1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Broadcom Starfighter 2 DSA switch driver 4 * 5 * Copyright (C) 2014, Broadcom Corporation 6 */ 7 8 #include <linux/list.h> 9 #include <linux/module.h> 10 #include <linux/netdevice.h> 11 #include <linux/interrupt.h> 12 #include <linux/platform_device.h> 13 #include <linux/phy.h> 14 #include <linux/phy_fixed.h> 15 #include <linux/phylink.h> 16 #include <linux/mii.h> 17 #include <linux/clk.h> 18 #include <linux/of.h> 19 #include <linux/of_irq.h> 20 #include <linux/of_address.h> 21 #include <linux/of_net.h> 22 #include <linux/of_mdio.h> 23 #include <net/dsa.h> 24 #include <linux/ethtool.h> 25 #include <linux/if_bridge.h> 26 #include <linux/brcmphy.h> 27 #include <linux/etherdevice.h> 28 #include <linux/platform_data/b53.h> 29 30 #include "bcm_sf2.h" 31 #include "bcm_sf2_regs.h" 32 #include "b53/b53_priv.h" 33 #include "b53/b53_regs.h" 34 35 static u16 bcm_sf2_reg_rgmii_cntrl(struct bcm_sf2_priv *priv, int port) 36 { 37 switch (priv->type) { 38 case BCM4908_DEVICE_ID: 39 switch (port) { 40 case 7: 41 return REG_RGMII_11_CNTRL; 42 default: 43 break; 44 } 45 break; 46 default: 47 switch (port) { 48 case 0: 49 return REG_RGMII_0_CNTRL; 50 case 1: 51 return REG_RGMII_1_CNTRL; 52 case 2: 53 return REG_RGMII_2_CNTRL; 54 default: 55 break; 56 } 57 } 58 59 WARN_ONCE(1, "Unsupported port %d\n", port); 60 61 /* RO fallback reg */ 62 return REG_SWITCH_STATUS; 63 } 64 65 static u16 bcm_sf2_reg_led_base(struct bcm_sf2_priv *priv, int port) 66 { 67 switch (port) { 68 case 0: 69 return REG_LED_0_CNTRL; 70 case 1: 71 return REG_LED_1_CNTRL; 72 case 2: 73 return REG_LED_2_CNTRL; 74 } 75 76 switch (priv->type) { 77 case BCM4908_DEVICE_ID: 78 switch (port) { 79 case 3: 80 return REG_LED_3_CNTRL; 81 case 7: 82 return REG_LED_4_CNTRL; 83 default: 84 break; 85 } 86 break; 87 default: 88 break; 89 } 90 91 WARN_ONCE(1, "Unsupported port %d\n", port); 92 93 /* RO fallback reg */ 94 return REG_SWITCH_STATUS; 95 } 96 97 /* Return the number of active ports, not counting the IMP (CPU) port */ 98 static unsigned int bcm_sf2_num_active_ports(struct dsa_switch *ds) 99 { 100 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 101 unsigned int port, count = 0; 102 103 for (port = 0; port < ds->num_ports; port++) { 104 if (dsa_is_cpu_port(ds, port)) 105 continue; 106 if (priv->port_sts[port].enabled) 107 count++; 108 } 109 110 return count; 111 } 112 113 static void bcm_sf2_recalc_clock(struct dsa_switch *ds) 114 { 115 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 116 unsigned long new_rate; 117 unsigned int ports_active; 118 /* Frequenty in Mhz */ 119 static const unsigned long rate_table[] = { 120 59220000, 121 60820000, 122 62500000, 123 62500000, 124 }; 125 126 ports_active = bcm_sf2_num_active_ports(ds); 127 if (ports_active == 0 || !priv->clk_mdiv) 128 return; 129 130 /* If we overflow our table, just use the recommended operational 131 * frequency 132 */ 133 if (ports_active > ARRAY_SIZE(rate_table)) 134 new_rate = 90000000; 135 else 136 new_rate = rate_table[ports_active - 1]; 137 clk_set_rate(priv->clk_mdiv, new_rate); 138 } 139 140 static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port) 141 { 142 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 143 unsigned int i; 144 u32 reg, offset; 145 146 /* Enable the port memories */ 147 reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL); 148 reg &= ~P_TXQ_PSM_VDD(port); 149 core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL); 150 151 /* Enable forwarding */ 152 core_writel(priv, SW_FWDG_EN, CORE_SWMODE); 153 154 /* Enable IMP port in dumb mode */ 155 reg = core_readl(priv, CORE_SWITCH_CTRL); 156 reg |= MII_DUMB_FWDG_EN; 157 core_writel(priv, reg, CORE_SWITCH_CTRL); 158 159 /* Configure Traffic Class to QoS mapping, allow each priority to map 160 * to a different queue number 161 */ 162 reg = core_readl(priv, CORE_PORT_TC2_QOS_MAP_PORT(port)); 163 for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++) 164 reg |= i << (PRT_TO_QID_SHIFT * i); 165 core_writel(priv, reg, CORE_PORT_TC2_QOS_MAP_PORT(port)); 166 167 b53_brcm_hdr_setup(ds, port); 168 169 if (port == 8) { 170 if (priv->type == BCM4908_DEVICE_ID || 171 priv->type == BCM7445_DEVICE_ID) 172 offset = CORE_STS_OVERRIDE_IMP; 173 else 174 offset = CORE_STS_OVERRIDE_IMP2; 175 176 /* Force link status for IMP port */ 177 reg = core_readl(priv, offset); 178 reg |= (MII_SW_OR | LINK_STS); 179 if (priv->type == BCM4908_DEVICE_ID) 180 reg |= GMII_SPEED_UP_2G; 181 else 182 reg &= ~GMII_SPEED_UP_2G; 183 core_writel(priv, reg, offset); 184 185 /* Enable Broadcast, Multicast, Unicast forwarding to IMP port */ 186 reg = core_readl(priv, CORE_IMP_CTL); 187 reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN); 188 reg &= ~(RX_DIS | TX_DIS); 189 core_writel(priv, reg, CORE_IMP_CTL); 190 } else { 191 reg = core_readl(priv, CORE_G_PCTL_PORT(port)); 192 reg &= ~(RX_DIS | TX_DIS); 193 core_writel(priv, reg, CORE_G_PCTL_PORT(port)); 194 } 195 196 priv->port_sts[port].enabled = true; 197 } 198 199 static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable) 200 { 201 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 202 u32 reg; 203 204 reg = reg_readl(priv, REG_SPHY_CNTRL); 205 if (enable) { 206 reg |= PHY_RESET; 207 reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | IDDQ_GLOBAL_PWR | CK25_DIS); 208 reg_writel(priv, reg, REG_SPHY_CNTRL); 209 udelay(21); 210 reg = reg_readl(priv, REG_SPHY_CNTRL); 211 reg &= ~PHY_RESET; 212 } else { 213 reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET; 214 reg_writel(priv, reg, REG_SPHY_CNTRL); 215 mdelay(1); 216 reg |= CK25_DIS; 217 } 218 reg_writel(priv, reg, REG_SPHY_CNTRL); 219 220 /* Use PHY-driven LED signaling */ 221 if (!enable) { 222 u16 led_ctrl = bcm_sf2_reg_led_base(priv, 0); 223 224 if (priv->type == BCM7278_DEVICE_ID || 225 priv->type == BCM7445_DEVICE_ID) { 226 reg = reg_led_readl(priv, led_ctrl, 0); 227 reg |= LED_CNTRL_SPDLNK_SRC_SEL; 228 reg_led_writel(priv, reg, led_ctrl, 0); 229 } 230 } 231 } 232 233 static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv, 234 int port) 235 { 236 unsigned int off; 237 238 switch (port) { 239 case 7: 240 off = P7_IRQ_OFF; 241 break; 242 case 0: 243 /* Port 0 interrupts are located on the first bank */ 244 intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF)); 245 return; 246 default: 247 off = P_IRQ_OFF(port); 248 break; 249 } 250 251 intrl2_1_mask_clear(priv, P_IRQ_MASK(off)); 252 } 253 254 static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv, 255 int port) 256 { 257 unsigned int off; 258 259 switch (port) { 260 case 7: 261 off = P7_IRQ_OFF; 262 break; 263 case 0: 264 /* Port 0 interrupts are located on the first bank */ 265 intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF)); 266 intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR); 267 return; 268 default: 269 off = P_IRQ_OFF(port); 270 break; 271 } 272 273 intrl2_1_mask_set(priv, P_IRQ_MASK(off)); 274 intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR); 275 } 276 277 static int bcm_sf2_port_setup(struct dsa_switch *ds, int port, 278 struct phy_device *phy) 279 { 280 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 281 unsigned int i; 282 u32 reg; 283 284 if (!dsa_is_user_port(ds, port)) 285 return 0; 286 287 priv->port_sts[port].enabled = true; 288 289 bcm_sf2_recalc_clock(ds); 290 291 /* Clear the memory power down */ 292 reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL); 293 reg &= ~P_TXQ_PSM_VDD(port); 294 core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL); 295 296 /* Enable Broadcom tags for that port if requested */ 297 if (priv->brcm_tag_mask & BIT(port)) 298 b53_brcm_hdr_setup(ds, port); 299 300 /* Configure Traffic Class to QoS mapping, allow each priority to map 301 * to a different queue number 302 */ 303 reg = core_readl(priv, CORE_PORT_TC2_QOS_MAP_PORT(port)); 304 for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++) 305 reg |= i << (PRT_TO_QID_SHIFT * i); 306 core_writel(priv, reg, CORE_PORT_TC2_QOS_MAP_PORT(port)); 307 308 /* Re-enable the GPHY and re-apply workarounds */ 309 if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) { 310 bcm_sf2_gphy_enable_set(ds, true); 311 if (phy) { 312 /* if phy_stop() has been called before, phy 313 * will be in halted state, and phy_start() 314 * will call resume. 315 * 316 * the resume path does not configure back 317 * autoneg settings, and since we hard reset 318 * the phy manually here, we need to reset the 319 * state machine also. 320 */ 321 phy->state = PHY_READY; 322 phy_init_hw(phy); 323 } 324 } 325 326 /* Enable MoCA port interrupts to get notified */ 327 if (port == priv->moca_port) 328 bcm_sf2_port_intr_enable(priv, port); 329 330 /* Set per-queue pause threshold to 32 */ 331 core_writel(priv, 32, CORE_TXQ_THD_PAUSE_QN_PORT(port)); 332 333 /* Set ACB threshold to 24 */ 334 for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++) { 335 reg = acb_readl(priv, ACB_QUEUE_CFG(port * 336 SF2_NUM_EGRESS_QUEUES + i)); 337 reg &= ~XOFF_THRESHOLD_MASK; 338 reg |= 24; 339 acb_writel(priv, reg, ACB_QUEUE_CFG(port * 340 SF2_NUM_EGRESS_QUEUES + i)); 341 } 342 343 return b53_enable_port(ds, port, phy); 344 } 345 346 static void bcm_sf2_port_disable(struct dsa_switch *ds, int port) 347 { 348 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 349 u32 reg; 350 351 /* Disable learning while in WoL mode */ 352 if (priv->wol_ports_mask & (1 << port)) { 353 reg = core_readl(priv, CORE_DIS_LEARN); 354 reg |= BIT(port); 355 core_writel(priv, reg, CORE_DIS_LEARN); 356 return; 357 } 358 359 if (port == priv->moca_port) 360 bcm_sf2_port_intr_disable(priv, port); 361 362 if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) 363 bcm_sf2_gphy_enable_set(ds, false); 364 365 b53_disable_port(ds, port); 366 367 /* Power down the port memory */ 368 reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL); 369 reg |= P_TXQ_PSM_VDD(port); 370 core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL); 371 372 priv->port_sts[port].enabled = false; 373 374 bcm_sf2_recalc_clock(ds); 375 } 376 377 378 static int bcm_sf2_sw_indir_rw(struct bcm_sf2_priv *priv, int op, int addr, 379 int regnum, u16 val) 380 { 381 int ret = 0; 382 u32 reg; 383 384 reg = reg_readl(priv, REG_SWITCH_CNTRL); 385 reg |= MDIO_MASTER_SEL; 386 reg_writel(priv, reg, REG_SWITCH_CNTRL); 387 388 /* Page << 8 | offset */ 389 reg = 0x70; 390 reg <<= 2; 391 core_writel(priv, addr, reg); 392 393 /* Page << 8 | offset */ 394 reg = 0x80 << 8 | regnum << 1; 395 reg <<= 2; 396 397 if (op) 398 ret = core_readl(priv, reg); 399 else 400 core_writel(priv, val, reg); 401 402 reg = reg_readl(priv, REG_SWITCH_CNTRL); 403 reg &= ~MDIO_MASTER_SEL; 404 reg_writel(priv, reg, REG_SWITCH_CNTRL); 405 406 return ret & 0xffff; 407 } 408 409 static int bcm_sf2_sw_mdio_read(struct mii_bus *bus, int addr, int regnum) 410 { 411 struct bcm_sf2_priv *priv = bus->priv; 412 413 /* Intercept reads from Broadcom pseudo-PHY address, else, send 414 * them to our master MDIO bus controller 415 */ 416 if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr)) 417 return bcm_sf2_sw_indir_rw(priv, 1, addr, regnum, 0); 418 else 419 return mdiobus_read_nested(priv->master_mii_bus, addr, regnum); 420 } 421 422 static int bcm_sf2_sw_mdio_write(struct mii_bus *bus, int addr, int regnum, 423 u16 val) 424 { 425 struct bcm_sf2_priv *priv = bus->priv; 426 427 /* Intercept writes to the Broadcom pseudo-PHY address, else, 428 * send them to our master MDIO bus controller 429 */ 430 if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr)) 431 return bcm_sf2_sw_indir_rw(priv, 0, addr, regnum, val); 432 else 