
1517 					phy_interface_t interface)
1518 {
1519 	struct dsa_port *dp = dsa_phylink_to_port(config);
1520 	struct gswip_priv *priv = dp->ds->priv;
1521 	int port = dp->index;
1522 
1523 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1524 
1525 	if (!dsa_port_is_cpu(dp))
1526 		gswip_port_set_link(priv, port, false);
1527 }
1528 
1529 static void gswip_phylink_mac_link_up(struct phylink_config *config,
1530 				      struct phy_device *phydev,
1531 				      unsigned int mode,
1532 				      phy_interface_t interface,
1533 				      int speed, int duplex,
1534 				      bool tx_pause, bool rx_pause)
1535 {
1536 	struct dsa_port *dp = dsa_phylink_to_port(config);
1537 	struct gswip_priv *priv = dp->ds->priv;
1538 	int port = dp->index;
1539 
1540 	if (!dsa_port_is_cpu(dp)) {
1541 		gswip_port_set_link(priv, port, true);
1542 		gswip_port_set_speed(priv, port, speed, interface);
1543 		gswip_port_set_duplex(priv, port, duplex);
1544 		gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1545 	}
1546 
1547 	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1548 }
1549 
1550 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1551 			      uint8_t *data)
1552 {
1553 	int i;
1554 
1555 	if (stringset != ETH_SS_STATS)
1556 		return;
1557 
1558 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1559 		ethtool_puts(&data, gswip_rmon_cnt[i].name);
1560 }
1561 
1562 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1563 				    u32 index)
1564 {
1565 	u32 result;
1566 	int err;
1567 
1568 	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1569 	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1570 				GSWIP_BM_RAM_CTRL_OPMOD,
1571 			      table | GSWIP_BM_RAM_CTRL_BAS,
1572 			      GSWIP_BM_RAM_CTRL);
1573 
1574 	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1575 				     GSWIP_BM_RAM_CTRL_BAS);
1576 	if (err) {
1577 		dev_err(priv->dev, "timeout while reading table: %u, index: %u\n",
1578 			table, index);
1579 		return 0;
1580 	}
1581 
1582 	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1583 	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1584 
1585 	return result;
1586 }
1587 
1588 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1589 				    uint64_t *data)
1590 {
1591 	struct gswip_priv *priv = ds->priv;
1592 	const struct gswip_rmon_cnt_desc *rmon_cnt;
1593 	int i;
1594 	u64 high;
1595 
1596 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1597 		rmon_cnt = &gswip_rmon_cnt[i];
1598 
1599 		data[i] = gswip_bcm_ram_entry_read(priv, port,
1600 						   rmon_cnt->offset);
1601 		if (rmon_cnt->size == 2) {
1602 			high = gswip_bcm_ram_entry_read(priv, port,
1603 							rmon_cnt->offset + 1);
1604 			data[i] |= high << 32;
1605 		}
1606 	}
1607 }
1608 
1609 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1610 {
1611 	if (sset != ETH_SS_STATS)
1612 		return 0;
1613 
1614 	return ARRAY_SIZE(gswip_rmon_cnt);
1615 }
1616 
1617 static struct phylink_pcs *gswip_phylink_mac_select_pcs(struct phylink_config *config,
1618 							phy_interface_t interface)
1619 {
1620 	struct dsa_port *dp = dsa_phylink_to_port(config);
1621 	struct gswip_priv *priv = dp->ds->priv;
1622 
1623 	if (priv->hw_info->mac_select_pcs)
1624 		return priv->hw_info->mac_select_pcs(config, interface);
