xref: /linux/drivers/net/dsa/bcm_sf2.c (revision cc04a46f11ea046ed53e2c832ae29e4790f7e35f)
1 /*
2  * Broadcom Starfighter 2 DSA switch driver
3  *
4  * Copyright (C) 2014, Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  */
11 
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/interrupt.h>
16 #include <linux/platform_device.h>
17 #include <linux/of.h>
18 #include <linux/phy.h>
19 #include <linux/phy_fixed.h>
20 #include <linux/mii.h>
21 #include <linux/of.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <net/dsa.h>
25 #include <linux/ethtool.h>
26 #include <linux/if_bridge.h>
27 #include <linux/brcmphy.h>
28 
29 #include "bcm_sf2.h"
30 #include "bcm_sf2_regs.h"
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct bcm_sf2_hw_stats bcm_sf2_mib[] = {
34 	{ "TxOctets",		0x000, 8	},
35 	{ "TxDropPkts",		0x020		},
36 	{ "TxQPKTQ0",		0x030		},
37 	{ "TxBroadcastPkts",	0x040		},
38 	{ "TxMulticastPkts",	0x050		},
39 	{ "TxUnicastPKts",	0x060		},
40 	{ "TxCollisions",	0x070		},
41 	{ "TxSingleCollision",	0x080		},
42 	{ "TxMultipleCollision", 0x090		},
43 	{ "TxDeferredCollision", 0x0a0		},
44 	{ "TxLateCollision",	0x0b0		},
45 	{ "TxExcessiveCollision", 0x0c0		},
46 	{ "TxFrameInDisc",	0x0d0		},
47 	{ "TxPausePkts",	0x0e0		},
48 	{ "TxQPKTQ1",		0x0f0		},
49 	{ "TxQPKTQ2",		0x100		},
50 	{ "TxQPKTQ3",		0x110		},
51 	{ "TxQPKTQ4",		0x120		},
52 	{ "TxQPKTQ5",		0x130		},
53 	{ "RxOctets",		0x140, 8	},
54 	{ "RxUndersizePkts",	0x160		},
55 	{ "RxPausePkts",	0x170		},
56 	{ "RxPkts64Octets",	0x180		},
57 	{ "RxPkts65to127Octets", 0x190		},
58 	{ "RxPkts128to255Octets", 0x1a0		},
59 	{ "RxPkts256to511Octets", 0x1b0		},
60 	{ "RxPkts512to1023Octets", 0x1c0	},
61 	{ "RxPkts1024toMaxPktsOctets", 0x1d0	},
62 	{ "RxOversizePkts",	0x1e0		},
63 	{ "RxJabbers",		0x1f0		},
64 	{ "RxAlignmentErrors",	0x200		},
65 	{ "RxFCSErrors",	0x210		},
66 	{ "RxGoodOctets",	0x220, 8	},
67 	{ "RxDropPkts",		0x240		},
68 	{ "RxUnicastPkts",	0x250		},
69 	{ "RxMulticastPkts",	0x260		},
70 	{ "RxBroadcastPkts",	0x270		},
71 	{ "RxSAChanges",	0x280		},
72 	{ "RxFragments",	0x290		},
73 	{ "RxJumboPkt",		0x2a0		},
74 	{ "RxSymblErr",		0x2b0		},
75 	{ "InRangeErrCount",	0x2c0		},
76 	{ "OutRangeErrCount",	0x2d0		},
77 	{ "EEELpiEvent",	0x2e0		},
78 	{ "EEELpiDuration",	0x2f0		},
79 	{ "RxDiscard",		0x300, 8	},
80 	{ "TxQPKTQ6",		0x320		},
81 	{ "TxQPKTQ7",		0x330		},
82 	{ "TxPkts64Octets",	0x340		},
83 	{ "TxPkts65to127Octets", 0x350		},
84 	{ "TxPkts128to255Octets", 0x360		},
85 	{ "TxPkts256to511Ocets", 0x370		},
86 	{ "TxPkts512to1023Ocets", 0x380		},
87 	{ "TxPkts1024toMaxPktOcets", 0x390	},
88 };
89 
90 #define BCM_SF2_STATS_SIZE	ARRAY_SIZE(bcm_sf2_mib)
91 
92 static void bcm_sf2_sw_get_strings(struct dsa_switch *ds,
93 				   int port, uint8_t *data)
94 {
95 	unsigned int i;
96 
97 	for (i = 0; i < BCM_SF2_STATS_SIZE; i++)
98 		memcpy(data + i * ETH_GSTRING_LEN,
99 		       bcm_sf2_mib[i].string, ETH_GSTRING_LEN);
100 }
101 
102 static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds,
103 					 int port, uint64_t *data)
104 {
105 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
106 	const struct bcm_sf2_hw_stats *s;
107 	unsigned int i;
108 	u64 val = 0;
109 	u32 offset;
110 
111 	mutex_lock(&priv->stats_mutex);
112 
113 	/* Now fetch the per-port counters */
114 	for (i = 0; i < BCM_SF2_STATS_SIZE; i++) {
115 		s = &bcm_sf2_mib[i];
116 
117 		/* Do a latched 64-bit read if needed */
118 		offset = s->reg + CORE_P_MIB_OFFSET(port);
119 		if (s->sizeof_stat == 8)
120 			val = core_readq(priv, offset);
121 		else
122 			val = core_readl(priv, offset);
123 
124 		data[i] = (u64)val;
125 	}
126 
127 	mutex_unlock(&priv->stats_mutex);
128 }
129 
130 static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds)
131 {
132 	return BCM_SF2_STATS_SIZE;
133 }
134 
135 static char *bcm_sf2_sw_probe(struct device *host_dev, int sw_addr)
136 {
137 	return "Broadcom Starfighter 2";
138 }
139 
140 static void bcm_sf2_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
141 {
142 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
143 	unsigned int i;
144 	u32 reg;
145 
146 	/* Enable the IMP Port to be in the same VLAN as the other ports
147 	 * on a per-port basis such that we only have Port i and IMP in
148 	 * the same VLAN.
