xref: /linux/drivers/net/dsa/lantiq/lantiq_gswip.c (revision 8a5f956a9fb7d74fff681145082acfad5afa6bb8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27 
28 #include "lantiq_gswip.h"
29 #include "lantiq_pce.h"
30 
31 #include <linux/delay.h>
32 #include <linux/etherdevice.h>
33 #include <linux/firmware.h>
34 #include <linux/if_bridge.h>
35 #include <linux/if_vlan.h>
36 #include <linux/iopoll.h>
37 #include <linux/mfd/syscon.h>
38 #include <linux/module.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_net.h>
41 #include <linux/of_platform.h>
42 #include <linux/phy.h>
43 #include <linux/phylink.h>
44 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
45 
46 struct xway_gphy_match_data {
47 	char *fe_firmware_name;
48 	char *ge_firmware_name;
49 };
50 
51 struct gswip_pce_table_entry {
52 	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
53 	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
54 	u16 key[8];
55 	u16 val[5];
56 	u16 mask;
57 	u8 gmap;
58 	bool type;
59 	bool valid;
60 	bool key_mode;
61 };
62 
63 struct gswip_rmon_cnt_desc {
64 	unsigned int size;
65 	unsigned int offset;
66 	const char *name;
67 };
68 
69 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
70 
71 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
72 	/** Receive Packet Count (only packets that are accepted and not discarded). */
73 	MIB_DESC(1, 0x1F, "RxGoodPkts"),
74 	MIB_DESC(1, 0x23, "RxUnicastPkts"),
75 	MIB_DESC(1, 0x22, "RxMulticastPkts"),
76 	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
77 	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
78 	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
79 	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
80 	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
81 	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
82 	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
83 	MIB_DESC(1, 0x12, "Rx64BytePkts"),
84 	MIB_DESC(1, 0x13, "Rx127BytePkts"),
85 	MIB_DESC(1, 0x14, "Rx255BytePkts"),
86 	MIB_DESC(1, 0x15, "Rx511BytePkts"),
87 	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
88 	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
89 	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
90 	MIB_DESC(1, 0x18, "RxDroppedPkts"),
91 	MIB_DESC(1, 0x19, "RxFilteredPkts"),
92 	MIB_DESC(2, 0x24, "RxGoodBytes"),
93 	MIB_DESC(2, 0x26, "RxBadBytes"),
94 	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
95 	MIB_DESC(1, 0x0C, "TxGoodPkts"),
96 	MIB_DESC(1, 0x06, "TxUnicastPkts"),
97 	MIB_DESC(1, 0x07, "TxMulticastPkts"),
98 	MIB_DESC(1, 0x00, "Tx64BytePkts"),
99 	MIB_DESC(1, 0x01, "Tx127BytePkts"),
100 	MIB_DESC(1, 0x02, "Tx255BytePkts"),
101 	MIB_DESC(1, 0x03, "Tx511BytePkts"),
102 	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
103 	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
104 	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
105 	MIB_DESC(1, 0x08, "TxSingleCollCount"),
106 	MIB_DESC(1, 0x09, "TxMultCollCount"),
107 	MIB_DESC(1, 0x0A, "TxLateCollCount"),
108 	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
109 	MIB_DESC(1, 0x0D, "TxPauseCount"),
110 	MIB_DESC(1, 0x10, "TxDroppedPkts"),
111 	MIB_DESC(2, 0x0E, "TxGoodBytes"),
112 };
113 
114 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
115 {
116 	return __raw_readl(priv->gswip + (offset * 4));
117 }
118 
119 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
120 {
121 	__raw_writel(val, priv->gswip + (offset * 4));
122 }
123 
124 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
125 			      u32 offset)
126 {
127 	u32 val = gswip_switch_r(priv, offset);
128 
129 	val &= ~(clear);
130 	val |= set;
131 	gswip_switch_w(priv, val, offset);
132 }
133 
134 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
135 				  u32 cleared)
136 {
137 	u32 val;
138 
139 	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
140 				  (val & cleared) == 0, 20, 50000);
141 }
142 
143 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
144 {
145 	return __raw_readl(priv->mdio + (offset * 4));
146 }
147 
148 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
149 {
150 	__raw_writel(val, priv->mdio + (offset * 4));
151 }
152 
153 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
154 			    u32 offset)
155 {
156 	u32 val = gswip_mdio_r(priv, offset);
157 
158 	val &= ~(clear);
159 	val |= set;
160 	gswip_mdio_w(priv, val, offset);
161 }
162 
163 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
164 {
165 	return __raw_readl(priv->mii + (offset * 4));
166 }
167 
168 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
169 {
170 	__raw_writel(val, priv->mii + (offset * 4));
171 }
172 
173 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
174 			   u32 offset)
175 {
176 	u32 val = gswip_mii_r(priv, offset);
177 
178 	val &= ~(clear);
179 	val |= set;
180 	gswip_mii_w(priv, val, offset);
181 }
182 
183 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
184 			       int port)
185 {
186 	int reg_port;
187 
188 	/* MII_CFG register only exists for MII ports */
189 	if (!(priv->hw_info->mii_ports & BIT(port)))
190 		return;
191 
192 	reg_port = port + priv->hw_info->mii_port_reg_offset;
193 
194 	gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(reg_port));
195 }
196 
197 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
198 				int port)
199 {
200 	int reg_port;
201 
202 	/* MII_PCDU register only exists for MII ports */
203 	if (!(priv->hw_info->mii_ports & BIT(port)))
204 		return;
205 
206 	reg_port = port + priv->hw_info->mii_port_reg_offset;
207 
208 	switch (reg_port) {
209 	case 0:
210 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
211 		break;
212 	case 1:
213 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
214 		break;
215 	case 5:
216 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
217 		break;
218 	}
219 }
220 
221 static int gswip_mdio_poll(struct gswip_priv *priv)
222 {
223 	int cnt = 100;
224 
225 	while (likely(cnt--)) {
226 		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
227 
228 		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
229 			return 0;
230 		usleep_range(20, 40);
231 	}
232 
233 	return -ETIMEDOUT;
234 }
235 
236 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
237 {
238 	struct gswip_priv *priv = bus->priv;
239 	int err;
240 
241 	err = gswip_mdio_poll(priv);
242 	if (err) {
243 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
244 		return err;
245 	}
246 
247 	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
248 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
249 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
250 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
251 		GSWIP_MDIO_CTRL);
252 
253 	return 0;
254 }
255 
256 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
257 {
258 	struct gswip_priv *priv = bus->priv;
259 	int err;
260 
261 	err = gswip_mdio_poll(priv);
262 	if (err) {
263 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
264 		return err;
265 	}
266 
267 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
268 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
269 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
270 		GSWIP_MDIO_CTRL);
271 
272 	err = gswip_mdio_poll(priv);
273 	if (err) {
274 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
275 		return err;
276 	}
277 
278 	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
279 }
280 
281 static int gswip_mdio(struct gswip_priv *priv)
282 {
283 	struct device_node *mdio_np, *switch_np = priv->dev->of_node;
284 	struct device *dev = priv->dev;
285 	struct mii_bus *bus;
286 	int err = 0;
287 
288 	mdio_np = of_get_compatible_child(switch_np, "lantiq,xrx200-mdio");
289 	if (!mdio_np)
290 		mdio_np = of_get_child_by_name(switch_np, "mdio");
291 
292 	if (!of_device_is_available(mdio_np))
293 		goto out_put_node;
294 
295 	bus = devm_mdiobus_alloc(dev);
296 	if (!bus) {
297 		err = -ENOMEM;
298 		goto out_put_node;
299 	}
300 
301 	bus->priv = priv;
302 	bus->read = gswip_mdio_rd;
303 	bus->write = gswip_mdio_wr;
304 	bus->name = "lantiq,xrx200-mdio";
305 	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(priv->dev));
306 	bus->parent = priv->dev;
307 
308 	err = devm_of_mdiobus_register(dev, bus, mdio_np);
309 
310 out_put_node:
311 	of_node_put(mdio_np);
312 
313 	return err;
314 }
315 
316 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
317 				      struct gswip_pce_table_entry *tbl)
318 {
319 	int i;
320 	int err;
321 	u16 crtl;
322 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
323 					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
324 
325 	mutex_lock(&priv->pce_table_lock);
326 
327 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
328 				     GSWIP_PCE_TBL_CTRL_BAS);
329 	if (err) {
330 		mutex_unlock(&priv->pce_table_lock);
331 		return err;
332 	}
333 
334 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
335 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
336 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
337 			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
338 			  GSWIP_PCE_TBL_CTRL);
339 
340 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
341 				     GSWIP_PCE_TBL_CTRL_BAS);
342 	if (err) {
343 		mutex_unlock(&priv->pce_table_lock);
344 		return err;
345 	}
346 
347 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