433 return mdiobus_write_nested(priv->master_mii_bus, addr, 434 regnum, val); 435 } 436 437 static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id) 438 { 439 struct dsa_switch *ds = dev_id; 440 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 441 442 priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) & 443 ~priv->irq0_mask; 444 intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR); 445 446 return IRQ_HANDLED; 447 } 448 449 static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id) 450 { 451 struct dsa_switch *ds = dev_id; 452 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 453 454 priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) & 455 ~priv->irq1_mask; 456 intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR); 457 458 if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF)) { 459 priv->port_sts[7].link = true; 460 dsa_port_phylink_mac_change(ds, 7, true); 461 } 462 if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF)) { 463 priv->port_sts[7].link = false; 464 dsa_port_phylink_mac_change(ds, 7, false); 465 } 466 467 return IRQ_HANDLED; 468 } 469 470 static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv) 471 { 472 unsigned int timeout = 1000; 473 u32 reg; 474 int ret; 475 476 /* The watchdog reset does not work on 7278, we need to hit the 477 * "external" reset line through the reset controller. 478 */ 479 if (priv->type == BCM7278_DEVICE_ID) { 480 ret = reset_control_assert(priv->rcdev); 481 if (ret) 482 return ret; 483 484 return reset_control_deassert(priv->rcdev); 485 } 486 487 reg = core_readl(priv, CORE_WATCHDOG_CTRL); 488 reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET; 489 core_writel(priv, reg, CORE_WATCHDOG_CTRL); 490 491 do { 492 reg = core_readl(priv, CORE_WATCHDOG_CTRL); 493 if (!(reg & SOFTWARE_RESET)) 494 break; 495 496 usleep_range(1000, 2000); 497 } while (timeout-- > 0); 498 499 if (timeout == 0) 500 return -ETIMEDOUT; 501 502 return 0; 503 } 504 505 static void bcm_sf2_crossbar_setup(struct bcm_sf2_priv *priv) 506 { 507 struct device *dev = priv->dev->ds->dev; 508 int shift; 509 u32 mask; 510 u32 reg; 511 int i; 512 513 mask = BIT(priv->num_crossbar_int_ports) - 1; 514 515 reg = reg_readl(priv, REG_CROSSBAR); 516 switch (priv->type) { 517 case BCM4908_DEVICE_ID: 518 shift = CROSSBAR_BCM4908_INT_P7 * priv->num_crossbar_int_ports; 519 reg &= ~(mask << shift); 520 if (0) /* FIXME */ 521 reg |= CROSSBAR_BCM4908_EXT_SERDES << shift; 522 else if (priv->int_phy_mask & BIT(7)) 523 reg |= CROSSBAR_BCM4908_EXT_GPHY4 << shift; 524 else if (phy_interface_mode_is_rgmii(priv->port_sts[7].mode)) 525 reg |= CROSSBAR_BCM4908_EXT_RGMII << shift; 526 else if (WARN(1, "Invalid port mode\n")) 527 return; 528 break; 529 default: 530 return; 531 } 532 reg_writel(priv, reg, REG_CROSSBAR); 533 534 reg = reg_readl(priv, REG_CROSSBAR); 535 for (i = 0; i < priv->num_crossbar_int_ports; i++) { 536 shift = i * priv->num_crossbar_int_ports; 537 538 dev_dbg(dev, "crossbar int port #%d - ext port #%d\n", i, 539 (reg >> shift) & mask); 540 } 541 } 542 543 static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv) 544 { 545 intrl2_0_mask_set(priv, 0xffffffff); 546 intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR); 547 intrl2_1_mask_set(priv, 0xffffffff); 548 intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR); 549 } 550 551 static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv, 552 struct device_node *dn) 553 { 554 struct device *dev = priv->dev->ds->dev; 555 struct bcm_sf2_port_status *port_st; 556 struct device_node *port; 557 unsigned int port_num; 558 struct property *prop; 559 int err; 560 561 priv->moca_port = -1; 562 563 for_each_available_child_of_node(dn, port) { 564 if (of_property_read_u32(port, "reg", &port_num)) 565 continue; 566 567 if (port_num >= DSA_MAX_PORTS) { 568 dev_err(dev, "Invalid port number %d\n", port_num); 569 continue; 570 } 571 572 port_st = &priv->port_sts[port_num]; 573 574 /* Internal PHYs get assigned a specific 'phy-mode' property 575 * value: "internal" to help flag them before MDIO probing 576 * has completed, since they might be turned off at that 577 * time 578 */ 579 err = of_get_phy_mode(port, &port_st->mode); 580 if (err) 581 continue; 582 583 if (port_st->mode == PHY_INTERFACE_MODE_INTERNAL) 584 priv->int_phy_mask |= 1 << port_num; 585 586 if (port_st->mode == PHY_INTERFACE_MODE_MOCA) 587 priv->moca_port = port_num; 588 589 if (of_property_read_bool(port, "brcm,use-bcm-hdr")) 590 priv->brcm_tag_mask |= 1 << port_num; 591 592 /* Ensure that port 5 is not picked up as a DSA CPU port 593 * flavour but a regular port instead. We should be using 594 * devlink to be able to set the port flavour. 595 */ 596 if (port_num == 5 && priv->type == BCM7278_DEVICE_ID) { 597 prop = of_find_property(port, "ethernet", NULL); 598 if (prop) 599 of_remove_property(port, prop); 600 } 601 } 602 } 603 604 static int bcm_sf2_mdio_register(struct dsa_switch *ds) 605 { 606 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 607 struct device_node *dn, *child; 608 struct phy_device *phydev; 609 struct property *prop; 610 static int index; 611 int err, reg; 612 613 /* Find our integrated MDIO bus node */ 614 dn = of_find_compatible_node(NULL, NULL, "brcm,unimac-mdio"); 615 priv->master_mii_bus = of_mdio_find_bus(dn); 616 if (!priv->master_mii_bus) { 617 of_node_put(dn); 618 return -EPROBE_DEFER; 619 } 620 621 get_device(&priv->master_mii_bus->dev); 622 priv->master_mii_dn = dn; 623 624 priv->slave_mii_bus = devm_mdiobus_alloc(ds->dev); 625 if (!priv->slave_mii_bus) { 626 of_node_put(dn); 627 return -ENOMEM; 628 } 629 630 priv->slave_mii_bus->priv = priv; 631 priv->slave_mii_bus->name = "sf2 slave mii"; 632 priv->slave_mii_bus->read = bcm_sf2_sw_mdio_read; 633 priv->slave_mii_bus->write = bcm_sf2_sw_mdio_write; 634 snprintf(priv->slave_mii_bus->id, MII_BUS_ID_SIZE, "sf2-%d", 635 index++); 636 priv->slave_mii_bus->dev.of_node = dn; 637 638 /* Include the pseudo-PHY address to divert reads towards our 639 * workaround. This is only required for 7445D0, since 7445E0 640 * disconnects the internal switch pseudo-PHY such that we can use the 641 * regular SWITCH_MDIO master controller instead. 