149 	 */
150 	for (i = 0; i < priv->hw_params.num_ports; i++) {
151 		if (!((1 << i) & ds->phys_port_mask))
152 			continue;
153 
154 		reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
155 		reg |= (1 << cpu_port);
156 		core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
157 	}
158 }
159 
160 static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
161 {
162 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
163 	u32 reg, val;
164 
165 	/* Enable the port memories */
166 	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
167 	reg &= ~P_TXQ_PSM_VDD(port);
168 	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
169 
170 	/* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
171 	reg = core_readl(priv, CORE_IMP_CTL);
172 	reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
173 	reg &= ~(RX_DIS | TX_DIS);
174 	core_writel(priv, reg, CORE_IMP_CTL);
175 
176 	/* Enable forwarding */
177 	core_writel(priv, SW_FWDG_EN, CORE_SWMODE);
178 
179 	/* Enable IMP port in dumb mode */
180 	reg = core_readl(priv, CORE_SWITCH_CTRL);
181 	reg |= MII_DUMB_FWDG_EN;
182 	core_writel(priv, reg, CORE_SWITCH_CTRL);
183 
184 	/* Resolve which bit controls the Broadcom tag */
185 	switch (port) {
186 	case 8:
187 		val = BRCM_HDR_EN_P8;
188 		break;
189 	case 7:
190 		val = BRCM_HDR_EN_P7;
191 		break;
192 	case 5:
193 		val = BRCM_HDR_EN_P5;
194 		break;
195 	default:
196 		val = 0;
197 		break;
198 	}
199 
200 	/* Enable Broadcom tags for IMP port */
201 	reg = core_readl(priv, CORE_BRCM_HDR_CTRL);
202 	reg |= val;
203 	core_writel(priv, reg, CORE_BRCM_HDR_CTRL);
204 
205 	/* Enable reception Broadcom tag for CPU TX (switch RX) to
206 	 * allow us to tag outgoing frames
207 	 */
208 	reg = core_readl(priv, CORE_BRCM_HDR_RX_DIS);
209 	reg &= ~(1 << port);
210 	core_writel(priv, reg, CORE_BRCM_HDR_RX_DIS);
211 
212 	/* Enable transmission of Broadcom tags from the switch (CPU RX) to
213 	 * allow delivering frames to the per-port net_devices
214 	 */
215 	reg = core_readl(priv, CORE_BRCM_HDR_TX_DIS);
216 	reg &= ~(1 << port);
217 	core_writel(priv, reg, CORE_BRCM_HDR_TX_DIS);
218 
219 	/* Force link status for IMP port */
220 	reg = core_readl(priv, CORE_STS_OVERRIDE_IMP);
221 	reg |= (MII_SW_OR | LINK_STS);
222 	core_writel(priv, reg, CORE_STS_OVERRIDE_IMP);
223 }
224 
225 static void bcm_sf2_eee_enable_set(struct dsa_switch *ds, int port, bool enable)
226 {
227 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
228 	u32 reg;
229 
230 	reg = core_readl(priv, CORE_EEE_EN_CTRL);
231 	if (enable)
232 		reg |= 1 << port;
233 	else
234 		reg &= ~(1 << port);
235 	core_writel(priv, reg, CORE_EEE_EN_CTRL);
236 }
237 
238 static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
239 {
240 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
241 	u32 reg;
242 
243 	reg = reg_readl(priv, REG_SPHY_CNTRL);
244 	if (enable) {
245 		reg |= PHY_RESET;
246 		reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | CK25_DIS);
247 		reg_writel(priv, reg, REG_SPHY_CNTRL);
248 		udelay(21);
249 		reg = reg_readl(priv, REG_SPHY_CNTRL);
250 		reg &= ~PHY_RESET;
251 	} else {
252 		reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
253 		reg_writel(priv, reg, REG_SPHY_CNTRL);
254 		mdelay(1);
255 		reg |= CK25_DIS;
256 	}
257 	reg_writel(priv, reg, REG_SPHY_CNTRL);
258 
259 	/* Use PHY-driven LED signaling */
260 	if (!enable) {
261 		reg = reg_readl(priv, REG_LED_CNTRL(0));
262 		reg |= SPDLNK_SRC_SEL;
263 		reg_writel(priv, reg, REG_LED_CNTRL(0));
264 	}
265 }
266 
267 static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
268 			      struct phy_device *phy)
269 {
270 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
271 	s8 cpu_port = ds->dst[ds->index].cpu_port;
272 	u32 reg;
273 
274 	/* Clear the memory power down */
275 	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
276 	reg &= ~P_TXQ_PSM_VDD(port);
277 	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
278 
279 	/* Clear the Rx and Tx disable bits and set to no spanning tree */
280 	core_writel(priv, 0, CORE_G_PCTL_PORT(port));
281 
282 	/* Re-enable the GPHY and re-apply workarounds */
283 	if (port == 0 && priv->hw_params.num_gphy == 1) {
284 		bcm_sf2_gphy_enable_set(ds, true);
285 		if (phy) {
286 			/* if phy_stop() has been called before, phy
287 			 * will be in halted state, and phy_start()
288 			 * will call resume.