348 		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
349 
350 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
351 		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
352 
353 	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
354 
355 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
356 
357 	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
358 	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
359 	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
360 
361 	mutex_unlock(&priv->pce_table_lock);
362 
363 	return 0;
364 }
365 
366 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
367 				       struct gswip_pce_table_entry *tbl)
368 {
369 	int i;
370 	int err;
371 	u16 crtl;
372 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
373 					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
374 
375 	mutex_lock(&priv->pce_table_lock);
376 
377 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
378 				     GSWIP_PCE_TBL_CTRL_BAS);
379 	if (err) {
380 		mutex_unlock(&priv->pce_table_lock);
381 		return err;
382 	}
383 
384 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
385 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
386 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
387 			  tbl->table | addr_mode,
388 			  GSWIP_PCE_TBL_CTRL);
389 
390 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
391 		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
392 
393 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
394 		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
395 
396 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
397 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
398 			  tbl->table | addr_mode,
399 			  GSWIP_PCE_TBL_CTRL);
400 
401 	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
402 
403 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
404 	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
405 		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
406 	if (tbl->type)
407 		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
408 	if (tbl->valid)
409 		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
410 	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
411 	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
412 	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
413 
414 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
415 				     GSWIP_PCE_TBL_CTRL_BAS);
416 
417 	mutex_unlock(&priv->pce_table_lock);
418 
419 	return err;
420 }
421 
422 /* Add the LAN port into a bridge with the CPU port by
423  * default. This prevents automatic forwarding of
424  * packages between the LAN ports when no explicit
425  * bridge is configured.
426  */
427 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
428 {
429 	struct gswip_pce_table_entry vlan_active = {0,};
430 	struct gswip_pce_table_entry vlan_mapping = {0,};
431 	int err;
432 
433 	vlan_active.index = port + 1;
434 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
435 	vlan_active.key[0] = 0; /* vid */
436 	vlan_active.val[0] = port + 1 /* fid */;
437 	vlan_active.valid = add;
438 	err = gswip_pce_table_entry_write(priv, &vlan_active);
439 	if (err) {
440 		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
441 		return err;
442 	}
443 
444 	if (!add)
445 		return 0;
446 
447 	vlan_mapping.index = port + 1;
448 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
449 	vlan_mapping.val[0] = 0 /* vid */;
450 	vlan_mapping.val[1] = BIT(port) | dsa_cpu_ports(priv->ds);
451 	vlan_mapping.val[2] = 0;
452 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
453 	if (err) {
454 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
455 		return err;
456 	}
457 
458 	return 0;
459 }
460 
461 static int gswip_port_setup(struct dsa_switch *ds, int port)
462 {
463 	struct gswip_priv *priv = ds->priv;
464 	int err;
465 
466 	if (!dsa_is_cpu_port(ds, port)) {
467 		err = gswip_add_single_port_br(priv, port, true);
468 		if (err)
469 			return err;
470 	}
471 
472 	return 0;
473 }
474 
475 static int gswip_port_enable(struct dsa_switch *ds, int port,
476 			     struct phy_device *phydev)
477 {
478 	struct gswip_priv *priv = ds->priv;
479 
480 	if (!dsa_is_cpu_port(ds, port)) {
481 		u32 mdio_phy = 0;
482 
483 		if (phydev)
484 			mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
485 
486 		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
487 				GSWIP_MDIO_PHYp(port));
488 	}
489 
490 	/* RMON Counter Enable for port */
491 	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
492 
493 	/* enable port fetch/store dma & VLAN Modification */
494 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
495 				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
496 			 GSWIP_FDMA_PCTRLp(port));
497 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
498 			  GSWIP_SDMA_PCTRLp(port));
499 
500 	return 0;
501 }
502 
503 static void gswip_port_disable(struct dsa_switch *ds, int port)
504 {
505 	struct gswip_priv *priv = ds->priv;
506 
507 	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
508 			  GSWIP_FDMA_PCTRLp(port));
509 	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
510 			  GSWIP_SDMA_PCTRLp(port));
511 }
512 
513 static int gswip_pce_load_microcode(struct gswip_priv *priv)
514 {
515 	int i;
516 	int err;
517 
518 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
519 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
520 			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
521 	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
522 
523 	for (i = 0; i < priv->hw_info->pce_microcode_size; i++) {
524 		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
525 		gswip_switch_w(priv, (*priv->hw_info->pce_microcode)[i].val_0,
526 			       GSWIP_PCE_TBL_VAL(0));
527 		gswip_switch_w(priv, (*priv->hw_info->pce_microcode)[i].val_1,
528 			       GSWIP_PCE_TBL_VAL(1));
529 		gswip_switch_w(priv, (*priv->hw_info->pce_microcode)[i].val_2,
530 			       GSWIP_PCE_TBL_VAL(2));
531 		gswip_switch_w(priv, (*priv->hw_info->pce_microcode)[i].val_3,
532 			       GSWIP_PCE_TBL_VAL(3));
533 
534 		/* start the table access: */
535 		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
536 				  GSWIP_PCE_TBL_CTRL);
537 		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
538 					     GSWIP_PCE_TBL_CTRL_BAS);
539 		if (err)
540 			return err;
541 	}
542 
543 	/* tell the switch that the microcode is loaded */
544 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
545 			  GSWIP_PCE_GCTRL_0);
546 
547 	return 0;
548 }
549 
550 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
551 				     bool vlan_filtering,
552 				     struct netlink_ext_ack *extack)
553 {
554 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
555 	struct gswip_priv *priv = ds->priv;
556 
557 	/* Do not allow changing the VLAN filtering options while in bridge */
558 	if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
559 		NL_SET_ERR_MSG_MOD(extack,
560 				   "Dynamic toggling of vlan_filtering not supported");
561 		return -EIO;
562 	}
563 
564 	if (vlan_filtering) {
565 		/* Use tag based VLAN */
566 		gswip_switch_mask(priv,
567 				  GSWIP_PCE_VCTRL_VSR,
568 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
569 				  GSWIP_PCE_VCTRL_VEMR,
570 				  GSWIP_PCE_VCTRL(port));
571 		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
572 				  GSWIP_PCE_PCTRL_0p(port));
573 	} else {
574 		/* Use port based VLAN */
575 		gswip_switch_mask(priv,
576 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
577 				  GSWIP_PCE_VCTRL_VEMR,
578 				  GSWIP_PCE_VCTRL_VSR,
579 				  GSWIP_PCE_VCTRL(port));
580 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
581 				  GSWIP_PCE_PCTRL_0p(port));
582 	}
583 
584 	return 0;
585 }
586 
587 static int gswip_setup(struct dsa_switch *ds)
588 {
589 	unsigned int cpu_ports = dsa_cpu_ports(ds);
590 	struct gswip_priv *priv = ds->priv;
591 	struct dsa_port *cpu_dp;
592 	int err, i;
593 
594 	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
595 	usleep_range(5000, 10000);
596 	gswip_switch_w(priv, 0, GSWIP_SWRES);
597 
598 	/* disable port fetch/store dma on all ports */
599 	for (i = 0; i < priv->hw_info->max_ports; i++) {
600 		gswip_port_disable(ds, i);
601 		gswip_port_vlan_filtering(ds, i, false, NULL);
602 	}
603 
604 	/* enable Switch */
605 	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
606 
607 	err = gswip_pce_load_microcode(priv);
608 	if (err) {
609 		dev_err(priv->dev, "writing PCE microcode failed, %i\n", err);
610 		return err;
611 	}
612 
613 	/* Default unknown Broadcast/Multicast/Unicast port maps */
614 	gswip_switch_w(priv, cpu_ports, GSWIP_PCE_PMAP1);
615 	gswip_switch_w(priv, cpu_ports, GSWIP_PCE_PMAP2);
616 	gswip_switch_w(priv, cpu_ports, GSWIP_PCE_PMAP3);
617 
618 	/* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
619 	 * interoperability problem with this auto polling mechanism because
620 	 * their status registers think that the link is in a different state
621 	 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
622 	 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
623 	 * auto polling state machine consider the link being negotiated with
624 	 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
625 	 * to the switch port being completely dead (RX and TX are both not
626 	 * working).