642 * 643 * Here we flag the pseudo PHY as needing special treatment and would 644 * otherwise make all other PHY read/writes go to the master MDIO bus 645 * controller that comes with this switch backed by the "mdio-unimac" 646 * driver. 647 */ 648 if (of_machine_is_compatible("brcm,bcm7445d0")) 649 priv->indir_phy_mask |= (1 << BRCM_PSEUDO_PHY_ADDR) | (1 << 0); 650 else 651 priv->indir_phy_mask = 0; 652 653 ds->phys_mii_mask = priv->indir_phy_mask; 654 ds->slave_mii_bus = priv->slave_mii_bus; 655 priv->slave_mii_bus->parent = ds->dev->parent; 656 priv->slave_mii_bus->phy_mask = ~priv->indir_phy_mask; 657 658 /* We need to make sure that of_phy_connect() will not work by 659 * removing the 'phandle' and 'linux,phandle' properties and 660 * unregister the existing PHY device that was already registered. 661 */ 662 for_each_available_child_of_node(dn, child) { 663 if (of_property_read_u32(child, "reg", ®) || 664 reg >= PHY_MAX_ADDR) 665 continue; 666 667 if (!(priv->indir_phy_mask & BIT(reg))) 668 continue; 669 670 prop = of_find_property(child, "phandle", NULL); 671 if (prop) 672 of_remove_property(child, prop); 673 674 prop = of_find_property(child, "linux,phandle", NULL); 675 if (prop) 676 of_remove_property(child, prop); 677 678 phydev = of_phy_find_device(child); 679 if (phydev) 680 phy_device_remove(phydev); 681 } 682 683 err = mdiobus_register(priv->slave_mii_bus); 684 if (err && dn) 685 of_node_put(dn); 686 687 return err; 688 } 689 690 static void bcm_sf2_mdio_unregister(struct bcm_sf2_priv *priv) 691 { 692 mdiobus_unregister(priv->slave_mii_bus); 693 of_node_put(priv->master_mii_dn); 694 } 695 696 static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port) 697 { 698 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 699 700 /* The BCM7xxx PHY driver expects to find the integrated PHY revision 701 * in bits 15:8 and the patch level in bits 7:0 which is exactly what 702 * the REG_PHY_REVISION register layout is. 703 */ 704 if (priv->int_phy_mask & BIT(port)) 705 return priv->hw_params.gphy_rev; 706 else 707 return PHY_BRCM_AUTO_PWRDWN_ENABLE | 708 PHY_BRCM_DIS_TXCRXC_NOENRGY | 709 PHY_BRCM_IDDQ_SUSPEND; 710 } 711 712 static void bcm_sf2_sw_get_caps(struct dsa_switch *ds, int port, 713 struct phylink_config *config) 714 { 715 unsigned long *interfaces = config->supported_interfaces; 716 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 717 718 if (priv->int_phy_mask & BIT(port)) { 719 __set_bit(PHY_INTERFACE_MODE_INTERNAL, interfaces); 720 } else if (priv->moca_port == port) { 721 __set_bit(PHY_INTERFACE_MODE_MOCA, interfaces); 722 } else { 723 __set_bit(PHY_INTERFACE_MODE_MII, interfaces); 724 __set_bit(PHY_INTERFACE_MODE_REVMII, interfaces); 725 __set_bit(PHY_INTERFACE_MODE_GMII, interfaces); 726 phy_interface_set_rgmii(interfaces); 727 } 728 729 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | 730 MAC_10 | MAC_100 | MAC_1000; 731 } 732 733 static void bcm_sf2_sw_mac_config(struct dsa_switch *ds, int port, 734 unsigned int mode, 735 const struct phylink_link_state *state) 736 { 737 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 738 u32 id_mode_dis = 0, port_mode; 739 u32 reg_rgmii_ctrl; 740 u32 reg; 741 742 if (port == core_readl(priv, CORE_IMP0_PRT_ID)) 743 return; 744 745 switch (state->interface) { 746 case PHY_INTERFACE_MODE_RGMII: 747 id_mode_dis = 1; 748 fallthrough; 749 case PHY_INTERFACE_MODE_RGMII_TXID: 750 port_mode = EXT_GPHY; 751 break; 752 case PHY_INTERFACE_MODE_MII: 753 port_mode = EXT_EPHY; 754 break; 755 case PHY_INTERFACE_MODE_REVMII: 756 port_mode = EXT_REVMII; 757 break; 758 default: 759 /* Nothing required for all other PHYs: internal and MoCA */ 760 return; 761 } 762 763 reg_rgmii_ctrl = bcm_sf2_reg_rgmii_cntrl(priv, port); 764 765 /* Clear id_mode_dis bit, and the existing port mode, let 766 * RGMII_MODE_EN bet set by mac_link_{up,down} 767 */ 768 reg = reg_readl(priv, reg_rgmii_ctrl); 769 reg &= ~ID_MODE_DIS; 770 reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT); 771 772 reg |= port_mode; 773 if (id_mode_dis) 774 reg |= ID_MODE_DIS; 775 776 reg_writel(priv, reg, reg_rgmii_ctrl); 777 } 778 779 static void bcm_sf2_sw_mac_link_set(struct dsa_switch *ds, int port, 780 phy_interface_t interface, bool link) 781 { 782 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 783 u32 reg_rgmii_ctrl; 784 u32 reg; 785 786 if (!phy_interface_mode_is_rgmii(interface) && 787 interface != PHY_INTERFACE_MODE_MII && 788 interface != PHY_INTERFACE_MODE_REVMII) 789 return; 790 791 reg_rgmii_ctrl = bcm_sf2_reg_rgmii_cntrl(priv, port); 792 793 /* If the link is down, just disable the interface to conserve power */ 794 reg = reg_readl(priv, reg_rgmii_ctrl); 795 if (link) 796 reg |= RGMII_MODE_EN; 797 else 798 reg &= ~RGMII_MODE_EN; 799 reg_writel(priv, reg, reg_rgmii_ctrl); 800 } 801 802 static void bcm_sf2_sw_mac_link_down(struct dsa_switch *ds, int port, 803 unsigned int mode, 804 phy_interface_t interface) 805 { 806 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 807 u32 reg, offset; 808 809 if (port != core_readl(priv, CORE_IMP0_PRT_ID)) { 810 if (priv->type == BCM4908_DEVICE_ID || 811 priv->type == BCM7445_DEVICE_ID) 812 offset = CORE_STS_OVERRIDE_GMIIP_PORT(port); 813 else 814 offset = CORE_STS_OVERRIDE_GMIIP2_PORT(port); 815 816 reg = core_readl(priv, offset); 817 reg &= ~LINK_STS; 818 core_writel(priv, reg, offset); 819 } 820 821 bcm_sf2_sw_mac_link_set(ds, port, interface, false); 822 } 823 824 