289 			 *
290 			 * the resume path does not configure back
291 			 * autoneg settings, and since we hard reset
292 			 * the phy manually here, we need to reset the
293 			 * state machine also.
294 			 */
295 			phy->state = PHY_READY;
296 			phy_init_hw(phy);
297 		}
298 	}
299 
300 	/* Enable port 7 interrupts to get notified */
301 	if (port == 7)
302 		intrl2_1_mask_clear(priv, P_IRQ_MASK(P7_IRQ_OFF));
303 
304 	/* Set this port, and only this one to be in the default VLAN,
305 	 * if member of a bridge, restore its membership prior to
306 	 * bringing down this port.
307 	 */
308 	reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
309 	reg &= ~PORT_VLAN_CTRL_MASK;
310 	reg |= (1 << port);
311 	reg |= priv->port_sts[port].vlan_ctl_mask;
312 	core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(port));
313 
314 	bcm_sf2_imp_vlan_setup(ds, cpu_port);
315 
316 	/* If EEE was enabled, restore it */
317 	if (priv->port_sts[port].eee.eee_enabled)
318 		bcm_sf2_eee_enable_set(ds, port, true);
319 
320 	return 0;
321 }
322 
323 static void bcm_sf2_port_disable(struct dsa_switch *ds, int port,
324 				 struct phy_device *phy)
325 {
326 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
327 	u32 off, reg;
328 
329 	if (priv->wol_ports_mask & (1 << port))
330 		return;
331 
332 	if (port == 7) {
333 		intrl2_1_mask_set(priv, P_IRQ_MASK(P7_IRQ_OFF));
334 		intrl2_1_writel(priv, P_IRQ_MASK(P7_IRQ_OFF), INTRL2_CPU_CLEAR);
335 	}
336 
337 	if (port == 0 && priv->hw_params.num_gphy == 1)
338 		bcm_sf2_gphy_enable_set(ds, false);
339 
340 	if (dsa_is_cpu_port(ds, port))
341 		off = CORE_IMP_CTL;
342 	else
343 		off = CORE_G_PCTL_PORT(port);
344 
345 	reg = core_readl(priv, off);
346 	reg |= RX_DIS | TX_DIS;
347 	core_writel(priv, reg, off);
348 
349 	/* Power down the port memory */
350 	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
351 	reg |= P_TXQ_PSM_VDD(port);
352 	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
353 }
354 
355 /* Returns 0 if EEE was not enabled, or 1 otherwise
356  */
357 static int bcm_sf2_eee_init(struct dsa_switch *ds, int port,
358 			    struct phy_device *phy)
359 {
360 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
361 	struct ethtool_eee *p = &priv->port_sts[port].eee;
362 	int ret;
363 
364 	p->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_100baseT_Full);
365 
366 	ret = phy_init_eee(phy, 0);
367 	if (ret)
368 		return 0;
369 
370 	bcm_sf2_eee_enable_set(ds, port, true);
371 
372 	return 1;
373 }
374 
375 static int bcm_sf2_sw_get_eee(struct dsa_switch *ds, int port,
376 			      struct ethtool_eee *e)
377 {
378 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
379 	struct ethtool_eee *p = &priv->port_sts[port].eee;
380 	u32 reg;
381 
382 	reg = core_readl(priv, CORE_EEE_LPI_INDICATE);
383 	e->eee_enabled = p->eee_enabled;
384 	e->eee_active = !!(reg & (1 << port));
385 
386 	return 0;
387 }
388 
389 static int bcm_sf2_sw_set_eee(struct dsa_switch *ds, int port,
390 			      struct phy_device *phydev,
391 			      struct ethtool_eee *e)
392 {
393 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
394 	struct ethtool_eee *p = &priv->port_sts[port].eee;
395 
396 	p->eee_enabled = e->eee_enabled;
397 
398 	if (!p->eee_enabled) {
399 		bcm_sf2_eee_enable_set(ds, port, false);
400 	} else {
401 		p->eee_enabled = bcm_sf2_eee_init(ds, port, phydev);
402 		if (!p->eee_enabled)
403 			return -EOPNOTSUPP;
404 	}
405 
406 	return 0;
407 }
408 
409 /* Fast-ageing of ARL entries for a given port, equivalent to an ARL
410  * flush for that port.
