xref: /linux/drivers/net/dsa/bcm_sf2_cfp.c (revision 630ae80ea1dd253609cb50cff87f3248f901aca3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Broadcom Starfighter 2 DSA switch CFP support
4  *
5  * Copyright (C) 2016, Broadcom
6  */
7 
8 #include <linux/list.h>
9 #include <linux/ethtool.h>
10 #include <linux/if_ether.h>
11 #include <linux/in.h>
12 #include <linux/netdevice.h>
13 #include <net/dsa.h>
14 #include <linux/bitmap.h>
15 #include <net/flow_offload.h>
16 #include <net/switchdev.h>
17 #include <uapi/linux/if_bridge.h>
18 
19 #include "bcm_sf2.h"
20 #include "bcm_sf2_regs.h"
21 
22 struct cfp_rule {
23 	int port;
24 	struct ethtool_rx_flow_spec fs;
25 	struct list_head next;
26 };
27 
28 struct cfp_udf_slice_layout {
29 	u8 slices[UDFS_PER_SLICE];
30 	u32 mask_value;
31 	u32 base_offset;
32 };
33 
34 struct cfp_udf_layout {
35 	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
36 };
37 
38 static const u8 zero_slice[UDFS_PER_SLICE] = { };
39 
40 /* UDF slices layout for a TCPv4/UDPv4 specification */
41 static const struct cfp_udf_layout udf_tcpip4_layout = {
42 	.udfs = {
43 		[1] = {
44 			.slices = {
45 				/* End of L2, byte offset 12, src IP[0:15] */
46 				CFG_UDF_EOL2 | 6,
47 				/* End of L2, byte offset 14, src IP[16:31] */
48 				CFG_UDF_EOL2 | 7,
49 				/* End of L2, byte offset 16, dst IP[0:15] */
50 				CFG_UDF_EOL2 | 8,
51 				/* End of L2, byte offset 18, dst IP[16:31] */
52 				CFG_UDF_EOL2 | 9,
53 				/* End of L3, byte offset 0, src port */
54 				CFG_UDF_EOL3 | 0,
55 				/* End of L3, byte offset 2, dst port */
56 				CFG_UDF_EOL3 | 1,
57 				0, 0, 0
58 			},
59 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
60 			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
61 		},
62 	},
63 };
64 
65 /* UDF slices layout for a TCPv6/UDPv6 specification */
66 static const struct cfp_udf_layout udf_tcpip6_layout = {
67 	.udfs = {
68 		[0] = {
69 			.slices = {
70 				/* End of L2, byte offset 8, src IP[0:15] */
71 				CFG_UDF_EOL2 | 4,
72 				/* End of L2, byte offset 10, src IP[16:31] */
73 				CFG_UDF_EOL2 | 5,
74 				/* End of L2, byte offset 12, src IP[32:47] */
75 				CFG_UDF_EOL2 | 6,
76 				/* End of L2, byte offset 14, src IP[48:63] */
77 				CFG_UDF_EOL2 | 7,
78 				/* End of L2, byte offset 16, src IP[64:79] */
79 				CFG_UDF_EOL2 | 8,
80 				/* End of L2, byte offset 18, src IP[80:95] */
81 				CFG_UDF_EOL2 | 9,
82 				/* End of L2, byte offset 20, src IP[96:111] */
83 				CFG_UDF_EOL2 | 10,
84 				/* End of L2, byte offset 22, src IP[112:127] */
85 				CFG_UDF_EOL2 | 11,
86 				/* End of L3, byte offset 0, src port */
87 				CFG_UDF_EOL3 | 0,
88 			},
89 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
90 			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
91 		},
92 		[3] = {
93 			.slices = {
94 				/* End of L2, byte offset 24, dst IP[0:15] */
95 				CFG_UDF_EOL2 | 12,
96 				/* End of L2, byte offset 26, dst IP[16:31] */
97 				CFG_UDF_EOL2 | 13,
98 				/* End of L2, byte offset 28, dst IP[32:47] */
99 				CFG_UDF_EOL2 | 14,
100 				/* End of L2, byte offset 30, dst IP[48:63] */
101 				CFG_UDF_EOL2 | 15,
102 				/* End of L2, byte offset 32, dst IP[64:79] */
103 				CFG_UDF_EOL2 | 16,
104 				/* End of L2, byte offset 34, dst IP[80:95] */
105 				CFG_UDF_EOL2 | 17,
106 				/* End of L2, byte offset 36, dst IP[96:111] */
107 				CFG_UDF_EOL2 | 18,
108 				/* End of L2, byte offset 38, dst IP[112:127] */
109 				CFG_UDF_EOL2 | 19,
110 				/* End of L3, byte offset 2, dst port */
111 				CFG_UDF_EOL3 | 1,
112 			},
113 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
114 			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
115 		},
116 	},
117 };
118 
119 static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
120 {
121 	unsigned int i, count = 0;
122 
123 	for (i = 0; i < UDFS_PER_SLICE; i++) {
124 		if (layout[i] != 0)
125 			count++;
126 	}
127 
128 	return count;
129 }
130 
131 static inline u32 udf_upper_bits(int num_udf)
132 {
133 	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
134 }
135 
136 static inline u32 udf_lower_bits(int num_udf)
137 {
138 	return (u8)GENMASK(num_udf - 1, 0);
139 }
140 
141 static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
142 					     unsigned int start)
143 {
144 	const struct cfp_udf_slice_layout *slice_layout;
145 	unsigned int slice_idx;
146 
147 	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
148 		slice_layout = &l->udfs[slice_idx];
149 		if (memcmp(slice_layout->slices, zero_slice,
150 			   sizeof(zero_slice)))
151 			break;
152 	}
153 
154 	return slice_idx;
155 }
156 
157 static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
158 				const struct cfp_udf_layout *layout,
159 				unsigned int slice_num)
160 {
161 	u32 offset = layout->udfs[slice_num].base_offset;
162 	unsigned int i;
163 
164 	for (i = 0; i < UDFS_PER_SLICE; i++)
165 		core_writel(priv, layout->udfs[slice_num].slices[i],
166 			    offset + i * 4);
167 }
168 
169 static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
170 {
171 	unsigned int timeout = 1000;