627 	 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
628 	 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
629 	 * it would work fine for a few minutes to hours and then stop, on
630 	 * other device it would no traffic could be sent or received at all.
631 	 * Testing shows that when PHY auto polling is disabled these problems
632 	 * go away.
633 	 */
634 	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
635 
636 	/* Configure the MDIO Clock 2.5 MHz */
637 	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
638 
639 	/* bring up the mdio bus */
640 	err = gswip_mdio(priv);
641 	if (err) {
642 		dev_err(priv->dev, "mdio bus setup failed\n");
643 		return err;
644 	}
645 
646 	/* Disable the xMII interface and clear it's isolation bit */
647 	for (i = 0; i < priv->hw_info->max_ports; i++)
648 		gswip_mii_mask_cfg(priv,
649 				   GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
650 				   0, i);
651 
652 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
653 		/* enable special tag insertion on cpu port */
654 		gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
655 				  GSWIP_FDMA_PCTRLp(cpu_dp->index));
656 
657 		/* accept special tag in ingress direction */
658 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
659 				  GSWIP_PCE_PCTRL_0p(cpu_dp->index));
660 	}
661 
662 	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
663 			  GSWIP_BM_QUEUE_GCTRL);
664 
665 	/* VLAN aware Switching */
666 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
667 
668 	/* Flush MAC Table */
669 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
670 
671 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
672 				     GSWIP_PCE_GCTRL_0_MTFL);
673 	if (err) {
674 		dev_err(priv->dev, "MAC flushing didn't finish\n");
675 		return err;
676 	}
677 
678 	ds->mtu_enforcement_ingress = true;
679 
680 	ds->configure_vlan_while_not_filtering = false;
681 
682 	return 0;
683 }
684 
685 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
686 						    int port,
687 						    enum dsa_tag_protocol mp)
688 {
689 	struct gswip_priv *priv = ds->priv;
690 
691 	return priv->hw_info->tag_protocol;
692 }
693 
694 static int gswip_vlan_active_create(struct gswip_priv *priv,
695 				    struct net_device *bridge,
696 				    int fid, u16 vid)
697 {
698 	struct gswip_pce_table_entry vlan_active = {0,};
699 	unsigned int max_ports = priv->hw_info->max_ports;
700 	int idx = -1;
701 	int err;
702 	int i;
703 
704 	/* Look for a free slot */
705 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
706 		if (!priv->vlans[i].bridge) {
707 			idx = i;
708 			break;
709 		}
710 	}
711 
712 	if (idx == -1)
713 		return -ENOSPC;
714 
715 	if (fid == -1)
716 		fid = idx;
717 
718 	vlan_active.index = idx;
719 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
720 	vlan_active.key[0] = vid;
721 	vlan_active.val[0] = fid;
722 	vlan_active.valid = true;
723 
724 	err = gswip_pce_table_entry_write(priv, &vlan_active);
725 	if (err) {
726 		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
727 		return err;
728 	}
729 
730 	priv->vlans[idx].bridge = bridge;
731 	priv->vlans[idx].vid = vid;
732 	priv->vlans[idx].fid = fid;
733 
734 	return idx;
735 }
736 
737 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
738 {
739 	struct gswip_pce_table_entry vlan_active = {0,};
740 	int err;
741 
742 	vlan_active.index = idx;
743 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
744 	vlan_active.valid = false;
745 	err = gswip_pce_table_entry_write(priv, &vlan_active);
746 	if (err)
747 		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
748 	priv->vlans[idx].bridge = NULL;
749 
750 	return err;
751 }
752 
753 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
754 				  struct net_device *bridge, int port)
755 {
756 	struct gswip_pce_table_entry vlan_mapping = {0,};
757 	unsigned int max_ports = priv->hw_info->max_ports;
758 	bool active_vlan_created = false;
759 	int idx = -1;
760 	int i;
761 	int err;
762 
763 	/* Check if there is already a page for this bridge */
764 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
765 		if (priv->vlans[i].bridge == bridge) {
766 			idx = i;
767 			break;
768 		}
769 	}
770 
771 	/* If this bridge is not programmed yet, add a Active VLAN table
772 	 * entry in a free slot and prepare the VLAN mapping table entry.
773 	 */
774 	if (idx == -1) {
775 		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
776 		if (idx < 0)
777 			return idx;
778 		active_vlan_created = true;
779 
780 		vlan_mapping.index = idx;
781 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
782 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
783 		vlan_mapping.val[0] = 0;
784 	} else {
785 		/* Read the existing VLAN mapping entry from the switch */
786 		vlan_mapping.index = idx;
787 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
788 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
789 		if (err) {
790 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
791 				err);
792 			return err;
793 		}
794 	}
795 
796 	/* Update the VLAN mapping entry and write it to the switch */
797 	vlan_mapping.val[1] |= dsa_cpu_ports(priv->ds);
798 	vlan_mapping.val[1] |= BIT(port);
799 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
800 	if (err) {
801 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
802 		/* In case an Active VLAN was creaetd delete it again */
803 		if (active_vlan_created)
804 			gswip_vlan_active_remove(priv, idx);
805 		return err;
806 	}
807 
808 	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
809 	return 0;
810 }
811 
812 static int gswip_vlan_add_aware(struct gswip_priv *priv,
813 				struct net_device *bridge, int port,
814 				u16 vid, bool untagged,
815 				bool pvid)
816 {
817 	struct gswip_pce_table_entry vlan_mapping = {0,};
818 	unsigned int max_ports = priv->hw_info->max_ports;
819 	unsigned int cpu_ports = dsa_cpu_ports(priv->ds);
820 	bool active_vlan_created = false;
821 	int idx = -1;
822 	int fid = -1;
823 	int i;
824 	int err;
825 
826 	/* Check if there is already a page for this bridge */
827 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
828 		if (priv->vlans[i].bridge == bridge) {
829 			if (fid != -1 && fid != priv->vlans[i].fid)
830 				dev_err(priv->dev, "one bridge with multiple flow ids\n");
831 			fid = priv->vlans[i].fid;
832 			if (priv->vlans[i].vid == vid) {
833 				idx = i;
834 				break;
835 			}
836 		}
837 	}
838 
839 	/* If this bridge is not programmed yet, add a Active VLAN table
840 	 * entry in a free slot and prepare the VLAN mapping table entry.