411  */
412 static int bcm_sf2_sw_fast_age_port(struct dsa_switch  *ds, int port)
413 {
414 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
415 	unsigned int timeout = 1000;
416 	u32 reg;
417 
418 	core_writel(priv, port, CORE_FAST_AGE_PORT);
419 
420 	reg = core_readl(priv, CORE_FAST_AGE_CTRL);
421 	reg |= EN_AGE_PORT | EN_AGE_DYNAMIC | FAST_AGE_STR_DONE;
422 	core_writel(priv, reg, CORE_FAST_AGE_CTRL);
423 
424 	do {
425 		reg = core_readl(priv, CORE_FAST_AGE_CTRL);
426 		if (!(reg & FAST_AGE_STR_DONE))
427 			break;
428 
429 		cpu_relax();
430 	} while (timeout--);
431 
432 	if (!timeout)
433 		return -ETIMEDOUT;
434 
435 	core_writel(priv, 0, CORE_FAST_AGE_CTRL);
436 
437 	return 0;
438 }
439 
440 static int bcm_sf2_sw_br_join(struct dsa_switch *ds, int port,
441 			      u32 br_port_mask)
442 {
443 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
444 	unsigned int i;
445 	u32 reg, p_ctl;
446 
447 	p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
448 
449 	for (i = 0; i < priv->hw_params.num_ports; i++) {
450 		if (!((1 << i) & br_port_mask))
451 			continue;
452 
453 		/* Add this local port to the remote port VLAN control
454 		 * membership and update the remote port bitmask
455 		 */
456 		reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
457 		reg |= 1 << port;
458 		core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
459 		priv->port_sts[i].vlan_ctl_mask = reg;
460 
461 		p_ctl |= 1 << i;
462 	}
463 
464 	/* Configure the local port VLAN control membership to include
465 	 * remote ports and update the local port bitmask
466 	 */
467 	core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
468 	priv->port_sts[port].vlan_ctl_mask = p_ctl;
469 
470 	return 0;
471 }
472 
473 static int bcm_sf2_sw_br_leave(struct dsa_switch *ds, int port,
474 			       u32 br_port_mask)
475 {
476 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
477 	unsigned int i;
478 	u32 reg, p_ctl;
479 
480 	p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
481 
482 	for (i = 0; i < priv->hw_params.num_ports; i++) {
483 		/* Don't touch the remaining ports */
484 		if (!((1 << i) & br_port_mask))
485 			continue;
486 
487 		reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
488 		reg &= ~(1 << port);
489 		core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
490 		priv->port_sts[port].vlan_ctl_mask = reg;
491 
492 		/* Prevent self removal to preserve isolation */
493 		if (port != i)
494 			p_ctl &= ~(1 << i);
495 	}
496 
497 	core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
498 	priv->port_sts[port].vlan_ctl_mask = p_ctl;
499 
500 	return 0;
501 }
502 
503 static int bcm_sf2_sw_br_set_stp_state(struct dsa_switch *ds, int port,
504 				       u8 state)
505 {
506 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
507 	u8 hw_state, cur_hw_state;
508 	int ret = 0;
509 	u32 reg;
510 
511 	reg = core_readl(priv, CORE_G_PCTL_PORT(port));
512 	cur_hw_state = reg & (G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
513 
514 	switch (state) {
515 	case BR_STATE_DISABLED:
516 		hw_state = G_MISTP_DIS_STATE;
517 		break;
518 	case BR_STATE_LISTENING:
519 		hw_state = G_MISTP_LISTEN_STATE;
520 		break;
521 	case BR_STATE_LEARNING:
522 		hw_state = G_MISTP_LEARN_STATE;
523 		break;
524 	case BR_STATE_FORWARDING:
525 		hw_state = G_MISTP_FWD_STATE;
526 		break;
527 	case BR_STATE_BLOCKING:
528 		hw_state = G_MISTP_BLOCK_STATE;
529 		break;
530 	default:
531 		pr_err("%s: invalid STP state: %d\n", __func__, state);
532 		return -EINVAL;
533 	}
534 
535 	/* Fast-age ARL entries if we are moving a port from Learning or
536 	 * Forwarding (cur_hw_state) state to Disabled, Blocking or Listening
537 	 * state (hw_state)
538 	 */
539 	if (cur_hw_state != hw_state) {
540 		if (cur_hw_state >= G_MISTP_LEARN_STATE &&
541 		    hw_state <= G_MISTP_LISTEN_STATE) {
542 			ret = bcm_sf2_sw_fast_age_port(ds, port);
543 			if (ret) {
544 				pr_err("%s: fast-ageing failed\n", __func__);
545 				return ret;
546 			}
547 		}
548 	}
549 
550 	reg = core_readl(priv, CORE_G_PCTL_PORT(port));
551 	reg &= ~(G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
552 	reg |= hw_state;
553 	core_writel(priv, reg, CORE_G_PCTL_PORT(port));
554 
555 	return 0;
556 }
557 
558 static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
559 {
560 	struct bcm_sf2_priv *priv = dev_id;
561 
562 	priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
563 				~priv->irq0_mask;