1625 
1626 	return NULL;
1627 }
1628 
1629 static const struct phylink_mac_ops gswip_phylink_mac_ops = {
1630 	.mac_config		= gswip_phylink_mac_config,
1631 	.mac_link_down		= gswip_phylink_mac_link_down,
1632 	.mac_link_up		= gswip_phylink_mac_link_up,
1633 	.mac_select_pcs		= gswip_phylink_mac_select_pcs,
1634 };
1635 
1636 static const struct dsa_switch_ops gswip_switch_ops = {
1637 	.get_tag_protocol	= gswip_get_tag_protocol,
1638 	.setup			= gswip_setup,
1639 	.port_enable		= gswip_port_enable,
1640 	.port_disable		= gswip_port_disable,
1641 	.port_bridge_join	= gswip_port_bridge_join,
1642 	.port_bridge_leave	= gswip_port_bridge_leave,
1643 	.port_fast_age		= gswip_port_fast_age,
1644 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1645 	.port_vlan_add		= gswip_port_vlan_add,
1646 	.port_vlan_del		= gswip_port_vlan_del,
1647 	.port_stp_state_set	= gswip_port_stp_state_set,
1648 	.port_fdb_add		= gswip_port_fdb_add,
1649 	.port_fdb_del		= gswip_port_fdb_del,
1650 	.port_fdb_dump		= gswip_port_fdb_dump,
1651 	.port_change_mtu	= gswip_port_change_mtu,
1652 	.port_max_mtu		= gswip_port_max_mtu,
1653 	.phylink_get_caps	= gswip_phylink_get_caps,
1654 	.get_strings		= gswip_get_strings,
1655 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1656 	.get_sset_count		= gswip_get_sset_count,
1657 };
1658 
1659 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1660 	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1661 	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1662 };
1663 
1664 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1665 	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1666 	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1667 };
1668 
1669 static const struct xway_gphy_match_data xrx300_gphy_data = {
1670 	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1671 	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1672 };
1673 
1674 static const struct of_device_id xway_gphy_match[] __maybe_unused = {
1675 	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1676 	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1677 	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1678 	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1679 	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1680 	{},
1681 };
1682 
1683 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1684 {
1685 	struct device *dev = priv->dev;
1686 	const struct firmware *fw;
1687 	void *fw_addr;
1688 	dma_addr_t dma_addr;
1689 	dma_addr_t dev_addr;
1690 	size_t size;
1691 	int ret;
1692 
1693 	ret = clk_prepare_enable(gphy_fw->clk_gate);
1694 	if (ret)
1695 		return ret;
1696 
1697 	reset_control_assert(gphy_fw->reset);
1698 
1699 	/* The vendor BSP uses a 200ms delay after asserting the reset line.
1700 	 * Without this some users are observing that the PHY is not coming up
1701 	 * on the MDIO bus.
1702 	 */
1703 	msleep(200);
1704 
1705 	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1706 	if (ret)
1707 		return dev_err_probe(dev, ret, "failed to load firmware: %s\n",
1708 				     gphy_fw->fw_name);
1709 
1710 	/* GPHY cores need the firmware code in a persistent and contiguous
1711 	 * memory area with a 16 kB boundary aligned start address.