172 	u32 reg;
173 
174 	reg = core_readl(priv, CORE_CFP_ACC);
175 	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
176 	reg |= OP_STR_DONE | op;
177 	core_writel(priv, reg, CORE_CFP_ACC);
178 
179 	do {
180 		reg = core_readl(priv, CORE_CFP_ACC);
181 		if (!(reg & OP_STR_DONE))
182 			break;
183 
184 		cpu_relax();
185 	} while (timeout--);
186 
187 	if (!timeout)
188 		return -ETIMEDOUT;
189 
190 	return 0;
191 }
192 
193 static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
194 					     unsigned int addr)
195 {
196 	u32 reg;
197 
198 	WARN_ON(addr >= priv->num_cfp_rules);
199 
200 	reg = core_readl(priv, CORE_CFP_ACC);
201 	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
202 	reg |= addr << XCESS_ADDR_SHIFT;
203 	core_writel(priv, reg, CORE_CFP_ACC);
204 }
205 
206 static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
207 {
208 	/* Entry #0 is reserved */
209 	return priv->num_cfp_rules - 1;
210 }
211 
212 static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
213 				   unsigned int rule_index,
214 				   int src_port,
215 				   unsigned int port_num,
216 				   unsigned int queue_num,
217 				   bool fwd_map_change)
218 {
219 	int ret;
220 	u32 reg;
221 
222 	/* Replace ARL derived destination with DST_MAP derived, define
223 	 * which port and queue this should be forwarded to.
224 	 */
225 	if (fwd_map_change)
226 		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
227 		      BIT(port_num + DST_MAP_IB_SHIFT) |
228 		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
229 	else
230 		reg = 0;
231 
232 	/* Enable looping back to the original port */
233 	if (src_port == port_num)
234 		reg |= LOOP_BK_EN;
235 
236 	core_writel(priv, reg, CORE_ACT_POL_DATA0);
237 
238 	/* Set classification ID that needs to be put in Broadcom tag */
239 	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
240 
241 	core_writel(priv, 0, CORE_ACT_POL_DATA2);
242 
243 	/* Configure policer RAM now */
244 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
245 	if (ret) {
246 		pr_err("Policer entry at %d failed\n", rule_index);
247 		return ret;
248 	}
249 
250 	/* Disable the policer */
251 	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
252 
253 	/* Now the rate meter */
254 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
255 	if (ret) {
256 		pr_err("Meter entry at %d failed\n", rule_index);
257 		return ret;
258 	}
259 
260 	return 0;
261 }
262 
263 static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
264 				   struct flow_dissector_key_ipv4_addrs *addrs,
265 				   struct flow_dissector_key_ports *ports,
266 				   const __be16 vlan_tci,
267 				   unsigned int slice_num, u8 num_udf,
268 				   bool mask)
269 {
270 	u32 reg, offset;
271 
272 	/* UDF_Valid[7:0]	[31:24]
273 	 * S-Tag		[23:8]
274 	 * C-Tag		[7:0]
275 	 */
276 	reg = udf_lower_bits(num_udf) << 24 | be16_to_cpu(vlan_tci) >> 8;
277 	if (mask)
278 		core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
279 	else
280 		core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
281 
282 	/* C-Tag		[31:24]
283 	 * UDF_n_A8		[23:8]
284 	 * UDF_n_A7		[7:0]
285 	 */
286 	reg = (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
287 	if (mask)
288 		offset = CORE_CFP_MASK_PORT(4);
289 	else
290 		offset = CORE_CFP_DATA_PORT(4);
291 	core_writel(priv, reg, offset);
292 
293 	/* UDF_n_A7		[31:24]
294 	 * UDF_n_A6		[23:8]
295 	 * UDF_n_A5		[7:0]
296 	 */
297 	reg = be16_to_cpu(ports->dst) >> 8;
298 	if (mask)
299 		offset = CORE_CFP_MASK_PORT(3);
300 	else
301 		offset = CORE_CFP_DATA_PORT(3);
302 	core_writel(priv, reg, offset);
303 
304 	/* UDF_n_A5		[31:24]
305 	 * UDF_n_A4		[23:8]
306 	 * UDF_n_A3		[7:0]
307 	 */
308 	reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
309 	      (u32)be16_to_cpu(ports->src) << 8 |
310 	      (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
311 	if (mask)
312 		offset = CORE_CFP_MASK_PORT(2);
313 	else
314 		offset = CORE_CFP_DATA_PORT(2);
315 	core_writel(priv, reg, offset);
316 
317 	/* UDF_n_A3		[31:24]
318 	 * UDF_n_A2		[23:8]
319 	 * UDF_n_A1		[7:0]
320 	 */
321 	reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
322 	      (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
323 	      (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
324 	if (mask)
325 		offset = CORE_CFP_MASK_PORT(1);
326 	else
327 		offset = CORE_CFP_DATA_PORT(1);
328 	core_writel(priv, reg, offset);
329 
330 	/* UDF_n_A1		[31:24]
331 	 * UDF_n_A0		[23:8]
332 	 * Reserved		[7:4]
333 	 * Slice ID		[3:2]
334 	 * Slice valid		[1:0]
335 	 */
336 	reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
337 	      (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
338 	      SLICE_NUM(slice_num) | SLICE_VALID;
339 	if (mask)
340 		offset = CORE_CFP_MASK_PORT(0);
341 	else
342 		offset = CORE_CFP_DATA_PORT(0);
343 	core_writel(priv, reg, offset);
344 }
345 
346 static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
347 				     unsigned int port_num,
348 				     unsigned int queue_num,
349 				     struct ethtool_rx_flow_spec *fs)