841 	 */
842 	if (idx == -1) {
843 		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
844 		if (idx < 0)
845 			return idx;
846 		active_vlan_created = true;
847 
848 		vlan_mapping.index = idx;
849 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
850 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
851 		vlan_mapping.val[0] = vid;
852 	} else {
853 		/* Read the existing VLAN mapping entry from the switch */
854 		vlan_mapping.index = idx;
855 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
856 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
857 		if (err) {
858 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
859 				err);
860 			return err;
861 		}
862 	}
863 
864 	vlan_mapping.val[0] = vid;
865 	/* Update the VLAN mapping entry and write it to the switch */
866 	vlan_mapping.val[1] |= cpu_ports;
867 	vlan_mapping.val[2] |= cpu_ports;
868 	vlan_mapping.val[1] |= BIT(port);
869 	if (untagged)
870 		vlan_mapping.val[2] &= ~BIT(port);
871 	else
872 		vlan_mapping.val[2] |= BIT(port);
873 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
874 	if (err) {
875 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
876 		/* In case an Active VLAN was creaetd delete it again */
877 		if (active_vlan_created)
878 			gswip_vlan_active_remove(priv, idx);
879 		return err;
880 	}
881 
882 	if (pvid)
883 		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
884 
885 	return 0;
886 }
887 
888 static int gswip_vlan_remove(struct gswip_priv *priv,
889 			     struct net_device *bridge, int port,
890 			     u16 vid, bool pvid, bool vlan_aware)
891 {
892 	struct gswip_pce_table_entry vlan_mapping = {0,};
893 	unsigned int max_ports = priv->hw_info->max_ports;
894 	int idx = -1;
895 	int i;
896 	int err;
897 
898 	/* Check if there is already a page for this bridge */
899 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
900 		if (priv->vlans[i].bridge == bridge &&
901 		    (!vlan_aware || priv->vlans[i].vid == vid)) {
902 			idx = i;
903 			break;
904 		}
905 	}
906 
907 	if (idx == -1) {
908 		dev_err(priv->dev, "bridge to leave does not exists\n");
909 		return -ENOENT;
910 	}
911 
912 	vlan_mapping.index = idx;
913 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
914 	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
915 	if (err) {
916 		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
917 		return err;
918 	}
919 
920 	vlan_mapping.val[1] &= ~BIT(port);
921 	vlan_mapping.val[2] &= ~BIT(port);
922 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
923 	if (err) {
924 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
925 		return err;
926 	}
927 
928 	/* In case all ports are removed from the bridge, remove the VLAN */
929 	if (!(vlan_mapping.val[1] & ~dsa_cpu_ports(priv->ds))) {
930 		err = gswip_vlan_active_remove(priv, idx);
931 		if (err) {
932 			dev_err(priv->dev, "failed to write active VLAN: %d\n",
933 				err);
934 			return err;
935 		}
936 	}
937 
938 	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
939 	if (pvid)
940 		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
941 
942 	return 0;
943 }
944 
945 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
946 				  struct dsa_bridge bridge,
947 				  bool *tx_fwd_offload,
948 				  struct netlink_ext_ack *extack)
949 {
950 	struct net_device *br = bridge.dev;
951 	struct gswip_priv *priv = ds->priv;
952 	int err;
953 
954 	/* When the bridge uses VLAN filtering we have to configure VLAN
955 	 * specific bridges. No bridge is configured here.
956 	 */
957 	if (!br_vlan_enabled(br)) {
958 		err = gswip_vlan_add_unaware(priv, br, port);
959 		if (err)
960 			return err;
961 		priv->port_vlan_filter &= ~BIT(port);
962 	} else {
963 		priv->port_vlan_filter |= BIT(port);
964 	}
965 	return gswip_add_single_port_br(priv, port, false);
966 }
967 
968 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
969 				    struct dsa_bridge bridge)
970 {
971 	struct net_device *br = bridge.dev;
972 	struct gswip_priv *priv = ds->priv;
973 
974 	gswip_add_single_port_br(priv, port, true);
975 
976 	/* When the bridge uses VLAN filtering we have to configure VLAN
977 	 * specific bridges. No bridge is configured here.
978 	 */
979 	if (!br_vlan_enabled(br))
980 		gswip_vlan_remove(priv, br, port, 0, true, false);
981 }
982 
983 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
984 				   const struct switchdev_obj_port_vlan *vlan,
985 				   struct netlink_ext_ack *extack)
986 {
987 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
988 	struct gswip_priv *priv = ds->priv;
989 	unsigned int max_ports = priv->hw_info->max_ports;
990 	int pos = max_ports;
991 	int i, idx = -1;
992 
993 	/* We only support VLAN filtering on bridges */
994 	if (!dsa_is_cpu_port(ds, port) && !bridge)
995 		return -EOPNOTSUPP;
996 
997 	/* Check if there is already a page for this VLAN */
998 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
999 		if (priv->vlans[i].bridge == bridge &&
1000 		    priv->vlans[i].vid == vlan->vid) {
1001 			idx = i;
1002 			break;
1003 		}
1004 	}
1005 
1006 	/* If this VLAN is not programmed yet, we have to reserve
1007 	 * one entry in the VLAN table. Make sure we start at the
1008 	 * next position round.
1009 	 */
1010 	if (idx == -1) {
1011 		/* Look for a free slot */
1012 		for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1013 			if (!priv->vlans[pos].bridge) {
1014 				idx = pos;
1015 				pos++;
1016 				break;
1017 			}
1018 		}
1019 
1020 		if (idx == -1) {
1021 			NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1022 			return -ENOSPC;
1023 		}
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1030 			       const struct switchdev_obj_port_vlan *vlan,
1031 			       struct netlink_ext_ack *extack)
1032 {
1033 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1034 	struct gswip_priv *priv = ds->priv;
1035 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1036 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1037 	int err;
1038 
1039 	err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1040 	if (err)
1041 		return err;
1042 
1043 	/* We have to receive all packets on the CPU port and should not
1044 	 * do any VLAN filtering here. This is also called with bridge
1045 	 * NULL and then we do not know for which bridge to configure
1046 	 * this.
1047 	 */
1048 	if (dsa_is_cpu_port(ds, port))
1049 		return 0;
1050 
1051 	return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1052 				    untagged, pvid);
1053 }
1054 
1055 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1056 			       const struct switchdev_obj_port_vlan *vlan)
1057 {
1058 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1059 	struct gswip_priv *priv = ds->priv;
1060 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1061 
1062 	/* We have to receive all packets on the CPU port and should not
1063 	 * do any VLAN filtering here. This is also called with bridge
1064 	 * NULL and then we do not know for which bridge to configure
1065 	 * this.