564 	intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
565 
566 	return IRQ_HANDLED;
567 }
568 
569 static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
570 {
571 	struct bcm_sf2_priv *priv = dev_id;
572 
573 	priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
574 				~priv->irq1_mask;
575 	intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
576 
577 	if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF))
578 		priv->port_sts[7].link = 1;
579 	if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF))
580 		priv->port_sts[7].link = 0;
581 
582 	return IRQ_HANDLED;
583 }
584 
585 static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
586 {
587 	unsigned int timeout = 1000;
588 	u32 reg;
589 
590 	reg = core_readl(priv, CORE_WATCHDOG_CTRL);
591 	reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
592 	core_writel(priv, reg, CORE_WATCHDOG_CTRL);
593 
594 	do {
595 		reg = core_readl(priv, CORE_WATCHDOG_CTRL);
596 		if (!(reg & SOFTWARE_RESET))
597 			break;
598 
599 		usleep_range(1000, 2000);
600 	} while (timeout-- > 0);
601 
602 	if (timeout == 0)
603 		return -ETIMEDOUT;
604 
605 	return 0;
606 }
607 
608 static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
609 {
610 	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
611 	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
612 	intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
613 	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
614 	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
615 	intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
616 }
617 
618 static int bcm_sf2_sw_setup(struct dsa_switch *ds)
619 {
620 	const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
621 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
622 	struct device_node *dn;
623 	void __iomem **base;
624 	unsigned int port;
625 	unsigned int i;
626 	u32 reg, rev;
627 	int ret;
628 
629 	spin_lock_init(&priv->indir_lock);
630 	mutex_init(&priv->stats_mutex);
631 
632 	/* All the interesting properties are at the parent device_node
633 	 * level
634 	 */
635 	dn = ds->pd->of_node->parent;
636 
637 	priv->irq0 = irq_of_parse_and_map(dn, 0);
638 	priv->irq1 = irq_of_parse_and_map(dn, 1);
639 
640 	base = &priv->core;
641 	for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
642 		*base = of_iomap(dn, i);
643 		if (*base == NULL) {
644 			pr_err("unable to find register: %s\n", reg_names[i]);
645 			ret = -ENOMEM;
646 			goto out_unmap;
647 		}
648 		base++;
649 	}
650 
651 	ret = bcm_sf2_sw_rst(priv);
652 	if (ret) {
653 		pr_err("unable to software reset switch: %d\n", ret);
654 		goto out_unmap;
655 	}
656 
657 	/* Disable all interrupts and request them */
658 	bcm_sf2_intr_disable(priv);
659 
660 	ret = request_irq(priv->irq0, bcm_sf2_switch_0_isr, 0,
661 			  "switch_0", priv);
662 	if (ret < 0) {
663 		pr_err("failed to request switch_0 IRQ\n");
664 		goto out_unmap;
665 	}
666 
667 	ret = request_irq(priv->irq1, bcm_sf2_switch_1_isr, 0,
668 			  "switch_1", priv);
669 	if (ret < 0) {
670 		pr_err("failed to request switch_1 IRQ\n");
671 		goto out_free_irq0;
672 	}
673 
674 	/* Reset the MIB counters */
675 	reg = core_readl(priv, CORE_GMNCFGCFG);
676 	reg |= RST_MIB_CNT;
677 	core_writel(priv, reg, CORE_GMNCFGCFG);
678 	reg &= ~RST_MIB_CNT;
679 	core_writel(priv, reg, CORE_GMNCFGCFG);
680 
681 	/* Get the maximum number of ports for this switch */
682 	priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
683 	if (priv->hw_params.num_ports > DSA_MAX_PORTS)
684 		priv->hw_params.num_ports = DSA_MAX_PORTS;
685 
686 	/* Assume a single GPHY setup if we can't read that property */
687 	if (of_property_read_u32(dn, "brcm,num-gphy",
688 				 &priv->hw_params.num_gphy))
689 		priv->hw_params.num_gphy = 1;
690 
691 	/* Enable all valid ports and disable those unused */
692 	for (port = 0; port < priv->hw_params.num_ports; port++) {
693 		/* IMP port receives special treatment */
694 		if ((1 << port) & ds->phys_port_mask)
695 			bcm_sf2_port_setup(ds, port, NULL);
696 		else if (dsa_is_cpu_port(ds, port))
697 			bcm_sf2_imp_setup(ds, port);
698 		else
699 			bcm_sf2_port_disable(ds, port, NULL);
700 	}
701 
702 	/* Include the pseudo-PHY address and the broadcast PHY address to
703 	 * divert reads towards our workaround. This is only required for
704 	 * 7445D0, since 7445E0 disconnects the internal switch pseudo-PHY such
705 	 * that we can use the regular SWITCH_MDIO master controller instead.