350 {
351 	__be16 vlan_tci = 0, vlan_m_tci = htons(0xffff);
352 	struct ethtool_rx_flow_spec_input input = {};
353 	const struct cfp_udf_layout *layout;
354 	unsigned int slice_num, rule_index;
355 	struct ethtool_rx_flow_rule *flow;
356 	struct flow_match_ipv4_addrs ipv4;
357 	struct flow_match_ports ports;
358 	struct flow_match_ip ip;
359 	u8 ip_proto, ip_frag;
360 	u8 num_udf;
361 	u32 reg;
362 	int ret;
363 
364 	switch (fs->flow_type & ~FLOW_EXT) {
365 	case TCP_V4_FLOW:
366 		ip_proto = IPPROTO_TCP;
367 		break;
368 	case UDP_V4_FLOW:
369 		ip_proto = IPPROTO_UDP;
370 		break;
371 	default:
372 		return -EINVAL;
373 	}
374 
375 	ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
376 
377 	/* Extract VLAN TCI */
378 	if (fs->flow_type & FLOW_EXT) {
379 		vlan_tci = fs->h_ext.vlan_tci;
380 		vlan_m_tci = fs->m_ext.vlan_tci;
381 	}
382 
383 	/* Locate the first rule available */
384 	if (fs->location == RX_CLS_LOC_ANY)
385 		rule_index = find_first_zero_bit(priv->cfp.used,
386 						 priv->num_cfp_rules);
387 	else
388 		rule_index = fs->location;
389 
390 	if (rule_index > bcm_sf2_cfp_rule_size(priv))
391 		return -ENOSPC;
392 
393 	input.fs = fs;
394 	flow = ethtool_rx_flow_rule_create(&input);
395 	if (IS_ERR(flow))
396 		return PTR_ERR(flow);
397 
398 	flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
399 	flow_rule_match_ports(flow->rule, &ports);
400 	flow_rule_match_ip(flow->rule, &ip);
401 
402 	layout = &udf_tcpip4_layout;
403 	/* We only use one UDF slice for now */
404 	slice_num = bcm_sf2_get_slice_number(layout, 0);
405 	if (slice_num == UDF_NUM_SLICES) {
406 		ret = -EINVAL;
407 		goto out_err_flow_rule;
408 	}
409 
410 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
411 
412 	/* Apply the UDF layout for this filter */
413 	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
414 
415 	/* Apply to all packets received through this port */
416 	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
417 
418 	/* Source port map match */
419 	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
420 
421 	/* S-Tag status		[31:30]
422 	 * C-Tag status		[29:28]
423 	 * L2 framing		[27:26]
424 	 * L3 framing		[25:24]
425 	 * IP ToS		[23:16]
426 	 * IP proto		[15:08]
427 	 * IP Fragm		[7]
428 	 * Non 1st frag		[6]
429 	 * IP Authen		[5]
430 	 * TTL range		[4:3]
431 	 * PPPoE session	[2]
432 	 * Reserved		[1]
433 	 * UDF_Valid[8]		[0]
434 	 */
435 	core_writel(priv, ip.key->tos << IPTOS_SHIFT |
436 		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
437 		    udf_upper_bits(num_udf),
438 		    CORE_CFP_DATA_PORT(6));
439 
440 	/* Mask with the specific layout for IPv4 packets */
441 	core_writel(priv, layout->udfs[slice_num].mask_value |
442 		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
443 
444 	/* Program the match and the mask */
445 	bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, vlan_tci,
446 			       slice_num, num_udf, false);
447 	bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, vlan_m_tci,
448 			       SLICE_NUM_MASK, num_udf, true);
449 
450 	/* Insert into TCAM now */
451 	bcm_sf2_cfp_rule_addr_set(priv, rule_index);
452 
453 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
454 	if (ret) {
455 		pr_err("TCAM entry at addr %d failed\n", rule_index);
456 		goto out_err_flow_rule;
457 	}
458 
459 	/* Insert into Action and policer RAMs now */
460 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
461 				      queue_num, true);
462 	if (ret)
463 		goto out_err_flow_rule;
464 
465 	/* Turn on CFP for this rule now */
466 	reg = core_readl(priv, CORE_CFP_CTL_REG);
467 	reg |= BIT(port);
468 	core_writel(priv, reg, CORE_CFP_CTL_REG);
469 
470 	/* Flag the rule as being used and return it */
471 	set_bit(rule_index, priv->cfp.used);
472 	set_bit(rule_index, priv->cfp.unique);
473 	fs->location = rule_index;
474 
475 	return 0;
476 
477 out_err_flow_rule:
478 	ethtool_rx_flow_rule_destroy(flow);
479 	return ret;
480 }
481 
482 static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
483 				   const __be32 *ip6_addr, const __be16 port,
484 				   const __be16 vlan_tci,
485 				   unsigned int slice_num, u32 udf_bits,
486 				   bool mask)
487 {
488 	u32 reg, tmp, val, offset;
489 
490 	/* UDF_Valid[7:0]	[31:24]
491 	 * S-Tag		[23:8]
492 	 * C-Tag		[7:0]
493 	 */
494 	reg = udf_bits << 24 | be16_to_cpu(vlan_tci) >> 8;
495 	if (mask)
496 		core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
497 	else
498 		core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
499 
500 	/* C-Tag		[31:24]
501 	 * UDF_n_B8		[23:8]	(port)
502 	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
503 	 */
504 	reg = be32_to_cpu(ip6_addr[3]);
505 	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
506 	val |= (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
507 	if (mask)
508 		offset = CORE_CFP_MASK_PORT(4);
509 	else
510 		offset = CORE_CFP_DATA_PORT(4);
511 	core_writel(priv, val, offset);
512 
513 	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
514 	 * UDF_n_B6		[23:8] (addr[31:16])