1066 	 */
1067 	if (dsa_is_cpu_port(ds, port))
1068 		return 0;
1069 
1070 	return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1071 }
1072 
1073 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1074 {
1075 	struct gswip_priv *priv = ds->priv;
1076 	struct gswip_pce_table_entry mac_bridge = {0,};
1077 	int i;
1078 	int err;
1079 
1080 	for (i = 0; i < 2048; i++) {
1081 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1082 		mac_bridge.index = i;
1083 
1084 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1085 		if (err) {
1086 			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1087 				err);
1088 			return;
1089 		}
1090 
1091 		if (!mac_bridge.valid)
1092 			continue;
1093 
1094 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC)
1095 			continue;
1096 
1097 		if (port != FIELD_GET(GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT,
1098 				      mac_bridge.val[0]))
1099 			continue;
1100 
1101 		mac_bridge.valid = false;
1102 		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1103 		if (err) {
1104 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1105 				err);
1106 			return;
1107 		}
1108 	}
1109 }
1110 
1111 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1112 {
1113 	struct gswip_priv *priv = ds->priv;
1114 	u32 stp_state;
1115 
1116 	switch (state) {
1117 	case BR_STATE_DISABLED:
1118 		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1119 				  GSWIP_SDMA_PCTRLp(port));
1120 		return;
1121 	case BR_STATE_BLOCKING:
1122 	case BR_STATE_LISTENING:
1123 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1124 		break;
1125 	case BR_STATE_LEARNING:
1126 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1127 		break;
1128 	case BR_STATE_FORWARDING:
1129 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1130 		break;
1131 	default:
1132 		dev_err(priv->dev, "invalid STP state: %d\n", state);
1133 		return;
1134 	}
1135 
1136 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1137 			  GSWIP_SDMA_PCTRLp(port));
1138 	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1139 			  GSWIP_PCE_PCTRL_0p(port));
1140 }
1141 
1142 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1143 			  const unsigned char *addr, u16 vid, bool add)
1144 {
1145 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1146 	struct gswip_priv *priv = ds->priv;
1147 	struct gswip_pce_table_entry mac_bridge = {0,};
1148 	unsigned int max_ports = priv->hw_info->max_ports;
1149 	int fid = -1;
1150 	int i;
1151 	int err;
1152 
1153 	/* Operation not supported on the CPU port, don't throw errors */
1154 	if (!bridge)
1155 		return 0;
1156 
1157 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1158 		if (priv->vlans[i].bridge == bridge) {
1159 			fid = priv->vlans[i].fid;
1160 			break;
1161 		}
1162 	}
1163 
1164 	if (fid == -1) {
1165 		dev_err(priv->dev, "no FID found for bridge %s\n",
1166 			bridge->name);
1167 		return -EINVAL;
1168 	}
1169 
1170 	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1171 	mac_bridge.key_mode = true;
1172 	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1173 	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1174 	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1175 	mac_bridge.key[3] = FIELD_PREP(GSWIP_TABLE_MAC_BRIDGE_KEY3_FID, fid);
1176 	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1177 	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC;
1178 	mac_bridge.valid = add;
1179 
1180 	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1181 	if (err)
1182 		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1183 
1184 	return err;
1185 }
1186 
1187 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1188 			      const unsigned char *addr, u16 vid,
1189 			      struct dsa_db db)
1190 {
1191 	return gswip_port_fdb(ds, port, addr, vid, true);
1192 }
1193 
1194 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1195 			      const unsigned char *addr, u16 vid,
1196 			      struct dsa_db db)
1197 {
1198 	return gswip_port_fdb(ds, port, addr, vid, false);
1199 }
1200 
1201 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1202 			       dsa_fdb_dump_cb_t *cb, void *data)
1203 {
1204 	struct gswip_priv *priv = ds->priv;
1205 	struct gswip_pce_table_entry mac_bridge = {0,};
1206 	unsigned char addr[ETH_ALEN];
1207 	int i;
1208 	int err;
1209 
1210 	for (i = 0; i < 2048; i++) {
1211 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1212 		mac_bridge.index = i;
1213 
1214 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1215 		if (err) {
1216 			dev_err(priv->dev,
1217 				"failed to read mac bridge entry %d: %d\n",
1218 				i, err);
1219 			return err;
1220 		}
1221 
1222 		if (!mac_bridge.valid)
1223 			continue;
1224 
1225 		addr[5] = mac_bridge.key[0] & 0xff;
1226 		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1227 		addr[3] = mac_bridge.key[1] & 0xff;
1228 		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1229 		addr[1] = mac_bridge.key[2] & 0xff;
1230 		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1231 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC) {
1232 			if (mac_bridge.val[0] & BIT(port)) {
1233 				err = cb(addr, 0, true, data);
1234 				if (err)
1235 					return err;
1236 			}
1237 		} else {
1238 			if (port == FIELD_GET(GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT,
1239 					      mac_bridge.val[0])) {
1240 				err = cb(addr, 0, false, data);
1241 				if (err)
1242 					return err;
1243 			}
1244 		}
1245 	}
1246 	return 0;
1247 }
1248 
1249 static int gswip_port_max_mtu(struct dsa_switch *ds, int port)
1250 {
1251 	/* Includes 8 bytes for special header. */
1252 	return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN;
1253 }
1254 
1255 static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1256 {
1257 	struct gswip_priv *priv = ds->priv;
1258 
1259 	/* CPU port always has maximum mtu of user ports, so use it to set
1260 	 * switch frame size, including 8 byte special header.
1261 	 */
1262 	if (dsa_is_cpu_port(ds, port)) {
1263 		new_mtu += 8;
1264 		gswip_switch_w(priv, VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN,
1265 			       GSWIP_MAC_FLEN);
1266 	}
1267 
1268 	/* Enable MLEN for ports with non-standard MTUs, including the special
1269 	 * header on the CPU port added above.
1270 	 */
1271 	if (new_mtu != ETH_DATA_LEN)
1272 		gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
1273 				  GSWIP_MAC_CTRL_2p(port));
1274 	else
1275 		gswip_switch_mask(priv, GSWIP_MAC_CTRL_2_MLEN, 0,
1276 				  GSWIP_MAC_CTRL_2p(port));
1277 
1278 	return 0;
1279 }
1280 
1281 static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port,
1282 					  struct phylink_config *config)
1283 {
1284 	switch (port) {
1285 	case 0:
1286 	case 1:
1287 		phy_interface_set_rgmii(config->supported_interfaces);
1288 		__set_bit(PHY_INTERFACE_MODE_MII,
1289 			  config->supported_interfaces);
1290 		__set_bit(PHY_INTERFACE_MODE_REVMII,
1291 			  config->supported_interfaces);
1292 		__set_bit(PHY_INTERFACE_MODE_RMII,
1293 			  config->supported_interfaces);
1294 		break;
1295 
1296 	case 2:
1297 	case 3:
1298 	case 4:
1299 	case 6:
1300 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1301 			  config->supported_interfaces);
1302 		break;
1303 
1304 	case 5:
1305 		phy_interface_set_rgmii(config->supported_interfaces);
1306 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1307 			  config->supported_interfaces);
1308 		break;
1309 	}
1310 
1311 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1312 		MAC_10 | MAC_100 | MAC_1000;
1313 }
1314 
1315 static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port,
1316 					  struct phylink_config *config)
1317 {
1318 	switch (port) {
1319 	case 0:
1320 		phy_interface_set_rgmii(config->supported_interfaces);
1321 		__set_bit(PHY_INTERFACE_MODE_GMII,
1322 			  config->supported_interfaces);
1323 		__set_bit(PHY_INTERFACE_MODE_RMII,
1324 			  config->supported_interfaces);
1325 		break;
1326 
1327 	case 1:
1328 	case 2:
1329 	case 3:
1330 	case 4:
1331 	case 6:
1332 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1333 			  config->supported_interfaces);
1334 		break;
1335 
1336 	case 5:
1337 		phy_interface_set_rgmii(config->supported_interfaces);
1338 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1339 			  config->supported_interfaces);
1340 		__set_bit(PHY_INTERFACE_MODE_RMII,
1341 			  config->supported_interfaces);
1342 		break;
1343 	}
1344 
1345 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1346 		MAC_10 | MAC_100 | MAC_1000;
1347 }
1348 
1349 static void gswip_phylink_get_caps(struct dsa_switch *ds, int port,