706 	 *
707 	 * By default, DSA initializes ds->phys_mii_mask to ds->phys_port_mask
708 	 * to have a 1:1 mapping between Port address and PHY address in order
709 	 * to utilize the slave_mii_bus instance to read from Port PHYs. This is
710 	 * not what we want here, so we initialize phys_mii_mask 0 to always
711 	 * utilize the "master" MDIO bus backed by the "mdio-unimac" driver.
712 	 */
713 	if (of_machine_is_compatible("brcm,bcm7445d0"))
714 		ds->phys_mii_mask |= ((1 << BRCM_PSEUDO_PHY_ADDR) | (1 << 0));
715 	else
716 		ds->phys_mii_mask = 0;
717 
718 	rev = reg_readl(priv, REG_SWITCH_REVISION);
719 	priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
720 					SWITCH_TOP_REV_MASK;
721 	priv->hw_params.core_rev = (rev & SF2_REV_MASK);
722 
723 	rev = reg_readl(priv, REG_PHY_REVISION);
724 	priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;
725 
726 	pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
727 		priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
728 		priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
729 		priv->core, priv->irq0, priv->irq1);
730 
731 	return 0;
732 
733 out_free_irq0:
734 	free_irq(priv->irq0, priv);
735 out_unmap:
736 	base = &priv->core;
737 	for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
738 		if (*base)
739 			iounmap(*base);
740 		base++;
741 	}
742 	return ret;
743 }
744 
745 static int bcm_sf2_sw_set_addr(struct dsa_switch *ds, u8 *addr)
746 {
747 	return 0;
748 }
749 
750 static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
751 {
752 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
753 
754 	/* The BCM7xxx PHY driver expects to find the integrated PHY revision
755 	 * in bits 15:8 and the patch level in bits 7:0 which is exactly what
756 	 * the REG_PHY_REVISION register layout is.
757 	 */
758 
759 	return priv->hw_params.gphy_rev;
760 }
761 
762 static int bcm_sf2_sw_indir_rw(struct dsa_switch *ds, int op, int addr,
763 			       int regnum, u16 val)
764 {
765 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
766 	int ret = 0;
767 	u32 reg;
768 
769 	reg = reg_readl(priv, REG_SWITCH_CNTRL);
770 	reg |= MDIO_MASTER_SEL;
771 	reg_writel(priv, reg, REG_SWITCH_CNTRL);
772 
773 	/* Page << 8 | offset */
774 	reg = 0x70;
775 	reg <<= 2;
776 	core_writel(priv, addr, reg);
777 
778 	/* Page << 8 | offset */
779 	reg = 0x80 << 8 | regnum << 1;
780 	reg <<= 2;
781 
782 	if (op)
783 		ret = core_readl(priv, reg);
784 	else
785 		core_writel(priv, val, reg);
786 
787 	reg = reg_readl(priv, REG_SWITCH_CNTRL);
788 	reg &= ~MDIO_MASTER_SEL;
789 	reg_writel(priv, reg, REG_SWITCH_CNTRL);
790 
791 	return ret & 0xffff;
792 }
793 
794 static int bcm_sf2_sw_phy_read(struct dsa_switch *ds, int addr, int regnum)
795 {
796 	/* Intercept reads from the MDIO broadcast address or Broadcom
797 	 * pseudo-PHY address
798 	 */
799 	switch (addr) {
800 	case 0:
801 	case BRCM_PSEUDO_PHY_ADDR:
802 		return bcm_sf2_sw_indir_rw(ds, 1, addr, regnum, 0);
803 	default:
804 		return 0xffff;
805 	}
806 }
807 
808 static int bcm_sf2_sw_phy_write(struct dsa_switch *ds, int addr, int regnum,
809 				u16 val)
810 {
811 	/* Intercept writes to the MDIO broadcast address or Broadcom
812 	 * pseudo-PHY address
813 	 */
814 	switch (addr) {
815 	case 0:
816 	case BRCM_PSEUDO_PHY_ADDR:
817 		bcm_sf2_sw_indir_rw(ds, 0, addr, regnum, val);
818 		break;
819 	}
820 
821 	return 0;
822 }
823 
824 static void bcm_sf2_sw_adjust_link(struct dsa_switch *ds, int port,
825 				   struct phy_device *phydev)
826 {
827 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
828 	u32 id_mode_dis = 0, port_mode;
829 	const char *str = NULL;
830 	u32 reg;
831 
832 	switch (phydev->interface) {
833 	case PHY_INTERFACE_MODE_RGMII:
834 		str = "RGMII (no delay)";
835 		id_mode_dis = 1;
836 	case PHY_INTERFACE_MODE_RGMII_TXID:
837 		if (!str)
838 			str = "RGMII (TX delay)";
839 		port_mode = EXT_GPHY;
840 		break;
841 	case PHY_INTERFACE_MODE_MII:
842 		str = "MII";
843 		port_mode = EXT_EPHY;
844 		break;