static void bcm_sf2_sw_mac_link_up(struct dsa_switch *ds, int port, 825 unsigned int mode, 826 phy_interface_t interface, 827 struct phy_device *phydev, 828 int speed, int duplex, 829 bool tx_pause, bool rx_pause) 830 { 831 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 832 struct ethtool_eee *p = &priv->dev->ports[port].eee; 833 834 bcm_sf2_sw_mac_link_set(ds, port, interface, true); 835 836 if (port != core_readl(priv, CORE_IMP0_PRT_ID)) { 837 u32 reg_rgmii_ctrl = 0; 838 u32 reg, offset; 839 840 if (priv->type == BCM4908_DEVICE_ID || 841 priv->type == BCM7445_DEVICE_ID) 842 offset = CORE_STS_OVERRIDE_GMIIP_PORT(port); 843 else 844 offset = CORE_STS_OVERRIDE_GMIIP2_PORT(port); 845 846 if (interface == PHY_INTERFACE_MODE_RGMII || 847 interface == PHY_INTERFACE_MODE_RGMII_TXID || 848 interface == PHY_INTERFACE_MODE_MII || 849 interface == PHY_INTERFACE_MODE_REVMII) { 850 reg_rgmii_ctrl = bcm_sf2_reg_rgmii_cntrl(priv, port); 851 reg = reg_readl(priv, reg_rgmii_ctrl); 852 reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN); 853 854 if (tx_pause) 855 reg |= TX_PAUSE_EN; 856 if (rx_pause) 857 reg |= RX_PAUSE_EN; 858 859 reg_writel(priv, reg, reg_rgmii_ctrl); 860 } 861 862 reg = SW_OVERRIDE | LINK_STS; 863 switch (speed) { 864 case SPEED_1000: 865 reg |= SPDSTS_1000 << SPEED_SHIFT; 866 break; 867 case SPEED_100: 868 reg |= SPDSTS_100 << SPEED_SHIFT; 869 break; 870 } 871 872 if (duplex == DUPLEX_FULL) 873 reg |= DUPLX_MODE; 874 875 core_writel(priv, reg, offset); 876 } 877 878 if (mode == MLO_AN_PHY && phydev) 879 p->eee_enabled = b53_eee_init(ds, port, phydev); 880 } 881 882 static void bcm_sf2_sw_fixed_state(struct dsa_switch *ds, int port, 883 struct phylink_link_state *status) 884 { 885 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 886 887 status->link = false; 888 889 /* MoCA port is special as we do not get link status from CORE_LNKSTS, 890 * which means that we need to force the link at the port override 891 * level to get the data to flow. We do use what the interrupt handler 892 * did determine before. 893 * 894 * For the other ports, we just force the link status, since this is 895 * a fixed PHY device. 896 */ 897 if (port == priv->moca_port) { 898 status->link = priv->port_sts[port].link; 899 /* For MoCA interfaces, also force a link down notification 900 * since some version of the user-space daemon (mocad) use 901 * cmd->autoneg to force the link, which messes up the PHY 902 * state machine and make it go in PHY_FORCING state instead. 903 */ 904 if (!status->link) 905 netif_carrier_off(dsa_to_port(ds, port)->slave); 906 status->duplex = DUPLEX_FULL; 907 } else { 908 status->link = true; 909 } 910 } 911 912 static void bcm_sf2_enable_acb(struct dsa_switch *ds) 913 { 914 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 915 u32 reg; 916 917 /* Enable ACB globally */ 918 reg = acb_readl(priv, ACB_CONTROL); 919 reg |= (ACB_FLUSH_MASK << ACB_FLUSH_SHIFT); 920 acb_writel(priv, reg, ACB_CONTROL); 921 reg &= ~(ACB_FLUSH_MASK << ACB_FLUSH_SHIFT); 922 reg |= ACB_EN | ACB_ALGORITHM; 923 acb_writel(priv, reg, ACB_CONTROL); 924 } 925 926 static int bcm_sf2_sw_suspend(struct dsa_switch *ds) 927 { 928 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 929 unsigned int port; 930 931 bcm_sf2_intr_disable(priv); 932 933 /* Disable all ports physically present including the IMP 934 * port, the other ones have already been disabled during 935 * bcm_sf2_sw_setup 936 */ 937 for (port = 0; port < ds->num_ports; port++) { 938 if (dsa_is_user_port(ds, port) || dsa_is_cpu_port(ds, port)) 939 bcm_sf2_port_disable(ds, port); 940 } 941 942 if (!priv->wol_ports_mask) 943 clk_disable_unprepare(priv->clk); 944 945 return 0; 946 } 947 948 static int bcm_sf2_sw_resume(struct dsa_switch *ds) 949 { 950 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 951 int ret; 952 953 if (!priv->wol_ports_mask) 954 clk_prepare_enable(priv->clk); 955 956 ret = bcm_sf2_sw_rst(priv); 957 if (ret) { 958 pr_err("%s: failed to software reset switch\n", __func__); 959 return ret; 960 } 961 962 bcm_sf2_crossbar_setup(priv); 963 964 ret = bcm_sf2_cfp_resume(ds); 965 if (ret) 966 return ret; 967 968 if (priv->hw_params.num_gphy == 1) 969 bcm_sf2_gphy_enable_set(ds, true); 970 971 ds->ops->setup(ds); 972 973 return 0; 974 } 975 976 static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port, 977 struct ethtool_wolinfo *wol) 978 { 979 struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master; 980 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 981 struct ethtool_wolinfo pwol = { }; 982 983 /* Get the parent device WoL settings */ 984 if (p->ethtool_ops->get_wol) 985 p->ethtool_ops->get_wol(p, &pwol); 986 987 /* Advertise the parent device supported settings */ 988 wol->supported = pwol.supported; 989 memset(&wol->sopass, 0, sizeof(wol->sopass)); 990 991 if (pwol.wolopts & WAKE_MAGICSECURE) 992 memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass)); 993 994 if (priv->wol_ports_mask & (1 << port)) 995 wol->wolopts = pwol.wolopts; 996 else 997 wol->wolopts = 0; 998 } 999 1000 static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port, 1001 struct ethtool_wolinfo *wol) 1002 { 1003 struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master; 1004 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 1005 s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index; 1006 struct ethtool_wolinfo pwol = { }; 1007 1008 if (p->ethtool_ops->get_wol) 1009 p->ethtool_ops->get_wol(p, &pwol); 1010 if (wol->wolopts & ~pwol.supported) 1011 return -EINVAL; 1012 1013 if (wol->wolopts) 1014 priv->wol_ports_mask |= (1 << port); 1015 else 1016 priv->wol_ports_mask &= ~(1 << port); 1017 1018 /* If we have at least one port enabled, make sure the CPU port 1019 * is also enabled. If the CPU port is the last one enabled, we disable 1020 * it since this configuration does not make sense. 