1350 				   struct phylink_config *config)
1351 {
1352 	struct gswip_priv *priv = ds->priv;
1353 
1354 	priv->hw_info->phylink_get_caps(ds, port, config);
1355 }
1356 
1357 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1358 {
1359 	u32 mdio_phy;
1360 
1361 	if (link)
1362 		mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1363 	else
1364 		mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1365 
1366 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1367 			GSWIP_MDIO_PHYp(port));
1368 }
1369 
1370 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1371 				 phy_interface_t interface)
1372 {
1373 	u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1374 
1375 	switch (speed) {
1376 	case SPEED_10:
1377 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1378 
1379 		if (interface == PHY_INTERFACE_MODE_RMII)
1380 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1381 		else
1382 			mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1383 
1384 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1385 		break;
1386 
1387 	case SPEED_100:
1388 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1389 
1390 		if (interface == PHY_INTERFACE_MODE_RMII)
1391 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1392 		else
1393 			mii_cfg = GSWIP_MII_CFG_RATE_M25;
1394 
1395 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1396 		break;
1397 
1398 	case SPEED_1000:
1399 		mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1400 
1401 		mii_cfg = GSWIP_MII_CFG_RATE_M125;
1402 
1403 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1404 		break;
1405 	}
1406 
1407 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1408 			GSWIP_MDIO_PHYp(port));
1409 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1410 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1411 			  GSWIP_MAC_CTRL_0p(port));
1412 }
1413 
1414 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1415 {
1416 	u32 mac_ctrl_0, mdio_phy;
1417 
1418 	if (duplex == DUPLEX_FULL) {
1419 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1420 		mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1421 	} else {
1422 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1423 		mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1424 	}
1425 
1426 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1427 			  GSWIP_MAC_CTRL_0p(port));
1428 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1429 			GSWIP_MDIO_PHYp(port));
1430 }
1431 
1432 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1433 				 bool tx_pause, bool rx_pause)
1434 {
1435 	u32 mac_ctrl_0, mdio_phy;
1436 
1437 	if (tx_pause && rx_pause) {
1438 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1439 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1440 			   GSWIP_MDIO_PHY_FCONRX_EN;
1441 	} else if (tx_pause) {
1442 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1443 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1444 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1445 	} else if (rx_pause) {
1446 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1447 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1448 			   GSWIP_MDIO_PHY_FCONRX_EN;
1449 	} else {
1450 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1451 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1452 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1453 	}
1454 
1455 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1456 			  mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1457 	gswip_mdio_mask(priv,
1458 			GSWIP_MDIO_PHY_FCONTX_MASK |
1459 			GSWIP_MDIO_PHY_FCONRX_MASK,
1460 			mdio_phy, GSWIP_MDIO_PHYp(port));
1461 }
1462 
1463 static void gswip_phylink_mac_config(struct phylink_config *config,
1464 				     unsigned int mode,
1465 				     const struct phylink_link_state *state)
1466 {
1467 	struct dsa_port *dp = dsa_phylink_to_port(config);
1468 	struct gswip_priv *priv = dp->ds->priv;
1469 	int port = dp->index;
1470 	u32 miicfg = 0;
1471 
1472 	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1473 
1474 	switch (state->interface) {
1475 	case PHY_INTERFACE_MODE_SGMII:
1476 	case PHY_INTERFACE_MODE_1000BASEX:
1477 	case PHY_INTERFACE_MODE_2500BASEX:
1478 		return;
1479 	case PHY_INTERFACE_MODE_MII:
1480 	case PHY_INTERFACE_MODE_INTERNAL:
1481 		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1482 		break;
1483 	case PHY_INTERFACE_MODE_REVMII:
1484 		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1485 		break;
1486 	case PHY_INTERFACE_MODE_RMII:
1487 		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1488 		break;
1489 	case PHY_INTERFACE_MODE_RGMII:
1490 	case PHY_INTERFACE_MODE_RGMII_ID:
1491 	case PHY_INTERFACE_MODE_RGMII_RXID:
1492 	case PHY_INTERFACE_MODE_RGMII_TXID:
1493 		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1494 		break;
1495 	case PHY_INTERFACE_MODE_GMII:
1496 		miicfg |= GSWIP_MII_CFG_MODE_GMII;
1497 		break;
1498 	default:
1499 		dev_err(dp->ds->dev,
1500 			"Unsupported interface: %d\n", state->interface);
1501 		return;
1502 	}
1503 
1504 	gswip_mii_mask_cfg(priv,
1505 			   GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1506 			   GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1507 			   miicfg, port);
1508 
1509 	switch (state->interface) {
1510 	case PHY_INTERFACE_MODE_RGMII_ID:
1511 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1512 					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1513 		break;
1514 	case PHY_INTERFACE_MODE_RGMII_RXID:
1515 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1516 		break;
1517 	case PHY_INTERFACE_MODE_RGMII_TXID:
1518 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1519 		break;
1520 	default:
1521 		break;
1522 	}
1523 }
1524 
1525 static void gswip_phylink_mac_link_down(struct phylink_config *config,
1526 					unsigned int mode,
1527 					phy_interface_t interface)
1528 {
1529 	struct dsa_port *dp = dsa_phylink_to_port(config);
1530 	struct gswip_priv *priv = dp->ds->priv;
1531 	int port = dp->index;
1532 
1533 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1534 
1535 	if (!dsa_port_is_cpu(dp))
1536 		gswip_port_set_link(priv, port, false);
1537 }
1538 
1539 static void gswip_phylink_mac_link_up(struct phylink_config *config,
1540 				      struct phy_device *phydev,
1541 				      unsigned int mode,
1542 				      phy_interface_t interface,
1543 				      int speed, int duplex,
1544 				      bool tx_pause, bool rx_pause)
1545 {
1546 	struct dsa_port *dp = dsa_phylink_to_port(config);
1547 	struct gswip_priv *priv = dp->ds->priv;
1548 	int port = dp->index;
1549 
1550 	if (!dsa_port_is_cpu(dp)) {
1551 		gswip_port_set_link(priv, port, true);
1552 		gswip_port_set_speed(priv, port, speed, interface);
1553 		gswip_port_set_duplex(priv, port, duplex);
1554 		gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1555 	}
1556 
1557 	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1558 }
1559 
1560 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1561 			      uint8_t *data)
1562 {
1563 	int i;
1564 
1565 	if (stringset != ETH_SS_STATS)
1566 		return;
1567 
1568 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1569 		ethtool_puts(&data, gswip_rmon_cnt[i].name);
1570 }
1571 
1572 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1573 				    u32 index)
1574 {
1575 	u32 result;
1576 	int err;
1577 
1578 	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1579 	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1580 				GSWIP_BM_RAM_CTRL_OPMOD,
1581 			      table | GSWIP_BM_RAM_CTRL_BAS,
1582 			      GSWIP_BM_RAM_CTRL);
1583 
1584 	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1585 				     GSWIP_BM_RAM_CTRL_BAS);
1586 	if (err) {
1587 		dev_err(priv->dev, "timeout while reading table: %u, index: %u\n",
1588 			table, index);
1589 		return 0;
1590 	}
1591 
1592 	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1593 	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1594 
1595 	return result;
1596 }
1597 
1598 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1599 				    uint64_t *data)
1600 {
1601 	struct gswip_priv *priv = ds->priv;
1602 	const struct gswip_rmon_cnt_desc *rmon_cnt;
1603 	int i;
1604 	u64 high;
1605 
1606 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1607 		rmon_cnt = &gswip_rmon_cnt[i];
1608 
1609 		data[i] = gswip_bcm_ram_entry_read(priv, port,
1610 						   rmon_cnt->offset);
1611 		if (rmon_cnt->size == 2) {
1612 			high = gswip_bcm_ram_entry_read(priv, port,
1613 							rmon_cnt->offset + 1);
1614 			data[i] |= high << 32;
1615 		}
1616 	}
1617 }
1618 