845 	case PHY_INTERFACE_MODE_REVMII:
846 		str = "Reverse MII";
847 		port_mode = EXT_REVMII;
848 		break;
849 	default:
850 		/* All other PHYs: internal and MoCA */
851 		goto force_link;
852 	}
853 
854 	/* If the link is down, just disable the interface to conserve power */
855 	if (!phydev->link) {
856 		reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
857 		reg &= ~RGMII_MODE_EN;
858 		reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
859 		goto force_link;
860 	}
861 
862 	/* Clear id_mode_dis bit, and the existing port mode, but
863 	 * make sure we enable the RGMII block for data to pass
864 	 */
865 	reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
866 	reg &= ~ID_MODE_DIS;
867 	reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
868 	reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);
869 
870 	reg |= port_mode | RGMII_MODE_EN;
871 	if (id_mode_dis)
872 		reg |= ID_MODE_DIS;
873 
874 	if (phydev->pause) {
875 		if (phydev->asym_pause)
876 			reg |= TX_PAUSE_EN;
877 		reg |= RX_PAUSE_EN;
878 	}
879 
880 	reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
881 
882 	pr_info("Port %d configured for %s\n", port, str);
883 
884 force_link:
885 	/* Force link settings detected from the PHY */
886 	reg = SW_OVERRIDE;
887 	switch (phydev->speed) {
888 	case SPEED_1000:
889 		reg |= SPDSTS_1000 << SPEED_SHIFT;
890 		break;
891 	case SPEED_100:
892 		reg |= SPDSTS_100 << SPEED_SHIFT;
893 		break;
894 	}
895 
896 	if (phydev->link)
897 		reg |= LINK_STS;
898 	if (phydev->duplex == DUPLEX_FULL)
899 		reg |= DUPLX_MODE;
900 
901 	core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
902 }
903 
904 static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port,
905 					 struct fixed_phy_status *status)
906 {
907 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
908 	u32 duplex, pause;
909 	u32 reg;
910 
911 	duplex = core_readl(priv, CORE_DUPSTS);
912 	pause = core_readl(priv, CORE_PAUSESTS);
913 
914 	status->link = 0;
915 
916 	/* Port 7 is special as we do not get link status from CORE_LNKSTS,
917 	 * which means that we need to force the link at the port override
918 	 * level to get the data to flow. We do use what the interrupt handler
919 	 * did determine before.
920 	 *
921 	 * For the other ports, we just force the link status, since this is
922 	 * a fixed PHY device.
923 	 */
924 	if (port == 7) {
925 		status->link = priv->port_sts[port].link;
926 		/* For MoCA interfaces, also force a link down notification
927 		 * since some version of the user-space daemon (mocad) use
928 		 * cmd->autoneg to force the link, which messes up the PHY
929 		 * state machine and make it go in PHY_FORCING state instead.
930 		 */
931 		if (!status->link)
932 			netif_carrier_off(ds->ports[port]);
933 		status->duplex = 1;
934 	} else {
935 		status->link = 1;
936 		status->duplex = !!(duplex & (1 << port));
937 	}
938 
939 	reg = core_readl(priv, CORE_STS_OVERRIDE_GMIIP_PORT(port));
940 	reg |= SW_OVERRIDE;
941 	if (status->link)
942 		reg |= LINK_STS;
943 	else
944 		reg &= ~LINK_STS;
945 	core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
946 
947 	if ((pause & (1 << port)) &&
948 	    (pause & (1 << (port + PAUSESTS_TX_PAUSE_SHIFT)))) {
949 		status->asym_pause = 1;
950 		status->pause = 1;
951 	}
952 
953 	if (pause & (1 << port))
954 		status->pause = 1;
955 }
956 
957 static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
958 {
959 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
960 	unsigned int port;
961 
962 	bcm_sf2_intr_disable(priv);
963 
964 	/* Disable all ports physically present including the IMP
965 	 * port, the other ones have already been disabled during
966 	 * bcm_sf2_sw_setup
967 	 */
968 	for (port = 0; port < DSA_MAX_PORTS; port++) {
969 		if ((1 << port) & ds->phys_port_mask ||
970 		    dsa_is_cpu_port(ds, port))
971 			bcm_sf2_port_disable(ds, port, NULL);
972 	}
973 
974 	return 0;
975 }
976 
977 static int bcm_sf2_sw_resume(struct dsa_switch *ds)
978 {