1712 	 */
1713 	size = fw->size + XRX200_GPHY_FW_ALIGN;
1714 
1715 	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1716 	if (fw_addr) {
1717 		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1718 		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1719 		memcpy(fw_addr, fw->data, fw->size);
1720 	} else {
1721 		release_firmware(fw);
1722 		return -ENOMEM;
1723 	}
1724 
1725 	release_firmware(fw);
1726 
1727 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1728 	if (ret)
1729 		return ret;
1730 
1731 	reset_control_deassert(gphy_fw->reset);
1732 
1733 	return ret;
1734 }
1735 
1736 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1737 			       struct gswip_gphy_fw *gphy_fw,
1738 			       struct device_node *gphy_fw_np, int i)
1739 {
1740 	struct device *dev = priv->dev;
1741 	u32 gphy_mode;
1742 	int ret;
1743 	char gphyname[10];
1744 
1745 	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1746 
1747 	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1748 	if (IS_ERR(gphy_fw->clk_gate)) {
1749 		return dev_err_probe(dev, PTR_ERR(gphy_fw->clk_gate),
1750 				     "Failed to lookup gate clock\n");
1751 	}
1752 
1753 	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1754 	if (ret)
1755 		return ret;
1756 
1757 	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1758 	/* Default to GE mode */
1759 	if (ret)
1760 		gphy_mode = GPHY_MODE_GE;
1761 
1762 	switch (gphy_mode) {
1763 	case GPHY_MODE_FE:
1764 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1765 		break;
1766 	case GPHY_MODE_GE:
1767 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1768 		break;
1769 	default:
1770 		return dev_err_probe(dev, -EINVAL, "Unknown GPHY mode %d\n",
1771 				     gphy_mode);
1772 	}
1773 
1774 	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1775 	if (IS_ERR(gphy_fw->reset))
1776 		return dev_err_probe(dev, PTR_ERR(gphy_fw->reset),
1777 				     "Failed to lookup gphy reset\n");
1778 
1779 	return gswip_gphy_fw_load(priv, gphy_fw);
1780 }
1781 
1782 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1783 				 struct gswip_gphy_fw *gphy_fw)
1784 {
1785 	int ret;
1786 
1787 	/* check if the device was fully probed */
1788 	if (!gphy_fw->fw_name)
1789 		return;
1790 
1791 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1792 	if (ret)
1793 		dev_err(priv->dev, "can not reset GPHY FW pointer\n");
1794 
1795 	clk_disable_unprepare(gphy_fw->clk_gate);
1796 
1797 	reset_control_put(gphy_fw->reset);
1798 }
1799 
1800 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1801 			      struct device_node *gphy_fw_list_np, u32 version)
1802 {
1803 	struct device *dev = priv->dev;
1804 	struct device_node *gphy_fw_np;
1805 	const struct of_device_id *match;
1806 	int err;
1807 	int i = 0;
1808 
1809 	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1810 	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1811 	 * needs a different GPHY firmware.
1812 	 */
1813 	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1814 		switch (version) {
1815 		case GSWIP_VERSION_2_0:
1816 			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1817 			break;
1818 		case GSWIP_VERSION_2_1:
1819 			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1820 			break;
1821 		default:
1822 			return dev_err_probe(dev, -ENOENT,
1823 					     "unknown GSWIP version: 0x%x\n",
1824 					     version);
1825 		}
1826 	}
1827 
1828 	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1829 	if (match && match->data)
1830 		priv->gphy_fw_name_cfg = match->data;
1831 
1832 	if (!priv->gphy_fw_name_cfg)
1833 		return dev_err_probe(dev, -ENOENT,
1834 				     "GPHY compatible type not supported\n");
1835 
1836 	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
1837 	if (!priv->num_gphy_fw)
1838 		return -ENOENT;
1839 
1840 	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
1841 							   "lantiq,rcu");
1842 	if (IS_ERR(priv->rcu_regmap))
1843 		return PTR_ERR(priv->rcu_regmap);
1844 
1845 	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
1846 					   sizeof(*priv->gphy_fw),
1847 					   GFP_KERNEL | __GFP_ZERO);
1848 	if (!priv->gphy_fw)
1849 		return -ENOMEM;
1850 
1851 	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
1852 		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
1853 					  gphy_fw_np, i);
1854 		if (err) {
1855 			of_node_put(gphy_fw_np);
1856 			goto remove_gphy;
1857 		}
1858 		i++;
1859 	}
1860 
1861 	/* The standalone PHY11G requires 300ms to be fully
1862 	 * initialized and ready for any MDIO communication after being
1863 	 * taken out of reset. For the SoC-internal GPHY variant there
1864 	 * is no (known) documentation for the minimum time after a
1865 	 * reset. Use the same value as for the standalone variant as
1866 	 * some users have reported internal PHYs not being detected
1867 	 * without any delay.