1619 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1620 {
1621 	if (sset != ETH_SS_STATS)
1622 		return 0;
1623 
1624 	return ARRAY_SIZE(gswip_rmon_cnt);
1625 }
1626 
1627 static struct phylink_pcs *gswip_phylink_mac_select_pcs(struct phylink_config *config,
1628 							phy_interface_t interface)
1629 {
1630 	struct dsa_port *dp = dsa_phylink_to_port(config);
1631 	struct gswip_priv *priv = dp->ds->priv;
1632 
1633 	if (priv->hw_info->mac_select_pcs)
1634 		return priv->hw_info->mac_select_pcs(config, interface);
1635 
1636 	return NULL;
1637 }
1638 
1639 static const struct phylink_mac_ops gswip_phylink_mac_ops = {
1640 	.mac_config		= gswip_phylink_mac_config,
1641 	.mac_link_down		= gswip_phylink_mac_link_down,
1642 	.mac_link_up		= gswip_phylink_mac_link_up,
1643 	.mac_select_pcs		= gswip_phylink_mac_select_pcs,
1644 };
1645 
1646 static const struct dsa_switch_ops gswip_switch_ops = {
1647 	.get_tag_protocol	= gswip_get_tag_protocol,
1648 	.setup			= gswip_setup,
1649 	.port_setup		= gswip_port_setup,
1650 	.port_enable		= gswip_port_enable,
1651 	.port_disable		= gswip_port_disable,
1652 	.port_bridge_join	= gswip_port_bridge_join,
1653 	.port_bridge_leave	= gswip_port_bridge_leave,
1654 	.port_fast_age		= gswip_port_fast_age,
1655 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1656 	.port_vlan_add		= gswip_port_vlan_add,
1657 	.port_vlan_del		= gswip_port_vlan_del,
1658 	.port_stp_state_set	= gswip_port_stp_state_set,
1659 	.port_fdb_add		= gswip_port_fdb_add,
1660 	.port_fdb_del		= gswip_port_fdb_del,
1661 	.port_fdb_dump		= gswip_port_fdb_dump,
1662 	.port_change_mtu	= gswip_port_change_mtu,
1663 	.port_max_mtu		= gswip_port_max_mtu,
1664 	.phylink_get_caps	= gswip_phylink_get_caps,
1665 	.get_strings		= gswip_get_strings,
1666 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1667 	.get_sset_count		= gswip_get_sset_count,
1668 };
1669 
1670 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1671 	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1672 	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1673 };
1674 
1675 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1676 	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1677 	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1678 };
1679 
1680 static const struct xway_gphy_match_data xrx300_gphy_data = {
1681 	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1682 	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1683 };
1684 
1685 static const struct of_device_id xway_gphy_match[] __maybe_unused = {
1686 	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1687 	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1688 	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1689 	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1690 	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1691 	{},
1692 };
1693 
1694 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1695 {
1696 	struct device *dev = priv->dev;
1697 	const struct firmware *fw;
1698 	void *fw_addr;
1699 	dma_addr_t dma_addr;
1700 	dma_addr_t dev_addr;
1701 	size_t size;
1702 	int ret;
1703 
1704 	ret = clk_prepare_enable(gphy_fw->clk_gate);
1705 	if (ret)
1706 		return ret;
1707 
1708 	reset_control_assert(gphy_fw->reset);
1709 
1710 	/* The vendor BSP uses a 200ms delay after asserting the reset line.
1711 	 * Without this some users are observing that the PHY is not coming up
1712 	 * on the MDIO bus.
1713 	 */
1714 	msleep(200);
1715 
1716 	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1717 	if (ret)
1718 		return dev_err_probe(dev, ret, "failed to load firmware: %s\n",
1719 				     gphy_fw->fw_name);
1720 
1721 	/* GPHY cores need the firmware code in a persistent and contiguous
1722 	 * memory area with a 16 kB boundary aligned start address.
1723 	 */
1724 	size = fw->size + XRX200_GPHY_FW_ALIGN;
1725 
1726 	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1727 	if (fw_addr) {
1728 		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1729 		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1730 		memcpy(fw_addr, fw->data, fw->size);
1731 	} else {
1732 		release_firmware(fw);
1733 		return -ENOMEM;
1734 	}
1735 
1736 	release_firmware(fw);
1737 
1738 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1739 	if (ret)
1740 		return ret;
1741 
1742 	reset_control_deassert(gphy_fw->reset);
1743 
1744 	return ret;
1745 }
1746 
1747 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1748 			       struct gswip_gphy_fw *gphy_fw,
1749 			       struct device_node *gphy_fw_np, int i)
1750 {
1751 	struct device *dev = priv->dev;
1752 	u32 gphy_mode;
1753 	int ret;
1754 	char gphyname[10];
1755 
1756 	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1757 
1758 	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1759 	if (IS_ERR(gphy_fw->clk_gate)) {
1760 		return dev_err_probe(dev, PTR_ERR(gphy_fw->clk_gate),
1761 				     "Failed to lookup gate clock\n");
1762 	}
1763 
1764 	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1765 	if (ret)
1766 		return ret;
1767 
1768 	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1769 	/* Default to GE mode */
1770 	if (ret)
1771 		gphy_mode = GPHY_MODE_GE;
1772 
1773 	switch (gphy_mode) {
1774 	case GPHY_MODE_FE:
1775 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1776 		break;
1777 	case GPHY_MODE_GE:
1778 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1779 		break;
1780 	default:
1781 		return dev_err_probe(dev, -EINVAL, "Unknown GPHY mode %d\n",
1782 				     gphy_mode);
1783 	}
1784 
1785 	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1786 	if (IS_ERR(gphy_fw->reset))
1787 		return dev_err_probe(dev, PTR_ERR(gphy_fw->reset),
1788 				     "Failed to lookup gphy reset\n");
1789 
1790 	return gswip_gphy_fw_load(priv, gphy_fw);
1791 }
1792 
1793 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1794 				 struct gswip_gphy_fw *gphy_fw)
1795 {
1796 	int ret;
1797 
1798 	/* check if the device was fully probed */
1799 	if (!gphy_fw->fw_name)
1800 		return;
1801 
1802 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1803 	if (ret)
1804 		dev_err(priv->dev, "can not reset GPHY FW pointer\n");
1805 
1806 	clk_disable_unprepare(gphy_fw->clk_gate);
1807 
1808 	reset_control_put(gphy_fw->reset);
1809 }
1810 
1811 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1812 			      struct device_node *gphy_fw_list_np, u32 version)
1813 {
1814 	struct device *dev = priv->dev;
1815 	struct device_node *gphy_fw_np;
1816 	const struct of_device_id *match;
1817 	int err;
1818 	int i = 0;
1819 
1820 	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1821 	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1822 	 * needs a different GPHY firmware.
1823 	 */
1824 	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1825 		switch (version) {
1826 		case GSWIP_VERSION_2_0:
1827 			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1828 			break;
1829 		case GSWIP_VERSION_2_1:
1830 			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1831 			break;
1832 		default:
1833 			return dev_err_probe(dev, -ENOENT,
1834 					     "unknown GSWIP version: 0x%x\n",
1835 					     version);
1836 		}
1837 	}
1838 
1839 	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1840 	if (match && match->data)
1841 		priv->gphy_fw_name_cfg = match->data;
1842 
1843 	if (!priv->gphy_fw_name_cfg)
1844 		return dev_err_probe(dev, -ENOENT,
1845 				     "GPHY compatible type not supported\n");
1846 
1847 	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
1848 	if (!priv->num_gphy_fw)
1849 		return -ENOENT;
1850 
1851 	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
1852 							   "lantiq,rcu");
1853 	if (IS_ERR(priv->rcu_regmap))
1854 		return PTR_ERR(priv->rcu_regmap);
1855 
1856 	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
1857 					   sizeof(*priv->gphy_fw),
1858 					   GFP_KERNEL | __GFP_ZERO);
1859 	if (!priv->gphy_fw)
1860 		return -ENOMEM;
1861 
1862 	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
1863 		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
1864 					  gphy_fw_np, i);
1865 		if (err) {
1866 			of_node_put(gphy_fw_np);
1867 			goto remove_gphy;
1868 		}
1869 		i++;
1870 	}
1871 
1872 	/* The standalone PHY11G requires 300ms to be fully
1873 	 * initialized and ready for any MDIO communication after being
1874 	 * taken out of reset. For the SoC-internal GPHY variant there
1875 	 * is no (known) documentation for the minimum time after a
1876 	 * reset. Use the same value as for the standalone variant as
1877 	 * some users have reported internal PHYs not being detected
1878 	 * without any delay.