979 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
980 	unsigned int port;
981 	int ret;
982 
983 	ret = bcm_sf2_sw_rst(priv);
984 	if (ret) {
985 		pr_err("%s: failed to software reset switch\n", __func__);
986 		return ret;
987 	}
988 
989 	if (priv->hw_params.num_gphy == 1)
990 		bcm_sf2_gphy_enable_set(ds, true);
991 
992 	for (port = 0; port < DSA_MAX_PORTS; port++) {
993 		if ((1 << port) & ds->phys_port_mask)
994 			bcm_sf2_port_setup(ds, port, NULL);
995 		else if (dsa_is_cpu_port(ds, port))
996 			bcm_sf2_imp_setup(ds, port);
997 	}
998 
999 	return 0;
1000 }
1001 
1002 static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
1003 			       struct ethtool_wolinfo *wol)
1004 {
1005 	struct net_device *p = ds->dst[ds->index].master_netdev;
1006 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
1007 	struct ethtool_wolinfo pwol;
1008 
1009 	/* Get the parent device WoL settings */
1010 	p->ethtool_ops->get_wol(p, &pwol);
1011 
1012 	/* Advertise the parent device supported settings */
1013 	wol->supported = pwol.supported;
1014 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1015 
1016 	if (pwol.wolopts & WAKE_MAGICSECURE)
1017 		memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));
1018 
1019 	if (priv->wol_ports_mask & (1 << port))
1020 		wol->wolopts = pwol.wolopts;
1021 	else
1022 		wol->wolopts = 0;
1023 }
1024 
1025 static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
1026 			      struct ethtool_wolinfo *wol)
1027 {
1028 	struct net_device *p = ds->dst[ds->index].master_netdev;
1029 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
1030 	s8 cpu_port = ds->dst[ds->index].cpu_port;
1031 	struct ethtool_wolinfo pwol;
1032 
1033 	p->ethtool_ops->get_wol(p, &pwol);
1034 	if (wol->wolopts & ~pwol.supported)
1035 		return -EINVAL;
1036 
1037 	if (wol->wolopts)
1038 		priv->wol_ports_mask |= (1 << port);
1039 	else
1040 		priv->wol_ports_mask &= ~(1 << port);
1041 
1042 	/* If we have at least one port enabled, make sure the CPU port
1043 	 * is also enabled. If the CPU port is the last one enabled, we disable
1044 	 * it since this configuration does not make sense.
1045 	 */
1046 	if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
1047 		priv->wol_ports_mask |= (1 << cpu_port);
1048 	else
1049 		priv->wol_ports_mask &= ~(1 << cpu_port);
1050 
1051 	return p->ethtool_ops->set_wol(p, wol);
1052 }
1053 
1054 static struct dsa_switch_driver bcm_sf2_switch_driver = {
1055 	.tag_protocol		= DSA_TAG_PROTO_BRCM,
1056 	.priv_size		= sizeof(struct bcm_sf2_priv),
1057 	.probe			= bcm_sf2_sw_probe,
1058 	.setup			= bcm_sf2_sw_setup,
1059 	.set_addr		= bcm_sf2_sw_set_addr,
1060 	.get_phy_flags		= bcm_sf2_sw_get_phy_flags,
1061 	.phy_read		= bcm_sf2_sw_phy_read,
1062 	.phy_write		= bcm_sf2_sw_phy_write,
1063 	.get_strings		= bcm_sf2_sw_get_strings,
1064 	.get_ethtool_stats	= bcm_sf2_sw_get_ethtool_stats,
1065 	.get_sset_count		= bcm_sf2_sw_get_sset_count,
1066 	.adjust_link		= bcm_sf2_sw_adjust_link,
1067 	.fixed_link_update	= bcm_sf2_sw_fixed_link_update,
1068 	.suspend		= bcm_sf2_sw_suspend,
1069 	.resume			= bcm_sf2_sw_resume,
1070 	.get_wol		= bcm_sf2_sw_get_wol,
1071 	.set_wol		= bcm_sf2_sw_set_wol,
1072 	.port_enable		= bcm_sf2_port_setup,
1073 	.port_disable		= bcm_sf2_port_disable,
1074 	.get_eee		= bcm_sf2_sw_get_eee,
1075 	.set_eee		= bcm_sf2_sw_set_eee,
1076 	.port_join_bridge	= bcm_sf2_sw_br_join,
1077 	.port_leave_bridge	= bcm_sf2_sw_br_leave,
1078 	.port_stp_update	= bcm_sf2_sw_br_set_stp_state,
1079 };
1080 
1081 static int __init bcm_sf2_init(void)
1082 {
1083 	register_switch_driver(&bcm_sf2_switch_driver);
1084 
1085 	return 0;
1086 }
1087 module_init(bcm_sf2_init);
1088 
1089 static void __exit bcm_sf2_exit(void)
1090 {
1091 	unregister_switch_driver(&bcm_sf2_switch_driver);
1092 }
1093 module_exit(bcm_sf2_exit);
1094 
1095 MODULE_AUTHOR("Broadcom Corporation");
1096 MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
1097 MODULE_LICENSE("GPL");
1098 MODULE_ALIAS("platform:brcm-sf2");
1099