515 	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
516 	 */
517 	tmp = be32_to_cpu(ip6_addr[2]);
518 	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
519 	      ((tmp >> 8) & 0xff);
520 	if (mask)
521 		offset = CORE_CFP_MASK_PORT(3);
522 	else
523 		offset = CORE_CFP_DATA_PORT(3);
524 	core_writel(priv, val, offset);
525 
526 	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
527 	 * UDF_n_B4		[23:8] (addr[63:48])
528 	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
529 	 */
530 	reg = be32_to_cpu(ip6_addr[1]);
531 	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
532 	      ((reg >> 8) & 0xff);
533 	if (mask)
534 		offset = CORE_CFP_MASK_PORT(2);
535 	else
536 		offset = CORE_CFP_DATA_PORT(2);
537 	core_writel(priv, val, offset);
538 
539 	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
540 	 * UDF_n_B2		[23:8] (addr[95:80])
541 	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
542 	 */
543 	tmp = be32_to_cpu(ip6_addr[0]);
544 	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
545 	      ((tmp >> 8) & 0xff);
546 	if (mask)
547 		offset = CORE_CFP_MASK_PORT(1);
548 	else
549 		offset = CORE_CFP_DATA_PORT(1);
550 	core_writel(priv, val, offset);
551 
552 	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
553 	 * UDF_n_B0		[23:8] (addr[127:112])
554 	 * Reserved		[7:4]
555 	 * Slice ID		[3:2]
556 	 * Slice valid		[1:0]
557 	 */
558 	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
559 	       SLICE_NUM(slice_num) | SLICE_VALID;
560 	if (mask)
561 		offset = CORE_CFP_MASK_PORT(0);
562 	else
563 		offset = CORE_CFP_DATA_PORT(0);
564 	core_writel(priv, reg, offset);
565 }
566 
567 static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
568 					      int port, u32 location)
569 {
570 	struct cfp_rule *rule;
571 
572 	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
573 		if (rule->port == port && rule->fs.location == location)
574 			return rule;
575 	}
576 
577 	return NULL;
578 }
579 
580 static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
581 				struct ethtool_rx_flow_spec *fs)
582 {
583 	struct cfp_rule *rule = NULL;
584 	size_t fs_size = 0;
585 	int ret = 1;
586 
587 	if (list_empty(&priv->cfp.rules_list))
588 		return ret;
589 
590 	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
591 		ret = 1;
592 		if (rule->port != port)
593 			continue;
594 
595 		if (rule->fs.flow_type != fs->flow_type ||
596 		    rule->fs.ring_cookie != fs->ring_cookie ||
597 		    rule->fs.h_ext.data[0] != fs->h_ext.data[0])
598 			continue;
599 
600 		switch (fs->flow_type & ~FLOW_EXT) {
601 		case TCP_V6_FLOW:
602 		case UDP_V6_FLOW:
603 			fs_size = sizeof(struct ethtool_tcpip6_spec);
604 			break;
605 		case TCP_V4_FLOW:
606 		case UDP_V4_FLOW:
607 			fs_size = sizeof(struct ethtool_tcpip4_spec);
608 			break;
609 		default:
610 			continue;
611 		}
612 
613 		ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
614 		ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
615 		/* Compare VLAN TCI values as well */
616 		if (rule->fs.flow_type & FLOW_EXT) {
617 			ret |= rule->fs.h_ext.vlan_tci != fs->h_ext.vlan_tci;
618 			ret |= rule->fs.m_ext.vlan_tci != fs->m_ext.vlan_tci;
619 		}
620 		if (ret == 0)
621 			break;
622 	}
623 
624 	return ret;
625 }
626 
627 static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
628 				     unsigned int port_num,
629 				     unsigned int queue_num,
630 				     struct ethtool_rx_flow_spec *fs)
631 {
632 	__be16 vlan_tci = 0, vlan_m_tci = htons(0xffff);
633 	struct ethtool_rx_flow_spec_input input = {};
634 	unsigned int slice_num, rule_index[2];
635 	const struct cfp_udf_layout *layout;
636 	struct ethtool_rx_flow_rule *flow;
637 	struct flow_match_ipv6_addrs ipv6;
638 	struct flow_match_ports ports;
639 	u8 ip_proto, ip_frag;
640 	int ret = 0;
641 	u8 num_udf;
642 	u32 reg;
643 
644 	switch (fs->flow_type & ~FLOW_EXT) {
645 	case TCP_V6_FLOW:
646 		ip_proto = IPPROTO_TCP;
647 		break;
648 	case UDP_V6_FLOW:
649 		ip_proto = IPPROTO_UDP;
650 		break;
651 	default:
652 		return -EINVAL;
653 	}
654 
655 	ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
656 
657 	/* Extract VLAN TCI */
658 	if (fs->flow_type & FLOW_EXT) {
659 		vlan_tci = fs->h_ext.vlan_tci;
660 		vlan_m_tci = fs->m_ext.vlan_tci;
661 	}
662 
663 	layout = &udf_tcpip6_layout;
664 	slice_num = bcm_sf2_get_slice_number(layout, 0);
665 	if (slice_num == UDF_NUM_SLICES)
666 		return -EINVAL;
667 
668 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
669 
670 	/* Negotiate two indexes, one for the second half which we are chained
671 	 * from, which is what we will return to user-space, and a second one
672 	 * which is used to store its first half. That first half does not
673 	 * allow any choice of placement, so it just needs to find the next
674 	 * available bit. We return the second half as fs->location because
675 	 * that helps with the rule lookup later on since the second half is
676 	 * chained from its first half, we can easily identify IPv6 CFP rules
677 	 * by looking whether they carry a CHAIN_ID.