1879 	 */
1880 	msleep(300);
1881 
1882 	return 0;
1883 
1884 remove_gphy:
1885 	for (i = 0; i < priv->num_gphy_fw; i++)
1886 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1887 	return err;
1888 }
1889 
1890 static int gswip_validate_cpu_port(struct dsa_switch *ds)
1891 {
1892 	struct gswip_priv *priv = ds->priv;
1893 	struct dsa_port *cpu_dp;
1894 	int cpu_port = -1;
1895 
1896 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
1897 		if (cpu_port != -1)
1898 			return dev_err_probe(ds->dev, -EINVAL,
1899 					     "only a single CPU port is supported\n");
1900 
1901 		cpu_port = cpu_dp->index;
1902 	}
1903 
1904 	if (cpu_port == -1)
1905 		return dev_err_probe(ds->dev, -EINVAL, "no CPU port defined\n");
1906 
1907 	if (BIT(cpu_port) & ~priv->hw_info->allowed_cpu_ports)
1908 		return dev_err_probe(ds->dev, -EINVAL,
1909 				     "unsupported CPU port defined\n");
1910 
1911 	return 0;
1912 }
1913 
1914 static int gswip_probe(struct platform_device *pdev)
1915 {
1916 	struct device_node *np, *gphy_fw_np;
1917 	struct device *dev = &pdev->dev;
1918 	struct gswip_priv *priv;
1919 	int err;
1920 	int i;
1921 	u32 version;
1922 
1923 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1924 	if (!priv)
1925 		return -ENOMEM;
1926 
1927 	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
1928 	if (IS_ERR(priv->gswip))
1929 		return PTR_ERR(priv->gswip);
1930 
1931 	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
1932 	if (IS_ERR(priv->mdio))
1933 		return PTR_ERR(priv->mdio);
1934 
1935 	priv->mii = devm_platform_ioremap_resource(pdev, 2);
1936 	if (IS_ERR(priv->mii))
1937 		return PTR_ERR(priv->mii);
1938 
1939 	priv->hw_info = of_device_get_match_data(dev);
1940 	if (!priv->hw_info)
1941 		return -EINVAL;
1942 
1943 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
1944 	if (!priv->ds)
1945 		return -ENOMEM;
1946 
1947 	priv->ds->dev = dev;
1948 	priv->ds->num_ports = priv->hw_info->max_ports;
1949 	priv->ds->priv = priv;
1950 	priv->ds->ops = &gswip_switch_ops;
1951 	priv->ds->phylink_mac_ops = &gswip_phylink_mac_ops;
1952 	priv->dev = dev;
1953 	mutex_init(&priv->pce_table_lock);
1954 	version = gswip_switch_r(priv, GSWIP_VERSION);
1955 
1956 	/* The hardware has the 'major/minor' version bytes in the wrong order
1957 	 * preventing numerical comparisons. Construct a 16-bit unsigned integer
1958 	 * having the REV field as most significant byte and the MOD field as
1959 	 * least significant byte. This is effectively swapping the two bytes of
1960 	 * the version variable, but other than using swab16 it doesn't affect
1961 	 * the source variable.
1962 	 */
1963 	priv->version = GSWIP_VERSION_REV(version) << 8 |
1964 			GSWIP_VERSION_MOD(version);
1965 
1966 	np = dev->of_node;
1967 	switch (version) {
1968 	case GSWIP_VERSION_2_0:
1969 	case GSWIP_VERSION_2_1:
1970 		if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
1971 			return -EINVAL;
1972 		break;
1973 	case GSWIP_VERSION_2_2:
1974 	case GSWIP_VERSION_2_2_ETC:
1975 		if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
1976 		    !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
1977 			return -EINVAL;
1978 		break;
1979 	default:
1980 		return dev_err_probe(dev, -ENOENT,
1981 				     "unknown GSWIP version: 0x%x\n", version);
1982 	}
1983 
1984 	/* bring up the mdio bus */
1985 	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
1986 	if (gphy_fw_np) {
1987 		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
1988 		of_node_put(gphy_fw_np);
1989 		if (err)
1990 			return dev_err_probe(dev, err,
1991 					     "gphy fw probe failed\n");
1992 	}
1993 
1994 	err = dsa_register_switch(priv->ds);
1995 	if (err) {
1996 		dev_err_probe(dev, err, "dsa switch registration failed\n");
1997 		goto gphy_fw_remove;
1998 	}
1999 
2000 	err = gswip_validate_cpu_port(priv->ds);
2001 	if (err)
2002 		goto disable_switch;
2003 
2004 	platform_set_drvdata(pdev, priv);
2005 
2006 	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2007 		 GSWIP_VERSION_REV(version), GSWIP_VERSION_MOD(version));
2008 	return 0;
2009 
2010 disable_switch:
2011 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2012 	dsa_unregister_switch(priv->ds);
2013 gphy_fw_remove:
2014 	for (i = 0; i < priv->num_gphy_fw; i++)
2015 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2016 	return err;
2017 }
2018 
2019 static void gswip_remove(struct platform_device *pdev)
2020 {
2021 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2022 	int i;
2023 
2024 	if (!priv)
2025 		return;
2026 
2027 	/* disable the switch */
2028 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2029 
2030 	dsa_unregister_switch(priv->ds);
2031 
2032 	for (i = 0; i < priv->num_gphy_fw; i++)
2033 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2034 }
2035 
2036 static void gswip_shutdown(struct platform_device *pdev)
2037 {
2038 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2039 
2040 	if (!priv)
2041 		return;
2042 
2043 	dsa_switch_shutdown(priv->ds);
2044 
2045 	platform_set_drvdata(pdev, NULL);
2046 }
2047 
2048 static const struct gswip_hw_info gswip_xrx200 = {
2049 	.max_ports = 7,
2050 	.allowed_cpu_ports = BIT(6),
2051 	.mii_ports = BIT(0) | BIT(1) | BIT(5),
2052 	.mii_port_reg_offset = 0,
2053 	.phylink_get_caps = gswip_xrx200_phylink_get_caps,
2054 	.pce_microcode = &gswip_pce_microcode,
2055 	.pce_microcode_size = ARRAY_SIZE(gswip_pce_microcode),
2056 	.tag_protocol = DSA_TAG_PROTO_GSWIP,
2057 };
2058 
2059 static const struct gswip_hw_info gswip_xrx300 = {
2060 	.max_ports = 7,
2061 	.allowed_cpu_ports = BIT(6),
2062 	.mii_ports = BIT(0) | BIT(5),
2063 	.mii_port_reg_offset = 0,
2064 	.phylink_get_caps = gswip_xrx300_phylink_get_caps,
2065 	.pce_microcode = &gswip_pce_microcode,
2066 	.pce_microcode_size = ARRAY_SIZE(gswip_pce_microcode),
2067 	.tag_protocol = DSA_TAG_PROTO_GSWIP,
2068 };
2069 
2070 static const struct of_device_id gswip_of_match[] = {
2071 	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2072 	{ .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2073 	{ .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2074 	{},
2075 };
2076 MODULE_DEVICE_TABLE(of, gswip_of_match);
2077 
2078 static struct platform_driver gswip_driver = {
2079 	.probe = gswip_probe,
2080 	.remove = gswip_remove,
2081 	.shutdown = gswip_shutdown,
2082 	.driver = {
2083 		.name = "gswip",
2084 		.of_match_table = gswip_of_match,
2085 	},
2086 };
2087 
2088 module_platform_driver(gswip_driver);
2089 
2090 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2091 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2092 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2093 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2094 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2095 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2096 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2097 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2098 MODULE_LICENSE("GPL v2");
2099