1021 */ 1022 if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port)) 1023 priv->wol_ports_mask |= (1 << cpu_port); 1024 else 1025 priv->wol_ports_mask &= ~(1 << cpu_port); 1026 1027 return p->ethtool_ops->set_wol(p, wol); 1028 } 1029 1030 static int bcm_sf2_sw_setup(struct dsa_switch *ds) 1031 { 1032 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); 1033 unsigned int port; 1034 1035 /* Enable all valid ports and disable those unused */ 1036 for (port = 0; port < priv->hw_params.num_ports; port++) { 1037 /* IMP port receives special treatment */ 1038 if (dsa_is_user_port(ds, port)) 1039 bcm_sf2_port_setup(ds, port, NULL); 1040 else if (dsa_is_cpu_port(ds, port)) 1041 bcm_sf2_imp_setup(ds, port); 1042 else 1043 bcm_sf2_port_disable(ds, port); 1044 } 1045 1046 b53_configure_vlan(ds); 1047 bcm_sf2_enable_acb(ds); 1048 1049 return b53_setup_devlink_resources(ds); 1050 } 1051 1052 static void bcm_sf2_sw_teardown(struct dsa_switch *ds) 1053 { 1054 dsa_devlink_resources_unregister(ds); 1055 } 1056 1057 /* The SWITCH_CORE register space is managed by b53 but operates on a page + 1058 * register basis so we need to translate that into an address that the 1059 * bus-glue understands. 1060 */ 1061 #define SF2_PAGE_REG_MKADDR(page, reg) ((page) << 10 | (reg) << 2) 1062 1063 static int bcm_sf2_core_read8(struct b53_device *dev, u8 page, u8 reg, 1064 u8 *val) 1065 { 1066 struct bcm_sf2_priv *priv = dev->priv; 1067 1068 *val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg)); 1069 1070 return 0; 1071 } 1072 1073 static int bcm_sf2_core_read16(struct b53_device *dev, u8 page, u8 reg, 1074 u16 *val) 1075 { 1076 struct bcm_sf2_priv *priv = dev->priv; 1077 1078 *val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg)); 1079 1080 return 0; 1081 } 1082 1083 static int bcm_sf2_core_read32(struct b53_device *dev, u8 page, u8 reg, 1084 u32 *val) 1085 { 1086 struct bcm_sf2_priv *priv = dev->priv; 1087 1088 *val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg)); 1089 1090 return 0; 1091 } 1092 1093 static int bcm_sf2_core_read64(struct b53_device *dev, u8 page, u8 reg, 1094 u64 *val) 1095 { 1096 struct bcm_sf2_priv *priv = dev->priv; 1097 1098 *val = core_readq(priv, SF2_PAGE_REG_MKADDR(page, reg)); 1099 1100 return 0; 1101 } 1102 1103 static int bcm_sf2_core_write8(struct b53_device *dev, u8 page, u8 reg, 1104 u8 value) 1105 { 1106 struct bcm_sf2_priv *priv = dev->priv; 1107 1108 core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg)); 1109 1110 return 0; 1111 } 1112 1113 static int bcm_sf2_core_write16(struct b53_device *dev, u8 page, u8 reg, 1114 u16 value) 1115 { 1116 struct bcm_sf2_priv *priv = dev->priv; 1117 1118 core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg)); 1119 1120 return 0; 1121 } 1122 1123 static int bcm_sf2_core_write32(struct b53_device *dev, u8 page, u8 reg, 1124 u32 value) 1125 { 1126 struct bcm_sf2_priv *priv = dev->priv; 1127 1128 core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg)); 1129 1130 return 0; 1131 } 1132 1133 static int bcm_sf2_core_write64(struct b53_device *dev, u8 page, u8 reg, 1134 u64 value) 1135 { 1136 struct bcm_sf2_priv *priv = dev->priv; 1137 1138 core_writeq(priv, value, SF2_PAGE_REG_MKADDR(page, reg)); 1139 1140 return 0; 1141 } 1142 1143 static const struct b53_io_ops bcm_sf2_io_ops = { 1144 .read8 = bcm_sf2_core_read8, 1145 .read16 = bcm_sf2_core_read16, 1146 .read32 = bcm_sf2_core_read32, 1147 .read48 = bcm_sf2_core_read64, 1148 .read64 = bcm_sf2_core_read64, 1149 .write8 = bcm_sf2_core_write8, 1150 .write16 = bcm_sf2_core_write16, 1151 .write32 = bcm_sf2_core_write32, 1152 .write48 = bcm_sf2_core_write64, 1153 .write64 = bcm_sf2_core_write64, 1154 }; 1155 1156 static void bcm_sf2_sw_get_strings(struct dsa_switch *ds, int port, 1157 u32 stringset, uint8_t *data) 1158 { 1159 int cnt = b53_get_sset_count(ds, port, stringset); 1160 1161 b53_get_strings(ds, port, stringset, data); 1162 bcm_sf2_cfp_get_strings(ds, port, stringset, 1163 data + cnt * ETH_GSTRING_LEN); 1164 } 1165 1166 static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds, int port, 1167 uint64_t *data) 1168 { 1169 int cnt = b53_get_sset_count(ds, port, ETH_SS_STATS); 1170 1171 b53_get_ethtool_stats(ds, port, data); 1172 bcm_sf2_cfp_get_ethtool_stats(ds, port, data + cnt); 1173 } 1174 1175 static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds, int port, 1176 int sset) 1177 { 1178 int cnt = b53_get_sset_count(ds, port, sset); 1179 1180 if (cnt < 0) 1181 return cnt; 1182 1183 cnt += bcm_sf2_cfp_get_sset_count(ds, port, sset); 1184 1185 return cnt; 1186 } 1187 1188 static const struct dsa_switch_ops bcm_sf2_ops = { 1189 .get_tag_protocol = b53_get_tag_protocol, 1190 .setup = bcm_sf2_sw_setup, 1191 .teardown = bcm_sf2_sw_teardown, 1192 .get_strings = bcm_sf2_sw_get_strings, 1193 .get_ethtool_stats = bcm_sf2_sw_get_ethtool_stats, 1194 .get_sset_count = bcm_sf2_sw_get_sset_count, 1195 .get_ethtool_phy_stats = b53_get_ethtool_phy_stats, 1196 .get_phy_flags = bcm_sf2_sw_get_phy_flags, 1197 .phylink_get_caps = bcm_sf2_sw_get_caps, 1198 .phylink_mac_config = bcm_sf2_sw_mac_config, 1199 .phylink_mac_link_down = bcm_sf2_sw_mac_link_down, 1200 .phylink_mac_link_up = bcm_sf2_sw_mac_link_up, 1201 .phylink_fixed_state = bcm_sf2_sw_fixed_state, 1202 .suspend = bcm_sf2_sw_suspend, 1203 .resume = bcm_sf2_sw_resume, 1204 .get_wol = bcm_sf2_sw_get_wol, 1205 .set_wol = bcm_sf2_sw_set_wol, 1206 .port_enable = bcm_sf2_port_setup, 1207 .port_disable = bcm_sf2_port_disable, 1208 .get_mac_eee = b53_get_mac_eee, 1209 .set_mac_eee = b53_set_mac_eee, 1210 .port_bridge_join = b53_br_join, 1211 .port_bridge_leave = b53_br_leave, 1212 .port_pre_bridge_flags = b53_br_flags_pre, 1213 .port_bridge_flags = b53_br_flags, 1214 .port_stp_state_set = b53_br_set_stp_state, 