678 	 *
679 	 * We also want the second half to have a lower rule_index than its
680 	 * first half because the HW search is by incrementing addresses.
681 	 */
682 	if (fs->location == RX_CLS_LOC_ANY)
683 		rule_index[1] = find_first_zero_bit(priv->cfp.used,
684 						    priv->num_cfp_rules);
685 	else
686 		rule_index[1] = fs->location;
687 	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
688 		return -ENOSPC;
689 
690 	/* Flag it as used (cleared on error path) such that we can immediately
691 	 * obtain a second one to chain from.
692 	 */
693 	set_bit(rule_index[1], priv->cfp.used);
694 
695 	rule_index[0] = find_first_zero_bit(priv->cfp.used,
696 					    priv->num_cfp_rules);
697 	if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
698 		ret = -ENOSPC;
699 		goto out_err;
700 	}
701 
702 	input.fs = fs;
703 	flow = ethtool_rx_flow_rule_create(&input);
704 	if (IS_ERR(flow)) {
705 		ret = PTR_ERR(flow);
706 		goto out_err;
707 	}
708 	flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
709 	flow_rule_match_ports(flow->rule, &ports);
710 
711 	/* Apply the UDF layout for this filter */
712 	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
713 
714 	/* Apply to all packets received through this port */
715 	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
716 
717 	/* Source port map match */
718 	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
719 
720 	/* S-Tag status		[31:30]
721 	 * C-Tag status		[29:28]
722 	 * L2 framing		[27:26]
723 	 * L3 framing		[25:24]
724 	 * IP ToS		[23:16]
725 	 * IP proto		[15:08]
726 	 * IP Fragm		[7]
727 	 * Non 1st frag		[6]
728 	 * IP Authen		[5]
729 	 * TTL range		[4:3]
730 	 * PPPoE session	[2]
731 	 * Reserved		[1]
732 	 * UDF_Valid[8]		[0]
733 	 */
734 	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
735 		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
736 	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
737 
738 	/* Mask with the specific layout for IPv6 packets including
739 	 * UDF_Valid[8]
740 	 */
741 	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
742 	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
743 
744 	/* Slice the IPv6 source address and port */
745 	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
746 			       ports.key->src, vlan_tci, slice_num,
747 			       udf_lower_bits(num_udf), false);
748 	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
749 			       ports.mask->src, vlan_m_tci, SLICE_NUM_MASK,
750 			       udf_lower_bits(num_udf), true);
751 
752 	/* Insert into TCAM now because we need to insert a second rule */
753 	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
754 
755 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
756 	if (ret) {
757 		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
758 		goto out_err_flow_rule;
759 	}
760 
761 	/* Insert into Action and policer RAMs now */
762 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
763 				      queue_num, false);
764 	if (ret)
765 		goto out_err_flow_rule;
766 
767 	/* Now deal with the second slice to chain this rule */
768 	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
769 	if (slice_num == UDF_NUM_SLICES) {
770 		ret = -EINVAL;
771 		goto out_err_flow_rule;
772 	}
773 
774 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
775 
776 	/* Apply the UDF layout for this filter */
777 	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
778 
779 	/* Chained rule, source port match is coming from the rule we are
780 	 * chained from.