1868 	 */
1869 	msleep(300);
1870 
1871 	return 0;
1872 
1873 remove_gphy:
1874 	for (i = 0; i < priv->num_gphy_fw; i++)
1875 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1876 	return err;
1877 }
1878 
1879 static int gswip_validate_cpu_port(struct dsa_switch *ds)
1880 {
1881 	struct gswip_priv *priv = ds->priv;
1882 	struct dsa_port *cpu_dp;
1883 	int cpu_port = -1;
1884 
1885 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
1886 		if (cpu_port != -1)
1887 			return dev_err_probe(ds->dev, -EINVAL,
1888 					     "only a single CPU port is supported\n");
1889 
1890 		cpu_port = cpu_dp->index;
1891 	}
1892 
1893 	if (cpu_port == -1)
1894 		return dev_err_probe(ds->dev, -EINVAL, "no CPU port defined\n");
1895 
1896 	if (BIT(cpu_port) & ~priv->hw_info->allowed_cpu_ports)
1897 		return dev_err_probe(ds->dev, -EINVAL,
1898 				     "unsupported CPU port defined\n");
1899 
1900 	return 0;
1901 }
1902 
1903 static int gswip_probe(struct platform_device *pdev)
1904 {
1905 	struct device_node *np, *gphy_fw_np;
1906 	struct device *dev = &pdev->dev;
1907 	struct gswip_priv *priv;
1908 	int err;
1909 	int i;
1910 	u32 version;
1911 
1912 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1913 	if (!priv)
1914 		return -ENOMEM;
1915 
1916 	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
1917 	if (IS_ERR(priv->gswip))
1918 		return PTR_ERR(priv->gswip);
1919 
1920 	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
1921 	if (IS_ERR(priv->mdio))
1922 		return PTR_ERR(priv->mdio);
1923 
1924 	priv->mii = devm_platform_ioremap_resource(pdev, 2);
1925 	if (IS_ERR(priv->mii))
1926 		return PTR_ERR(priv->mii);
1927 
1928 	priv->hw_info = of_device_get_match_data(dev);
1929 	if (!priv->hw_info)
1930 		return -EINVAL;
1931 
1932 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
1933 	if (!priv->ds)
1934 		return -ENOMEM;
1935 
1936 	priv->ds->dev = dev;
1937 	priv->ds->num_ports = priv->hw_info->max_ports;
1938 	priv->ds->priv = priv;
1939 	priv->ds->ops = &gswip_switch_ops;
1940 	priv->ds->phylink_mac_ops = &gswip_phylink_mac_ops;
1941 	priv->dev = dev;
1942 	mutex_init(&priv->pce_table_lock);
1943 	version = gswip_switch_r(priv, GSWIP_VERSION);
1944 
1945 	/* The hardware has the 'major/minor' version bytes in the wrong order
1946 	 * preventing numerical comparisons. Construct a 16-bit unsigned integer
1947 	 * having the REV field as most significant byte and the MOD field as
1948 	 * least significant byte. This is effectively swapping the two bytes of
1949 	 * the version variable, but other than using swab16 it doesn't affect
1950 	 * the source variable.