1215 .port_fast_age = b53_br_fast_age, 1216 .port_vlan_filtering = b53_vlan_filtering, 1217 .port_vlan_add = b53_vlan_add, 1218 .port_vlan_del = b53_vlan_del, 1219 .port_fdb_dump = b53_fdb_dump, 1220 .port_fdb_add = b53_fdb_add, 1221 .port_fdb_del = b53_fdb_del, 1222 .get_rxnfc = bcm_sf2_get_rxnfc, 1223 .set_rxnfc = bcm_sf2_set_rxnfc, 1224 .port_mirror_add = b53_mirror_add, 1225 .port_mirror_del = b53_mirror_del, 1226 .port_mdb_add = b53_mdb_add, 1227 .port_mdb_del = b53_mdb_del, 1228 }; 1229 1230 struct bcm_sf2_of_data { 1231 u32 type; 1232 const u16 *reg_offsets; 1233 unsigned int core_reg_align; 1234 unsigned int num_cfp_rules; 1235 unsigned int num_crossbar_int_ports; 1236 }; 1237 1238 static const u16 bcm_sf2_4908_reg_offsets[] = { 1239 [REG_SWITCH_CNTRL] = 0x00, 1240 [REG_SWITCH_STATUS] = 0x04, 1241 [REG_DIR_DATA_WRITE] = 0x08, 1242 [REG_DIR_DATA_READ] = 0x0c, 1243 [REG_SWITCH_REVISION] = 0x10, 1244 [REG_PHY_REVISION] = 0x14, 1245 [REG_SPHY_CNTRL] = 0x24, 1246 [REG_CROSSBAR] = 0xc8, 1247 [REG_RGMII_11_CNTRL] = 0x014c, 1248 [REG_LED_0_CNTRL] = 0x40, 1249 [REG_LED_1_CNTRL] = 0x4c, 1250 [REG_LED_2_CNTRL] = 0x58, 1251 [REG_LED_3_CNTRL] = 0x64, 1252 [REG_LED_4_CNTRL] = 0x88, 1253 [REG_LED_5_CNTRL] = 0xa0, 1254 [REG_LED_AGGREGATE_CTRL] = 0xb8, 1255 1256 }; 1257 1258 static const struct bcm_sf2_of_data bcm_sf2_4908_data = { 1259 .type = BCM4908_DEVICE_ID, 1260 .core_reg_align = 0, 1261 .reg_offsets = bcm_sf2_4908_reg_offsets, 1262 .num_cfp_rules = 256, 1263 .num_crossbar_int_ports = 2, 1264 }; 1265 1266 /* Register offsets for the SWITCH_REG_* block */ 1267 static const u16 bcm_sf2_7445_reg_offsets[] = { 1268 [REG_SWITCH_CNTRL] = 0x00, 1269 [REG_SWITCH_STATUS] = 0x04, 1270 [REG_DIR_DATA_WRITE] = 0x08, 1271 [REG_DIR_DATA_READ] = 0x0C, 1272 [REG_SWITCH_REVISION] = 0x18, 1273 [REG_PHY_REVISION] = 0x1C, 1274 [REG_SPHY_CNTRL] = 0x2C, 1275 [REG_RGMII_0_CNTRL] = 0x34, 1276 [REG_RGMII_1_CNTRL] = 0x40, 1277 [REG_RGMII_2_CNTRL] = 0x4c, 1278 [REG_LED_0_CNTRL] = 0x90, 1279 [REG_LED_1_CNTRL] = 0x94, 1280 [REG_LED_2_CNTRL] = 0x98, 1281 }; 1282 1283 static const struct bcm_sf2_of_data bcm_sf2_7445_data = { 1284 .type = BCM7445_DEVICE_ID, 1285 .core_reg_align = 0, 1286 .reg_offsets = bcm_sf2_7445_reg_offsets, 1287 .num_cfp_rules = 256, 1288 }; 1289 1290 static const u16 bcm_sf2_7278_reg_offsets[] = { 1291 [REG_SWITCH_CNTRL] = 0x00, 1292 [REG_SWITCH_STATUS] = 0x04, 1293 [REG_DIR_DATA_WRITE] = 0x08, 1294 [REG_DIR_DATA_READ] = 0x0c, 1295 [REG_SWITCH_REVISION] = 0x10, 1296 [REG_PHY_REVISION] = 0x14, 1297 [REG_SPHY_CNTRL] = 0x24, 1298 [REG_RGMII_0_CNTRL] = 0xe0, 1299 [REG_RGMII_1_CNTRL] = 0xec, 1300 [REG_RGMII_2_CNTRL] = 0xf8, 1301 [REG_LED_0_CNTRL] = 0x40, 1302 [REG_LED_1_CNTRL] = 0x4c, 1303 [REG_LED_2_CNTRL] = 0x58, 1304 }; 1305 1306 static const struct bcm_sf2_of_data bcm_sf2_7278_data = { 1307 .type = BCM7278_DEVICE_ID, 1308 .core_reg_align = 1, 1309 .reg_offsets = bcm_sf2_7278_reg_offsets, 1310 .num_cfp_rules = 128, 1311 }; 1312 1313 static const struct of_device_id bcm_sf2_of_match[] = { 1314 { .compatible = "brcm,bcm4908-switch", 1315 .data = &bcm_sf2_4908_data 1316 }, 1317 { .compatible = "brcm,bcm7445-switch-v4.0", 1318 .data = &bcm_sf2_7445_data 1319 }, 1320 { .compatible = "brcm,bcm7278-switch-v4.0", 1321 .data = &bcm_sf2_7278_data 1322 }, 1323 { .compatible = "brcm,bcm7278-switch-v4.8", 1324 .data = &bcm_sf2_7278_data 1325 }, 1326 { /* sentinel */ }, 1327 }; 1328 MODULE_DEVICE_TABLE(of, bcm_sf2_of_match); 1329 1330 static int bcm_sf2_sw_probe(struct platform_device *pdev) 1331 { 1332 const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME; 1333 struct device_node *dn = pdev->dev.of_node; 1334 const struct of_device_id *of_id = NULL; 1335 const struct bcm_sf2_of_data *data; 1336 struct b53_platform_data *pdata; 1337 struct dsa_switch_ops *ops; 1338 struct device_node *ports; 1339 struct bcm_sf2_priv *priv; 1340 struct b53_device *dev; 1341 struct dsa_switch *ds; 1342 void __iomem **base; 1343 unsigned int i; 1344 u32 reg, rev; 1345 int ret; 1346 1347 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); 1348 if (!priv) 1349 return -ENOMEM; 1350 1351 ops = devm_kzalloc(&pdev->dev, sizeof(*ops), GFP_KERNEL); 1352 if (!ops) 1353 return -ENOMEM; 1354 1355 dev = b53_switch_alloc(&pdev->dev, &bcm_sf2_io_ops, priv); 1356 if (!dev) 1357 return -ENOMEM; 1358 1359 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1360 if (!pdata) 1361 return -ENOMEM; 1362 1363 of_id = of_match_node(bcm_sf2_of_match, dn); 1364 if (!of_id || !of_id->data) 1365 return -EINVAL; 1366 1367 data = of_id->data; 1368 1369 /* Set SWITCH_REG register offsets and SWITCH_CORE align factor */ 1370 priv->type = data->type; 1371 priv->reg_offsets = data->reg_offsets; 1372 priv->core_reg_align = data->core_reg_align; 1373 priv->num_cfp_rules = data->num_cfp_rules; 1374 priv->num_crossbar_int_ports = data->num_crossbar_int_ports; 1375 1376 priv->rcdev = devm_reset_control_get_optional_exclusive(&pdev->dev, 1377 "switch"); 1378 if (IS_ERR(priv->rcdev)) 1379 return PTR_ERR(priv->rcdev); 1380 1381 /* Auto-detection using standard registers will not work, so 1382 * provide an indication of what kind of device we are for 1383 * b53_common to work with 1384 */ 1385 pdata->chip_id = priv->type; 1386 dev->pdata = pdata; 1387 1388 priv->dev = dev; 1389 ds = dev->ds; 1390 ds->ops = &bcm_sf2_ops; 1391 1392 /* Advertise the 8 egress queues */ 1393 ds->num_tx_queues = SF2_NUM_EGRESS_QUEUES; 1394 1395 dev_set_drvdata(&pdev->dev, priv); 1396 1397 spin_lock_init(&priv->indir_lock); 1398 mutex_init(&priv->cfp.lock); 1399 INIT_LIST_HEAD(&priv->cfp.rules_list); 1400 1401 /* CFP rule #0 cannot be used for specific classifications, flag it as 1402 * permanently used 1403 */ 1404 set_bit(0, priv->cfp.used); 1405 set_bit(0, priv->cfp.unique); 1406 1407 /* Balance of_node_put() done