781 	 */
782 	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
783 	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
784 
785 	/*
786 	 * CHAIN ID		[31:24] chain to previous slice
787 	 * Reserved		[23:20]
788 	 * UDF_Valid[11:8]	[19:16]
789 	 * UDF_Valid[7:0]	[15:8]
790 	 * UDF_n_D11		[7:0]
791 	 */
792 	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
793 		udf_lower_bits(num_udf) << 8;
794 	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
795 
796 	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
797 	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
798 		udf_lower_bits(num_udf) << 8;
799 	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
800 
801 	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
802 			       ports.key->dst, 0, slice_num,
803 			       0, false);
804 	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
805 			       ports.key->dst, 0, SLICE_NUM_MASK,
806 			       0, true);
807 
808 	/* Insert into TCAM now */
809 	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
810 
811 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
812 	if (ret) {
813 		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
814 		goto out_err_flow_rule;
815 	}
816 
817 	/* Insert into Action and policer RAMs now, set chain ID to
818 	 * the one we are chained to
819 	 */
820 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
821 				      queue_num, true);
822 	if (ret)
823 		goto out_err_flow_rule;
824 
825 	/* Turn on CFP for this rule now */
826 	reg = core_readl(priv, CORE_CFP_CTL_REG);
827 	reg |= BIT(port);
828 	core_writel(priv, reg, CORE_CFP_CTL_REG);
829 
830 	/* Flag the second half rule as being used now, return it as the
831 	 * location, and flag it as unique while dumping rules
832 	 */
833 	set_bit(rule_index[0], priv->cfp.used);
834 	set_bit(rule_index[1], priv->cfp.unique);
835 	fs->location = rule_index[1];
836 
837 	return ret;
838 
839 out_err_flow_rule:
840 	ethtool_rx_flow_rule_destroy(flow);
841 out_err:
842 	clear_bit(rule_index[1], priv->cfp.used);
843 	return ret;
844 }
845 
846 static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
847 				   struct ethtool_rx_flow_spec *fs)
848 {
849 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
850 	s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
851 	__u64 ring_cookie = fs->ring_cookie;
852 	struct switchdev_obj_port_vlan vlan;
853 	unsigned int queue_num, port_num;
854 	u16 vid;
855 	int ret;
856 
857 	/* This rule is a Wake-on-LAN filter and we must specifically
858 	 * target the CPU port in order for it to be working.
859 	 */
860 	if (ring_cookie == RX_CLS_FLOW_WAKE)
861 		ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
862 
863 	/* We do not support discarding packets, check that the
864 	 * destination port is enabled and that we are within the
865 	 * number of ports supported by the switch
866 	 */
867 	port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
868 
869 	if (ring_cookie == RX_CLS_FLOW_DISC ||
870 	    !(dsa_is_user_port(ds, port_num) ||
871 	      dsa_is_cpu_port(ds, port_num)) ||
872 	    port_num >= priv->hw_params.num_ports)
873 		return -EINVAL;
874 
875 	/* If the rule is matching a particular VLAN, make sure that we honor
876 	 * the matching and have it tagged or untagged on the destination port,
877 	 * we do this on egress with a VLAN entry. The egress tagging attribute
878 	 * is expected to be provided in h_ext.data[1] bit 0. A 1 means untagged,
879 	 * a 0 means tagged.
880 	 */
881 	if (fs->flow_type & FLOW_EXT) {
882 		/* We cannot support matching multiple VLAN IDs yet */
883 		if ((be16_to_cpu(fs->m_ext.vlan_tci) & VLAN_VID_MASK) !=
884 		    VLAN_VID_MASK)
885 			return -EINVAL;
886 
887 		vid = be16_to_cpu(fs->h_ext.vlan_tci) & VLAN_VID_MASK;
888 		vlan.vid = vid;
889 		if (be32_to_cpu(fs->h_ext.data[1]) & 1)
890 			vlan.flags = BRIDGE_VLAN_INFO_UNTAGGED;
891 		else
892 			vlan.flags = 0;
893 
894 		ret = ds->ops->port_vlan_add(ds, port_num, &vlan, NULL);
895 		if (ret)
896 			return ret;
897 	}
898 
899 	/*
900 	 * We have a small oddity where Port 6 just does not have a
901 	 * valid bit here (so we substract by one).
902 	 */
903 	queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
904 	if (port_num >= 7)
905 		port_num -= 1;
906 
907 	switch (fs->flow_type & ~FLOW_EXT) {
908 	case TCP_V4_FLOW:
909 	case UDP_V4_FLOW:
910 		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
911 						queue_num, fs);
912 		break;
913 	case TCP_V6_FLOW:
914 	case UDP_V6_FLOW:
915 		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
916 						queue_num, fs);
917 		break;
918 	default:
919 		ret = -EINVAL;
920 		break;
921 	}
922 
923 	return ret;
924 }
925 
926 static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
927 				struct ethtool_rx_flow_spec *fs)
928 {
929 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
930 	struct cfp_rule *rule = NULL;
931 	int ret = -EINVAL;
932 
933 	/* Check for unsupported extensions */
934 	if (fs->flow_type & FLOW_MAC_EXT)
935 		return -EINVAL;
936 
937 	if (fs->location != RX_CLS_LOC_ANY &&
938 	    fs->location > bcm_sf2_cfp_rule_size(priv))
939 		return -EINVAL;
940 
941 	if ((fs->flow_type & FLOW_EXT) &&
942 	    !(ds->ops->port_vlan_add || ds->ops->port_vlan_del))
943 		return -EOPNOTSUPP;
944 
945 	if (fs->location != RX_CLS_LOC_ANY &&
946 	    test_bit(fs->location, priv->cfp.used))
947 		return -EBUSY;
948 
949 	ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
950 	if (ret == 0)
951 		return -EEXIST;
952 
953 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
954 	if (!rule)
955 		return -ENOMEM;
956 
957 	ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
958 	if (ret) {
959 		kfree(rule);
960 		return ret;
961 	}
962 
963 	rule->port = port;
964 	memcpy(&rule->fs, fs, sizeof(*fs));
965 	list_add_tail(&rule->next, &priv->cfp.rules_list);
966 
967 	return ret;
968 }
969 
970 static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
971 				    u32 loc, u32 *next_loc)
972 {
973 	int ret;
974 	u32 reg;
975 
976 	/* Indicate which rule we want to read */
977 	bcm_sf2_cfp_rule_addr_set(priv, loc);
978 
979 	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
980 	if (ret)
981 		return ret;
982 
983 	/* Check if this is possibly an IPv6 rule that would
984 	 * indicate we need to delete its companion rule
985 	 * as well
986 	 */
987 	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
988 	if (next_loc)
989 		*next_loc = (reg >> 24) & CHAIN_ID_MASK;
990 
991 	/* Clear its valid bits */
992 	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
993 	reg &= ~SLICE_VALID;
994 	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
995 
996 	/* Write back this entry into the TCAM now */
997 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
998 	if (ret)
999 		return ret;
1000 
1001 	clear_bit(loc, priv->cfp.used);
1002 	clear_bit(loc, priv->cfp.unique);
1003 
1004 	return 0;
1005 }
1006 
1007 static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
1008 				   u32 loc)
1009 {
1010 	u32 next_loc = 0;
1011 	int ret;
1012 
1013 	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
1014 	if (ret)
1015 		return ret;
1016 
1017 	/* If this was an IPv6 rule, delete is companion rule too */
1018 	if (next_loc)
1019 		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
1020 
1021 	return ret;
1022 }
1023 
1024 static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
1025 {
1026 	struct cfp_rule *rule;
1027 	int ret;
1028 
1029 	if (loc > bcm_sf2_cfp_rule_size(priv))
1030 		return -EINVAL;
1031 
1032 	/* Refuse deleting unused rules, and those that are not unique since
1033 	 * that could leave IPv6 rules with one of the chained rule in the
1034 	 * table.