1951 	 */
1952 	priv->version = GSWIP_VERSION_REV(version) << 8 |
1953 			GSWIP_VERSION_MOD(version);
1954 
1955 	np = dev->of_node;
1956 	switch (version) {
1957 	case GSWIP_VERSION_2_0:
1958 	case GSWIP_VERSION_2_1:
1959 		if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
1960 			return -EINVAL;
1961 		break;
1962 	case GSWIP_VERSION_2_2:
1963 	case GSWIP_VERSION_2_2_ETC:
1964 		if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
1965 		    !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
1966 			return -EINVAL;
1967 		break;
1968 	default:
1969 		return dev_err_probe(dev, -ENOENT,
1970 				     "unknown GSWIP version: 0x%x\n", version);
1971 	}
1972 
1973 	/* bring up the mdio bus */
1974 	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
1975 	if (gphy_fw_np) {
1976 		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
1977 		of_node_put(gphy_fw_np);
1978 		if (err)
1979 			return dev_err_probe(dev, err,
1980 					     "gphy fw probe failed\n");
1981 	}
1982 
1983 	err = dsa_register_switch(priv->ds);
1984 	if (err) {
1985 		dev_err_probe(dev, err, "dsa switch registration failed\n");
1986 		goto gphy_fw_remove;
1987 	}
1988 
1989 	err = gswip_validate_cpu_port(priv->ds);
1990 	if (err)
1991 		goto disable_switch;
1992 
1993 	platform_set_drvdata(pdev, priv);
1994 
1995 	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
1996 		 GSWIP_VERSION_REV(version), GSWIP_VERSION_MOD(version));
1997 	return 0;
1998 
1999 disable_switch:
2000 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2001 	dsa_unregister_switch(priv->ds);
2002 gphy_fw_remove:
2003 	for (i = 0; i < priv->num_gphy_fw; i++)
2004 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2005 	return err;
2006 }
2007 
2008 static void gswip_remove(struct platform_device *pdev)
2009 {
2010 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2011 	int i;
2012 
2013 	if (!priv)
2014 		return;
2015 
2016 	/* disable the switch */
2017 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2018 
2019 	dsa_unregister_switch(priv->ds);
2020 
2021 	for (i = 0; i < priv->num_gphy_fw; i++)
2022 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2023 }
2024 
2025 static void gswip_shutdown(struct platform_device *pdev)
2026 {
2027 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2028 
2029 	if (!priv)
2030 		return;
2031 
2032 	dsa_switch_shutdown(priv->ds);
2033 
2034 	platform_set_drvdata(pdev, NULL);
2035 }
2036 
2037 static const struct gswip_hw_info gswip_xrx200 = {
2038 	.max_ports = 7,
2039 	.allowed_cpu_ports = BIT(6),
2040 	.mii_ports = BIT(0) | BIT(1) | BIT(5),
2041 	.mii_port_reg_offset = 0,
2042 	.phylink_get_caps = gswip_xrx200_phylink_get_caps,
2043 	.pce_microcode = &gswip_pce_microcode,
2044 	.pce_microcode_size = ARRAY_SIZE(gswip_pce_microcode),
2045 	.tag_protocol = DSA_TAG_PROTO_GSWIP,
2046 };
2047 
2048 static const struct gswip_hw_info gswip_xrx300 = {
2049 	.max_ports = 7,
2050 	.allowed_cpu_ports = BIT(6),
2051 	.mii_ports = BIT(0) | BIT(5),
2052 	.mii_port_reg_offset = 0,
2053 	.phylink_get_caps = gswip_xrx300_phylink_get_caps,
2054 	.pce_microcode = &gswip_pce_microcode,
2055 	.pce_microcode_size = ARRAY_SIZE(gswip_pce_microcode),
2056 	.tag_protocol = DSA_TAG_PROTO_GSWIP,
2057 };
2058 
2059 static const struct of_device_id gswip_of_match[] = {
2060 	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2061 	{ .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2062 	{ .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2063 	{},
2064 };
2065 MODULE_DEVICE_TABLE(of, gswip_of_match);
2066 
2067 static struct platform_driver gswip_driver = {
2068 	.probe = gswip_probe,
2069 	.remove = gswip_remove,
2070 	.shutdown = gswip_shutdown,
2071 	.driver = {
2072 		.name = "gswip",
2073 		.of_match_table = gswip_of_match,
2074 	},
2075 };
2076 
2077 module_platform_driver(gswip_driver);
2078 
2079 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2080 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2081 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2082 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2083 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2084 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2085 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2086 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2087 MODULE_LICENSE("GPL v2");
2088