by of_find_node_by_name() */ 1408 of_node_get(dn); 1409 ports = of_find_node_by_name(dn, "ports"); 1410 if (ports) { 1411 bcm_sf2_identify_ports(priv, ports); 1412 of_node_put(ports); 1413 } 1414 1415 priv->irq0 = irq_of_parse_and_map(dn, 0); 1416 priv->irq1 = irq_of_parse_and_map(dn, 1); 1417 1418 base = &priv->core; 1419 for (i = 0; i < BCM_SF2_REGS_NUM; i++) { 1420 *base = devm_platform_ioremap_resource(pdev, i); 1421 if (IS_ERR(*base)) { 1422 pr_err("unable to find register: %s\n", reg_names[i]); 1423 return PTR_ERR(*base); 1424 } 1425 base++; 1426 } 1427 1428 priv->clk = devm_clk_get_optional(&pdev->dev, "sw_switch"); 1429 if (IS_ERR(priv->clk)) 1430 return PTR_ERR(priv->clk); 1431 1432 clk_prepare_enable(priv->clk); 1433 1434 priv->clk_mdiv = devm_clk_get_optional(&pdev->dev, "sw_switch_mdiv"); 1435 if (IS_ERR(priv->clk_mdiv)) { 1436 ret = PTR_ERR(priv->clk_mdiv); 1437 goto out_clk; 1438 } 1439 1440 clk_prepare_enable(priv->clk_mdiv); 1441 1442 ret = bcm_sf2_sw_rst(priv); 1443 if (ret) { 1444 pr_err("unable to software reset switch: %d\n", ret); 1445 goto out_clk_mdiv; 1446 } 1447 1448 bcm_sf2_crossbar_setup(priv); 1449 1450 bcm_sf2_gphy_enable_set(priv->dev->ds, true); 1451 1452 ret = bcm_sf2_mdio_register(ds); 1453 if (ret) { 1454 pr_err("failed to register MDIO bus\n"); 1455 goto out_clk_mdiv; 1456 } 1457 1458 bcm_sf2_gphy_enable_set(priv->dev->ds, false); 1459 1460 ret = bcm_sf2_cfp_rst(priv); 1461 if (ret) { 1462 pr_err("failed to reset CFP\n"); 1463 goto out_mdio; 1464 } 1465 1466 /* Disable all interrupts and request them */ 1467 bcm_sf2_intr_disable(priv); 1468 1469 ret = devm_request_irq(&pdev->dev, priv->irq0, bcm_sf2_switch_0_isr, 0, 1470 "switch_0", ds); 1471 if (ret < 0) { 1472 pr_err("failed to request switch_0 IRQ\n"); 1473 goto out_mdio; 1474 } 1475 1476 ret = devm_request_irq(&pdev->dev, priv->irq1, bcm_sf2_switch_1_isr, 0, 1477 "switch_1", ds); 1478 if (ret < 0) { 1479 pr_err("failed to request switch_1 IRQ\n"); 1480 goto out_mdio; 1481 } 1482 1483 /* Reset the MIB counters */ 1484 reg = core_readl(priv, CORE_GMNCFGCFG); 1485 reg |= RST_MIB_CNT; 1486 core_writel(priv, reg, CORE_GMNCFGCFG); 1487 reg &= ~RST_MIB_CNT; 1488 core_writel(priv, reg, CORE_GMNCFGCFG); 1489 1490 /* Get the maximum number of ports for this switch */ 1491 priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1; 1492 if (priv->hw_params.num_ports > DSA_MAX_PORTS) 1493 priv->hw_params.num_ports = DSA_MAX_PORTS; 1494 1495 /* Assume a single GPHY setup if we can't read that property */ 1496 if (of_property_read_u32(dn, "brcm,num-gphy", 1497 &priv->hw_params.num_gphy)) 1498 priv->hw_params.num_gphy = 1; 1499 1500 rev = reg_readl(priv, REG_SWITCH_REVISION); 1501 priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) & 1502 SWITCH_TOP_REV_MASK; 1503 priv->hw_params.core_rev = (rev & SF2_REV_MASK); 1504 1505 rev = reg_readl(priv, REG_PHY_REVISION); 1506 priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK; 1507 1508 ret = b53_switch_register(dev); 1509 if (ret) 1510 goto out_mdio; 1511 1512 dev_info(&pdev->dev, 1513 "Starfighter 2 top: %x.%02x, core: %x.%02x, IRQs: %d, %d\n", 1514 priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff, 1515 priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff, 1516 priv->irq0, priv->irq1); 1517 1518 return 0; 1519 1520 out_mdio: 1521 bcm_sf2_mdio_unregister(priv); 1522 out_clk_mdiv: 1523 clk_disable_unprepare(priv->clk_mdiv); 1524 out_clk: 1525 clk_disable_unprepare(priv->clk); 1526 return ret; 1527 } 1528 1529 static int bcm_sf2_sw_remove(struct platform_device *pdev) 1530 { 1531 struct bcm_sf2_priv *priv = platform_get_drvdata(pdev); 1532 1533 if (!priv) 1534 return 0; 1535 1536 priv->wol_ports_mask = 0; 1537 /* Disable interrupts */ 1538 bcm_sf2_intr_disable(priv); 1539 dsa_unregister_switch(priv->dev->ds); 1540 bcm_sf2_cfp_exit(priv->dev->ds); 1541 bcm_sf2_mdio_unregister(priv); 1542 clk_disable_unprepare(priv->clk_mdiv); 1543 clk_disable_unprepare(priv->clk); 1544 if (priv->type == BCM7278_DEVICE_ID) 1545 reset_control_assert(priv->rcdev); 1546 1547 platform_set_drvdata(pdev, NULL); 1548 1549 return 0; 1550 } 1551 1552 static void bcm_sf2_sw_shutdown(struct platform_device *pdev) 1553 { 1554 struct bcm_sf2_priv *priv = platform_get_drvdata(pdev); 1555 1556 if (!priv) 1557 return; 1558 1559 /* For a kernel about to be kexec'd we want to keep the GPHY on for a 1560 * successful MDIO bus scan to occur. If we did turn off the GPHY 1561 * before (e.g: port_disable), this will also power it back on. 1562 * 1563 * Do not rely on kexec_in_progress, just power the PHY on. 1564 */ 1565 if (priv->hw_params.num_gphy == 1) 1566 bcm_sf2_gphy_enable_set(priv->dev->ds, true); 1567 1568 dsa_switch_shutdown(priv->dev->ds); 1569 1570 platform_set_drvdata(pdev, NULL); 1571 } 1572 1573 #ifdef CONFIG_PM_SLEEP 1574 static int bcm_sf2_suspend(struct device *dev) 1575 { 1576 struct bcm_sf2_priv *priv = dev_get_drvdata(dev); 1577 1578 return dsa_switch_suspend(priv->dev->ds); 1579 } 1580 1581 static int bcm_sf2_resume(struct device *dev) 1582 { 1583 struct bcm_sf2_priv *priv = dev_get_drvdata(dev); 1584 1585 return dsa_switch_resume(priv->dev->ds); 1586 } 1587 #endif /* CONFIG_PM_SLEEP */ 1588 1589 static SIMPLE_DEV_PM_OPS(bcm_sf2_pm_ops, 1590 bcm_sf2_suspend, bcm_sf2_resume); 1591 1592 1593 static struct platform_driver bcm_sf2_driver = { 1594 .probe = bcm_sf2_sw_probe, 1595 .remove = bcm_sf2_sw_remove, 1596 .shutdown = bcm_sf2_sw_shutdown, 1597 .driver = { 1598 .name = "brcm-sf2", 1599 .of_match_table = bcm_sf2_of_match, 1600 .pm = &bcm_sf2_pm_ops, 1601 }, 1602 }; 1603 module_platform_driver(bcm_sf2_driver); 1604 1605 MODULE_AUTHOR("Broadcom Corporation"); 1606 MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip"); 1607 MODULE_LICENSE("GPL"); 1608 MODULE_ALIAS("platform:brcm-sf2"); 1609