1035 	 */
1036 	if (!test_bit(loc, priv->cfp.unique) || loc == 0)
1037 		return -EINVAL;
1038 
1039 	rule = bcm_sf2_cfp_rule_find(priv, port, loc);
1040 	if (!rule)
1041 		return -EINVAL;
1042 
1043 	ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
1044 
1045 	list_del(&rule->next);
1046 	kfree(rule);
1047 
1048 	return ret;
1049 }
1050 
1051 static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
1052 {
1053 	unsigned int i;
1054 
1055 	for (i = 0; i < sizeof(flow->m_u); i++)
1056 		flow->m_u.hdata[i] ^= 0xff;
1057 
1058 	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
1059 	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
1060 	flow->m_ext.data[0] ^= cpu_to_be32(~0);
1061 	flow->m_ext.data[1] ^= cpu_to_be32(~0);
1062 }
1063 
1064 static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1065 				struct ethtool_rxnfc *nfc)
1066 {
1067 	struct cfp_rule *rule;
1068 
1069 	rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
1070 	if (!rule)
1071 		return -EINVAL;
1072 
1073 	memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
1074 
1075 	bcm_sf2_invert_masks(&nfc->fs);
1076 
1077 	/* Put the TCAM size here */
1078 	nfc->data = bcm_sf2_cfp_rule_size(priv);
1079 
1080 	return 0;
1081 }
1082 
1083 /* We implement the search doing a TCAM search operation */
1084 static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1085 				    int port, struct ethtool_rxnfc *nfc,
1086 				    u32 *rule_locs)
1087 {
1088 	unsigned int index = 1, rules_cnt = 0;
1089 
1090 	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1091 		rule_locs[rules_cnt] = index;
1092 		rules_cnt++;
1093 	}
1094 
1095 	/* Put the TCAM size here */
1096 	nfc->data = bcm_sf2_cfp_rule_size(priv);
1097 	nfc->rule_cnt = rules_cnt;
1098 
1099 	return 0;
1100 }
1101 
1102 int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1103 		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
1104 {
1105 	struct net_device *p = dsa_port_to_master(dsa_to_port(ds, port));
1106 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1107 	int ret = 0;
1108 
1109 	mutex_lock(&priv->cfp.lock);
1110 
1111 	switch (nfc->cmd) {
1112 	case ETHTOOL_GRXCLSRLCNT:
1113 		/* Subtract the default, unusable rule */
1114 		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1115 					      priv->num_cfp_rules) - 1;
1116 		/* We support specifying rule locations */
1117 		nfc->data |= RX_CLS_LOC_SPECIAL;
1118 		break;
1119 	case ETHTOOL_GRXCLSRULE:
1120 		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1121 		break;
1122 	case ETHTOOL_GRXCLSRLALL:
1123 		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1124 		break;
1125 	default:
1126 		ret = -EOPNOTSUPP;
1127 		break;
1128 	}
1129 
1130 	mutex_unlock(&priv->cfp.lock);
1131 
1132 	if (ret)
1133 		return ret;
1134 
1135 	/* Pass up the commands to the attached master network device */
1136 	if (p->ethtool_ops->get_rxnfc) {
1137 		ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1138 		if (ret == -EOPNOTSUPP)
1139 			ret = 0;
1140 	}
1141 
1142 	return ret;
1143 }
1144 
1145 int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1146 		      struct ethtool_rxnfc *nfc)
1147 {
1148 	struct net_device *p = dsa_port_to_master(dsa_to_port(ds, port));
1149 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1150 	int ret = 0;
1151 
1152 	mutex_lock(&priv->cfp.lock);
1153 
1154 	switch (nfc->cmd) {
1155 	case ETHTOOL_SRXCLSRLINS:
1156 		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1157 		break;
1158 
1159 	case ETHTOOL_SRXCLSRLDEL:
1160 		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1161 		break;
1162 	default:
1163 		ret = -EOPNOTSUPP;
1164 		break;
1165 	}
1166 
1167 	mutex_unlock(&priv->cfp.lock);
1168 
1169 	if (ret)
1170 		return ret;
1171 
1172 	/* Pass up the commands to the attached master network device.
1173 	 * This can fail, so rollback the operation if we need to.
1174 	 */
1175 	if (p->ethtool_ops->set_rxnfc) {
1176 		ret = p->ethtool_ops->set_rxnfc(p, nfc);
1177 		if (ret && ret != -EOPNOTSUPP) {
1178 			mutex_lock(&priv->cfp.lock);
1179 			bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1180 			mutex_unlock(&priv->cfp.lock);
1181 		} else {
1182 			ret = 0;
1183 		}
1184 	}
1185 
1186 	return ret;
1187 }
1188 
1189 int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1190 {
1191 	unsigned int timeout = 1000;
1192 	u32 reg;
1193 
1194 	reg = core_readl(priv, CORE_CFP_ACC);
1195 	reg |= TCAM_RESET;
1196 	core_writel(priv, reg, CORE_CFP_ACC);
1197 
1198 	do {
1199 		reg = core_readl(priv, CORE_CFP_ACC);
1200 		if (!(reg & TCAM_RESET))
1201 			break;
1202 
1203 		cpu_relax();
1204 	} while (timeout--);
1205 
1206 	if (!timeout)
1207 		return -ETIMEDOUT;
1208 
1209 	return 0;
1210 }
1211 
1212 void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1213 {
1214 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1215 	struct cfp_rule *rule, *n;
1216 
1217 	if (list_empty(&priv->cfp.rules_list))
1218 		return;
1219 
1220 	list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1221 		bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1222 }
1223 
1224 int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1225 {
1226 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1227 	struct cfp_rule *rule;
1228 	int ret = 0;
1229 	u32 reg;
1230 
1231 	if (list_empty(&priv->cfp.rules_list))
1232 		return ret;
1233 
1234 	reg = core_readl(priv, CORE_CFP_CTL_REG);
1235 	reg &= ~CFP_EN_MAP_MASK;
1236 	core_writel(priv, reg, CORE_CFP_CTL_REG);
1237 
1238 	ret = bcm_sf2_cfp_rst(priv);
1239 	if (ret)
1240 		return ret;
1241 
1242 	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1243 		ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1244 					      rule->fs.location);
1245 		if (ret) {
1246 			dev_err(ds->dev, "failed to remove rule\n");
1247 			return ret;
1248 		}
1249 
1250 		ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1251 		if (ret) {
1252 			dev_err(ds->dev, "failed to restore rule\n");
1253 			return ret;
1254 		}
1255 	}
1256 
1257 	return ret;
1258 }
1259 
1260 static const struct bcm_sf2_cfp_stat {
1261 	unsigned int offset;
1262 	unsigned int ram_loc;
1263 	const char *name;
1264 } bcm_sf2_cfp_stats[] = {
1265 	{
1266 		.offset = CORE_STAT_GREEN_CNTR,
1267 		.ram_loc = GREEN_STAT_RAM,
1268 		.name = "Green"
1269 	},
1270 	{
1271 		.offset = CORE_STAT_YELLOW_CNTR,
1272 		.ram_loc = YELLOW_STAT_RAM,
1273 		.name = "Yellow"
1274 	},
1275 	{
1276 		.offset = CORE_STAT_RED_CNTR,
1277 		.ram_loc = RED_STAT_RAM,
1278 		.name = "Red"
1279 	},
1280 };
1281 
1282 void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port,
1283 			     u32 stringset, uint8_t *data)
1284 {
1285 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1286 	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1287 	char buf[ETH_GSTRING_LEN];
1288 	unsigned int i, j, iter;
1289 
1290 	if (stringset != ETH_SS_STATS)
1291 		return;
1292 
1293 	for (i = 1; i < priv->num_cfp_rules; i++) {
1294 		for (j = 0; j < s; j++) {
1295 			snprintf(buf, sizeof(buf),
1296 				 "CFP%03d_%sCntr",
1297 				 i, bcm_sf2_cfp_stats[j].name);
1298 			iter = (i - 1) * s + j;
1299 			strscpy(data + iter * ETH_GSTRING_LEN,
1300 				buf, ETH_GSTRING_LEN);
1301 		}
1302 	}
1303 }
1304 
1305 void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
1306 				   uint64_t *data)
1307 {
1308 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1309 	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1310 	const struct bcm_sf2_cfp_stat *stat;
1311 	unsigned int i, j, iter;
1312 	struct cfp_rule *rule;
1313 	int ret;
1314 
1315 	mutex_lock(&priv->cfp.lock);
1316 	for (i = 1; i < priv->num_cfp_rules; i++) {
1317 		rule = bcm_sf2_cfp_rule_find(priv, port, i);
1318 		if (!rule)
1319 			continue;
1320 
1321 		for (j = 0; j < s; j++) {
1322 			stat = &bcm_sf2_cfp_stats[j];
1323 
1324 			bcm_sf2_cfp_rule_addr_set(priv, i);
1325 			ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
1326 			if (ret)
1327 				continue;
1328 
1329 			iter = (i - 1) * s + j;
1330 			data[iter] = core_readl(priv, stat->offset);
1331 		}
1332 
1333 	}
1334 	mutex_unlock(&priv->cfp.lock);
1335 }
1336 
1337 int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
1338 {
1339 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1340 
1341 	if (sset != ETH_SS_STATS)
1342 		return 0;
1343 
1344 	/* 3 counters per CFP rules */
1345 	return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
1346 }
1347